
M o d u le s as V a lu e s
In a P e rs is te n t O b je c t S to re

Gilad Bracha
Charles F. Clark
Gary Lindstrom
Douglas B. Orr

U U C S -9 3 -0 0 5

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

January 5, 1993

A b s t r a c t
We report on an object manager (OM) providing persistent implementations for C + +

classes. Our OM generalizes this problem to that of managing persistent modules, where the
module concept is an abstract data type (AD T). This approach permits a powerful suite of
module manipulation operations to be applied uniformly to modules of many provenances,
including non-class based entities such as conventional object files, application libraries,
and shared system libraries. OMOS, a generalized linker and loader, plays a central role
in our OM. Class implementations are represented by OMOS modules, which in turn are
constructed from OMOS meta-objects encapsulating linkage blueprints. We cleanly solve the
problems of (i) logically (but not physically) including executable object files in our OM,
(ii) reconciling class inheritance history and linkage history, and (iii) supporting alternative
implementations o f a class, for client interoperability or version control.1

^ h is research was sponsored by the Defense Advanced Research Projects Agency (D O D), mon
itored by the Department of the Navy, Office of the Chief of Naval Research, under Grant number
N00014-91-J-4046. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

1 R e q u i r e m e n t s f o r a P e r s i s t e n t O b j e c t S t o r e

1 .1 M o t i v a t i o n s f o r P e r s i s t e n t O b j e c t s

Techniques for saving objects in long-term storage are the focus of vigorous scientific and
commercial activity, arising from two motivations:

• Extending the software engineering (SWE) power and flexibility o f object-oriented (0
0) programming systems, and

• Extending database technology to advanced applications such as computer aided de
sign, multi-media data management, and large-scale scientific databases.

The first motivation is felt within the 0 - 0 programming language community, where
the rapid advances of 0 -0 programming methodology design are confronting its sem a n tic
im pedance m ism atch with byte-oriented file systems. Typically an 0 - 0 application system
designer develops a customized object representation exploiting static typing, encapsulated
data and functions, variable granularity data, and intricate interobject referencing. Unfortu
nately, this rich structure must be encoded and decoded when preserved in a flat, amorphous,
and unencapsulated file. Systems permitting 0 - 0 language objects to be saved and restored
without such loss o f structure are termed persistent object stores (PO S’s).

The second motivation comes from the database community, where successors are being
sought for the relational data model. Though uniform and mathematically elegant, the re
lational model is primarily motivated by ad hoc querying of schematically simple databases
by short duration, highly concurrent transactions. Object-oriented databases (O O D B ’s)
[ABD+92] provide a modern alternative, where relations are replaced by collections of ob
jects, in the 0 - 0 programming sense. Traditional concerns in the database community
remain paramount in the design of OOD B’s, including atomicity and recovery, distribution,
concurrency control, and optimized querying.

Users have good reason to hope that these two approaches will eventually converge, or
even unify, into a pervasive 0 -0 system framework offering comprehensive support o f both
0 - 0 SWE and database requirements. However, there remain today sharp and weighty dif
ferences between these two worlds. One of the most vivid such differences lies in management
o f the functions (m ethod code) associated with persistent objects. To an 0 - 0 programmer,
the methods associated with an object are its sine qua non — and even, under fu ll encapsu
lation , comprise the object’s only external interface. Yet today’s O O D B’s consider methods,
and their association with stored objects, to be the application programmer’s concern, much
like query code.

We address here the conceptual, semantic, and implementation issues raised by the POS
requirement that m eth od definitions comprising a class im plem entation m ust be perm anently
associated with its persistent instances. This requirement poses several specific questions,
including:

1

9

1. How should the class implementation of a persistent object be represented?

2. How can a persistent object and its class implementation be kept consistent?

3. How can an application program deal effectively with objects of classes unknown to it
at the time of its compilation?

4. How does managing class implementations relate to managing the object files in which
their implementations reside in a traditional system linking sense?

5. Can this long-lamented overloading of “object” (class instances vs. object files) be
turned to advantage as the basis for a single, broadly useful architecture for managing
program modules, their descriptions and their instances?2 '

1 .2 T h e M S O O b j e c t M a n a g e r

Although much remains to be investigated, designed, implemented and validated, we
believe we have preliminary answers to the above questions and others that arise when
class implementations are required to be persistent. Our insights have been formulated
while designing an object manager (O M) for the Mach Shared Objects (M SO) project.
Although the M SO O M will ultimately provide more services than is customary for a POS
(e.g. rudimentary querying and concurrency control), we will view it as a POS for the
purposes of this paper. The MSO OM is being developed under the following requirements:

1. The primary function of the M SO OM is to provide a persistent store for C + + and
Common Lisp Object System (CLOS) application program objects.

2. The M SO O M will be layered between application systems and modern operating
systems of the Unix family, and run efficiently on current hardware. Hence any archi
tectural “object orientation” will rely on software implementation only.

3. The M SO O M must not invalidate use of existing compilers, programming environ
ment tools (e.g. make) and file systems. In particular, executable code associated with
persistent objects will not be physically stored in the M SO O M .

4. The M SO OM will use at its lowest level a storage manager that (i) stores and retrieves
uninterpreted byte-oriented records; (ii) provides an object identifier (OID) naming
service for these records, and (iii) implements rudimentary transaction control (e.g.
object locking).

5. In addition, several pragmatic constraints are exerted by M S O ’s primary client, Al-
pha_l, a large computer aided geometric design and manufacturing system, including:
(i) a high degree of compiler and hardware platform independence; (ii) minimal con
straints on application programming style, and (iii) preservation of high computational
speed on loaded objects.

2 For the purposes of this paper, we assert the following lexical equivalences: declaration =
specification, and definition = implementation. By description we mean either of these two, in a
generic sense.

The MSO OM design thus far has focused on support for C + + application programs.
Consequently, the main thrust o f this paper concerns providing persistence support for C + +
class implementations.

2 D e s c r i b i n g S t o r e d O b j e c t s

It is well known that run-time objects describing classes are necessary for fully polym or
phic manipulation of objects, e.g. copying, browsing, and secure casting. In particular, such
descriptions are required for a POS to implement fully polymorphic load and store functions.
This section discusses how both class specifications and implementations are represented in
our system.

2 .1 R e p r e s e n t i n g C l a s s S p e c i f i c a t i o n s

We begin by reviewing how specifications o f statically loaded classes can be represented
by dossier objects, as conceived by Interrante and Linton [IL90]. Their work is motivated
by providing type descriptions at run time. Types fundamentally deal with compatibility of
object interfaces, while classes are program modules from which objects can be instantiated.
In C + + classes are types — which facilitates compilation but segregates classes which could
be considered type equivalent.

All objects of a given class share the same dossier, which in turn is an instance of class
dossier. Our dossiers comprise a type identifier, instance size, and information about the
class’s data members, member functions, and direct base classes. Each data member is
represented within the dossier by a structure containing that member’s name, its position
within the declaration o f the class, and a reference to the dossier for that data member’s
type.

The information about each member function includes that function’s name, its argu
ments with references to the dossiers for their types, and a reference to the dossier for the
return type. Each dossier o f a class which uses inheritance contains only the information
contained within that class’s declaration. Hence, data members and member functions de
clared in base classes are not replicated within the dossier of a derived class. Since a dossier
contains method specifications but not method implementations (code pointers), the dossier
o f a class corresponds to the class’s specification.

2 .2 R e p r e s e n t i n g C l a s s I m p l e m e n t a t i o n s

Many current OODB systems associate with a stored object its class’s symbolic name as a
class implementation key. This device is acceptable, provided that any application program
loading an object (i) ensures that class name uniqueness guarantees class implementation
uniqueness, and (ii) will have already statically loaded that ob ject’s class implementation.
In practice, these conditions are too severe. In particular, we may desire to: (i) dynamically

3

9

link and load method implementations, (ii) access objects o f unknown classes [DSS90], and
(iii) provide alternate implementations of a class for interoperability (across compilers and
hardware platforms) or versioning (e.g. debugging) purposes.

Dossier objects could be extended to record the method implementations o f the classes
represented by its objects. Static type checking would dictate that these be stripped of type
information by void-casting, but this would be a benign loss since such information is already
encoded in method type descriptors. Nevertheless, little purpose would be served by this
extension for statically created dossiers for objects o f known classes, since all methods must
be already defined. The key issue is how to represent a class implementation associated with
stored objects.

Since a class implementation is an extension of a class specification, we can extend class
dossier to represent class implementations as well. Storing a persistent object O then entails
(i) storing O'1 s dossier as a persistent object augmented to include method implementations,
(ii) storing O itself, with a data member OID* my_dossier set to the OID of its stored dossier.
However, several questions remain:

1. How are method implementations represented in a stored dossier? Clearly, a memory
address at which the implementation was once loaded is inappropriate.

2. Loading an object should load its dossier, if not already loaded. How do we know if
the dossier is already loaded?

3. If a dossier is dynamically loaded, how do we locate and map in its method implemen
tations as executable code?

4. Dossiers record the inheritance history of classes. This is central to the logical structure
of 0 - 0 systems, but separate from the management of class descriptions as SWE
artifacts, which concerns linkage history of separately compiled files. How can these
two dimensions be reconciled?

5. Since a dossier is a persistent object itself, does it possess a dossier itself, and if so,
what is its function? (And ever upward!)

We assert that these questions should not be answered within the limited context of a
particular 0 - 0 programming language (e.g. C + -(-), lest overly specific mechanisms result.
Rather, we believe that a comprehensive solution should be sought in the more general
context o f storing program modules as persistent values.

3 C l a s s e s a s M o d u l e s

A module is a familiar program structuring notion involving encapsulating functions and
data, controlling visibility, presenting a typed interface to clients, admitting instantiation,
etc. For our purposes, there are two highly pertinent kinds of modules:

• The class notion, as formulated in 0 - 0 languages (especially C+-)-), and

• The object file notion, as produced by language processors and manipulated by system
utilities such as linkers and debuggers.

These two notions o f module share many characteristics, but are very different in their senses
of composability. Classes are composed by inheritance, a semantically rich but language-
specific operation, while object files are composed by semantically simple linkage operations
with universal applicability within families of language processors emitting a standardized
object file format.

As suggested in §2.2, a class implementation stored as a persistent dossier object must
live on the boundary of these two worlds, being a persistent object itself, while providing
directions for locating method implementations in object files which are not stored in the
POS. Rather than being a source of confusion, we believe this dual object nature can en
rich the POS to manage both kinds of objects in a compatible and architecturally unifying
manner.

The basis lies in recent work [BL92, Bra92] formalizing the module notion as an abstract
data type (A D T), customizable to these two senses of module (class and object file), and
many others. This is distinct from the familiar notion that modules (e.g. classes) can be
used to introduce user-defined abstract data types. Rather, the concept of module itself is
cast as an abstract data type, in the same sense one might characterize stack as an abstract
data type.

A module is a self-referential scope, with some names bound to values (i.e. defined)
and some names simply declared. Modules have no free variables, and we assume that
declarations are sufficient for external access, thereby permitting separate compilation of
modules. The module AD T provides a constructor function make_module, through which
individual modules (cf. classes) are created. Once created, a module can create instances
(cf. objects) via an instantiate function, specified (but perhaps not implemented) by the
module AD T. Most importantly, the module AD T defines language-independent combinators
applicable to any well-formed module. Metaphorically, these combinators permit the deft
reshaping and fitting together o f modules, much as a jigsaw tool may be used to craft the
pieces of a wooden puzzle. In this spirit, we dub the applicative language o f module ADT
operators Jigsaw. Sample Jigsaw module combinators are shown in Fig. 1.

Viewing class implementations as modules enlarges the charter of a POS to be a persis
tent store for modules, their instances, and their descriptions. This three level perspective,
developed in detail in §4, resolves two vital issues:

• A class implementation is stored as a dossier object extended to include a reference to
the object file module in which its method implementations are found, and

• Dynamic linking and loading of class implementations (even unknown ones) involves
simply the run-time merge of the executing program (viewed as a module) with the
object file module containing the class implementation.

5

9

Name Sample Module

O x {int x; fun f (int y) = g(g(y)); fun g (int z) = z+x}
0 2 {int x = 13; fun q (real z) = z*z}
03 {int y = 15; fun g (int w) = w-y}

Operation Result

0 \ copy f as h {int x; fun f (int y) = g(g(y)); fun g (int z) = z+x; fun h (int y) = g(g(y))}
(A definition copy is added)

0 \ freeze g {int x; fun f (int y) = g(g(y)); fun g (int z) = z+x }
(0 \ is unchanged, but g becom es non-rebindable)

0 \ hide g {int x; fun f (int y) = g’(g’(y)); fun g’ (int z) = z+x}
(C om ponent g’ is not externally visible)

0 \ merge O 2 {int x = 13; fun f (int y) = g(g(y)); fun g (int z) = z+x; fun q (real z) = z*z}
(Declarations and definitions collected & m atched; conflicts disallowed)

0 \ override O 3 {int x; fun f (int y) = g(g(y)); int y = 15; fun g (int w) = w-y}
(M erge with conflicts resolved in favor o f right operand)

0 \ rename g to h {int x; fun f (int y) = h(h(y)); fun h (int z) = z+x}
(Declaration and all uses consistently renamed)

0 \ restrict g {int x; fun f (int y) = g(g(y)); fun g : int int}
(Declaration stripped o f its definition)

0 \ show f {int x’; fun f (int y) = g'(g’(y)); fun g’ (int z) = z+x '}
(C om plem ent o f hide — x' and g' are hidden)

Figure 1: Sample Jigsaw operators

6

Level C + + Dossiers Jigsaw OMOS Shared Libraries

Meta — meta-dossier module A D T meta-object —
Module class dossier module object public data & functions

Application object — instance — private data

Figure 2: Three levels of objects.

4 T h r e e L e v e l s o f P e r s i s t e n t O b j e c t s

Thus far we have argued that (i) persistent objects need persistent descriptions, (ii) those
descriptions should be persistent dossier objects, (iii) persistent dossiers should include class
implementation information, and (iv) class implementation information should be obtained
from object files, viewed as modules. From these specific decisions emerge three general
criteria for the design of a comprehensively useful POS:

1. The POS should recognize the role o f some objects as descriptions of collections of
other objects.

2. A POS should not be tailored to a particular 0 - 0 language, or even to 0 - 0 languages
in general. Rather, it should facilitate uniformity through generalizing its task to rep
resenting (i) an abstract notion of modules, (ii) individual modules, and (iii) instances

. o f those modules.

3. This abstract module notion should embrace not only class implementations but com
parable forms o f modularity such as abstract classes, object files, system libraries, and
application libraries, especially in class fram ework form [JR91].

Indeed, the converging technologies of 0 - 0 languages and shared system libraries was
an original stimulus for the MSO project. Seeley [See90] establishes broad correspondences
between these two software structuring concepts, including code reuse, dynamic function
dispatch, and visibility control. Jigsaw clarified this relationship, which we recognize as a
three-layer object management architecture that reappears in many software domains (see
Fig. 2). The column labeled O M O S refers to M SO’s generalized linker and loader, which
incorporates the module AD T and Jigsaw operator suite. OMOS is discussed in detail in §5.

We now briefly consider the connections across each of these three layers.

1. A p p lica t io n level: At the bottom level we have objects in the traditional 0 - 0 lan
guage sense.

C + + : These of course are class instances.

D ossiers : Due to their descriptive nature, dossiers are meaningful only at the class or
module level, or above.

Jigsaw: As described in §3, module instances correspond to class instances.

O M O S : Modules can provide instantiate functions, allocating run-time data structures
akin to C-t--f objects, but such functions have no special status to OMOS.

7

Shared libraries: Shared libraries generally permit the allocation of private data (e.g.
random number seeds), allocated by init functions, much like user-level instantiate
functions in OMOS.

2. C lass level: At the intermediate level, we have objects serving as descriptions shared
by collections of application objects.
CH—|-: Clearly, this is a class.
D ossiers: A dossier object represents a class. .

Jigsaw: These are modules, resulting from the make_module constructor o f the module
ADT.

O M O S : This is an object in the system programming sense, i.e. an object file.

Shared libraries: The central idea behind shared libraries is to share public data and
functions.

3. M e ta level: At the top of our three-level architecture we have module descriptions.
Since we truncate our meta-tower here, all objects at this level must be self-describing
(i.e. have fixed format).
CH—H C + + has no corresponding notion. However, if we were dealing with Smalltalk

or CLOS, this entry would be “metaclass” .
D ossiers: A meta-dossier is the dossier of the dossier class. Its role is described in

§7.2.

Jigsaw: This is the module ADT itself.

O M O S : Objects in the OMOS world are described by m eta-objects, which export a
construct function delivering objects (i.e. modules).

Shared libraries: The need to manage the creation and sharing o f system libraries
was an early motivation for OMOS.

5 D e f i n i n g a n d U s i n g M o d u l e s

The MSO OM thus uses a generic notion of module to represent both class implementa
tions and more general executable program units. We now explain the role o f OMOS, our
generalized linker and loader, in (i) manipulating modules for both these purposes, and (ii)
as an MSO OM client itself. Throughout this section the reader should bear in mind the
terminology of Fig. 2 — especially that an OMOS object is a module level entity, akin to a
C~1—f- class.

5 .1 M o d u l e s A s P e r s i s t e n t O b j e c t s

The OMOS O bject/M eta-O bject Server [OM92, OMHL93] was created to support and
exploit the use of modules as persistent objects. OMOS deals with objects (modules) in two
forms:

8

9

(constrain ’ (> 0x60000000)
(show ” _open I _close I _read I _write I Joctl”

(merge /ro/lib /libc/open.o
/ ro/lib/libc/close.o
/ ro/li b/libc/ read.o
/ ro/li b/libc/write.o
/ro /lib /libc/ioctl.o))) '

Figure 3: An OMOS module blueprint.

• Relocatable program fragm ents, e.g. compiler emitted object files, and

• M eta-objects which intentionally describe modules constructible according to blueprints
applying Jigsaw operations on modules under specified address mapping constraints.

As described in §3, the dossier representing a class implementation obtains its function
definitions from a persistent object representing an OMOS object. Since the MSO OM
cannot store compiled code directly, that object is in fact a surrogate — the OMOS meta
object from which the specified module can be constructed on demand. OMOS meta-objects
are defined using a Lisp-like blueprint language, illustrated in Fig. 3. The Jigsaw expression
in the blueprint o f a dossier’s meta-object thus specifies the linkage history of its associated
class implementation.

As a full-featured system loader, OMOS must also deal with client address space man
agement. Execution of module operations is accomplished in conjunction with a constraint
system that controls placement of objects within an address space. OMOS is responsible for
assigning virtual addresses to the machine instructions that make up a set of object methods.
OMOS retains flexibility by allowing rebinding of method virtual addresses as needed. In
general, OMOS constraints will encourage use o f the same virtual address bindings for all
instances o f a given set of methods. In this way, all clients mapping the methods in will
(tend to) share the same physical memory. If, however, a given region is already occupied in
a user’s address space, OMOS will select another region for the mapping. Bound instances
of methods are cached to avoid unnecessary repetition of symbol binding.

Hence OMOS is a “ loader with a memory” — which is very helpful both within a client
session (e.g. in support of dynamic relinking, see §6.2), and across client sessions (e.g. to
suppress relinking and relocation o f frequently used class implementations). Moreover, the
constraint system allows the bulk o f an object’s clients to physically share the same set of
methods, as is done by shared libraries. The use of a constraint system retains the flexibil
ity of modern shared library schemes without incurring the overhead or added complexity
necessitated by the use o f position independent code.3

3 Position independent code is not precluded by this scheme. Use of PIC code will render O M O S’
relocation operations trivial, streamlining some phases of O M O S’ execution. In general, OMOS
performs these functions in the background, so this time savings is not a critical factor.

9

5 .2 C l a s s e s A s P e r s i s t e n t O b j e c t s

Before an object o f a class C can be stored in the MSO OM, an implementation of C
must be registered. A class implementation is a stored object T> o f class dossier, i.e. a class
specification object, augmented to include two additional data members:

• OID* implementation, which refers to the OMOS module from which its functions can
be loaded, and

• OID* meta_dossier, which refers to a fixed-format object M . specifying the compiler and
hardware conventions (“execution environment”) under which this class implementa
tion was produced. .

The OMOS module referenced by implementation gathers (e.g. from various object files) the
definitions comprising the class implementation. Typically, this gathering will be defined by
an OMOS blueprint — hence the module is logically (intentionally) defined via an OMOS
meta-object, rather than explicitly manifested at class registration time. Registering a class
implementation entails associating OID(X>) with the key [C, OID(A'f)] in a class name server
provided by the MSO OM.

The execution environment information in a meta-dossier permits MSO OM client pro
grams to store and retrieve objects in an interoperable manner, despite compiler and pro
cessor architecture differences. These characteristics are summarized in a shorthand fashion,
via a small set o f literal values describing compiler version, hardware platform, etc. (more on
this in §7.2). An MSO OM client application has available as global read-only data the OID
of the meta-dossier characterizing its execution environment. This leads to a rudimentary
policy for validating dynamically loaded class implementations. The OID of the meta-dossier
o f the new class implementation is compared with the client’s meta-dossier OID, and an ex
ception is raised if the two disagree. More adaptive policies are sketched in §7.2. The means
by which dossier objects are originally created is described in §7.1.

6 L i n k i n g a n d L o a d i n g a s M o d u l e M a n i p u l a t i o n

The use of the Jigsaw module operations within OMOS firmly casts program linking op
erations within the module manipulation model. The Jigsaw operations extend traditional
linker operations to allow sophisticated module manipulation. Under OMOS, these opera
tions apply to both static and dynamic linking and provide functionality such as function
overriding and interposition. However, the Jigsaw formulation goes beyond conventional link
ing, by supporting (i) submodules (nested scopes), and (ii) typed module interfaces. OMOS
does not currently implement these aspects of Jigsaw. Instead, OMOS relies (as do all ex
isting linkers) on C + + name mangling to encode type information in external names. Since
classes are types in C + + , this also accomplishes flattening of class scopes. An extra advan
tage is compatibility with modules produced by other language processors, e.g. ordinary C
compilers.

10

9

6 .1 S t a t i c L i n k i n g a n d L o a d i n g

As mentioned earlier, the primary function of a static linker is to associate references
to interfaces with their definitions. We can see that this operation corresponds largely to
the module merge operation. OMOS implements module manipulation facilities that are
more sophisticated than simple merging through the use o f other Jigsaw module operators,
individually or via blueprinted combinations. The override operation, for example, permits
precedence when combining scopes. This feature allows modules to be combined in a fashion
that simulates single inheritance — which drives home our point that inheritance is simply
a form of module combination, and should not be the exclusive purview of 0 - 0 languages.
The hide operation, another Jigsaw operation supported by OMOS, reduces the amount of
information exported by a module. OMOS uses this feature to provide different views of
a shared library to its clients. Hiding symbols not used by the client speeds subsequent
linking and prevents interfaces that may be defined but not referenced from interfering with
definitions found later in other modules.

To illustrate the degree of sophisticated module manipulation supported by OMOS, con
sider the technique o f function interposition. Here we wish all references to a function f to be
rebound to an interloper function which takes its place. In turn, the new function can make
references to the prior definition of f (as well as itself, in the general recursive case). In this
fashion, new definitions of routines can be made to replace old ones, or inserted “between”
the references to the routine and its original definition.

Function interposition is a very powerful system configuration device. OMOS uses it
internally when performing program execution monitoring. For a set o f routines that are
to be monitored, OMOS creates interposing wrapper functions whose job it is to first log
information about the call to the routine, then pass the call on to its original destination.
The logging is completely hidden from the application; the only operations needed to add it
to the system are the Jigsaw operations applied to the module namespace. Interposition is
also very handy for pointer “swizzling,” i.e. converting OID’s to virtual addresses [Mos92].

Function interposition (by various names) is a familiar construct in 0 - 0 programming.
There, it is common for an overriding method to refer to the method being overridden. For
example, Smalltalk provides access to the overridden method through the pseudo-variable
super. This feature is semantically identical to function interposition.

By our analysis, interposition is beyond the capability of conventional linkers since it
fundamentally relies on renaming. Within OMOS, the general case o f interposition can be
achieved by application of the Jigsaw operations copy-as, override, and hide. To illustrate,
suppose we wish all invocations of a function f to be redirected to a new definition of f using
(in the general case) both its own definition, which it refers to as f, and the existing definition
of f, which it refers to as f0i&. Specifically, suppose the existing (loaded) module is

0 = { g = a(f, g), f = 0 (f, g) }
and the module containing the interposing f is

<y = { f = 7 (fow, f) }
where for brevity we omit the declaration of f0w. The desired interposition result is

Ointerpose = { § = <̂ (f, g), ôld = /^(fi §)> f = 'jijoldi f) }

11

1. (C opy-as) Oi = O copy f as faid

Result: £>i = { g = a(f, g), f = /3(f, g), foW = /?(f, g) }

2. (Override*) O2 = override O'

Result: 0 2 - { g = a(f, g), f = 7 (W , f), = /?(f, g) }

3. (H ide) Ointerpose — ^2 hide
Result: 0 2 with f0u removed from its interface, as desired.

Figure 4: Functional interposition via Jigsaw operations

where f0u is hidden (removed from the interface of O inierpose). We of course wish to preserve
the original interface to f, so that subsequently merge’d modules see the interposed f, and,
indeed, cascaded interposition works as expected. O interpose can be obtained by the Jigsaw
operator sequence shown in Fig. 4.

6 .2 D y n a m i c L i n k i n g a n d L o a d i n g

As suggested in §6, dynamic linking and loading can be viewed as module manipulation
where one operand is already loaded and undergoing execution. This variation poses prag
matic considerations in the use of Jigsaw module operations beyond the static case described
in §6.1. A major concern is whether symbols to be rebound in the executing module have
references in data segm ents or code segm ents (text in Unix jargon). Due to limitations on
execution state modification, including instruction cache clearing, it is impractical to mod
ify symbol bindings in text segments. This restriction is accommodated cleanly by viewing
symbols referenced from the executing module’s text segments as having been subjected to
Jigsaw’s freeze operation (see Fig. 1). This renders their bindings read-only, but does not
hide them, so references in the dynamically loaded module can be bound to them.

In the simplest case, dynamic linking and loading involves a run-time merge operation
between loaded module and the module being loaded. More sophisticated effects can be
obtained through more powerful Jigsaw operators such as override, and compound operations
such as interposition. Frozen symbols can be manipulated through operations that only affect
the loading module’s symbolic interface (e.g. hide and rename-to). Operations that cause
binding or rebinding of symbols, such as restrict, override and merge, may not be applied if
the binding o f a frozen symbol would be affected.

The asymmetry between execution of Jigsaw operations on frozen vs. unfrozen bindings
can be thought o f as a matter of “views.” A module with frozen bindings cannot change
how it views the world, since it cannot change bindings to the interfaces it references. It
can, however, experience a change in how it is viewed from the outside, since the names
and values o f the symbols (interfaces) it exports can be changed. Modules with unfrozen
bindings modules (such as a module being dynamically loaded into a running program) can
change either how they view the world or how they are viewed by the world.

It is only possible for a program to change the definition of a class on the fly (as in the

12

case of class evolution, see §10.1) if all changes are made through unfrozen bindings, such
as those residing in data segments. C + + systems generally allocate virtual function tables
in data segments; hence references to symbols denoting virtual functions may be rebound.
In particular, the starred step in the interposition example of Fig. 4 (involving override)
cannot be performed unless the references being rebound are in data segments. Thus we can
expect that dynamic interposition o f C + + functions only to be possible on virtual functions.
Note that a rebindable symbol may have multiple occurrences (e.g. entries in several virtual
function tables). The state-saving capabilities of OMOS accommodate this fact by saving
relocation information sufficient to locate and rebind all data segment references to a symbol.

7 G e n e r a t i n g D o s s i e r s

7 .1 D o s s i e r s f o r A p p l i c a t i o n C l a s s e s

We now turn to the question of how dossier objects are created within an 0 - 0 software
development process. Recall that the MSO OM ’s primary function is to provide a persistent
store for C + + and CLOS application program objects without invalidating existing compil
ers, programming envrionment tools (e.g. make) and file systems. The scheme for creating
dossier objects must fit within these constraints.

In the development of a C + + class, the specification for that class is finalized when the
implementation o f the class is compiled. At this stage, in current C + + development environ
ments, the implementation for that class is then fixed. Our dossier objects are created during
this stage of the development process. Dossiers may be generated by either a preprocessor
or directly by a modified compiler. Linton et al. used a preprocessor. We describe here how
a modified C + + compiler may be used for these purposes. As the compiler processes an
input file, it builds descriptions of, among other things, the specification and layout o f types
defined therein. These descriptions contain all the information necessary for the creation of
the dossier objects. After parsing a class definition, the dossier for that class is emitted by
the compiler as static data to be linked into client applications.

As stated in §2, run-time class descriptions are necessary for fully polymorphic manip
ulation of objects. Consequently, we offer access to the dossier for a particular object at
run-time. This access is provided through the virtual function dispatch table (vtable) for
the class. Each vtable is expanded to include a reference to the appropriate dossier. Classes
without virtual functions, and thus no vtable, are modified to have an empty vtable; this
vtable is then expanded to include a reference to the dossier for that class. The inclusion of
a vtable pointer within a class instance may violate C compatibility — a C + + class without
virtual functions no longer has a memory layout compatible with a identically declared C
structure. Although this incompatibility may be significant for some existing applications,
thus far it has not proved to be a problem.

Loading an object is a two step process. First, the member data associated with an object
is loaded into the memory space of an application. Then the object must be configured for
use within that particular application’s address space. Specifically, the virtual function

13

dispatch table and virtual base class pointers must be initialized. To simplify this stage
of reconstructing an object, special configuration functions are generated by the modified
compiler. A configuration function is generated for each class, and is emitted along with the
dossier for that class.

7 .2 M e t a - D o s s i e r s

In §5.2 we describe how the OID of a meta-dossier can be used as a key to ensure
execution environment compatibility between the creator and users of a persistent object.
We now briefly sketch how we envision using an object’s meta-dossier to govern its adaptation
to varying execution environments. Again, the module AD T viewpoint plays a fundamental
role.

As a persistent object (rather than simply an OID-based key), a meta-dossier summarizes
the conventions observed in compiling the class implementations it describes. This will
contain:

• Certain literal attributes, e.g. compiler = "GNU C + + version 2.2.2” , processor = "HP
730” , endian = "big” , alignment = "word” , etc.

• An OID referring to an OMOS module with a fixed set o f object and class conversion
functions (compiled, of course, under this execution environment). For example, there
could be a function build_vtbl(d), which constructs a virtual function table consistent
with its execution environment, given a dossier d (and d’s meta-dossier) constructed
under a different environment. In a sense, these functions would be meta-dossier driven
generalizations of compiler-specific actions such as the configuration function described
in §7.1. If relatively few execution environments are supported, and the set evolves
slowly (as we expect), then these functions can exploit a hand-written ad hoc solution
for each case.

8 I m p l e m e n t a t i o n S t a t u s

8 .1 D o s s i e r s f o r A p p l i c a t i o n C l a s s e s

The compiler used in this experiment, the GNU C + + compiler version 2.2.2, is distributed
with a partially implemented facility for generating type descriptors and providing them at
run-time (for garbage collection). We have modified and extended this facility to provide
the functionality described in §7.1. The dossiers produced are based on the object layout
and parse trees generated during compilation. The compiler produces dossiers for all classes,
including those that use multiple inheritance and virtual base classes. It also produces
dossiers for classes defined using templates. Currently the dossiers created by this compiler
are both compiler and platform specific. The information they contain includes what we
have described for the dossiers and meta-dossiers, together in one object.

This modified compiler has been used to build the Interviews [LCV87] library. The

14

Interviews library, with associated applications, contains over 45,000 lines o f C + + code and
makes extensive use of class inheritance and virtual functions. A text editor distributed
with the library was also built with the modified compiler, and this application ran without
error. The success of this regression test demonstrates that our scheme for generating and
accessing type information at run-time is applicable to large, multi-file applications with
libraries, and is compatible with existing operating system and X-W indow libraries. The
addition of virtual function table pointers to objects has, thus far, caused no compatibility
problems with existing code or libraries. ,

8 .2 O M O S

OMOS has been implemented as an operating system server using a set of C + + objects.
An installation of OMOS exists on the Intel 386 platform running under the Mach operating
system. Operating system dependent features are isolated, thereby easing the port o f OMOS
to any system with modern virtual memory and inter-process communication facilities. Re
cently, the object file manipulation aspects of OMOS (the other major porting obstacle) have
been recast using the BFD object file back-end from the Free Software Foundation. BFD
provides a high degree of object file format independence, which should greatly facilitate
porting to other platforms.

OMOS provides module storage, linking, and loading facilities. The OMOS constraint
system permits automatic sharing o f modules between clients (a la shared libraries). In
addition, OMOS provides facilities for automatic monitoring of program execution, and
transparent reordering of program binaries to improve program paging behavior. A file-
based version of OMOS (known as OFE) exists which acts as a superset of the Unix system
linker, Id. OFE can be used to manually manipulate object files using the Jigsaw operation
suite, as well as to manually reorder program binaries.

9 S e m a n t i c I s s u e s

Storing and retrieving class implementations as modules opens many opportunities for
broading POS utility. However, it also poses vexing issues that reveal subtle difficulties in
adding persistence to 0 -0 languages designed for manipulating transient objects.

1. What should be the role o f user-defined constructors when an object is loaded from
the POS? The only general answer is “none” , since the retrieved object is not being
constructed (at least not from whole cloth). In any case, given overloaded class con
structors, it is impossible to determine which one might be appropriate to execute. Yet,
existing user code may rely on constructors to maintain application specific invariants
when an object “ comes into existence” .

2. The static data members o f a class clearly need to exist whenever an object o f that
class is loaded. But when are they created and initialized, and are they persistent? The
latter issue is especially troublesome when static member data is mutable. Such data
could reside within the dossier object, but again, when should they be constructed?

15

— when the class is registered? What about multiple implementations of the class for
differing execution environments — should the static data be shared or separate?

3. How late should the binding be between class names and class implementations? We
suspect that one implementation per class per execution environment is much too
limiting, even if load time specialization (e.g. interposition) is supported. Instead, a
systematic approach to managing class versions and consistent class libraries should
be devised.

1 0 C o n t i n u i n g W o r k a n d L o n g e r T e r m I m p l i c a t i o n s

1 0 .1 C o n t i n u i n g W o r k

As outlined in §8, a basic implementation of OMOS, and a dossier-creating C + + compiler,
already exist. Their integration with the basic object store remains to be done. In addition,
class implementation registration and meta-dossiers are only in the design stage.

Another dimension of the MSO OM still under development is support for persistent
CLOS objects, and multi-lingual objects. We believe the module AD T viewpoint will again
permit flexible and highly appropriate abstractions, but this remains to be established.

We hope to extend the MSO OM to support three advanced effects:

1. M ultiple class im plem entations: As remarked above, we believe multiple class imple
mentations to be an important POS feature. Architecturally, there is no problem
having a retrieved object can bring in its own implementation — indeed, that is what
happens in the standard dynamic loading case. However, some means must be found
for an already loaded implementation of that class not to become invalidated. As a
simple avenue, we are considering extending the role o f meta-dossiers to group logically
consistent collections of class implementations, in the same sense that they currently
group class implementations that share an execution environment. This turns the name
server described in §5.2 into a rudimentary class version manager.

2. Class evolution: This is a generalization of multiple class implementations, whereby
data and function members are added to a class definition, presumably in a monotonic
manner [GS87]. The technical complications of this are myriad, and generally com
piler specific. However, we hope to accommodate this in simple cases, perhaps as a
generalization o f multiple class implementations.

3. O bject prom otion : Here an existing object is summarily converted to belong to a
different class, typically a subclass of its original class. In effect, this is retroactive
inheritance, on a per-object basis. Again, we believe the necessary technical devices
exist within our POS architecture, but semantic and compiler-specific pitfalls abound
— for example, do we execute a constructor for the new class?

16

1 0 .2 L o n g e r T e r m I m p l i c a t i o n s

In this section we consider two directions in which this work could proceed in the longer
term. The first direction concerns factoring the module ADT implementation out of OMOS,
and the second deals with linguistic extensions made possible by our system.

The notion of an abstract data type representing modules pervades this paper. We
have argued that such an abstraction arises naturally in the design of a POS, and we have
incorporated it in our design and implementation. In our case, the AD T is implemented by
OMOS. Yet the module AD T is a useful concept independent of persistent stores. Ideally,
we should implement the AD T as a separate entity.

Specifically, we suggest implementing the module AD T as a fram ew ork in Johnson’s sense
[JR91]. In such a framework, notions such as modules and instances would be represented
by abstract classes. The framework would likely provide concrete subclasses representing
particular realizations of these notions. An application like OMOS would then extend or
modify the framework to suit its particular needs. For example, the address loading con
straints employed by OMOS are specific to linking, and would be added as an extension of
the basic module ADT.

There are other valuable uses for such a framework. It may serve as a basis for the im
plementation of a family o f interoperable language processors that share a common notion
of object. This is not unlike the use of standard calling sequences to help ensure interoper
ability o f procedural languages. Of course, a standard format for objects could be used by
unrelated implementations as well. The advantage of the framework is that it implements
the standard in a manner accessible to various compilers, saving implementation effort and
encouraging adherence to the standard.

Another direction is to extend the semantics o f C + + . Jigsaw operators allow for richer
behaviors than those of classes in C + + . One example is the introduction of mixins [BC90].

The facilities introduced for dynamically applying Jigsaw operators allow inheritance at
run time. These facilities could be employed by the modified C + + compiler itself, to sup
port delegation. The difficult part here is deciding exactly how such features should be
incorporated linguistically into C + + ; as described here, we already have an applicable im
plementation.

1 1 R e l a t e d W o r k

This project builds on work ongoing elsewhere in many related areas. We briefly mention
only a few here.

• Basic object stores: Several language-neutral object stores have been described, includ
ing ESM [CDRS89], Cricket [SZ90] and Mneme [Mos90].

• C + + based O O D B ’s : Two well-known examples are ObjectStore [LLOW91] and ODE
[AG89].

17

• O O D B toolkits: Here OODB extensibility is the primary objective — examples include
EXODUS [CDG+90] and ObServer [HZ87],

• Persistent language extensions: The earliest persistent higher level language was PS-
Algol [A+82]. Recent persistent Lisp systems include PCLOS [Pae88] and MetaStore
[Lee92].

• Multi-language object system s: The RPDE3 [H092] system represents important new
work in multi-lingual objects. -

• D ynam ic extensions to C + + Several papers have exploited dynamic loading to stretch
the bounds of C + + static type checking, e.g. [DSS90] and [GS87].

• Reflective system s: Class descriptions and related meta-representational issues are ex
plored in Smalltalk80 [GR83], CLOS [KdRB91], and 3-Lisp, a fully reflective language
[Smi82].

A c k n o w l e d g e m e n t s

We acknowledge the many contributions to this work by members o f the MSO OM
project, including Robert Mecklenburg, Mark Swanson, Robert Kessler, Jay Lepreau, Guru
Banavar, and Peter Hoogenboom.

R e f e r e n c e s

[A+82] Malcom P. Atkinson et al. PS-Algol: An Algol with a persistent heap. A C M
S IG P L A N Notices, pages 24-30, July 1982.

[ABD+92] Malcolm Atkinson, Frangcois Bancilhon, David DeWitt, Klaus Dittrich, David
Maier, and Stanley Zdonik. The object-oriented database system manifesto. In
Building an Object-Oriented Database System , chapter 1, pages 3-20. Morgan
Kaufmann, 1992.

[AG89] R. Agrawal and N. H. Gehani. ODE (Object Database and Environment: The
language and data model. In Proc. In tl . Conf. on M anagem ent o f Data, pages
36-45, Portland, Oregon, May-June 1989. ACM-SIGMOD.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Proc. O O P S LA
Conference, Ottawa, October 1990. ACM.

[BL92] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proc.
International Conference on Com puter Languages, pages 282-290, San Francisco,
CA, April 20-23 1992. IEEE Computer Society.

[Bra92] Gilad Bracha. The Programming Language Jigsaw: M ixins, Modularity and
Multiple Inheritance. PhD thesis, University of Utah, March 1992. 143 pp.

18

[CDRS89]

[DSS90]

[GR83]

[GS87]

[H092]

[HZ87]

[IL90]

[JR91]

[KdRB91]

[LCV87]

[Lee92]

[CDG+90]

[LL0W91]

M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E. Richardson, D. T.
Schuh, E. J. Shekita, and S. L. Vandenberg. The EXODUS extensible DBMS
project: An overview. In Readings in Object-Oriented Databases. Morgan-
Kaufman, 1990.

Michael J. Carey, David J. DeWitt, Joel E. Richardson, and Eugene J. Shekita.
Storage management for objects in EXODUS. In Object-Oriented Concepts,
Databases, and Applications, chapter 14, pages 341-369. Addison-Wesley, 1989.

Sean M. Dorward, Ravi Sethi, and Jonathan E. Shopiro. Adding new code to a
running C + + program. In U SE N IX Proceedings C + + Conference, pages 279
292. USENIX Association, 1990. '

A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Im plem enta
tion. Addison-Wesley, 1983.

Philippe Gautron and Marc Shapiro. Two extensions to C + + : A dynamic link
editor and inner data. In U SE N IX Proceedings and Additional Papers C + +
W orkshop , pages 23-34. USENIX Association, 1987.

William Harrison and Harold Ossher. Attaching instance variables to method
realizations instead of classes. In Proc. International Conference on Com puter
Languages, pages 291-299, San Francisco, CA, April 20-23 1992. IEEE Computer
Society.

Mark F. Hornick and Stanley B. Zdonik. A shared, segmented memory system
for an object-oriented database. A C M TOIS, 5 (l):70 -85 , January 1987.

John A. Interrante and Mark A. Linton. Runtime access to type information
in C + + . In U SE N IX Proceedings C + + Conference, pages 233-240. USENIX
Association, 1990.

Ralph E. Johnson and Vincent F. Russo. Reusing object-oriented designs. Tech
nical Report UIUCDCS 91-1696, University of Illinois at Urbana-Champagne,
May 1991.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The A rt o f the M etaob
ject Protocol. The MIT Press, Cambridge, MA, 1991.

Mark A. Linton, Paul R. Calder, and John M. Vlissides. Interviews: A C + +
graphical interface toolkit. In Proceedings o f the U S E N IX C + + Workshop, page
11 pp., Santa Fe, NM, November 1987.

Art Lee. The Persistent Object System M etaStore: Persistence Via M etapro
gramming. PhD thesis, University of Utah, June 1992. 171 pp.

Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The Object-
Store database system. Comm unications o f the A C M , 34(10):50-63, October
1991.

19

[Mos90] J. Eliot B. Moss. Design of the Mneme persistent object store. A C M Transactions
on Inform ation System s, 8(2):103—139, 1990.

[Mos92] J. Eliot B. Moss. Working with persistent objects: To swizzle or not to swizzle.
IE E E Transactions on Software Engineering, 18(8):657—673, August 1992.

[OM92] Douglas B. Orr and Robert W. Mecklenburg. OMOS — an object server for pro
gram execution. In Proc. International Workshop on Object Oriented Operating
System s, pages 200-209, Paris, September 1992. IEEE Computer Society.

[OMHL93] Douglas B. Orr, Robert W. Mecklenburg, Peter J. Hoogenboom, and Jay Lep-
reau. Dynamic program monitoring and transformation using the OMOS object
server. In Proceedings o f the Hawaii International Conference on System Sci
ences, page 10pp., January 1993.

[Pae88] Andreas Paepcke. PCLOS: A flexible implementation o f CLOS persistence. In
S. Gjessing and K. Nygaard, editors, Proceedings o f the European Conference on
Object-Oriented Programming, Lecture Notes in Computer Science, Berlin, 1988.
Springer-Verlag.

[See90] Donn Seeley. Shared libraries as objects. In Proc. U S E N IX Sum m er Conference,
Anaheim, CA, June 1990.

[Smi82] B. Smith. Reflection and semantics in a procedural language. Laboratory for
Computer Science TR-272, MIT, 1982.

[SZ90] Eugene Shekita and Michael Zwilling. Cricket: A mapped, persistent object
store. In Proceedings o f the Fourth International Workshop on Persistent Object
System s, Martha’s Vineyard, M A, August 1990. U. Wise. Tech. Rpt. 956.

20

