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We discuss qualitatively the importance of the correlation energy in determining the ground state of a 
metal with an impurity atom. For a single, partly occupied impurity i-state orbital, the correlation energy 
acts to prevent the appearance of a nonvanishing ground-state spin, so that this simple nondegenerate 
model actually has a complicated structure. In  one dimension, we show that this model of an impurity can 
never lead to a localized moment. In three dimensions, if we take linear combinations of Bloch functions 
transforming according to the irreducible representations of the point group of the impurity+crystal, we 
find that most of the new wave functions are entirely decoupled from the impurity, and only a small subset 
interacts with it. The noninteracting majority of states determine the Fermi level, which we therefore take 
to be fixed. The ground state of the band states interacting with the impurity states depends on the two-body 
Coulomb repulsion U, and we find that for sufficiently small U the ground state has an even number of 
electrons with total spin 5 = 0. As U is increased above a certain critical value, the ground state of the inter­
acting subsystem changes to an odd number of electrons, having total spin 5 = J, and a localized moment is 
said to exist. The introduction of orbital degeneracy for the impurity d state, and of Hund’s rule matrix 
elements, makes the localized moment much stabler. The results are obtained by a combination of exact 
energy-level ordering theorems and a Green’s-function calculation in the ^-matrix approximation.

I. INTRODUCTION AND THEOREMS work of the Hartree-Fock (HF) approximation.1-3 I t  is
HE conditions under which a localized magnetic we^ known that in metals the HF approximation over­

moment is associated with a solute atom in a estimates the strength of the effective exchange inter­
action through the neglect of correlations between elec­
trons of opposite spin orientations (i.e., the “correlation 
hole”). As a result, the HF theory of ferromagnetism

dilute alloy have been investigated within the frame-
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in the transition metals is qualitatively in error, as dis­
cussed most recently by Kanamori.4 The question arises 
whether a similar error occurs in the present localized- 
moment problem. The theory discussed below shows 
that a t least under certain circumstances this is the 
case. Specifically, we shall see that a well-known simpli­
fied model of an impurity, for which a magnetic moment 
had been calculated to exist for sufficiently strong 
Coulomb repulsion among the electrons, does not exhibit 
a moment when a more accurate calculation is per­
formed. One may then well wonder what would be a 
satisfactory model of a magnetic impurity in a non­
magnetic host metal, such as a manganese atom in 
copper. First, we may discard the effects of the electro­
static potential of the impurity on the conduction elec­
trons, as these are the same for electrons of spin “up” 
as for spin “down.” On the other hand, the electron- 
transfer matrix elements (whereby the conduction elec­
trons of the host metal can hop in and out of the local­
ized, partly occupied orbital states of the impurity) 
and the Heisenberg exchange forces (in particular, the 
so-called s-d exchange interaction) do both provide 
mechanisms whereby the conduction electrons can have 
their spins polarized by the spin of the impurity. But 
for practical purposes these mechanisms will be useless 
if the impurity does not possess a net spin in the first 
place, so we must first ask when a net spin is energetically 
favorable.

A single hydrogen atom has a single electron, hence 
a magnetic moment of one Bohr magneton. If it is dis­
solved in a metal one of three things may happen: (a) 
The electron may ionize, or (b) at the opposite extreme, 
a second electron may become bound to the proton, 
depending on the position of the Fermi level, the di­
electric constant, etc. Both of these cases, H+ and H~, 
are nonmagnetic, (c) The third possibility is that the 
impurity remains in the chemical state H° because the 
Fermi level, dielectric constant, etc., of the host metal 
permit the proton to retain its electron, but the electron- 
electron Coulomb repulsion keeps a second electron 
away. Case (c) is the magnetic prototype stressed by 
Anderson,2 except that he found it physically more 
meaningful to discuss a tightly bound orbital, such as a 
partly occupied d orbital of one of the transition ele­
ments, instead of a hydrogen orbital.

Another possible model of magnetic impurities, briefly 
discussed by Anderson in the Appendix to his paper,2 
has two or more degenerate, localized d orbitals on the 
impurity with a significant probability that these levels 
will be occupied by two or more electrons (or holes) in 
the ground state. Then, according to Hund’s rules, the 
state of maximum multiplicity will lie lowest and there 
will be a net spin of two or more Bohr magnetons. I t  is 
possible that nickel and chromium, which normally 
sustain a magnetic moment not exceeding one Bohr 
magneton, are examples of the first species, whereas

4J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 275 (1963).

iron, manganese, and the rare earths are examples of 
the stabler Hund’s-rule-type impurities. Whether there 
exist two types of magnetic impurities is a question that 
has not yet been well answered, and which is outside 
the scope of the present analysis. The question to which 
we address ourselves, here is more modest, viz.,

What are the properties of the hypothetical single 
d-orbital impurity? Is it always magnetic if the Coulomb 
repulsion is sufficiently strong? Can we describe para­
magnetic impurities, such as manganese in copper, by 
such a simplified model? These questions have already 
a definite answer in the Hartree-Fock theories,2'3 but we 
shall find that as soon as the correlation energy is 
included this answer must be considerably modified. 
The Hartree-Fock theory, as usual, greatly exaggerates 
the magnetic state and also misses some of the struc­
ture of the ground state.

For example, we shall find that for a chain of 2 or 
more atoms, with the magnetic impurity at one end, it is 
possible to prove that the ground state has total spin 
S = 0. What this signifies is that even if there is one Bohr 
magneton on the impurity, say of spin “up,” the correla­
tion energy favors having a spin “down” near this 
impurity and to exchange them so as to form a singlet 
state of total-spin zero. As this state lies below a local­
ized doublet or triplet state by a finite energy, it will be 
impossible to measure the localized moment on the 
impurity: an electron which is part of a singlet state has 
a spin, all components of which average out to zero, 
and which therefore cannot be measured by a static 
magnetic field, nuclear hyperfine splitting, or any other 
method. The hydrogen molecule is a good example.

To be quite specific now, we study the “extra 
orbital” model of Anderson.2 In this model one con­
siders band states of momentum k which are the Bloch 
functions of the pure metal and a solitary added local­
ized orbital labeled d. The band states and the localized 
orbital are assumed to be mixed by a one-body potential 
V. All two-body (Coulomb) interactions are neglected 
except those between opposite-spin electrons occupying 
the localized orbital. Thus, the Hamiltonian of the model 
is

3C =]C  6d^<is+2 ] ( ^ M ci:,»+Cds+H.C.)
ks $ ks

~\~Und,+nd,— . ( 1.1)

Here, ek and nk:s — ck,s+ck,s are the energy and number 
operator for the band state of momentum k and spin s, 
ed and nd,e=Cd,s+Cd,s are the energy and number oper­
ator for the localized d state, Vkd is the matrix element 
mixing the band and localized-orbital states, and U is 
the Coulomb matrix element between opposite-spin d 
states. The Fermi operators cks+ and cd>+ create elec­
trons in the band state k and localized orbital d state, 
respectively, with azimuthal spin quantum number 
■s =  ± 5 . Note that ek, e<j, U, and N V m2 are all of the 
order of 1, in a suitable system of units.
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In order to make plausible the nonmagnetic character 
of this Hamiltonian, which is what we want to show, we 
shall first consider a linear chain in which Anderson’s 
impurity atoms are added at either—or both—ends of 
the chain. We shall then prove a theorem (1.8) that the 
ground state of this chain belongs to total spin 5 = 0 , 
and is nondegenerate with the lowest state of total spin 
S =  1 or higher. Anderson’s impurity is thus markedly 
unlike an atom of manganese; for if we put a manganese 
atom at the end of a chain of copper atoms we may 
properly expect it (and the chain) to have a net spin 
just as when we imbed it in a three-dimensional solid, 
in contrast to the situation we now analyze.

First consider the case when the impurity is at the 
farther end of a chain of n atoms. In terms of localized 
Wannier operators, the Hamiltonian takes the form 
(assuming only nearest-neighbor overlap)

n—1
tJCi”  € H .C .) +  €d

i =l  s = 4 - «

u
- 7 S ( c , , * c < , , + E c . ) + - E  nd,s)2. (1.2)

8 2 s

Note that e, ed, U, and V are all of the order of 1. Some 
discussion may be useful: We have assumed that e and
V are real and positive, for if they are otherwise, only a 
trivial phase change is required to make them so. 
We have also included such additional one-body terms 
as | U(nd,s)2= iU nd,s, to complete the square in the 
interaction terms and make it clear that the interaction 
is of the electrostatic, spin-independent type (unlike 
exchange). As for the Bloch energies which appear in 
(1.1), they are here given by

€k= — 2ecos£, (1.3)

so that the parameter e is one-half the bandwidth. The 
anticommuting Fermion operators c and c* will now be 
transformed to Pauli-type operators b and b* by means 
of the following rules5'6:

&i,_=exp{tV X  Wj 
i<i

Z>i,+=exp{«r £  £  «i,+}c*,+
t< n-f-1 j<l

(1.4)

Here we have relabeled Cd,s as cn+1 .» for convenience. 
The operators b* are obtained from the above by 
Hermitian conjugation. As for the occupation-number 
operators, they are clearly the same in the b and c 
languages:

nitS— bilS*bilS (1.5)

therefore, the transformation (1.4) is easily inverted to 
give the c’s as functions of the b’s. Two Vs with different

6 D. Mattis, Theory of Magnetism (Harper and Row, New York,
1965), Chaps. 4 and 7.

6 E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962), Appendix.

indices commute with one another (regardless of whether 
one or both are *), but for equal subscripts the rules are

Z-C2=  (&«*)2=  0 , b *b a+ bj>a*= i ,  (1.6)
just as for fermions or Pauli spin matrices. Because the 
b’s all commute, the various configurations can be speci­
fied merely by specifying which states are occupied and 
which are not. The order in which the b’s appear is im­
material, and the sign of each configuration making up 
the Hilbert space can unambiguously be taken to be 
positive. Substitution for the c’s in the Hamiltonian 
now yields

71— 1

3 £ i—— e td  ]Cs ^n+ i,8
i=i

V (bn,s*bn-{-lt8 +H .c . ) + W ( E s n n+Uey ,  (1.7)

an expression involving the commuting operators only. 
A straightforward application of the method of proof 
of Ref. 6 leads to the following inequality: Defining 
Eo(S) to be the lowest energy eigenvalue belonging to 
total spin S, we have

£ o (S )£ o (^  +  l) . (1-8)
The same inequality can also be proved if we add a 
second impurity atom at the other end of the chain, 
merely by labeling the new rf-state operators c_ilS and 
c-i,s* and the new band-state operators co,s and co,«*, 
so that the ordering sequence (1.4) can be used without 
modification. The Hamiltonian for this case then reads

50.2— — e £  X ( ^ » ,» * ^ i .« + H .c .) + e i  X )(w- i , s + w»+i,s)
i= 0  8 s

-  V X s (b - i , s * b o ,s + H .c .+ b n,* b n+1,s+-EL.c.)

+  5^11 CCs n- l,s)2+  ( £ s  M>t+l,s)23 ! (1*9)

and the method of proof leading to the inequality (1.8) 
can be used also without modification, so that the addi­
tion of a second impurity changes nothing, p t  might be 
argued that if we added some electrostatic repulsions 
among the conduction-band electrons the situation 
might be changed, but this argument may also be dis­
posed of. For if we add to the above an arbitrary' inter­
action Hamiltonian

3C' = E  Vitj( E  Wi,s)(E  , (1.10)
i , j  s s '

the inequality above may be proved again without 
modification.J Without repeating the proof in Ref. 6, we 
may briefly note that the “kinetic-energy” operators 
involving e and V are the nondiagonal operators in the 
present representation, and because of their negative 
signs one may invoke variational arguments to prove 
that the various configurations must enter into the 
ground state all with the same sign, regardless of the 
magnitude of U. The nonmagnetic character of the inter-
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acting system is thus caused by the desire of the elec­
trons to minimize the kinetic energy just as is the case 
for noninteracting electrons; this they must do by cor­
relations beyond the HF theory. We may also ask how 
much energy it would cost to magnetize the impurity,
i.e., to create a doublet or triplet state in the vicinity 
of the impurity atom. This is different from £ 0(l)--Eo(0) 
which is an energy of the order of 1 / N ,  and which is the 
excitation energy for a state in which two Bohr magne­
tons are more or less uniformly distributed throughout 
the chain, so that the spin on the impurity is also of the 
order of 1 / N .  To achieve a spin of the order of 1 in the 
vicinity of the impurity, it is easy to see (variationally) 
that one must in effect break the bond n  —> (n — 1) or 
n —» (w +1), and so the energy required will be ~ e  or 
~  V, whichever is smaller. Both these energies are of the 
order of 1, and therefore the nonmagnetic state of the 
impurity lies below the localized magnetic states by a 
f inite amount.

If the impurity is in the exact center of the chain, 
half the Bloch waves (those corresponding to the sin£x 
functions) will have a node at the impurity and so will 
not interact with it. Similarly for an impurity in the 
center of a three-dimensional crystal, only the functions 
which have the full point symmetry of the impurity 
+ crystal will have a nonvanishing amplitude at the 
site of the impurity, and there are only ~iV1/3 such 
functions out of a total of N.  Thus in general, there are 
two sets of band states: those which interact with the 
impurity and those which do not, the latter fixing the 
Fermi level at some value cf- By a simple extension of 
the method of proof given above, we can prove (1.8) for 
interacting subsystem in three dimensions as well as in 
one, as discussed in the Appendix. Thus we find, now 
without restriction as to the number of dimensions,

£ 0(O) <jE0(1) <jEo(2) <etc. (1.11a)
or

£ 0(l/2) < £ 0(3/2) < £ 0(5/2) <etc. (1.11b)

for the interacting subsystem. The actual values of e, 
V, U,  Ei-, and u  will determine whether the number of 
electrons in the ground state of the interacting subset 
is even as in (a) above or odd as in (b) and so whether, 
associated with the impurity, we find one Bohr magneton 
or not.

In no case can the ground state of the interacting 
subset belong to spin S >  1, i.e., have two or more Bohr 
magnetons, so we see that this sort of impurity has a 
very tenuous sort of magnetism indeed.

In  calculating the ground-state energy of the im- 
purity+m etal we shall now adopt an approach based 
on the many-body methods of quantum field theory, 
the Green’s function formalism, which is well adapted 
to the study of the impurity problem, and which was 
also used in the HF analyses. We shall calculate the 
zero-temperature susceptibility x(0) of the system as a 
function of the system parameters. If, as we change these

parameters, a localized moment begins to appear, i.e., 
ground state goes from (a) to (b) above), x(0) will be­
come singular. [This follows since if a localized d-mo- 
ment exists, x ( T )  for the impurity-[-interacting band 
states will exhibit a Curie law varying as so that 
x(0)= oo.] To calculate this we add to 3C the Zeeman 
term

5 C -z= B J^8 s(nd3-jrY lknks) y ( 1 .12 )

where B =n ^h  is the Zeeman energy of an up-spin elec­
tron in the externally applied magnetic field h and is 
the Bohr magneton. The susceptibility is given by

X = 2 v p 2 ( d / d B ) { n d + + Y lk o (1-13)
with the expectation value taken with respect to the 
ground state of 3C+3Cz- Clearly it is sufficient to study 
X<i= 2fx/j2 (<3 (nd+) / d B )  to determine the existence of a 
localized moment. If this quantity is finite, the ground 
state can only belong to 5 = 0 . If it is infinite, the ground 
state of the impurity system has captured one Bohr 
magneton, two or more Bohr magnetons being excluded 
by (1.11). Indeed, Xd, the susceptibility of the d  orbital, 
is more suitable for study than x, the total susceptibility, 
because in this way we avoid mixing in questions of the 
Pauli-spin susceptibility of the whole material, and of 
whether the total number of electrons is even or odd. X<j 
is a reasonable fraction of x> and when either is finite or 
infinite, so is the other.

II. ONE-PARTICLE GREEN’S FUNCTION

To treat correlation effects it is convenient to study 
the one-particle Green’s function for the localized 
orbital:

Gs( t ) = - i ( T { c ds(t)cd +(  0)}), (2.1a)

defined in the presence of the externally applied mag­
netic field, where

c t.  (0  =  e ^ + K z )  tCds (o)e-i(Je+3Cz)<. (2 . ib )

To simplify the dynamics of the problem we eliminate 
the band states from the problem by defining the zero- 
order Green’s function

Go.(#= -*< r{cd.»>(Oci.(»+(0)})0, (2.2a)

where the time development of the operators is deter­
mined by

cd.00 (0  =  ei3C» W 0> (0)e-i3Co( (2.2b)

with 3Co the Hamiltonian for noninteracting particles:

3C0=3C,+3Cz - U n d+ni -  (2.2c)

and { )0 represents the expectation value in the ground 
state of 3Co I t  is readily seen that the Fourier transform 
G0,(0 is given by

Gos(to) =  [to—6ds—^(co)]-1 , (2.3a)
where

a s= t i+ sB , tks=tk+sB  (2.3b)
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and

2/4
G+Uu)

F i g . 1. Diagrammatic repre­
sentation of Xd.

I V ki\ (  “  \
S. (u)  =  ' E ------------------- , (5 = 0+ sgnco =  —  ),

* a —  6 4 s + j 5 s g n a )  \  I CO [ /
(2.3c)

all energies being measured relative to the Fermi energy. 
As in Anderson’s analysis2 we neglect the real part of the 
one-body self-energy S(w)  since this is expected pri­
marily to lead to a level shift which can be absorbed 
into the definition of a -  Thus, Go* reduces to

where

Gs(co) =  [co— ids—Ss(co)+ir sgnco]] (2.5)

we find
d d r dw

X-d= 2;U|32— (»d+) =  2/i^2—  —-G+  (co) 
dB dB J 2iri

- 2 r f f  G+2(co)(l+
J —Oft '

dZ+\dcx>

dB /  2iri
(2.6)

where signifies that the contour along the real axis 
(— o o , oo) is to be closed in the upper half-plane and the 
limit B  —> 0 is understood.

I t  is convenient to define the vertex function As(co) 
by the Ward-like relation

so that
A„(£d)= l +  jdZ,(w)/c).B|JB-o,

doi
Xd=2jx$2 j

J —c 2 iri
t-2(")A+(co).

(2.7)

(2 .8)

The diagrammatic representation of (2.8) is shown in 
Fig. 1.

III. THE VERTEX FUNCTION

To determine the vertex function A,(&>), we construct 
an integral equation for 2„(co). Before proceeding to the 
correlation effects we wish to discuss, we will retrieve 
Anderson’s result by noting that within the HF ap­
proximation 2 ,HF(co) is given by

f  do/
2  ,HP(«) =  £M — G _sHF(co') 

J r s  2 iri
(3.1)

G0s(co) =  Qo— e<is+ i r  sgnco]-1 , (2.4a) 

r  =  7TiV(0)|FM|Av2. (2.4b)

We have assumed that the density of band states N  (co) 
varies slowly over a level width F about the Fermi 
surface and we have replaced Ar(o>) by N(Cf).

If we formally carry out a perturbation expansion of 
G„(aj) in powers of the perturbations V  and U,  it is 
seen that by using propagators Go, we automatically 
include to all orders the one-body mixing potential V.  
Furthermore, since the Coulomb interaction Und+nd-  
does not involve band states, the band states are thereby 
eliminated from the problem of determining Gs(w). 
Thus, the perturbation series for Gs involves frequency 
but not momentum integrations, a major simplification 
over the corresponding problem in the many-body band 
theory of ferromagnetism. I t  is clear that the diagram- 
matics for determining Gs with the propagators Gos are 
the familiar rules of many-body theory with a 2-body 
interaction U  except for the absence of momentum in­
dices and momentum sums.

By introducing the proper self-energy 2„(a>) through 
Dyson’s equation

as shown in Fig. 2. Since the right-hand side of (3.1) is 
independent of co, 2 HF is a real constant. From Dyson’s 
equation (2.5) and from (3.1) one immediately finds

SsH i'= (/7 A )co t-i[(e<i_s+ S _ sHF) / r ] .  (3.2a)

This is identical to Anderson’s result if one uses the fact 
that

2 sHF=t/<«i,_s>HF. (3.2b)

To find the conditions under which a localized mo­
ment begins to appear in the HF approximation, suppose 
we are in a range of parameters ed, T, and V  (for B  =  0) 
such that there exists no localized moment, i.e., 
S+ |B=0= S _ |B„0. To determine A5h f (co), we differentiate 
(3.2a) with respect to B  and find

3 2 ,HF
Ash f = 1 + 5------- = 1 + U -

dB

r  /  tt

(ed_s+ S _ sHF)2+ r 2 

d Z -HF
X  1

dB
(3.3)

Here, as before, the limit B  —> 0 is understood. Using the 
fact that when there is no localized moment in the 
absence of B

32^d2 s

dB dB

it follows from (3.3) that

ASHF= [1 -E M (0 )] -1.

(3.4)

(3.5a)

Here A  (0) is the spectral weight function of Gs with B =  0 
evaluated at the Fermi level

A  (0) =  i r 11 ImGHF (0) |
=  (r/ir)[(«d+ S HF)2+ r 2] - 1. (3.5b)

One can interpret A  («) as the density of states in energy 
of the virtual d  level. Notice that As (and hence x) is 
singular as TJ A  (0) approaches unity. Thus, the Hartree-

Z g to i.- f -o
F i g . 2. Hartree-Fock 

self-energy.
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LOW DENSITŶ
approximationI

LOW DENSITY 
VTON

NON-MAGNETIC
0.2 Q4 0.6 0.8

_U_
•nT

ZL4(0)>1, (HF criterion). (3.6)

.(« ) - I
d J  
— 4 

■ 2ir i
-̂ (co-|-co/)G_s(co/) ,

where the t matrix satisfies

' /
dx

This approximation for 2 , is shown in Fig. 4. From 
(3.9) we find

*M = [V [1+ Z 7<*«], (3.10)
where

/ dx
— -G+(x+ v )G ^(—x) .  (3.11)
2 iri

By differentiating (3.8) with respect to B,  we find

F ig . 3. Regions of validity of low-density theory. H F theory 
predicts magnetism in shaded and cross-hatched areas.

Fock approximation predicts that a localized moment 
occurs when

d2 s(co)

dB
t (cO-f-GJ/)GV)(h -

32  , (u ' ) \ du '
■ -

dB J 2wi
(3.12)

where we have used Eq. (3.4) and the relations 

dt{ y)
=  0 ,

I t  is interesting to note that this result is identical in 
form to the HF band theory of ferromagnetism in 
metals with a short range potential U,  namely, the HF 
theory predicts that a metal will become ferromagnetic 
when

U N (  0 )>  1, (3.7)

where V  is the matrix element of the two-body Coulomb 
repulsion potential between Bloch states near the Fermi 
surface and N ( 0) is the density of states at the Fermi 
surface. Since (3.7) overestimates the role of exchange in 
the band problem it is not surprising that (3.6) over­
estimates the polarization tendency of the impurity.

In order to make progress in including correlation 
effects, in the integral equation for 2 s(a>) we restrict 
the discussion to those regions of ed, T, U  space in which 
the average number of electrons (or holes) in the d  
orbital is small compared to unity. This simplification 
corresponds in a Fermi-gas problem to working with a 
low-density gas with short-range forces. This is a definite 
limitation, but one which allows us to verify the 
Hartree-Fock theory in a region where the latter defi­
nitely predicts the occurrence of a localized moment. 
This is illustrated in Fig. 3. The low-density approxima­
tion may be presumed valid in the range (wd)<;0.3 or 
1 — (nd) S  0-3, in which range we know that the particle- 
particle (hole-hole) i-matrix graphs dominate the sum­
mation7 to each order in U. Within this approximation, 
2 s(a>) is given by

dB

G_.(«) =  G.(«) =  G(«),

(3.13a)

(3.13b)

(3.8)

which hold for B  —»■ 0 in the case considered here, i.e., 
with no actual localized moment being present in the 
absence of B.

We now determine under what conditions x - ^ 00 as 
we vary the system parameters. The singular behavior 
of x arises from a singular solution to (3.12) as in the 
corresponding Hartree-Fock case, (3.3) and (3.5). 
Equivalently, X will be singular if the homogeneous 
integral equation

f  do)'
/(« ) =  -  t (w+coO G2 (« ')/(« ')— : (3.14)

J 2  iri

has a solution. In principle, both G and t should be 
determined self-consistently by solving (3.8) and (3.9). 
In the absence of the detailed solutions of these equa­
tions we can make a reasonable estimate of the correla­
tion effects as follows. The main effect of S in determin­
ing G and t is to shift the virtual level relative to the 
Fermi surface. The level width r  due to the one-particle 
potential should primarily determine the form of the 
spectral weight function A(w) .  Thus, we assume that 
the spectral weight is adequately represented by the 
Lorentzian function A (w) :

A  (oj) =  7r_1|ImG(aj) | =  (r/x)[(co— e)2+ r 2] -1, (3.15)

where e, rather than ea, is now considered to be a param­
eter of the theory, i.e., the parameters are e, T, and U. 
With this approximation in (3.11), the real and imagi-

t ( v ) = U + i U  — G+ ( x + v ) G - . ( - x ) t ( v ) .  (3.9) 
2tt

7 V. M. Galitskii, Zh. Eksperim. i Teor. Fiz. 34, 151 (1958) 
[^English transl.: Soviet Phys.—JE T P  7, 104 (1958) j .

F ig . 4. Low-den- 
sity approximation 
of the self-energy. z s =

o
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nary parts of <j>(v) are given by

- 1
4>i=-

tt (co-2e)2+(2r); 
2(co-2e)2+(2r)2

+ ---------------------r(o-2e)

1 2T

/ ( e —co)2+ r 2\  

\  e2+ r 2 /e2+ r 2 

4r
■ tan-1—|--------- -

T (co— 2e)
tan

4> 2— ( e 6—o
tan~*—  tan-1-----

. , . , . r  r
+ - ■In

■(£-a>)2+r2- 
. e2+ r2 _

r J
(3.16a)

(3.16b)

Here co>0 and 4>(u < 0 )  =  4>*(ca>Q).
As in Kanamori’s treatment of correlation effects in 

3-d band metals, we expected the dominant contribution 
to the magnetization criterion to come from states near 
the Fermi surface, i.e., o>~co'~0.

If /(co+w') were the difference between the Landau 
Fermi liquid functions / +_(o>,o/) ~ f + + ( w !<*>') for anti­
parallel and parallel spin electrons in the virtual d  state, 
it would be clear that only states w and « ' in the im­
mediate vicinity of the Fermi energy could enter the 
instability criterion. This is, in fact, the case within the 
Hartree-Fock approximation, where

u =  f+~—f++.

When correlations are included, t plays the role of the 
“irreducible particle-hole interaction” T(I) in the nota­
tion of Abrikosov, Gorkov, and Dzyaloshinski,8 rather 
than r(">, the limit of the full particle-hole vertex func­
tion which determines the Landau parameters f ss>. I t  
appears that r (1) is a good approximation for r (u) in the 
low-density limit, a question which we are currently 
investigating. Thus as a rough approximation we have 
the criterion for the existence of a localized moment,

U e{lA ( 0 ) > l ,  (3.17)

where the effective potential U ett is given by

U

1+  (U/ i r t )  tan-Ke/T)
(3.18)

tion (3.17) we see that a localized moment does not 
occur even as U  —■>«> in the limit where the number of 
electrons (or holes) occupying the virtual level is small 
compared to unity, in contrast to the Hartree-Fock 
result. This shows that the energy of the system is a 
local minimum at zero magnetic moment. The question 
naturally arises whether there might not be a secondary 
minimum with increasing moment, a minimum which 
might even lie lower than the energy at M  =  0. Kjolle- 
strom, Scalapino, and Schrieffer9 have recently shown 
that the low-density theory does not allow any such 
subsidiary minimum and that within the limitations of 
this theory, the ground state definitely belongs to zero 
moment.

IV. DEGENERATE ORBITALS

One can carry out a similar analysis for 91 degenerate 
d  orbitals, 31 being of order 2 or 3 for real d  orbitals with 
crystal field splitting, but as large as 7 for rare earths. 
Again we take Anderson’s model with the two-body 
interaction

3C' =  X) Z) Uijnurij,
i<i  «,s'

" /C  E  Ii0 isH jg  ,

i <  3 s
(4.1)

where
U i: V ,

J  i y * j  
U  i = j

(*,.7=1,2, •••, 31). (4.2)

The criterion for magnetism corresponding to (3.17) 
becomes

• 91(7 (91—1) ([/—/ ) '  

.1+U<j> 1 +(JJ-J)<t> .
U (0 )> 1 , (4.3)

where
0 =  (1/VE) tan-^CE/T). (4.4)

For 91= 1, we retrieve (3.17), while for / « £ /  one finds 

r  U  (31— 1) / 1

Ll+U<f>
A ( 0)2i l ,

( l + W J

where the Hartree-Fock theory gives

[ Z 7 + ( 3 l - l ) / ] 4 ( 0 ) ^ l .

(4.5)

Now Z7eff increases monotonically as U  varies from 
0 — so that

U eit <  U e!f = tr e/tan- 1 (e/T). (3.19)

Therefore we have the inequalities

U ettA ( 0 ) < x /  (1+*2) tan- 1a:< 1, (x =  e /T ). (3.20)

When (3.20) is combined with the magnetization condi-

8 A. A. Abrikosov, L. P . Gorkov, and I. E. Dzyaloshinski, 
Methods of Quantum Field Theory in Statistical Physics (Prentice- 
Hall, Inc., Englewood Cliffs, New Jersey, 1963).

(4-6)

The magnetism of degenerate impurities arises from 
the fact that if two or more electrons are constrained to 
remain on the impurity atom, the exchange splitting J  
will favor their parallel alignment over some other 
spin arrangement. Even if the low-density theory is 
inapplicable and the formulas above become quantita­
tively wrong, this physical reason for the magnetization 
(of such impurities as manganese in copper) must be 
correct. [This is of course quite distinct from the mag­
netization of the nondegenerate orbital discussed in the

9 B. Kjollerstrom, D. J. Scalapino, and J. R. Schrieffer (private 
communication).
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preceding sections, which owes its magnetism—which 
surely occurs only in the high-density ]imit(«ds)>0.3— 
to the almost accidental fact that a single electron has a 
magnetic moment. J Anyhow, it is noteworthy that in 
the case of degenerate orbitals, we find that magnetism 
is possible even in the low-density limit.

V. CONCLUSION

Physically, it is suggestive that nickel, which has a 
fraction of a hole to be shared among its d  orbitals, 
rarely exhibits a paramagnetic moment in a nonmagnetic 
host metal, whereas iron, manganese and the rare earths, 
with a considerable fraction of the localized orbitals 
occupied, manage to maintain their moments quite 
constant in a wide range of materials. This is surely 
no accident, but is indicative of what the properties of a 
correct solution of Schrodinger’s equation should reveal.

Mathematically, we found that the nondegenerate 
orbital is never magnetic if it is on the last atom of a 
chain molecule, and most likely it is also nonmagnetic 
on any other site of the chain molecule. The reason is 
that in one dimension an attractive potential is always 
capable of binding, and we visualize the one-dimensional 
situation as the impurities’ electron, say of spin up, 
binding to its immediate vicinity a conduction-band 
polarization of spin down, which exchange and combine 
to give a nonmagnetic singlet ground state. To produce 
a net localized moment, we have argued that an energy 
0 (1) is required, and this lack of magnetism is therefore 
a stable feature. In  three dimensions an attractive 
potential does not always have a bound state. As a 
consequence, the spin up is not necessarily able to 
“capture” a spin down in its vicinity, and may give up 
this electron to the vast majority of band states which 
do not connect to the impurity. This occurs in what we 
have called the “high-density limit,” i.e., the number of 
electrons on the spin-up d  orbital is ~  1, and is correctly 
predicted by the HF theory. In the low-density limit 
the HF theory still predicts a net moment over a range 
of parameters, but we have given arguments that this 
is incorrect. The “binding,” and the correlations which 
we have found, are outside the framework of the earlier 
theories, and it is therefore not surprising to find a 
result which is different.

In addition, we have found that magnetism is possible 
even in the low-density limit, provided there are degenerate

orbitals to be occupied. This serves to explain qualita­
tively why magnetism is almost never observed except 
in situations where orbital degeneracy plays an im­
portant role, and it points out that crystal field effects—• 
which tend to lower the orbital degeneracies—will be 
important even in metals.
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APPENDIX

By choosing linear combinations of band functions 
adapted to the point group symmetry of the impurity 
+  crystal, we can in many cases decouple the vast 
majority of band states which have vanishing amplitude 
at the site of the impurity, and which do not interact 
with it except as a “reservoir” of electrons which main­
tain the Fermi level fixed. I t  is possible to illustrate this 
simply, by making a few plausible approximations, 
e.g., by appropriate special choices of et and Vkd-

We replace the Brillouin zone by an equivalent sphere,
i.e., we will assume that the Bloch energies e* are given
by , ,tj;= —2e cos| £ | a  (Al)

and that likewise V u  depends only on the magnitude 
of the wavevector |/e[. This quantity can assume An/3 
closely spaced values ranging from 0 to ir/a. By Fourier 
transforming all the operators in (1.1), the Wannier 
operators now referring to spherical shells at distances 
R  from the origin, we may obtain precisely (1.2) in the 
Wannier representation. The n\h  Wannier operator 
refers to the s-wave component of a spherical shell at 
R n= n a ,  and the impurity is a t the origin. The in­
equality (1.8) is then provable as before, except that 
the number of electrons in the one-dimensional manifold 
is not fixed a priori  although the Fermi level is. We 
therefore do not know if there are an even number of 
electrons and the ground state belongs to 5 = 0 , or if 
the number is odd and 5 = J ; however, when V  —» 0 
the number is clearly even and at U  —>=o it is clearly 
odd, therefore we know there occurs this level crossing 
at some intermediate “critical” value. These arguments 
serve also to establish Eqs. (1.11).


