
Concurrent Engineering and Robot Prototyping

Mohamed Dekhil, Tarek M. Sobh, Thomas C. Henderson, and Robert Mecklenburg 1

UUSC-93-023

Department of Computer Science

University of Utah

Salt Lake City, UT 84112 USA

October 1, 1993

Abstract

This report addresses the theoretical basis for building a prototyping environment for electro
mechanical systems using concurrent engineering approach. In Designing a robot manipulator, as an
example of electro-mechanical systems, the interaction between several modules (SjW, VLSI, CAD,

CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment that includes
different types of information that are radically different but combined in a coordinated way. We

propose an interface layer that facilitates the communication between the different systems involved
in the design and manufacturing process, and set the protocols that enable the interaction between
these heterogeneous systems to take place.

lThis work was supported in part by DARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a University
of Utah Research Committee grant. All opinions, findings, conclusions or recommendations expressed in this document

are those of the author and do not necessarily reflect the views of the sponsoring agencies.

Contents

1 Introduction 2

2 Objectives 3

3 Background and Review 4

4 The Interface Layer 6

4.1 Interaction Between Sub-systems 12

4.2 The Interface Scheme. ... 18

5 Object Analysis 19

6 Conclusion 24

List of Figures

1

2

3
4
,)

Interaction Between Sub-systems in the Prototyping Environment.
Schematic View for the Robot Prototyping Environment.
The Interface Between the Subsystem and the Prototype Robot.
Examples of Some Interaction Cycles.
Three Different Ways for sub-system interfaces communication.

List of Tables

3
8

10
18

20

] The interaction between the user and the sub-systems. 14
2 The interaction between the optimal design and the other sub-systems. 15
3 The interaction between CAD/CAM and the other sub-systems. 16
4 The interaction between hardware and other sub-systems. 17

1

1 Introduction

In designing and building an electro-mechanical system, such as robot manipulators, a
lot of tasks are required, starting with specifying the tasks and performance require
ments, determining the robot configuration and parameters that are most suitable
for the required tasks, ordering the parts and assembling the robot, developing the
necessary software and hardware components (controller, simulator, monitor), and
finally, testing the robot and measuring its performance.

Our goal is to build a framework for optimal and flexible design of robot manipu
lators with the required software and hardware systems and modules which are inde
pendent of the design parameters, so that it can be used for different configurations
and varying parameters. This environment will be composed of several sub-systems.
Some of these sub-systems are:

• Design.

• Simulation.

• Control.

• Monitoring.

• Hardware selection.

• CAD/CAM modeling.

• Part Ordering.

• Physical assembly and testing.

Each sub-system has its own structure, data representation, and reasoning method
ology. On the other hand, there is a lot. of shared information among these sub
systems. To maintain the consistency of the whole system, an interface layer is
proposed to facilitate the communication between these sub-systems, and set the
protocols that enable the interaction between these heterogeneous sub-systems to
take place.

Figure 1 shows the interaction between some of those sub-systems. The optimal
design system affects the control and the simulation systems. The monitor sub-system

2

Simulation Design

Monitoring Control

Figure 1: Interaction Between Sub-systems in the Prototyping Environment.

takes its data from the simulator and from the robot. There is also feedback informa

tion from the monitor to the optimal design system to refine the design according to

the performance measurements for each design. The robot is derived by the control

system, and feedback information goes from the robot sensors to the control system.

A prototype 3-link robot manipulator was built to help determine the required sub
systems and interfaces to build the prototyping environment, and to provide hands-on

experience for the real problems and difficulties that we would like to address and

solve using this environment. More details about this can be found in [10].

2 Objectives

The objective of this research project is to explore the basis for a consistent software

and hardware environment, and a flexible framework that enables easy and fast mod

ifications, and optimal design of robot manipulator parameters, with online control,

monitoring, and simulation for the chosen manipulator parameters. This environment

should provide a mechanism to define design objects which describe aspects of design,

and the relations between those objects. The importance of this project arises from

several points:

• This framework will facilitate and speed the design process of robots.

3

• This project will facilitate the cooperation of several groups in our Computer

Science department (VLSI group, Robotics group), and the cooperation of the
department with other departments (Mechanical and Electrical Engineering).

• This project will establish a basis and framework for design automation of robot
manipulators.

• The interdisciplinary nature of the proposed research will provide an exceptional
educational environment for those involved in the work.

This report is divided into three parts: first, a brief background for concurrent
engineering and heterogeneous systems is presented with the related work in this area.
Second, the proposed interface layer between the systems is described. Finally, the re

quired representations (knowledge base) object oriented scheme, rule-based reasoning,

etc.), are discussed.

3 Background and Review

There are several definition for the term Concurrent Engineering (CE). One defini
tion proposed by Cleetus [2] is: "CE is a systematic approach to integrated product
development that emphasizes response to customer expectations and embodies team
values of cooperation, trust, and sharing in such a manner that decision making pro

ceeds with large intervals of parallel working by all life-cycle perspectives early in the
process, synchronized by comparatively brief exchanges to produce consensus."

Dwivedi and Sobolewski [6] proposed an architecture of a concurent engineering
system composed of four levels as follows:

• An object-oriented data base.

• An intelligent data base engine.

• A high-level interface.

• A high-level tools.

In this architecture, several technologies are used to build the system such as:

• object-oriented programming.

4

• expert systems.

• visual programming.

• database and iuformation retrieval.

To integrate the work among different teams and sites working in a big projects,
there must be some kind of synchronization to facilitate the communication and co
operations between them. A concurrent engineering infrastructure tbat encompasses
multiple sites and subsystems called Pallo Alto Collaborative Testbed (PACT), was
proposed in [:3]. The issues discussed in this work were:

• Cooperative development of interfaces, protocols, and architecture.

• Sharing of knowledge among heterogeneous systems.

• Computer-aided support for negotiation and decision-making.

An execution environment for heterogeneous systems called "lnterBase" was pro
posed in [1]. It integrates preexisting systems over a distributed, autonomous, and
heterogeneous environment via a tool-based interface. In this environment each sys
tem is associated with a Remote System Interface (RSI) that enables the transition
from the 10caJ iwterogeneity of each system to a uniform system-level interface.

Object orientation and its applications to integrate heterogeneous, autonomous,
and distributed systems is discussed in [9]. The argument in this work is that object
oriented distributed computing is a natural step forward from the client-server sys
tems of today. A least-common-denominator approach to object orientation as a key
strategy for flexibly coordinating and integrating networked information processing
resources is also discussed. An automated, flexible and intelligent manufacturing
based on object-oriented design and analysis techniques is discussed in [8], and a
system for design, process planning and inspection is presented.

Several important themes in concurrent software engineering are examined in [4].
Some of these themes are:

Tools: Specific tool that support concurrent software engineering.

Concepts: Tool-independent concepts are required to support concurrent software
engmeermg.

5

Life cycle: Increase the concurrency of the various phases in the software life cycle.

Integration: Combining concepts and tools to form an integrated software engineer

ing task.

Sharing: Defining multiple levels of sharing is necessary.

A management system for the generation and control of documentation flow

throughout a whole manufacturing process is presented in [.5]. The method of qual

ity assurance is used to develop this system which covers cooperative work between

different departments for documentation manipulation.

A computer-based architecture program called the Distributed and Integrated En

vironment for Computer-Aided Engineering (Dice) which address the coordination

and communication problems in engineering, was developed at the MIT Intelligent

Engineering Systems Laboratory [11]. In their project they address several research

issues such as, frameworks, representation, organization, design methods, visualiza

tion techniques, interfaces, and communication protocols.

Some important topics in software engineering can be found in [7], such as, the

lifetime of a software system, Analysis and design, module interfaces and implemen

tation, and system testing and verification.

4 The Interface Layer

The prototypillg environment for robot manipulators consists of several sub-systems

such as:

• Design.

• Simulation.

• Control.

• Monitoring.

• Hardware selection.

• CAD/CAM modeling.

6

• Part Ordering.

• Physical assembly and testing.

Figure 2 Shows a schematic view of the prototyping environment with its sub

systems and the interface.
There is a lot of shared parameters and information among these sub-systems. To

maintain the integrity and consistency of the whole system, a multi-site interface is

proposed with the required rules and protocols for passing information through the

whole system. This interface will be the layer between the robot prototype and the

sub-systems, and also it will serve as a cOlllmunication channel between the different

su b-systems.

The tasks of this interface will include:

• Building relations between the parameters of the system, so that any change in

any of the parameters will automatically perform a set of modifications to the

related parameters on the same system, and to the corresponding parameters

in the other sub-systems.

• Maintaining a set of rules that governs the design and modeling of the robot.

• Handling the communication between the sub-systems using a specified protocol

for each system.

• Identifying the data format needed for each sub-system.

• Maintaining comments fields associated with some of the sub-system to keep
track of the design reasoning and decisions.

The difficulty of building such interface arises from the fact that it deals with

different systems, each has its own architecture, knowledge base, and reasoning mech

anisms. In order to make these systems cooperate to maintain the consistency of the

whole system, we have to understand the nature of the reasoning strategy for each

sub-system, and the best way of transforming the information to and from each of

them.

There are several mechanisms used in these sub-systems which can be classified

as follows:

7

Simulation

Control

Monitoring

Optimal
Design

Robot
Prototype

Assembly
and

Testing

Hardware
Selection

CAD/CAM

Modeling

Ordering

Figure 2: Schematic View for the Robot Prototyping Environment.

8

• Constrained-based approach: this approach is used in the optimal design
sub-system.

• Ruled-based approach: used in the the CAD/CAM and the hardware se
lection sub-systems. These rules are used to assist decision making during the
design process.

• Search-based approach: used in the part-ordering sub-system, which is ba
sically, catalog search for the required parts (motors, sensors, amplifiers, link
materials, etc). This system will be the front-end of an internet-based cataloging
system developed at the Mechanical Engineering Department.

• Functional relations: used for building the relations between some of the
design parameters. For example, link lengths is one of the parameters that has
relations with other parameters such as masses and inertia tensors, and also it
takes place in the design, control, and simulation systems. If we change the
length of one of the links, we want the corresponding mass and inertia tensor
to change with a pre-specified functions that relates the length to each of them.
We also want the length in the other sub-systems to change as well according
to pre-specified mathematical relations.

• Mathematical Formulation: used in the simulation, and control sub-systems
to define the robot modules (kinematics, inverse kinematics, dynamics, etc).

• Shared Database Manipulation: used in most of the sub-systems. ror
example, the simulation and control are just retrieving data from the shared
database, while the monitor subsystem adds analysis information to the database
that will be used as a feedback to the design sub-system. The design sub
system updates the parameters of the system. The CAD/CAM system uses
this database to check the validity of the chosen parameters and adds to the
database some comments about the design and manufacturing problems that
might exist.

Since we are dealing with different architectures and approaches, we will use an
object-oriented scheme to design this interface. Each object deals with one of the
sub-systems in its own language. This will make it easier to change the approach or
the structure of any of the sub-system without affecting the other sub-systems, by
only changing the corresponding object in the interface. Figure 3 shows the proposed
interface layer.

9

Simulation

Control

Monitoring

Hardware

Selection

CAD/CAM

Modeling

Robot prototype

Optimal Design Part Ordering

Figure 3: The Interface Between the Subsystem and the Prototype Robot.

10

In this environment the human role should be specified and a decision should be

taken about which systems can be fully automated and which should be interactive
with the user. The following example will illustrate the mechanism of this interface
and the way these systems can communicate to maintain the system consistency.

Suppose that the designer wants to change the length of one of the links and
wants to see what should be the motor parameters that give the same performance
requirements. First, this change will be recorded and the length field will be updated
in the shared database for each sub-system. Then the optimal design will be used
to determine the new values for the motor parameters using the simulation program.
Then search techniques will be used to look up for the motor with the required
specifications in the part-ordering system. Here we have two cases: a motor with the
required specifications is found in the catalogs, or no motor is available with these
specification, in this case, this will be recorded in the comments field and another
motor with closest specifications will be selected. Next, The motor specifications will
be updated in the database, then the CAD/CAM system will be used to generate
the new model and to check the feasibility of the new design. For example, the new
motor might have a very high rpm, which requires gears with high reduction ratio.
This might not be possible in some cases when the link width is relatively small and
a sprocket is hard to install. In this case, this will be recorded in the comments filed
and the user will be notified with this problem and will be asked to either change the
some of the parameters or the performance requirements and the loop starts again.
Once the parameters is determined, the monitoring program will be used to give
some performance analysis and compare the results with the required performance,
and produces a report with the results.

As another example, suppose that we need to select link masses and motor param

eters that give maximum speed and minimum position error. The design sub-system
will select density of the links material from the finite density set, and will use the
part-ordering system to select the motor and try to get the best combination of motor
parameters and link masses that give best value for the combined objective function
(speed and position error). The optimization problem here will be solved using the
simulation programs. After selecting the required parameters, the CAD/CAM sys
tem will be used to generate the model and again to see if this is a valid model to
be manufactured. In some cases the motor might be too heavy relative to the link
weights (usually when we have small links). In this case the simulation results will
show that and another motor should be selected, or another density should be chosen.

11

Finally the parts can be ordered and the assembly can take place.

4.1 Interaction Between Sub-systems

To be able to specify the protocols and data transformation between the sub-systems
in the environment, the types of actions and dependencies among these sub-systems
should be identified, also the knowledge representation used in each sub-system should
be determined.

The following are the different types of actions that can occurs in the environment:

• Apply relations between parameters.

• Satisfy rules.

• Satisfy constraints.

• Make decisions. (usually the user Makes the decisions).

• Search in tables or catalogs.

• Update data files.

• Deliver reports (text, graphs, tables, etc.).

There are several data representations and sources such as:

• Input from the user.

• Data files.

• Text files (documentation, reports, messages).

• Geometric representations (Alpha-I).

• Mathematical Formula.

• Graphs.

• Catalogs and tables.

• Rules and constraints.

12

• Programs written in different languages (C, C++, Lisp, Prolog, etc.).

Some of the sub-systems can change some of the parameters and the configura

tion of the prototype system. The Optimal design sub-system is the one that make

almost all the changes in the design parameters. The CAD jCAM sub-system can

also make some design changes according to some geometric and manufacturing rules

and constraints. The user can change any of the design parameters, make decisions,

and run any of the sub-systems.

Tables 1, 2, :3, and 4 describe the interaction between the sub-systems; that

is, what each sub-system needs to know when if some of the design parameters are

changed by one of the sub-systems or by the user, and what actions it might take as

a consequence of this change.

The following is a description for the actions that may take place in the environ

ment as a result of changing some of the design parameters.

Change constraints and optimize: When any change occurs to one of the design

parameters, that means changing in one of the constraints for the optimization

problem, then the user can decide whither to rerun the optimal design system

or not.

Update file: Updating the data files used by the simulation, control, and monitoring

sub-systems.

Apply relation: Some of the parameters are related to other parameters in the

same sub-system, and to corresponding parameters in other sub-systems. For

example, the relation between the link length in the design sub-system and the

corresponding drawing length in the monitoring sub-system can be something

like:

LMonitor = DinkScalc * LDesign,

where, linkScalc is the scaling factor to draw the link on the computer's screen.

Select D / A, D / A chips: When the motors and the sensors are selected, a chip that

contains the Dj A and AjD converters and the micro-programs that control the

conversion should be selected by the hardware selection sub-system.

Select platform: According to the selected update frequency and the number of

computation in each sub-system, the hardware selection sub-system will select

the machines that can accommodate that frequency.

13

System Lengths Masses Motors Frequency Sensors Feedback Friction

Table 1: The interaction between the user and the sub-systems.

14

System Lengths Masses Motors Frequency Sensors

Simulation Update file Update file Update file Update file Update file

Control Update file Update file Update file Update file Update file

Monitoring Apply relation Apply relation Apply relation Apply relation
Drawing length Max torque Display rate Max pos,vel

HW Selection D/A chip Select platform A/D chip

CAD/CAM Update model Update model Update model
Check for length Check for weight Check gear ratio

Part-ordering Search and Search and
give report give report

!

Assembly Change link Change link Change motor Change sensors
Test, report Test, report Test, report Test, report

Table 2: The interaction between the optimal design and the other sub-systems.

15

System Leng/,hs I A1asses Gear Ratio (Motor)

Simulation Update file Update file Update file

Control Update file I Update file Update file

Monitoring Apply relation Update file Apply relation
Drawing length Max torque

I

HW Selection Select D / A chip

Optimal Design Optimize for Optimize for Optimize for
other parameters other parameters other parameters

Part-ordering Search and
give report

Assembly Change link Change link Change motor
and gears

Table 3: Tbe interaction between CAD/CAM and the other sub-systems.

16

System Platform (Update rate) Communication (Feedback' rate)

Simulation Update file Update file

Control Update file Update file

Monitoring Apply relation Apply relation
Display rate Display rate

Optimal Design Optimize for Optimize for
other parameters other parameters

Table 4: The interaction between hardware and other sub-systems.

Update model: The CAD/CAM sub-system will create a new model for the proto

type robot according to the changes in the design parameters.

Check for length, mass, gear ratio and friction: Apply the rules and constraints
for each of these parameters that are imposed by geometric and manufacturing

limitations.

Search and give report: After the motor specification and the sensor ranges are

selected, the part-ordering sub-system will search in the parts catalogs to find
the required motors and sensors, If no motors or sensors are found with the

required specifications, this will be reported to the user, and the some other

motors or sensors with close specifications will be recommended.

Change parts, test, and report: This is the final step in the design. After all

parameters are selected and all parts are available, the assembly process can
take place, then the design can be physically tested, and the results are reported
to the user.

In some cases there might be interaction cycles. in such cases, the user has to
take decisions that resolve these cycles. For example, suppose that the link length was

determine by the design sub-system, but the CAD/CAM system has some rules that

17

CAD/CAM

Optimize
Optimal Design

~--------------------------~
The User

Report

Part -ordering

Figure 4: Examples of Some Interaction Cycles.

requires the length to be changed. In this case the design sub-system needs to be run
again to accommodate this change. this might change the motor parameters or sensor
ranges, and again, this change may violate another rule in the CAD/CAM sub-system

which requires another change, and so on. To resolve this cycle the user can take some
design decisions that will satisfy the rules and constrains in the sub-systems.

The part-ordering sub-system can cause some indirect changes to the design pa
rameters. For example if a motor with certain specifications is not found, then this

sub-system will report that to the user and may recommend some other motors that

have close specifications to the required. The user then can either choose one of
the recommended motors, or make some design changes and run the optimal design

sub-system to get new motor specifications. Figure 4 shows some interaction cycles.

4.2 The Interface Scheme

There are several schemes that can be used for the interface layer. One possible
scheme is that: each sub-system will have a sub-system interface (SS1) which has the
following tasks:

• Transfer data to and from the sub-system.

18

• Send requests from the sub-system to the other interfaces .

• Receive requests from other sub-system interfaces and translate it to the local

language.

These sub-system interfaces can communicate in three different ways, (see Figure

5):

Direct connection: which means that all interfaces can talk to, each other. the

advantage of this method is that it has a high communication speed, but it
makes the design of such interfaces more difficult, and the addition of new

interface or changing one of the interfaces requires the modification of all other

interfaces.

Message routing: in this scheme, any request or change in the data will generate

a message on a common bus and each SSI is responsible to pick the relevant
messages and translate it to its sub-system. The problem with this scheme that
it makes the synchronization between the sub-systems very difficult, and the

design of the interface will be more complicated.

Centralized control: in which all interfaces will talk with one centralized interface
that controls the data and control flow in the environment. The advantages
of this scheme is that it makes it much easier to synchronize between the sub

systems, and the addition or modification of any of the SSIs will not affect the
other SSIs. The disadvantage is that it has lower communication rates than the
other two methods.

5 Object Analysis

The interface layer contains several components that define the objects in the environ

ment, the relation between these objects, the rules and constraints in the system, the
representation of these objects in each sub-system, and the communication protocols
between the sub-systems.

Object analysis approach will be used to determine the system components and
functions, and the relation between them. The following is a description of the system
objects.

19

Knowledge Base

SSt I i+--------+--i-t SSt 2

SSt I SSt 2 SSI3
SSt 3 ++-_------+----1-+ SSt 4

1 ___________ 1 1- __________ I

(1) Direct Connection (2) Message Routing

Knowledge Base

Central Interface

SSt! SSt 2 SS13

1

'- - - ---- -- --'

(3) Centralized Control

Figure 5: Three Different Ways for sub-system interfaces communication.

20

• Robot-prototyping

Robot

Rules

Constraints

Relations

communication

Sub-systems

Reports

Actions

Hardware-setup

Performance-measures

• Robot

Ro bot-configuration

Control

Input

Results

• Rules

Parameters

Sub-systems

Description

• Constraints

Parameters

Sub-systems

Description

• Relations

- Object-fields

21

Sub-systems

Relation-type

Relation-formula

• Communication

Protocols

Messages

Routing

• Sub-systems

Optimal-design

Simulation

Control

Monitoring

CAD/CAM

Part-ordering

H W -selection

Assem bly-and- testing

• Reports

Report-type

Source

Destination

- Report-contents

• Actions

Action-type

Sub-system

Action-parameters

Report

22

• Hardware-setup

Platform

Wiring

AjD-Dj A-converters

• Performance-measures

Posi tion-error

Velocity

Power-consumption

Manipulability

Structured-length-index

• Robot-configuration

Degrees-of-freedom

Links

Joints

Offset

Motors

Sensors

• Control

Torque

Voltage

Update-rate

Sensor-rate

Feedback-gains

• Input

Input-type

Time-period

23

Desired-Trajectory

• Results

Actual-position

Simulated-position

Actual-velocity

Simulated-velocity

• Links

Length

Density

Inertia-tensor

Cross-section

• Joints

Type

Friction

6 Conclusion

A flexible prototyping environment for electro-mechanical systems III general, and
for robot manipulators in particular is proposed. So far we have implemented some
of the sub-systems such as: controller, simulator, and monitor, VVe are now in the
stage of testing the three-link robot, implementing the optimal design sub-system,
and putting the basis for the shared knowledge base and the interface layer.

24

