
Robust Solid Modeling by Avoiding
Redundancy for Manifold Objects

in Boundary Representation

Xiaohong Zhu Beat D. Briiderlin

UUCS-93-018

Department of Computer Science
University o f Utah

Salt Lake City, UT 84112 USA

August 16, 1993

A b s t r a c t
This paper describes a new approach to the robustness problem in solid modeling. We

identify as the main cause of the lack of robustness that interdependent topological relations
are derived from approximate data. Disregarding the interdependencies very likely violates
basic properties, such as reflexivity, and transitivity, resulting in invalid data representations,
such as dangling edges, missing faces, etc. We show that the boundary of manifold objects
can be represented without redundant relations which avoids inconsistencies. An algorithm
for regularized set operations for manifold solids which is based on the principle o f avoiding
and eliminating redundancy is described. This algorithm has been implemented for objects
bounded by planar and natural quadric surfaces; it handles coincidence and incidence cases
between surfaces and curves robustly.

R o b u s t S o l i d M o d e l i n g b y A v o i d i n g R e d u n d a n c y f o r

M a n i f o l d O b j e c t s i n B o u n d a r y R e p r e s e n t a t i o n

Xiaohong Zhu, Beat D. Bruderlin
Department of Computer Science

University o f Utah Salt Lake City, UT 84112

Abstract

This paper describes a new approach to the robustness problem in solid modeling.
We identify as the main cause of the lack of robustness that interdependent topolog­
ical relations are derived from approximate data. Disregarding the interdependencies
very likely violates basic properties, such as reflexivity, and transitivity, resulting in
invalid data representations, such as dangling edges, missing faces, etc. We show
that the boundary of manifold objects can be represented without redundant relations
which avoids inconsistencies. An algorithm for regularized set operations for mani­
fold solids which is based on the principle of avoiding and eliminating redundancy is
described. This algorithm has been implemented for objects bounded by planar and
natural quadric surfaces; it handles coincidence and incidence cases between surfaces
and curves robustly.

1 I n t r o d u c t i o n

Geometric objects are defined in a continuous Euclidean space, yet numerical information
of representations for representing objects are always discrete (for instance, floating point
numbers are used to approximate real numbers). In geometric modeling, most o f the con­
struction algorithms involve numerical computations, and compute symbolic information
from numerical information. Because o f the inaccuracy of numerical data and computa­
tion, the construction may fail to construct a new representation that represents a unique
geometric object as desired.

Practically, the goal o f geometric modeling is to compute representations for desired
geometric objects in Euclidean space. If a representation violates any properties o f the object
it is supposed to represent in Euclidean space, then the representation is not consistent.

Robustness o f a geometric algorithm usually means that the representations computed are
consistent with the theory o f Euclidean space. When geometric information is approximated

1

by floating-point numbers, floating-point calculations can distinguish object features that are

sufficiently apart, but not reliably determine coincidence of objects. In a certain region of

proximity, floating-point computation will give seemingly random results because of round-off

errors. The problem cannot be addressed satisfactorily by declaring two features coincident

whenever they are closer than the tolerance e. Doing so can easily lead to violations of basic

properties, as is demonstrated by the following simple example: W hen two points P and

Q are far enough apart, the decision for P ^ Q is correct and robust. W hen the points P

and Q are closer than twice the tolerance e, the exact relation between P and Q can not be

uniquely determined. If P = Q is chosen, this is an arbitrary decision, and contradictions

might occur. For instance, we might have the situation of three points where P = Q and

Q = R, within the tolerance e, which implies P = R. However, this may contradict the

correct tolerance based interpretation P ^ R.

Once the relations P = Q and Q — R are decided, the coincidence of P and R is

implied by the transitivity. Therefore, explicitly computing relation of the P and R based

on numeric data is redundant computation. If data and computation are precise, then this

redundantly computed relation is identical to implied information. This is guaranteed by the

fact that the numerical representation of coordinates is a model for the Euclidean geometric

object. Unfortunately, with approximated numbers the computational error depends on the

numerical method applied, yielding different results for the same relation, for instance, when

the operations are carried out in a different order or with a different, although symbolically

equivalent operation. Many of the representations that are used in geometric modeling

contain redundant information in their data structure, and algorithms of construction also

involve redundant computations. For this reason, consistency is not guaranteed in geometric

modeling, unless infinite precision is applied. It is easy to see from the above example,

that we can achieve robustness by either enforcing consistency for redundant operations by

explicit reasoning, or by avoiding and removing redundancies. If we already decided that P

— Q and Q = R, then we would not have to compare P and R, but would know by inference

that they are coincident. Moreover, if two different points are found to be coincident, this

represents redundant information. W e can replace the representation of point P with the

representation of point Q in all occurrences in the data structure. This also helps making

comparison with other data consistent. In this paper we develop a solid modeling approach

based on avoiding and eliminating redundant information in the data structure.

2

2 R e l a t e d W o r k

A number of researchers have addressed the geometric robustness problem. An overview

can be found in [12, 13]. Methods can be classified into the following categories: arbi­

trary precision, perturbation, symbolic reasoning, tolerance based approaches, and avoiding

redundancies.

Some approaches attempt to perform precise computations by using exact numbers to

achieve continuity, (such as rational numbers, exact algebraic numbers or a space grid)[10,

22, 31, 32]. Robustness of these algorithms is guaranteed, because no numerical error is

introduced. These approaches are based on the assumption that geometric shapes can be

represented by exact numbers. This is true only for a limited domain of objects (e.g. poly-

hedra).

The robustness problem frequently encountered with positional degeneracies, in which

cases objects are partially coincident. The methods described in [5, 33] use geometric p er­

tu rb a tio n to avoid coincidence and thus the problem. However, degeneracies are usually

intentionally created, such as the construction of assembly parts using the geometric modeler.

Therefore, this method excludes many important applications.

Other researchers apply sy m b o lic reasoning to guarantee the consistency of interde­

pendent geometric relations[19, 20, 14, 16, 29, 30]. The success of reasoning seems to largely

depend on the availability of powerful and efficient symbolic reasoning approaches. In ex­

treme cases, general geometric theorem proving methods[4, 15, 17] have to be employed.

However, due to the complexity of the symbolic reasoning problem, these approaches are

either mostly limited to relatively simple geometric problems with limited implications by

so-called “local” reasoning.

T oleran ce-b ased approaches treat geometric shapes as subsets of a continuum (real

numbers), but with limited accuracy. Numeric values are therefore represented as a range,

rather than a single value. These approaches have their root in interval arithmetical].

A direct geometric generalization of interval arithmetic is “Epsilon Geometry” [11, 26, 28].

In this approach, geometric relations are computed with an error which is propagated by

the logical inferences in an algorithm, possibly yielding “undecided” relations. Adaptive

tolerance-based approaches have been studied in [2, 3, 6, 7, 8, 9, 28]. These methods adjust

the tolerances to keep certain information of the algorithm’s decision-making history. When

making a new decision, the algorithm will check the tolerances to make the decision consistent

with all the previous ones, and update the tolerances to reflect the new decision. While the

results of tolerance-based approaches are generally satisfactory, extra computation is needed

for all the tolerance operations. Also these approaches may find ambiguities that have to be

fixed by extra means.

Robustness can also be achieved by avoiding redundancies. The idea of avoiding

redundant computation in set operations has previously been presented in [13]. In [25], a

B-rep data structure is found from a CSG representation. Avoiding redundancy in the CSG

data structure helps in avoiding redundant decisions in the boundary evaluation. Another,

similar approach is taken in [24]. These approaches cannot completely avoid all redundancies,

and in general, this is probably too difficult to achieve.

3 C h a r a c t e r i z a t i o n o f R e d u n d a n c y

We observe that the robustness problem is mainly caused by contradictions in redundant

and imprecise computations. Before discussing ways of avoiding or eliminating redundancies,

we first characterize two types of redundancies: Directly redundant data computation and

indirectly redundant data computation.

1. Directly Redundant Data Computation: Duplicates of geometric elements may exist

in different parts of the data structures of geometric objects. Coincident objects also

represent redundant data and it should be obvious that they may cause redundant

data computation leading to inconsistencies. For instance (see figure 1), surfaces f

and g are coincident within tolerance (/ = g). W hen we compare edge e with surface

f, we may find that e is on f, but e is not on g within tolerance, which violates the

transitivity property of the incidence relation. This direct redundancy can be easily

avoided by replacing one of the coincident surfaces with the other one. Also, comparing

(or intersecting) surface f with g is possibly different from comparing (or intersecting)

g with f, violating reflexivity. This problem can be avoided by always comparing the

surfaces in the same order.

2. Indirectly redundant data computation: Some relations may be implied in different data

structures of the representation of the geometric objects.

For three planes, denoted by f l , f2 and f3 (as shown in figure 2), we first compute the

intersection line e of fl and f2. After this, we compute the relation of line e and the

4

• e

g --

/ = S', e C / , and e £ g

Figure 1: Example of direct redundancy

plane f3. If we find line e is on the plane f3, then the following implication applies.

e = / i n f 2 and e on f 3 =*> 3#, h : g = / i D / 3, h = f 2 D / 3, S' = h = e

The intersection of f l and f3, and the intersection of f2 and f3 are both coincident

with e. In other words, the decision that e is on f3, in fact, implicitly computes the

intersection of f l and f3, and f2 and f3. Explicitly computing the other intersections in

other parts of an algorithm would therefore create redundant data. The enlargement

in figure 2 shows that, due to numerical imprecision there are actually 3 intersection

lines. Using a tolerance to decide the relations might determine that e is on f3 (the

distance between e and f3 is smaller than the tolerance) but that the three intersections

are not coincident (because their relative distance is slightly larger than the tolerance),

which is contradictory, according to the above finding.

W e call the redundancy caused by such indirectly redundant data computation an

indirect redundancy.

4 R e m o v i n g a n d A v o i d i n g R e d u n d a n c y

Totally removing redundancies in geometric algorithms may not be realizable in general. In

special cases, such as regularized boolean set operation, under the assumption that objects

are limited to manifolds, we can attempt to eliminate redundancies. In the following context,

we will first explain the definition of manifolds and regularized boolean set operation. After

that, we will derive a non-redundant data representation, and operations.

f

5

e — / i f l /2 and e is on fa

=$■ e = g = h

where g = / 2 f l /3 and h = fiC\ fa

With tolerance region, e is on fa, but g ^ h ^ e

Figure 2: Three surfaces intersecting in one line

6

4 .1 M a n i f o l d s a n d N o n - R e d u n d a n t D a t a R e p r e s e n t a t i o n

Non-manifold solids and mixed topology objects have been introduced for special applications

in C A D /C A M . However, many geometric objects that are used in C A D /C A M design, and

especially in solid modeling operations, such as Boolean set operations are manifolds. Since

robustness in solid modeling is such a difficult issue, it makes sense to aim at a robust

solution for the important subclass of manifold objects first. The definitions of manifolds

are as follows [12]: ■

D efin ition 1 (3-manifold) A 3-manifold with boundary is homeomorphic to a simplicial

complex C o f dimension 3 with the following restrictions:

1. Every 2 simplex in C is adjacent to one (or two) 3 simplices.

2. The link o f every 0 simplex is a triangulation o f the disk (or the sphere).

(the cases in parentheses correspond to interior simplices).

D efin ition 2 (2-manifold) A 2-manifold with boundary is homeomorphic to a simplicial

complex C o f dimension 2 with the following restrictions:

1. Every 1 simplex is incident to exactly two 2-simplices.

2. The link o f every 0 simplex in C is a triangulation o f the circle.

T h e o re m 1 M is a connected 3-manifold with boundary; then the boundary o f M is an

embedded orientable 2 manifold without boundary.

T h e o re m 2 The boundary o f a connected 3 manifold is a boundary o f a regularized solid in

3D.

W ith simplical complices, we here mean abstract simplical complices (as defined in[12])

which does not restrict objects to be polyhedral. Some examples for 2-manifold boundaries

are illustrated in figure 3. Every edge (1-simplex) is incident to exactly two surfaces. No

edge is therefore incident on a third surface, and no two edges are coincident. Also, the link

of every vertex (0 simplex) is a triangulation of the circle. Some non-2-manifold boundaries

7

9

triangulation of circle

Figure 3: Examples for manifold objects

Figure 4: Example for non-manifold

are shown in figures 4 and 5. In figure 4, the object has an edge (1-simplex) incident to four
surfaces. In figure 5, there is a vertex (0 simplex) whose link is not a triangulation of the
circle (actually it is a triangulation o f two circles). In the following we exclude non-manifolds
from consideration.

Based on the above definition o f manifolds, the boundary representation we use in the
set operation algorithm, is slightly different from the well known winged-edge representation
described in the literature[l], A solid object contains a list o f bounding faces. Each face is
bounded by a set o f disjointed edge cycles which we call loops. Each vertex is the intersection
o f two half-edges that belong to the same face, rather than an intersection o f three (or more)
faces in 3D. Each edge contains the following topological information :

• 2 incident vertices for each half edge

• the neighbor half edge

• the face it belongs to

• the successor and the predecessor edge in the face the half edge belongs to.

• the direction o f the edge (the convention is that the interior o f the face is to the left,
looking from outside) .

9

directions of

half edge e

Figure 6: The boundary representation

The edge is oriented by the order of the two incident vertices. One is defined as start

vertex, and the other is defined as end vertex. The schema is shown in figure 6.

4 .2 R e g u l a r i z e d B o o l e a n O p e r a t i o n s

Regularized boolean set operations (regularized union, regularized intersection, and regular­

ized difference) are an important tool used for constructing objects in geometric modeling.
They differ from the corresponding set theoretic operations in that the result is the closure
of the interior o f the solid, which eliminates “dangling” edges and faces, and isolated ver­
tices [23]. Regularized Boolean set operations are used here to handle incident faces and
edges uniformly. For a boundary representation, the implementation o f regularized Boolean
operations is fairly involved. The basic steps are:

• Generate the set membership classifications o f the boundaries of one solid with respect
to the other solid. This involves computing the intersection between boundaries of
different solids and carrying out the inside/outside/on tests for a boundary against a

11

• Collect boundaries of the new solid by selecting parts of the boundaries that belong to

the resulting objects, depending on the set membership classification, the neighborhood

evaluation, and on the type of Boolean operation.

• Build the topological relationships and boundary hierarchy of the new solid.

From the above we can see that the set operation algorithm contains both, “direct”

intersection computation (face with face, or edge with edge), and “indirect” intersection

computation by computing geometric relations (incidence, coincidence). Both may lead to

inconsistency when based on tolerance based relations.

4 .3 A v o i d i n g a n d R e m o v i n g R e d u n d a n c i e s in t h e D a t a R e p r e ­
s e n t a t i o n a n d A l g o r i t h m

In a previous section, we analyzed redundancies occurring in regularized boolean set opera­

tions, next we want to either avoid the redundancy, or remove it when it is detected.

For the direct intersection computation, including the face-face, edge-edge intersections,

we follow the ideas presented in[14]. W hen two surfaces are found to be coincident (within

the tolerance) we have to replace on of them by the other in the representation of a face. The

remaining surfaces are all intersecting (or exactly identical). The surfaces can be ordered

(e.g. by their index), and each surface is only intersected with surfaces higher in the order,

and thus directly redundant computation can be easily avoided.

For the indirect intersection computation (incidence), we cannot avoid all the redun­

dancies immediately. Fortunately, for manifold objects we can detect redundant data, and

eliminate it later based on the type of operation and the neighborhood evaluation.

Relations between edges and faces can be intersecting, inside, outside, or on.

If an edge is incident on a face, this means that three faces intersect in one common edge.

If we can assume that the object resulting from a Boolean set operation is a 2 manifold, then

we know that each edge must be the intersection of exactly two faces. However, temporarily

we may obtain such an edge-face incidence relation leading to a redundancy that we need to

detect and remove (during the computation of set operations such incidence relations occur

relatively often). For example, as shown in figures 7 and 8, e is the intersection edge of face

g and face h (Face g, and face h are faces of the same object c l , and face f belongs to object

solid, and the neighborhood evaluation.

12

c2). W e determine that e is on the face f. From the topological relations we determine the

portions of one of the edges that can be deleted, depending on whether union, intersection,

and difference is computed. Therefore, edge e is still an intersection of exactly two faces in

the resulting object.

Coincident edges correspond to four faces intersecting in a common intersection curve.

Again, in the result we can delete portions of the edges (otherwise we would obtain a non­

manifold topology, which we explicitly excluded from the domain of objects we are dealing

with here).

Vertices, in our approach, are computed by intersecting two edges that belong to the

same face. Each edge is constructed by intersecting two surfaces, but one of the surfaces is

shared by the two intersecting edges, therefore, a vertex is incident on exactly 3 surfaces. In

contrast to conventional boundary representation vertices are not shared among faces, here.

For instance, for an n-sided pyramid, the top ‘vertex’ is actually not represented by one, but

by n vertices, each is geometrically incident to two edges (i.e. three faces; the face it belongs

to, and the two faces adjacent to the two edges). Examples are shown in figures 9 and

10. These vertices are not compared geometrically in 3 space, and therefore not considered

coincident, and so redundancy is essentially avoided.

4 .4 T h e R o b u s t n e s s

The reason why most correctly designed geometric algorithms often fail is that incidence and

coincidence decisions based approximated data are arbitrary interpretations. W hen depen­

dencies between such decisions are unrecognized and the decisions are made independently,

dependent information may contain contradictions.

In [6] it was shown that relations, such as apartness (and thus inside, outside) can be

determined unambiguously based on a tolerance e (representing an upper bound on the

error), i.e. these relations do not change when the precision is increased (even with infinite

precision). This means “apartness” relations are consistent with each other.

On the other hand, relations, such as incidence or coincidence, based on a tolerance

are always arbitrary. For instance, if we consider two points that have a relative distance

less than e from each other to be coincident (or apart), this might be inconsistent with

other decisions (as explained in the introduction for point coincidence, where the transitivity

property of coincidence was violated). Increasing the precision might yield another outcome

13

Figure 9: Vertex definition, example 1

V(n,l,2) V(1

Figure 10: Vertex definition, example 2

16

of the relation.

If we can avoid such situations altogether, or avoid the dependency between the relations,

we can avoid possible inconsistencies. As mentioned above, incidence relations are important

in solid modeling, and should therefore be supported. W e therefore follow the second path

and determine interdependencies of incidence relations and eliminate redundancies in the

solid representation, which is possible for the class of 3-manifolds with redundancy. To avoid

inconsistencies in the data generated by an algorithm, based on approximated data, we rely

on the following lemma:

L e m m a 1 I f an algorithm creates consistent and accurate results fo r consistent and accu­

rate input, on the grounds that all the computations are done exactly (e.g. with infinite

precision), the sam e algorithm also produces consistent results, even with approximated data

and operations, if (directly and indirectly) redundant computation is avoided, and redundant

data is eliminated before it affects any decision in the algorithm.

The truth of this lemma is intuitively obvious: Since no decision involving data in the

object can be derived from other data or in another way (which is the condition for not being

redundant) it therefore cannot contradict any previously made decision.

5 A l g o r i t h m s

The algorithm for evaluating regularized Boolean expressions presented here, is based on

the same basic operations as the algorithms presented in the literature [18, 23] which are in­

tersecting faces, edges, with each other, determining relationships, neighborhood evaluation,

and generating a new topology (boundary data structure) from this evaluation Our approach

differs in that it takes advantage of the principles of avoiding redundant representations or

eliminating them after detection, as described in the previous sections. This is manifested

in a different order in which the basic geometric operations are carried out. Also, a slightly

modified data structure is used, instead of the winged edge data structure. In [35] we de­

scribe a version of this algorithm converting a half space representation into a Boundary

representation. The algorithm presented here directly operates on a boundary representa­

tion, and does not require the hybrid representation that was used in the previous approach.

Nevertheless, all the geometric information is derived from the surface representation (top

down, instead of bottom up as it is often done for boundary representations of polyhedra). A

17

surface geometry representation is associated with each face, indicating which side is inside

by the direction of the normal vector (in this sense the face acts as a half space, but no

explicit Boolean expression over half spaces are defined for each solid). A curve is defined

as the intersection of two surfaces; a point is defined as the intersection of three surfaces.

Relations between points, curves and surfaces, are derived from relations between surfaces

only.

To eliminate redundant data in the Boolean set operation algorithm we eliminate all

coincident surfaces (by merging them). Curves incident on surfaces are limited to intersection

curves of 2 surfaces, and vertices are intersections of two edges which is achieved by limiting

the solids to 2 manifold topology, where each face has 1-manifold topology. No coincident

curves, and curves incident on surfaces, other than the two surfaces that generated the

intersection curve will be present in the resulting representation.

The following outline of the set operation algorithm concentrates on the essentials with

regards to avoiding redundancies.

Compute Boolean for 2 solids A and B

Procedure Boolean(A:solid, B:solid)

Begin

For each face 'a' of A

For each ‘b’ face of B

Case spatial_relation(a,b) of

intersecting: find the intersection

curve(s) and associate them with 'a'

and ‘b’ (* as "unlimited" edges e(a,b).

The edge is represented by 2 half edges;

one for ‘a’ and ‘b’ respectively *)I

coincident(*within some tolerance*):

replace ‘b’ in B with 'a'I

(* this requires recomputing the boundaries of 'b' *)

End;

18

od
od

After this all the surfaces either intersect or are exactly equal (i.e. they have the same

representation).

End Face; .

Procedure Edges(A:solid)

Begin

For each face ‘a’ of A

For each intersection edge e(a,b) in 'a'

compare with all boundary edges e2 of 'a' and ‘b’

(* e(a,b) is the intersection of 'a' and a

second surface ‘b’, e2 is the intersection

of 'a' or ‘b’ with a third surface 'c', either the

three surfaces 'a', ‘b’, and 'c' intersect,

or e(a,b) and e2 are coincident *)

first intersect e(a,b) with all boundary edges e2 of

‘a’ and ‘b’ that intersect to determine the range of e(a,b)

that is inside both ‘a’ and ‘b’.

second eliminate coincident edges:

If the range of the two coincident edges overlaps

the overlapping region is eliminated for

e(a,b) or e2

End;

od

od

19

End Edges;

The decisions, which part to clip (in case of an intersection), and which overlapping part

to eliminate is made based on the neighborhood evaluation and the type of Boolean opera­

tions. The principles of neighborhood evaluation and the geometric decisions are described

in [23]. The face-face and the edge-edge coincidence relations are computed based on toler­

ances. More details on this matter can be found in [34]. If the innermost start (end) point

of half edge e(a,b) in the above algorithm is incident on the boundary of face ‘b ’ , then the

corresponding end (start) point of the neighbor half edge in ‘a’ connects to another intersec­

tion edge, and vice versa. To determine which intersection edge to connect to we choose the

one with the end (start) point closest to the corresponding start (end) point of the neighbor

of e(a,b) (note that the corresponding vertices of two neighbor half edges don’t need to be

coincident within tolerance). This is unambiguous, as long as there are no more than two

edges incident on a single point, in each surface, which the case if the topology of the face’s

boundary is a one-manifold. In case of a non-manifold face boundary the choice which edge

to connect with which is ambiguous. If the neighbor face has a non one-manifold topology

as well, the choice can usually be made arbitrarily, but consistency among all the incident

edges must be established (e.g by a graph search). Two examples for how the algorithm

works are given below.

5 .1 V e r t e x C o n s i s t e n c y

C A D applications usually require points to be represented as one vertex in 3D, rather than

by point clusters, distributed over multiple faces, as it is done in our approach. W ith the

following definition we can create such a more desirable representation.

If there exists a permutation of indices 7r and a set of vertices Vj, where j = 1, .., n for

n > 3, and v: is the intersection of f ^ _ lmodn fl / ^ modn fl / ^ +lmodn , then the v} are coincident

in 3 space and the links connected to the vertex triangulate a circle.

Practically, this means to connect each vertex in a half edge with the corresponding

vertex of the neighbor half edge, then connect that vertex with the corresponding vertex of

the neighbor of the other edge intersecting at that vertex, and so on, until we are back to the

vertex we started with. Once around, we can associate a unique identifier for a 3D vertex

with all the vertices in the cycle. The process terminates once all the vertices in each face

point to a corresponding 3D vertex. Note that each decision in the algorithm is uniquely

20

in face 4 v(2,4 ,l) becomes v(3 ,4 ,l)
v(3,4,2) becomes v(3 ,4 ,l)

in face 2 v(l,2 ,4) becomes v(l,2 ,3)
v(4,2,3) becomes v(l,2 ,3)

Table 1: Updating Vertex

determined by the winged edge data structure, and no more tolerance based comparisons
are required (Actually a comparison of the coordinates might find that the vertices are not
coincident within tolerance)

5 .2 E x a m p l e s

The following two examples illustrate the application of the algorithms to different situations.

In figure 11 a), the enlargement of the intersection of surfaces 1, 2, 3, and 4 shows
a consistent interpretation of the four surfaces intersecting in 6 vertices distributed over
the four faces. Two cycles are created: [v(2,4,l), v(4 ,l,2), v(l,2,4)] and [v(3,4,2), v(4,2,3),
v(2,3,4)], corresponding to two apart points in 3D.

In figure 11 b), the same situation is interpreted with a bigger tolerance in face 4, causing
the intersections o f the two vertices v(2 ,4 ,l) and v(3,4,2),in face 4 to be coincident (within
the tolerance), which causes the half-edge h(2,4) between faces 2 and 4 to be deleted in both
faces. Consequently the vertices in faces 2 and 4 need to be updated, as shown in table 1.
Note that the vertices in faces 1 and 3 are not affected by the update. In the result, only
one cycle is created [v(3,4,l), v (4 ,l,2), v (l,2 ,3), v(2,3,4)], corresponding to one 3D vertex,
where 4 surfaces intersect. The interpretations in 11 (a) and 11 (b) are both topologically
consistent.

Another example as shown in figure 12 shows the union of two cylinders with a cube.
The intersection is a degenerate case where three surfaces intersect in one curve. The two
cylinders intersect in two ellipses (a and a’). One of the ellipses (a) is incident on the top
plane of the cube. Therefore the ellipses (b and c) created by intersecting the each cylinder
with the plane, are both coincident with the ellipse a. In the resulting object the ellipse a is
eliminated, and the ellipses b and c are are split in half (at the vertices where they intersect
with a’) and only the non overlapping parts of band c are kept in the result.

21

neighbor half-edges

#*••# vertex cycle

b)

Figure 11: Example for Degenerated Vertices

22

6 C o n c l u s i o n

The algorithm for Boolean set operations presented in this paper computes the boundary
representation of regularized objects bounded by planar and natural quadric surfaces. All
special (degenerate) cases are handled properly and robustly despite the fact that floating
point arithmetic is used for which incidence decisions have to be made with some tolerance).
Robustness is achieved, here, by elimination of redundancy in the data representation which
is possible for objects resulting in a 2-manifold topology.

No special considerations needed to be taken to handle the planar and quadric surfaces in
the algorithm. The approach would also work with other surface types, such as parametric
surfaces, at least in principle. However, the numerical problems of finding intersections and
computing incidence relations are definitely more difficult[27].

The approach taken here has the advantage over previous approaches, that no explicit
reasoning by the algorithm, or tolerance updates (as in[9]) are necessary. Therefore no
ambiguous relations (which would need to be resolved) can occur. This makes the approach
simpler and easier to implement, and more efficient at the same time. We believe that
the approach can be extended to handle non manifold objects. Non manifold edges can
be detected and specially handled by additional means to make their relations with other
objects consistent. We could apply the dynamic tolerance approach to handle relations with
these non manifold edges (as described in [9]). Local reasoning (as proposed in[29]) could
also be applied. Also, perturbation might be applied to make the object a pseudo manifold
for the sake o f achieving robust Boolean. We can still keep information about the original
coincidence o f these edges outside the boundary representation (e.g. a list o f coincident
edges). Simple local reasoning would guarantee transitivity, but not necessarily consistency
with other relations in the boundary representation)

7 A c k n o w l e d g m e n t s

This work has been supported, in part, by NSF grants DDM-89 10229 and ASC-89 20219,
and a grant from the Hewlett Packard Laboratories. All opinions, findings, conclusions, or
recommendations expressed in this document are those of the authors and do not necessarily
reflect the view of the sponsoring agencies.

24

R e f e r e n c e s

[1] B A U M G A R T , B . Geometric modeling for computer vision. Ph.D thesis, Comp. Sci.
Dept., Stanford University, 1974.

[2] B R U D E R L IN , B . Detecting ambiguities: An optimistic approach to robustness problems
in computational geometry. Tech. Rep. UUCS 90-003 (submitted), Computer Science
Department, University o f Utah, April 1990. .

[3] B R U D E R L IN , B . Robust regularized set operations on polyhedra. In Proc. o f Hawaii

International Conference on System Science (January 1991).

[4] C h o u , S. C . Mechanical Geometry Theorem Proving. D. Reidel Publ., Doordrecht,
Holland, 1988.

[5] E D E L S B R U N N E R , H ., a n d M u c k e , E. Simulation o f simplicity: A technique to cope
with degenerate cases in geometric algorithms. In Proc. of 4th A C M Symposium on

Comp. Geometry (June 1988), pp. 118-133.

[6] F a n g , S. Robustness In Geometric Modeling. PhD thesis, University o f Utah, 1992 .

[7] F a n g , S ., AND B R U D E R L IN , B . Robustness in geometric modeling - tolerance based
methods. In Computational Geometry - Methods, Algorithms and Applications, Inter­

national Workshop on Computational Geometry C G ’91 (March 1991), Springer Lecture
Notes in Computer Science 553, Bern, Switzerland.

[8] F a n g , S., A N D B R U D E R L IN , B . Robust geometric modeling with implicit surfaces. In
Proc. of International Conference on Manufacturing Automation, Hong Kong (August
1992).

[9] F a n g , S., Z h u , X ., A N D B R U D E R L IN , B . Robustness in solid modeling - a tolerance-
based, intuitionistic approach. To appear: Computer-Aided Design (Special Issue on

Uncertainties in Geometric Computations (September 1993).

[10] GREENE, D ., a n d Y a o , F. Finite resolution computational geometry. In Proc. 27th

IE E E Symp. Fundations o f Computer Science (1986), pp. 143-152.

[11] GuiBAS, L ., S a le s in , D ., AND S t o l f i , J. Epsilon geometry: Building robust algo­
rithms from imprecise computations. In Proc. of 5th A C M Symposium on Computational

Geometry (1989).

25

121 H o ffm a n n , C . M . Geometric and Solid Modeling: An Introduction. Morgan Kauf-

mann Publishers, 1989, ch. 4.

131 H O F F M A N N , C . M . The problems of accuracy and robustness in geometric computation.

IE E E Computer 22 , 3 (March 1989), 31-41.

141 H o ffm a n n , C . M ., H o p c r o f t , J. E ., AND K a r a s ic k , M . S. Robust set operations

on polyhedral solids. IE E E Computer Graphics and Application 9 (November 1989).

151 K a p u r , D . Using grobner bases to reason about geometry. J. Symbolic Comp. 2 (1986),

3 99 -4 0 8 .

161 K A R A S I C K , M . On the representation and manipulations of rigid solids. Ph.D thesis,

McGill University, 1989.

171 K U T Z L E R , B . Algebraic approaches to automated geometry proving. Ph.D Diss., Re­

port 88-74.0, Research Institute for Symbolic Comp., Kepler University, Linz, Austria,

1988.

181 M A N T Y L A , M . Boolean opeartions of 2-manifolds through vertex neighbourhood clas­

sification. A C M Trans, on Graphics 5, 1 (January 1986), 45-60.

191 M lL E N K O V IC , V . Verifiable implementations of geometric algorithm using finite preci­

sion arithmetic. Artificial Intelligence 37 (1988), 377-401.

20] M lL E N K O V IC , V . Verifiable implementations of geometric algorithm using finite preci­

sion arithmetic. Ph.D thesis, Carnegie Mellon University, 1988.

21] M O O R E , R . E . Interval Analysis. Prentice-Hall, 1966.

22] O ttm a n n , T ., T h iem t, G ., an d U l l r i c h , C . Numerical stability of geometric

algorithms. In A C M Annual Symposium on Computational Geometry (June 1987),

pp. 119-125.

23] REQU1CHA, A . A . G ., AND V o e l c k e r , H . B . Boolean opeartions in solid modeling:

Boundary evaluation and merging algorithms. Proc. IE E E (1985), 30-44.

24] RossiGNAC, J. R ., an d O ’C o n n o r , M . A dimension-independent model for pointsets

with internal structures and incomplete boundaries. Geometric Modeling for Product

Engineering (September 1989), 145-180.

26

[25] ROSSIGNAC, J. R ., AND V o e lc k e r , H . B . Active zones in csg for accelerating bound­

ary evaluation, redundancy elimination, interference detection and shading algorithms.

A C M Transactions on Graphics (January 1989), 51-87.

[26] SALESIN, D ., STOLFI, J ., AND G u ib a s, L . Epsilon geometry: Building robust al­

gorithms from imprecise calculations. In A C M Annual Symposium on Computational

Geometry (1989), pp. 208-217.

[27] SEDERBERG, T . W . Implicit and parametric curves and surfaces for computer aided

geometric design. Ph.D thesis, Mech. Engr., Purdue University, 1983.

[28] SEGAL, M . Using tolerances to guarantee valid polyhedral modeling results. Computer

Graphics 24, 4 (1990), 105-114.

[29] S t e w a r t , A . J. Robust point location in approximate polygons. In 1991 Canadian

Conference on Computational Geometry (August 1991), pp. 179-182.

[30] S t e w a r t , A . J. The theory and practice of robust geometric computation, or, how to

build robust solid modelers. Ph.D Thesis 91-1229, Department of Computer Science,

Cornell University, 1991.

[31] SuGlHARA, K ., AND Ir i, M . Geometric algorithms in finite precision arithmetic. Res.

M em. 88-14, Math. Eng. and Information Physicas, University of Tokyo, 1988.

[32] SuGlHARA, K ., AND Ir i, M . A solid modeling system free from topological inconsis­

tency. Journal o f Information Processing 12, 4 (1989), 380-393.

[33] Y ap , C . K . A geometric consistency theorem for a symbolic perturbation theorem. In

Proc. o f 4th A C M Symposium on Comp. Geometry (June 1988), pp. 134-142.

[34] ZHU, X . Consistent geometric modeling approaches. Master Thesis (1993).

[35] ZHU, X ., FANG, S., AND B r u d e r l in , B. Obtaining robust boolean set operation for

manifold solids by avoiding and eliminating redundancy. In Proc. o f Second Symposium

on Solid Modeling and Applications (May 1993).

