
Robust Solid Modeling by Avoiding 
Redundancy for Manifold Objects 

in Boundary Representation

Xiaohong Zhu Beat D. Briiderlin

UUCS-93-018

Department of Computer Science 
University o f Utah 

Salt Lake City, UT 84112 USA

August 16, 1993

A b s t r a c t
This paper describes a new approach to the robustness problem in solid modeling. We 

identify as the main cause of the lack of robustness that interdependent topological relations 
are derived from approximate data. Disregarding the interdependencies very likely violates 
basic properties, such as reflexivity, and transitivity, resulting in invalid data representations, 
such as dangling edges, missing faces, etc. We show that the boundary of manifold objects 
can be represented without redundant relations which avoids inconsistencies. An algorithm 
for regularized set operations for manifold solids which is based on the principle o f avoiding 
and eliminating redundancy is described. This algorithm has been implemented for objects 
bounded by planar and natural quadric surfaces; it handles coincidence and incidence cases 
between surfaces and curves robustly.
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Abstract

This paper describes a new approach to the robustness problem in solid modeling.
We identify as the main cause of the lack of robustness that interdependent topolog­
ical relations are derived from approximate data. Disregarding the interdependencies 
very likely violates basic properties, such as reflexivity, and transitivity, resulting in 
invalid data representations, such as dangling edges, missing faces, etc. We show 
that the boundary of manifold objects can be represented without redundant relations 
which avoids inconsistencies. An algorithm for regularized set operations for mani­
fold solids which is based on the principle of avoiding and eliminating redundancy is 
described. This algorithm has been implemented for objects bounded by planar and 
natural quadric surfaces; it handles coincidence and incidence cases between surfaces 
and curves robustly.

1  I n t r o d u c t i o n

Geometric objects are defined in a continuous Euclidean space, yet numerical information 
of representations for representing objects are always discrete (for instance, floating point 
numbers are used to approximate real numbers). In geometric modeling, most o f the con­
struction algorithms involve numerical computations, and compute symbolic information 
from numerical information. Because o f the inaccuracy of numerical data and computa­
tion, the construction may fail to construct a new representation that represents a unique 
geometric object as desired.

Practically, the goal o f geometric modeling is to compute representations for desired 
geometric objects in Euclidean space. If a representation violates any properties o f the object 
it is supposed to represent in Euclidean space, then the representation is not consistent. 

Robustness o f a geometric algorithm usually means that the representations computed are 
consistent with the theory o f Euclidean space. When geometric information is approximated
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by floating-point numbers, floating-point calculations can distinguish object features that are 

sufficiently apart, but not reliably determine coincidence of objects. In a certain region of 

proximity, floating-point computation will give seemingly random results because of round-off 

errors. The problem cannot be addressed satisfactorily by declaring two features coincident 

whenever they are closer than the tolerance e. Doing so can easily lead to violations of basic 

properties, as is demonstrated by the following simple example: W hen two points P  and 

Q  are far enough apart, the decision for P  ^  Q  is correct and robust. W hen the points P  

and Q  are closer than twice the tolerance e, the exact relation between P  and Q  can not be 

uniquely determined. If P  =  Q  is chosen, this is an arbitrary decision, and contradictions 

might occur. For instance, we might have the situation of three points where P  =  Q  and 

Q =  R, within the tolerance e, which implies P  =  R. However, this may contradict the 

correct tolerance based interpretation P  ^  R.

Once the relations P  =  Q  and Q — R  are decided, the coincidence of P  and R  is 

implied by the transitivity. Therefore, explicitly computing relation of the P  and R  based 

on numeric data is redundant computation. If data and computation are precise, then this 

redundantly computed relation is identical to implied information. This is guaranteed by the 

fact that the numerical representation of coordinates is a model for the Euclidean geometric 

object. Unfortunately, with approximated numbers the computational error depends on the 

numerical method applied, yielding different results for the same relation, for instance, when 

the operations are carried out in a different order or with a different, although symbolically 

equivalent operation. Many of the representations that are used in geometric modeling 

contain redundant information in their data structure, and algorithms of construction also 

involve redundant computations. For this reason, consistency is not guaranteed in geometric 

modeling, unless infinite precision is applied. It is easy to see from the above example, 

that we can achieve robustness by either enforcing consistency for redundant operations by 

explicit reasoning, or by avoiding and removing redundancies. If we already decided that P 

— Q and Q =  R, then we would not have to compare P and R, but would know by inference 

that they are coincident. Moreover, if two different points are found to be coincident, this 

represents redundant information. W e can replace the representation of point P with the 

representation of point Q in all occurrences in the data structure. This also helps making 

comparison with other data consistent. In this paper we develop a solid modeling approach 

based on avoiding and eliminating redundant information in the data structure.
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2  R e l a t e d  W o r k

A  number of researchers have addressed the geometric robustness problem. An overview 

can be found in [12, 13]. Methods can be classified into the following categories: arbi­

trary precision, perturbation, symbolic reasoning, tolerance based approaches, and avoiding 

redundancies.

Some approaches attempt to perform precise computations by using exact numbers to 

achieve continuity, (such as rational numbers, exact algebraic numbers or a space grid)[10, 

22, 31, 32]. Robustness of these algorithms is guaranteed, because no numerical error is 

introduced. These approaches are based on the assumption that geometric shapes can be 

represented by exact numbers. This is true only for a limited domain of objects (e.g. poly- 

hedra).

The robustness problem frequently encountered with positional degeneracies, in which 

cases objects are partially coincident. The methods described in [5, 33] use geometric p er­

tu rb a tio n  to avoid coincidence and thus the problem. However, degeneracies are usually 

intentionally created, such as the construction of assembly parts using the geometric modeler. 

Therefore, this method excludes many important applications.

Other researchers apply sy m b o lic  reasoning to guarantee the consistency of interde­

pendent geometric relations[19, 20, 14, 16, 29, 30]. The success of reasoning seems to largely 

depend on the availability of powerful and efficient symbolic reasoning approaches. In ex­

treme cases, general geometric theorem proving methods[4, 15, 17] have to be employed. 

However, due to the complexity of the symbolic reasoning problem, these approaches are 

either mostly limited to relatively simple geometric problems with limited implications by 

so-called “local” reasoning.

T oleran ce-b ased  approaches treat geometric shapes as subsets of a continuum (real 

numbers), but with limited accuracy. Numeric values are therefore represented as a range, 

rather than a single value. These approaches have their root in interval arithmetical]. 

A  direct geometric generalization of interval arithmetic is “Epsilon Geometry” [11, 26, 28]. 

In this approach, geometric relations are computed with an error which is propagated by 

the logical inferences in an algorithm, possibly yielding “undecided” relations. Adaptive 

tolerance-based approaches have been studied in [2, 3, 6, 7, 8, 9, 28]. These methods adjust 

the tolerances to keep certain information of the algorithm’s decision-making history. When 

making a new decision, the algorithm will check the tolerances to make the decision consistent



with all the previous ones, and update the tolerances to reflect the new decision. While the 

results of tolerance-based approaches are generally satisfactory, extra computation is needed 

for all the tolerance operations. Also these approaches may find ambiguities that have to be 

fixed by extra means.

Robustness can also be achieved by avoiding redundancies. The idea of avoiding 

redundant computation in set operations has previously been presented in [13]. In [25], a 

B-rep data structure is found from a CSG representation. Avoiding redundancy in the CSG  

data structure helps in avoiding redundant decisions in the boundary evaluation. Another, 

similar approach is taken in [24]. These approaches cannot completely avoid all redundancies, 

and in general, this is probably too difficult to achieve.

3  C h a r a c t e r i z a t i o n  o f  R e d u n d a n c y

We observe that the robustness problem is mainly caused by contradictions in redundant 

and imprecise computations. Before discussing ways of avoiding or eliminating redundancies, 

we first characterize two types of redundancies: Directly redundant data computation and 

indirectly redundant data computation.

1. Directly Redundant Data Computation: Duplicates of geometric elements may exist 

in different parts of the data structures of geometric objects. Coincident objects also 

represent redundant data and it should be obvious that they may cause redundant 

data computation leading to inconsistencies. For instance (see figure 1), surfaces f  

and g are coincident within tolerance ( /  =  g ). W hen we compare edge e with surface 

f, we may find that e is on f, but e is not on g within tolerance, which violates the 

transitivity property of the incidence relation. This direct redundancy can be easily 

avoided by replacing one of the coincident surfaces with the other one. Also, comparing 

(or intersecting) surface f with g is possibly different from comparing (or intersecting) 

g with f, violating reflexivity. This problem can be avoided by always comparing the 

surfaces in the same order.

2. Indirectly redundant data computation: Some relations may be implied in different data 

structures of the representation of the geometric objects.

For three planes, denoted by f l ,  f2 and f3 (as shown in figure 2), we first compute the 

intersection line e of fl and f2. After this, we compute the relation of line e and the
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g --------------------------------------------------------------------------------------

/  =  S', e C / ,  and e £  g

Figure 1: Example of direct redundancy

plane f3. If we find line e is on the plane f3, then the following implication applies.

e =  / i  n f 2 and e on f 3 =*> 3#, h : g =  / i  D / 3, h =  f 2 D / 3, S' =  h =  e

The intersection of f l  and f3, and the intersection of f2 and f3 are both coincident 

with e. In other words, the decision that e is on f3, in fact, implicitly computes the 

intersection of f l and f3, and f2 and f3. Explicitly computing the other intersections in 

other parts of an algorithm would therefore create redundant data. The enlargement 

in figure 2 shows that, due to numerical imprecision there are actually 3 intersection 

lines. Using a tolerance to decide the relations might determine that e is on f3 (the 

distance between e and f3 is smaller than the tolerance) but that the three intersections 

are not coincident (because their relative distance is slightly larger than the tolerance), 

which is contradictory, according to the above finding.

W e call the redundancy caused by such indirectly redundant data computation an 

indirect redundancy.

4  R e m o v i n g  a n d  A v o i d i n g  R e d u n d a n c y

Totally removing redundancies in geometric algorithms may not be realizable in general. In 

special cases, such as regularized boolean set operation, under the assumption that objects 

are limited to manifolds, we can attempt to eliminate redundancies. In the following context, 

we will first explain the definition of manifolds and regularized boolean set operation. After 

that, we will derive a non-redundant data representation, and operations.

f
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e — / i f l /2 and e is on fa 

=$■ e =  g =  h

where g =  / 2 f l /3 and h =  fiC\ fa

With tolerance region, e is on fa, but g ^  h ^  e 

Figure 2: Three surfaces intersecting in one line
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4 .1  M a n i f o l d s  a n d  N o n - R e d u n d a n t  D a t a  R e p r e s e n t a t i o n

Non-manifold solids and mixed topology objects have been introduced for special applications 

in C A D /C A M . However, many geometric objects that are used in C A D /C A M  design, and 

especially in solid modeling operations, such as Boolean set operations are manifolds. Since 

robustness in solid modeling is such a difficult issue, it makes sense to aim at a robust 

solution for the important subclass of manifold objects first. The definitions of manifolds 

are as follows [12]: ■

D efin ition  1 (3-manifold) A 3-manifold with boundary is homeomorphic to a simplicial 

complex C  o f dimension 3 with the following restrictions:

1. Every 2 simplex in C  is adjacent to one (or two) 3 simplices.

2. The link o f every 0 simplex is a triangulation o f the disk (or the sphere).

(the cases in parentheses correspond to interior simplices).

D efin ition  2 (2-manifold) A 2-manifold with boundary is homeomorphic to a simplicial 

complex C  o f dimension 2 with the following restrictions:

1. Every 1 simplex is incident to exactly two 2-simplices.

2. The link o f every 0 simplex in C  is a triangulation o f the circle.

T h e o re m  1 M  is a connected 3-manifold with boundary; then the boundary o f M  is an 

embedded orientable 2 manifold without boundary.

T h e o re m  2 The boundary o f a connected 3 manifold is a boundary o f a regularized solid in 

3D.

W ith simplical complices, we here mean abstract simplical complices (as defined in[12]) 

which does not restrict objects to be polyhedral. Some examples for 2-manifold boundaries 

are illustrated in figure 3. Every edge (1-simplex) is incident to exactly two surfaces. No 

edge is therefore incident on a third surface, and no two edges are coincident. Also, the link 

of every vertex (0 simplex) is a triangulation of the circle. Some non-2-manifold boundaries
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triangulation of circle

Figure 3: Examples for manifold objects



Figure 4: Example for non-manifold

are shown in figures 4 and 5. In figure 4, the object has an edge (1-simplex) incident to four 
surfaces. In figure 5, there is a vertex (0 simplex) whose link is not a triangulation of the 
circle (actually it is a triangulation o f two circles). In the following we exclude non-manifolds 
from consideration.

Based on the above definition o f manifolds, the boundary representation we use in the 
set operation algorithm, is slightly different from the well known winged-edge representation 
described in the literature[l], A solid object contains a list o f bounding faces. Each face is 
bounded by a set o f disjointed edge cycles which we call loops. Each vertex is the intersection 
o f two half-edges that belong to the same face, rather than an intersection o f three (or more) 
faces in 3D. Each edge contains the following topological information :

• 2 incident vertices for each half edge

• the neighbor half edge

• the face it belongs to

• the successor and the predecessor edge in the face the half edge belongs to.

• the direction o f the edge (the convention is that the interior o f the face is to the left, 
looking from outside) .
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directions of

half edge e 

Figure 6: The boundary representation

The edge is oriented by the order of the two incident vertices. One is defined as start 

vertex, and the other is defined as end vertex. The schema is shown in figure 6.

4 .2  R e g u l a r i z e d  B o o l e a n  O p e r a t i o n s

Regularized boolean set operations ( regularized union, regularized intersection, and regular­

ized difference) are an important tool used for constructing objects in geometric modeling. 
They differ from the corresponding set theoretic operations in that the result is the closure 
of the interior o f the solid, which eliminates “dangling” edges and faces, and isolated ver­
tices [23]. Regularized Boolean set operations are used here to handle incident faces and 
edges uniformly. For a boundary representation, the implementation o f regularized Boolean 
operations is fairly involved. The basic steps are:

• Generate the set membership classifications o f the boundaries of one solid with respect 
to the other solid. This involves computing the intersection between boundaries of 
different solids and carrying out the inside/outside/on tests for a boundary against a
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• Collect boundaries of the new solid by selecting parts of the boundaries that belong to 

the resulting objects, depending on the set membership classification, the neighborhood 

evaluation, and on the type of Boolean operation.

• Build the topological relationships and boundary hierarchy of the new solid.

From the above we can see that the set operation algorithm contains both, “direct” 

intersection computation (face with face, or edge with edge), and “indirect” intersection 

computation by computing geometric relations (incidence, coincidence). Both may lead to 

inconsistency when based on tolerance based relations.

4 .3  A v o i d i n g  a n d  R e m o v i n g  R e d u n d a n c i e s  in  t h e  D a t a  R e p r e ­
s e n t a t i o n  a n d  A l g o r i t h m

In a previous section, we analyzed redundancies occurring in regularized boolean set opera­

tions, next we want to either avoid the redundancy, or remove it when it is detected.

For the direct intersection computation, including the face-face, edge-edge intersections, 

we follow the ideas presented in[14]. W hen two surfaces are found to be coincident (within 

the tolerance) we have to replace on of them by the other in the representation of a face. The 

remaining surfaces are all intersecting (or exactly identical). The surfaces can be ordered 

(e.g. by their index), and each surface is only intersected with surfaces higher in the order, 

and thus directly redundant computation can be easily avoided.

For the indirect intersection computation (incidence), we cannot avoid all the redun­

dancies immediately. Fortunately, for manifold objects we can detect redundant data, and 

eliminate it later based on the type of operation and the neighborhood evaluation.

Relations between edges and faces can be intersecting, inside, outside, or on.

If an edge is incident on a face, this means that three faces intersect in one common edge. 

If we can assume that the object resulting from a Boolean set operation is a 2 manifold, then 

we know that each edge must be the intersection of exactly two faces. However, temporarily 

we may obtain such an edge-face incidence relation leading to a redundancy that we need to 

detect and remove (during the computation of set operations such incidence relations occur 

relatively often). For example, as shown in figures 7 and 8, e is the intersection edge of face 

g and face h (Face g, and face h are faces of the same object c l , and face f  belongs to object

solid, and the neighborhood evaluation.
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c2). W e determine that e is on the face f. From the topological relations we determine the 

portions of one of the edges that can be deleted, depending on whether union, intersection, 

and difference is computed. Therefore, edge e is still an intersection of exactly two faces in 

the resulting object.

Coincident edges correspond to four faces intersecting in a common intersection curve. 

Again, in the result we can delete portions of the edges (otherwise we would obtain a non­

manifold topology, which we explicitly excluded from the domain of objects we are dealing 

with here).

Vertices, in our approach, are computed by intersecting two edges that belong to the 

same face. Each edge is constructed by intersecting two surfaces, but one of the surfaces is 

shared by the two intersecting edges, therefore, a vertex is incident on exactly 3 surfaces. In 

contrast to conventional boundary representation vertices are not shared among faces, here. 

For instance, for an n-sided pyramid, the top ‘vertex’ is actually not represented by one, but 

by n vertices, each is geometrically incident to two edges (i.e. three faces; the face it belongs 

to, and the two faces adjacent to the two edges). Examples are shown in figures 9 and 

10. These vertices are not compared geometrically in 3 space, and therefore not considered 

coincident, and so redundancy is essentially avoided.

4 .4  T h e  R o b u s t n e s s

The reason why most correctly designed geometric algorithms often fail is that incidence and 

coincidence decisions based approximated data are arbitrary interpretations. W hen depen­

dencies between such decisions are unrecognized and the decisions are made independently, 

dependent information may contain contradictions.

In [6] it was shown that relations, such as apartness (and thus inside, outside) can be 

determined unambiguously based on a tolerance e (representing an upper bound on the 

error), i.e. these relations do not change when the precision is increased (even with infinite 

precision). This means “apartness” relations are consistent with each other.

On the other hand, relations, such as incidence or coincidence, based on a tolerance 

are always arbitrary. For instance, if we consider two points that have a relative distance 

less than e from each other to be coincident (or apart), this might be inconsistent with 

other decisions (as explained in the introduction for point coincidence, where the transitivity 

property of coincidence was violated). Increasing the precision might yield another outcome
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Figure 9: Vertex definition, example 1

V(n,l,2) V(1

Figure 10: Vertex definition, example 2 
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of the relation.

If we can avoid such situations altogether, or avoid the dependency between the relations, 

we can avoid possible inconsistencies. As mentioned above, incidence relations are important 

in solid modeling, and should therefore be supported. W e therefore follow the second path 

and determine interdependencies of incidence relations and eliminate redundancies in the 

solid representation, which is possible for the class of 3-manifolds with redundancy. To avoid 

inconsistencies in the data generated by an algorithm, based on approximated data, we rely 

on the following lemma:

L e m m a  1 I f  an algorithm creates consistent and accurate results fo r  consistent and accu­

rate input, on the grounds that all the computations are done exactly (e.g. with infinite 

precision), the sam e algorithm also produces consistent results, even with approximated data 

and operations, if (directly and indirectly) redundant computation is avoided, and redundant 

data is eliminated before it affects any decision in the algorithm.

The truth of this lemma is intuitively obvious: Since no decision involving data in the 

object can be derived from other data or in another way (which is the condition for not being 

redundant) it therefore cannot contradict any previously made decision.

5  A l g o r i t h m s

The algorithm for evaluating regularized Boolean expressions presented here, is based on 

the same basic operations as the algorithms presented in the literature [18, 23] which are in­

tersecting faces, edges, with each other, determining relationships, neighborhood evaluation, 

and generating a new topology (boundary data structure) from this evaluation Our approach 

differs in that it takes advantage of the principles of avoiding redundant representations or 

eliminating them after detection, as described in the previous sections. This is manifested 

in a different order in which the basic geometric operations are carried out. Also, a slightly 

modified data structure is used, instead of the winged edge data structure. In [35] we de­

scribe a version of this algorithm converting a half space representation into a Boundary 

representation. The algorithm presented here directly operates on a boundary representa­

tion, and does not require the hybrid representation that was used in the previous approach. 

Nevertheless, all the geometric information is derived from the surface representation (top 

down, instead of bottom up as it is often done for boundary representations of polyhedra). A
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surface geometry representation is associated with each face, indicating which side is inside 

by the direction of the normal vector (in this sense the face acts as a half space, but no 

explicit Boolean expression over half spaces are defined for each solid). A  curve is defined 

as the intersection of two surfaces; a point is defined as the intersection of three surfaces. 

Relations between points, curves and surfaces, are derived from relations between surfaces 

only.

To eliminate redundant data in the Boolean set operation algorithm we eliminate all 

coincident surfaces (by merging them). Curves incident on surfaces are limited to intersection 

curves of 2 surfaces, and vertices are intersections of two edges which is achieved by limiting 

the solids to 2 manifold topology, where each face has 1-manifold topology. No coincident 

curves, and curves incident on surfaces, other than the two surfaces that generated the 

intersection curve will be present in the resulting representation.

The following outline of the set operation algorithm concentrates on the essentials with 

regards to avoiding redundancies.

Compute Boolean for 2 solids A  and B 

Procedure Boolean(A:solid, B:solid)

Begin

For each face 'a' of A 

For each ‘b’ face of B

Case spatial_relation(a,b) of

intersecting: find the intersection 

curve(s) and associate them with 'a' 

and ‘b’ (* as "unlimited" edges e(a,b).

The edge is represented by 2 half edges; 

one for ‘a’ and ‘b’ respectively *)I

coincident(*within some tolerance*): 

replace ‘b’ in B with 'a'I

(* this requires recomputing the boundaries of 'b' *)

End;
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od
od

After this all the surfaces either intersect or are exactly equal (i.e. they have the same 

representation).

End Face; .

Procedure Edges(A:solid)

Begin

For each face ‘a’ of A

For each intersection edge e(a,b) in 'a' 

compare with all boundary edges e2 of 'a' and ‘b’

(* e(a,b) is the intersection of 'a' and a 

second surface ‘b’, e2 is the intersection 

of 'a' or ‘b’ with a third surface 'c', either the 

three surfaces 'a', ‘b’, and 'c' intersect, 

or e(a,b) and e2 are coincident *)

first intersect e(a,b) with all boundary edges e2 of

‘a’ and ‘b’ that intersect to determine the range of e(a,b)

that is inside both ‘a’ and ‘b’.

second eliminate coincident edges:

If the range of the two coincident edges overlaps 

the overlapping region is eliminated for 

e(a,b) or e2

End;

od

od
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End Edges;

The decisions, which part to clip (in case of an intersection), and which overlapping part 

to eliminate is made based on the neighborhood evaluation and the type of Boolean opera­

tions. The principles of neighborhood evaluation and the geometric decisions are described 

in [23]. The face-face and the edge-edge coincidence relations are computed based on toler­

ances. More details on this matter can be found in [34]. If the innermost start (end) point 

of half edge e(a,b) in the above algorithm is incident on the boundary of face ‘b ’ , then the 

corresponding end (start) point of the neighbor half edge in ‘a’ connects to another intersec­

tion edge, and vice versa. To determine which intersection edge to connect to we choose the 

one with the end (start) point closest to the corresponding start (end) point of the neighbor 

of e(a,b) (note that the corresponding vertices of two neighbor half edges don’t need to be 

coincident within tolerance). This is unambiguous, as long as there are no more than two 

edges incident on a single point, in each surface, which the case if the topology of the face’s 

boundary is a one-manifold. In case of a non-manifold face boundary the choice which edge 

to connect with which is ambiguous. If the neighbor face has a non one-manifold topology 

as well, the choice can usually be made arbitrarily, but consistency among all the incident 

edges must be established (e.g by a graph search). Two examples for how the algorithm 

works are given below.

5 .1  V e r t e x  C o n s i s t e n c y

C A D  applications usually require points to be represented as one vertex in 3D, rather than 

by point clusters, distributed over multiple faces, as it is done in our approach. W ith the 

following definition we can create such a more desirable representation.

If there exists a permutation of indices 7r and a set of vertices Vj, where j =  1, .., n for 

n >  3, and v:  is the intersection of f ^ _ lmodn fl / ^ modn fl / ^ +lmodn , then the v} are coincident 

in 3 space and the links connected to the vertex triangulate a circle.

Practically, this means to connect each vertex in a half edge with the corresponding 

vertex of the neighbor half edge, then connect that vertex with the corresponding vertex of 

the neighbor of the other edge intersecting at that vertex, and so on, until we are back to the 

vertex we started with. Once around, we can associate a unique identifier for a 3D vertex 

with all the vertices in the cycle. The process terminates once all the vertices in each face 

point to a corresponding 3D vertex. Note that each decision in the algorithm is uniquely
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in face 4 v(2,4 ,l) becomes v(3 ,4 ,l)
v(3,4,2) becomes v(3 ,4 ,l)

in face 2 v(l,2 ,4 ) becomes v(l,2 ,3 )
v(4,2,3) becomes v(l,2 ,3 )

Table 1: Updating Vertex

determined by the winged edge data structure, and no more tolerance based comparisons 
are required (Actually a comparison of the coordinates might find that the vertices are not 
coincident within tolerance)

5 .2  E x a m p l e s

The following two examples illustrate the application of the algorithms to different situations.

In figure 11 a), the enlargement of the intersection of surfaces 1, 2, 3, and 4 shows 
a consistent interpretation of the four surfaces intersecting in 6 vertices distributed over 
the four faces. Two cycles are created: [v(2,4,l), v(4 ,l,2 ), v(l,2,4)] and [v(3,4,2), v(4,2,3), 
v(2,3,4)], corresponding to two apart points in 3D.

In figure 11 b), the same situation is interpreted with a bigger tolerance in face 4, causing 
the intersections o f the two vertices v(2 ,4 ,l) and v(3,4,2),in face 4 to be coincident (within 
the tolerance), which causes the half-edge h(2,4) between faces 2 and 4 to be deleted in both 
faces. Consequently the vertices in faces 2 and 4 need to be updated, as shown in table 1. 
Note that the vertices in faces 1 and 3 are not affected by the update. In the result, only 
one cycle is created [v(3,4,l), v (4 ,l,2 ), v (l,2 ,3 ), v(2,3,4)], corresponding to one 3D vertex, 
where 4 surfaces intersect. The interpretations in 11 (a) and 11 (b) are both topologically 
consistent.

Another example as shown in figure 12 shows the union of two cylinders with a cube. 
The intersection is a degenerate case where three surfaces intersect in one curve. The two 
cylinders intersect in two ellipses (a and a’ ). One of the ellipses (a) is incident on the top 
plane of the cube. Therefore the ellipses (b and c) created by intersecting the each cylinder 
with the plane, are both coincident with the ellipse a. In the resulting object the ellipse a is 
eliminated, and the ellipses b and c are are split in half (at the vertices where they intersect 
with a’ ) and only the non overlapping parts of band c  are kept in the result.
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neighbor half-edges

#*••# vertex cycle

b)

Figure 11: Example for Degenerated Vertices
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6  C o n c l u s i o n

The algorithm for Boolean set operations presented in this paper computes the boundary 
representation of regularized objects bounded by planar and natural quadric surfaces. All 
special (degenerate) cases are handled properly and robustly despite the fact that floating 
point arithmetic is used for which incidence decisions have to be made with some tolerance). 
Robustness is achieved, here, by elimination of redundancy in the data representation which 
is possible for objects resulting in a 2-manifold topology.

No special considerations needed to be taken to handle the planar and quadric surfaces in 
the algorithm. The approach would also work with other surface types, such as parametric 
surfaces, at least in principle. However, the numerical problems of finding intersections and 
computing incidence relations are definitely more difficult[27].

The approach taken here has the advantage over previous approaches, that no explicit 
reasoning by the algorithm, or tolerance updates (as in[9]) are necessary. Therefore no 
ambiguous relations (which would need to be resolved) can occur. This makes the approach 
simpler and easier to implement, and more efficient at the same time. We believe that 
the approach can be extended to handle non manifold objects. Non manifold edges can 
be detected and specially handled by additional means to make their relations with other 
objects consistent. We could apply the dynamic tolerance approach to handle relations with 
these non manifold edges (as described in [9]). Local reasoning (as proposed in[29]) could 
also be applied. Also, perturbation might be applied to make the object a pseudo manifold 
for the sake o f achieving robust Boolean. We can still keep information about the original 
coincidence o f these edges outside the boundary representation (e.g. a list o f coincident 
edges). Simple local reasoning would guarantee transitivity, but not necessarily consistency 
with other relations in the boundary representation)
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