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Section I

Summary of Program for

Reporting Period

Progrem Objectives

To develop practical, low cost, real-time methods for

suppressing noise which has been acoustically edded to

speech.

To demonstrate that through the incorporation of the
noise suppression methods,speech can be effectively analysed
for narrow band digital transmission in practical operating

environments.

Summaery of Tasks and Results

Introduction

This semi-annual technical report describes the current
status in the research areas for the period 1 April 19797

through 30 September 1979.



SUPPRESSION OF ACOUSTIC NOISE IN SPEECH

USING TWO MICROPHONE ADAPTIVE NCQCISE CANCELLATION

Steven F. Boll

Dennis Pulsipher

ABSTRACT

Acoustic noise with energy greater or equal to the
speech 1is suppressed by filtering a separately recorded
correlated noise signal and subtracting it from the speech
waveform. This approach was investigated to determine the
degree of noise suppression possible wusing an external
correlated input. The second reference noise signal is
adaptively filtered using the least mean squares, LMS and
the lattice gradient algorithms. These two approaches are
developed and compared in terms of degree of noise power
reduction, algorithm convergence time, and degree of speech
enhancement. Both methods were shown to reduce ambient
noise power by at least 20dB with minimal speech distortion
and thus to be potentially powerful as noise suppression
preprocessors for wvoice communication in severe noise

\
ehvironments.



I. INTRODUCTION

It has been shown that there is a significant reduction
in measured speech intelligibility and quality due to the
ambient background noise generated in many operating
environments [1], [2]. A number of single microphone
approaches for reducing the background noise added to speech
have been developed [3], [4]. These methods become
ineffective when the noise power is equal to or greater than
the signal power or when the noise characteristics, e.g.
mean, variance etc., change rapidly in time. This paper
studies the performance of an approach to noise suppression
in which a second correlated noise source 1is recorded and
used to reduce the noise added to the speech. This.second
noise source is adaptively filtered to minimize the output
power Dbetween the two microphone signals. This approach
generates an output which is the least squares estimate of
the speech waveform. Two adaptive algorithms used to filter
the correlated noise are investigated; the LMS approach,
(5], (6] and the lattice gradient approach (7], [81, [9].
Both methods approximate the least squares, Wiener solution.
The LMS algorithm uses the method of steepest descent and
approximates the ensemble gradient with the instantaneous

gradient. The 1lattice gradient algorithm uses Newton's

\
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method in an orthogonal basis generated by the 1lattice

filter.

A severely degraded noisy speech signal was recorded
for testing the performance of each method. The ambient
energy noise was amplified to mask the recorded speech
signal. Both approaches are compared in terms of degree of
noise power reduction, algorithm settling time, degree of

speech enhancement, and computational complexity.

The paper is divided into sections which develop the
two adaptive least squares estimators, describe the
experiments conducted, and demonstrate the algorithm

performance.

II. TWO MICROPHONE SIGNAL GENERATION MODEL

The noise suppression experiments were based onk the
model shown in Figure 1. The primary signal x(j) consists
of the common noise signal n(j) filtered through a
transmission <channel G, (2) and added to the speech signal
s(j) plus another independent noise signal m, (]). The
reference signal v(j) consists of the common noise signal

n(j) filtered through a transmission channel Gz(zL added to

)
®
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a second independent noise signal m, (j). The signals s(j),
n(j), m (j) and m, (j) are assumed independent of each other

and G, (z) and G, (z) are assumed constant in time.

III. THE WIENER SOLUTION FOR ACOQUSTIC NOISE SUPPRESSION
USING TWO INPUTS
A general filtering model used to suppfess the noise
component in x(j) which is correlated with v(j) is shown in
Figure 2. As is discussed in [5], minimizing the output
power of e(j), minimizes the output noise power, and results

in e(j) being the minimum mean square estimate of s(j).

The tap weights of the all zero filter W(z) are
computed to minimize the total expected output power. Using
the orthogonal projection theorem [10], E[e2(]j)] will be

minimized when “ ‘ e
Ele(j+k)v(j)] =0 for all k.

where

e(ji = x(3) -.1 w(i)v(j-i)

l=—m .
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This orthoganality relation results in the Wiener-Hopf

equation:

1 L WIR (kei) = R, (k) for all k
where
R (k) = E[v(J+k)v(])]
vv
R (k) = Elv(J+k)x(3)]
Xv

The z transform, W(z) of the Wiener filter is given by:

W(z) = va(z)
va(z).

where

Pz =] Rz

=00

- ' -k
va(z) _kz_w va(k)Z
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For the signal model shown in Figure 1, the Wiener

filter reduces to

: *
Pnn(z)G1 (z) G2(2)

W(z) =

Poom, (2) + P (2)[Ga(2) |

where Pnn(z) and szmz(Z) are the power spectra of

n(j) and m, (j) respectively.

The output power spectrum Pee(z) using the Wiener

filter is given by:

.2
Pnn(Z)IGz(Z)I

2
P (z) =P__(z2) +P (z) + P__(2)|Gi(z)]| |1-
ee ss m;m nn 2

1my Pm2m2+|Gz(z)| Pnn(Z)

From the Wiener filter equation, note that if Pm,m, (2)

is small compared to P (z)IGZ(z)I2 then

nn

W(z) = G (z)Gz—l(z)
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This is exactly the linear system required to transform
v(3) into the correlated noise component which was added to

s(j). Also under this condition:

P (z) = P (z) + P (z)
ee_ ) SS

Thus if the independent noise sources ml(j) and mz(j) are
negligible with respect to the signal s(j), and the common

noise signal n(j), the output signal e(j) will match to s(j)

in the mean squared sense.

IV. MATRIX FORM OF WIENER-HOPF EQUATION AND THE GRADIENT

VECTOR

Define the reference signal vector V(j) as

V(i) = [v(3-1) v(§-2)...v(i-N)1®

and the filter weight vector as



E
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The noise cancelled output e(j) is given in vector form as:

. . T . . T .
e(]) = x(J-1) - W V(]J) = x(3-1)-V (J)W

The mean square error is given by:

£ = E[e?(3)] = E[x(3-1)] - 2P°W + W RW

where

x(j-1)v(3-1)
x(j-1)v(j-2)

{x(3-1)v(3)}

(]
td

x(3-1) v (3-N)

vZ(j-1) v(j-1)v(j-2)
v(j-2)v(j-1) v2(j-2)

WGV )

v(3-N)v(j-1) v(5-N) v (j-2)

]

. v(§-1)v(j-N)
v(j-2)v(j-N)

. vz(j-Na
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The optimal weight vector, w* orthogonalizes the error,
e(j) with respect to the reference signal vector V(j), thus

the optimate estimate of W satisfies:

E[V(j)e(]j)] = 0
then |
* . T, . . .
W E[V(J)V (J)] = E[x(3-1)V (]

or

The optimal weight vector can also be derived by first
calculating the gradient of the mean square error surface

and using the value which forces it to zero. Thus define:

= & _
V=73F=-2P + 2RW

-1

then V =0 when W = R™'P

The minimum mean square error is given by:

£ = E[x* (j=1)] - P'W

min
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The mean squared error & can also be expressed as:

£ = £ . + AW RAW

min

Where AW = W-W*

Taking the gradient V of £ with respect to W gives

an alternative expression for V as

V=2RAW

V. ITERATIVE METHODS FOR ESTIMATING THE OPTIMAL WEIGHT

VECTOR

A. Method of Steepest Decent [5]1, [6]

Let W(j) denote an estimate of the optimal weight
vector at time index Jj. The gradient V (j) evaluated at
W(Jj) points in the direction of greatest rate of increase in
£ In the method of steepest descent a new estimate of
W(Jj) equals the old estimate plus a term proportional to the
negative of the gradient.

Thus
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W(J+1l) = W(J) + u (- V()

where u is a positive constant called the step size.

Subtracting W from both sides gives

AW(j+1l) = (I-uR)A W(])

or

AW(3) = (I-uR)I AW(0)

By diagonalizing R using the eigenvector decomposition

(6]

it is shown that for convergence it is necessary that:

>u>0

bt L

max

and that the convergence rate time constant for the pth tap

weight is given by

= L
T 2uA
p HA,

where A is the pth eigenvalue of R.
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B. Newton's Method

In the scalar case the root of a function £f(x) is

iteratively estimated according to the rule:

X(j) = x(j_l) - f(X('—l))
£7(x(3-1))

In noise cancellation, the weight vector is updated to
force the gradient to zero. Thus the gradient has the role

of the function f. The derivative of gradient is given by:

The weight vector is updated as:
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W(j+1) = W(j) - R 'V (J)

R
2
Substituting for the gradient gives:

W(j+l) = W(3)

R~ (-2P+2RW () )

N

or

]
o)
i

n
=

W(j+1)
Thus Newton's method converges 1in one iteration. This
approach 1is also referred to as the fast start-up equalizer

(81, [11].

VI. ITERATIVE SOLUTIONS BASED ON APPROXIMATIONS TO THE

ENSEMBLE AVERAGES

A. The LMS Algorithm [5], [6]

In the LMS Algorithm the method of steepest descent is
used with the ensemble gradient approximated by the

instantaneous gradient given by:

A

2 4
v(5) = 223 = aevi)
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The LMS algorithm is given as:

W(j+1) = W(J) + 2u e(3)V(J)

It can shown [5], [6] that the expected wvalue of the
LMS weight vector converges to the Wiener solution. Using
the instantaneous gradient introduces an error called
gradient noise which results in an excess mean squared error
over that obtainable with the Wiener solution. A figure of
merit for the estimation process is defined as
misadjustment. It is equal to the average excess mean
squared error divided by the minimum mean squared error. It

can be shown [6] that misadjustment is equal to:

1 ¥ o1
M=3 ) T = utrR, tr equals trace
i=1 i
As is discussed in the section of results,
misadjustment is an 1important design factor in noise

suppression since large misadjustment manifest itself as a
pronounced echo in the speech waveform. The echo is removed
by reducing the step size, and thus the misadjustment. This

reduction of course conflicts with the requirement of quick
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settling time for the algorithm which can be shortened by
having a large step size. The trade-off between
misadjustment and settling time are discussed in the results

section.

B. Approximate Newton's Method

Newton's method can be approximated Just as the
steepest descent method by replacing the ensemble gradient
with the 1instantaneous gradient. The Newton's method

approximation would then be:
W(3+1) = W(3) + o R™'e(HV ()
where g 1is the normalized step size.

Ignoring for the moment how the autocorrelation matrix,
R would be <calculated and inverted, this approach offers

certain advantages over the method of steepest descent.

The convergence properties of this approach can be
estimated wusing the same approach as with the method of
steepest descent. Specifically replacing the noisy gradient
with the true gradient and subtracting the optimal weight

vector from both sides of the above expression gives:

AW(j+1) = (1l-0) AW(])
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Thus for convergence it is necessary that:

2 >0 >0

The adaptation time constant would be the same for each

tap weight and be appropriately equal to:

ol | o

Using a diagonalization analysis similar to that used
for the LMS algorithm, the misadjustment due to gradient

noise can be shown to be approximately equal to:

This approach to tap weight estimation has the
advantage over LMS that all tap weights have essentially the
same adaptation time constant, but the disadvantage that the

gradient estimate must be multiplied by the inverse of R at



Page 19
each iteration.

The next sections discusses how the tap weights can be
estimated using an orthogonal basis which has an
auto-correlation matrix that 1is diagonal. With this
diagonalization the number of operations per update is

linear with respect to the number of tap weights.

C. Orthoganalization Using the Lattice Structure

(71, (81, 9]

To generate an orthogonal basis for estimating the tap
weights requires a transformation to map the reference

signal {v(j-m)} into an orthoggnal signal {gm(j)} where:

E {g (3)g, (3)} = B8,

The lattice structure provides this transformation.

The mathematics describing this orthogonalization for
stationary reference signals is well developed in the theory
of linear prediction of speech [12], [13]. The {gm (3)}
basis <called the backward prediction error can be generated

recursively using the lattice filter structure:

Il

gm(j+l) kmfm-l(j) * gm—l(j)
£.03) = £ 1) + kg o (3)

m=1,2, ...,N
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where:
£ () = v(3)

9, (3) = v(3-1)

The sequence {f (j)} is called the forward prediction error
m

and the sequence {km} are known as either k-parameters,

reflection coefficients or PARCOR parameters. It can be

shown that if km is estimated to minimize the forward

prediction energy o(m) at stage m, where:
= 20 '
q(m) = E[fm(J)]
then the backward prediction sequence will be orthogonal:

E {g,(3)9, (3)} = B, 6

where:

b = 2[5
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D. Adaptive Lattice Algorithm [7]), [8], [9]

To generate the orthogonal basis needed to estimate the
Wiener noise cancelling filter with Newton's Method, the
k-parameters must first be estimated to minimize the forward
prediction error energy. These k-parameters can then be
used to generate the backward prediction sequence using the
lattice structure. Since estimating the k-parameters is
just another least squares problem, Newton's method is wused

here too.

The derivative of the forward prediction energy is
given by, (i.e.the instantaneous gradient 1in orthogonal

basis):

S
E— = 2f (J)g ()

The adaptive lattice algorithm is then defined as:

of (g _(3)
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where:

By (3+1) = (1-0)B (3) + og?(3)

¢ 1s the normalized step size. It 1is determined by
the degree of relative misadjustment desired. The signals
%“ (j) and I (j) are generated from the 1lattice filter.

The vector Bm (j) represents a single pole filtered estimate

of the average backward prediction error energy:

B, (3) = E{g2(3)}

Dividing by g“(j) in the orthoéonal basis {gm(j)} is
equivalent to multiplying by R™" in the {v(m-3)} basis. The
vectors {gm(j)} will approach orthogonality only 1in steady

state.

—~—
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E. Adaptive Noise Filter in Orthoganal Coordinates

Define H as the N x 1 noise filter vector to be
estimated in the {gm(j)} basis. The output error at the mth

stage is given by:

s, () = s (3)-hy (3)gp_ (I

where: So (3) = x(j-1)

Taking the derivative of the prediction error gives the

expression for the instantaneous gradient at the mth stage:

as? (3)
sh_ _zsm(j)gm-l(j)

m

The adaptive algorithm is then defined as:

os_(3)g__,(3)
Bag (3)

o = 3 = s e @ N
h_(3+1) = h (3) + m=1,2,..

’

The adaptive filter estimate of the speech waveform is

equal to SN (3) .



Figure 3 shows the composite adaptive noise cancelling

lattice filter algorithm.

VII. EXPERIMENTS AND RESULTS

A. Introduction

A controlled data base was generated and a series of
experiments were conducted to determine the performance of
the two adaptive estimation methods for removing noise from
speech. A two input signal data base was recorded with a
high degree of control over «critical environment factors.
The expected performance of the algorithm was then predicted
using a digital simulation of the acoustic environment. The
performance of the LMS and adaptive lattice methods were
measured in terms of degree of noise power reduction,
algorithm settling time and amount of echo present. These
results are summarized as well as the advantages and

limitations of each approach.

- 24 -



B. Data Base Generation

When the noise added to the speech at the primary input
differs from the noise at the reference input by a single
linear stationary system, G, (z) the adaptive filter will
converge to this linear system and complete noise
cancellation results [14]. Referring back to the Wiener
solution development given in Section 1III, this type of
experiment would correspond to a situation where the added
independent noise sources, m; (j) and m,(j) are absent, and
G, (z) = 1. Since the intent of this paper is to investigate
the degree of noise suppression possible using an external
correlated input, it was decided to construct a recording

environment as close as possible to above ideal situation.

An acoustically shielded hard-walled room having an
ambient noise 1level of approximately 26dB SPL was used for
recording the signals. The room contains audio recording
and playback equipment, a computer terminal, and connections
to the stereo analog to digital and digital to analog
converters. The acoustic shielding prevented independent
noise (modeled as m, (j) and m, (j)) from interfering 1in the

estimation process.

- 25 -



A stationary white noise source was recorded from an
analog noise generator onto audio tape. The acoustic noise
was generated by playing the audio tape out through a 1loud
speaker into the room. The reference signal microphone was
placed next to the speaker, while the primary microphone was
placed twelve feet away next to the control terminal. The
speaker spoke into the primary microphone while <controlling
the stereo recording program. The noise power was adjusted
to such a level that the recorded speech was completely
masked. The signals were filtered at 3.2kHz, sampled at
6.67kHz, and quantized to fifteen bits. Recordings were

made with and without speech present, each lasting 23.4 sec.

C. Digital Simulation

Before processing the acoustically recorded data
described above, a digital, nonacoustic, simulation was
conducted. Two estimates of the rooms impulse response were
available from a previous experiment [15]. In this
experiment each impulse response was estimated empirically
by playing an electrical pulse through the loud speaker.
The acoustié response of this pulse was then recorded by two

microphones placed eight feet from the speaker. The two

\
*
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microphone signals were digitized and stored on disk. Each
of the measured room impulse responses was digitally
convolved with the digitized white noise source to form the
primary and reference inputs. When these signals were
processed through the LMS algorithm having a step size
corresponding to a misadjustment setting of 1%, using 3000
tap weights, the noise power at the output was reduced by

12dB after 23.4 seconds.

The experiment points out some of the problems to
contend with in using the two microphone approach for noise
suppression. First since G, (z) 1is not an identity, the
optimal filter must approximate G, (z)/G,(2Z). A long
all-zero filter is required to approximate the poles induced

by G3°

(2) . A series of experiments [16] measuring noise
power reduction verses filter length showed that 3000 tap
weights with a 1% misadjustment setting resulted in 12 dB
noise reduction after 23.4 seconds. When only 1000 tap
weights were used the noise power was reduced by 6 dB and
when 500 tap weights were used the noise power was reduced
by only 4 dB. Long filter lengths, in-turn, induce more
excess mean squared error and increase misadjustment. The

increased misadjustment can be minimized by decreasing the

stgp size, but at the expense of increasing the algorithm's
®
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settling time.

The second problem concerns the non-causality of the
estimated filter. There is no guarantee that G, (z) will be
minimum phase and thus a stable estimate of G, (z) /G, (2)
may be non-causal. Non-causal adaptive filter estimates are
easily generated by placing a delay into the primary channel
[5]. However more tap weights are then required with the
accompanying misadjustment problems described above. Also,
the amount of delay depends on the microphone placement with
respect to the noise source. In the digital simulation
experiment both microphones were placed approximately eight
feet from the loudspeaker. The estimated adaptive filter
impulse response then required a delay of 1500 poinfs. To
minimize this non-causal delay requirement for the acoustic
experiment, the reference microphone was moved next to the
loudspeaker. As is seen in the section on results, placing
the reference microphone close to the noise source removed

the non-casual filter effects.

This simulation predicted the potential performance
‘achievable. In fact considerably better performance was

measured in the actual acoustic experiments described below.
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D. Results Using the LMS Algorithm on the Acoustic Data

The algorithm's performance is measured in terms of the
degree of steady-state noise power reduction during
non-speech activity, the time it takes to reach this steady
state wvalue, (algorithm settling time), and the amount of
echo induced when speech is present. The first two factors
were measured quantitatively while the third factor was

determined from listening tests.

Algorithm settling time can be minimized by choosing a
large step size value. This ho&ever will increase the echo
present in the speech output due to the fact that the output
is fed back when estimating the tap weights. A large echo
is unacceptable in the noise suppression algorithm, Three
experiments were conducted to measure algorithm settling
time. The experiments differed by the amount of

misadjustment specified.

Step sizes were used corresponding to misadjustments of
1%, 5%, and 10%. Based on the simulation experiment,
fifteen hundred tap weights were used for estimating the
noise filter. The results of steady-state noise reduction
for the LMS algorithm are shown in Figure 4. The results

show that the algorithm converges to a steady-state noise

}
®
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power reduction of -20db in approximately 15 seconds for 10%
misadjustment and 21 seconds for 5% misadjustment. At 1%
misadjustment the step size was so small that the noise

power was reduced by only -10dB before the data ran out.

In listening to the output during speech activity it
was judged that at a 10% misadjustment setting an
unacceptable amount of echo was present and that a 5%
setting the echo was just noticeable. For each
misadjustment setting there was significant noise
suppression and corresponding speech enhancement. At the 1%
misadjustment setting the output had a noise floor which was
10dB higher than the 5% and 10% misadjustment outputs due to
slow settling time. To illustrate this noise suppfession
capability, isometric plots of time versus frequency
magnitude spectra of speech with and without noise
suppression are shown 1in figures 5 and 6. The plots were
constructed by computing magnitude speétra from 64 half
overlapped hanning windowed data sets. Each line represents
a 128-point frequency analysis. Time increases from bottom
to top and frequency from 1left to right. Figure 5
correspoﬁds.to the unprocessed speech signal "The pipe began
to". Figure 6 corresponds to the processed speech signal

using a 5% misadjustment step size. This phrase occurs 17.5
\
®
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seconds after startup. Finally Figure 7 shows the noise
shaping filter, W, estimated by the LMS algorithm after

processing 23.4 seconds of noise only signal.

E. Results Using the Adaptive Lattice Algorithm

A similar set of experiments were made to measure
algorithm settling time and amount of echo present for three
representative misadjustment step sizes. 1In section IV. an

approximate expression for misadjustment was given as:

Step sizes, 0 , corresponding to misadjustments of 10%, 3.3%
and 1% were used. The convergence characteristics for the

algorithm are shown in figure 8.

In listening to the output during speech activity it
was Jjudged that at the 10% misadjustment setting the amount
of echo present was unacceptable (actually worse than the
10% case for LMS), that at 3.3% the echo was just noticeable
(judged equal to the 5% case for LMS) and that at 1% there

was so little noise reduction that echo present, if any, was

\
®
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irrelevant.

For the 10% and 3.3% misadjustment settings there was
significant noise suppression during speech activity.
Figure 9 shows the time verses frequency magnitude spectrum
of the output of adaptive 1lattice algorithm at the 3.3%

misadjustment settings for the same speech phrase.

There are four sets of filter parameters generated by
the adaptive lattice algorithm. Figure 10 shows the tap
weights H in the orthogonal basis {gm (j)}. Figure 11 shows
the k-parameters for the lattice filters and figure 12 shows
the average backward prediction energies, {Bm} . The Bm's
are not strictly manotonically decreasing due to the
one-pole digital smoothing. The corresponding tap weights
in the reference signal basis can be obtained by multiplying
the H vector by the matrix which transforms k-parameters
into the 1linear prediction coefficients. This matrix is
defined in [12] and can be generated by the STEPUP procedure
given in [12]. Figure 13 shows the tap weights obtained
from this transformation. Each of these parameter sets were
recorded at the end of the 23.4 second noise only data
segment using the 3.3% misadjustment step size. Note that

the filters shown 1in Figures 7 and 13 are quite similar
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(differing primarily due to tap weight noise). This 1is to
be expected since they both represent estimates of the

Wiener filter in the same basis.

VIII. CONCLUSIONS

A. Comparison of Methods

In terms of noise power reduction and amount of echo
present, both approaches can be adjusted to give equivalent
results. Using step sizes corresponding to approximately 5%
and 3.3% misadjustments, each algorithm converges (noise
power down 20dB) after 20 seconds of processing, with a just
noticeable amount of echo. The adaptation rates are not
significantly different. These equivalent results between
the two methods is to be expected since the reference signal
is just white noise, colored by the room's acoustics. The
averaged backward prediction error energies and the
k-parameters are nearly constant after the first one hundred
values. Thus for this‘ environment, the normalization
offered by the gradient lattice offers little advantage over
LMS. For environments with a 1large ratio between the
smallest to largest eigenvalue, the gradient lattice method

has been shown to converge faster [9].

A
*
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The computational price payed for the orthogonalization
and normalizatior is high compared to the LMS approach. The
LMS requires 2N multiply-adds per sample while the gradient
lattice requires 10N multiplies, 6N adds, and 2N divides per
point. For fifteen hundred tap weights at a sémpling rate
of 6.67 kHz, LMS requires 20 million multiply-adds per
second and gradient lattice requires at 1least 120 million
multiply-adds per second to process this data in real time.
The enormous computation requirement necessitated
implementing both algorithms on an FPS 120-B array
processer. These micro-coded implementations resulted in a
30 to 1 speed-up over that achievable on a conventional
general purpose DEC-10 processor. Both algorithms of.course
still did not run in real-time but were processed in a

non-real time disk to disk configuration.

In addition the gradient 1lattice method has the
disadvantage that it requires an estimate of the average
backward prediction error energy. For this ihplementation
these estimates were obtained by smoothing the squared
backward prediction values through a single pole filter.
For nonstationary reference signals with a large dynamic
range, this smoothing approach may be unable to track the

gein wvariations thus resulting 1in an unstable adaptive

\
®

- 34 -



filter.

B. Summary

This paper addressed the problem of reducing  the
acoustic noise added to speech by subtracting off an
adaptively filtered second correlated noise source. Two
adaptive algorithms were developed and their performance
characteristics measured using an acoustic signal in which
the noise power was equal or greater than the speech power.
In both approaches it was shown that significant noise
reduction 1is possible with minimal distortion to the speech

waveform,

In summary, though this two-microphone approach to
noise suppression requires a second signal and considerable
computation, it offers a potentially powerful alternative
approach for speech enhancement in severe noise

environments.

14
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2. General Noise Filtering Model.
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3. Adaptive Noise Cancelling Lattice Filter Algorithm.
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Short Time Spectrum of the LMS Algorithm Output.
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9.

Short Time Spectrum of the Lattice Gradient Output.
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Abstract

Certain key ideas towards the development of a 1linear
narrow band digital voice analysis/synthesis algorithm which
can be used in multiple talker and conferencing
environments, are presented. The use of articulation rate
change, signal extrapolation (analytic continuation) anq 2-D
AGC techniques in combination 1is discussed, problems
highlighted and current results presented in some of the
areas. This approach does not parameterize speech as most
narrow band vocoder algorithms do, but uses data compression
ideas on the speech waveform which lends it the property of
linearity which makes it suitable for use in cénferencing
and multiple-talker environments. Also, such a system is

expected to degrade gracefully with noise.
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I. Introduction

Vocoder algorithms which operate at rates of 2.4 to 4.8
kilobits/sec. are considered narrowband. These vocoders
such as LPC vocoder, channel vocoder, etc. parameterize the
speech signal, attempting to extract the parameters in such
a way that a good fit of the output of the model to the
actual signal 1is obtained. The presence of noise in the
speech signal 1leads to great difficulty in extracting
exactly the parameters of the model. Thus, these vocoders
degrade drastically with increased noise level. Also, they
are not 1linear because of the parameterization and hence

cannot be used in conferencing environments.

This note presents several ideas which in combination
pqint' to the possibility of developing of a linear, narrow
band voice analysis/synthesis algorithm which possesses a
graceful degradation characteristic with noise. Because of
linearity, the algorithm satisfies the superposition

principle and hence can be used in conferencing

environments.

The approach considered consists of the following
steps. The speech signal is band limited and transformed
iQtd the short time Fourier domain. Two-dimensional
automatic gain control (2-D AGC). is then applied which
results in a modified speech signal in the time domain. The

number of bits required to gquantize each sample of this
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signal has been shown by Mike Callahan [1] to be 1less than
half of what is required by log PCM techniques, for the same
quantization noise levels. In addition, ¢the instantaneous
phase and center frequency of each channel in the short time
Fourier domain are scaled by a factor less than unity which
leads to a reduction in the bandwidth occupied by the
resulting signal. Hence, this signal requires a lower
sampling rate. The final signal 1in the time domain is
divided into short segments and only one in every few (2 or
3) segments is transmitted. At the receiver, signal
extrapolation techniques are applied to recover the segments
which were not transmitted, using the segments transmitted.
Then, the first two processes are inverted to realize a
signal which 1is a <close approximation to the original.
Since no parameter extraction is 1involved and since the
coder 1is of the waveform type, the algorithm will be linear

and will exhibit graceful degradation with noise.

The technique for articulation rate changé and the
problems involved are discussed in Section II. 1In section
III, signal extrapolation techniques are discussed. Section
IV briefly summarizes the results of Callahan with the 2-D
AGC experiments. Problems which require further research

are highlighted in Section V.

\
L4
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II. Articulation Rate Change Techniques

Theory:

The speech signal is analysed into several bands in the
frequency domain using a Short-Time Fourier analyzer or a
Constant-Q analyzer. The instantaneous phase and center
frequency of each channel are both scaled by the same factor
and a time domain signal is synthesized from the resulting
channel signals. The process defined by these steps leads
to the scaling of the bandwidth of the synthesized signal by
a factor equal to that used to scale the phase and center
frequencies. To be wused as a bandwidth compression
technique, a scale factor less than unity should be used at
the sender and the reciprocal of that factor at the
receiver. Some of the fundamental limitations and other
problems associated with this approach to bandwidth scaling

are discussed below.

The procedure involves dividing a speech signal into
several bandpass signals using any of the analysis
techniques. The signal in the nth band, fn(t), can be
modeled as a simultaneously amplitude and angle modulated

wave (AAM) as below.

\ £(t) = q (t) Cos (wt +0,(t)

where:
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qn(t) is the magnitude signal in the nth channel.

$n(t) is the phase signal in the nth channel and W
is the <center frequency of the nth channel. The complete
signal, f(t) is given by

N-1
f(t) = ¢ fn(t) where N is the number of channels.
n=o
Kahn and Thomas [2] have studied the bandwidth

properties of such signals and they have derived the

following equation for the instantaneous bandwidth of the

AAM wave:
o e (£, (£)] ]2
foo Qq ¥ 2
no | (g (4)]]
where Qf is the second moment bandwidth of the signal 1in
n

the nth channel.

Qq is the second moment bandwidth of the magnitude
n

signal in the nth channel.

qn(t) is the magnitude signal in the nth channel.
¢n(t) is the derivative of the phase signal in the nth
channel. |

[{.l] is the norm of the vector in the function space.

Second moment bandwidth of a signal f(t) is defined as

_ £
£ |F

non-deterministic signals. It is clear from the &above

9/ . Ensemble averages are used for
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expression that scaling<%#t)1eads to scaling of the quantity

Qf . But the amount by which Qf is scaled depends on the
n n
relative energies in the magnitude and phase signals.

Linearity results only when Qq = 0, which in general is not
n
true. So, this non-linearity results in incorrect scaling

of the bandwidths of the channel signals which can 1lead to

frequency aliasing on bandwidth compression and
reverberation on expansion. This we will call the
"Kahn~-Thomas effect". Thus, it 1is not only necessary to

scale the phase signal but also scale the bandwidth of the
magnitude signal in each channel. The approach considered
in this research 1is to apply the bandwidth compression
process defined above recursively to each channel magnitude
signal. That is, each channel magnitude signal 1is further
analysed 1into subchannels, each subchannel consisting of a
magnitude and phase signal. Scaling the phase of the
subchannels leads to the scaling of the magnitude signals at
the next higher level. This idea can be <carried further
down by analyzing the subchannel magnitude signals further
into narrower channels and scaling the phase at this 1level.
Of course, the depth of recursion 1is 1limited by the
difficulty in the implementation of the analysis filters.

A fundamental 1limitation arises when this type of
béngwidth compression is attempted. The technique described
attempts to discard redundant information 1in speech, 1like
extra pitch periods. Since speech is only a

quasi-stationary signal, using a 1large scale factor it
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causes excessive loss of information 1in each assumed
stationary section of the signal. O©n subsequent expansion,
the lost information 1is not recovered. This type of
distortion 1is perceived as 1loss of voicing 1in voiced

sections of speech.

Implementation and Results:

Three different analysis techniques were used to
implement the rate change. 1In each case, the bandwidth of a
speech signal was compressed and re-expanded and the
resulting speech compared with the original. The three

schemes are described below.
(a) Using a Constant-Q Analyzer:

A Constant-Q filter bank was used in this scheme. A
Constant-Q analyzer has a frequency resolution which
decreases with increasing frequencies somewhat similar to
the resolution ©properties of the ear, whereas a short-time
Fourier analyzer has constant frequency resolution. The
distortions were severe for compression factors greater than
2. Also a signal dependent background noise was observed in
the processéd signal which can be attributed to the
Kahn-Thomas effect. Using the recursive approach described
on ‘the channel magnitude signals, with a recursion depth of
two, it was found that the signal dependent noise was
reduced but the distortions due to the fundamental

limitation noted above still prevailed.
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(b) Using a Filter Bank Made Up of Constant Bandwidth,

Sharp Cutoff Filters.

The overlap between adjacent channels was reduced by
using this type of filter bank. The basic quality of
processed speech remained as in case (a) except for reduced

background noise.
(c) Using a Short Time Fourier Analyzer

In this case a narrow band analysis system was wused,
and essentially similar quality results were obtained.
Application of the recursive procedure described earlier to

compensate for the Kahn-Thomas effect is under study.

The experiments suggest that this technique can be
used, without introducing serious degradation of the signal,

with compression factors less than 2.
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III. Analytic Continuation of Band Limited Signals

or Signal Extrapolation

An analytic signal can be recovered completely given
only a section of the signal. This problem can be
characterized as follows. Let Pa and Pb be two subspaces
of a parent Hilbert Space H. If the projection of a signal
fePb, on the subspace Pa is given, then wunder certain
conditions, it is possible to realize an inverse operator by
recursive techniques. With this operator, the signal £ can
be recovered from its projection. Papoulis and Gerchberg
[3] have independently proposed similar algorithms based on
the above formulation. They attempt to obtain the signal £
when Pa is the subspace of all signals band 1limited .to a
particular frequency and Pa is the subspace of all signals
time limited to a particular time interval. Youla [4] has
shown that these are special cases of a more general problem
of solving operator equations in Hilbert spaces and has
derived certain important conclusions. He shows that the
problems of Papoulis and Gerchberg are not well posed. He
shows and we have found that applying these algorithms to
noisy data leads to serious noise amplification problems.
Richard Frost [5] has modified the above to come up with a
new algorithm which performs the extrapolation by smell

\
alounts with each iteration and does not add back the
distortion energy at each step (Gerchberg's algorithm does
add Dback the distortion energy at each step). This makes

the algorithm stable in the presence of noise. He has
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applied it to the restoration of astronomical image deata and
proved that it has better convergence properties in the
presence of noise. Signal extrapolation is expected to be
harder in the case of speech signals as no assumptions can
be made about the sign of the signal being extrapolated.

(This is always non-negative in the case of images.)

In speech application, the algorithm is used to recover
the missing signal segment between two successive segments.
So, the problem can be characterized as follows: The signal
f Dbelongs to the subspace of band limited functions. Its
projections onto two mutually orthogonal subspaces are
given. These subspaces consist of functions limited over
two different intervals of time. The problem is then to
find the projection of f onto a third subspace of functions
which is orthogonal to both the given subspaces. The two
key issues to be addressed are the stability of
reconstruction in the presence of noise, and convergence
rate. Preliminary experiments with Cerchberg's algorithm
seem to indicate that the segments of the speech signal must
be wvery short (much less than a pitch period). Currently,
other algorithms based on Richard Frost's step by step
extrapolation and the three orthogonal subspaces formulation

derived above are under study.

\
®
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IV. 2-D AGC Techniques

Mike Callahan [1] has developed a AGC technique to be
applied in the short-time Fourier domain. Essentially, he
models the short-time Fourier Transform F(w,t) of a speech
signal f(t) as the product of an envelope function E(uw,t)
and a vibratory function V(w,t) and notes that E 1is slowly

varying and positive, and V is fast varying and complex.

Then,

log[F(w,t)]1 % loglE(w,t)| + loglV(w,t)| + j arglV(w,t)]
So, passing |log F(w,t)| through a high pass filter with a
low pass gain of p<l and then undoing the effect of the
logarithm leads to a Short-time Fourier transform giveﬁ by
EPv. The time signal synthesized from EPV is the original
signal with its dynamic range compressed. Callahan has
shown that this signal can be quantized with 2 to 3
bits/sample to achieve the same signal/quéntization noise

ratio as with ordinary 8-bit PCM techniques.

This technique can be applied to achieve reduced bit
rate requirements per sample of speech signal independent of
the techniqueé described 1in the previous sections which
attempt to reduce the effective sampling rate. Hence it may
be¢possib1e to use the compression ideas described in tandem

to achieve low bit rates.
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V. Future Work

In the area of articulation rate change, the effect of
recursive correction for the Kahn-Thomas effect, when using

Short-Time Fourier analysis, is to be studied.

Work needs to be done in the area of signal
extrapolation to study the performance of various existing
algorithms when applied to speech and develop modifications.
More research needs to be done to develop new algorithms to
suit the speech application. The application of existing
one step extrapolation procedures to speech reconstruction

is to be studied.

In all the cases, work is required to better condition
the problem in the presence of noise even at the cost of

imper fect, but acceptable, reconstruction of noise free

signals.
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