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ABSTRACT 

 

 The Florida (FL) peninsula has the most frequent occurrence of warm-season 

thunderstorms in the US, with the majority of this convection initiated by the sea breeze 

(SB) circulation. Previous numerical studies of FL SB convection have emphasized either 

large mesoscale grid scales (tens of kilometers or greater) or much smaller large-eddy 

simulation (LES) grid scales (less than a hundred meters). Few studies have been 

conducted in the numerical gray-zone scale (e.g., 1-5 km). In this thesis, numerical 

simulations of a convective FL SB case study are conducted using an advanced research 

version of the Weather Research and Forecasting (WRF) model with gray-zone grid 

spacing and 40 different simulation configurations. Simulations are evaluated against 

surface observations and analysis data to determine the accuracy of the model-simulated 

SB convective initiation (CI). The dependence of the SB and its associated convection on 

variations in physics parameterizations, initial conditions (ICs), stochastic perturbations, 

and grid scale spacing is also evaluated.  

 Results indicate that the WRF model can realistically reproduce the SB CI. 

However, large sensitivities of simulations to boundary layer parameterizations, ICs, grid 

scale, and stochastic perturbations of potential temperature and wind tendency fields are 

found in predicting the timing and intensity of the SB and its associated convective 

systems. Further analysis indicates that the specific representation of atmospheric 

variables (e.g., sensible surface heating, synoptic winds, and low-level convergence) and 



iv 

geophysical features (e.g., coastline shape and lake resolution) within the simulations are 

important for the accurate representation of the timing, location, and intensity of the SB 

and its associated convection. 
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CHAPTER 1 

 

INTRODUCTION 

 

In the United States, central Florida (FL) has the highest annual number of days 

with convective rainstorms (Williams et al. 1992). In the summertime, it experiences an 

almost daily occurrence of thunderstorms. Hazards of thunderstorms include strong 

surface winds (which can result in low-level wind shear and extreme turbulence), heavy 

rain (which can cause localized flooding and impact visibility), lightning, hail, and 

reduced visibility and ceilings. These hazards lead to impacts on local transportation, the 

economy (e.g., tourism), and restrict flight and ground operations at airports and military 

installations. There are over 100 public use airports, 2 spaceports, and 12 aviation-related 

military installations located across the FL peninsula (Figure 1.1), whose ground, 

maintenance, and flight operations are severely restricted by the onset of thunderstorms. 

These summertime convective events often develop and move quickly, are relatively 

short-lived, and can occur over small distances, making them one of the primary 

forecasting challenges for meteorologists in this region (Watson and Zavodsky 2015). 

The summer maximum in FL thunderstorms is primarily linked to the initiation and 

propagation of the sea breeze (Byers and Rodebush 1948). 

A sea breeze (SB) is a local mesoscale circulation generated when a large 

temperature gradient between the warmer land surface and the cooler ocean surface 
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creates boundary layer pressure differences, which in turn, leads to a diurnal system of 

breezes that propagate inland (Abbs and Physick 1992). Consider a coastline with a 

uniform temperature field across both land and water. After sunrise, the water will heat 

much slower than the land surface due to its higher heat capacity and its ability to transfer 

heat downward from the ocean surface to much lower depths through turbulent mixing. 

Once the land surface has heated significantly over the water surface, the initiation of the 

SB will begin. According to Walsh (1974), at least a 3°C land-sea temperature difference 

is needed to initiate the SB. The energy from the sensible heating of the land surface is 

distributed upward by mixing, leading to a thermal expansion of the air and an increase of 

pressure aloft, but a decrease in air pressure directly over the land surface, relative to that 

over water. This change in pressure produces the sea breeze circulation (SBC): an 

outflow of air from the near-coastal ocean areas to the land at the surface called the sea 

breeze gravity current (SBG), leading to convergence of rising air currents inland at the 

edge of the SBG called the sea breeze front (SBF), a much weaker return current (RC) 

above the SBG flowing from the land to ocean, leading to divergence of sinking currents 

several kilometers out to sea (Miller et al. 2003).  

Due to its diurnal nature, the SB strength reaches a maximum an hour or two after 

the largest temperature gradient between the land and sea is reached (i.e., early afternoon) 

and then slowly declines before dissipating in the evening, usually several hours after 

sunset (Haurwitz 1947). Following the loss of surface heating at sunset, the land cools 

more rapidly than the water and the process reverses itself with the formation of the 

weaker land breeze circulation at night. The strength of the SBCs are proportional to the 

magnitude of the land-sea temperature gradients, with observational and modeling studies 
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indicating that the average depth of the SB ranges from 200 to 1,400 m, while the inland 

penetration of the SB usually ranges from 40 to 150 km (Abbs and Physick 1992). 

As the SB propagates inland, the SB frontal boundary will force the ascent of the 

continental air mass above the maritime air mass through enhanced low-level convergent 

forcing. If the ascending air reaches its level of free convection (LFC) and maintains 

sufficient buoyancy through significant upward displacement, shallow cumulus (cu) or 

deep convective initiation (CI) may occur (Miller et al. 2003; Trier 2003). Thus, the SBF 

is a favored low-level convergence boundary line for thunderstorm development. The FL 

peninsula averages 160 to 240 km wide and 725 km long, giving it the longest coastline 

(1,926 km) in the contiguous United States. This lengthy coastline makes FL a natural 

laboratory to study SBs and their associated CI (Song 1986).  

Numerous observational (Blanchard and Lopez 1985; Atkins and Wakimoto 

1997; Weaver 2006) and numerical studies (Bechtold et al. 1991; Nicholls et al. 1991; 

Boybeyi and Raman 1992; Arritt 1993; Gilliam 2004) have indicated that the synoptic-

scale flow plays an important role in the strength and inland penetration of the FL SBs. 

Onshore synoptic flow tends to create weaker SBs that propagate long distances, offshore 

synoptic flow tends to create stronger SBs that propagate only a short distance inland due 

to the opposing synoptic flow, and coast-parallel flow tends to create SBs whose 

magnitudes are between the onshore and offshore cases, but propagate only slightly 

further inland than offshore flow cases (Atkins and Wakimoto 1997). Blanchard and 

Lopez’s (1985) work was one of the first studies to link synoptic wind patterns with south 

FL’s observed radar data, leading to a classification of three basic SB convective patterns 

or “Types." 



4 

 

A “Type 1” SB event is typified by southeasterly synoptic flow, leading to the 

development of a weak east coast sea breeze (ECSB) and a strong west coast sea breeze 

(WCSB). The ECSB moves significantly inland, while the WCSB moves slightly inland, 

leading to SBF merger and significant rainfall over the west-central portion of the 

peninsula. Similar to the “Type 1,” a “Type 2” SB event 1is typified by easterly synoptic 

flow and a weak and less convective ECSB moving inland, while a stronger WCSB 

develops and does not propagate inland, leading to a merger of the SBFs directly along 

the western FL coast producing sparser rainfall amounts. A “Type 3” SB event is typified 

by southwesterly synoptic flow, leading to a weak WCSB that moves considerably inland 

and strong ECSB that moves only slightly inland. The two convective zones meet in the 

east-central portion of the peninsula, producing strong convective rainfall amounts.  

The similarities and differences in the CI by various FL SB convergence lines has 

been investigated in numerous observational and numerical studies (e.g., Byers and 

Rodebush 1948; Ulanski and Garstang 1978; Tripoli and Cotton 1980; Burpee and Lahiff 

1984; Pielke 1974; Nicholls et al. 1991; Boybeyi and Raman 1992; Arritt 1993; Rubes et 

al. 1993; Fankhauser et al. 1995; Halverson et al. 1996; Xu et al. 1996; Wilson and 

Megenhardt 1997; Rao and Fuelberg 2000; Etherton and Santos 2008). These, and other 

studies, have shown that the CI produced along the SB’s convergent boundary occurs at 

discontinuous locations along the SBF, rather than in an uninterrupted line. These 

locations of preferred CI have been shown to occur where the SBF collides or merges 

with other boundary convergence lines such as: thermally-driven mesoscale breezes on 

the order of sea, river, or land breezes (Blanchard and Lopez 1985; Boybeyi and Raman 

1992; Laird et al. 1995; Baker et al. 2001), gust front (GF) or outflow boundaries 
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(Nicholls et al. 1991; Fankhauser et al. 1995; Rao and Fuelberg 2000), or microscale 

horizontal convective roll (HCR) updrafts (Fankhauser 1995; Rao and Fuelberg 2000; 

Ogawa et al. 2003; Fovell 2005).  

Moreover, it has been found that CI can also occur ahead of or behind the SBF, 

though the convection produced in this manner is often much weaker and more short-

lived than the convection that occurs along the SBF. Observations and numerical 

simulations by Nicholls et al. (1991) and Fankhauser et al. (1995) noted that convection 

initiation could develop prior to the merger of two SBFs within an enhanced convergence 

zone formed as a natural consequence of declining surface heating and the inland 

progression of the two SBFs. Fovell (2005) conducted a high-resolution, three-

dimensional numerical simulation that showed that an intersecting HCR’s moist updraft 

interacting with obstacle-generated gravity waves produced a convective roll cloud ahead 

of the SBF. More recently, Abulikemu et al. (2016) have investigated CI prior to the 

merger of a SBF and gust front in North China and found that low-level convergence, 

conditional instability, and dynamic vertical forcing were the key ingredients for the CI 

produced between the two boundaries. Convection behind the stable SBF has been 

studied in high-resolution numerical simulations produced from an outflow boundary 

intersecting a deep layer of upward motion that was enhanced and carried by microscale 

Kelvin-Helmholtz billows (KHBs) along the top of the SBG (Rao and Fuelberg 2000) or 

intersecting outflow boundaries modified and enhanced by the placement of the SBF 

(Fankhauser et al. 1995). 

From aforementioned studies, it is evident that the mesoscale SB and its 

associated convection is highly affected by locally driven boundaries and microscale 
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features that change on a daily, and even hourly basis, that make forecasting the exact 

timing, location, and intensity of the convective systems difficult to predict. 

Observational studies have aided in our understanding of how CI is produced from SBs; 

however, this and other types of warm-season convection are still among the most 

difficult atmospheric events to predict (Clark et al. 2014, Lock and Houston 2014). 

Operational numerical weather prediction (NWP) models have long been used to bridge 

the gaps in forecasters’ ability to predict warm season CI due to the FL SB and aid in the 

generation of their forecasts (Miller et al. 2003; Hahmann et al. 2006; Crosman and Horel 

2010). 

Current operational NWP models are generally run as regional models. Regional 

models are nonhydrostatic models whose grid scales usually encompass that of 10-18 km 

grid spacing (with some regional models now running at less than 10 km) and obtain their 

boundary conditions from a coarser global model. However, these global and regional 

models have been found to be unable to properly resolve local-scale weather features that 

influence SB CI (Watson and Zavodsky 2015), as their horizontal resolution is too coarse 

to resolve the important subgrid meteorological processes. The Intergovernmental Panel 

on Climate Change (IPCC) states that the source of most large-scale errors is that “many 

important small-scale processes cannot be represented explicitly in model” (Randall et al. 

2007), as these subgrid features can only generally be accounted for by parameterization 

processes in these models.  

Physical parameterization is a method of representing subgrid processes that are 

too small or complex to be physically represented in the model by a more simplified 

process or resolvable scale field, thus allowing for less degradation of the forecast than 
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omitting the subgrid processes entirely. However, while lessening the effects of 

degrading the model forecast, parameterization of these subgrid processes also introduces 

a different source for systematic model errors. In order to significantly reduce this source 

of errors in models, the much smaller large-eddy simulation (LES) domain is often used. 

A LES model has a horizontal grid scale of a hundred meters or less have been found to 

be a useful method in modeling the convection produced by the interactions of the SBs 

with the aforementioned microscale features such as HCRs or KHBs (e.g., Rao and 

Fuelberg 2000; Fovell 2005). At the much smaller LES domain resolution, the subgrid 

processes that had been previously parameterized at the larger grid can now be explicitly 

resolved. However, due to the extremely fine horizontal resolution of the LES, a large 

amount of computing power is required, so they can only be effectively run in a 

simulation domain of a few kilometers, making it inefficient for use of forecasters to use 

in an operational setting. 

Between the regional and LES domain scales lies what is known as the numerical 

gray-zone scale (Hong and Dudhia 2012). This gray scale, or what Wyngaard (2004) 

refers to as the terra incognita, is composed of grid sizes on the order of the scale of a 

few kilometers. The gray-zone contains grid sizes small enough to explicitly resolve 

some model dynamics that were previously parameterized at larger grid sizes, such as 

cumulus parameterizations (thus reducing a source of model error), yet is still not fine 

enough to resolve all the boundary-layer interactions without some sort of implicit model 

parameterization (which reduces computer processing requirements).  

In addition to the inability of regional models to resolve microscale features (and 

some mesoscale features) in their horizontal domain resolution, the relatively short time 
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scales of these processes also prove a challenge for NWP models to accurately capture 

these features in the initial conditions (ICs) of the model. It is well known that small 

errors in the ICs can lead to growing errors in the forecast (Kalnay 2003). A number of 

numerical studies have emphasized the importance of ICs in the prediction of the SB and 

its associated convection (Berri and Paegle 1990; Zhang et al. 2005; Srinivas et al. 2006; 

Watson 2007; Etherton and Santos 2008; Lombardo et al. 2016), as uncertainty in the 

representation of atmospheric (e.g., surface winds, pressure, relative humidity, 

precipitation, radiation, cloud cover, etc.) and land surface (e.g., temperature, soil 

moisture, terrain, coastline, etc.) ICs, lead to widely differing SBC and precipitation 

forecasts. 

The ability for a NWP model to make as skillful forecast requires that the model 

be a realistic representation of the atmosphere (i.e., has correct dynamics and 

parameterizations) and that the ICs be known accurately (Kalnay 2003). Results from 

NWP work indicate that model errors in model resolution (grid spacing, 

parameterization, etc.), initial and boundary conditions, and systematic model errors (i.e., 

model bias) are the main factors that lead to model discrepancies and errors (Kalnay 

2003). As the current operational weather centers’ computing power has advanced to the 

point of allowing regional numerical simulations in the gray-zone grid scales of 1-4 km 

(Hong and Dudhia 2012), research into the strengths and weaknesses in how the gray-

zone models handle the dynamics, physical parameterizations, geophysical 

characteristics, boundary-layer effects, etc., in simulating various atmospheric 

phenomena is of pressing importance in aiding future improvements to NWP forecasts. 

However, relatively few of the numerical studies mentioned previously have simulated a 
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real-data case study of FL SB convection in the gray scale in order to examine how the 

model’s ability to accurately forecast the FL SB and its associated convective systems. 

Moreover, within the last ten years, a new area of NWP research on unresolved 

atmospheric features has emerged called stochastic parameterization. This method 

involves representing atmospheric processes as a combination of a predictable 

deterministic component and an unpredictable and randomly determined (i.e., stochastic) 

component. While traditional deterministic parameterization schemes represent the bulk 

average estimate of unresolved subgrid scale processes on the resolved flow, stochastic 

parameterization represents the statistical variability of these unresolved processes (i.e., 

perturbations) within the NWP model (Duda et al. 2016; Christensen et al. 2017). 

Equations 1.1 and 1.2 below illustrate the differences between physics parameterizations 

(Equation 1.1) and stochastic parameterizations (Equation 1.2). 

𝜕𝑋

𝜕𝑡
|

𝑡𝑜𝑡𝑎𝑙
=  

𝜕𝑋

𝜕𝑡
|

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠
+  

𝜕𝑋

𝜕𝑡
|

𝑝ℎ𝑦𝑠𝑖𝑐𝑠
 ( 1.1 ) 
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|
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=  

𝜕𝑋

𝜕𝑡
|

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠
+  

𝜕𝑋

𝜕𝑡
|

𝑝ℎ𝑦𝑠𝑖𝑐𝑠
+  

𝜕𝑋

𝜕𝑡
|

𝑠𝑡𝑜𝑐ℎ
 ( 1.2 ) 

The term on the left sides of the two equations represent the local tendency for a 

variable x, while the 1st terms on the right side of the equations represent the dynamical 

tendencies (i.e., the resolved scales of the model). The 2nd terms on the right sides of 

Equations. 1.1 and 1.2 represent the physical tendencies (bulk-averaged unresolved 

scales), while the 3rd term on the right side of Equation 1.2 represents the additive 

stochastic perturbation tendency (from an unresolved scale). While the physical 

tendencies predict the most likely subgrid scale motion, the stochastic perturbations 

represent one possible realization of the subgrid feature or process.  

The stochastic perturbation ensemble method has shown to be successful in 
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operational and research forecast studies (Berner et al. 2008, 2009, 2011, 2012). Despite 

a decade of study, the use of stochastic parameterization schemes in gray-zone grid 

spacing is relatively new, though several studies of note have been conducted at this 

scale. Romine et al. (2014) found that stochastic perturbed simulations at 3-km grid 

spacing showed skill in ensemble mean forecasts but decreased deterministic ensemble 

member forecast skill.  Charron et al. (2010) determined that a stochastic perturbation 

scheme applied to physical tendencies was pronounced in improving the probabilistic 

skill of the low-level winds at 1-2 km grid spacing. Duda et al. (2016) conducted 

stochastic perturbations on warm season convection allowing probabilistic forecasts at 

gray-zone grid spacing, finding it produced improvements for mid- and upper-

tropospheric fields, but found that it had less improvements at the surface compared to an 

ensemble of mixed physics simulations. 

In light of all the above problems and advances, the overarching goal of this study 

is to improve the understanding of predictive ability of the state-of-the-art NWP model 

for the FL SB and its associated CI in gray-zone simulations. In order to accomplish this, 

an evaluation of various physics parameterization schemes, ICs, and stochastic 

parameterizations on the model’s ability to accurately simulate the FL SB convection is 

conducted. In addition, an evaluation of the sensitivity of the numerical model in its 

ability to simulate the characteristics of a SB and its associated CI at various gray-zone 

grid resolutions is performed. Special attention is paid to verifying how the model 

resolves the timing, location, and intensity of the SB convection as well as the effects of 

geophysical factors on convective ingredients and the interactions between the SB and its 

associated convective characteristics in the gray-zone. Finally, an evaluation of the 
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model’s performance using a stochastic perturbation scheme is accomplished in order to 

determine the effect on added subgrid energy effects to the gray-zone simulations.  

A description of the SB convection case study and the Weather Research and 

Forecasting (WRF) model used for this study is presented in Chapter 2, along with the 

experimental setup for the parameterization and initialization sensitivity studies. Results 

from the parameterization and IC simulations testing SB convection are presented in 

Chapter 3. Further analysis of the “best” simulation from Chapter 3 and the effects of 

differing gray-zone grid spacing on resolving atmospheric and geophysical features are 

presented in Chapter 4. A description and analysis of the impact of a stochastically 

perturbed simulations on the SB convection is given in Chapter 5. A summary and 

concluding remarks are given in Chapter 6. 
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Figure 1.1 Map of Florida’s major aviation and aerospace installations.  



 

 

 

 

CHAPTER 2 

 

DESCRIPTION OF SEA BREEZE CONVECTION CASE AND  

CONFIGURATION OF NUMERICAL SIMULATIONS 

 

The accurate representation of the small-scale features affecting and interacting 

with the FLSB is crucial for high-quality thunderstorm forecasts. Therefore, a case study 

is conducted to investigate how well the WRF model can represent the gray-zone 

environmental features supporting SB development and the convective systems produced 

therein based on the configurations chosen for physics parameterizations and ICs. A case 

study for a FL SB convection event was chosen for the WRF model simulations. 

Following a control simulation of the chosen SB convection case study, an ensemble of 

various physics parameterization and initial conditions (P/IC) simulations is run in order 

to test the sensitivity of the model to these processes in the gray-zone grid spacing.  

 

2.1 An Overview of a Florida Sea Breeze Convection Case 

The case study chosen for our simulations occurred 6-7 September 2012. This 

case was characterized by SB convergences and convective developments typified by a 

fast-moving WCSB and slow-moving ECSB. According to Blanchard and Lopez (1985), 

this is a classic “Type 3” SB pattern, characterized by heavier rainfall amounts and SB 

convection that is sustained through the late evening hours. Figure 2.1 illustrates the 
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surrounding synoptic features for 1200 UTC 6 September 2012 at the 850-hPa-pressure 

level. At this level, a ridge of surface high pressure to the south is centered over the 

Atlantic Ocean, a weak shortwave trough to the north is located over the southeastern US, 

and a low-pressure system is situated over the Gulf of Mexico (remnants from Tropical 

Storm Isaac). At the 300 hPa pressure level (Figure 2.2) for this same time, a low-

pressure system over the Atlantic is evident to the east over the Bahamas, producing 

north-northeasterly flow in the upper-levels over the FL peninsula and weak subsidence 

in place on the back (western) side of the low. This large-scale synoptic pattern induced 

warm-air advection from the south and vertical lifting over the peninsula, aiding in a 

quicker destabilizing of the atmosphere. The south-southwesterly flow induced at the 

surface and eastward synoptic motions creating enhanced vorticity and wind shear over 

the FL peninsula significantly influenced the mesoscale SB forces.  

This onshore synoptic flow modified the WCSB, weakening the SBF, but aiding 

in its inland movement so that it penetrated faster and farther into the interior of the 

peninsula than did the contrasting ECSB, whose inland propagation speed and 

progression were significantly impeded by the offshore synoptic flow. This synoptic flow 

pattern led to a broad, indistinct, and discontinuous WCSB front, while the strengthened 

ECSB had a narrow, distinct, and continuous front, indicative of a sharply compressed 

land-sea thermodynamic gradient. The southwesterly onshore (offshore) synoptic winds 

played a significant role in weakening (strengthening) SB frontal characteristics, while 

aiding (inhibiting) inland propagation distance and speed and increasing (decreasing) the 

SB head and circulation depth. The effects of synoptic winds over FL’s irregular 

coastlines on SB frontal characteristics are well documented (e.g., Boybeyi and Raman 
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1992; Atkins and Wakimoto 1997).  

Figure 2.3 shows the soundings at 1200 UTC 6 September 2012 [hereafter all 

times are in UTC, UTC = EDT (Eastern Daylight Time) + 4 h] from four FL stations: 

Tallahassee (purple line), Jacksonville (red line), Tampa Bay (black line), and Miami 

(blue line). These soundings represent the atmospheric conditions about an hour after 

sunrise, several hours before the SBs are initiated. All four soundings show convective 

inhibition (CIN) values less than 25 J kg-1 and convective available potential energy 

(CAPE) values ranging from almost 900 J kg-1 (TLH) to over 2,500 J kg-1 (MFL). The 

level of free convection (LFC) for each of the four soundings is between 895 and 850 

hPa, while the lifting condensation level (LCL) for each of the four soundings ranges 

between 970 and 950 hPa. Precipitable water (PW) values for the soundings are around 

48 mm, except for JAX, which is slightly less than that of the other soundings at 42 mm. 

Consequently, the soundings for the stations across the peninsula show a warm, moist, 

and unstable atmosphere favorable for the SB convection event, given that the weak 

subsidence and associated CIN over the peninsula could be overcome in the afternoon 

through convective heating and lifting effects. 

A day before this event (5 September 2012), SB convection also occurred during 

the afternoon and extended to the evening hours. However, by 0600 UTC on 6 September 

2012, the sky over FL was mostly clear and cloud free for the rest of the morning, 

allowing for plenty of morning insolation to occur over the peninsula. Both the west coast 

and east coast SBs developed between 1340 and 1420 UTC 6 September 2012, while 

convection began along the WCSB at 1400 UTC (Figure 2.4a) and along the ECSB at 

1600 UTC (Figure 2.4b) 6 September 2012, respectively. The enhanced WCSB and its 
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associated convection traveled significantly inland, while the ECSB and convection 

remained adjacent to the east coast for most of the period. As the SBFs propagated 

inland, they continued to initiate robust thunderstorms, clearly visible in Figure 2.4 with 

the towering cumulonimbus tops being sheared to the southwest by the upper-level 

northeasterly flow. This upper -level flow aided the WCSB convection as the lack of the 

cumulonimbus cloud debris ahead of the WCSB front aided in increased surface heating 

and destabilization of the atmosphere. The two SBs collided just inland of the eastern 

coast of FL at 2030 UTC 6 September 2012 (Figure2.4h), producing a strong squall line 

of enhanced deep convection. The deep convection produced by the colliding SBs was 

oriented in a north-to-south line along Interstate 95 from Jacksonville (JAX) to Vero 

Beach (VRB), while the convection to the south was oriented in a northeast-to-southwest 

line across the peninsula from VRB to just inland and north of Naples (APF). Following 

the production of this squall line at 2100 UTC 6 September 2012, there were several 

reports of 60 mph winds along the southeast coast of FL. The last remnants of convective 

precipitation associated with the SB event ended at 0500 UTC 7 September 2012 in east-

central portions of the FL peninsula. 

 

2.2 Description of WRF Numerical Simulations 

2.2.1 Model Description and Setup 

The numerical simulations of SB convection presented in this paper were 

performed using an advanced research version of the Weather Research and Forecasting 

[Advanced Research WRF (WRF-ARW)] model (version 3.7.1) developed by the 

National Center for Atmospheric Research (NCAR) in conjunction with National Centers 
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for Environmental Prediction (NCEP), Earth System Research Laboratory (ESRL), Air 

Force Weather Agency (AFWA, now 557th Weather Wing), Naval Research Laboratory 

(NRL), University of Oklahoma (OU), and the Federal Aviation Administration (FAA). 

The WRF system consists of fully compressible, Euler nonhydrostatic equations of 

motion, suitable for both weather prediction and research over a wide range of scales 

(Skamarock et al. 2008). The prognostic variables include three-dimensional wind and 

the perturbations of potential temperature, geopotential, surface pressure, and turbulent 

kinetic energy (TKE). The vertical coordinate system is a terrain-following, dry 

hydrostatic-pressure coordinate and the horizontal grid uses Arakawa C-grid staggering 

to gain better accuracy in high-resolution simulations. A detailed description of the basic 

equations and numerical schemes of the WRF-ARW can be found in Skamarock et al. 

(2008). 

The WRF-ARW model is configured using a 3rd-order Runge-Kutta time-

integration and a 6th-order spatial-discretization scheme for the advection terms. 

Additionally, a horizontal Smagorinsky 1st-order closure eddy coefficient option is used 

and vertical velocity damping is turned on, with a fixed damping depth of 5,000 m from 

the model top employed. A 6th-order numerical diffusion scheme is used, however up-

gradient diffusion is prohibited. The model top is set at 50 hPa.  The model domain 

configuration is a four-level, nested grid centered over the FL peninsula. The outermost, 

two middle, and innermost horizontal domain grids consist of grid spacings of 27-km 

(d01), 9-km (d02), 3-km (d03), and 1-km (d04), respectively. The outermost domains are 

chosen to cover the southeastern US and the surrounding Atlantic Ocean in order to 

capture synoptic dynamics that might influence the SB and convection, while the 
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innermost domain covers the area of interest for the case study: the FL peninsula and its 

surrounding waters. Figure 2.5 shows a detailed map of the domain area configurations. 

All four domains contain 62 vertical eta levels with 26 levels below 850 hPa. Table 2.1 

gives a full list of the configurations used in the setup of the WRF-ARW model.  

 

2.2.2 Configuration of Control Simulation 

In order to have a baseline simulation for investigating the sensitivity of 

numerical simulations to the physical parameterization and ICs, a control (CTRL) WRF 

simulation is performed. The WRF model and domain setup described in Section 2.2.1. is 

used with a one-way domain feedback configuration. Physical parameterizations options 

used include the New Thompson microphysics, New Kain-Fritsch (KF) cumulus, MM5 

Dudhia shortwave radiation, and Rapid Radiative Transfer Model (RRTM) longwave 

radiation, Yonsei University (YSU) planetary boundary layer, revised MM5 surface 

layer, and Unified Noah land surface model schemes. The microphysics and PBL 

schemes are applied to all four domains, while the cumulus schemes are only applied to 

the outermost d01 (27 km) and d02 (9 km) domains. A further description of the physics 

parameterization schemes is given in the next section. A summary of the CTRL 

parameterization options is given in Table 2.2. The WRF-ARW model initial and 

boundary conditions for the CTRL simulation are provided by the NCEP North American 

Mesoscale (NAM) Forecast System analysis at 12-km horizontal resolution from 0000 

UTC 6 September 2012 to 1200 UTC 7 September 2012 at the interval of every 6 h. The 

model was then integrated in the one-way nested mode for 36 h from the start of the 

initialization period.  
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2.2.3 Configuration of Sensitivity Experiments to Physical Parameterizations 

Physical parameterization is one of the most challenging aspects of numerical 

modeling, especially in the gray-zone grid scale, as the assumptions made in deriving the 

theory behind some of these parameterization processes may no longer be valid at this 

scale, such as that the fraction of the grid column that is occupied by active convection is 

small or that a large number of up- and downdrafts are found within the grid column 

(Grell and Freitas 2014). Within the last five years, gray-zone scale modeling at the 

operational level has become practically feasible, thus research into the effects of 

parameterization is a pressing area of study (Hong and Dudhia 2012). The WRF model 

has become an invaluable tool in this research area as it offers multiple physical 

parameterization options for key physical processes, such as planetary boundary layer 

(PBL), cumulus (CU), cloud microphysics (MP), longwave (LW) radiation, shortwave 

(SW) radiation, surface layer processes, and land surface model (LSM) interactions that 

can be combined to create various model configurations.  

Three groups of sensitivity simulations are performed for the CU, MP, and PBL 

physics options within the WRF-ARW model. An additional simulation is also performed 

by changing the CTRL simulation from a one-way to a two-way domain feedback 

configuration (2WAY simulation) to address the effect of the smallest gray-zone grid 

(d04) to the larger gray-zone grid (d03) within the model. The same ICs and similar 

model configurations as specified in the CTRL are applied to these simulations. The 

specific physics parameterization simulations performed are listed in Table 2.2. 
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2.2.3.1 Overview of Cumulus Parameterization Schemes 

Cumulus parameterization schemes are responsible for the cumulative subgrid 

effects of the redistribution of grid column moisture and temperature associated with 

updrafts and downdrafts, making clouds and convection precipitation, and the role of 

convection in drying and warming the atmosphere (Skamarock et al. 2008). Previous 

research has indicated that SB convection and precipitation output appear to be sensitive 

to the choice of CU parameterization (Cohen 2002, Evans et al. 2012), though many of 

these studies have been idealized case studies, for locations in the UK and Australia, and 

for grid sizes greater than 10 km. Thus, an investigation of CU parameterization effects to 

a real FL SB case in the gray-zone spacing is warranted. Four CU parameterization 

simulations (simulations annotated by CU in Table 2.2) are conducted and briefly 

described below.  

The New Kain-Fritsch CU scheme (CTRL simulation) accounts for deep and 

shallow convection using a mass flux approach for moist updrafts and downdrafts and is 

programmed to eliminate CAPE (Skamarock et al. 2008). In this scheme, entrainment 

and detrainment rates only depend on the buoyancy of mixtures of clear and cloudy air 

and a parcel that is negatively buoyant at the LCL is allowed to form a cloud only if it is 

supported by grid scale upward motion (Kain 2004). The Grell-Freitas (GF) scheme 

(CU1_GF simulation) and Grell 3D (G3) scheme (CU2_G3 simulation) are multiclosure, 

multiparameter ensemble methods that have been improved from the original Grell-

Devenyi (GD) CU scheme to be used on high-resolution simulations (Grell and Freitas 

2014). The GF scheme is modified to smooth the transition to cloud-resolving scales by 

eliminating the assumption of small fractional area covered by convection as the 
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resolution increases, as proposed by Arakawa et al. (2004). The G3 scheme is 

distinguished from other CU schemes in that it allows subsidence effects to be spread to 

neighboring grids. The New Simplified Arakawa-Schubert (NSAS) scheme (CU3_NSAS 

simulation) is a deep and shallow convection scheme that uses a mass-flux 

parameterization that replaces a previous turbulent diffusion-based approach (Han and 

Pan 2011). Improvements were also made to the cloud-top selection, deep convection 

processes, and the turbulence diffusion in stratocumulus regions. The New Tiedtke (NT) 

scheme (CU4_NT simulation) accounts for both updrafts and downdrafts separately, and 

uses a bulk model for different types of convection (Tiedtke 1993). 

 

2.2.3.2 Overview of Microphysics Parameterization Schemes 

 Microphysics parameterizations control the formation and dissipation of water 

vapor, cloud, and precipitation processes within the simulation (Skamarock et al. 2008). 

For gray-zone grid models, the effects of aerosols for cloud and ice nucleation, as well as 

how mixed-phase growth of hail or graupel in riming processes become more important 

factors (Hong and Dudia 2012). As the effects of MP schemes on SB convection is 

relatively sparse, this in an important area of research. Four MP parameterization 

simulations (simulations annotated by MP in Table 2.2) are conducted and briefly 

described below. 

The New Thompson (CTRL simulation), Purdue Lin (MP1_Lin simulation), 

WRF Single-Moment 6-Class (WSM6, MP2_WSM6 simulation), and Morrison 

(MP3_Mor simulation) schemes are 6-class MP parameterizations that include mixing 

ratio predictions for water vapor, cloud water, rain, cloud ice, snow, and graupel 
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processes, while the Stony Brook University (SBU, MP4_SBU simulation) is 5-class MP 

scheme that neglects the graupel processes. The Thompson, Lin, WSM6, and SBU 

schemes are single-moment bulk parameterizations, though the Thompson scheme has a 

double-moment cloud ice process and includes rain and ice number concentrations 

(Thompson et al. 2004). The Morrison scheme is a two-moment bulk MP scheme that 

allows for a more robust treatment of the 6-class hydrometeors by specifying their 

number concentrations as well as their mixing ratios (Morrison et al. 2009). The SBU 

scheme predicts riming intensity to better account for mixed-phase processes (Lin and 

Colle 2011). The WSM6 scheme better represents mixed-phase particle fall speeds for 

snow and graupel particles than the simpler schemes that use only 3-class and 5-class 

hydrometeor specifications and is more suitable for cloud-resolving grids (Hong and Lim 

2006). The Lin MP scheme includes ice sedimentation and time-split fall terms and is 

suitable for parallel computation and high-resolution simulations (Lin et al. 1983).  

 

2.2.3.3 Overview of PBL Parameterization Schemes 

 One source of forecast inaccuracy in gray-zone grid scale models is the 

representation of lower-tropospheric thermodynamic and kinematic structures in the PBL 

– that portion of the lower troposphere directly affected by the earth’s surface via 

exchanges of heat, momentum, and moisture (Cohen et al. 2015). In the WRF-ARW, the 

PBL parameterization schemes determine the vertical subgrid scale flux profiles (i.e., 

temperature, moisture, and horizontal momentum) within the well-mixed boundary and 

stable layer due to eddy transports (Skamarock et al. 2008). Several PBL 

parameterization studies for SB cases have been carried out with the last ten years in the 
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gray-zone (Srinivas et al. 2007; Challa 2009; Miao et al. 2009; Evans et al. 2012), but 

none have been conducted for cases over the FL peninsula. Five PBL parameterization 

simulations (simulations annotated by PBL in Table 2.2) are conducted and briefly 

described below. The surface layer and land surface model physics options are only 

changed from the CTRL settings (i.e., revised MM5 and Noah LSM, respectively) for the 

PBL simulations if the changes were specified by the PBL scheme designers for the 

optimal performance of the parameterization scheme in the WRF model. 

 The YSU PBL scheme (CTRL simulation) is a 1st-order nonlocal eddy-diffusivity 

turbulence closure scheme that explicitly represents entrainment processes at the top of 

the PBL (Hong et al. 2006). The Mellor-Yamada- Janjić (MYJ) PBL scheme 

(PBL1_MYJ simulation) is a local 1.5-order, level 2.5 closure scheme, that determines 

eddy diffusion coefficients from prognostically calculated TKE (Janjić 1994). The 

Monin-Obukhov Janjić Eta (MO-JE) surface layer scheme is used with the MYJ PBL 

scheme and is based on the modified Monin-Obukhov similarity theory. The Mellor-

Yamada Nakanishi and Niino Level 3 (MYNN3) scheme (PBL2_MYNN3 simulation) is 

a local 2nd-order, level 3 TKE closure scheme whose expressions of stability and mixing 

length are based on the results of a LES rather than observations (Nakanishi and Niino 

2006). The MYNN surface layer scheme is used in conjunction with the MYNN3 PBL 

scheme. The Asymmetrical Convection Model, version 2 (ACM2) scheme 

(PBL3_ACM2 simulation) is a hybrid local-nonlocal 1st-order closure PBL scheme 

where the representation of upward fluxes within the PBL are nonlocal interactions 

between the surface layer and each and every layer above, while downward fluxes are 

represented through local interactions with the underlying layers. This represents 
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convective plumes arising from diurnally heated surface layer, whereas downward fluxes 

are more gradual (Pleim 2007). The Pleim-Xiu (PX) surface layer and LSM are used in 

conjunction with the ACM2 PBL scheme instead of the CTRL’s MM5 surface layer and 

Noah LSM options. The Quasi-Normal Scale Elimination (QNSE) scheme (PBL4_QNSE 

simulation) is a 1.5-order local closure that uses a TKE-prediction option and is intended 

to account for wave phenomena using spectral theory within stable boundary layers 

(Sukoriansky et al. 2005). The QNSE surface layer scheme is used in conjunction with 

the QNSE PBL scheme. The Grenier-Bretherton-McCaa (GBM) scheme (PBL5_GBM 

simulation) is a 1.5-order TKE local closure that depicts a PBL influenced by 

stratocumulus clouds through vertical variations in static stability profiles are driven by 

moist thermodynamics such as longwave radiation fluxes owing to the presence of these 

clouds (Grenier and Bretherton 2001). 

 

2.2.4 Configuration of Sensitivity Experiments to Initial Conditions 

NWPs are known to have difficulty in initiating, developing, and organizing 

convection owing to the small-scale nature of many of the features that act to initiate and 

maintain convection (Kain and Fritsch 1992; Stensrud et al. 2000). Thus, the atmospheric 

conditions specified in the model’s ICs can make large differences in NWP forecasts. As 

mentioned in the description of the SB case study in Section 2.1, 5 September 2012 saw 

convective activity by the SB over the FL peninsula. At 0000 UTC 6 September 2012 

(initialization time of CTRL simulation), remnants of convective activity were still 

occurring, simulations are conducted with initialization times prior to and after this time 

in order to observe how adding or removing these convective IC effects affect the WRF 
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simulation.  

Five ICs simulations with different start times and initialization data are 

performed. First, a simulation is performed using the same initialization and ending times 

as the CTRL simulation (0000 UTC 6 September 2012 to 1200 UTC 7 September 2012), 

but using NCEP’s Global Forecast System analysis (GFS-ANL) data at 0.5 degree (~28 

km) horizontal resolution instead of the 12 km NAM data for the initialization data 

(IC1_GFS). Additionally, utilizing the same NAM data as the CTRL simulation, but 

varying the initialization start times, four other simulations are performed: IC2_0512, 

IC3_0518, IC4_0606, and IC5_0612. These simulations are run until 1200 UTC 7 

September 2012, producing simulation durations ranging from 48 to 24 h. The specific IC 

simulations performed are listed in Table 2.3. 
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Figure 2.1 Upper air analysis at 1200 UTC 6 September 2012 for 850 hPa observations, 

geopotential heights (black contours, units every 30 gpm,), temperatures (red dashed 

contours, units every 2oC), and dew point temperatures (green contours, units every 2oC 

above 8oC, light green filled at 10 oC, dark green filled at 14 oC). Image courtesy of the 

National Oceanic Atmospheric Administration’s (NOAA) Storm Prediction Center (SPC) 

[http://www.spc.noaa.gov/obswx/maps/]. 
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Figure 2.2 Upper air analysis at 1200 UTC 6 September 2012 for 300 hPa observations, 

geopotential heights (black contours, units every 60 gpm), divergence (pink contours, 

units every 10-5 s-1), and isotachs (blue contours, units every 10 kts above 60 kts). Image 

courtesy of the National Oceanic Atmospheric Administration’s (NOAA) Storm 

Prediction Center (SPC) [http://www.spc.noaa.gov/obswx/maps/]. 
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 TLH JAX TBW MFL 

CAPE 897 1186 1407 2547 

CIN -15.3 -17.1 -24.6 -6.5 

LFC 833 854 867 895 

LCL 954 965 964 955 

PW 48.4 42.4 48.2 47.6 

 

Figure 2.3 Observed soundings for four Florida stations: Tallahassee (TLH, purple line), 

Jacksonville (JAX, red line), Tampa Bay (TBW, black line), and Miami (MFL, blue line) 

at 1200 UTC on 6 September 2012.  CAPE (units J kg-1), CIN (units J kg-1), LFC (units 

hPa), LCL (units hPa), and PW (units mm) values for each of the four stations are listed 

below the Skew-T. 

  



29 

 

 
 

Figure 2.4 Geostationary Operational Environmental Satellite-East (GOES-E) visible 

satellite images of convective cloud cover over the Florida peninsula at a) 1401 UTC, b) 

1515 UTC, c) 1601 UTC, d) 1745 UTC, e) 1831 UTC, f) 1931 UTC, g) 2001 UTC, and 

h) 2031 UTC 6 September 2012. Dark blues lines show the location of the west coast and 

east coast SBFs. Images courtesy of College of DuPage [http://www.cod.edu/] and Carl 

Jones [https://northflwx.wordpress.com/2012/10/01/florida-coast-to-coast-sea-breeze-

convergence/].  

a) b) 

c) d) 

 

e) f) 

g) h) 
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Figure 2.5 WRF simulation domains for the 27-km grid (d01 – color map), 9-km grid 

(d02 – white box), 3-km grid (d03 – red box), and 1-km grid (d04 – blue box). 

 

 

Table 2.1 WRF –ARW model simulation parameter settings. 

Parameter D01 D02 D03 D04 

Horizontal dimensions 139x97 253x202 343x313 502x661 

Horizontal resolution 27 km 9 km 3 km 1 km 

Vertical resolution 62 levels with variable Δz (26 levels below 850 hPa) * 

Time integration 120s time step, 36 h duration* 

Boundary conditions Damping depth over top 5,000 m* 

Lateral boundary interval 21600 sec* 

Nested feedback One way with no smoothing* 

Vertical diffusion 2nd order diffusion* 

Time-integration  Runge-Kutta 3rd order* 

Numerical diffusion 6th-order, 0.12 nondimensional rate, prohibits up-gradient 

diffusion* 

Advection options Positive-definite for moisture and scalars 

Eddy coefficient Horizontal Smagorinsky 1st order closure* 

*Values are the same for all four grids 
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Table 2.2 List of WRF physics parameterization simulations. CTRL simulation is shaded 

in gray. Boxes highlighted in shades of orange indicate changes in physics options from 

the CTRL simulation.  

Simulation Feedback Cumulus Microphysics PBL Sfc Layer Land Sfc 

CTRL 1-way KF Thompson YSU MM5 Noah 

2WAY 2-way KF Thompson YSU MM5 Noah 

CU1_GF 1-way GF Thompson YSU MM5 Noah 

CU2_G3 1-way G3 Thompson YSU MM5 Noah 

CU3_NSAS 1-way NSAS Thompson YSU MM5 Noah 

CU4_NT 1-way NT Thompson YSU MM5 Noah 

MP1_Lin 1-way KF Lin YSU MM5 Noah 

MP2_WSM6 1-way KF WSM6 YSU MM5 Noah 

MP3_Mor 1-way KF Morrison YSU MM5 Noah 

MP4_SBU 1-way KF SBU YSU MM5 Noah 

PBL1_MYJ 1-way KF Thompson MYJ MO-JE Noah 

PBL2_MYNN3 1-way KF Thompson MYNN3 MYNN Noah 

PBL3_ACM2 1-way KF Thompson ACM2 PX PX 

PBL4_QNSE 1-way KF Thompson QNSE QNSE Noah 

PBL5_GBM 1-way KF Thompson GBM MM5 Noah 

 

Table 2.3 List of WRF initial conditions simulations. CTRL simulation is shaded in gray. 

Boxes highlighted in shades of orange indicate changes in initial conditions from the 

CTRL simulation.  

Simulation IC Data Initialized CU MP PBL Sfc Layer Land Sfc 

CTRL NAM 06/00 UTC KF Thompson YSU MM5 Noah 

IC1_GFS GFS 06/00 UTC KF Thompson YSU MM5 Noah 

IC2_0512 NAM 05/12 UTC KF Thompson YSU MM5 Noah 

IC3_0518 NAM 05/18 UTC KF Thompson YSU MM5 Noah 

IC4_0606 NAM 06/06 UTC KF Thompson YSU MM5 Noah 

IC5_0612 NAM 06/12 UTC KF Thompson YSU MM5 Noah 

 



 

 

 

 

 

CHAPTER 3 

 

SIMULATION RESULTS AND SENSITIVITY TO PHYSICAL 

PARAMETERIZATION AND INITIAL CONDITIONS 

 

Numerical simulations are verified against upper air and surface conditions and 

precipitation characteristics in order to verify the large-scale synoptic pattern and the SB 

and CI timing and evolution. The WRF sensitivity experiments with various physical 

parameterization schemes and initial conditions (P/IC) are each verified against 

observational and analysis data to note changes from the CTRL simulation and also to 

identify sensitivities to the parameterizations and ICs within the WRF model.  

 

3.1 Verification Data and Methods 

The WRF model outputs are compared to NCEP’s 32-km horizontal grid 

spacing/45-level vertical resolution North American Regional Reanalysis data (NARR, 

Mesinger et al. 2005). As the NARR data are on a much coarser grid scale than the gray-

zone WRF simulations, the NARR data are only used to verify the upper air synoptic 

wind and pressure fields in a subjective determination of the simulation’s forecast skill.  

The evaluation has also been done by comparing a time series of surface variables 

from the model outputs with the surface observations. Specifically, the simulation results 

are verified using surface parameters obtained from local aviation routine weather reports 
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(METARs) and aviation special weather reports (SPECIs) from 23 locations across the 

FL peninsula (see Figure 3.1). The 2-m temperature and humidity values and 10-m winds 

for the surface observations are compared to the model value from the model grid box 

that contains the location of the observation. The root-mean-square error (RMSE), which 

is defined as the square root of the mean of the squared differences between 

corresponding elements of the forecast value (f) and observation value (o) (Barnston 

1992), are used to verify surface variables from the WRF simulations. The RMSEs are 

calculated for the 2-m temperature and dewpoint and 10-m wind speed using the 

following formula: 

𝑅𝑀𝑆𝐸 = √∑ (𝑓 − 𝑜)2 𝑁⁄𝑁
𝑖=1   ( 2.1 ) 

where N is the total number of verification points for the forecast and observed values. 

RMSE values range from 0 to infinity, with lower values showing greater skill in the 

forecast. A subjective analysis of the simulation’s forecast skill was also conducted using  

surface observation analysis plots. 

The convection within the simulation determined by simulated precipitation 

amounts and dBZ values. An evaluation of subjective precipitation forecasts in 

determining the timing, location, and intensity of WRF-simulated convection was 

conducted, along with a quantitative precipitation forecasting (QPF) analysis utilizing 

NCEP’s Stage IV data (Lin and Mitchell 2005) and the Climatology-Calibrated 

Precipitation Analysis (CCPA) data (Hou et al. 2014). The Stage IV precipitation analysis 

data are 4-km grid scale mosaics of regional multisensor (gauge, radar, and satellite data) 

analyses produced by the National Weather Service (NWS) River Forecast Centers 

(RFCs). CCPA data are Stage IV analyses products further adjusted based on Climate 
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Prediction Center (CPC) unified global daily gauge analysis through a linear regression 

method.  

In order to evaluate the QPFs, the Threat Score (TS), also known as a Critical 

Success Index (CSI), and the Bias Score (BS) for the two innermost domains are 

calculated. The values used to calculate these scores are given in a 2 x 2 contingency 

table (Table 3.1). Four specific precipitation thresholds are used in the QPF statistics 

calculations: 2.54, 6.35, 12.7, and 25.4 mm. Knowing information about the forecast area 

(F), observed area (O), and the correctly forecasted “hits” (H), the TS seeks to answer 

how well the forecast “hits” (H) correspond to the observed occurrences. The BS seeks to 

answer how similar were the frequencies of “hit” forecasts and correct observations. The 

TS and BS are mathematically defined as 

𝑇𝑆 = 𝐻/(𝑂 + 𝐹 − 𝐻) and  ( 2.2 ) 

𝐵𝑆 = 𝐹/𝑂. ( 2.3 ) 

TS values range from 0 to 1, with 0 indicating no skill in the forecast. BS values range 

from 0 to infinity, with a bias of less than one indicating a tendency to underforecast in 

the forecast system, while a bias of greater than one indicates a tendency to overforecast. 

The subjective analysis of convection compared locations and timing of the WRF-

simulated precipitation accumulations are also conducted with Stage IV and CCPA 

analyses. 

 

3.2 Verification of Control Simulation 

The NARR data were used to verify the upper air synoptic features of the CTRL 

simulation, as well as how the CTRL simulation predicted the diurnal heating and SB 

effects. Results show that the CTRL simulation was able to capture the overall upper air 
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synoptic features over the southeast area of North America, as described in Chapter 2, to 

include the 850 hPa high over the Atlantic Ocean and low-pressure system over the 

western Gulf of Mexico, as well as the low pressure system over the Bahamas at the 300-

hPa level. In terms of a quantitative analysis of the surface conditions, Table 3.2 shows 

RMSE values for the CTRL simulation surface variables (temperature, dewpoint, and 

wind speed). The CTRL RMSE values are less than 2°C for the temperature and 

dewpoint values and less than 1.5 ms-1 for wind speeds. With the relatively small RMSE 

values, it appears that the CTRL simulation does a relatively good job in forecasting the 

surface variables, with the largest errors seen in forecasting temperature values. Overall, 

this indicates that the model is well able to capture the synoptic situation and surface 

conditions of 6-7 September 2012. 

 

3.2.1 Sea Breeze Verification 

Figure 3.2 shows that about an hour after daybreak in the simulation (1230 UTC 6 

September 2012, Figure 3.2a), diurnal heating of the land has started, and by 1530 UTC 6 

September 2012 (Figure 3.2c), the entire FL coastal regions have reached surface 

temperatures exceeding those of the nearby coastal waters. This land-ocean temperature 

gradient leads to surface pressure decreases over the land and the turning of the land 

breeze into a SB. The SB circulations can be identified by the direction and speed 

changes of the observed and simulated near-surface wind fields.  

The WRF-simulated gray-zone SB is initiated between 1405 and 1435 UTC 6 

September 2012 on both sides of the peninsula (Figure 3.2d), which is similar to the SB 

initiation time in the surface observations and NARR data. The SBs reach an average 
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heights of 850 -1,000 m in the d03 and d04 CTRL simulations, as seen in the CTRL 

results listed in Table 3.3. The two SBs meet inland of the eastern coast of FL at 2120 

UTC 6 September 2012 for the d03 simulation and at 2040 UTC for the d04 simulation 

(Table 3.3), slightly later than the merger time in the observations (2030 UTC 6 

September 2012).  

Overall, the gray-zone CTRL simulation does a relatively good job simulating the 

general features of the synoptic situation and the initiation and evolution of the FL SB on 

6-7 September 2012. However, the d03 CTRL simulation has some issues with resolving 

the timing of the SB frontal merger, though improvements to the SB timing and strength 

are achieved in the smaller grid spacing and will be discussed further in Chapter 4. 

 

3.2.2 Convective Initiation Verification 

In looking at the QPF analysis, the TS and BS values for the d03 and d04 CTRL 

simulation results are given in Table 3.4. As seen by the relatively low TS values in both 

domains for all four precipitation thresholds, the gray-zone simulations are relatively 

poor at forecasting the correct intensities for the SB event, and the BS shows that the 

gray-zone simulations considerably underforecast the precipitation intensity events. 

However d04 performs slightly better than d03 in all the QPF threshold categories due to 

the overall increased spatial precipitation amounts that occur in the d04 compared to the 

d03 as seen in Figure 3.3. 

Figures 3.3a and 3.3b compare the CTRL simulation accumulated precipitation to 

CCPA data from 1200 UTC 6 September 2012 to 0600 UTC 7 September 2012 (18-h 

accumulated precipitation totals) for domains d03 and d04, respectively. Both CTRL 
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simulation domains and the CCPA analysis observe relatively sparse areal coverage of 

rainfall along the west coast and northern FL, while distinct patterns of rainfall are 

observed along the east coast and central FL. In addition, an obvious lack of rainfall 

occurs northeast of Lake Okeechobee in both the CCPA analysis and the CTRL 

simulations, although the “rain shadow” is more pronounced in d03 (Figure 3.3a) than in 

d04 (Figure 3.3b). Meanwhile, a light rainfall occurs across the north-central and 

northeast portion of the FL peninsula in the d04 simulation (Figure 3.3b), while the d03 

grid scale shows almost no precipitation in those areas (Figure 3.3a). Overall, the d04 

simulation shows better ability to simulate the accurate locations of the convective 

precipitation than does the d03, though Figures 3.3c and 3.3d show that both CTRL gray-

zone grid scales are relatively poor in forecasting the large spatial areas of high intensity 

precipitation accumulations (greater than 12.8 mm), though d03 has larger organized 

spatial areas of high intensity precipitation than does d04. 

 Figure 3.4 further compares the hourly timing and spatial locations of the d03 and 

d04 simulated precipitation for the CTRL simulation with Stage IV data. Simulated 

timing of the initial convection along the west coast of FL at 1400 UTC 6 September 

2012 for an inland location just northeast of Waccasassa Bay (near station CGC in Figure 

3.1) in d03 and d04 (Figures 3.4a and 3.4b) is concurrent with observations, however, the 

d03 fails to resolve the convection produced east of Waccasassa Bay. In contrast, with 

higher resolution, the d04 is able to capture the convection east of Waccasassa Bay 

(Figure 3.4b), but also overestimates the WCSB convection just north of Naples (APF in 

Figure 3.1). By 1800 UTC 6 September 2012, the d04 resolves the convection along the 

east coast of FL, while the d03 has no convection associated with the ECSB at this time 
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(Figures 3.4c and 3.4d). It is not until 1900 UTC 6 September 2012 that the d03 domain 

begins to resolve significant convection along the ECSB. At this time, we also see small 

convective cells that are not associated with the SBF in the central portion of the 

peninsula in d04 (Figure 3.4d) that are not seen in the d03 (Figure 3.4c).  

 In the d03 and d04 CTRL simulations, the SBFs collide and merge at 2120 and 

2040 UTC 6 September 2012, respectively, and produce an enhanced convective squall 

line which is markedly similar to the Stage IV analysis convective pattern (Figure 3.4e 

and 3.4f). However, from 2230 UTC 6 September 2012 until 0200UTC 7 September 

2012, the orientation of the convective in the d03 CTRL simulation becomes more north-

to-south orientated, while the Stage IV analysis data clearly shows the convective line in 

southern FL maintaining a northeast-to-southwest orientation (Figure 3.4g). The 

convection produced in d04 shows greater ability to capture this northeast-to-southwest 

convective orientation (Figure 3.4h). Finally, the duration of the convection across the FL 

peninsula in the d03 and d04 simulation lasts until 0500 UTC 7 September 2012 (not 

shown), concurrent with the Stage IV and CCPA analyses.  

 In summary, the CTRL simulation in both gray-zone grid spacings is able to 

capture the overall spatial locations and timing of the convective mesoscale systems 

(MCSs) that occurred for the 6-7 September 2012 SB event reasonably well. However, 

the intensities of the WRF-simulated convective precipitation are overall much weaker 

for the gray-zone simulations as compared to CCPA and Stage IV analysis convective 

precipitation intensities in subjective and QPF analyses. The timing and overall spatial 

locations of the CI is captured better in d04 than d03, and the d04 simulation is able to 

more accurately resolve the orientation of the convection after the SBF merger into the 
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squall line. D03, however, is better able to produce convective cells that are slightly 

larger and more convectively organized than in the d04 results. 

 

3.3 Sensitivity of Simulations to Parameterizations and Initial Conditions 

 All of the P/IC simulations were able to successfully resolve the overall synoptic 

features of the 6-7 September 2012 SB case. The P/IC simulations were also all able to 

resolve the SBs, though differences in SB timing and intensity are seen among the 

different simulations. Furthermore, the P/IC simulations are able to produce the SB 

convection, though differences in the timing, spatial locations, and intensity of the SB 

convection varied among the various simulations as well, with the simulated SB 

convection showing the most sensitivity to the PBL schemes and ICs. 

 

3.3.1 Sea Breeze Sensitivities 

Table 3.2 shows the results of the various P/IC simulations in terms of their 

RMSEs for surface variables (temperature, dewpoint, and wind speed). All the P/IC 

simulations have fairly small RMSE values, similar to the CTRL simulation, indicating 

that all the simulations were able to achieve relatively good forecast results of surface 

variables. The results also showed most simulations had improvements in forecasting the 

surface variables for d04 compared to d03, with the exception of wind speed, which 

showed an averaged decreased skill in forecasting at the higher resolution. Boldface and 

gray italics in Table 3.2 indicate the best and worst simulations in terms of RMSE values 

(i.e., top and bottom 10% of RMSE values). As can be seen in Table 3.2, overall, the 

PBL3_ACM2 and the CU4_NT simulations are the best simulations in terms of RMSE, 
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while the IC5_0612 and PBL4_QNSE simulations are the worst. In addition, the largest 

range of best and worst forecasts for surface variables in terms of RMSE values is seen in 

the PBL and IC simulations, which indicate greater sensitivity of the surface parameters 

to the chosen PBL parameterizations and ICs. All the P/IC simulations have a small range 

of RMSE values for the surface variables, so we expect all the simulations to see a 

production of a SB due to similar surface variable values. 

In terms of diurnal heating of the land surface, all the P/IC simulations began 

surface sensible heating at 1130 – 1200 UTC 6 September 2012, and by 1430-1500 UTC 

6 September 2012, the coastal surface temperatures are exceeding those of the nearby 

coastal waters. The PBL and IC simulations showed the most sensitivity in the speed, 

timing, and the spatial structure of the sensible heating of the land surface. Figure 3.5 

shows surface temperatures for four of the PBL simulations at 1500 UTC 6 September 

2012. All four of these simulations demonstrate significant differences in the areas of 

maximum heating, such as PBL3_ACM2 (Figure 3.5c) heating urban areas heating much 

faster than other simulations, but the rest of the land surfaces much slower. These large 

differences in location and timing of the sensible surface heating led to more significant 

differences in SB initiation in the PBL and IC simulations. Table 3.3 shows the SB 

initiation timing differences among the P/IC simulations. 

In almost all the d03 and d04 P/IC simulations, the WCSB is initiated at 1400 

UTC and the ECSB at 1430 UTC 6 September 2012, however, there are significant 

differences in the SB initiation timing in the PBL and IC simulations. The PBL4_QNSE 

and PBL5_GBM simulations both initiated the ECSB 30 min earlier than observations. In 

addition, the PBL3_ACM2, IC4_0606, and IC5_0612 simulations initiated one or both of 
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the SBs 30 minu later than observations. This sensitivity to the PBL and IC simulations is 

also seen in the variation of the SB depths, where the SB depth varies greatly for these 

simulations as compared to the MP and CU simulations. The mergers of the SBs for the 

CU and MP simulations also show only a slight difference from the CTRL and with little 

internal variation of merger times. In contrast, the PBL and IC simulations show large 

differences in SB merger timing ranging from 20 min earlier to 2 h later than 

observations. Finally, the SB merger time and SB depth is also show to be sensitive to 

grid spacing, as the SB depth increases and initiation time gets more accurate with greater 

gray-zone resolution. Overall, the best simulation for resolving the timing of the SB in 

both grid spacings is the 2WAY simulation, which is due to the effects of the higher 

resolution being fed back up to the coarser resolution. 

 

3.3.2 Convective Initiation Sensitivities 

Table 3.5 shows the CI timing offset for the P/IC simulations compared 

observations. None of the P/IC simulations were able to capture the exact timing of the 

SB CI, though the PBL1_MYJ simulation showed the best results in capturing the timing 

of the simulated CI in both gray-zone grid spacings. The PBL4_QNSE and IC2_0518 

simulations are the worst in terms of correctly forecasting the times of the SB CI, with 

the IC2_0518 simulation initiating the convection too soon, while the PBL4_QNSE 

simulation initiates the convection too late. All simulations shows sensitivity to the 

timing of the CI, however the PBL and IC simulations see the most variability in terms of 

CI start times as compared to the CTRL simulations. Improvements from d03 to d04 for 

CI timing are seen for all P/IC simulations as well.  
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Table 3.5 also shows the QPF results of the P/IC simulations to the CCPA and 

Stage IV analyses data in terms of the average Threat and Bias scores for the four 

precipitation thresholds (annotated in Section 3.1). As seen by the relatively low TS 

scores, all the P/IC simulations are relatively poor in forecasting the correct intensities for 

the SB event in both gray-zone grid spacings, while the BS shows that all the P/IC 

simulations are still underforecasting the intensity of the precipitation events, with the 

exception of the PBL4_QNSE simulation. Improvements in forecasting precipitation 

intensities with the higher resolution grid scale (d04) are once again shown for all 

simulations. The top and bottom 10% of simulations in terms of skill scores are chosen as 

our best and worst forecasts, respectively. The PBL4_QNSE and MP3_Mor simulations 

showed the greatest skill in correcting forecasting the intensities of the two gray-zones’ 

SB convection, while the IC2_0512 and PBL2_MYNN3 simulations showed the worst 

skill. The PBL simulations once again showed the largest range in Threat Scores, 

indicating a greater sensitivity of precipitation intensity to the PBL simulations.  

As with the convective intensities, differences in spatial coverage of the SB 

precipitation accumulations are seen for all the P/IC simulations. A comparison of the 

diversity of the convective precipitation spatial coverage and intensity for 8 P/IC 

simulations (2 CU, 2 MP, 2 IC, and 2 PBL simulations) with the CCPA precipitation 

accumulations are given in Figure 3.6. The largest diversity of convective locations and 

intensity are seen in the PBL simulations, though sensitivity to location and intensity of 

convection is seen in all P/IC simulations. Furthermore, there is slightly better accuracy 

in the spatial coverage of precipitation in the d04 simulations as compared to the d03 

results (not shown) due to the higher resolution’s tendency to produce smaller, more 
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numerous convective cells. 

 

3.4 Summary of P/IC Numerical Simulation Results 

None of the P/IC simulations was the best at overall forecasting the correct 

timing, intensity, and spatial locations of the SBs and their associated convection. 

However, based on the subjective and quantitative results of each simulation’s ability to 

resolve the location, timing, and intensity of the SBs and the CI, the 2WAY and 

PBL1_MYJ simulations perform the best overall in the gray-zone grid spacing for our 

case study. However, as the 2WAY simulation has information and effects of the 

innermost domain fed back upon the coarser parent grids, thus impacting the numerical 

results, the PBL1_MYJ scheme is used as the “best” simulation for further analysis of 

differences in model output between the two gray-zone grid spacings (d03 and d04) in 

Chapter 4. 

 

3.4.1 Sensitivity to Physical Parameterizations 

 The timing and evolution of the SB showed little to no sensitivity to the CU and 

MP parameterizations, as seen in the lack of diversity in the SB initiation timing and 

frontal depths amongst the CU and MP simulation members. This is expected as the CU 

and MP parameterizations mostly effect how the model handles convection and 

precipitation processes, not boundary layer interactions that produce the SB. In contrast, 

the timing and strength of the SB is strongly sensitive to the PBL parameterizations, as 

seen in the large differences for the PBL simulations’ SB initiation/merger times and 

depths. This sensitivity to the PBL parameterizations is partly due to the differences in 
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how the PBL and associated LSM schemes determine the land-surface sensible heating 

and boundary layer vertical fluxes, as seen with the PBL schemes’ differences in 

handling surface temperature (Figure 3.5) and SB initiation timing (Table 3.3). As the 

boundary layer heats up at different times and rates in the PBL simulations, the SB is also 

initiated at different times and various strengths.  

 The timing, intensity, and location of the SB CI shows slight sensitivity to the CU 

and MP parameterizations, as seen in the differences in threat scores, CI timing, and 

precipitation accumulations given in Table 3.5 and Figure 3.6 for these physical 

parameterizations. Two simulations with anomalous precipitation intensities are found 

within the CU and MP simulations (as seen in TS and BS values in Table 3.5): the 

CU2_G3 (Figure 3.6b) and MP3_Mor (Figure 3.6d). The Morrison MP scheme is the 

only MP scheme tested that includes a 2-moment scheme which specifies the 

hydrometeor concentration numbers, which seems to aid convection in our case study. 

The G3 CU scheme allows for subsidence effects to neighboring grids, which may 

account for the ability of the model to produce more intense convective cells in the 

simulation due to a decrease in numerous updrafts.  

The SB CI also showed sensitivity to the PBL parameterizations as well, as seen 

in the large variability in the PBL threat scores, CI timing, and spatial locations (Table 

3.5 and Figures 3.6) This large sensitivity is due, in part, to the fact that the PBL schemes 

greatly affected the SB timing and development as described in Section 3.3.1., which in 

turn impacted the timing and evolution of the CI along the SBFs. This can be seen in the 

differences between the PBL2_MYNN3 and PBL4_QNSE simulations (Figures 3.5b, 

3.5d, 3.6h, and 3.6i). The PBL4_QNSE simulation shows a much warmer land surface, 
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which leads to much stronger SBFs and more intense convective precipitation, while the 

PBL2_MYNN3 simulation has a cooler land surface in comparison, producing weaker 

SBFs and weaker CI. 

 

3.4.2 Sensitivity to Initial Conditions 

The FL SB initiation timing and strength is slightly sensitive to the ICs. The 

simulations with the latest initialization times (0600 UTC and 1200 UTC 6 September 

2012) show the greatest variability in SB initiation timing, however, these sensitivities 

could partly be due to their shorter spin-up time (2-8 h) prior to SB initiation as compared 

to the other IC simulations (>14 h). The initiation time, locations of, and intensity of the 

SB CI is also sensitive to the ICs, as seen in Figure 3.6 and Table 3.5. As the IC2_0512 

and IC3_0518 simulations were able to simulate the 5 September 2012 convective 

precipitation at the beginning of their simulation periods, these simulations had added 

effects of a moister low-level atmosphere within the simulations. This is seen in the 

simulations increased soil moisture values (0.1-0.2 m/m3 higher than the CTRL) and 

surface water vapor mixing ratios (1-2 g/kg higher than the CTRL) at 0600 UTC 6 

September 2012 (not shown). This increased low-level moisture led to a saturated 

convective boundary layer and earlier CI due to decreased entrainment effects (Baker et 

al. 2001). The IC1_GFS simulation is noticeable similar to the CTRL simulation in terms 

of timing and intensity of the SB, which shows that the SB and CI are less sensitive to 

initialization data. However, as the NAM and GFS data are produced by the same agency 

and use similar processes in their data assimilation, the lack of sensitivity shown in the 

model could be due to the lack of diversity in the two ICs data sources. 
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3.4.3 Sensitivity to Gray-Zone Grid Scale 

The timing of the SB initiation appears not to be sensitive to the grid spacing, 

however, the intensity and evolution of the SB (as seen in SB depth and timing of the 

SBFs’ merger) is sensitive to the grid spacing as seen in the range of SB depth and 

initiation times in Table 3.3. Moreover, consistent improvements are made to the SB CI 

timing and spatial locations in the higher gray-zone grid resolution (d04), as seen in the 

TS values and CI timing offset of d03 and d04 in Table 3.5. However, improvements to 

the intensity of the SB convective cells and precipitation output for the higher resolution 

grid is mixed as seen in the bias score values for the two gray-zone grids (Table 3.5) and 

the comparison of the Figures 3.3c and 3.3d for the CTRL simulation. As the largest 

consistent improvement in simulating the SB and its CI in terms of timing, intensity, 

spatial location is seen with the variable gray-zone grid spacing, further analysis of the 

differences of the SBs and their CI and evolution between the two gray-zone grid scales 

is conducted to determine the factors for the improved forecasting CI skill due to 

increased grid zone resolution within the WRF-ARW model. 
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Figure 3.1 Map showing simulation terrain heights and water body locations for this 

study. Red lines indicate the locations of the vertical cross sections cut west-to-east 

through MacDill, Air Force Base (MCF, northernmost) and Lake Okeechobee (OBE, 

southernmost). The colored boxes indicate areas used later in the study for a zoomed-in 

analysis. The locations of the 23 observing stations used to aid in the verification of the 

WRF simulations are also plotted. 

 

 

Table 3.1 Contingency table illustrating the counts used in verification statistics of 

dichotomous (e.g., Yes/No) forecasts and observations. 

Forecast 
Observed  

Yes No Sum 

Yes Hits (H) False alarms All forecasted (F) 

No Misses Correct rejections No forecasted (N-F) 

Sum All observed (O) No observed (N-O) Total (N) 
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Table 3.2 Summary of P/IC simulations’ RMSE scores for forecast performance skill of 

surface variables (temperature, dewpoint, and wind speed) for d03 and d04. “Best” 

RMSE forecasts are in boldface and “worst” RMSE forecasts in gray italic (see Section 

3.3.1 for definition of best and worst). 

Simulation 

RMSE  

Temp (°C) 

RMSE  

Dewpoint (°C) 

RMSE  

Wind (ms-1) 

D03 D04 D03 D04 D03 D04 

CTRL 2.02 1.95 1.34 1.40 1.42 1.41 

2WAY 1.86 1.95 1.38 1.39 1.41 1.42 

CU1_GF 1.91 1.90 1.41 1.38 1.39 1.43 

CU2_G3 1.91 1.87 1.40 1.38 1.40 1.41 

CU3_NSAS 1.88 1.92 1.38 1.41 1.44 1.46 

CU4_NT 1.88 1.83 1.36 1.37 1.43 1.44 

MP1_Lin 1.95 1.91 1.41 1.39 1.40 1.39 

MP2_WSM6 1.96 1.92 1.43 1.39 1.40 1.40 

MP3_Mor 2.00 1.97 1.42 1.39 1.40 1.38 

MP4_SBU 2.03 2.00 1.41 1.38 1.39 1.42 

PBL1_MYJ 1.98 1.94 1.34 1.32 1.52 1.63 

PBL2_MYNN3 2.14 1.99 1.47 1.39 1.38 1.47 

PBL3_ACM2 1.83 1.76 1.31 1.24 1.41 1.41 

PBL4_QNSE 1.94 1.90 1.43 1.41 1.68 1.74 

PBL5_GBM 1.99 1.91 1.34 1.35 1.58 1.58 

IC1_GFS 2.00 1.95 1.52 1.40 1.34 1.41 

IC2_0512 1.94 1.93 1.56 1.47 1.35 1.38 

IC3_0518 1.98 1.98 1.52 1.44 1.40 1.45 

IC4_0606 1.96 2.00 1.55 1.52 1.30 1.41 

IC5_0612 2.07 2.03 1.64 1.58 1.41 1.48 
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Figure 3.2 D03 CTRL simulation surface temperature (color, units every 2oF) and total 

surface wind (black arrows, reference vector 2.5 m s-1) for a zoomed-in region of d03 

(blue box in Figure 3.1) at: a) 1230 UTC and c) 1430 UTC 6 September 2012. D03 

CTRL simulation zonal (u-component) winds (color: red easterly, blue westerly, units m 

s-1) and total wind (black arrows, unit reference vector 2.5 m s-1) for same region as a) 

and c) at: b) 1400 UTC and d) 1500 UTC 6 September 2012.  

  

b) 

d) 

a) 

c) 
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Table 3.3 Summary of P/IC simulation SB CI timing errors (min), maximum SB depth 

(m), and SB merger time (UTC) for d03 and d04. Zero offset on SB initiation timing is 

indicated by a green checkmark, blue indicates premature SB formation and red indicates 

delayed SB formation, as compared to observational data. 

Simulation 

Initiation Timing Offset (min) Average SBF Depth (m) 

WCSB ECSB SB Merger WCSB ECSB 

D03 D04 D03 D04 D03 D04 D03 D04 D03 D04 

CTRL ✓ ✓ ✓ ✓ +50  +10  950 1000 850 900 

2WAY ✓ ✓ ✓ ✓ +10  +10  1000 1000 850 850 

CU1 ✓ ✓ ✓ ✓ +50  +10  850 950 800 850 

CU2 ✓ ✓ ✓ ✓ +50  ✓ 850 950 800 850 

CU3 ✓ ✓ ✓ ✓ +50  -10  850 950 800 850 

CU4 ✓ ✓ ✓ ✓ +60  -20  850 950 800 850 

MP1 ✓ ✓ ✓ ✓ +60  +20  850 950 800 850 

MP2 ✓ ✓ ✓ ✓ +70  +10  850 950 800 850 

MP3 ✓ ✓ ✓ ✓ +70  +50  850 950 800 850 

MP4 ✓ ✓ ✓ ✓ +70  +30  850 950 850 950 

PBL1 ✓ ✓ ✓ ✓ +50  ✓ 900 1000 850 950 

PBL2 ✓ ✓ ✓ ✓ +120  +40  1000 1100 850 900 

PBL3 +30  +30  +30  +30  +160  +90  750 900 700 850 

PBL4 ✓ ✓ -30  -30  +60  +30  1150 1250 1000 1100 

PBL5 ✓ ✓ -30  -30  +50  -20  950 1050 850 900 

IC1 ✓ ✓ ✓ ✓ +50  +20  850 1000 800 900 

IC2 ✓ ✓ -30  -30  +30  ✓ 900 1000 800 900 

IC3 ✓ ✓ -30  -30  +40  +10  850 1000 800 950 

IC4 ✓ ✓ +30  +30  +90  +30  950 1000 850 900 

IC5 +30  +30  ✓ ✓ +90  +20  950 1000 850 900 

 

Table 3.4 Threat and Bias Score values for four precipitation thresholds over an 18-h 

forecast period (1200 UTC 6 September 2012 to 0600 UTC 7 September 2012) for the 

CTRL simulation. 

Domain 

Threat Score (TS) Bias Score (BS) 

Precipitation Threshold (mm) Precipitation Threshold (mm) 

2.54 6.35 12.7 25.4 2.54 6.35 12.7 25.4 

D03 0.12 0.10 0.08 0.00 0.12 0.11 0.12 0.14 

D04 0.28 0.19 0.15 0.04 0.26 0.20 0.17 0.23 

 

  



51 

 

 

 
Figure 3.3 18-h rainfall accumulation totals from 1200 UTC 6 September 2012 to 0600 

UTC 7 September 2012 for a) d03 CTRL simulation precipitation accumulation totals 

(blue contours, units mm h-1) and CCPA data (color, units mm h-1). Panel b) is the same 

as a) but for d04 CTRL simulation. CTRL simulation precipitation accumulation totals 

(color, units mm h-1) for c) d03 and d) d04 for the same times as a) and b). 

  

D03 WRF and CCPA Data D04 WRF and CCPA Data 

D03 WRF Data D04 WRF Data 

a) b)  

c) d)  
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Figure 3.4 Stage IV precipitation accumulation (color, units mm h-1) and d03 (left 

column) and d04 (right column) CTRL simulation precipitation accumulation (black 

contours, units mm h-1) at: a-b) 1400 UTC, c-d) 1800 UTC, d-f) 2100 UTC, and g-h) 

2300 UTC 6 September 2012. 

  

D03 CTRL and CCPA Data D04 CTRL and CCPA Data 

squall 
line 

a) 

c) d) 

e) f) 

b) 

g) h) 
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Figure 3.5 D03 surface temperature (color, units oF) and total wind (black arrows, unit 

reference vector 2.5 m s-1) for a) CTRL, b) PBL2_MYNN3, c) PBL3_ACM2, and d) 

PBL4_QNSE simulations at 1530 UTC 6 September 2012. 

  

a) b) 

c) d) 
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Table 3.5 Summary of WRF simulation average Threat Score, Bias Scores, and SB CI 

timing errors (min) for d03 and d04. “Best” RMSE forecasts are in boldface and “worst” 

RMSE forecasts in gray italic (see Section 3.3.2 for definition of best and worst). Zero 

offset on SB CI timing is indicated by a green checkmark, blue indicates premature CI 

and red indicates delayed CI, as compared to Stage IV analysis data.  

Simulation 

Avg Threat 

Score 

Avg Bias 

Score 

Timing Offset (min) 

WCSB CI ECSB CI End of CI 

D03 D04 D03 D04 D03 D04 D03 D04 D03 D04 

CTRL 0.08 0.17 0.12 0.22 -120  -60  +60  ✓ ✓ ✓ 

2WAY 0.15 0.21 0.18 0.28 -120  -120  ✓ ✓ ✓ ✓ 

CU1_GF 0.13 0.23 0.42 0.34 +60  -60  +60  -60  +60  ✓ 

CU2_G3 0.12 0.24 0.75 0.28 -60  -60  +60  ✓ +240  +120  

CU3_NSAS 0.14 0.26 0.33 0.48 -60  -60  +60  ✓ +120  +60  

CU4_NT 0.14 0.26 0.22 0.39 -60  -60  +60  -60  ✓ ✓ 

MP1_Lin 0.10 0.22 0.19 0.47 -60  +60  +60  -60  +60  +180  

MP2_WSM6 0.10 0.20 0.25 0.29 -120  -60  +60  -60  +60  +60  

MP3_Mor 0.14 0.27 0.31 0.60 -60  -60  +60  ✓ ✓ +120  

MP4_SBU 0.09 0.19 0.19 0.27 -180  -120  +60  ✓ +120  +120  

PBL1_MYJ 0.11 0.17 0.19 0.16 ✓ ✓ +60  ✓ +60  ✓ 

PBL2_MYNN3 0.06 0.16 0.09 0.15 ✓ -60  +120  +60  +60  +60  

PBL3_ACM2 0.08 0.15 0.21 0.18 +60  -60  +180  +120  +60  -120  

PBL4_QNSE 0.20 0.33 1.11 1.51 +300  +60  +60  +60  +120  +120 

PBL5_GBM 0.11 0.22 0.39 0.36 +120  ✓ +120  ✓ -60  ✓ 

IC1_GFS 0.07 0.17 0.09 0.18 -60  -60  +60  ✓ ✓ -60  

IC2_0512 0.06 0.12 0.23 0.15 -180  -180  -120  -120  ✓ ✓ 

IC3_0518 0.08 0.20 0.17 0.21 -120  -120  ✓ -60  ✓ ✓ 

IC4_0606 0.08 0.19 0.17 0.24 +60  ✓ +120  ✓ ✓ ✓ 

IC5_0612 0.14 0.26 0.30 0.50 +180  +120  +60  ✓ +60  ✓ 
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Figure 3.6 18-h (1200 UTC 6 September 2012 to 0600 UTC 7 September 2012) rainfall 

accumulation totals (color, units mm h-1) for: a) CCPA analysis, b) CU3_NSAS 

simulation, c) CU4_NT simulation, d) MP3_Mor simulation, e) MP4_SBU simulation, f) 

IC2_0512 simulation, g) IC5_0612 simulation, h) PBL2_MYNN3 simulation, and i) 

PBL4_QNSE simulation.  

a) b) c) 

d) e) f) 

g) h) i) 



 

 

 

 

 

CHAPTER 4 

 

EFFECTS OF GRAY-ZONE GRID SPACING ON  

CONVECTIVE INITIATION 

  

According to the results from Chapter 3, the coarser grids are able to resolve the 

SB and CI, but the finest grid generally produced better results in many cases. A previous 

study by Colby (2003) examined the effect of the grid scale on New England SB 

formation using a 36-, 12-, 4-km grid using the fifth-generation Pennsylvania State 

University-NCAR Mesoscale Model (MM5). As his study neglects the details on how the 

finer grid improves forecasting skill of the SB, as well as the forecasting skill of the finer 

grids on SB CI, answers to these questions are warranted. In order to understand the 

spatial, timing, and intensity differences produced in the d03 and d04 SB and CI 

simulations identified in Chapter 3, further diagnoses of differences in the atmospheric 

and geophysical features resolved in these two grid scales for the best simulation 

(PBL1_MYJ) is conducted.  

 

4.1 Sensitivity to Geophysical Features 

The representation of topography, such as terrain and water bodies, in various grid 

scales is important to understanding the differences produced in the gray-zone 

simulations. A convex (concave) coastline can enhance (degrade) the formation of the SB 
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due to the onshore perpendicular flow of the SB enhancing low-level convergence 

(divergence) over the land area (Figure 4.1, Weaver 2006).  

 

4.1.1 Effects of Coastlines and Bays 

 A significant difference in the ability of the two gray-zone grids to resolve the 

observed convective precipitation occurs east of Waccasassa Bay at 1600 UTC 6 

September 2012. Specifically, d03 is unable to resolve this convection, while d04 is able 

to produce convection at this location. Just prior to this time at 1430 UTC 6 September 

2012, the WCSB in both domains has been initiated as seen in the u-component of the 

wind and total winds vectors (Figures 4.2a and 4.2b). However, d04 shows that its higher 

resolution grid scale allows the WCSB to be initiated more closely along the coastline 

shape and with slightly stronger winds (Figures 4.2b and 4.2d), leading to areas of 

enhanced convergence (Figures 4.3b and 4.3d) that are absent in d03 (Figures 4.3a and 

4.3c). This narrow band of convergence produced by the SBF in d04 leads to enhanced 

vertical velocities at the SBF producing the CI seen east of Waccasassa Bay (Figure 

4.3d).  

 In addition, the flow of the winds through the Y-shaped Tampa Bay area (see 

inset in Figure 4.4) also shows significant enhancement of the winds in the d04 resolution 

due to its better resolution of the bays’ coastline (Figures 4.2b and 4.2d). The marine air 

flowing through Tampa Bay is funneled to the northwest and northeast around the 

Interbay peninsula (location of South Tampa Bay and MacDill, AFB) into Old Tampa 

Bay and Hillsboro Bay, respectively, due to the SB flow (Figure 4.4 inset). This produces 

strong convergent flow from the SB along the Pinellas peninsula (west of Old Tampa 
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Bay) and Interbay peninsula. The Tampa Bay breeze and WCSB create a narrow band of 

enhanced surface convergence which aids in lifting air to its LFC and initiating 

convection at this time as seen in the bright red reflectivity contours in the d04 simulation 

just north of the Pinellas peninsula at 1500 UTC (Figure 4.3b). The higher resolution of 

the FL coastline in d04 also aids in initiating the correct timing of the convection that 

occurs in the southeast corner of the FL peninsula at 1600 UTC 6 September 2012. In this 

area, Biscayne Bay creates a convex and concave portion of coastline, which, due to the 

SB flow, creates two areas of convergent flow to the north and south of the divergent 

flow produced by the bay breeze.  

 

4.1.2 Lake Effects 

 In addition to the bay breezes and coastlines affecting the CI in the gray-zone 

simulations, the lake breezes (LBs) also play an important role in CI. LBs, like SBs, are 

frequent occurrences in the summertime when cooler lakes create a pressure-gradient 

effect that generates a lake-to-land movement of air. In addition, lakes are known to 

significantly impact convection during summer by producing “rain shadows” on the 

downwind side of the lake (Segal et al. 1997). This occurs when the synoptic wind 

blowing over the cooler lake surface is cooled and moistened, generating subsidence and 

the suppression of the CBL, leading to more stable conditions as the wind begins to flow 

back over land (Segal et al. 1997). It has long been established that Lake Okeechobee, 

FL’s largest lake at 1,825 km2 (see Figure 4.4), affects convection in terms of LB and rain 

shadow effects, in both observations and in numerical simulations (e.g., Blanchard and 

Lopez 1985; Boybeyi and Raman 1992; Segal et al. 1997). As mentioned in Section 
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3.2.2, the Lake Okeechobee “rain shadow” is observed in observations on 6 September 

2012, as well as in the gray-zone WRF simulations (Figures 3.4a and 3.4b), suppressing 

convection directly downwind of the lake. In contrast to the PBL1_MYJ WCSB and 

ECSB frontal heights of 850-900 m (Table 3.3), the LB produced by Lake Okeechobee in 

the d03 PBL1_MYJ simulation is weaker, reaching a height of 400-500 m (Figure 4.5a). 

In contrast, the d04 PBL1_MYJ simulation for the Okeechobee LB produces a stronger 

LB with a frontal head of ~800-900 m (Figures 4.5b and 4.5d). 

 In addition, both PBL1_MYJ gray-zone grid spacings resolve many of the smaller 

FL lakes, not merely Lake Okeechobee (see Figure 4.4 for lake locations and names). 

Little research has been done on how the smaller FL water bodies affect the SB, with the 

exception of studies done on the smaller water bodies surrounding Cape Canaveral (e.g., 

Laird et al. 1995; Rao and Fuelberg 2000). In the d03 and d04 PBL_MYJ simulations, 

midsized lakes (lakes between 30-200 km2), the St. Johns River, and the Indian River are 

all resolved and effectively produce lake/river breezes at the d03 and d04 grid scales. 

Small lakes (i.e., lakes between 10-30 km2) are not resolved in d03, but the higher 

resolution d04 is able to resolve these lakes and produce associated LBs (see Figure 4.6). 

Very small lakes (less than 10 km2) are not resolved at either gray-zone grid scale. Figure 

4.7 shows a vertical cross section through the center of the peninsula at 1600 UTC 6 

September 2012. The d04 PBL1_MYJ simulation’s WCSB and ECSB frontal heads 

(indicated by blue arrows) show depths of ~600 to 750 m, while in comparison, the LBs 

(indicated by red arrows) show depths of ~250 m for Lake Weohyakapka (30 km2) and 

Lake Marian (23 km2) to ~375 m for the southern tip of Lake Kissimmee (140 km2).  

 In both PBL1_MYJ gray-zone simulations, the LBs produced by the midsized and 
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small lakes in d03 and d04 are important areas for CI. LBs produce convergent boundary 

areas on the windward side of the lake that extends in an elongated semicircle around the 

sides of the lake (due to interactions with the opposing synoptic flow). In the WRF 

simulation, these convergent frontal areas produced by the LB interacting with the 

synoptic winds intersect with other boundary areas, such as SBs or other LBs, producing 

CI. A clear example of this is seen in the interactions of the ECSB, Lake George, 

Crescent Lake, and Lake Apopka in the d03 grid scale (Figure 4.8). At 1825 UTC 6 

September 2012, a strong area of convergence from Lake George and Crescent Lake 

(Cell 1 in Figure 4.8a) perpendicularly intersects the ECSB, producing a convective cell. 

Twenty minutes later at 1845 UTC, the convergence area between Lake George and 

Crescent Lake generates a convective cell (Cell 4 in Figure 4.8d), while just 15 min later, 

the Crescent Lake breeze again intersects the ECSB (north of the lake), producing a 

convective cell at 1900 UTC (Cell 5 in Figure 4.8e). A final area of CI due to the LB and 

ECSB collision in the example occurs at 1910 with the convergent area produced by Lake 

Apopka (Cell 7 in Figure 4.8f). 

 In addition to convection produced by the LBs intersecting with other boundary 

areas, the interaction of the LBs with the synoptic winds also leads to CI. Figure 4.8f 

shows this interaction. As the LB produced by Lake Apopka interacts with synoptic 

winds, the convergence area surrounding the lake becomes more and more elongated 

downstream of the lake in narrow bands. As these convergent bands narrows, vertical 

velocities increase, causing CI to occur on one of the synoptic wind parallel sides of the 

lake (Cell 8 in Figure 4.8f). Because the higher resolution of d04 is able to resolve more 

of the smaller FL lakes, the d04 simulation produces more numerous convergent LB 
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boundary lines, which in turn, lead to more convective cells being initiated as seen in the 

d04 PBL1_MYJ simulation (Figure 4.3d) in central FL, as compared to the lack of these 

convective cells as seen in the d03 PBL1_MYJ simulation (Figure 4.3c).  

 

4.2 Sea Breeze Strength 

As mentioned in Chapter 3, all the P/IC simulations produced a larger SB depth 

and better timing of the SB merger in d04 than in d03. An increase in SB depth is usually 

indicative of a stronger SBF. Figure 4.9 shows a temporal evolution of the PBL1_MYJ-

simulated zonal wind cross sections for d03 and d04, indicating the inland progression 

and height of the ECSB and WCSB during the afternoon. As can be seen in Figure 4.9, 

the d04 WCSB and ECSB are significantly deeper than the d03 SBs by several hundred 

meters. 

A stronger SBF is produced by a significant temperature contrast between the 

continental and maritime air masses and/or a sharp temperature gradient occurring over a 

narrow horizontal distance, producing a narrow front (Miller et al. 2003). To produce a 

narrow front, strong low-level convergence must occur associated either with strong 

opposing offshore winds and/or strong onshore winds within the marine air mass (Miller 

et al. 2003). Another method to determine frontal strength is analyzing frontogenesis, or 

the rate of increase of the magnitude of the temperature gradient with time. It can be 

determined by the following equation: 

𝑑
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𝜕𝜃

𝜕𝑦
) = − (

𝜕𝑢
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𝜕𝜃

𝜕𝑝
) −

𝜕

𝜕𝑦
(

𝜕𝜃

𝜕𝑡
) ( 4.1 ) 

where the time rate of the temperature gradient (−
𝜕𝜃

𝜕𝑦
), is considered a measure of frontal 

strength. The y-direction is taken to be across the front towards the cooler air. The first 
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term on the right hand side describes the effect of horizontal shear, the second term terms 

contains the effects of convergence, the third term is the tilting term, and the fourth term 

is a diabatic term. Arritt (1993) determined that convergence is the dominant term in the 

frontogenesis function for a SBF, and what we will consider for the indicator of SB 

strength in this study. In the PBL1_MYJ simulations, we see the d04 producing stronger 

winds in behind a narrow WCSB and ECSB compared to the d03 (Figure 4.2), thus 

producing a sharper thermodynamic temperature gradient and stronger SBF, as also seen 

in the more narrow SB frontal convergence zone (Figure 4.3).  

 

4.2.1 Sea Breeze Frontal Convection 

While the interaction of the SB with the LBs is a significant factor in producing 

convection along the d04 ECSB, this is not seen for the increased d04 WCSB CI (Figures 

4.3b and 4.3c). The increased WCSB convection is due to the increased strength and 

depth of the d04 WCSB front. D04’s stronger SBF is induced in part, by the higher 

resolution grid’s ability to resolve a slightly larger (1-2°C) land-ocean temperature 

difference. This is clearly seen in the temperature differences between d03 and d04 at 

1430 UTC 6 September 2012 (Figure 4.10). As the atmosphere above the land and large 

bodies of water is sensitive to the specified temperature (Knievel et al. 2010), even this 

small temperature difference is enough to produce a stronger land-ocean temperature 

gradient in d04 over that in d03.  

 A larger land-ocean surface temperature gradient will lead to increased low-level 

flow within the SBC (i.e., higher SB depth) and increased low-level convergence at the 

SBF (for offshore flow). The d03 ECSB band of frontal convergence (Figures 4.3a and 
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4.3c) is much broader than the d04 ECSB’s band of frontal convergence (Figures 4.3b 

and 4.3d), showing a much weaker d03 ECSB kinematic front (location of the SBF’s 

maximum near surface wind convergence (Miller et al. 2003). D04’s enhancement of the 

SBF (seen in the higher SB depth of 900 m), as compared to d03 (SB depth of 850 m), 

leads to increased vertical velocities at the SBF, producing more frequent CI as well. 

However, while the d04 convective cells are more numerous, they are also smaller and 

produce less organized cells of intense precipitation as compared to the d03 convective 

cells. Thus, the higher resolution gray-zone grid spacing seems to have some disability in 

developing the convective cells within the simulation, which will be discussed more in 

Section 4.3. 

 

4.2.2 Postsquall Line Convection 

 In the d04 and d03 PBL1_MYJ simulations, the observed squall line produced by 

colliding SBs at 2040 and 2120 UTC 6 September 2012, respectively, is captured 

reasonably well in terms of timing and spatial location (Figures 4.11a and 4.11b). 

However, following the generation of this squall line from the colliding SBs, the 

convective system’s orientation in the d03 grid simulation evolves quite differently from 

the orientation of the observed convective system. From 2300 UTC 6 September 2012 to 

0100 UTC 7 September 2012, the pattern of precipitation seen in the d03 simulation is 

significantly different from the observations and the d04 simulation results (Figures 4.11c 

and 4.11d). CCPA and Stage IV analyses show that the postsquall line convective system 

tends to have a northeast to southwest orientation, while the d03 simulation creates a 

distinct north to south band of convective cells instead.  
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 The causes of the discrepancies in the postsquall line convective orientation are 

due to differences in the strength of the squall lines produced in the two gray-zone 

PBL1_MYJ simulations. Figures 4.12a and 4.12b show the zonal winds of d03 and d04, 

respectively, just after the SBF merger and generation of the squall line convection at 

2100 UTC 6 September 2012. It is evident that the SBF and associated convective cells 

produced by the d04 output are much stronger than those produced by the d03 output 

along the squall line. An hour later, the northern half of the d04 squall line continues to 

propagate eastward (Figure 4.12d), while the weaker squall line in d03 remains 

essentially motionless in the east central portion of the peninsula (Figure 4.12c). By 2300 

UTC 6 September 2012, the d03 postsquall line convection is still in the central portions 

of the peninsula (Figure 4.12e), while the d04 postsquall line convection system has 

propagated eastward to FL’s eastern coast (Figure 4.12f).  

  

4.3 Summary 

In summary, decreasing the gray-zone grid scale demonstrates improvements to 

forecasting the timing and spatial locations of CI, however, there are still some issues in 

forecasting the intensity of the convective cells. It is found that improvements to 

forecasting the timing and spatial locations of CI along SBFs are due to impacts from 

improved gray-zone resolution of important geophysical features. The improved 

geophysical resolution of the model leads to enhancements of such atmospheric variables 

such as low-level convergence and surface sensible heating, which are key ingredients to 

strengthening the SBFs and aiding in CI. Compared with the 3-km grid scale, the 1-km 

gray-zone grid scale enables better resolution of the FL coastline and the smaller FL lakes 
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(10-30 km2), which leads to added land-water interfaces. The land and water bodies 

generate a significant temperature gradient between each other, effectively enhancing the 

SB flow along the sea- and lakeshores. These increased SB and LB winds produce 

enhanced low-level convergence, and in turn, to stronger SBFs and LBs. The enhanced 

SBs and LBs produced stronger updrafts at the SBFs’ (LBFs’) head, which aided the 

parcels in reaching their LFC and producing convection, thus producing key locations for 

higher frequency and more numerous CI not seen in the coarser WRF grid domains.  

In addition, the stronger SBFs generated in the d04 grid zone simulation led to a 

more intense squall line being produced following the SBF mergers. This stronger squall 

line convection in the d04 grid scale was key in determining more accurate postfrontal 

locations of the convective systems as compared to the d03 grid scale. When the two 

SBFs merge into the squall line, the stronger SBF and convective cells in d04 aid the 

propagation of the convection system eastward, rather than it stagnating the MCS in the 

center of the peninsula as is seen in the d03 simulation of the postsquall line convection. 

However, the d04 gray-zone grid space did produce some decrease in the forecasting skill 

of the PBL1_MYJ simulation in the intensity of the convective precipitation, as the d04 

simulation produced smaller, more numerous convective cells as compared to the d03 

simulation. The decreased forecasting skill in the intensity of the simulated convection at 

the 1-km grid scale may be due to issues of parameterizations of boundary layer 

processes (e.g., turbulence, nonlocal mixing effects, dissipation, etc.) in the gray-zone 

grid spacing being unable to convert energy from the unresolved scales into forcing to the 

resolved scales in a correct manner. In order to determine this hypothesis, the effects of 

adding a stochastic representation to the physical variables is examined for the study.   
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Figure 4.1 Map of convergent and divergent sea breeze flow along the convex and 

concave coastlines of Florida. Red areas indicate enhanced convergence, blue represents 

enhanced divergence. (Image courtesy of UCAR COMET program’s Thermally-forced 

Circulation I: Sea Breezes module, 

http://www.meted.ucar.edu/mesoprim/seabreez/print.htm, 2001). 
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Figure 4.2 PBL1_MYJ simulation zonal (u-component) winds (color: red easterly, blue 

westerly, units m s-1) and total wind (black arrows, reference vector 2.5 m s-1) for a 

zoomed-in region of d03 (blue box in Figure 3.1) at a) 1430 UTC and c) 1500 UTC 6 

September 2012. Panels b) and d) are the same as a) and c), respectively, but for the 

zoomed-in region of d04 (blue box in Figure 3.1).  

  

b) a) 

d) c) 

D03 WRF Data D04 WRF Data 
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Figure 4.3 PBL1_MYJ simulation divergence (color: red convergence, blue divergence, 

units s-1) and total wind (black arrows, reference vector 2.5 m s-1) for a zoomed-in region 

of d03 (blue box in Figure 3.1) at: a) 1500 UTC and c) 1530 UTC 6 September 2012. 

Panels b) and d) are the same as a) and c), respectively, but for the zoomed-in region of 

d04 (blue box in Figure 3.1) and include max reflectivity (red contours, units dBZ).  

  

D03 WRF Data D04 WRF Data 

 

d) c) 

a) b) 
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Figure 4.4 Map of locations and names of Florida water bodies, including lakes larger 

than 50 km2. The inset in the left corner shows a zoomed-in region of Tampa Bay.  
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Figure 4.5 Cross section (through northernmost red line in Figure 3.1) of WRF-simulated 

zonal (u-component) winds (color: red easterly, blue westerly, units m s-1) and total 

horizontal wind (black arrows, reference vector 10 m s-1) at 1700 UTC 6 September 2012 

for a) d03 and b) d04. Red contour line indicates the zero wind contour heights, which 

indicate the Lake Okeechobee’s approximate lake breeze heights. 

  

D03 PBL_MYJ Data D04 PBL_MYJ Data 

a) b)  
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Figure 4.6 Temperature difference (color contours, units oF) between the d03 and d04 

PBL1_MYJ simulations at 0330 UTC 6 September 2012 for a zoomed-in region of d03 

and d04 (yellow box in Figure 3.1). The temperature differences between the two 

domains are due to the d04’s higher resolution (1 km) enabling it to better resolve the 

coastlines, rivers, and smaller lakes (10-30 km2) than the d03 (3 km resolution). 
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Figure 4.7 Cross section (through northernmost red line in Figure 3.1) of d04 PBL1_MYJ 

simulation’s zonal (u-component) winds (color: red easterly, blue westerly, units m s-1) 

and total horizontal wind (black arrows, reference vector 10 m s-1) at: a) 1600 UTC 6 

September 2012. Red contour line indicates the zero wind contour heights, which indicate 

the Lake Okeechobee’s approximate lake breeze heights. Blue arrows indicate the 

locations of the SBs, while the red arrows indicate the lake breezes for 1) Lake 

Weohyakapka, 2) Lake Kissimmee, 3) Lake Marian, and 4) Indian River. 

  

WCSB 

1 
2 

3 

4 

 

ECSB 
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Figure 4.8 D03 PBL1_MYJ-simulated divergence (color, units s-1), max reflectivity 

(yellow and purple contours, units 5 dBZ) and total wind (black arrows, reference vector 

2.5 m s-1) for a zoomed-in region of d03 (purple box in Figure 3.1.) at: a) 1820 UTC, b) 

1825 UTC, c) 1840 UTC, d) 1845 UTC, e) 1900 UTC, and f) 1910 UTC 6 September 

2012. Yellow reflectivity contour lines indicate the convective cell’s first appearance in 

the simulation and are numbered accordingly in panels b-f), thereafter, the reflectivity 

contour lines are purple. Panel a) indicates the lake effect divergence from the following 

water bodies: A) St John’s River, B) Crescent Lake, C) Lake George, D) Lakes Griffin, 

Harris, and Eustis, E) Lake Apopka. See text for more details.   

 

 

 

 

 

 

 

 

 
 

 

 

 

a) c) 

d) e) f) 

b) 
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Figure 4.9 Cross section (through northernmost red line in Figure 3.1) of PBL1_MYJ-

simulated zonal (u-component) winds (color: red easterly, blue westerly, units m s-1) and 

total horizontal wind (black arrows, reference vector 10 m s-1) at 2030 UTC 6 September 

2012 for a) d04 and b) d03. Red contour line indicates the zero wind contour heights, 

which indicate the Lake Okeechobee’s approximate lake breeze heights. 

 

 
Figure 4.10 PBL1_MYJ-simulated temperature (color, units oF) and total wind (black 

arrows, unit reference vector 2.5 m s-1) for a) d03 and b) d04 at 1430 UTC 6 September 

2012.

a) b) 

D04 PBL1_MYJ Data D03 PBL1_MYJ Data 

 a) b) 
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Figure 4.11 Stage IV precipitation accumulation (color, units mm h-1) and d03 (left 

column) and d04 (right column) PBL1_MYJ-simulated precipitation accumulation (black 

contours, units mm h-1) at: a-b) 2100 UTC, and c-d) 2300 UTC 6 September 2012. 

squall 
line 

D03 WRF and CCPA Data D04 WRF and CCPA Data 

a) 

c) d) 

b) 
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Figure 4.12 PBL1_MYJ-simulated zonal (u-component) winds (color: red easterly, blue 

westerly, units m s-1) and total wind (black arrows, reference vector 2.5 m s-1) for a 

zoomed-in region of d03 (blue box in Figure 3.1) at a) 2100 UTC, c) 2200 UTC, and e) 

2300 UTC 6 September 2012. Panels b), d), and f) are the same as a), c), and e) 

respectively, but for the zoomed-in region of d04 (blue box in Figure 3.1). 

a) b) 

c) d) 

e) f) 

D03 WRF Data D04 WRF Data 



 

 

 

 

 

CHAPTER 5 

 

NUMERICAL SIMULATIONS WITH STOCHASTIC  

PERTURBATIONS 

 

As mentioned in Chapter 1, stochastic parameterization (or perturbation) methods 

act to take a variable or process and express it in terms of a resolved term(s) and an 

unresolved term(s). The unresolved term(s) is represented as statistical fluctuations (i.e., 

additive noise with spatial and temporal correlations) in order to better determine the 

unrepresented two-way interactions of kinetic energy across the model truncation 

boundary between the resolved and unresolved scales (Berner el al. 2008, 2011).   In 

addition, stochastic perturbation ensembles increase diversity among ensemble members, 

making a more reliable and skillful ensemble system (Berner et al. 2008). From an 

operational standpoint, the stochastic perturbation method is also advantageous as it 

requires less support and maintenance resources, as well as ensures that all ensemble 

members have the same climatology and model bias (in contrast to multi-

parameterization or multimodel ensembles, which have issues with both of these factors). 

The P/IC simulations of the SB convection detailed in Chapter 3 have shown that 

the WRF model can realistically reproduce the SB CI. However, large sensitivities of the 

SB and its associated CI to physical parameterizations are seen, especially to the PBL 

schemes. Within the gray-zone grid scale, the number of subgrid turbulent eddies are no 

longer large enough to fulfill the “law of large numbers” underlying the bulk 
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parameterization assumptions, and thus, the use of the parameterizations may cause too 

much energy to be removed from the resolved to the unresolved scales (Berner et al. 

2012). This is where a stochastic approach could be of additional benefit. In order to 

determine whether an added effect of stochastic parameterization may allow for better 

representation of the mean state in our simulation, an ensemble of stochastic 

perturbations for the 6-7 September 2012 SB event (described in Chapter 2) is conducted. 

We hypothesize that simulations of a SB CI event would show sensitivity to stochastic 

perturbation simulations, allowing for a unique opportunity to compare how the 

stochastic and physics parameterization simulations each handle the development of the 

SB CI within the WRF-ARW model  

 

5.1 Configuration of Simulations with Stochastic Perturbations 

The WRF-ARW has an option to stochastically perturb forecasts via a stochastic 

kinetic energy backscatter scheme (SKEBS). SKEBS aims at representing model 

uncertainty resulting from interactions with unresolved scales and was originally 

developed in the context of the LES (Berner et al. 2011). It is based on the notion that the 

rate of turbulent dissipation is the difference between downscale and upscale spectral 

transfer, with the parameterized upscale component being available to the resolved flow 

as a kinetic energy source (Shutts 2005). In the WRF-ARW, SKEBS takes a fraction of 

the subgrid scale energy (i.e., dissipated kinetic energy) and scatters it upscale to make it 

available as forcing for the resolved flow (Shutts 2005). To do this, SKEBS introduces 

random temporally and spatially correlated perturbation fields to the rotational wind 

components (u, v), and potential temperature (θ) with a prescribed kinetic energy 
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spectrum, which are simply considered additive noise (Skamarock et al. 2008). These 

perturbation fields are then added to the physics tendencies of u, v, and θ variables within 

the model at each time step. The stochastic perturbations fields for wind and temperature 

are controlled by the kinetic and potential energy they inject into the flow and are 

expressed as a constant backscattered dissipation rate. Mathematically, with the SKEBS, 

the effective streamfunction Ψ′(𝑥, 𝑦, 𝑡) and potential temperature Θ′(𝑥, 𝑦, 𝑡)perturbations 

are given by 

𝛹′(𝑥, 𝑦, 𝑡) = 𝑟𝐷(𝑥, 𝑦, 𝑧)𝜓′(𝑥, 𝑦, 𝑡) ( 5.1 ) 

𝛩′(𝑥, 𝑦, 𝑡) = 𝑟𝐷(𝑥, 𝑦, 𝑧)𝜃′(𝑥, 𝑦, 𝑡) ( 5.2 ) 

where x and y are the zonal and meridional directions in physical space and t denotes 

time. D(x,y,t) is the local, instantaneous dissipation rate and r denotes the backscatter 

ratio parameter. 𝜓′ and 𝜃′ are the 2D streamfunction and potential temperature patterns 

with a prescribed kinetic energy spectrum, respectively. The spatial and temporal 

characteristics of the perturbation pattern are controlled by expanding the 𝜓 and 𝜃 

patterns in spectral space and evolving each wavenumber as a 1st-order autoregressive 

process. Further details and description of the SKEBS can be found in Berner et al. 

(2011). 

In the stochastic perturbation experiment study, we chose to use 20 SKEBS 

simulations, the same number of experiments as the P/IC sensitivity study described in 

Chapter 2 (SKEBS simulation members are labeled Skeb1 through Skeb20). In order to 

observe solely the effects of the SKEBS perturbations on the simulation, each SKEBs 

simulation is configured with the same domain setup, physics options, and ICs as the 

CTRL simulation (see Chapter 2 for details on the CTRL configuration). Each simulation 



80 

 

 

is configured with the SKEBS applied to all four domains and their boundary conditions 

as well, in order to simulate uncertainty in the flow through the boundaries. A constant 

structure of the perturbations’ vertical pattern is also used. The streamfunction and 

potential backscatter dissipation rates used are 1.E-05 m2s-3 and 1.E-06 m2s-3, 

respectively, with a decorrelation time for both perturbations set to 3 h. The standard 

deviation of the random perturbation fields at each grid point is set to 0.03 and the cutoff 

tails of the both perturbation patterns is set at a standard deviation of 3.0. The length scale 

for the random perturbations is 500 km, with a timescale of 6 h. Figures 5.1 and 5.2 show 

an example of the θ and u,v wind perturbation tendency fields for two SKEBS 

simulations.  

 

5.2 SKEBS Ensemble Results and Comparison to P/IC  

Sensitivity Study 

Results from the 20 SKEBS simulations (Skeb1-Skeb20) conducted for the 6-7 

September 2012 SB convection case have been analyzed in terms of SB timing, depth, 

and SBF merger. An analysis of the performance of the SKEB simulations in the timing, 

location, and intensity of the SB CI is also conducted. The same verification methods 

used for the ensemble of the P/IC experiments (as described in Section 3.1.) are used in 

this section to analyze the sensitivity of the stochastic perturbations to the simulated SB 

and its associated CI in the gray-zone grid spacing. These analyzed results are then 

compared to previous P/IC sensitivity results. 
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5.2.1 Sea Breezes in SKEBS Simulations 

 The initiation times of the SB from the SKEBS simulations is given in Table 5.1. 

As with the P/IC simulations, all the SKEBS simulations were able to resolve the SB. 

The SKEBS simulations show greater variability in initiation times of the WCSB and 

ECSB as compared to the P/IC simulations (Table 3.3), as well as the intensity of the SBs 

as seen in the average SBF depth and SB merger time. Initiation of the SBs varied from 

60 min prior to observations (Skeb6 and Skeb10) to 30 min after observations (Skeb6 and 

Skeb20). However, while the P/IC simulations had 5 out of the 20 simulations (25%) that 

varied in SB initiation timing from the observations, the SKEBS simulations had 15 out 

of 20 simulations (75%) that showed a difference in SB timing from the observations. 

SBF merger timing of the SKEBS simulations averaged +69 min for d03 and +17 min for 

d04, which is very similar to the P/IC simulation results (averaged +64 and +17 min for 

d03 and d04, respectively).  

SB depth in the SKEB simulations ranged from 650 m (Skeb5, d03) to 1,250 m 

(Skeb8, d04), showing slightly more variable than the P/IC simulations. As with the P/IC 

simulations, the SKEBS simulations also saw increased SBF strength in the d04 from the 

d03, as seen in the increased SB depth and earlier SB merger timing. In contrast to the 

P/IC simulations that never produced a stronger ECSB over the WCSB, there are six 

SKEBS simulations (Skeb5, Skeb10, Skeb12, Skeb16, Skeb17, and Skeb18) that are able 

to generate a stronger ECSB over the WCSB. These stronger ECSB fronts show larger 

SB depths over the WCSB fronts and propagated much further inland than seen in the 

P/IC and other SKEBS simulations, leading to a merger of the SBFs in the central 

portions of FL rather than in the east-central portions of FL from observations (Figure 
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5.3). Furthermore, three SKEBS simulations (Skeb4, Skeb8, and Skeb9) were similar in 

producing very strong offshore winds along the east coast of FL during the simulation, 

leading to an ECSB that barely propagated inland and a WCSB and ECSB merger that 

occurred along the east coast of FL, rather than parallel to the east coast in east central FL 

(Figure 5.3). 

Figure 5.4 shows a vertical cross section of zonal winds across the FL peninsula 

at 2130 UTC 6 September 2012. The two simulations with an almost stationary ECSB 

(Skeb8 and Skeb9) and are shown to have strong southwesterly synoptic winds within the 

lowest 3 km of the atmosphere. In contrast, the two simulations with a strong eastward 

propagating ECSB (Skeb16 and Skeb18) show much weaker synoptic winds within the 

PBL. Furthermore, Figure 5.4 shows that the weak southwesterly synoptic winds for the 

Skeb16 and Skeb18 simulations allowed for a much stronger ECSB (as seen in the larger 

depth of the ECSB front and penetrated west of -81W), while the strong synoptic winds 

of the Skeb8 and Skeb9 simulations led to a ECSB that did not penetrate further past the 

east coast (-80.6W). These weaker southwesterly synoptic winds allowed for a much 

larger and distinct return current of the WCSB as seen in the negative u-wind values 

several hundred meters surface in Figures 5.4c and 5.4d Figures 5.4a and 5.4b show the 

reverse, where there is no distinct return currents seen in the lower atmosphere along the 

WCSB.  

 

5.2.2 Convective Initiation Results for SKEBS Simulations 

 Results for the SB CI in the SKEBS simulations are given in Table 5.2, and as 

with the P/IC simulations, all the SKEBS simulations are able to resolve the SB 
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convection for the 6-7 September 2012 SB case. As also seen in the P/IC simulations, 

none of the SKEBS simulations are able to successfully resolve the timing and the SB CI. 

Simulations Skeb5, Skeb6, Skeb15, Skeb16 are the worst at forecasting the timing of the 

SB CI and/or the duration of the convective event, while the Skeb2, Skeb3, Skeb7, 

Skeb9, Skeb11, Skeb12, and Skeb14 SKEBS simulations are among the best in terms of 

SB CI timing and duration. In addition, the increased resolution of the gray-zone grid 

spacing shows an overall improvement to SB CI timing and duration within the SKEBS 

simulations. 

 In terms of Threat Scores, Skeb1 and Skeb16 simulations produce the best results, 

while the Skeb9 and Skeb20 simulations produce the worst results. The range and 

average Threat Scores for the SKEBS simulations is similar to that of the P/IC 

simulations for d03 (average TS of 0.11 for both ensembles), however the P/IC 

simulations show higher average TS values in d04 as compared to the SKEBS TS values 

for d04 (SKEBS TS of 0.15 compared to P/IC TS of 0.21). Furthermore, the d03 bias 

scores for the SKEBS simulations show a tendency to overforecast precipitation, while 

the P/IC simulations tended to underforecast precipitation (SKEBS average BS of 1.10 

compared to P/IC average BS of 0.30), with eight simulations (Skeb5, Skeb6, Skeb11, 

Skeb12, Skeb13, Skeb15, Skeb16, and Skeb19) indicating a significant overforecast of 

the precipitation intensities in several locations as compared to CCPA analysis. The d04 

bias scores for the SKEBS show a reversal of intensity forecasting as they now tend to 

significantly underforecast precipitation intensity, even more so than the P/IC simulations 

(SKEBS average BS of 0.19 compared to P/IC average BS of 0.36). 

As with the convective intensities, differences in spatial coverage of the SB 
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precipitation accumulations are seen for all the SKEBS simulations. A comparison of the 

diversity of the convective precipitation spatial coverage and intensity for 8 SKEBS 

simulations against the CCPA precipitation accumulations are given in Figure 5.5 

Simulations with a stronger ECSB such as Skeb5, Skeb16, and Skeb18 (Figures 5.5c, 

5.5h, and 5.5i) showed the strongest precipitation accumulations in the southwest corner 

of the peninsula, while simulations with a stationary ECSB (i.e., strong synoptic winds) 

such as Skeb4, Skeb8, and Skeb9 (Figures 5.5b, 5.5e, and 5.5f) produced simulations 

with some of the least intense precipitation accumulations over the peninsula. 

Furthermore, there is slightly better accuracy in the spatial coverage of precipitation in 

the d04 SKEBS simulations as compared to the d03 results (not shown) due to the higher 

resolution’s tendency to produce smaller, more numerous convective cells, however this 

also produced decreased accuracy in the forecasting of the overall intensity of the 

convective precipitation accumulations in d04 for the SKEBS simulations. 

 

5.3 Discussion of the P/IC and SKEBS Simulations 

 While all the P/IC and SKEBS simulations were able to successfully simulate the 

FL SBs and their associated CI, there are many differences in the development and 

evolution of the SB and CI between the ensembles of the P/IC and SKEBS simulations. A 

summary of the impacts to the SB and CI by the various parameters varied in the P/IC 

and SKEBS simulations are given in Table 5.3.  

The timing and intensity of the SB is sensitive to the PBL, ICs, and SKEBS 

parameterizations, though the SB timing is less sensitive to the ICs as compared to the 

other two factors. As discussed previously in Chapter 3, the sensitivity of the SB timing 
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and strength to the PBL and ICs to the SB timing stems from the way the simulations 

handle the sensible heating of the land surface, or for the IC simulations, how much 

model spin-up time is allowed for the simulation and the effects of the evolution of the 

atmospheric variables, such as low-level moisture, in the model’s dynamics. The CU and 

MP parameterization simulations showed little to no sensitivity to the initiation times of 

the SB or to its intensity.  

In comparison, the potential temperature and streamfunction perturbations within 

the SKEB scheme create added differences in how the model handles not just the low-

level heating, but also the low- and mid-tropospheric wind fields, leading to the largest 

differences seen in simulations on the SB timing and strength. The additive subgrid 

kinetic energy that is “backscattered” upscale to the resolved temperature and streamflow 

fields in the SKEBS simulations create large variability in the surface temperature and 

synoptic wind fields, leading to the variability in the timing and strength of the SB not 

seen in the P/IC simulations, such as a strongly eastward propagating ECSB or an almost 

stationary ECSB. 

The timing, location, and intensity of the CI showed strong sensitivity to PBL and 

SKEBS simulations, as well as gray-zone grid spacing. These same CI parameters show 

only slight sensitivity to the other P/IC simulations. The strong sensitivity of the PBL, 

SKEBS, and grid scale on CI is in part also due to the fact that these options showed 

great sensitivity to the SB timing and/or intensity. A premature or late initiation of a SB 

in a simulation also saw a premature or late CI, though the exact SB timing difference did 

not produce the same CI timing difference within a simulation. 

The SKEBS simulations have shown that adding a stochastic perturbation method 
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to simulation with physics parameterizations shows mixed results in improvements to 

forecasts of convective precipitation intensities. The 3-km gray-zone grid can generally 

produce much larger convective precipitation intensity forecasts if a stochastic 

parameterization, such as the SKEBS, is added to the simulation, indicating that 

randomly added kinetic energy from the unresolved grid scales may be necessary for 

aiding convective processes at this scale. However, the combined stochastic and physical 

parameterization in the 1-km gray-zone grid spacing produce worse convective 

precipitation intensities than the P/IC simulations alone, showing that the added kinetic 

energy from the unresolved grid scales is unbeneficial to the production of higher 

precipitation intensities for the convective cells at this scale. The SKEBS simulations 

have shown that improvements can be made to the forecasts of CI, however, as more 

irregular forecasts of SB intensity and propagation are seen in the ensemble of SKEBS 

simulations as well, the application of the SKEBS used here may applied too generally to 

the perturbations fields. Thus, a method to stochastic perturb variable in a more 

physically consistent way may produce more relevant forecasts of convective 

precipitation intensities in smaller gray-zone grid spacings. 

In summary, the P/IC and SKEBS simulations show a general ability to predict 

the FL SB convection, although the SKEBS simulations have much more spread in their 

timing and strength of the SBFs, as well as the timing, location, and intensity of the 

simulated CI. The parameter that had the worst prediction ability for all 40 simulations 

was the intensity of the convective precipitation. This is mainly due to the fact that the 

convective cells produced in the simulations tended to be smaller and more numerous 

convective cells as compared to NEXRAD radar observations and precipitation analyses. 
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However, some improvements are seen in the d03 gray-zone grid space forecasts of 

precipitation intensities with the application of combined stochastic and physics 

parameterizations.  
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Figure 5.1 Output of potential temperature perturbation tendency fields (color, units Ks-2) 

for SKEBS simulation Skeb1 (left) and Skeb2 (right). Domain areas are the black boxes. 

 
Figure 5.2 Output of u-wind (left) and v-wind (right) perturbation tendency fields (color, 

units m2s-3) for SKEBS simulation Skeb1 (top) and Skeb2 (bottom). Domain areas are the 

black boxes.

SKEB 1 SKEB 2 

u-wind Perturbations v-wind Perturbations 

Skeb1 

Skeb2 
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Table 5.1 Summary of SKEB simulations’ SB CI timing errors (min), maximum SB 

depth, and SB merger time for gray-zone domains d03 and d04. Zero offset on SB 

initiation timing is indicated by a green checkmark, blue indicates premature SB 

formation and red indicates delayed SB formation, as compared to observational data. 

Simulations in bold indicate simulations that produced a strongly westward propagating 

ECSB, while simulations that are underlined indicate simulations that produced an almost 

stationary ECSB. 

Simulation 

Initiation Timing Offset (min) Average SBF Depth (m) 

WCSB ECSB SB Merger WCSB ECSB 

D03 D04 D03 D04 D03 D04 D03 D04 D03 D04 

Skeb1 ✓ ✓ ✓ ✓ +60  +30  850 950 850 900 

Skeb2 ✓ ✓ ✓ ✓ +30  -20  1000 1100 900 950 

Skeb3 -30  -30  ✓ ✓ +60  -20  1000 1100 900 950 

Skeb4 ✓ ✓ -30  -30  +90  -10  750 900 700 850 

Skeb5 ✓ ✓ -30  -30  +90  +50  650 700 700 750 

Skeb6 +30  +30  -60  -60  +50  +10  850 950 800 900 

Skeb7 -30  -30  -30  -30  +60  +70  900 950 800 900 

Skeb8 ✓ ✓ ✓ ✓ -10  -30  1100 1250 900 950 

Skeb9 ✓ ✓ ✓ ✓ +40  -10  900 1000 500 750 

Skeb10 -30  -30  -60  -60  +70  ✓ 800 900 900 950 

Skeb11 ✓ ✓ -30  -30  +120  +10  900 950 850 900 

Skeb12 ✓ ✓ -30  -30  +90  +50  850 950 1000 1200 

Skeb13 ✓ ✓ -30  -30  +70  +10  900 1000 850 950 

Skeb14 ✓ ✓ -30  -30  +70  +10  950 1050 900 950 

Skeb15 -30  -30  ✓ ✓ +70  -10  850 950 700 800 

Skeb16 -30  -30  -30  -30  +90  +40  850 900 900 950 

Skeb17 -30  -30  ✓ ✓ +90  +40  800 950 900 1100 

Skeb18 -30  -30  -30  -30  +100  +50  700 850 850 1200 

Skeb19 ✓ ✓ ✓ ✓ +10  -30  950 1100 800 950 

Skeb20 +30  +30  ✓ ✓ +130  +90  850 950 800 900 
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Figure 5.3 SKEB simulation of u-wind field at 2130 UTC 6 September 2012 for a) 

Skeb16, b) Skeb8, c) Skeb18, and d) Skeb9. Location of the ECSB at this same time for 

the CTRL simulation is the dark black line. Note the variance between the Ensemble 

members on the varying distances of the ECSB inland propagation. 

  

  

  

 a) b) 

d)  c) 
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Figure 5.4 Cross section (through northernmost red line in Figure 3.1) of d03 WRF-

simulated zonal (u-component) winds (color: red easterly, blue westerly, units m s-1) and 

total horizontal wind (black arrows, reference vector 10 m s-1) at 2130 UTC 6 September 

2012 for a) Skeb8, b) Skeb9, c) Skeb16, and d) Skeb18. 

 a) b) 

d)  c) 
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Table 5.2 Summary of SKEB simulations’ average Threat Score, Bias Scores, and SB CI 

timing errors (min) for gray-zone domains d03 and d04. “Best” RMSE forecasts are in 

boldface and “worst” RMSE forecasts in gray italic (see Section 3.3.2 for definition of 

best and worst). Zero offset on SB CI timing is indicated by a green checkmark, blue 

indicates premature CI and red indicates delayed CI, as compared to Stage IV analysis 

data.  

Simulation 

Avg Threat 

Score 

Avg Bias 

Score 

Timing Offset (min) 

WCSB CI ECSB CI End of CI 

D03 D04 D03 D04 D03 D04 D03 D04 D03 D04 

Skeb1 0.15 0.24 0.96 0.31 ✓ ✓ +60 ✓ -60 -60 

Skeb2 0.08 0.16 0.15 0.16 ✓ ✓ +60 ✓ ✓ -60 

Skeb3 0.10 0.15 0.22 0.21 -60  ✓ +60 ✓ ✓ ✓ 

Skeb4 0.08 0.13 0.15 0.10 ✓ ✓ +60 ✓ -120 -180 

Skeb5 0.10 0.14 2.47 0.25 ✓ ✓ +120 ✓ +120 +120 

Skeb6 0.15 0.19 2.30 0.21 ✓ ✓ +120 -60 +60 ✓ 

Skeb7 0.09 0.16 0.09 0.18 ✓ ✓ +60 ✓ ✓ -60 

Skeb8 0.12 0.15 0.36 0.19 ✓ ✓ +60 -60 +60 -120 

Skeb9 0.04 0.10 0.05 0.15 ✓ ✓ +60 -60 ✓ ✓ 

Skeb10 0.10 0.14 0.89 0.16 ✓ ✓ +60 ✓ +60 -60 

Skeb11 0.12 0.18 2.74 0.26 ✓ ✓ ✓ -60 +60 ✓ 

Skeb12 0.15 0.15 1.90 0.17 ✓ ✓ +60 ✓ +60 ✓ 

Skeb13 0.08 0.09 1.34 0.09 ✓ ✓ +60 -60 +60 +60 

Skeb14 0.11 0.15 0.12 0.17 ✓ ✓ ✓ ✓ -60 -60 

Skeb15 0.13 0.16 2.34 0.28 +180 +60 +60 ✓ +60 +60 

Skeb16 0.15 0.21 2.17 0.27 ✓ ✓ +60 -60 +120 +60 

Skeb17 0.07 0.11 0.09 0.10 ✓ ✓ ✓ ✓ +60 -120 

Skeb18 0.11 0.15 0.99 0.13 +60 ✓ +60 -60 ✓ ✓ 

Skeb19 0.14 0.18 2.46 0.32 ✓ ✓ ✓ ✓ +120 -120 

Skeb20 0.05 0.09 0.13 0.13 ✓ ✓ +60 ✓ +60 -60 
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Figure 5.5 18-h (1200 UTC 6 September 2012 to 0600 UTC 7 September 2012) rainfall 

accumulation totals (color, units mm h-1) for: a) CCPA analysis, b) Skeb4 simulation, c) 

Skeb5 simulation, d) Skeb6 simulation, e) Skeb8 simulation, f) Skeb9 simulation, g) 

Skeb15 simulation, h) Skeb16 simulation, and i) Skeb18 simulation.  

 

Table 5.3 Summary of impact on SB and its associated CI by CU, MP, PBL physics 

parameterizations, ICs, stochastic parameterizations, and grid scale. Factors that have a 

smaller impact on the SB or CI are indicated with a *. 

    SB      CI    

Factor (simulation) Timing  Intensity Timing Location  Intensity 

Cumulus (CU) 

 

  * * * 

Microphysics (MP) 

  

* * * 

Boundary Layer (PBL) X X X X X 

Initial Conditions (ICs) * * X * * 

Stochastic (SKEBS) X X X X X 

Grid Scale   X X X X 

 

a) b) c) 

d) e) f) 

g) h) i) 



 

 

 

 

 

CHAPTER 6 

 

SUMMARY AND CONCLUDING REMARKS 

 

 This study conducted a series of gray-zone grid scale simulations of an enhanced 

WCSB or “Type 3” SB convective event (Blanchard and Lopez 1985) that occurred 6-7 

September 2012. Results from a CTRL simulation indicate that with the state-of-the-art 

WRF model, the FL SBs and their associated convection can be accurately simulated at 

the gray-zone scale, although discrepancies are found in the timing, spatial location, and 

intensity of convective cells produced when compared to surface data and Stage IV and 

CCPA precipitation analyses. Further studies of 20 simulations varying the physics 

parameterizations and initial conditions (P/IC) within the WRF-ARW model are 

conducted in order to examine the sensitivities of the model to the initiation of the SB and 

its associated convection. An additional 20 simulations using a stochastic kinetic energy 

backscatter scheme (SKEBS) are conducted and analyzed in order to identify additional 

sensitivities of the numerical simulations of SB and its CI to unresolved scales of motion 

and subgrid energy effects within the model.  

 The results of the 40 numerical simulations show that the FL SB and its 

associated convection is most sensitive to the PBL and SKEBS parameterizations, ICs, 

and gray-zone grid spacing. Further analysis of the P/IC simulations and a grid spacing 

comparison shows that the specific representation of geophysical features (e.g., coastline 
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shape and lake resolution) are important for resolving atmospheric variables, such as 

sensible surface heating, synoptic winds, surface moisture, and low-level convergence, 

that effect the development of the SB in determining the strength of the SBFs (and other 

boundary convergence lines such as LBs) within the WRF-ARW simulation. Accurate 

representations of the SBFs and LBs are important for the better representation of the 

timing and location of the SB CI in the case study. However, the gray-zone grid spacing 

seems to have issues in resolving the correct precipitation intensities of the SB 

convection, especially in the lowest gray-zone grid domain (1-km), most likely due to 

issues with the bulk parameterization schemes used in the P/IC configurations.  

 SKEBS simulations showed a much larger variability in the SB timing and intensity 

as compared to the P/IC simulations, indicating that the method of transported kinetic energy 

at unresolved scales upscale may be too generally applied in the model. Furthermore, it is 

also found that the addition of the SKEBS to the CTRL configuration showed a general 

improvement in the d03 grid spacing forecasts of convective precipitation intensities. 

However this improvement was not seen in d04 indicating that the SKEBS configuration in 

the model may be too broad in its application of the perturbations and that applying a 

stochastic parameterization in a more physically consistent manner may need to be 

considered in order to prevent degradation of the simulation as seen in the spurious intensities 

of the SB in some of the SKEBS simulations (i.e., too strong a ECSB or WCSB producing an 

erroneous SBF merger location). Ensuring that turbulent perturbation amplitudes remain in 

the variability of the boundary layer may be one consideration in creating a physically based 

stochastic perturbation method. 

Limitations of this study are found in its scope, as it presents only one SB case 

and utilized a relatively small sample size for the number of simulation members within 
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the P/IC and SKEBS ensembles. Future work should include additional FL SB case 

studies (e.g., “Type 1” and “Type 2” SBs as classified by Blanchard and Lopez 1985) of 

the P/IC and SKEBS numerical simulations at terra incognita grid scales so as to verify 

results found in this single case study. In addition, as only a small sample of the physics 

options and SKEBS configurations within the WRF-ARW are used for the small sample 

size of the ensembles of P/IC and SKEBS ensembles, a more comprehensive evaluation 

of the sensitivity of the SB CI to the various physics and stochastic parameterization 

options through increased ensemble size is warranted. Furthermore, since the NAM and 

GFS initialization data showed similar results, a more comprehensive study using 

different initialization data such as the Canadian Global Deterministic Prediction System 

(GDPS), the European Center for Medium Range Weather Forecast Integrated Forecast 

System (ECMWF), or the UK Met Office Unified Model (UKMO) and IC starting times 

could result in a larger sensitivity to IC choice than shown here, and is worthy of future 

study.  

As decreasing the gray-zone grid scale shows the most consistent improvement in 

the realistic forecasts for the locations and timing of the SB and CI, the upcoming plans 

of the operational modeling centers to produce regional NWP models at gray-zone scale 

seem to be advantageous, at least for diurnally-forced weather features such as the SB, 

that would find the higher resolution land-surfaces in the gray-zones to aid in their 

accurate forecasts. However, the gray-zone grid scale still shows issues in handling 

parameterizations, as seen in the inaccuracies of convective intensity found by going to 

higher gray-zone resolutions. Thus, research needs to continue on improvements of 

parameterization processes, both for physics and stochastic parameterizations.  
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In conclusion, the resulting connection made here between land surface 

resolution, low-level atmospheric variables, upscale subgrid energy forcing, SB strength, 

and convective initiation can help bridge the gap between the small-scale lower 

atmospheric processes and larger-scale convective dynamics of the SB thunderstorm 

systems. If our case study results of the sensitivities of the SB and CI to PBL and SKEBS 

parameterization and grid scale spacing hold true with further case studies, this 

information can aid in the improvement of parameterization design and use within the 

gray-zone. This could result in an improvement of the gray-zone numerical model’s 

ability to resolve the CI processes associated with the SBs along the FL peninsula and 

other peninsular locations globally.  
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