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ABSTRACT 
 
 
 

 The human brain is the seat of cognition and behavior. Understanding the 

brain mechanistically is essential for appreciating its linkages with cognitive 

processes and behavioral outcomes in humans. Mechanisms of brain function 

categorically represent rich and widely under-investigated biological substrates 

for neural-driven studies of psychiatry and mental health. Research examining 

intrinsic connectivity patterns across whole brain systems utilizes functional 

magnetic resonance imaging (fMRI) to trace spontaneous fluctuations in blood 

oxygen-level dependent (BOLD) signals. In the first study presented, we reveal 

patterns of dynamic attractors in resting state functional connectivity data 

corresponding to well-documented biological networks. We introduce a novel 

simulation for whole brain dynamics that can be adapted to either group-level 

analysis or single-subject level models. We describe stability of intrinsic 

functional architecture in terms of transient and global steady states resembling 

biological networks. In the second study, we demonstrate plasticity in functional 

connectivity following a minimum six-week intervention to train cognitive 

performance in a speed reading task. Long-term modulation of connectivity with 

language regions indicate functional connectivity as a candidate biomarker for 

tracking and measuring functional changes in neural systems as outcomes of 

cognitive training. The third study demonstrates utility of functional biomarkers in 
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predicting individual differences in behavioral and cognitive features. We 

successfully predict three major domains of personality psychology—intelligence, 

agreeableness, and conscientiousness—in individual subjects using a large 

(N=475) open source data sample compiled by the National Institutes of Health’s 

Human Connectome Project.   
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CHAPTER 1 
 
 
 

INTRODUCTION 
 

 
 

Overview 

 Bioengineering is the application of engineering principles to biological or 

medical systems. Using a range of mathematical and analytical tools, 

bioengineers are represented in fields as diverse as materials science, drug 

development and delivery, artificial prosthetics, and medical imaging.  

 Medical imaging, specifically, gives us the opportunity to see inside the 

body and examine the structures and functions of myriad physiological systems 

noninvasively. The advent of magnetic resonance imaging (MRI) was a 

groundbreaking method of examining internal body structures, taking advantage 

of differences in magnetic susceptibility across different body tissues. The path 

toward development of MRI resulted in Nobel Prizes being awarded for advances 

in medicine and physiology. Most recently in 2003, Paul Lauterbur and Peter 

Mansfield were both awarded Nobel Prizes for their contributions to MRI 

development. Lauterbur received distinction for introducing gradients into the 

magnetic field that enabled visualization of two-dimensional structure. Mansfield 

was awarded the honor for demonstrating how signals from MR could be 

mathematically transformed into a coherent image, and for pioneering echo-
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planar scanning in which rapid imaging occurs through rapid variations of 

gradients. Functional magnetic resonance imaging (fMRI) takes advantage of the 

differences between magnetic susceptibility in oxygenated versus deoxygenated 

blood, and allows us to track the progression of metabolic activity in the grey 

matter of the brain over time. This metabolic signal is known as the blood oxygen 

level-dependent signal, or BOLD signal.  

 The last two decades of functional MRI research has firmly rooted 

cognitive psychology in the biological systems of the human brain. Resting state 

functional connectivity (RSFC) in particular has paved the way for cognitively-

driven research questions to become the subject of high-throughput biological 

methods. RSFC examines spontaneous fluctuations in brain activity, and 

determines the covariation of activity between regional pairs in the brain. 

Presently, RSFC studies represent a revolutionary phase for integrating 

behavioral data from research psychology with our rapidly increasing 

comprehension of dynamical systems in the human cortex. Empirical correlations 

between cortical physiology and human behavior will allow bottom-up 

assessment of the impact of neurobiology on behavior. This will have 

implications as diverse as philosophy of mind and translational medicine. This is 

also an important leverage point for correctly diagnosing, prescribing treatment, 

and monitoring a wide-range of clinical mental health and psychiatric disorders.  

 The fields of computer science and applied math have developed powerful 

solutions for large biological data made possible by the Human Genome Project 

and molecular assays such as genetic microarray technology. The current NIH 
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Human Connectome Project and the proliferation of large datasets for human 

functional connectivity in psychiatric typing and subtyping provide a parallel 

opportunity to integrate well-described engineering methods and to develop 

novel methods for formulating models of networks in functional neurobiology. To 

this end, I characterized components of human resting state functional 

connectivity patterns in large sample (n>1500) datasets, using cortical physiology 

captured through functional MRI time series data (BOLD signal).  

 A recurring strategy in my research is to explore principal components of 

RSFC by decomposing group-mean averages of RSFC, backproject vectorized 

principal components of RSFC onto anatomical space, and quantify dominant 

contributions to RSFC in a typically-developing population through network 

eigenvalues. Intuitively, we predicted at the outset that eigenvectors for RSFC 

matrices would correspond to primary cognitive functions such as primary 

sensory functions, internal attending, external attending, and language 

processing, with eigenvalues representing the proportion of cortical metabolism 

partitioned to each respective function. This prediction proved to be correct.  

 Complementary to functional architectural descriptions of whole brain 

activity, we set out to create a whole brain model of grey matter activity that could 

describe networks in the brain in terms of their transient stability. Because the 

brain is a dynamic organ, constantly adapting its flow of information and activity 

to accord with external sensory and cognitive demands, the goal was to 

approach the brain as a systems-based problem and characterize dynamic 

stability of transient intermediate states observed during normal brain function in 
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a typically-developing (TD) large sample population (n=500). We further 

compared intermediately stable configurations in functional patterns with 

established intrinsic connectivity networks in order to describe the functional 

connectivity of resting state neural activity in terms of fluctuating engagements 

between subdomains of canonical networks. We anticipated that resting state 

models of network dynamics would show group averages for large sample TD 

subjects that reflect intermediately stable states correspondent to hubs of 

established intrinsic connectivity networks, with overall convergence in resting 

state models to default mode network steady-state. 

 By quantifying neural dynamics, components, and stability of functional 

networks using high-throughput, large sample biological datasets integrating with 

information-rich behavioral assays for a large population (n=500), biomarkers in 

human cortical function may become the foundation of modeling human behavior 

and cognition in a way that corresponds to our current modeling of physical 

systems.  

 In a longitudinal interventional study, we explore the utility of RSFC for 

tracking neuroplastic modulation of long-term connections subsequent to 

behavioral training. In this specific paradigm, we used a speed reading 

behavioral training regimen. The principles of functional mapping and the 

demonstration of neuroplastic modulation in spontaneously occurring connectivity 

are a proof of concept, with the tools of analysis having potential application for 

tracking neuroplastic modulation of RSFC following any number of interventions, 

including tracking the effects of psychopharmaceuticals on whole brain function 
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(1). In the third study presented in this series, we demonstrate the ability of both 

traditional RSFC in addition to features from simulations of whole brain activity to 

mapping behavior and predicting cognitive and social characteristics of individual 

subject differences. This study in particular has the most exciting and direct 

potential application to translational clinical settings, as it presents novel methods 

for interpreting behavior mechanistically as behavior arises from supporting 

neurobiological functions. The goal beyond the methods put forward in the last 

study is to integrate behavioral predictions and brain network classification with 

diagnosis, prognosis, treatment planning, and therapeutic monitoring in medical 

clinical settings.  

 

Background 

 Functional connectivity examines the architecture of physiological 

networks distributed across the grey matter (2-4). The roles of specific large-

scale distributed networks have been robustly mapped for a wide range of 

experimental tasks, including facets of primary sensory perception, motor 

planning and execution, language processing, directed attention, and social 

reasoning. Functional connectivity MRI (fcMRI) originated with the discovery that 

metabolic synchrony between brain regions can be determined from blood 

oxygen level-dependent (BOLD) signal acquired over a series of successive time 

points (5). Resting state BOLD signal acquisition popularized the use of 

functional connectivity MRI to decipher distributed hubs of correlated metabolic 

activity when no outside task is imposed upon subjects. Largely, the 
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popularization of resting state fcMRI is due to the discovery of a major human 

neurophysiological network--the default mode network (DMN)—that was 

previously undescribed by other methods of physiological imaging (6). The 

identification of a previously unidentified network granted significant credibility to 

brain mapping as a tool for mechanically modelling the human brain and mind, 

given its ability to determine networks by biologically data-driven approaches, in 

contrast to reliance upon experimental task design to elicit a specific cognitive 

construct of interest.   

 To characterize the system of cortical networks that compose the human 

grey matter, independent component analysis (ICA) of BOLD signal fluctuations 

emerged as a leading methodological analytical tool (7-9).  Spatially-independent 

sources of physiological signal as determined by ICA of BOLD time series 

sequences have been largely accepted as defining the core intrinsic connectivity 

architecture of large-scale spatially-distributed functional networks in the human 

brain recorded across the whole brain are reasoned to represent fundamental 

distributed networks.  Intrinsic connectivity between spatial regions of the brain 

was observed to be highly consistent, and resulted in the conclusion of a network 

architecture highly reproduced across healthy control subjects (4, 10). It logically 

became a focal point of investigation to determine whether variations in the 

brain’s independent components are descriptive of mental health and psychiatric 

state.  

 There is converging evidence that functional connectivity MRI faithfully 

reflects underlying neurobiological substrates. Honey et al. demonstrated that 
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functional connectivity MRI is aligned with information from structural connectivity 

such as diffusion tensor imaging (11). In a study comparing functional 

connectivity to patterns of activation seen across thousands of reported brain 

imaging studies, it was noted that functional network boundaries identified by 

functional connectivity closely matched those obtained from a meta-analysis of 

published coordinates from the Brainmap database (12).  Such observations 

have led to the conclusion that functional connectivity is sufficiently constrained 

by structural connectomics in the brain as to be a reliable metric of functional 

brain organization (13). 

 Principal components analysis (PCA) of functional grey matter correlations 

have been analyzed with some success to characterize the functional partnering 

of nodes across intrinsic networks, while additionally providing a promising series 

of additional biomarkers for neurophysiological disease (14). PCA differs from 

ICA in RSFC in that more spatially distributed information is obtained as opposed 

to the localized brain networks obtained from independent component analysis. 

While ICA is effective at obtaining parcellations of the brain (15), it may be less 

sensitive to brain components that integrate or contrast information from different 

brain networks that are important for both normal brain function and 

pathophysiology in disease. 

 With the aggregation of pattern recognition methods becoming 

commonplace in brain mapping data, the current need is to assemble 

biologically-based classification systems whose usefulness could make the 

translational step into clinical application, most probably by means of diagnostic 



 

 

8 

screening, prognosis, and guidance of treatment for neuropsychiatric illness. 

Initial studies at classifying disease states have moved beyond early efforts at 

distinguishing group means (16, 17) to more sophisticated classification 

algorithms using whole brain connectivity patterns and multisite datasets (18, 

19). Nevertheless, previous literature does not support a robust clinical use of 

clinical diagnostic biomarkers that have been proposed to date, and this is an 

area of active research and pressing clinical need. In fact, the NIMH included in 

its new strategic plan to “Develop, for research purposes, new ways of classifying 

mental disorders based on dimensions of observable behavior and 

neurobiological measures” (20).  

 The complexity of nonlinear dynamics to describe neurophysiological 

relationships has inhibited its development in biomarker development. 

Nonetheless, the dynamic stability of functional networks have been 

demonstrated through biologically-based simulations to have potential as 

functional biomarkers (21). Increased understanding of the behaviors of 

transiently stable functional states in the brain will allow us to examine variations 

in neurobiology from a different angle and establish quantitative metrics for the 

behavior of transient stability in functional connectivity. 

 Current work in the field is exploring sliding temporal windows to BOLD 

time series data to quantify the variation of functional correlations themselves 

over time (22, 23) and using temporal mixing functions (24). Although 

provocative, these approaches are plagued by signal processing challenges of 

obtaining satisfactory signal from noise separation owing to the reduced number 
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of time points considered in current sliding temporal window methods. Intuitively, 

one would expect the brain’s functional correlations would be described better as 

a nonlinear system with fluctuating correlations between regions based on 

specific environmental and task demands. And indeed, a growing body of studies 

confirm that functional correlations observed as averaged values across long 

time series are not correspondent with moment-to-moment strengths in 

coordination between regions of the brain (25). 

 MR signal filtering remains an ongoing methodological evolution in brain 

mapping, advancing the field in this direction via superior acquisition sequences, 

forays into higher-power scanner magnets (7 T and above), and optimized 

filtering remain priorities (23, 26). As previously mentioned, rich temporal 

fluctuations of nonlinear interactions describe low-frequency functional 

connectivity in the human brain. The scientific questions alone regarding the 

functions of these complex signals are titillating. Added to the translational impact 

in understanding and treating disease, it becomes important to develop suitable 

techniques for maximally precise single-subject brain analysis. Functional 

connectivity adjacency matrices have demonstrated longitudinal reproducibility in 

single-subject trials (27-29). This gives confirming evidence to the likelihood that 

even static averages of functional connectivity in single-subject acquisitions show 

potential for clinical used in personalized neurological and psychiatric medicine in 

the domains of diagnosis, prognosis, and guidance of treatment.  

 A landmark study using resting state fMR images from 1,000 subjects 

demonstrated clusters of functionally-related, spatially-distributed network hubs, 
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with optimized parcellations at 7-network divisions and 17-network divisions (4). 

This invokes tautological questions about defining a “network.” Competing 

experimental analyses for network divisions explicitly caution against premature 

conclusiveness of intrinsic connectivity findings owing to ongoing refinement of 

methods for data filtering and BOLD signal processing (30). Unsettled 

controversy notwithstanding, significant findings from interspecies comparisons 

of functional architecture in cortex of humans versus monkeys shows immense 

expansion of association cortices in humans over other primates (4). This gives 

provocative insight to the emergence of cognitive capacities unique to Homo 

sapiens amongst the primate family, particularly as networks involving 

association cortical regions do not demonstrate perceptible hierarchical 

organization.  

 The current proliferation of high throughput biological data has been 

likened optimistically to the scientific moment in astronomy when the telescope 

was adopted as a standard research tool (31). By collecting high throughput 

biological data and monitoring physiological functions across time, we gain the 

ability to describe biological systems with precision approaching physical 

mechanical systems modeling. The NIH Human Connectome Project fills an 

important gap in currently available research data capable of building these 

models to incorporate the three domains of physiology, behavior, and genetics. 

(32, 33, 34, 35).  
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Impact of Current Research 

 My research is innovative in several ways. First, characterization of the 

principal components of functional network connectivity in humans has not been 

completed in a large dataset akin to the HCP500 project, nor has rearrangement 

of principal components from task-driven effects been characterized. While there 

have been prior reports evaluating relationships between functional connectivity 

and behavioral metrics (32, 33), prior reports have used limited datasets with 

small sample sizes and low temporal resolution that limit ability to discriminate 

individual phenotypes. The Human Connectome Project dataset provides the first 

opportunity for large-sample, high-quality functional connectivity evaluation of 

personality and other behavioral metrics in a typically developing cohort.  

Second, this project moves the field of functional connectivity research toward 

deriving biological markers for canonical neuropsychological and psychiatric 

diseases. Defining biomarkers in a typically developing population allows 

determination of canonical variants of human behavior that can be applicable to 

any disease population for which there is an adequate sample size to examine.  

Third, the early development of biologically-based neural markers for behavior 

and neuropsychiatry creates a new way for integrating imaging genetics with 

neurological and psychological assessment.  

 Fourth, these projects extend a method for dynamical evaluation of brain 

network stability. Presently, dynamical evaluation of brain networks has been 

approached from static concatenation of brain microstates or temporal 

independent component analysis (22, 24). A true dynamical stability assessment 



 

 

12 

of attractor kinetics of brain networks (21) has not been applied to modern 

functional connectivity data with extended imaging time per subject and allows 

the opportunity for characterization of brain network stability and metastability.  

 

Approach to Functional Connectivity 

 For simplicity, resting state functional connectivity is often modeled as a 

static set fixed parameters describing the strength of pairwise correlations 

throughout the brain. The true behavior of the physiological system is more 

complex, and involves fluctuating combinations of pairwise correlation strengths 

influenced by internal and external demands. To understand the effects of task-

driven demands on network physiology, we explored group-level changes in 

functional architecture of the brain in response to tasks performed by participants 

while being scanned, including gambling, cognitive, emotional, and social-based 

tasks. We demonstrate that principal components of the functional connectome 

change in association with external task demands, reflecting preferential 

recruitment of physiological networks supporting cognitive processes demanding 

by respective task states. 

 Typically, functional connectivity has been measured by calculating the 

correlation coefficient between BOLD time series in different brain regions or 

networks (5, 3). Alternately, approaches in the frequency domain have used 

coherence to similarly identify a relationship between the two time series (62). 

Nonlinear metrics of synchrony between the time series, such as mutual 

information, have also been described (63). Yet while these approaches can 
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establish a relationship between two regions that presumably incorporates 

information about underlying structural connectivity between the regions, it also 

may include information about shared connections with a third region. For our 

purposes, we would like to improve the quantitative relationships of connectivity 

between brain regions by attempting to account for such indirect connections. 

One method that has been used for approximating direct connections only is to 

regress out the effects of all other brain regions using partial correlation (64).  

 

Limitations and Future Research Opportunities 

 Because all participants are recruited from the United States, there may 

be limitations in generalizing conclusions of preferred network architecture, 

recruitment, and behavioral prediction across cultural variables. This is significant 

since higher cognitive functions (most obviously language) are largely reliant on 

socialization factors for their full expression. Across disease states, as well, it is 

possible that brain networks and neurophysiological recruitment may be altered 

enough to prevent the direct comparisons against healthy control 

characterization that we currently anticipate. To the contrary, modulations in 

functional architecture affiliated with disease states might be subtle enough in the 

spatial redistribution that current acquisition and analytic methods may need to 

be further refined to compensate for challenges in spatial resolution of data. 

Conclusions for behavioral and physiological integration also need to be 

recognized as possibly lacking enough density and precision in subcortical 

mapping to truly account for contributions of subcortical architecture and variation 
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to healthy network function and the role of subcortical regions in supporting 

behavior. The limitation is compounded by the difficulty of computational 

tractability for dense matrix calculations in second-order connectivity analyses, 

since the size of computational data expands geometrically between first- and 

second-order approaches. 

 An immediate follow up investigation to this project will examine the 

application of dynamic mapping and brain-behavioral modeling to clinical 

categories, including autism, ADHD, Down Syndrome, and bipolar disorder with 

the aim to develop clinical diagnostic biomarkers for these conditions. Upon 

completion of in silico brain models for resting state healthy control subjects, we 

will begin to look at intentional perturbations in the physiological system and 

move toward comparisons between simulated responses from healthy control 

models versus responses of disease-related parameters of whole brain 

physiology, motivated by both basic science understanding of disease in addition 

to continued establishment of reliable biomarkers for healthy and pathological 

variations of functional architecture. Additionally, future work involves 

triangulating genetic data with behavioral and physiological information from HCP 

participants in order to integrate imaging genetics into the brain-behavioral 

correlative analyses. 

 Elucidating the dynamic relationships between genetics, cortical function, 

and behavior promises to reveal new fundamental understanding about what 

makes us uniquely human and what makes each person different from others 

(34).



 

  

 
 
 
 

CHAPTER 2 
 
 
 

DYNAMICAL STABILITY OF INTRINSIC  

CONNECTIVITY NETWORKS1 

 
 

Abstract 

 Functional connectivity MRI (fcMRI) has become a widely used technique 

in recent years for measuring the static correlation of activity between cortical 

regions. Using a publicly available resting state dataset (n=961 subjects), we 

obtained high spatial-resolution maps of functional connectivity between a lattice 

of 7266 regions covering the gray matter. Average whole brain functional 

correlations were calculated, with high reproducibility within the dataset and 

across sites. Since correlation measures not only represent pairwise connectivity 

information, but also shared inputs from other brain regions, we approximate 

pairwise connection strength by representing each region as a linear combination 

of the others by performing a Cholesky decomposition of the pairwise correlation 

matrix.  We then used this weighted connection strength between regions to 

iterate relative brain activity in discrete temporal steps, beginning both with 

                                                        
1 Reprinted from NeuroImage, Vol 59/4, Michael A. Ferguson, Jeffrey S. 
Anderson, Dynamical Stability of Intrinsic Connectivity Networks, 4022-4031, 
Copyright (2012), with permission from Elsevier.  
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random initial conditions, and with initial conditions reflecting intrinsic connectivity 

networks using each region as a seed. In whole brain simulations based on 

weighted connectivity from healthy adult subjects (mean age 27.3), there was 

consistent convergence to one of two inverted states, one representing high 

activity in the default mode network, the other representing low relative activity in 

the default mode network. Metastable intermediate states in our simulation 

corresponded to combinations of characterized functional networks. 

Convergence to a final state was slowest for initial conditions on the borders of 

the default mode network. 

 

Introduction 

 Functional connectivity MRI (fcMRI) examines the synchrony of slow-wave 

fluctuations in BOLD signal (<0.08 Hz) between geographical regions in the 

brain, and infers common functional relationships when correlated BOLD time 

series exist between regions of interest (ROIs) (2, 3, 5, 35). Similarly, 

antagonistic relationships between regions are inferred from anticorrelations in 

their respective BOLD signal fluctuations over time (36, 37), when not induced by 

postprocessing strategies (38-40).  

 fcMRI methods were first used to map the sensorimotor cortex of the 

resting human brain (5), with subsequent investigations demonstrating consistent 

intrinsic connectivity networks detectable by fcMRI during wakeful rest (7, 41-46). 

Recent anatomical work within resting state functional connectivity analysis has 

benefitted from large datasets from multiple centers. In conjunction with the 
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Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) and the 

International Neuroimaging Data-sharing Initiative (INDI), a large scale resting 

state fMRI dataset has already been made openly accessible through the 1000 

Functional Connectomes Project (2) containing resting state fMRI data obtained 

from over 1400 subjects by 28 international laboratories.  

 Among the most robust distributed connectivity networks is the default 

mode network (6, 47), comprised from brain regions that are consistently more 

active during wakeful rest than during numerous cognitive tasks (48). These 

observations led to the hypothesis that this network of regions might be 

supporting default activity of the human brain (6, 45, 49), such as attending to 

internal stimuli, self-reflection, or internal narrative (49-51). 

 Despite such extensive work on clarifying the functional network anatomy 

of the brain, there are yet relatively few reports attempting to extend static 

connectivity measurements to whole brain dynamical models (52). One approach 

used known structural relationships in the macaque brain from anatomical tracing 

studies to simulate interactions of neural oscillators in each region using weak 

coupling coefficients (53). Another approach using macaque connectivity 

demonstrated ultraslow coherent network fluctuations in a model using anatomic 

connectivity, time delays, and noise (54). The relationship of anatomic topology, 

coupling strength, time delay between regions, and noise to temporal dynamics 

was further explored in a report using a network of Wilson-Cowan modulators to 

simulate slow coherent fluctuations (55). 
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 One limitation of such approaches to network modeling is that precise 

information from anatomical tracer studies is not available for the more complex 

human brain, and precise path lengths and anatomic topology are difficult to 

measure. Also, the complexity of connectivity between regions becomes 

computationally intractable with the number of nodes studied in a dynamical 

network. As an alternate approach, we investigate a dynamical model that treats 

as computational units regions of gray matter on the scale of several millimeters. 

Rather than build neural networks from high temporal-resolution oscillations, we 

use an iterative approach at discrete time points to evaluate dynamical 

relationships between large-scale distributed networks. We report that using only 

functional connectivity measurements between a lattice of brain regions covering 

the gray matter, the brain’s default mode network emerges in such simulations as 

a dynamically stable state, with other described intrinsic connectivity networks 

demonstrating reproducible metastability across a wide range of initial conditions. 

 

Materials and Methods 

fMRI Data Sources 

 fMRI data was extracted from the open-access ‘1000 Functional 

Connectomes Project’ (http://fcon_1000.projects.nitrc.org/) in which resting-state 

fMRI scans have been aggregated from 28 sites. (2) For inclusion we required 

whole-brain coverage from MNI coordinates z=-35 to z=70. Any subject for whom 

postprocessed data did not cover all 7266 ROIs was discarded prior to analysis. 

Although postprocessing steps were performed using an automated batch, the 
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results of normalization, segmentation, and realignment steps were manually 

inspected for all subjects, and any subject for whom the normalized and 

segmented images were not in close alignment with the MNI template on visual 

inspection were discarded. The Dallas sample was not included because of 

ambiguity about left/right orientation at the time of analysis. From 1051 subjects 

for whom batch postprocessing was initiated, 961 subjects from 23 sites were 

included in the analysis sample. The datasets from which these subjects were 

obtained are listed in Table 1. Mean age of the subjects was 27.3 +/- 11.7 s.d. 

years (range 13-79). 525 subjects were male, 394 female, and gender of 42 

subjects was unknown. 

 Additional data from a single subject was also analyzed. Data from this 

subject have been previously published (56), although analyses presented herein 

are unique to this report. For this subject, (male, 39 years old), eleven scan 

sessions were obtained. In six of the sessions, the subject was watching 

cartoons (Looney Tunes Golden Collection, Volume 1, Warner Brothers) for ten 

5-minute BOLD scans per session (50 minutes BOLD data per session). In the 

other 5 sessions, 50 minutes of resting BOLD data was obtained (10 5-minute 

scans, eyes open).  

 

fMRI Post-Processing 

 The following sequence was used for image post-processing of all BOLD 

image datasets. Using SPM8 toolbox (Wellcome Trust, London), BOLD images 

were realigned (realign, estimate and write), coregistered to MPRAGE image  
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Table 1: Reading Comprehension 

 

 

 

 

 

 

 

 

 

 

(coregister, estimate and write), and normalized to MNI template (normalize, 

estimate and write, T1.nii template). Gray matter, white matter and CSF were 

segmented from MPRAGE image using SPM8 segment function (modulated, 

normalized, thorough clean). Images were bandpass filtered between 0.001 and 

0.1 Hz and a linear detrend was performed at each voxel in the brain. Because 

each site used slightly different TR, we note that this detrend step may introduce 

some heterogeneity of filtering between sites associated with the detrend 

operation. Time series were averaged from 2 ROIs in the white matter (bilateral 

centrum semiovale, CSF (lateral ventricles), soft tissues of the head and face, 

and 6 rigid motion correction parameters from realignment step as previously 

described (40, 57) and for each voxel, a general linear model was used to find a 

best fit for white matter, CSF, soft tissues, and motion parameter time series, 

 Mean Standard deviation 

Age (n=9) 18 2.3 

GORT-4 

comprehension 

10.6 (63 percentile) 1.7 

GORT-4 fluency 13.2 (84 percentile) 3.0 

Scan interval 6 mo. 2 mo. 
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which were subtracted from the voxel’s time series. No regression was 

performed of the global signal or gray matter. 

 

Methods for Calculating Connectivity 

 Typically, functional connectivity has been measured by calculating the 

correlation coefficient between BOLD time series in different brain regions or 

networks (3, 5). Alternately, approaches in the frequency domain have used 

coherence to similarly identify a relationship between the two time series (58). 

Nonlinear metrics of synchrony between the time series, such as mutual 

information, have also been described (59). Yet while these approaches can 

establish a relationship between two regions that presumably incorporates 

information about underlying structural connectivity between the regions, it also 

may include information about shared connections with a third region. For our 

purposes, we would like to improve the quantitative relationships of connectivity 

between brain regions by attempting to account for such indirect connections. 

One method that has been used for approximating direct connections only is to 

regress out the effects of all other brain regions using partial correlation (15, 60). 

We used both full correlation, partial correlation, and a novel method using the 

Cholesky decomposition of the correlation matrix between brain regions to 

estimate direct connections between brain regions. Details for these methods are 

given below. 
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Calculation of Full and Partial Correlation Matrices 

 An MNI template for gray matter (SPM8, grey.nii, intensity >0.5) was 

parcellated into 7,266 regions of interest (ROIs) by removing voxels from the 

image that were less than 5 mm from other retained voxels. Then all gray matter 

voxels were assigned to the closest remaining voxel’s ROI. The ROIs ranged 

from 2 to 12 voxels in extent (mean 4.9 +/- 1.3 voxels at isotropic 3 mm 

resolution). Time series data for each ROI were generated from the averaged 

time series of all voxels pertaining to the respective ROI. Postprocessed time 

series data from every ROI were compared to the time series from all other ROIs 

using Pearson correlation coefficients. The resultant 7,266 by 7,266 matrix of 

correlation coefficients constituted a whole-brain functional correlation matrix for 

an individual subject. The whole-brain correlation matrices for each subject were 

Fisher transformed by evaluating hyperbolic arctangent to improve normality (36) 

and averaged across all subjects to produce a mean full correlation matrix.  

 The mean full correlation matrix was converted to correlation values by 

reverse Fisher transformation, and partial correlation values were obtained using 

method of Marralec et al. (15, 60). We inverted the full correlation matrix Cij to 

obtain Yij = C-1. Partial correlation coefficients Pij were obtained by the 

relationship: 

Pij = - Yij / sqrt( Yii Yjj)  [1] 
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Decomposition of Functional Correlation Matrix 

 Correlation coefficients can measure synchrony between two time series, 

but are only an indirect estimate of anatomic connectivity (11). One reason for 

differences is that shared inputs to two regions contribute to correlation values. 

For example, if two regions x and y had no direct relationship, but both exhibited 

positive correlation with a third region z, it would be expected that x and y would 

nevertheless show significant positive correlation. 

 We approached this problem by considering a linear model in which we 

start with an intrinsic noise time series Ait = [ai(t)] for region i and time point t and 

a transition matrix T=[tij] of coefficients representing connectivity between region i 

and region j. A is constructed to have mean 0 and standard deviation 1 for each 

row by subtracting the mean and dividing by the standard deviation. For m 

regions and n time points, A will represent an m x n matrix, and T will represent 

an m x m matrix such that:  

TA = B [2] 

where B will be an m x n matrix where row i represents a time series for region i, 

simulating a BOLD time series. The correlation between rows bi and bj should 

approximate cij, the measured correlation value from actual BOLD time series 

between region i and region j. Then we assign matrix C = [cij] as the dot product 

of the rows of B: 

T A A’ T’ = n C [3] 
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But A represents an intrinsic noise signal for each node which should be 

independent for each row. For sufficiently long time series A of length n, since 

the rows ai(t) are independent with uniform standard deviation, then A A’ will 

approximate the identity matrix times the length of the time series n and we must 

find a matrix T such that 

T T’ = C [4] 

But this equation is known to have a unique solution T that is upper triangular if 

and only if C is positive definite (61), and this solution can be obtained from the 

Cholesky decomposition of C. We designate tij for i>j as the approximated 

connectivity between region i and region j, and constructed the weighted 

connectivity matrix used in the analysis by setting tji = tij for i>j and normalizing 

each row of the matrix by subtracting the mean and dividing by the standard 

deviation. Cholesky decompositions were performed using the standard Matlab 

function chol.m.  

 To show with simulated data how the Cholesky decomposition may be 

related to individual time courses from brain regions, we generated 7266 intrinsic 

noise time series of length 1000 time points (matrix A, 7266 x 1000). To better 

simulate BOLD data (62, 63), these noise time series were generated with each 

row having mean 0 and standard deviation 1, with 1/f frequency distribution (pink 

noise) using the method of Little et al. (64). The 7266 x 7266 correlation matrix 

was averaged across all 961 subjects after Fisher transformation, and the mean 

was converted back to correlation values by evaluating the hyperbolic tangent. 

Cholesky decomposition matrix T was obtained and simulated BOLD time series 
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(matrix B) was generated from the matrix product in [2]. Pearson correlation 

coefficients were obtained between each pair of rows in B and a 7266 x 7266 

matrix of correlation values was obtained. This process was repeated 1000 

times, with the resulting correlation matrix averaged across trials after Fisher 

transformation with results shown in Figure 1. 

           Compared to the actual measured BOLD correlation values, there is close 

agreement to the time series B, representing a linear combination of independent 

noise vectors as specified by the transformation matrix T generated by the 

Cholesky decomposition. Thus, a biophysical model in which one considers each 

brain region to have intrinsic fluctuations (noise) that combine with the intrinsic 

activity of other brain regions according to a weighted connectivity matrix T will 

generate time series with correlation matrix C satisfying Equation 4. 

 

Whole Brain Functional Simulations 

To model brain activity over time, each of the 7,266 ROIs was assigned a 

pseudorandom value from a normal distribution with mean 0 and standard 

deviation 1. These starting conditions were considered ‘step 0’ of the simulation. 

For step 1 of the simulation, the intensity values at every ROI of the brain were 

assigned by considering every other ROI’s intensity value from the previous step, 

multiplying that intensity value by its respective weighted connectivity coefficient, 

then summing the products of intensity and connectivity values in order to 

determine the new intensity value at each ROI. The simulation was repeated for 

5,000 sets of randomized initial conditions, with 40 steps in each simulation. 
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Figure 1: Simulating correlated BOLD data using Cholesky decomposition. A) 
Intrinsic noise time series were independently generated for 7266 ROIs (1000 
time points per ROI), such that each time series showed a 1/f distribution, with 0 
mean and 1 standard deviation (matrix A from [1]). B) Comparison of Fisher-
transformed correlation for each connection from actual measured data with 
simulated correlation. Simulated correlation was obtained by the Pearson 
correlation coefficient between each row of TA, where T is the matrix obtained 
from the Cholesky decomposition. Y-axis shows the mean correlation values of 
1000 trials, averaged after Fisher transformation. Red line shows y=x. 
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Identifying and Categorizing Metastable States 

 The rate of change in neural activity between steps in the whole brain 

simulation was determined by finding the sum of the absolute values of intensity 

differences between corresponding ROIs for successive steps. Metastable 

patterns of neural activity were identified by local minima in the rate of change. 

Each of the metastable states across all 5,000 iterations were clustered using the 

dendrogram.m function with city block p-distribution and average linkage using 

the MatLab statistical toolbox (R2010b). The characteristic networks for each 

cluster was determined by calculating the mean for all metastable states within 

the same dendrogram cluster. 

  

Determining Convergence 

 In addition to the 5,000 whole brain simulations in which randomized 

starting conditions were assigned to each of the 7,266 ROIs, we performed an 

additional 7,266 simulations using parameters obtained from resting state 

functional correlation measurements as the starting conditions. In this paradigm, 

the whole brain initial conditions for each iteration were set to the correlation 

values corresponding to the seed from one of the respective 7,266 ROIs. For 

each set of 7,266 initial conditions corresponding to a different ROI seed, we 

measured the number of steps in the simulation required for the system to 

converge to within a tolerance of less than 0.05% change in the mean absolute 

value of the intensity across the ROIs. The scalar corresponding to the number of 
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steps for convergence for each seed ROI was then assigned to the respective 

ROI, and mapped onto a gray matter whole brain image. 

 

Results 

 To determine a standard map of functional correlation, we averaged 

pairwise functional correlation measurements between 7266 brain regions of 

interest (ROI) covering the gray matter for 961 healthy adult control subjects 

available through the open access 1000 Functional Connectome Project resting 

state database. Regions were selected by parcellating an image of brain gray 

matter (SPM8 toolbox, Wellcome Trust, London, grey.nii) into regions such that 

each region’s center was at least 5 mm distant from every other region, 

effectively yielding ROIs of 5 mm diameter (65, 66). Pairwise correlation 

measurements between these regions comprised 26.3 million connections for 

each subject. 

 

Reproducibility of Functional Correlation Measurements 

 Before attempting dynamical modeling, we characterized the 

reproducibility of the functional correlation measurements by comparing mean 

correlation values for a randomly selected subsample of the total control 

population (Figure 2A) compared to a different unique subsample of the same 

size. Subject subsamples of all sizes showed a normal distribution of connectivity 

differences between groups, with standard deviation of the error inversely 

proportional to the square root of the number of subjects averaged (Figure 2B). 
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When we divided the sample into 2 groups of 480 and 481 subjects, we observed 

close agreement of correlation values for all 26.3 million connections (Figure 2C), 

indicating consistent reproducibility of functional correlation outcomes for large 

population samples from the 1000 Functional Connectomes database. The mean 

pairwise functional correlation matrix is shown in Figure 2D. By extending the 

relationship seen in Figure 2B, we estimated that each individual measurement 

between 2 ROIs had an accuracy of less than 0.01 units of Fisher-transformed 

correlation compared to what would be expected for a similarly constructed 

population of 961 subjects. 

 

Weighted Connectivity Calculations 

 Correlation measurements, however, are only an approximation of the 

expected connectivity strength between two regions, and may be systematically 

misleading by incorporating shared input from other regions in a pairwise 

correlation measurement. We attempted to adjust for this relationship by 

approximating relationships between regions using a Cholesky decomposition of 

the pairwise correlation matrix as described in the Methods section, wherein 

weighted connectivity between regions more closely approximates what would be 

expected if each region were expressed as a linear combination of the other 

brain regions. We subsequently refer to this pairwise association matrix after 

Cholesky decomposition as the weighted connectivity matrix between regions. 
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Figure 2: Reproducibility of functional correlation measurements. A) Distributions 
of the difference in correlation between randomly selected subsamples of 
subjects across all 26.3 million connections. Subsets of 50, 100, 240, or 480 
subjects were compared. Each histogram shows for two unique subsamples of 
the population the distribution of difference in mean correlation across all 
connections between the two groups. B) Standard deviation of difference in 
correlation across all connections as a function of the number of subjects 
averaged. The y-axis represents the standard deviation of difference in mean 
correlation across connections for two subsamples of the population. The 
standard deviation for each connection across all subjects was averaged across 
connections and was 0.2828. The red fitted curve is 0.2828/sqrt (number of 
subjects). C) Comparison of mean Fisher transformed correlation values from 2 
unique subsamples of 480 and 481 subjects. Red line shows y=x. D) 
Pseudocolor plot showing mean Fisher transformed correlation values for 
connections between each ROI. Color range was limited to -0.2 to 0.6 to optimize 
image contrast. 
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 To compare the results of the Cholesky decomposition solution with the 

original measured functional correlation data as well as with partial correlation 

analysis, we used seed voxels from three major networks of interest (default 

mode, attention control, and primary auditory networks) to illustrate the effect of 

the method on known intrinsic connectivity networks. For each of the seed 

voxels, the weighted connectivity measurements from the Cholesky 

decomposition demonstrated higher specificity of interregional relationships than 

was shown by full correlation of time series data shown in Figure 3. 

 When compared to partial correlation measurements, the Cholesky 

decomposition results show greater similarity to partial correlation than to full 

correlation seen in Figure 4, with many values close to zero in both partial 

correlation that had larger positive or negative values in full correlation analysis. 

This presumably reflects connections that have shared correlation with other 

brain regions but weak or absent direct connection. Cholesky decomposition 

differs from partial correlation in our data in that partial correlation shows near 

complete absence of long-distance connections, while such long-distance 

connections are largely preserved in the Cholesky method. 

 

Whole Brain Simulation and DMN Convergence 

 We then used the weighted connectivity matrix derived from Cholesky 

decomposition to create a simulation of the brain using a two-step iterative 
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Figure 3: Effect of Cholesky decomposition on intrinsic connectivity networks. To 
the left are shown Fisher-transformed full correlation values of each ROI to 3 
seed ROIs in the posterior cingulate, left intraparietal sulcus, and left primary 
auditory cortex. Corresponding values of the weighted connectivity matrix 
(Cholesky decomposition) are shown in the center column for the same seeds. 
Partial correlation values are shown in the right column for the same seeds. 
Images were normalized by subtracting the mean and dividing by the standard 
deviation across ROIs, with color showing standard deviations across ROIs for 
better comparison of image contrast in the three techniques. 
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Figure 4: Density maps comparing distribution of full correlation, Cholesky  
decomposition, and partial correlation techniques. A) Distribution of Cholesky 
decomposition vs. partial correlation. Color scale shows filled contour plots of the 
logarithm of the number of connections in each bin. Bin size was 0.01 in each 
axis. B) Density of Cholesky decomposition vs. partial correlation showing only 
connections between ROIs greater than 6 cm apart in Euclidean distance. C) As 
above, comparing Cholesky decomposition with full correlation. D) Cholesky 
decomposition vs. full correlation for connections between ROIs greater than 6 
cm apart. 
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process. First, the “activity” of an ROI at any step in the simulation is the 

weighted sum of the activity values of all other ROIs from the previous step 

multiplied by their weighted connectivity coefficient with the ROI. Second, the 

resulting values were normalized across the brain by subtracting the mean 

activity across all brain regions and dividing by the standard deviation of activity 

across brain regions. The normalization step prevents any one brain region from 

achieving unrealistically high or low activity. The simulation models what might 

be expected where brain activity in one step is determined by relative brain 

activity in the previous step in addition to the information in the weighted 

connectivity matrix. We repeated the simulation using 5000 randomized initial 

conditions in which initial brain activity was selected from a normal probability 

density function with mean 0 and standard deviation of 1. Each of the 5000 

iterations showed stable convergence by 40 steps in the simulation (Figure 5A & 

5B) with robust convergence to the default mode network in 4955 of the 

simulations (Figure 5C).  

 Forty-five of the 5000 simulations converged to a different stable state 

characterized by high activity in the visual network consisting of the occipital lobe 

and posterior medial parietal lobe. The simulations that converged to the default 

mode network were distributed roughly equally between states where the default 

mode regions converged to positive activity and states where the default mode 

regions converged to negative activity, since a simulation converging to negative 

activity is identical to a simulation converging to positive activity with the sign of  
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Figure 5: Convergence to the default mode network. A) Difference between steps 
for each of 100 simulations from random initial conditions, measured as the sum 
of absolute value of differences between normalized intensity values at each ROI 
between the two steps. Only a subset of the simulations is shown to better allow 
visualization of traces.  B) Pseudocolor plot showing difference between steps for 
the same 100 simulations. C) Final convergence state for one of the simulations. 
Colors represent normalized activity across ROIs. All of the final convergence 
states from these simulations were qualitatively identical or an additive inverse of 
the image shown (negative values where positive values are shown) although in 
a minority of simulations (<1%) the final convergence state was instead the visual 
network.  
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all initial conditions inverted. The convergence to the default mode network 

during weighted connectivity-based simulations was robust across resting state 

data subsets from acquisition sites, and not a unique characteristic of the whole 

set average. The weighted connectivity matrices specific to the two largest data 

subsets (Beijing n=188, Cambridge n=194) both demonstrated robust 

convergence to the default mode network during whole brain simulations based 

on their respective weighted connectivity matrices with only slight differences in 

final convergence state. 

 

Single-Subject Reproducibility, and Task-Specific  

Influence on Whole Brain Simulations 

 In order to assess the scalability of weighted connectivity-based whole 

brain simulations to the single-subject level, we acquired resting state data from 

a healthy control subject for five, one-hour blocks. The BOLD time series from 

each of the five, one-hour blocks was processed as previously described in order 

to create weighted connectivity matrices for each of the five, one-hour resting 

state acquisitions. The convergences to steady-state brain activity demonstrate 

robust, reproducible default mode network configurations for each of the five, 

one-hour datasets on the same subject shown in Figure 6B. Further, when the 

same subject was instructed to watch cartoons for six additional, one-hour 

periods, the steady-state convergence patterns from each of the weighted 
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Figure 6 Convergence states for a single subject. A) Each row represents the 
final convergence state from data obtained from 50 minutes of BOLD imaging 
while the subject was watching cartoons during an independent imaging session. 
(Figure 6 Continued) B) Each row represents final convergence state from data 
obtained from 50 minutes of BOLD imaging in a resting state, eyes open. C) For 
each 50-minute session, the final convergence state was measured as a vector 
of activity across 7266 ROIs. The plot shows correlation coefficients between the 
activity vector for each pair of sessions. Pairs of unique sessions were more 
similar for when subjects were watching cartoons in both sessions (r = 0.71) or 
resting in both sessions (r = 0.68), than when one session was watching cartoons 
and the other was in the resting state ( r= 0.43). A two-tailed t-test comparing 
correlation coefficients for different tasks vs the same task was significant at p = 
1.9 e -17). 
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connectivity-based whole brain simulations also showed reliable reproducibility at 

the single-subject level shown in Figure 6A. The convergence state for resting 

scans was reproducibly different from when the subject was watching  

cartoons. Moreover, the convergence state was reproducibly different for the 

individual subject than for the population. For example, the posterior cingulate 

node was more anterior for the individual than for the population, and the relative 

intensity of nodes reproducibly differed between the two task conditions as well 

as between the individual and population.  

 

Metastable Intermediate Networks 

 In addition to final convergence to the default mode network, many of the 

simulations (n=949/5000) produced a metastable intermediate state 

characterized by a local minimum during iterations of the difference between 

steps, with eventual convergence to a different stable state. We used hierarchical 

clustering to categorize similarities between intermediate states, and observed 

six major clusters in the metastable configurations shown in Figure 7. The 

averaged outcomes for the metastable intermediates from each cluster exhibited 

spatial distributions with features of well characterized functional networks, 

including the visual (A,C), sensorimotor (D,E), dorsal attention (D,E), and 

salience-detection networks (F). In some cases, (D,E) intermediate states were a 

hybrid of two or more functional networks (sensorimotor, dorsal attention) of 

opposite polarity. In other cases, intermediate states resembled a portion of the  
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Figure 7: Clustering of metastable states. To the left is a dendrogram showing 
clustering of 949 simulations producing metastable states where a local minimum 
was seen during convergence. The images to the right show averages of the 
metastable states for each cluster, obtained at the time point where a local 
minimum was seen in the difference between steps of the simulation. 
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default mode network (B,C) in which one or more of the core nodes of the default 

mode network were absent. 

 In order to assess the effect of activity in any one brain region on 

convergence dynamics, we performed 7266 additional simulations, using activity 

corresponding to the functional correlation of each region in the brain with a seed 

region, and repeating for each region as the seed. We then measured the 

number of iterations needed to converge to the final convergence state within a 

tolerance of 0.05%. Seed ROIs that resulted in delayed convergence to the 

default mode network were located almost exclusively at the margins of the 

default mode network shown in Figure 8A and 8B. Sixteen of the 7266 

simulations converged to the visual network. The seeds for which initial 

conditions converged to the visual network did not show any clustering or clear 

pattern in spatial distribution, but were scattered throughout the infratentorial and 

supratentorial brain. In converging to default mode network patterns of steady-

state activity, dynamic iterations ultimately converge to one of two inverted mirror 

image states, one representing high activity in the default mode network, the 

other representing low relative activity in the default mode network. The 

determining factor for whether a steady-state outcome will represent high default 

mode versus low default mode activity is predicted by whether the initial starting 

conditions correspond more closely to correlation patterns for regions within the 

default mode network, or to correlation patterns for regions outside of the default 

mode network shown in Figure 8C.  
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Figure 8: Steps to convergence, starting with the correlation network for each 
ROI. A) Color represents the iteration at which the simulation converged to within 
0.05% of the final convergence state. Initial conditions for each ROI consisted of 
the normalized correlation across ROIs to the seed ROI. B) Initial conditions for 
which the simulation required 10 or more steps to converge, superimposed on 
the activity from the final default mode convergence state. C) Brain regions are 
shown in blue for which initial conditions with high activity only in this region 
resulted in convergence to a state with high default mode network activity. Initial 
conditions with high activity in regions in red converged to a state with low default 
mode network activity.  
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Discussion 

Standard Map of Functional Connectivity 

 A population standard map of functional connectivity for the human brain 

underlies large scale imaging initiatives such as the NIH’s Human Connectome 

Project and the INDI/NITRC 1000 Functional Connectome database. Our results 

confirm the reliability of datasets obtained from multiple sites converging to a 

reproducible whole brain functional connectivity map. By expressing the 

functional correlation matrix for each region as a linear combination of other 

regions, and iterating normalized brain activity over discrete time steps, we are 

able to obtain a convergent solution for the default mode network from a wide 

range of initial conditions. In greater than 99% of our simulations, the system 

converged to the default mode network (DMN), and in a large number of trials 

(n=949) passed through an intermediate metastable state before proceeding to 

its final convergence state.   

 

Connectivity Hubs in the Human Brain 

 Regions of the posterior cingulate cortex, precuneus, medial prefrontal 

cortex, and medial temporal lobes have been classified as ‘hubs’ of structural 

and functional connectivity in anatomical studies of the human brain (42, 67-69).  

It is not surprising, then, that a dynamical system would converge toward a state 

in which the major hubs of connectivity were preferentially represented. This 

result is also consistent with the behavioral observation that during the resting 
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state, in which the BOLD data used for our simulations were obtained, the default 

mode network is consistently more active than during other cognitive tasks (6). 

 

Convergence Outcomes in Whole Brain Model 

 In <1% of cases, the simulated brain converged to the visual network 

rather than the DMN, indicating that the functional connectivity relationships from 

the population likely exhibit not just metastability of multiple states, but actual 

multistability. Given the enriched density of high-participant hubs in the occipital 

lobe described by Hagman, et al. (69), this is also not surprising that the visual 

system would act as an attractor in some starting conditions. A possible 

implication of this finding is that the human brain is a multistable system driven 

toward one of several stability outcomes by a combination of environmental 

stimuli and previous state conditions. Future work may investigate the various 

conditions under which the system is driven toward DMN versus non-DMN 

convergence points. 

 The number of steps required for a given region’s functional connectivity 

profile to converge to the DMN was prolonged for voxels at the margin of the 

default mode network and the attention control network. It has been previously 

shown that resting state functional connectivity can exhibit sharp transitions at 

areal boundaries, and that these transitions may serve to define functional 

domains (70). Our results indicate that convergence to a network is delayed 

more by activity at such boundaries than by activity in functionally opponent 

networks, such as activity within the attention control network. 
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 For different sets of initial conditions simulating relative brain activity, 

dynamic iterations ultimately converge to one of two inverted mirror image states, 

one representing high activity in the default mode network, the other representing 

low relative activity in the default mode network (36, 37). The default mode 

network is balanced by relative activity in other brain regions and activity in any 

of those regions will lead to a state of decreased default mode activity when 

activity is iterated over time using connectivity-based evolution of brain activity. 

Among regions that converge to low default mode network activity, even regions 

that themselves are not directly anticorrelated with or functionally opponent with 

the default mode network are preferentially connected to regions that are, 

resulting in patterns of brain activity that over time result in stable default mode 

network suppression. In contrast, activity in regions associated with the default 

mode network will converge to a dynamically stable state with higher relative 

activity within the default mode network. 

 

Representing Intrinsic Connectivity by Cholesky Decomposition 

 To obtain convergent results that showed the architecture of intrinsic 

connectivity networks, we had to express the functional correlations between 

brain regions as a linear combination of other regions rather than simple 

correlation coefficients between regions. Applying correlation coefficients without 

transformation to the same iteration led to convergence states that were a 

gradient from the front to back of the brain that appeared to overemphasize local 

connectivity. The Cholesky decomposition method we propose may allow greater 
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specificity in determining actual connections between brain regions, which may 

be useful for generating more accurate graph-theoretical representations of 

interregional connectivity (69, 71). 

 

Comparison of Cholesky Decomposition to  

Partial Correlation Analysis 

 The Cholesky decomposition is a different approach to weighting brain 

connections than correlation-based methods. Instead of correlation or partial 

correlation, which express how synchronized brain regions are, the Cholesky 

approach directly evaluates how activity in one region may arise from a linear 

combination of other brain regions. Like partial correlation, it allows 

disentanglement of direct connections from connections to a shared input. But 

unlike partial correlation, instead of breaking down and losing long distance 

connections in a dense connectome with many closely related or overlapping 

nodes, the Cholesky decomposition preserves long-distance connections but 

with much greater specificity than seen using full correlation. Moreover, whereas 

partial correlation may be easily calculated when the correlation matrix is 

invertible, the Cholesky decomposition requires only a positive definite 

correlation matrix. 
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Model Limitations 

 Our results are drawn from averaging across a broad age range included 

in the subject sample. It is likely that different subject demographics may 

influence dynamical stability of intrinsic connectivity networks given known 

differences in functional connectivity across development (72, 73). It is also likely 

that the types and frequencies of metastable and multistable convergence points 

will vary across the lifespan according to the natural development of neural 

connectivity with age.  

 We also note that our model iterates normalized rather than absolute brain 

activity to constrain activity values to physiologically plausible levels. Exploring 

other types of normalization may better represent physiological mechanisms 

such as adaptation or other nonlinearities known to exist in the brain. 

Nevertheless, there is evidence that normalization mechanisms occur in the 

brain, wherein neural conductances are reduced by pooled neural activity from a 

population of neurons (74). Some form of normalization is certainly required 

given that energy constraints on the brain prohibit indefinitely additive circuitry, 

and blood flow to the brain is relatively constant over time, from which BOLD 

measurements are derived.  

 An additional limitation of our approach is that discrete steps in the 

simulation do not reflect explicit timing of interactions brain regions, and do not 

allow us to conjecture about transition times between initial conditions and 

convergence states, or temporal duration of metastable intermediate 

configurations. Undirected correlation measurements are also a simplified 
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paradigm for connectivity. In order to create more realistic whole brain 

simulations, improved methods are needed for modeling the asymmetries of 

effective connectivity between regions, including circuits such as corticostriatal 

projections known to contain one-way (non-reciprocal) connectivity. Further, a 

solution to the Cholesky decomposition requires a positive definite correlation 

matrix. Although the mean functional correlation matrix for the population we 

studied meets this requirement, it is possible that other study populations will not 

result in positive definite matrices. In such cases, other methods or extensions 

would be necessary to analyze the functional correlation matrix using alternative 

decomposition strategies, such as decomposition to a “best fit” triangular matrix. 

 

Future Applications of Dynamical Whole Brain Modeling 

 In spite of these limitations, there are numerous possible applications for 

this approach to whole brain modeling. It is conceivable that various disease 

states may be typified by their variations in the multistability and metastability of 

large scale networks, given known differences in functional connectivity between 

patient populations (16-18, 75, 76). Methods for modeling stability of distributed 

brain networks may allow identification of relatively small subsets of nodes for 

which perturbation can affect brain network stability through control theory or 

other dynamical systems methods (77), and allow informed design of therapeutic 

strategies such as transcranial magnetic stimulation or deep brain stimulator 

placement. Changes in functional connectivity are known to exist with cognitive 

tasks (78), and examination of changes in convergence states with data obtained 
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during specific tasks may allow characterization of how stimulation may prime the 

brain for greater stability in different distributed networks. Lastly, there is potential 

to examine the normal course of brain development by examining changes in 

dynamical stability of brain networks with age and brain maturation. In short, 

methods that move beyond static functional correlation to examine dynamical 

network properties may provide additional characterization of brain networks and 

states relevant to behavioral and pathophysiological mechanisms. 

 

Conclusions 

 Functional connectivity MRI (fcMRI) has become a widely used technique 

in recent years for measuring the static correlation of activity between cortical 

regions. Using a publicly available resting state dataset (n=961 subjects), we 

obtained high spatial-resolution maps of functional connectivity between a lattice 

of 7266 regions covering the gray matter. Average whole brain functional 

correlations were calculated, with high reproducibility within the dataset and 

across sites. Since correlation measures not only represent pairwise connectivity 

information, but also shared inputs from other brain regions, we approximate 

pairwise connection strength by representing each region as a linear combination 

of the others by performing a Cholesky decomposition of the pairwise correlation 

matrix.  We then used this weighted connection strength between regions to 

iterate relative brain activity in discrete temporal steps, beginning both with 

random initial conditions, and with initial conditions reflecting intrinsic connectivity 

networks using each region as a seed. In whole brain simulations based on 
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weighted connectivity from healthy adult subjects (mean age 27.3), there was 

consistent convergence to one of two inverted states, one representing high 

activity in the default mode network, the other representing low relative activity in 

the default mode network. Metastable intermediate states in our simulation 

corresponded to combinations of characterized functional networks. 

Convergence to a final state was slowest for initial conditions on the borders of 

the default mode network. 

 By mathematically decomposing the functional correlations across 7,266 

ROIs in the human brain, we are able to approximate the underlying weighted 

connectivity between gray matter regions. This approach is superior to existing 

analytical methods such as partial correlation analysis, in the sense that it 

preserves contributions from long range connectivity better than partial 

correlation analysis when large numbers of nodes are included in the model. The 

weighted connectivity can then be used in a whole brain dynamical model, 

demonstrating multistable convergence outcomes, with the default mode network 

showing greatest stability. This method is reproducible at a single-subject level of 

analysis, and is sensitive to changes in functional connectivity affected by task-

specific dynamics. We also demonstrate metastable qualities of the human 

connectome, with intermediate configurations resembling well-characterized 

functional networks. The default mode network steady-state convergence 

outcomes are either reflective of high relative DMN activity or low relative DMN 

activity, contingent upon whether starting conditions for neural activity are 

correspondent to in-network or out-network connectivity patterns for the default 
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mode network. Finally, we demonstrate the borders between default mode 

network and attention control network are the slowest to converge to the default 

mode network. 



 

  

 
 
 

CHAPTER 3 
 
 
 

ALTERED RESTING FUNCTIONAL CONNECTIVITY OF EXPRESSIVE 

LANGUAGE REGIONS AFTER SPEED READING TRAINING2 

 
 

Abstract 

 A goal of interventions designed to increase reading speed is to reduce 

the practice of articulating words in an individual’s thoughts, or subvocalization. 

This practice may require redundant cognitive resources, slow reading speed, 

and detract from efficient transfer of written words to semantic understanding. It 

is unclear, however, whether exercises designed to promote faster reading 

speed generalize to cognitive function beyond the reading task itself. To 

investigate this possibility, we measured resting state functional connectivity in 

classical language regions before and after a course of cognitive exercise 

designed to increase reading speed in 9 healthy adolescent female volunteers 

(Table 1). We found significantly decreased correlation between left Broca Area 

and right Broca Homologue and between right Broca Homologue and right 

Wernicke Homologue in the resting state after the training period compared to 

                                                        
2 Reprinted with permission. This is an Accepted Manuscript of an article 
published by Taylor & Francis in Journal of Clinical and Experimental 
Neuropsychology on 28 April 2014, available online: 
http://www.tandfonline.com.ezproxy.lib.utah.edu/doi/full/10.1080/13803395.2014.
908825 
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before training. Differences in functional connectivity after training to left Broca 

Area showed a spatial distribution reflecting decreased correlation to memory-

associated brain regions and increased correlation to auditory regions, that might 

be consistent with a hypothesis that such training may decrease subvocalization 

associated with semantic memory function during the resting state.  

 

Introduction 

 The ability to read is a high-level cognitive capacity supported by the 

functional convergence of multiple lower-level sensory processes. As such, 

reading ability is considered a model system for exploring the emergence of 

higher order cognitive processes from their more evolutionarily basal building 

blocks (79, 80). The ability to engage written language (i.e., orthography) relies 

necessarily on basic visual processing systems that have evolved in the human 

brain for this purpose. Additionally, the refined primary sensory development of 

the human auditory system supports the phonographic engagement of spoken 

language. Successful integration of orthographic visual input and phonographic 

auditory data has been referred to as the sine qua non of the human ability to 

read (81). Unsurprisingly, canonical language regions along the perisylvian 

fissure (e.g., Broca and Wernicke Areas) have demonstrated a crucial role 

specifically in the convergence of orthographic and phonological processing that 

support reading ability (82-84).  

 Multiple studies have explored the plasticity of brain networks involved in 

reading performance, and the ability of these brain regions to adapt under short-
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term training. In a study on pre-adolescent children with dyslexia, a two month 

interventional reading program showed fMRI-based activation changes that 

correlated with the degree of linguistic skill improvement (85).  Similarly, a 

fourteen-day reading intervention program conducted for ten children with 

dyslexia demonstrated significant functional changes in regions associated with 

language tasks (86). A number of topically-related studies have likewise reported 

changes in activational patterns in the brain during reading tasks after 

interventional programs conducted across weeks to months (87-89).  

 In recent years, functional connectivity magnetic resonance imaging 

(fcMRI) has emerged within the neural imaging community as an effective metric 

of functional relationships in the human brain (3). Research in fcMRI has given a 

framework for understanding the large-scale architecture of human brain 

networks (4, 10). The majority of the studies published in the fcMRI literature take 

advantage of the fact that the strength of functional relationships across the brain 

are captured by the correlations in spontaneously occurring neural activity during 

a task-neutral state of wakeful rest. Because functional correlations are 

measured during a task-neutral resting state, they are considered to reflect the 

underlying structural connectivity (11). Further, changes in the functional 

connectivity assessed during a task-neutral state are therefore used to mark 

alterations in synchronized co-activation of brain regions, resultant from plasticity 

and adaptation of neural systems to external conditioning.  

 Despite a series of publications looking at changes in neural activity from 

reading intervention, there is a dearth of published studies that have explored 
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changes in the intrinsic connectivity in response to interventional reading training. 

Such studies are of interest, however, in their distinct contribution toward 

understanding brain plasticity from high-level considerations of structural-

functional adaptations to task-based conditioning. In contrast to task-based data, 

which reflect regional adaptation and local neural efficiency, functional 

connectivity investigations provide an opportunity to explore changes in 

distributed connectivity that support learned behaviors, acquired skills, and habit 

formation.  

 As a test case for examining the effect of behavioral training on the 

functional architecture of networks involved in reading, we employed a speed 

reading training program aimed at altering the mechanisms for skilled reading. A 

core claim of speed reading proponents is that learned associations between 

orthographic and phonologic processing actually slow down the process of visual 

reading via subvocalization, the tendency of a reader to internally speak the 

words they are reading visually (90). In theory, such a tendency represents 

cognitive redundancy, in the sense that language content is transformed from 

visual cues into auditory cues by the reader, and then deciphered for meaning.  

 Consistent with this theoretical view, reduction or elimination of 

subvocalization in favor of direct semantic processing from visual cues, rather 

than semantically processing subvocalized phonological cues, would represent 

reduced cognitive load during the reading process, and allow reading to proceed 

at a faster rate. Because speed reading training provides a direct intervention for 

modulating a specific cognitive behavior, and additionally provides a framework 
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for expected brain regions involved in cognitive adaptation, it is a suitable 

paradigm for examining the relationships between behavioral training and 

underlying changes to functional neural architecture.  We attempted to determine 

whether a course of training involving speed reading practice would be 

associated with detectable changes in functional connectivity in brain regions 

associated with language that generalized to a resting state, and not associated 

with merely the act of reading alone. 

 

Methods 

Participant Sample 

 To minimize heterogeneity of the sample, all participants were typically 

developing right-handed young female adolescents, ages 14-22. A total of 9 

participants completed both initial and followup scan after performing the 

cognitive training exercises. Participants were recruited by posted flyers at an 

area high school. Reading proficiency was assessed using the Gray Oral 

Reading Tests (GORT-4) (91) at enrollment into the study. All subjects 

consented to participate in the study following informed consent under guidelines 

agreed upon by the University of Utah Institutional Review Board. An additional 

sample of 26 typically developing male participants was selected from an 

ongoing longitudinal study involving functional MRI connectivity. These data were 

obtained on the same scanner with the same protocol, pulse sequence, and 

same instructions to participants for resting state scanning, and are included for 

public release in 2014 as part of the Consortium for Reliability and 
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Reproducibility dataset from the International Neuroimaging Datasharing 

Initiative. For these subjects, age range was from 8 to 39 (mean 20.2 +/- 8.3 yrs). 

Individuals were scanned twice, at least 2 years apart (mean 928 days +/- 105 

days, range 733 – 1187 days). 

 

Cognitive Exercise Training 

 Subjects were instructed to participate in a 6-week intervention consisting 

of internet-based training (EyeQ Advantage, Salt Lake City). Before a repeat MRI 

scan, subjects were required to complete 12 modules designed to facilitate 

progressively faster reading speed and increased comprehension. Each training 

exercise lasted approximately 10 minutes, and most of the participants 

performed many of the modules multiple times, with engagement in the training 

3-5 times weekly. Modules consisted of practice reading passages at slow, 

medium, and fast presentation speeds, as well as following with their eyes the 

presentation of geometric images placed at progressively faster speeds around a 

computer screen as an exercise in shifting visual attention. Each module consists 

of similar exercises performed in the same order. For the initial scan, subjects 

were naïve to any training, and performed their first module as the final sequence 

obtained during the first scan.  

 

fMRI Acquisition 

 Images were acquired on Siemens 3 Tesla Trio scanner. The scanning 

protocol consisted of initial 1 mm isotropic MPRAGE acquisition for an anatomic 
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template. BOLD echoplanar images (TR= 2.0 s, TE = 28 ms, GRAPPA parallel 

acquisition with acceleration factor = 2, 40 slices at 3 mm slice thickness, 64 x 64 

matrix) were obtained during the resting state, where subjects were instructed to 

“Keep your eyes open and relax. Remain awake and try to let thoughts pass 

through your mind without focusing on any particular mental activity.” Prospective 

motion correction was performed during BOLD imaging with PACE sequence 

(Siemens, Erlangen). An 8-minute scan (240 volumes) was obtained for each 

subject. On the initial scan an additional fMRI sequence (7-minutes, 210 

volumes) was obtained during performance of the first cognitive training exercise 

module. For both scans, an additional task-based sequence (4-minutes, 125 

volumes) was obtained during presentation of a sentence completion visual 

language task. Details of this task have been presented previously (92). Briefly, a 

20-second block paradigm alternated between periods of fixation on an 

isoluminant screen and periods where subjects read sentence fragments “He put 

the dishes in the _______” and covertly thought in their mind of a word to 

complete the sentence. 

 

fMRI Preprocessing 

 Offline post-processing was performed in Matlab using SPM8 software. 

Post-processing pipeline has been previously reported (66, 93). Initial slice timing 

correction was performed to adjust for interleaved slice acquisition. Field map 

sequence was acquired for each subject for distortion correction, and all images 

were motion corrected using realign and unwarp procedure. BOLD iages were 
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coregistered to MPRAGE anatomic image sequence for each subject. All images 

were normalized to MNI template brain (T1.nii in SPM8), with manual inspection 

of appropriate normalization in all subjects. 

 For resting state scans of both the cognitive exercise subjects and 26 

control subjects, we used a regression algorithm using time series from voxels in 

the facial soft tissues, CSF and white matter to correct for artifactual correlations 

in the BOLD data to correct for BOLD signal attributable to physiological noise 

such as heart rate and respiration, (38). No global signal regression was 

performed to avoid introducing artifactual anticorrelations in the data (39, 40). 

 Scalp and facial soft tissues, CSF and white matter regression was 

performed after automated gray matter, white matter, and CSF segmentation of 

each subject’s MPRAGE image using SPM8. These segmented images were 

manually inspected to confirm appropriate identification of tissue components. 

The CSF time series for each subject was measured from the lateral ventricles. 

This was obtained from selecting voxels from the CSF segmented image for 

each subject within the bounding box defined by MNI coordinates: -35 < x< 35, -

60 < y < 30, 0 < z < 30. White matter time series for each subject were obtained 

from the mean time series of voxels within 2 regions of interest in the bilateral 

centrum semiovale (MNI coordinates: left: x=-27, y=-7, z=30; right: x=27,y=-7, z= 

30, each ROI had 10-mm radius). Before extracting the white matter time series, 

an exclusive mask was performed with the gray matter segmented image from 

each subject to eliminate voxels containing gray matter. A soft tissue mask of the 

facial and scalp soft tissues was used as previously described (40). The mean 
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soft tissue, CSF and white matter time series were then used as regressors in a 

general linear model (glmfit.m in Matlab Statistics Toolbox) for the BOLD time 

series at each voxel in the brain, and the best fit was subtracted from the voxel’s 

time series data, producing the signal-corrected time series images. Each voxel’s 

time series was bandpass filtered with a frequency window of 0.001 Hz to 0.1 Hz 

(63) and linearly detrended to correct for scanner drift. No spatial smoothing was 

performed. Each frame was then inspected for significant motion using procedure 

reported by Power et al (30), and frames with DVARS or root-mean-square 

motion parameters > 0.2 were removed prior to analysis of connectivity results. 

 

ROI Selection 

 Because the primary outcome of interest was the effect of functional 

connectivity in classical language regions, a 5 mm radius ROI was selected 

centered at MNI coordinates from the literature for left Broca Area and right 

Broca Homologue in the inferior frontal gyrus (left: x=-45, y=23, z=-2; right: x=36, 

y=24, z=-4) and left Wernicke Area and right Wernicke Homolgoue in the 

posterior superior temporal sulcus (left: x=-54, y=-44, z=4; right: left:-63,-36,3; 

right: 50,-25,-2) (92). Functional connectivity was measured before and after 

cognitive training for left Broca Area vs. right Broca Homologue, left Wernicke 

Area vs. right Wernicke Homologue, left Broca Area vs. left Wernicke Area, and 

right Broca Homologue vs. right Wernicke Homologue. Identical ROI’s were 

extracted from each scan of the 26 longitudinal participants without cognitive 

exercise training. 
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 Because differences in functional connectivity were found for Broca Area 

vs. Broca Homologue, and because an a priori hypothesis was formed that 

cognitive training would decrease subvocalization in participants, we performed 

an additional exploratory analysis of functional connectivity between left Broca 

Area and the rest of the brain’s gray matter. 7266 ROIs were selected to form a 

lattice covering the gray matter as previously described (93, 94). The ROIs 

averaged 4.9 +/- 1.3 s.d. voxels in size for 3 mm isotropic voxels. For each 

subject, the preprocessed BOLD time series was averaged from the voxels in 

each of the 7266 ROIs, and functional correlation with the time series from the 

ROI containing left Broca Area coordinates was performed. 

 To more effectively accountt for inter-individual differences in precise 

position of language regions, visual language task data was processed using 

standard general linear model using SPM8, with activation t-statistic maps 

averaged between the pre-treatment and post-treatment scans for each subject. 

Activated clusters for bilateral Broca Area and Homologue and bilateral Wernicke 

Area and Homologue were obtained for each subject by identifying all voxels 

within 2 cm of above literature-based coordinates exhibiting p<0.05 activation, 

uncorrected voxelwise, within the region. In two subjects, no right Broca 

Homologue voxels met this threshold, and in one subject, no right Wernicke 

Homologue voxels met this threshold. For these individuals, 10 mm ROI’s were 

selected surrounding the coordinates for right Broca Homologue or right 

Wernicke Homologue. 
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NeuroSynth Database 

 To assess the spatial distribution of functional connectivity differences 

associated with cognitive training, we attempted to determine whether changes in 

functional connectivity were associated with four cognitive domains: reading, 

memory (semantic), visual, and auditory function. For each case we obtained a 

mask of brain voxels associated with each function in the neuroimaging literature 

using the NeuroSynth database (95). For the search terms “reading,” “memory,” 

“auditory,” and “visual” we obtained reverse inference maps showing voxelwise 

specificity for the corresponding search terms in the literature, with false 

discovery rate q<0.05 for multiple comparison corrections. In these images, Z-

scores were averaged for voxels in each of the 7266 ROIs for which they were 

nonzero, and spatial correlation was performed across regions between the Z-

score for the search term and the T-statistic that functional connectivity of the 

region to left Broca Area differed between pre- and post-training scans. We were 

therefore testing whether differences in functional connectivity to left Broca Area 

were spatially localized to a particular cognitive domain. 

 

Results 

 Resting state functional MRI images were obtained for each of 9 

participants that completed cognitive training exercises before and after the 

training period. On the initial scan all subjects were naïve to the training software, 

and had not previously attempted a speed reading practice. On the followup 

scan, all participants had completed all 12 modules of the internet-based 
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software at least one time, and most subjects had performed the modules 

multiple times. All 9 of the participants exhibited increase in reading speed 

measured by the training software over the course of the modules. These 

increases are shown for each subject in Figure 9A, and were significant 

(p=0.0021). 

 Regions of interest containing literature coordinates and subject-specific 

activated voxels in a neighborhood surrounding these coordinates for left Broca 

Area and Wernicke Area, and the corresponding right hemispheric homologues 

were extracted for each subject both before and after training. Functional 

connectivity measurements were obtained as the Fisher-transformed correlation 

coefficient between the preprocessed time series of (1) Left Broca Area to right 

Broca Homologue, (2) Left Wernicke Area to right Wernicke Homologue, (3) Left 

Broca Area to Left Wernicke Area, and (4) right Broca Homologue to right 

Wernicke Homologue. Results are shown as a bar graph in Figure 9B for the 

activation-map derived clusters. There was a significant decrease in functional 

connectivity between left and right Broca Area and Homologue consistent with 

our hypothesis that subvocalization would be decreased following training and 

that functional connectivity would be decreased between expressive language 

regions (p=0.017, one-tailed t-test for literature-based coordinates, p= 0.036 for 

activation-map derived clusters shown in Figure 9B, one-tailed t-test). For 

activation-map derived clusters, there was also decreased functional connectivity 

between right Broca Homologue and right Wernicke Homologue after cognitive  
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Figure 9: A) Bar graphs show reading speed (words per minute) pre- versus 
post-training. (p=0.0021 for differences between reading speed pre- versus post-
(Figure 9 Continued) training). B) Bar graphs show mean functional connectivity 
across 9 participants, with error bars representing standard error of the mean. 
Results are shown for four region to region comparisons as indicated in the text. 
Functional connectivity from left Broca Area to right Broca Homologue was 
significantly lower (*) after cognitive training (p=0.036) as was connectivity 
between right Broca Homologue and right Wernicke homologue (p=0.046). C) 
Bar graphs show mean functional connectivity for healthy control subjects not 
participating in the reading training as indicated in the text, with error bars 
representing standard error of the mean. No significant differences are noted in 
functional connectivity across language areas indicated in the figure on baseline 
and repeat scans, separated by at least 2 years in 26 participants.  
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training (p= 0.046, one tailed t-test). No significant differences were detected for 

the other 2 comparisons. 

 In this sample, we did not observe significant relationships between 

functional connectivity differences and changes in reading speed recorded by the 

software over the course of training (left Broca Area to right Broca Homologue: 

r=-0.036, p=0.93; right Broca Homologue to right Wernicke Homologue: r=-0.089, 

p=0.83). No significant effect was observed between age and connectivity (left 

Broca Area to right Broca Homologue: r=-0.48, p=0.19; right Broca Homologue to 

right Wernicke Homologue: r=-0.26, p=0.49). A negative correlation was seen 

between baseline reading skill (GORT) and left Broca Area to right Broca 

Homologue (r=-0.86, p=0.12) but this was not statistically significant, possibly 

given the small sample size.  

 To evaluate whether this effect might be due to cognitive training or simply 

normal developmental processes, we compared the same metrics in the 

longitudinal sample without cognitive exercise training, using literature-derived 

coordinates. None of the four comparisons showed significant changes between 

the first and second scan in this cohort (left Broca Area to right Broca 

Homologue: p=0.90; left Wernicke Area to right Wernicke Homologue: 0.28; left 

Broca Area to left Wernicke Area: p=0.82; right Broca Homologue to right 

Wernicke Homologue, p=0.13) despite an even longer interval between scans (2 

years) and larger sample size. Similarly, no correlation was found between age 

of the subjects across all 52 scans and any of the four connectivity metrics in this 
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sample. Individual subject values for each of these four connectivity metrics are 

shown in Figure 9C. 

 To further evaluate patterns of functional connectivity with left Broca Area, 

the expected primary locus for expressive language and putative region 

participating in subvocalization, we measured functional connectivity differences 

between this region and 7266 other ROIs covering the cortical and subcortical 

gray matter, and attempted to determine whether differences in functional 

connectivity to Broca Area aligned with a particular cognitive network as an 

exploratory analysis. 

To accomplish this, we used the NeuroSynth database (95), consisting of 

inference maps to search terms in over 4000 studies in the neuroimaging 

literature. Specifically, we identified masks of brain regions significantly 

associated with the terms “auditory,” “visual,” “reading,” and “memory.” A 

significant reverse inference was indicative of a brain region specifically 

associated with these functions in the literature. For ROIs showing significant 

cognitive loading of each of the search terms, we compared T-statistics for 

differences in functional connectivity with left Broca Area before and after 

cognitive training, with the Z-score of loading for each of the search terms.  

 Results are shown in Figure 10. We found significant associations with 

two of the four search terms. For ROIs showing significant loading with the term 

“auditory” we found a correlation across ROIs that regions with higher loading of 

the term showed increased functional connectivity with left Broca Area after 

cognitive training (r=0.2, p=6.0 * 10-13). For the term “memory” we found a  
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Figure 10: Scatterplots show spatial correlation of changes in functional 
connectivity to left Broca Area and loading to four specific terms in the 
neuroimaging literature. Masks were obtained for significant reverse inference to 
the terms “auditory,” “memory,” “visual,” and “reading” in the NeuroSynth 
database, and Z-score for significant loading to each of these terms is compared 
to T-statistic for change in functional connectivity to left Broca Area across gray 
matter regions within the mask. 
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negative correlation between higher loading of the term and increased functional 

connectivity with left Broca Area after cognitive training across ROIs (r = -0.14, 

p=8.6 * 10-14). The other two search terms showed no correlation between 

loading for the search terms in the literature and changes in functional 

connectivity to left Broca Area (“visual”: r=-.0006, p=0.74; “reading”: r=-0.01, 

p=0.65). 

Images showing the spatial distribution of the “auditory” and “memory” 

masks as well as regions showing greatest changes in functional connectivity to 

left Broca Area before and after cognitive training are illustrated in Figure 11. The 

regions showing greatest differences in functional connectivity are closely aligned 

to “auditory” and “memory” networks, with greater functional connectivity to 

auditory regions after training, and relatively greater connectivity to memory 

regions before training. While the absolute differences in functional connectivity 

to left Broca Area do not survive multiple comparison corrections given the 

modest sample of 9 subjects (Figure 11A) is thresholded at p<0.05, uncorrected 

for display, the spatial distribution of changes is correlated to specific cognitive 

networks. Reverse inference in the NeuroSynth database for the terms “auditory” 

and “memory” demonstrate overlapping regional correspondences to areas of 

functional connectivity changes across subjects.  
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Figure 11: Spatial distribution of changes in functional connectivity to left Broca 
Area. A) Changes in functional connectivity after vs. before cognitive training of 
7266 ROIs covering the gray matter to left Broca Area. Colored ROIs show 
regions that exhibited differential functional connectivity, thresholded at p<0.05, 
uncorrected, for display. B) Voxels showing significant reverse inference to the 
terms “auditory” and “memory” in the neuroimaging literature from the 
NeuroSynth database. Color scale represents Z-score for loading of the 
respective terms at each voxel, corrected for multiple comparisons with False 
Discovery Rate q<0.05. 
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Discussion 

 We demonstrate in a small cohort of adolescent female volunteers that a 

brief period of cognitive speed reading training results in resting state functional 

connectivity changes between left Broca Area and right Broca Homologue, 

independent of any task being performed. This might be consistent with, though 

not definitive for, a decrease in subvocalization during the resting state paradigm. 

Additionally, subtle changes in functional connectivity to left Broca Area show 

close alignment with cognitive networks underlying auditory and semantic 

memory function, with trends toward relatively decreased functional connectivity 

between Broca Area and memory-associated brain regions after training, and 

relatively increased connectivity between Broca Area and auditory-associated 

brain regions after training. This would be consistent with a hypothesis that 

function of Broca Area becomes more synchronized or associated with auditory 

function and less synchronized with memory function after training, possibly 

representing decreased subvocalization of semantic content during the resting 

state. 

 Although decreasing subvocalization is a common goal of reading 

proficiency training, the literature regarding brain activation changes associated 

with subvocalization is relatively sparse. In one early study, a task-based design 

required subjects to subvocalize words in a block design, with associated 

activation of left Broca Area (96). A unifying concept underlying function in Broca 

Area has been the association with speech or word generation and articulatory 

planning (97). Data from transcranial magnetic stimulation experiments has also 
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found that Broca Area was associated with excitability of the motor system 

underlying speech production (98). Inferior frontal gyrus, but also posterior 

cingulate and superior frontal gyrus activation have also been demonstrated in 

ERP and fMRI studies of mechanisms of subvocalization and semantic selection 

(99), Functional MRI during subvocal auditory rehearsal activated predominantly 

Broca Area in the left lateralized inferior frontal gyrus (100). It is likely that 

subvocalization may represent a process that spans from speech generation in 

inferior frontal gyrus to premotor areas and ultimately motor cortex with 

progressive vocalization of sounds. 

 How subvocalization might be reflected within functional connectivity is 

much less clear. Yet recent developments in brain network architecture have 

reinforced that synchrony of brain regions is a reliable metric of co-activation and 

co-localized function (3). In language processing in particular, engagement of 

progressively more difficult language tasks involves increased recruitment of right 

hemispheric language region homologues, and left dominance decreases 

systematically with activation threshold (101). Increased connectivity of bilateral 

Broca Area and between right Broca Area and Broca Homologue seen in our 

results with reading speed training designed to decrease subvocalization may 

indicate that increased synchrony and recruitment of inferior frontal gyri may be 

associated with changing patterns of subvocalization or engagement of the 

speech generation system during wakeful rest.  

 We hypothesized that Broca Area might be more active or more integrated 

with other language regions when individuals were articulating words they were 
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reading. If activity in Broca’s area became more synchronized with auditory 

cortex and less synchronized with semantic memory regions with training, this 

would suggest reduced coactivation of articulatory planning and expressive 

language construction with reading comprehension and memory retrieval. In 

other words, Broca Area would become more aligned with auditory processing 

and less aligned or synchronized with memory and semantic processing regions 

engaged in comprehension. Although the changes in connectivity to left Broca 

Area are small, it is striking the degree to which these changes recapitulate 

precisely the spatial distribution of known auditory vs. memory networks. Future 

studies are needed to explore whether other quantification techniques of 

subvocalization (such as electromyography) will confirm activation of speech 

generation and premotor regions and whether functional connectivity may serve 

as a metric of subvocalization for following reading practice interventions. 

 A wealth of functional imaging literature from the past twenty years has 

pieced together a relatively fine-grained portrait of orthographic language 

processing. Most basically, the processes by which an individual learns to 

translate visual cues into semantic meaning involve functionally integrating visual 

attention regions and high-order language areas clustered around the left 

temporal lobe. Coactivation of homologous regions from the right hemisphere are 

observed in cognitively demanding language conditions or altered prosody or 

emotional content. This corresponds to a pattern observed across numerous 

tasks wherein contra-lateral recruitment of regions are observed for neurally 

demanding functions (102-104). The bottom-up construction of primary visual 
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cues into linguistic content is complemented by top-down phonological 

responses. This top-down contribution reinforces the end goal of appropriate 

semantic interpretation (105, 106). In skilled readers, the top-down phonological 

contributions to semantic processing are automated (107, 108).  

 A specific goal of the speed reading intervention applied in this study is to 

disassociate the visual input of orthographic word representations from 

internalized voicing and subvocalization of the text while it is being read. This 

hypothesis is consistent with our neuroimaging results, in that expressive 

language regions most associated with subvocalization appear to show more 

focused correlation to auditory regions associated with spoken language, but not 

with higher-order semantic or memory function associated with internal narrative 

or dialogue (109).  

 At the basic sensory level, the neural processes wherein visual input is 

converted to phonology can be parsed into at least three distinct pathways: 

sublexical, lexical, and semantic pathways (110). As such, the cognitive 

strategies for completing the same gross task (i.e., converting written language 

cues into phonology) demonstrate a significant amount of intersubject variability, 

since multiple strategic pathways are capable of accomplishing the same 

outcome. In spite of variability in cognitive strategy and neural pathways involved 

in reading, the commonality of the training task translates into a common focal 

point for the intervention: disassociating subvocalization of phonemes from their 

orthographic representations. As such, the observed reduction of functional 
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correlation strength between regions involved in expressive speech fit into an 

expected neurological model for changes due to the interventional training.  

 While the results indicating that functional connectivity changes can be 

seen even in a resting state may indicate generalization of training beyond 

reading function, several study limitations suggest additional study is warranted 

to understand the effects of cognitive exercise training. First, the study sample is 

modest, limiting statistical power of the functional connectivity changes that can 

be discriminated. The spatial relationship with the auditory and memory networks 

indicates only that to the extent functional connectivity changes are present, they 

are closely aligned with these networks. Nevertheless, a definitive whole-brain 

characterization of functional connectivity alterations that could survive rigorous 

multiple comparison corrections would likely require a much larger cohort. 

Additionally, there must remain tentativity about the interpretation of functional 

connectivity changes involving Broca Area and subvocalization, given uncertainty 

about the precise neural mechanisms of subvocalization and alternate possible 

hypotheses about changes in functional connectivity, given that functional 

connectivity does not produce unambiguous interpretations of neural processes. 

The observed differences in functional connectivity, however, are encouraging in 

their consistency with hypothesized language function and the anticipated effects 

of cognitive training. 

 It is possible that functional connectivity changes seen could represent 

developmental effects rather than cognitive training. To test this possibility, we 

included longitudinal data from an additional cohort spanning the age range of 
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our cognitive exercise subjects. No significant changes were seen in functional 

connectivity of classical language regions for this cohort, nor was there any 

relationship between age and connectivity for these regions. Nevertheless, these 

subjects were male, and the cognitive exercise subjects were female, so a 

gender-specific effect is not tested. Moreover, if developmental effects were 

specific to a very narrow age range in late adolescence, this might not be seen in 

the cohort spanning a larger age range (8-39). 

 Additional work would be required to demonstrate the durability and 

temporal evolution of changes in functional connectivity during reading 

interventions. It is unknown how much training is required to effect such changes, 

or how this might correspond to reading or cognitive performance. It has also 

been observed that Broca Area exhibits heterogeneity of function with 

overlapping regions processing phonology, syntax, and semantics, and a more 

detailed portrait of the functional connectivity of Broca Area will likely require 

higher-resolution discrimination of Broca complex subregions (111). 

 These results may inform future studies of reading interventions by 

focusing on the role of subvocalization and associated changes in functional 

connectivity with expressive language areas. Additional measurement strategies 

for quantifying subvocalization that are amenable to the MRI environment would 

be helpful for confirming the role of subvocalization in cognitive training. Further 

work will also be needed to establish the cognitive consequences of reduced 

subvocalization beyond reading and whether such training may contribute to 

enhanced cognitive function in attention, memory, or other domains. 



 

  

 
 
 
 

CHAPTER 4 
 
 
 

TYPICALITY AND DYNAMICAL STABILITY OF FUNCTIONAL  

CONNECTIVITY PREDICTS COGNITIVE  

ABILITY AND PROSOCIALITY 

 
 

Abstract 

 Resting state functional connectivity MRI is a leading approach to 

characterize healthy and pathological brain function. Significant strides have 

been made to understand patterns of whole brain architecture across cortical and 

subcortical functional networks. The NIH Human Connectome Project (HCP) 

includes rich behavioral metrics for each participant, and the HCP 500 subject 

data release presents an unprecedented opportunity to quantify and model the 

relationships between human brain function and human behavior on a large 

scale. We present a novel multivariate correlation map for functional connectivity 

and behavioral metrics across 475 healthy participants using spectral 

decomposition to characterize eigennetworks at group mean and single-subject 

levels. We also present an approach to dynamical stability and metastability of 

functional connectivity at the individual-subject level. We find significant 

correlations between the typicality (similarity to group mean) of principal 

components of functional connectivity and cognitive ability. Moreover, we find 
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that greater dynamical stability of principal components resembling the default 

mode network are significantly correlated with prosociality metrics across 

individuals.  

 

Significance 

 The Human Connectome Project 500 (HCP500) dataset provides 

unprecedented opportunity for large-sample, high-quality functional connectivity 

evaluation of personality and behavioral metrics in individual subjects of a 

typically-developing cohort. Defining biomarkers in a typically-developing 

population allows determination of canonical variants of human behavior that can 

be applicable to any neuropsychological and psychiatric disease population for 

which there is an adequate sample size to examine. We additionally present a 

method for dynamical evaluation of brain network stability. A dynamical stability 

assessment for attractor kinetics of brain networks (94) is applied to modern 

functional connectivity data, wherein extended imaging time per subject allows 

the opportunity for characterization of brain network stability, metastability, and 

their relation to behavior in individual subjects.  

 

Introduction 

 Resting state functional connectivity maps the architecture of 

synchronized spontaneous fluctuations in neural activity. The resultant networks 

of functionally correlated regions comprise canonical networks of brain regions 

that show temporal coactivation (2-4, 10). Task-based fMRI experiments, years 
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before RSFC was developed, corroborate the existence of large-scale distributed 

networks with specific roles in supporting cognition (12). Task-based designs 

have constituted a wide range of experimental conditions, including facets of 

primary sensory perception, motor planning and execution, language processing, 

directed attention, and social reasoning (112).  

 The NIH-sponsored Human Connectome Project has used advances in 

fMRI acquisition and a standardized battery of behavioral metrics to create a 

detailed, publicly available research and clinical dataset for neurocognitive 

integration (113-119). Functional connectivity networks continue to be explored 

as potential sources for biomarkers in distinguishing single-subject 

characteristics relevant to disease pathophysiology and interindividual variations 

in cognition, and the Human Connectome Project dataset represents a unique 

dataset for characterizing the interrelationship of behavior and brain connectivity.  

 Individual behavioral metrics have been correlated with interindividual 

differences in brain networks identified using independent component analysis, 

yielding numerous significant relationships between specific cognitive 

performance differences and synchrony of ICA-defined brain regions (120). 

Additional biomarkers for the neurophysiology of disease are derived from 

principal component analysis of functional connectivity data, including information 

about dynamics and stability of functional configurations (14). While ICA yields 

valuable information about localization of spatially discrete network hubs (121), 

PCA offers other potential advantages. Components obtained are ranked with 

respect to the contribution of variance explained by the component (122), so that 
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components with highest eigenvalues may represent compact information about 

high-yield interindividual differences. Moreover, principal components represent 

configurations of a system, which show relative dynamic stability (94, 123), a 

feature that may be of interest in cognitive processes requiring sustained activity 

within a neural network. In this report, we describe relationships among principal 

components of functional connectivity and dominant modes of behavioral 

variation across individuals, with emphasis on functional connectivity patterns 

that may relate to dynamical stability of brain networks.  

 

Results 

Resting State Functional Connectivity 

 Functional connectivity was calculated between 361 pairs of cortical and 

subcortical gray matter regions of interest (ROI) for 475 subjects released with 

the Human Connectome Project dataset, resulting in a 361 x 361 matrix of 

Fisher-transformed correlation coefficients for each subject and for group mean 

functional connectivity. Principal component analysis of the group mean 

connectivity matrix yielded eigennetworks (ENs) that showed correspondence to 

canonical functional network architecture (Figure 12A). ENs from group-level 

analysis correspond to sensory and motor cortices (EN1, sensorimotor, auditory, 

and visual), default mode network (EN2), dorsal attention network (EN3,5), visual 

cortex (EN4), and permutations of hubs from known functional network 

architecture (EN 6-10). EN7 shows a pattern with strong lateralization of 

association cortex.  
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Figure 12: Principal components (eigennetworks) of functional connectivity for 
group- averaged and individual subject functional connectivity. A) The first ten 
principal components are shown from group-averaged functional connectivity 
between pairs of 361 brain regions. Both positive and negative features are 
shown for each component. B) Correspondence of most homologous single-
subject principal components to group principal components are shown for 475 
subjects. 
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 When eigennetworks are extracted from connectivity matrices for each of 

the 475 individual participants, correspondence of group-level to subject-level 

ENs is greatest for EN1, with increased network heterogeneity across the 

population inversely related to network eigenvalues, i.e., EN rank (Figure 12B), 

but with relatively similar EN ordering across subjects through at least the first 

ten eigennetworks. 

 

Behavioral Clusters 

 Behavioral measurements across 475 healthy control participants cluster 

into ten core features, labeled social support, negative affect, intelligence, 

executive function, delay discounting, positive affect, memory, prosociality, 

conscientiousness, and attention (Figure 13), based on the weightings of 

behavioral metrics associated with each factor. 

 

Behavior/Connectivity Correlation 

 Relative scores for each behavioral component in each subject were 

correlated with subject-level eigenvalues corresponding to the subject-level 

eigennetwork best matching each of the first ten group-level eigennetworks. The 

behavioral component most associated with metrics of intelligence (progressive 

matrices, picture vocabulary, reading decoding, list sorting) in healthy control 

subjects is predicted by the eigenvalues for subject to group best-matched ENs 

7, 8, 9, and 10, with a positive relationship between relative score on the 

intelligence factor and eigenvalues for each of the four networks (EN7,  
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Figure 13: Weighting of behavioral metrics in 10 clusters. 39 metrics were 
selected for evaluation and separated into 10 clusters using principal component 
analysis with  orthogonal rotation. Relative weightings for each metric in each 
cluster are indicated by color. 
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p=2.26x10-4; EN8, p=1.87x10-4; EN9, p=1.06x10-4; EN10, p=1.49x10-4 (Figure 

14A). intelligence factor and eigenvalues for each of the four networks (EN7, 

p=2.26x10-4; EN8, p=1.87x10-4; EN9, p=1.06x10-4; EN10, p=1.49x10-4 (Figure 

14A).  

 To evaluate for behavioral factors associated with social and emotive 

function, eigennetwork 2, which best recapitulates the architecture of the default 

mode network, was chosen for further evaluation given the homology of the 

default mode network and brain regions involved in social function (124). When 

evaluating typicality of subject-level eigennetworks (how well group-level EN 

correspond to matching subject-level eigennetworks), individuals’ prosociality 

factor (low anger/aggression, high agreeableness) is significantly correlated with 

typicality of the subject’s default mode network (p=1.88x10-3, Figure 14B). 

 

Dynamical Simulations 

 Whole brain simulations beginning with activity in one region and iterating 

brain activity stepwise in time using group-averaged functional connectivity 

between regions converged to the default mode network regardless of in which 

region the simulation began. In addition, simulations passed through transiently 

stable intermediate states, visualized in both line graphs and pseudocolor plots 

Single-subject simulations using individuals’ functional connectivity matrices to 

model stepwise progression of brain activity show similar transiently stable 

intermediate configurations, with variations across subjects in key parameters.  
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Figure 14: Correlation of principal components of functional connectivity to 
behavioral clusters across subjects. A) Spearman correlation coefficient across 
subjects of behavioral scores for each cluster and eigenvalues for eigennetworks 
most homologous to each group-level eigennetwork. B) Typicality of 
eigennetwork 2 was assessed by the spatial correlation between group level 
eigennetwork 2 with the single-subject eigennetwork with highest homology. This 
typicality showed significant correlation to behavioral prosociality scores across 
subjects. 
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as local minima in the sum of intensity fluctuations for all regions shown in Figure 

15. The total number of local minima across all simulations, the minimum number 

of steps in the simulation to reach final convergence, and the correlation between 

individual subjects’ final convergence patterns compared to mean group-level 

final convergence pattern were correlated with behavioral metrics across 

subjects, shown in Figure 16.  

The average minimum number of steps for individual subjects’ simulated 

brain activity to converge to final stability is positively correlated with 

conscientiousness, i.e., slower convergence to a global stable state predicts 

higher conscientiousness in behavioral domains (p=7.11x10-3). Also, similarity of 

single-subject final convergence state to mean group-level final convergence is 

positively predictive of prosociality for the individual (p=3.92x10-6).  

 

Discussion 

 Using principal component analysis to decompose resting-state functional 

connectivity matrices, we examined principal components (eigennetworks) with 

the largest eigenvalues, comprising the greatest variance of group- and single-

subject level functional connectivity. The most consistent eigennetworks from 

individual to individual across a sample of 475 healthy adults correspond to those 

with the largest eigenvalues in group-level eigennetwork analysis. Behavioral 

data from the 475 study participants clustered into ten categories of behavioral  
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Figure 15: Convergence to the default mode network in dynamical simulations. 
Top row: Stepwise difference in mean intensity for iterated brain activity 
beginning in a single region. Each trace shows simulation beginning in a different 
region. Simulation from group mean functional connectivity is shown on the left 
and two individual subjects are shown to the right. Middle Row: Pseudocolor plot 
shows mean change in intensity for each step in simulations beginning with 
activity in each of the 361 regions. Bottom Row: Spatial pattern of the final 
convergence state. This was invariant for each subject, regardless of in which 
region the simulation began. 
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Figure 16: Correlation of simulation parameters to behavioral scores is 
shown. The first column shows correlation of behavioral scores to spatial 
homology of the single-subject convergence state to the group-level 
convergence state. The second and third columns show the total number of 
local minima for 361 simulations, and the average minimal step needed to 
converge for the simulations. Color scale shows spearman correlation 
coefficient. 
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features: social support, negative affect, intelligence, executive function, delay 

discounting, positive affect, memory, prosociality, conscientiousness, and 

attention. Several domains of behavior correlated significantly with features of 

principal components of functional connectivity data and simulated dynamical 

functional connectivity. 

 Cognitive performance (intelligence) across 475 subjects is significantly 

correlated with the eigenvalue of four of the ten eigennetworks, indicating that the 

degree to which highest-ordered group-level components are present in the 

subject’s principal components reflect cognitive performance on behavioral 

tasks. Prosociality across individuals is significantly correlated with the closeness 

of fit between individuals’ EN2 and group-mean EN2. Because group-mean EN2 

represents the default mode network identified in traditional ICA of RSFC, we 

assert that prosociality in a healthy control population is predicted by the 

typicality of an individuals’ default mode network, or similarity of the network to 

the group-averaged default mode network. It is notable that prosociality is not 

predicted by strength of DMN activity reflected in EN2’s eigenvalue. Only the 

coherence to group-mean architecture and not variations in EN2’s weighted

contribution to functional connectivity predicted prosocial behavior. Simulated

dynamic activity of individual subjects’ brains reveal functional markers for 

conscientiousness. Conscientiousness in individual behavior is inversely

predicted by how quickly individual subjects’ simulated brains converge to 

steady-state default mode network architecture. In other words, the longer it
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takes a subjects’ brain to converge to a final default mode network steady-state, 

the higher the individual scores on behavioral measures of conscientiousness.  

 From independent component analysis of functional connectivity has 

emerged the perspective that spontaneous baseline activity of the brain is 

consistent across subjects (7). Prior work in functional connectivity has isolated 

canonical functional networks through independent component analysis on large 

group datasets (2-4, 10). PCA, or “eigenconnectivity” analyses, allow additional 

metrics of network stability and metastability to quantitative assessments of 

resting state functional connectivity (14).  

 Complex mental representations stand in contrast to cognition driven 

primarily by sensory input or external task constraints. As a category of cognition, 

self-generated thought is complex and heterogeneous. Understanding 

psychological and neural mechanisms underlying adaptive and maladaptive 

outcomes has been a key aim in recent years (125). Maladaptive outcomes of 

self-generated thought might include thoughts leading to distress and 

unhappiness that disrupt task performance. Adaptive outcomes of self-generated 

thought might include creative insight and problem-solving. A key component of 

social cognition is the ability to infer the thoughts and beliefs of other people, 

along with their feelings. These processing collectively are termed mentalizing 

(126). Mentalizing relies on self-generated thoughts, since humans do not have 

direct perceptual access to other people’s thoughts. While certainly not the sole 

output for self-generated thought, social cognitive processes rely on numerous 

modalities of self-generated thinking, including concepts of personal identity, 
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mental inference of others’ thoughts and feelings, and prediction. Therefore, 

healthy default mode network activity is essential in proper functioning of social 

cognitive abilities (127). 

 Considerable controversy and debate has centered on the utility of 

resting-state activity in cognitive neuroscience. Functional connectivity appears 

to play an active role in dynamic processes of cognition, not limited to passive or 

epiphenomenal activity, as some critics have contended (128-130). While 

literature into the correspondence of cognitive function with typicality in functional 

connectivity is limited, convincing evidence is accumulating to demonstrate 

departures from typical connectivity corresponding with pathology. For example, 

diosyncratic brain activation patterns predict impaired cognitive function in both 

autism (131, 132) and Down Syndrome (133). 

 Conscientiousness represents a core trait in personality psychology, along 

with extraversion, neuroticism, openness, and agreeableness (134). 

Conscientiousness is a marker of motivational stability, and as a trait 

corresponds to maintaining resistance to disruption and focus on ongoing goals 

The function of conscientiousness is posited as facilitating the pursuit of non-

immediate goals and rule-based behavior (140). It is critical to resolve the 

underlying neurobiology of behavioral constructs in order to fully appreciate 

mechanistic differences and similarities giving rise to individual differences. The 

delayed convergence of individual subjects’ functional architecture to final DMN 

steady-state activity provides a provocative positive finding for neural 

correspondence with conscientiousness in behavioral evaluation.  
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 Although the Human Connectome Project represents a highly-powered 

study with robust single-subject connectivity measurements, limitations must be 

noted. The study is limited to healthy control adults. Behavioral and physiological 

data must be collected across the lifespan in order to track healthy development 

at all stages of the lifespan. Further, the dataset includes no information on 

clinical or nontypically developing populations and subpopulations. As such, it is 

limited in the amount of translational medical data can be derived from the 

Human Connectome Project at this point in time. A subset of the subjects are 

genetically related, which may bias conclusions toward overrepresented 

genotypes. Limitations in behavioral data itself include potential idiosyncratic 

behavior scores reflecting the metrics used in the battery, or the manner of data 

collection (e.g., observation of performance versus self-report measures). The 

findings may be variable to specific behavioral clustering schemes used. 

Simulated brain activity, while fruitful in elucidating functional connectivity 

biomarkers that correspond to behavioral observations, is simple and does not 

include sensory input, noise, or oscillations (135).  

 Despite limitations, the Human Connectome Project dataset allows a 

rigorous test of relationships between principal components of functional 

connectivity and behavior. Dynamical stability of the default mode network and 

typicality of principal components of functional connectivity appear related to 

sociality and higher-order cognitive performance in the Human Connectome 

Project dataset. These findings suggest the possibility of neural correlates of 

intelligence, prosociality, and conscientiousness in single subjects.  
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Methods 

Resting State Functional Connectivity 

 Resting state functional connectivity was analyzed for 475 subjects from 

the Human Connectome Project. BOLD fMRI data was acquired in four 15-

minute blocks per subject. FIX ICA cleaned data were used for analysis (113-

119). The supratentorial cerebral cortex were parcellated into 333 regions as per 

Gordon et al. (136). Fourteen subject-specific subcortical regions were added 

using Freesurfer-derived segmentation (137) of bilateral thalamus, caudate, 

putamen, amygdala, hippocampus, pallidum, and nucleus accumbens. Fourteen 

cerebellar regions were added by using the parcellation of Buckner et al. (4) and 

using a 7-network parcellation split into left- and right-hemispheric regions. This 

parcellation scheme comprised a total of 361 regions, and a BOLD time series 

for each ROI was extracted and Fisher-transformed Pearson correlation 

coefficients were obtained for each pair of ROI’s in each 15-minute block for 

each subject. The resulting 361 x 361 matrices were averaged across the four 

blocks for each subject, and averaged across all subjects to obtain a group-level 

functional connectivity matrix. 

 Principal components (eigennetworks) were identified using singular value 

decomposition of the 361 x 361 functional connectivity matrices. The first ten 

eigennetworks were calculated from the group mean connectivity matrix and 

back projected onto anatomical space (Figure 12A). The first 20 eigennetworks 

were identified in the same manner for each subject. Correlation coefficients 

across ROIs were computed between eigennetworks 1 through 20 for each 
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subject and eigennetworks one through ten from group mean connectivity. The 

ordinal ranking of single-subject eigennetworks best matched to each of the ten 

group-level eigennetworks were compiled to assess homogeneity of single-

subject eigennetworks across the population (Figure 12B).  

 

Behavioral Clusters 

 39 behavioral and psychometric assessments were selected from the 

Human Connectome Project behavioral dataset. Domains of behavior were 

selected based on theoretical relevance (e.g., grip strength was deemed 

irrelevant to this study) and avoidance of redundancy in psychometric features. 

The 39 behavioral domains were clustered using principal component analysis 

across 475 subjects, with orthogonal rotation of components. Behavioral 

measurements organized into ten components which, based on loading factors of 

individual measures, were identified as relevant to 1) social support, 2) negative 

affect, 3) intelligence, 4) executive function, 5) delay discounting, 6) positive 

affect, 7) memory, 8) prosociality, 9) conscientiousness, and 10) attention (Figure 

13). An individual subject’s score for a behavioral cluster was a weighted 

average of their normalized scores on the individual metrics shown in Figure 13. 

 

Behavior/Connectivity Correlation 

 To assess significant covariations across behavioral and RSFC data, 

single-subjects’ eigennetworks were ordered to correspond with the 

eigennetwork of greatest homology by spatial correlation coefficient across ROIs. 
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In this reordered paradigm, Spearman correlation coefficient was calculated 

between eigenvalues for single-subject networks and individuals’ scores for the 

ten behavioral clusters. Because of the clear correspondence of group-level 

eigennetwork 2 with canonical default mode network architecture, we also 

investigated correlations across behavioral factors and default mode network 

(group-level eigennetwork 2) variations. Spearman correlations were calculated 

between eigennetwork 2 for each individual subject and eigennetwork 2 from 

group mean data. Using these subject-to-group correlation scores for 

eigennetwork 2 (similarity to the group mean), Spearman correlation was then 

calculated between these values and the behavioral cluster scores across 

subjects. Statistical significance was assessed in all cases using acceptable false 

discovery rate q<0.05. 

 

Dynamical Simulations 

 In order to simulate evolution of whole brain network activity over time, we 

modeled brain activity over time as previously described (94). Briefly, we began 

with activity in a single brain region by constructing a vector with 361 elements 

and assigning a region to 1 and all other regions to 0. In a stepwise process, the 

vector was multiplied by the functional connectivity matrix, and the result was 

then normalized by subtracting the mean and dividing by the standard deviation 

across regions. This was repeated for 40 temporal “steps”, and performed using 

each of the 361 ROIs as a starting region in each subject and for the group mean 

functional connectivity. Convergence was determined by the mean absolute 
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difference in stepwise vectors to within a tolerance of less than 0.05% change in 

the mean absolute intensity value across the ROIs. 

 To assess the predictive value of simulation parameters and behavior, 

Spearman correlation coefficients were calculated between each of the ten 

behavioral cluster scores and three simulation parameters; namely, similarity 

between single-subject convergence states and mean group-level convergence 

state; total number of local minima in each subjects’ simulations; and minimum 

number of convergence steps. 

 

 
 



 

  

 
 
 
 

CHAPTER 5 
 
 
 

CONCLUSIONS 
 

 

 I entered the bioengineering program at the University of Utah with 

enthusiasm, and am happy to convey that I am just as, if not more, enthusiastic 

as ever about the present and the future of Homo sapiens’ ability to understand, 

describe, and intervene in the systems of their own biology. We are a richly 

creative species, with problem solving abilities to address challenges of suffering 

on a depth and scale unimaginable in many ways until even a few decades ago. 

 Advances in brain imaging technologies affect, and will continue to affect, 

society beyond the research laboratory and the clinic. A rapidly growing series of 

applications from biomedical imaging are being seen, for example, in the court 

system. Aggressive attempts are being made to design and implement 

sophisticated lie detection techniques to surpass the sensitivity and specificity of 

the current polygraph test. The ramifications of this single bioengineering 

accomplishment stimulate the imagination as one considers the impact that next 

generation lie detection will have on the evidence used in criminal and civil 

cases, law enforcement, and security in corporate and government operations. 

Under a different area of neuroscience and law, efforts are underway to use 

advanced methods of brain imaging to assess traumatic brain injury sustained by 
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workplace accident or occupational hazard; war and military service; negligence; 

or any other number of claims for personal injury.  

 A primary take-home message is that through the functional connectome, 

especially that collected through RSFC, we have a mathematical representation 

of sophisticated whole brain processes. These processes represent contributions 

to behavior and cognition at the individual level. We are quickly approaching an 

era of personalized neuroscience, wherein longitudinal tracking of RSFC profiles 

in a single subject across the lifespan may be a medical reality of standard care, 

in addition to a scientific fact of large-group study samples. Because the data-rich 

architecture of RSFC will continue to provide key features through biomarkers 

developed for understanding cognition and disease, we only expect RSFC 

profiles to become more ubiquitous in their use and commonplace in their 

acquisition. Health privacy measures must be strictly maintained in the new era 

of personalized neuroscience, as they are for any other personally identifying and 

consequential data, such as a person’s genome.   

 Functional connectivity MRI (fcMRI) and resting state functional 

connectivity (RSFC) in particular are widely used for measuring correlation of 

activity between cortical regions, and it is a rapidly expanding tool of choice to 

examine basic science, medical, and philosophical questions. Resources 

invested into directed science and technology development from federal 

initiatives such as the Human Connectome Project and the Brain Initiative help 

reinforce growth of methods and applications in cutting edge neuroscience and 

cognitive science. Industry opportunities continue to arise in applications of fcMRI 
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to pharmacological development for undertreated and mistreated clinical 

conditions, as do opportunities to track myriad interventions and their impact 

longitudinally on brain and mind, as in the speed reading example in this text.  

 I have demonstrated that simulations of whole brain activity presently 

available for population level and individual difference analysis are able to 

present biomarkers for behavior from neurophysiological features previously 

unnoted. By using weighted connection strengths between regions to iterate 

brain activity in discrete steps, we identified metastable intermediate states in our 

simulation that correspond to combinations of functional networks previously 

characterized through ICA of RSFC. Convergence to a final state was slowest for 

initial conditions on the borders of the default mode network, and future work to 

develop mathematical simulations of whole brain activity will explore how hubs of 

activity act as attractors through systems methods. The strongest attractor in the 

simulation is the default mode network, with reliable, consistent, reproducible 

convergence to DMN configuration at the final stability point for simulated activity. 

This method is reproducible at a single-subject level of analysis, and is sensitive 

to changes in functional connectivity affected by task-specific dynamics. Future 

work will continue to demonstrate and elaborate on metastable qualities of the 

human connectome. 

 To study neuroplasticity and use the tools of functional connectivity in a 

longitudinal study, we examined the impact of a short-term speed reading 

program on a small cohort of adolescents. A goal of interventions designed to 

increase reading speed is to reduce the practice of articulating words in an 
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individual’s thoughts, or subvocalization. Reading is a complex behavior involving 

numerous overlapping networks in the brain for high-level information synthesis. 

For most people, reading draws on redundant cognitive resources that slow 

reading speed, and detract from efficient semantic understanding. We found 

significantly decreased correlation between left Broca Area and right Broca 

Homologue and between right Broca Homologue and right Wernicke Homologue 

in the resting state after the training period compared to before training in which 

participants were trained to eliminate subvocalization or words from their reading 

style. Differences in functional connectivity after training to left Broca Area 

showed a spatial distribution reflecting decreased correlation to memory-

associated brain regions and increased correlation to auditory regions, which 

might be consistent with a hypothesis that such training may decrease 

subvocalization associated with semantic memory function during the resting 

state.  

In the final study published in this dissertation, we examine the 

relationship of RSFC with behavior more closely. Using principal component 

analysis to decompose resting-state functional connectivity matrices, we 

examined principal components (eigennetworks) with the largest eigenvalues, 

comprising the greatest variance of group- and single-subject level functional 

connectivity. Behavioral data from the 475 study participants clustered into ten 

categories of behavioral features: social support, negative affect, intelligence, 

executive function, delay discounting, positive affect, memory, prosociality, 

conscientiousness, and attention. Domains of conscientiousness, prosociality, 
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and intelligence were determined to significantly relate at the individual subject 

level to patterns of RSFC identified through eigenanlysis and simulation of whole 

brain activity.  

 Cognitive performance (intelligence) across 475 subjects is significantly 

correlated with the eigenvalue of four of the ten eigennetworks, indicating that the 

degree to which highest-ordered group-level components are present in the 

subject’s principal components reflect cognitive performance on behavioral tasks.  

Conscientiousness in individual behavior is inversely predicted by how quickly 

individual subjects’ simulated brains converge to steady-state default mode 

network architecture. In other words, the longer it takes a subjects’ brain to 

converge to a final default mode network steady-state, the higher the individual 

scores on behavioral measures of conscientiousness. Conscientiousness 

represents a core trait in personality psychology, along with extraversion, 

neuroticism, openness, and agreeableness (134). Conscientiousness is a marker 

of motivational stability, and as a trait corresponds to maintaining resistance to 

disruption and focus on ongoing goals. The function of conscientiousness is 

posited as facilitating the pursuit of nonimmediate goals and rule-based behavior. 

It is critical to resolve the underlying neurobiology of behavioral constructs in 

order to fully appreciate mechanistic differences and similarities giving rise to 

individual differences. The delayed convergence of individual subjects’ functional 

architecture to final DMN steady-state activity provides a provocative positive 

finding for neural correspondence with conscientiousness in behavioral 

evaluation.  
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 Prosociality across individuals is significantly correlated with the closeness 

of fit between individuals’ EN2 and group-mean EN2. Because group-mean EN2 

represents the default mode network identified in traditional ICA of RSFC, we 

assert that prosociality in a healthy control population is predicted by the 

typicality of an individuals’ default mode network, or similarity of the network to 

the group-averaged default mode network. It is notable that prosociality is not 

predicted by strength of DMN activity reflected in EN2’s eigenvalue. Only the 

coherence to group-mean architecture and not variations in EN2’s weighted 

contribution to functional connectivity predicted prosocial behavior. Simulated 

dynamic activity of individual subjects’ brains reveals functional markers for 

conscientiousness. 

 Because prosociality is significantly linked to healthy default mode network 

architecture, it becomes important to understand the broader function of the DMN 

in cognition if one is to appreciate the elemental cognitive processes that support 

prosocial behavior. Self-generated, complex thought is in contract to cognition 

driven by sensory input or external task constraints. It aligns elegantly with 

cognitive theory to see a mathematical description of resting state brain activity in 

which the primary mode driving whole brain action is the primary sensory and 

visual cortex (eigennetwork 1 in group-mean HCP500). The second greatest 

contribution to resting state brain activity comes from the default mode network, 

as demonstrated by group-mean eigennetwork 2 in the Human Connectome 

Project 500 dataset. Social cognitive processes rely on numerous modalities of 

self-generated thinking including concepts of personal identity, mental inference 
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of others’ thoughts and feelings, and prediction. Therefore, healthy default mode 

network activity is essential in proper functioning of social cognitive abilities 

(127). Limitations previously noted in the Human Connectome Project dataset 

could be reframed as signal of opportunity. While the HCP study is limited to 

healthy control adults, collection of comparable large sample or multisite clinical 

RSFC profiles will immediately yield insight into the nature of a multitude of 

disease states. Although behavioral data were useful in finding positive 

associations between brain and behavior, much more behavioral information 

must be spanned in future large-scale efforts to map the interface of behavior 

and brain. Several of such efforts are underway at Harvard University, Cornell 

University, and other private institutions, along with data-sharing initiatives that 

are actively assembling clinically-relevant repositories of behavioral and imaging 

data.
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