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Abstract—Asynchronous circuit design can result in substantial
benefits of reduced power, improved performance, and high
modularity. However, asynchronous design styles are largely
incompatible with clocked CAD, which has prevented wide-scale
adoption. The key incompatibility is timing. Thus most commer-
cial work relies on custom CAD or untimed delay-insensitive
design methodologies. This paper proposes a new methodology,
based on formal verification and relative timing, to create and
prove correct necessary constraints to support asynchronous
design with traditional clocked CAD. These constraints support
timing driven synthesis, place and route, and behavior and timing
validation of fully asynchronous designs using traditional clocked
CAD flows. This flow is demonstrated through a simple example
pipeline in IBM’s 65nm process showing the ability to retarget
the design for improved power and performance.

I. Introduction

Two factors have driven a major shift in the semiconductor
industry as a result of the ever decreasing feature size of deep
submicron technology. First, power has emerged as a primary
metric for all designs, whether they are are hand held devices
or desktop machines. Second, the exponential increase in the
number and performance of transistors on our chips has grown
to the point where modularity and design reuse is mandatory,
and efficient global synchronous clocking throughout the chip
is expensive in terms power and design time.

Modular design blocks are easier to integrate, and can
be more power efficient if they operate at variable or
local optimums using independent frequencies. Current trends
clearly favor asynchronous design: networks of heterogeneous
cores that are locally optimized for power and cycle time.
Due to these factors the International Technology Roadmap
for Semiconductors predicts that 20% of designs will be
driven by handshake clocking in 2012, rising to 40% by 2020
[16]. Example designs that employ such methods have shown
substantial improvements in power, performance, and latency
[23], [18].

Handshake clocking relies on asynchronous controllers to
sequence a traditional “clocked” data pipeline. The formal
handshake protocols provide the requisite flexibility in fre-
quency and simplicity of modular interfacing. Unfortunately,
integrating handshake clocking with traditional clocked data
pipelines has proven problematic [10], [21]. In practice, the
radical and disruptive paradigm shift to fully asynchronous
design has been unsuccessfully attempted for years. General
adoption as predicted in the ITRS will be unlikely to occur
without a new approach that supports traditional CAD flows
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and can be used by designers trained in clocked methodolo-
gies. We view the difference in timing methodologies as the
primary impediment to exploiting traditional clocked CAD and
implementing handshake clocked designs.

This paper reports on a methodology, based on formal
verification and relative timing, that supports timing driven
synthesis, physical design, and pre- and post-layout timing
validation of handshake clocked designs using traditional
clocked CAD. This approach enables the general adoption of
asynchronous or “handshake clocked” circuits in the traditional
clocked flow. This new flow consists of fully characterizing the
asynchronous handshake clocking circuits as design templates
that replace the clock tree in a traditional clock design.

Il. Background

A. Related Work

The path to general adoption of a disruptive technology
such as asynchronous circuit design is fraught with difficulty
and challenge. one of the primary roadblocks is the CAD
flow [21], [10]. This poses three problems for asynchronous
design. First, clocked CAD flows are in general incompatible
with sequential asynchronous design. Second, clocked CAD
tools are in general more capable than their asynchronous
cousins. Third, there is a general level of distrust in the ability
to correctly and robustly design commercial asynchronous
circuits. The ability to adapt clocked CAD and design flows
to asynchronous design, and to base asynchronous designs on
formal proofs of correctness, are enabling approaches that can
greatly mitigate the adoption of asynchronous circuits by the
general design community.

Recent research in the asynchronous community has begun
to achieve more industrial acceptance and broader use of
asynchronous designs by focusing on addressing the CAD
challenge. This has been achieved by integrating and adopting
clocked CAD where advantageous. The goals of this work are
no different. However, this work stands out from the rest on
two primary fronts. First, the methods used in this approach are
completely general to any asynchronous design, and applies
to bundled data as well as delay-insensitive designs; to any
protocol, be it two or four phase, dual rail, or single track; and
to any design flow, including a desynchronization approach or
full custom asynchronous design. Second, this approach is not
beholden to a programming language; we assume adoption of
today's de facto standard of Verilog.
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Related work that is probably the most technologically
advanced and commercially successful comes from Handshake
Solutions [12]. A complete synthesis, layout, and sign-off
solution for both Cadence and Synopsys based design flows
has been developed [6], and includes support for automatic
test generation [22]. Constraints and scripts from a higher
level language are generated that are supported by the clocked
CAD. Unfortunately there is little public documentation on
the algorithms or design methodology used to generate the
constraints and implement this flow. The flow is also tightly
coupled with their proprietary programming language. Another
commercial tool flow based on clocked CAD is from Theseus
Logic [5], [9]. This flow supports Verilog design descriptions
and translates the design to quasi delay-insensitive null con-
vention logic [8]. The Theseus flow does not directly support
bundled-data or other asynchronous methodologies.

Desynchronization is another design approach that uses
clocked CAD (as well as starting with a clocked design) to
produce asynchronous circuits [4], [1]. There are a number
of current research and industrial efforts focusing on this
promising flow. Desynchronization supports Verilog and uses a
template based approach, and algorithms have been developed
for test generation [14]. However, this flow does not support
general asynchronous design, largely due to the low number
of asynchronous templates and custom tools.

There are several other related research efforts to utilize
clocked CAD. In one example, an automated method was
developed for interconnect network, but it does not support
matching delays and bundled data [13].

B. Generally Applicability

A key difference between the approach presented here and
other work is the generality of the solutions. This work
supports designs from clocked, to standard asynchronous
protocols, to pulse based [15], to wave pipelining designs [24].
This technology enables asynchronous designs to be specified
in industry standard representations such as Verilog, supports
synthesis with ASIC tools such as Design Compiler, uses
timing driven place and route tools such as IC Compiler or
Magma, and can be validated for correctness using Calibre and
PrimeTime. This new method when mature will not require
deep expertise in asynchronous theory or circuits design skills.
Desynchronization is an example of an approach to develop
handshake clocked designs [4], [1]. The method presented in
this paper supports desynchronization but is not limited to such
a methodology; indeed it can be applied to any asynchronous
design.

The key to the generality is the formal approach. Formal
verification (FV) is orthogonal to any particular synthesis
engine or design style. Thus all timing methodologies, from
clocked to delay insensitive (DI), are supported. Hence this
methodology frees designers from the constraints of any asyn-
chronous design style (e.g. DI) or custom design tool flows.
The verification utilizes relative timing (RT), which also sup-
ports all classes of timing, from clocked to fully DI [20]. This
is implemented as follows. Each sequential template (clocked
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Fig. 1 Formal Relative Timing Generation and Mapping to static timing
analysis (STA) Tools

or asynchronous) starts with a formal specification. The timing
constraints that must hold, be they quasi delay-insensitive forks
or matched bundled data delays, are all formally derived as
relative timing constraints. These RT constraints are proven
correct for the system behavior by the specification. The RT
constraints are then mapped to constraints that the clocked
CAD can use for timing driven design optimizations (typically
sdc constraints). This results in a design that is completely
general and provably correct if all the constraints hold.

The proposed asynchronous design flow is similar to the
traditional clocked design flow. Clocked design has focused its
design methodology around a single characterized sequential
circuit: the flip-flop. This work extends design to directly
support any sequential or asynchronous module in the design
flow. The asynchronous design modules, such as the flop,
will be embodied in circuit templates that have been fully
characterized with FV and relative timing, and can support
handshake clocking protocols as well as global clocking. These
templates are then used in the design.

While relative timing is the foundation of this approach
giving it formal robustness and flexibility, other algorithms
are necessary to completely automate this flow. Algorithms to
support the templates in ASIC CAD include cycle breaking
to apply timing graphs that are DAGs, synthesis directives
to ensure the hazard properties of the templates are not
modified, and conversion of the template timing constraints
into sdc format for support by ASIC tools. Templates will be
designed that support the conversion of clocked design into
asynchronous “handshake clocking”. This full flow will be
presented through the simple example design.

C. Formal Timing and Verification

Relative timing can accurately capture, model, and validate
the relationship between heterogeneous timing and behavior
in protocols and general circuit structures, including sequen-
tial asynchronous designs. First, timing constraints are made
explicit in designs, rather than use the traditional implicit rep-
resentations such as a clock frequency. This allows designers
and tools to specify, understand implications, and manipulate
the timing of far more general circuit structures and advanced
clocking techniques. Secondly, timing constraints that affect
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Fig. 2. Bisimilar Logic Conformance Relationship

the performance and correctness of a circuit are transformed
into logical constraints, rather than into real-valued variables
or delay ranges. A compact representation has been devel-
oped using point-of-divergence (POD) to point-of-convergence
(POD) constraints. The POD/POC (pod ~ poc0 " poci)
representation enables more efficient search and verification
algorithms to be developed which greatly enhances the ability
to combine timing with optimization, physical placement, and
validation design tools [17]. This approach alters the way
in which timing is represented by designers and CAD tools,
and has been shown to provide significant power-performance
advantages in some circuit designs [18], [20].

Formal verification and relative timing is the key technology
that permits templates to be characterized in a way that is
compatible with clocked CAD. The formal verification uses
model checking. The representation and method of generating
RT constraints is shown in Fig. 1. This work applies a
conformance relation between the specification (spec.) and
implementation (design) based on the bisimulation confor-
mance relation shown in Fig. 2. The formal verification tool
(RT-FV) proves correctness of an implementation against a
specification. Timing constraints are represented as logical
expressions that make error states unreachable. A set of
constraints can be automatically generated that restrict the
timing of the implementation such that it conforms to the
specification [7]. Now timing is fully represented in the logical
and behavioral domain. The constraints are then mapped
to a format acceptable by a static timing analysis (STA)
engine, synthesis engine, or place and route engine, such as
PrimeTime, Design Compiler, or SoC encounter.

D. Template Based Methodology

Rather than compete in the CAD domain and develop fully
independent flows, one can apply commercial clocked CAD
and its associated algorithms as broadly as possible, and
restrict custom tools to the necessary asynchronous circuit
and verification problems. This approach, unlike purely asyn-
chronous design, is able to leverage the significant industrial
investment in synchronous design tools. Such a flow is sup-
ported in this paper based on “design templates” which are
the asynchronous sequential components of a design. If this
approach is successful and adopted by industry, designers will
be able to build asynchronous systems based on the merits of

the architecture, such as performance and power.

This approach to asynchronous design with clocked tools
thus has two facets: (a) the design and characterization of the
asynchronous templates, and (b) traditional system design that
employs the asynchronous templates. The key to making this
happen is to develop characterized templates that can be ma-
nipulated and optimized when inserted into the clocked CAD
flows. The design and characterization of the asynchronous
templates requires substantial expertise in asynchronous design
and verification. However, once the templates have been
completed, they can be inserted into a design flow by clocked
designers with little expertise in asynchronous design. Thus
a bulk of the asynchronous circuit and CAD are restricted to
off-line library design and characterization.

Ill. Formal Characterization Flow

The characterization of an asynchronous template is some-
what complicated, and will be demonstrated on the design
of a linear pipeline controller LC. This template is part of a
simple design example shown in Fig. 3 that will be used in
the remainder of this paper. There are only two asynchronous
templates in this design, the linear controller (LC) and the Fork
Join template (F/J). The rest of the design is synthesized using
normal clocked tool flows. We have designed a small micro-
processor using this flow, and this example is a conceptual
piece of such a design that calculates the function x2 + 3x.

A. Bundled Data with Clocked Datapath

Bundled data asynchronous designs are partitioned into two
signal classes: the datapath and control. The datapath in Fig. 3
consist of the registers (R) and oval boxes implementing
arithmetic functions. The registers are implemented as either
latches or flip-flops. This datapath is synthesized using Design
Compiler based on frequency parameters provided by the
user. The rest of the design is the control logic - which is
implemented by the clock distribution logic in clocked design.
To create a “handshake clocked” design, the global clock is
replaced with the control logic. In this case there are four
instantiations of the linear controller (LC) and two of the fork
join (F/J) module.

The responsibility of the handshake clocking is to maintain
the timing and functional relationship between data in adjacent
pipeline stages, implementing stalls when necessary. This is
achieved by implementing a handshake protocol in the LC
blocks. Extra delay may be needed between the control blocks
so that the clock signal does not arrive at the flop before the
input data is valid. Hence a matched delay will be implemented
between the data banks i and i +1 on the control path. For
example, the delay from ro to ro0 must match the x2 datapath
from RO g to the input of R10.

B. Asynchronous Template Design

Numerous handshake protocols and asynchronous circuit
designs are feasible realizations for linear pipelines. The
protocol and circuit design for each template will have a large
impact on the design in three ways. First, the templates directly
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Fig. 3. Example design: a simple ASIC mathematical pipeline segment computing dout = x2 + 3x
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Fig. 4. LC circuit implementation

impact the performance and power based on the complexity
of the design and the concurrency of the protocol. Second,
the characterization of the template critically depends on the
protocol and implementation. Finally, the correctness of the
system, particularly with cyclic pipelines, will depend on
the protocols and storage elements employed [2]. Hence our
method supports all templates.

The design used for the linear controller in this example
is shown in Fig. 4. This implements the four-cycle return to
zero handshake protocol shown in Fig. 5 and 6 as CCS and
Petri-Net specifications [11], [3]. Our CAD tools support both
representations. Note that this is a timed protocol (the dashed
arcs in Fig. 6 constrain inputs), similar to a burst-mode spec-
ification. Such a protocol is chosen for this example because
it illustrates the requirement of additional fundamental mode
timing constraints to guarantee correct implementation in a
design, as compared to delay-insensitive or speed-independent
designs. The result of mapping this design to a Verilog module
in the Artisan 65nm IBM 10sf library is shown in Fig. 7.

LEFT = Ir.cl.la.c2.lr.la.LEFT
RIGHT = cl.rr.c2.ra.rr.ra.RIGHT
SPEC = (LEFT | RIGHT) \{ c1,c2 }

Fig. 5. CCS specification of linear controller

la| — 71— —J ]
— —
Fig. 6. Petri net specification of linear control

C. Clocked CAD Tool Constraints

Following are the sdc constraints supported by commercial
tools that are used in this asynchronous template characteriza-
tion. All of these commands affect the timing and power of
the design.

1) set_size_only

2) set_dont_touch

3) set_data_check

4) set_max_delay

5) set_min_delay

6) set_disable_timing

Structural modifications to a design may occur during
synthesis and place and route flows. These changes result
in optimizations such as removing back-to-back inverters,
combining simple gates into a single complex gate, or breaking
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module linear_control (Ir, la, rr, ra, ck, rst);

input Ir, ra, rst;

output la, rr, ck;

INVX1A12TH Ico  (A(ra), .Y(ra));
AOI32X1A12TH  Ic1
INVX1A12TH Ic2
AOI32X1A12TH  Ic3
NOR2X1A12TH  Ic4
¢ element Ic5
INVX1A12TH Ic6

endmodule // linear_control

(A(a), .Y(la));

(:A@r ), B(rst), .Y(m);
(:Ala), .B(m), .Y(y));
(-Ala), .Y(cK));

(.A0(I), .Al(ra ), .A2(y ), .BO(Ir), .B1(la), .Y (lad);

(.AO(ra), .AL(Ir), .A2(y ), .BO(ra ), .B1(rr), .Y(rr ));

set_size_only -all_instances { */Ic1 }
set_size_only -all_instances { */Ic3 }
set_size_only -all_instances { */Ic4 }
set_size_only -all_instances { */Ic5 }

Fig. 7. Verilog implementation in the 65nm Artisan library

a complex gate into a set of simpler gates. Constraints are used
to prevent this from occurring in the asynchronous blocks,
because it could result in hazards or substantially modify
necessary delay properties of the circuit. The set_size_only
constraint prevents the tool from structurally modifying the
cell but allows the tools to optimize the drive strength of
the cell for power and delay optimization. The set_dont_touch
constraint disallows the tool from modifying the cell in any
manner. These commands take as arguments the cell instance
names. The following command disallows structural modifica-
tion of all Ic3 instances (the AOI gate) in the example design.

set_size_only -all_instances { */lc3 }

Traditionally the tools use clock domains to optimize cir-
cuits for power and performance. They understand setup and
hold constraints into flops and latches. When the sequentials
are driven from a simple clock domain the tools can optimize
the combinational logic for the desired frequency. All of
these tools operate on directed acyclic graphs, or DAGs. If
the timing graphs have cycles, algorithms in the CAD tools
are called to break the cycles. A user can manually define
how to break the timing graphs with the set_disable_timing
constraint. This will remove timing arc from a primitive gate
(such as a NAND gate) from the specified input to the specified
output. By removing the timing arcs in the primitive gates
a manual instance of the timing graph, and how signals
propagate through the circuit, can be defined. This is essential
for sequential circuits that use handshaking since they always
consist of cyclical timing paths. This command takes a -from
pin name, a -to pin name and a list of cells. The following sdc
command disables the timing arc from y_ to rr_ through one
of the AOI gates in all instantiations of the linear controller
in the example design.

set_disable_timing -from A2 -to Y

\
find -hier cell *Ic3]

By default, the maximum and minimum path delays are
calculated by considering the clock edge times. Extensions
to this flow have been implemented in the tools to override
timing values, support asynchronous signaling, and timing
domains that are not part of a fixed clock domain. These
are the set_max_delay, set_min_delay, and set_data_check
commands.

One can override the timing constraints in a clocked domain
with a specific time value by using the set_max_delay or

Fig. 8.  Size only constraints for the circuit
of Fig. 7
constrained
X “to” signal
setupN hold
P related
“from” signal

Fig. 9. The set_data_check command

set_min_delay command. This command has the side effect
of breaking the timing graph at the two end points of the
constraint (similar to the set_disable_timing constraint). This
command has several options, but basically takes a -from set
of path start points, a -through set of points the path must pass
through, and a -to set of path end points, and the target delay
value. Relative timing constraints can be checked using a pair
of commands as follows.

set_max_delay 1.7 -from [get_pins RO_reg_latch*/Q] \

-to [get_pins R10_reg_latch*/D]

set_min_delay 1.7 -rise_from [get _clocks tkO/Ir]" \
-rise_to [get_pins tk10_Ic1/A0]

The first constraint will make all the paths from the output of
register RO to the input of register R10 have a maximum delay
of 1.7ns in our example design. The second will constrain the
minimum delay path on the control path to also be 1.7ns.
This path is from the Ir input of the controller associated with
register RO to the input of the linear controller that clocks
register R10.

The set_data_check command is used to check setup or hold
constraints between two unclocked data signals. The -from
signal is considered to be the “clock” signal (called related)
and the -to signal is considered to be data signal (called the
constrained signal). This performs a the setup check and can
be given a margin. This is clarified in Fig. 9. Given a relative
timing constraint, the relative ordering of two signals can be
mapped into -from and -to constraints with a slack time. The
common point of divergence can be given with the -clock
command, as shown:
set_data_check -clock [get_clocks tkO/Ir] \

-fall_from [get _pins tkO_Ic3/A2] \
-rise_to Tget_pins tk0_1c3/B1] -setup 0.05

This example implements the constraint Irj ~ rrj ~ Irj
where Irj is the POD specified by -clock, rrj is the -rise_to
signal, and Irj is the -fall_from signal. This command correctly
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checks the maximum delay for the constrained -rise_to signal
against the minimum delay for the related -fall_from signal,
with a margin of 50ps.

The combination of constraints allow us to utilize the
synthesis, place and route, and timing tools to optimize and
validate the timing of asynchronous designs

D. Template Characterization

This section describes the detailed flow
characterized the LC pipeline template.

1) Model Generation: The first step in template character-
ization is converting the Verilog module (Fig. 7) into an
equivalent formal representation for verification by model
checking. This transformation is automated to aid in correct-
ness and productivity. The CAD tool takes three inputs: (i)
the Verilog design of the template, (ii) a mapping of Verilog
gates to formal semi-modular description of each gate in CCS,
and (iii) a functional description of the gates in the target
technology (Fig. 10). This code assigns the inputs of the
module to boolean values (0 for Ir and ra, 1 for rst) and
simulates the design to calculate the initial voltages for each
node in the design. The node values are used to select the
correct initial state for each formal CCS module. CCS has
been selected for verification because it formally supports
verification of nondeterminism (arbiters and synchronizers)
through the semantics of the internal t transitions, giving
additional applicability of the flows.

The designer must then create a complete formal specifi-
cation of the behavior of the module. This is usually done
during the design and synthesis procedure. Fig. 5 and 6 show
two equivalent specifications for LC that our tools currently
support. This work does not use an assumes-guarantees model,
but rather one that fully specifies the input and output signal
behavior as can be seen with these specifications.

2) Verification and Constraint Generation: The implemen-
tation is then verified against the specification using model
checking. The verification flow is also used to generate the
timing constraints for this design. An untimed semi-modular
model checking engine using the bisimulation based confor-
mance relation of Fig. 2 is employed [19]. The initial verifica-
tion employs speed independence semantics. This traditionally
will result in numerous violations, since almost every circuit
requires some timing assumptions, many due to technology
mapping. For LC seven errors occur. These violations must
be removed through relative timing constraints that reduce the
reachability graph of the implementation. Four local timing
constraints are sufficient to make the implementation conform
to the specification, including: Irj ~ y_j ~ rrj and
Irj ~ y_j ™ laj. The first constraint requires that the cycle
in Fig. 4 from Irj to y_j is faster than the cycle from Irj
to la| to laj to laj. Upon applying these RT constraints the
design verifies as conformant to the specification. This first
speed-independent verification run produces the key timing
constraints for timing driven sizing and place and route.

A second verification run is required to ensure that timing
constraints of the protocol are correctly generated. The pro-

required to

tocol in this example is a timed protocol. This protocol has
burst-mode properties where the outputs la and rr must both
occur before either of their related causal inputs Ir and ra. A
pipeline of three controllers in series are verified to generate
the protocol constraints between modules. This results in
two additional fundamental mode RT constraints, such as the
constraint Irj ~ rrj ™ Irj. This requires that the rr signal be
driven high before the Irj to laj to Irj cycle occurs. These are
also key constraints that must be enforced during the timing
driven sizing and place and route of the design.

A third hierarchical verification is run on template speci-
fications and the datapath to generate any timing constraints
between the handshake clocking and the datapath logic. When
synthesizing bundled data designs, these runs will create the
matched delay constraints between datapath and control. This
produces a number of constraints such as Irj ~ din ~ laj.
This ensures that the minimum relative delay through the
control path is larger than the maximum delay in the datapath.
These constraints are necessary to automatically synthesize the
matching delays necessary in the pipeline.

The design is finally verified under delay-insensitive con-
ditions where every wire segment outside of a native library
gate is given an unbounded delay. The DI model normally
generates a copious number of constraints. The fully DI LC
design adds 2,920,701 violations with 967,777 states. A set of
eleven more timing constraints remove 1,877 transitions and
reduce the design to 2,292 states which are conformant to the
original specification. This concludes the verification aspect of
template characterization.

3) RT Conversion to sdc Constraints:
from verification are then converted into two classes of sdc
constraints: set_data_check constraints and set_max_delay,
set_min_delay constraints. These constraints control timing
driven sizing, synthesis, and place and route of the design.
Clocked CAD tools do a marvelous job of timing driven design
when using the max and min delay constraints. However, these
constraints break the timing graphs at the end points of the
paths, and are somewhat particular about what can be used as
an end point. The data check constraints don’t cut the timing
graphs and are not nearly as particular about the end points,
but can not be relied upon to perform timing driven synthesis
(such as generating delay elements for min-delay constraints).
As such a hybrid set of constraints are used to improve the
quality and run-time of the tools.

The verification runs between the specification and different
implementation models result in three sets of data check
constraints as shown in Fig. 12. The sdc constraints are
assumed to lie inside clock domains. The clock path must be
defined to be on the point-of-divergence in the RT constraints.
In this design the clock domains are propagated from Ir signal.
The sdc constraints are then mapped to paths that converge
on two pins of a single gate instance. For example, the first
sdc constraint of Fig. 12 came from Irj ~ y_j ~ laj. This
constraint thus ensures the A2 and B1 pins on the AOQOI gate
instance Icl in Fig. 7 (that map to the signals y_ and la) occur
in the correct order.
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CCS specification functional descriptions:

function NANDO0001 4 d
function NOR00O1 3 ¢
function A2B10210001 7 d
function 012A210001 6 d

not(a * b * c)

not (a+b)
not((not(a)*b) + c)
not(a * (b + c))

Gate library to CCS specification mapping:

module artisan65nm2ccs ();
NAND3X2A12TR NANDO0001
NOR2X2A12TR NORO001
AOI2XB1X2A12TR
OAI21X2A12TR

endmodule // artisan65nm2ccs

A2B10210001
012A210001

(-A(@), .B(b), .C(c), .Y(d));
(-:A@), .B(b), .Y());

(A0(b), .AIN(a), .BO(C), .Y(d));
(A0(b), .AL(c), .BO(), .Y(d));

Fig. 10. Snippets of the functional cell representation and Verilog to CCS specification mapping. The second and third columns in the functional description
define the start of signal voltage state section of gate name, and the name of the output. The cell to spec mapping is a Verilog module that maps the design

(artisan cell) to an instance (the CCS specification).

agent NANDDOL = aNANDaOL + bNANDOOL ;
agent NANDIA = aNANDOOL + b.NANDehl ;
agent NANDIOL = aNANDebl + hNANDOOQL ;
agent NANDH = 'c.NANDahO;
agent NANDHO = aNANDOKO + bNANDAO ;
agent NAND) = hNANDOOO + ‘c.NANDObL;
agent NANZ00 = aNANDOOD + 'c.NANDaO1;
agent NANIDOO = aNANDOO + bNANDOO + 'c.NANDOOL;

Fig. 11. The semi-modular specification of a 2-input NAND gate. Inputs
that would disable an output are not permitted. This creates semi-modular
computation interference errors in the verification. The state mapped to the
logic level of the inputs as 0 or name of the pin (e.g. {0,a}). The output is
specified as its logic level.

The speed-independent verification constraints are key con-
straints that must be optimized through the CAD tools for
timing driven place and route to ensure correct timing in
the design. For LC these constraints ensure that the timing
of the feedback for the local state variable through the C-
element holds. The next set relates to the verification of three
pipelined protocols that exposed the constraints due to the
timed protocol. These constraints do not need to be included
in the synthesis and place and route flows because of the
magnitude of the slack between the two race paths. The late
arriving path for these delays goes through multiple LC cells
and potentially delay elements whereas the fast path is an
internal feedback in the LC cell. The final set of constraints
were generated from the verification between the specification
and the delay-insensitive implementation model. These wire
forks constraints are not normally used for synthesis, but are
validated post-layout.

The final set of constraints use max and min delay con-
straints, as illustrated in Fig. 14. These are derived from the
verification of the pipelined protocol with datapath models.
Each POD constraint is broken into a set of constraints - one
for the fast path and a pair of constraints for the slow path.
The minimum delay of the fast path through the datapath logic
is constrained with a max delay constraint equaling the cycle
time minus setup and hold times of the logic ($clk_period).
The slow clock path is constrained with a min-delay constraint,
which creates the delay element if necessary ($req_del_min).
To ensure a tight bound for this constraint, a max delay that
is slightly larger than the min delay ($req_del_max) is also
applied to this path. The constraint shown in this example

ensures that the data through the x2 logic arrives before the
clock. Delay elements will be added in the control path.

While only a portion of the constraints are used in the
synthesis flow, all are used for post-layout validation, including
the DI constraints. The correct application of the data check
constraints must be checked with report_timing commands as
shown in Fig. 13.

4) DAG Timing graph generation: The timing driven syn-
thesis and optimization algorithms in clocked CAD all work
on directed acyclic graphs (DAGSs). Further, many of these
algorithms are restricted to paths defined as “clocks”. Most
asynchronous templates are sequential designs with feedback,
which can be seen by examining Fig. 4. The handshake
protocols themselves produce cycles (Fig. 3). Important paths
through these cycles must be defined as clocks and broken
into DAGs without breaking essential timing paths.

Loop breaking algorithms exist in the clocked CAD. How-
ever, the commercial software cuts the cycles in such a way
that many of the necessary timing paths are broken. This
results in constraints that cannot be applied to the design,
poor sizing and power, and potential failures in the design.
Integrating the generation of correct DAGs through cycle
cutting in the implementation is therefore an essential part of
the library characterization. To ensure that all of the constraints
are correctly applied to the design, a report_timing command
should be added for every constraint as shown in Fig. 13.
These loop cutting constraints for LC are shown in Fig. 15.

New graph cutting algorithms need to be developed to
automatically define “clock” paths the algorithms can trace,
and ensure that all the constraints can are applied in the
synthesis and validation runs. This approach would ensure the
point-of-divergence of the RT constraints and all subsequent
paths to the points-of-convergence are not broken. Even with
optimal algorithms a single set of cuts might not be possible,
and multiple tool runs may be necessary.

5) Protecting Design Fidelity: A final set of constraints are
necessary to ensure that the characterization process remains
valid through the tool flows. Many parts of the flow, including
the synthesis and place and route tools, can optimize the logic
by remapping gates. While this in general can improve the
design, modifications to sequential asynchronous controllers
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speed-independent design constraints:

set_data_check -fall_from */Ic1/A2 -fall_to */Ic1/B1 -setup $race_margin
set_data_check -fall_from */Ic3/A2 -falLto */Ic3/B1 -setup $race_margin

external protocol constraints:
set_data_check -fall_from */Ic1/Al -rise_to */Ic1/B1 -setup O
set_data_check -fall_from */Ic3/Al -rise_to */Ic3/B1 -setup O
set_data_check -fall_from */Ic5/A -rise_to */Ic5/Y -setup O
set_data_check -fall_from */Ic5/B -rise_to */Ic5/Y -setup O

wire fork constraints:
set_data_check -rise_from */Ic3/A2 -falLto */Ic3/Al -setup O
set_data_check -rise_from */Ic1/A2 -falLto */Ic1/Al -setup O
set_data_check -fall_from */Ic4/A -falLto */Ic4/Y -setup O

Fig. 12. Timing constraints of implementation of Fig. 7

Latch timing constraints:
set_max_delay $clk_period -from RO_reg/q -to R1_reg/d
set_min_delay $req_del_min -rise_from tko/Ir -rise_to tk10/Ir
set_max_delay $req_del_max -rise_from tko/Ir -rise_to tk10/rr

Fig. 14. Protocol level constraints for the linear control template

produce results that at best don’t match the verification results,
and at worst produce non-functional logic due to hazards.
Applying the size_only property (Fig. 8) to all logic gates
ensures that they will not be logically modified through the
tool flows. This constraint allows the gates to be optimally
sized in the timing driven power and performance optimization
algorithms.

IV. Design Examples

Fig. 3 shows a datapath used to illustrate synthesis, place
and route, and post-layout validation. The Verilog used to
synthesize this pipeline is shown in Fig. 16. In general, our
approach imposes the following requirements on an imple-
mentation:

1) Only fully characterized templates can be used in the
control path.

2) AIll paths in the handshake clocking must be point-to-
point between characterized template modules.

3) Network liveness requires complementary template pairs
that implement dual data steering fan-out and fan-in
operations.

Many templates implement the complementary or dual op-
eration through a simple structural mirroring of the design. For
example, the Fork/Join template in Fig. 17 will implement a
fork operation; but when mirrored horizontally it implements a
join operation of two handshake paths. Thus a single template
is used for either datapath forking or joining operations.

The datapath in the example contains branches and forks.
These must all be broken in the control path by correctly
inserting the handshake templates to ensure a point-to-point
network connection. These elements must also be inserted in
a way that implements complementary operations; every fork
in the datapath must be associated with a join, and so forth.

report
report
report
report
report
report

timing -delay max
timing -delay max
timing -delay max
timing -delay max
timing -delay max
timing -delay max

-rise_to */Ic1/B1
-rise_to */Ic3/B1
-rise_to */Ic5/Y
mfall_to */Ic3/A0
mfall_to */Ic1/Al
fall to */lc4lY

Fig. 13. Report statements to validate the timing
constraints in Fig. 12

breaking local cycles:
set_disable_timing -from A2 -to Y [find -hier cell *Ic1]
set_disable_timing -from B1 -to Y [find -hier cell *Ic1]
set_disable_timing -from A2 -to Y [find -hier cell *Ic3]
set_disable_timing -from B1 -to Y [find -hier cell *Ic3]

breaking handshake protocol cycles:

set_disable_timing -from Al -to Y [find -hier cell
set_disable_timing -from Al -to Y [find -hier cell
set_disable_timing -from BO -to Y [find -hier cell

*Ic1]
*Ic3]
*[c3]

Fig. 15. Loop breaking constraints

V. Results

Twelve different versions of the Verilog example were
synthesized, simulated and evaluated in order to demonstrate
the flexibility and advantages of this tool flow. The different
versions include (i) mapping the design to latches or flops,
(if) using an incomplete set of constraints, (iii) having various
frequencies for each pipeline stage, and (iv) applying time
borrowing to the latch design. All designs started with the
same behavioral module of Fig. 16 with one exception - the
flop based designs required replacing the latch_active_high
module with a structural flop bank. All designs were syn-
thesized, physically placed and routed, and simulated using
post-layout parasitics to generate delay and power results.

The reported results used the Artisan library for the IBM
65nm 10sf process using full layout and parasitic extraction.
Design compiler was used for synthesis, Modelsim was used
for simulation, and SoC Encounter was used for place, route,
and parasitic extraction. The power and delay numbers used
sdf parasitic back annotation into the Modelsim. The power
numbers were generated using parasitic extraction and activity
factors from a simulation run by importing a vcd file from
Modelsim into SoC Encounter. The simulation run exhaus-
tively executing all input values from zero to 256 while also
validating functionality. Post layout timing was validated using
the full set of constraints, including the DI wire constraints,
using PrimeTime with extracted parasitics.

Two delays are critical in these designs for timing driven
synthesis and place and route: the delay of the combinational
logic and the delay of the control logic to ensure proper
storing of the data. Each of these delays can be independently
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module toy (din, dout, Ir, la, rr, ra, rst);

input Ir, ra, rst; output la, rr; input [15:0] din; output [31:0] dout;

reg [31:0] RO, R10, R11, R2;
assign dout = R2_q;

always @(*)
linear_control

RO = din;
tko

latch_active_high Ro_reg  (.d(R0),
bcast_fork bcfo

always @(*) R10 = R0O_g *RO0_q;
linear_control tk10
latch_active_high R10_reg (.d(R10),
always @(*) R11 =R0_g *3;
linear_control tk11
latch_active_high R11_reg (.d(R11),
bcast_fork becmo (.bi(a1),.
always @(*) R2 =R10_qg + R11_q;
linear_control tk2
latch_active_high R2_reg  (.d(R2),

endmodule // toy

(.ck(cko), .Ir(Ir), .la(la), .rr(r0), .ra(ao), .rst(rst));

.clk( cko), .q(Ro_q));

(.bi(ro),.bo0o(ro0),.bo1(ro1),.jio(a00),.ji1(a01),.jo(aon));

(.ck(ck10), .Ir(r00),.1a(a00),.rr(r10),.ra(a10),.rst(rst));

.clk( ck10), .q(R10_q));

(.ck(ck11), .Ir(ro1),.la(a01),.rr(r11),.ra(al1),.rst(rst));

clk( ck11), .q(R11_q));
boo(a10),.bo1(a11),.jio(r10),.ji1(r11),.jo(r1));

(.ck(ck2), .Ir(r1), .la(a1), .rr(rr), .ra(ra), .rst(rst));

clk( ck2), .q(R2_q));

Fig. 16. The synthesized arithmetic Verilog for the example.

b ro
H e e

- —H
—
al

Fig. 17. Fork/Join Template

set for each pipeline stage. For all comparable designs, the
combinational logic between flops or latches had the same
target delay. However, the delay element between control
logic may be sized differently based on the efficiency of
synthesizing the control logic as will be shown.

Data must be valid before the rising edge of Ir into the
control logic for the LC protocol employed. Note that for
efficient operation, a unidirectional delay between rr and Irin
the pipeline is desired, where the rising delay is large and the
falling delay is as small as possible. However, the scripts result
in the clocked CAD automatically generating bidirectional
delays. Unfortunately, bidirectional delays result in over a
100% delay overhead for protocols where data is valid on
the rising edge of Ir. Efficient designs must employ different
protocols or unidirectional delays. However, this protocol
works well for our example pipeline because it provides an
ample time borrowing window. Time borrowing in the design
occurs in two forms. First, for the simple design example (see
Fig. 3) the delay through the 16-bit multipliers of the second
pipeline stage are much larger than the 32-bit adder delay in
the final stage. This allows the stages previous to the adder
stage to borrow some of its cycle time. Second, variation
in a design can be mitigated by time borrowing. Latches
are operated in a normally closed mode in the design. This
allows time borrowing to occur based on the delay between

Flip-Flops Latches
ICS FCS ICS FCS

Avg. energy (nJ) 0.762 0.493 0.673 0.406
Avg. sw. energy 0.673 0.158 0.305 0.169
Avg. intrnl energy  0.440 0.308 0.343 0.212
Avg. leakge enrgy  0.031 0.028 0.025 0.025
Area (mm 2) 12,724 12,294 11,215 10,770
Datapath clk per. 2.0 2.0 2.0 2.0
Control delay 25 2.0 2.0 2.0

TABLE |

Example comparing flop and latch based design with identical
PIPELINE FREQUENCY. THE ICS COLUMN USES AN INCOVPLETE
CONSTRAINT SET. ENERGY REPORTED IN PJ PER TOKEN, CLOCK PERIOD
IN NSEC.

la asserting and deasserting because new data will not be
propagated forward until la lowers (see Fig. 5 and 6).

One of the primary examples of this tool flow is to evaluate
the effectiveness of timing driven synthesis and place and
route of the asynchronous templates. This is demonstrated by
utilizing an incomplete constraint set (ICS) from the template
characterization, as well as the full constraint set (FCS) for
each version of the design. The incomplete constraint set util-
izes all of the relative-timing generated constraints, but allows
the clocked CAD tools to utilize their internal cycle cutting
algorithms to generate the timing DAGs. Thus, the incomplete
constraint set leaves out the loop breaking constraints in the
flow shown in Fig. 15.

Table | shows four designs synthesized to compare the
pipeline using flops versus latches in the datapath. Comparing
the flopped pipeline versus a latch pipeline gives the expected
results: the latch design is more energy efficient (12% &
18% respectively for ICS and FCS) and smaller (* 12%
for both). The full constraint set designs (FCS) show a large
improvement in power and minor area reduction. The timing
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Flip-Flops Latches
ICS FCS ICS FCS

Avg. energy (nJ) 0.752 0.492 0.677 0.398
Avg. sw. energy 0.285 0.159 0.308 0.167
Avg. intrnl energy  0.439 0.306 0.349 0.206
Avg. leakge enrgy  0.028 0.027 0.021 0.025
Area (mm2) 12,878 12,258 11,516 10,887
Datapath clk per.
multipliers 2.0 2.0 2.0 2.0
adder 14 14 14 14
Control delay
multipliers 3.2 2.0 2.0 2.0
adder 15 14 14 14

TABLE I

Version with variable pipeline frequencies.

optimized design resulted in a 35% and 40% reduction in
energy for the flop and latch designs respectively. For the flop
design, there is also a significant improvement in performance,
as the improperly constrained design requires control delay
25% slower than the datapath to operate properly. Inspecting
the post-layout netlist reveals that the ICS design substantially
oversized many gates. For example, the tools sized an AOI132
gate of Fig. 7 six times larger in the ICS versions as compared
to the FCS versions of the design. This larger gate is energy
inefficient and creates skew in the delay paths that ultimately
result in a 25% slower circuit. However, for the latch design,
the same control target frequency as the FCS version can be
used due to time borrowing that occurs.

Table 1l shows four new designs where the pipeline stages
are independently assigned delays to optimize the power-delay
product for each pipeline function. The 16-bit multipliers were
given a target cycle time of 2.0ns, and the 32-bit adder a cycle
time of 1.4ns. This example shows that even with traditional
clocked tools, this characterization flow is able to directly
synthesize and validate multi-frequency pipelined designs.
Like the case with a single frequency, the full constraint set
results in lower area and power than the unconstrained set, as
well as a faster design (ignoring time borrowing that occurs
for the latched ICS version).

The final four designs show how this flow can be used
to actively exploit time borrowing between pipeline stages
in the clocked CAD. This is achieved without changing the
synthesis scripts. The only change is in assigning different
delay values to the control path. The first two versions of the
design, shown in Fig. 111, use a fixed frequency for all datapath
pipeline stages. The last two versions use different frequencies
for the multiplier and adder stages. The primary difference
between the fixed and multi-frequency designs is that the
multi-frequency design slightly constrains the worst case adder
path, which results in a very small reduction in cycle time and
energy. The most significant observation from these designs is
the ability for time borrowing to mitigate variations in the
design, whether the source is from poor frequency or design
optimization (as can be seen by the energy difference of 44%).

ICS FCS ICS FCS
Avg. energy (nJ) 0.670 0.378 0.670 0.377
Avg. sw. energy 0.309 0.160 0.309 0.158
Avg. intrnl energy  0.343 0.201 0.343 0.203
Avg. leakge enrgy  0.017 0.016 0.017 0.017
Area (mm2) 11,264 10,739 11,258 10,937
Datapath clk per.
multiplier 2.0 2.0 2.0 2.0
adder 2.0 2.0 1.1 1.1
Control delay
multiplier 1.2 1.1 1.2 1.1
adder 1.2 1.1 1.1 1.1

TABLE 1l

Latch based time borrowing versions with and without
variable pipeline frequencies using incomplete and complete

TIMING PATH CONSTRAINTS.

RT Constraints Setup (ns)  Slack (ns)
Irf A orrf Ay _| 0.05 0.16
Irf A laf ~ y_| 0.05 0.12
Irf ~ laf ~ raJ 0.00 0.92
Irf ~ rrf A . 0.00 0.80
TABLE IV
Data check timing report summary some RT constraints. Listed
SLACKS ARE ALL WORST CASE.

All relative-timing constraints, including the delay-
insensitive constraints, are used to validate post-layout timing
(using extracted layout parasitics imported as standard delay
file) in PrimeTime. The timing report validated that all the
constraints used for timing driven synthesis and place and
route are correct with positive slack. In latch based pipeline
implementation the multiplication latch stages can use time
borrowing from the next stage. Tables IV and V show a brief
summary of the timing reports.

VI. Conclusions

This paper shows how asynchronous Verilog behavioral
designs can be characterized in a way that allows them to be
synthesized, optimized, and validated using traditional clocked
tool flows. This methodology requires the asynchronous blocks
to be designed as precharacterized templates that are struc-

PathType ~ From To Constr. MXTB  TB/SIk
DataPath RO R10 max 1.70

DataPath R10 R2 max 108 017 @

DataPath RO R11 max 1.70 %

DataPath R11 R2 max 108 0.65

CtrlPath tkOr  tk10/r  min 119 NA NA

CtrlPath  tk10/r  tk2/Ir min 1.08 NA NA

CtrlPath tkOr  tk1MIr  min 119 NA NA %
CirlPath  tk1l/Ir  tk2/Ir min 1.08 NA NA

TABLE V
Timing report summary for constraints between pipeline
stages. The latches in datapath borrow time from the next
STAGES WITH LSUP (LIBRARY SETUP TIME), MXTB (MAXIMUM TIME
BORROWING) AND TB (REAL TIME BORROWNG) LISTED. ALL THE
NUMBERS ARE IN NANOSECONDS.



turally inserted into the behavioral design at each pipeline
stage. The characterization methodology is based on for-
mal verification and relative timing to generate several sets
of constraints ranging from from key timing driven speed-
independent constraints, to a complete set of delay-insensitive
constraints. The full constraint generation flow was demon-
strated for a linear pipeline controller cell.

A simple design was used to demonstrate the functionality
of the design flow and show how different versions can
easily be generated by modifying timing constraints. Twelve
different versions of the behavioral design were synthesized
and evaluated in IBM’s 65nm 10sf process. These designs
demonstrated the performance and power benefits of this
flow as the complete constraint set showed up to a 44%
reduction in power compared to one that allowed automatic
cycle cutting. The tools were used to automatically synthesize
designs mapped to flops, latches, variable frequency pipelines,
and time borrowing designs. The benefit of a latch based
design was demonstrated, showing up to a 12% area reduction
and 19% reduction in energy over the flop based version.
Variable pipeline frequency did not substantially change the
performance, power, or area of this linear fork/join pipeline.
Time borrowing was able to substantially mitigate variations in
the controller, and reduce the performance constraining cycle
time by up to 45%, and reduce the energy by up to 5% over
the fixed frequency latch based design.

The flow presented here opens the capability for any clocked
designer to create handshake clocked asynchronous designs
using asynchronous templates characterized with this flow.
As such, this is an important first step to achieving the
evolutionary integration of asynchronous handshake clocking
into 20% of the semiconductors by 2012 as predicted by the
ITRS.

VII.
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