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Nuclear double resonance: Cross relaxation rates between two spin species*
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A  rotating-frame nuclear-double-resonance experiment is reported in which the cross-relaxation rates between 
7Li and 6Li in powdered lithium metal were measured. The theory developed by McArthur, Hahn, and 
Walstedt (MHW) is applied to these data and good agreement is obtained. We also apply this theory to other 
published experimental data (LiF by Lang and Moran and adamantane by Pines and Shattuck) and find good 
agreement. We conclude that the assumption of a Lorentzian correlation function, which forms the basis of 
the theory of MHW, is generally valid.

I. INTRODUCTION

Nuclear-double-resonance spectroscopy is now 
a well-known technique for studying nuclei whose 
NMR signals are too weak to be detected directly. 
This technique depends upon cross relaxation be­
tween two spin species, one abundant (hereafter 
referred to as I  spins) and one dilute (hereafter 
referred to as S spins).

McArthur, Hahn, and Walstedt1 (MHW) carefully 
measured cross-relaxation rates between 19F (I 
spins) and 43Ca (S spins) in CaF2 under various ex­
perimental conditions. In particular, they treated 
the case of adiabatic demagnetization in the rotat­
ing frame in which the I  spins were in the demag­
netized state and the S spins were irradiated by 
an rf field near their resonant frequency. Using 
a thermodynamic model and assuming a Lorentzian 
correlation function for the dipolar fluctuations, 
they formed a theory which successfully fit the 
data.

Demco, Tegenfeldt, and Waugh2 (DTW) refined 
this theory, using a more fundamental approach 
involving memory functions. This theory, when 
applied to the CaF2 work of MHW ,1 resulted in a 
slight improvement in the agreement between data 
and theory. But, on the whole, the DTW and MHW 
theories were shown to be in close agreement for 
the case of CaF2. It is unknown whether or not 
this close agreement also exists in other cases.

In this paper, we examine the MHW theory, ap­
plying it to other cases and comparing it to avail­
able data. We will show that this theory seems to 
be generally adequate for calculating cross relaxa­
tion rates, which is fortunate since calculations 
using the DTW theory are much more lengthy than 
those using the theory of MHW.

II. THEORY

Consider a system of two spin species, I  spins 
and S spins. The I  spins are in a state of dipolar 
order (see Sec. Ill in this paper) and the S spins

are irradiated by an rf field H1S at their resonant 
frequency.

Using a thermodynamic model, we describe the 
two sets of spin species with spin temperatures, 
0, and /3S. Dipolar I -S  interactions cause the sys­
tem to cross relax towards a common tempera­
ture. From conservation of energy we have

d t +€~dt=0’ a)

where the ratio of heat capacities € of the two sets 
of spin species is given by1*2

€ = N sS(S + l )y 2sH2ls/NI I ( I+  1)y) R 2l i  . (2)

Following a convention used by others1*2 we intro­
duce a cross-relaxation rate which charac­
terizes the relaxation of the S spins toward the 
common temperature. It is defined by the follow­
ing equation:

_ _  T-1 (Q
d t ~  t c r W

Then

dt : - € T r ,(0,-0 s).

(3)

(4)

To obtain a quantitative expression for we 
follow MHW and write the Hamiltonian in the 
double rotating reference frame. Expressing the 
Hamiltonian in units of frequency, we obtain

(5)no t'XP I 'XpO
+JK'd IS  9

^dll -  2 2  ^ ih ẑi ẑk - V W > 
i ,k

3&zs —  Vs îs X] ^xk ’ 
k

^ dis  = 2  ^  ik^zi^zk > 
i , k

A ik = h 2Tn rfk( l - 3 c o s 2eife),

(6)

(7)

(8) 

(9)

15 1271



1272 H A R O L D  T .  S T O K E S  A N D  D A V I D  G.  A I L I O N 15

and

Bik = YiYsKr-£(l-3cos2 (10)
where a coordinate system has been chosen with 
H0 along the z axis and H1S along the x axis. As 
in MHW’s paper, we assume that dipolar interac­
tions between the dilute S spins can be neglected.

We then assign spin temperature j8/ and j3s to the 
terms 3Cj7J and '5CZS respectively and write the 
density matrix as

or = 1 — — fis^zs *
Treating 3Cj/s' as a perturbation which causes 1S7 
and /3S to evolve with time towards a common val­
ue, we obtain, using perturbation theory,1 for H1S 
on resonance,

Tor = (&u2)siJ(ysHls) , (12)
where

J ( co) = f d r  c o s ( u t ) G ( t )  ,
J0

G(t) = trt̂ Ĉ /s (T)3C£7S]/tr(5C£7S)2 ,

and

^ / s (T) =exp(iT3e°/J)3^JS exp(-ir3C°7/) .

(13)

(14)

(15)

The term (Aco2) S7 is the Van Vleck second moment 
of the S spins’ NMR line due to /-S dipolar inter­
actions3 and is given by

<Aco2) s/= i/ (/  + l ) (16)

In order for this perturbation method to be valid, 
the rf field H1S must be large. This comes from  
two different considerations. First, the “heat 
capacity” of 3CZS must be larger than that of 3C£7S; 
that is, the perturbation must be small compared 
to either of the other two parts of the Hamiltonian. 
This condition can be written

r l H l s » ( A ^ ) S I . (17)

Second, we must have “fast correlation.” This 
means that the correlation function G (r) must de­
cay to zero much quicker than the time evolution 
of the density matrix. This can be written

T C «  TCR > (18)

where r c is the correlation time of G(r). Since 
r CR increases with increasing//ls , this condition 
restricts H1S to large values.

At this point, it should be noted that the descrip­
tion of the S spins with a spin temperature /3S is 
actually invalid. The S-S interactions are too weak to 
maintain a Boltzmann distribution among the energy 
levels o m zs. We can, nevertheless, define thermo­
dynamic variables,/37 and f$s, by the following

expression:

@i = (3C2jj)/tr(3Cj77)̂

& s = (^zs)/tr(3Czs)

(19)

(20)

If we then proceed to use perturbation theory, as­
suming a Boltzmann distribution only among the 
energy levels of we obtain the same results,
as was shown in detail by DTW .2

In order to evaluate it is necessary to cal­
culate the correlation function G (r). Since G(r) 
cannot be calculated exactly, an approximation 
must be used. This is where the MHW and DTW  
theories differ. The DTW theory involves a mem­
ory function which uses both the second and fourth 
moments of J(co) to generate G(r). The MHW the­
ory, on the other hand, assumes the form of G(r) 
to be Lorentzian (as will be explained in more de­
tail below) and consequently uses only the second 
moment of J (co). Thus, the DTW theory is prob­
ably more accurate and more generally applicable 
to different situations. The DTW theory suffers 
a major disadvantage, though. The numerical cal­
culations are long and tedious, involving several 
double and triple lattice sums, as well as numeri­
cal integration. One would hope that a simplifying 
assumption could be made to reduce the numerical 
work without greatly destroying the accuracy.
Such is the case with the MHW theory.

From data taken on CaF2, MHW found to be 
exponential in H 1S. From Eq. (13) we can see that 
a Lorentzian correlation function would produce 
such a result. Thus, we try

G (t ) = [ 1  + (t /t c ) 2]- 1 .

From Eqs. (12) and (13), we then obtain1

(21)

TcR = iw<Aw2)S7Tc exp(-ystflsTc) • (22)

By expanding both Eqs. (14) and (21) in powers of 
r, we have

dr J + " ‘ =1-\~c) • (23)
Equating the coefficients of r 2 on both sides of the 
equation, we obtain an expression for r c :

1/t * = - | t r [3 C ° „ ,3 C ° /s] 2/tr(3C«/s)2 . (24)

Evaluating the traces, we obtain

1/r2 = 1<Aco2>77# ,  (25)

where (Aco2>77 is the Van Vleck second moment of 
the I  spins’ NMR line due to/-/dipolar interactions 
and is given by

<Aco2> „  = 3/(/ + 1) Y j A ^s -
J

The term K  is a geometric factor given by

(26)
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(27)

In ionic crystals with cubic symmetry (sc, bcc, 
fee, etc.), we have found the value of K  to vary 
between about 0.5 and 1 .0 .

As an example, consider CaF2. The 19F sub­
lattice is simple cubic. We can write

'Y^A \ i=y )n2ai ss i(sc), (28)
s

where

St(sc) = ( r 2-) [-P2(cos0 J ]2 (29)

and the summation is over a simple cubic lattice. 
Similarly,

' 2 l B2sm=^y2iy 2sn2a'of>s i(sc' ) ,  (3 0 )
j

where the primed notation S^sc ') is a special case 
of Eq. (29) in which the index i is summed over the 
19F sublattice and k refers to a 43Ca site—that is, 
a summation over a simple cubic lattice from a 
point not on the lattice. We can also write

J 2 A2jB 2Jm=^y6l y2s ^ < 2s 1(sc)s1(sc') (31)

and

E A l B irnB Jrn = ^ r l % 2< 2S3(sc') , (32)
i t  3

where

X P 2(cos0jft)P2(cos0Jk) [P 2(cos6{J)]2 . (33)

As before, the primed notation S3(sc ') refers to 
the case in which both indices i and j  are summed 
over 19F sublattice sites and k again represents a 
43Ca site. Finally, we can write for CaF2,

1 fr% = j l ( r  + l)r f% 2a ;6S1(sc)

x [1 - S 3(sc')/S1(sc)S1( s c ') ] . (34)

More details are given about these lattice sums in 
Appendix A.

At this point, it might be well to discuss the 
physical meaning of G (r). On inspection of Eq.
(14), we note that G (r) has a mathematical form  
similar to that of the envelope of a normal free 
induction decay (FID):

G fid(t ) = tr[lx(r)Ix]/tr(Ix)2, (35)

I x( t ) = exp(*rJC4u )Ix exp( -  3C%a ) . (36)

In a free induction decay, the x component of the 
magnetization (represented by ( I x)) oscillates with 
frequency 7 jH0 and is dephased by 3C£// to zero in 
a time of the order of T2. The envelope of the de­
cay of ( I x) is given by G f i d ( t ) .  Similarly, in the 
cross-relaxation experiment, (3CJ/S) oscillates 
with frequency 7s^is  (*n the rotating reference 
frame) and is dephased by X ° If to zero in a time 
of the order of r c . The envelope of the decay of 
^S/s) *s given by G(r )* Such transient oscillations 
were observed by MHW .1

As was noted earlier, the agreement between 
the MHW theory and experimental data for CaF2 
is very good.1 There remains a question con­
cerning the simplifying assumption of a Lorentzian 
correlation function. Is this assumption valid in 
cases other than CaF2? In a few cases, experi­
mental evidence4*5 has shown this to be the case.
In this paper we will apply the MHW theory to other 
experimental data, thereby demonstrating the 
validity of using a Lorentzian correlation function 
in all cases studied.

III. EXPERIMENTAL PROCEDURES

At this point, we will outline the experimental 
procedures we use to measure t c r . We use a 
pulse technique, very similar to that of MHW , 1 
shown in Fig. 1. The I  spins are prepared in the 
demagnetized state by spin locking (that is, a 90° 
pulse followed by a 90° phase shift) and then adia­
batic demagnetization. 6 The S spins are then i r ­
radiated by N  rf pulses, each of length r ON and 
separated by t o f f »  T2S, the spin-spin relaxation 
time of the S spins.

Solving Eqs. (3) and (4) with the initial condition 
/3S =0 at the beginning of each pulse gives the re ­
sults of MHW for the case of negligible spin-lattice 
relaxation:

^ j ( T o n )
Mr( 0) 0,(0)

l+e exp {-[(l +e )/ rCR]ToN} y   ̂ (3?)

To monitor j3j, we simply remagnetize the I  
spins6 and observe the free induction decay, whose 
amplitude M x is proportional to /37. Thus, for a 
given H 1Sf we measure M 7 for several values of 
r ON (including r ON = 0) and then apply Eq. (37) to ob­
tain r CR.

The amplitude of the rf field H 1S is measured 
using rotary saturation1 (see Fig. 1). With the I  
spins in the demagnetized state, we apply a single 
long pulse of HIS whose frequency is modulated by 
an audio frequency coa of small amplitude. This 
produces an effective modulation of H0 which 
“heats” up the S spins. 7 This effect is greatest
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FIG. 1. Pulse sequence used for (a) measuring cross­
relaxation rates, and (b) measuring the amplitude of 

*is.

at coa =ysHls (see Fig. 2), and thus enables us to 
obtain the amplitude of # 1S.

IV. EXPERIMENTAL RESULTS IN LITHIUM 

We measured cross relaxation rates in powdered 
lithium metal (I = 7Li; S = 6Li). We used a sample of 
lithium-metal dispersion (30% lithium, 70% petro­
leum) manufactured by the Lithium Corp. of 
America, Inc. The sample was submerged in 
liquid nitrogen and placed in a dc magnetic field 
of approximately 14.5 kG. Under these conditions, 
we measured for 7Li a spin-lattice relaxation 
time T 1 = 574±10 msec at 24 MHz and a dipolar 
relaxation time T 1Z? = 300±10 msec (cf., the re ­
sults obtained by Ailion and Slichter8 who mea­
sured T 1 = 470±14 msec in another lithium sample 
at 7.5 MHz at the same temperature).

We measured the cross-relaxation rate at three

FIG. 2. Fractional decrease of as a function of 
ooa / 2tt using rotary saturation. This is an example of 
how Hts can be measured. In this case we obtain 
//1S = 3.9±0.1 G.

different values of H1S (see Fig. 3). In doing this, 
we found that the experimental values of € were 
consistent with a higher local field HLI than the 
calculated dipolar local field (see Appendix B for 
further discussion of this point). Accordingly, we 
used the experimentally determined value of € in 
determining from Eq. (37).

In applying the MHW theory to a powdered sam­
ple, one must recognize that each crystallite in 
the sample contributes to the magnetization inde­
pendently of every other crystallite in the sample. 
To interpret experimental data, we must write 
the observed magnetization, given by Eq. (37) as 
a function of crystal orientation, and then average 
over all orientations9"11:

i c* r2ir
M ohs = (M )  = —  sin# dO J d<)> M(0, <f>). (38)

Expressions for M(6 , $ ) can be written using 
angular dependences of the various lattice sums 
involved (see Appendix A), but it is immediately 
obvious that the integral in Eq. (38) cannot be eval­
uated analytically. An approximation to Eq. (38) 
may be obtained by replacing each individual lat­
tice sum involved by its powder average. In the 
case of powdered lithium metal, we evaluated 
Eq. (38) numerically and found the error of this

FIG. 3. Cross-relaxation rates in powdered lithium 
metal. The solid line is calculated from the MHW 
theory.
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approximation to be less than 5%.
In Fig. 3, the experimental data is compared to 

the MHW theory (using the approximation de­
scribed above). As can be seen, the agreement 
is quite good. A correlation time tc of 163 jutsec 
was calculated in this case, using

NT4=|/(/+i>riK2a*

- -1\I! <s2(kcc)> + <S3(bcc)> 
x<S1(b c c ))^ l---------<Si(bcc))2 (39)

where the powder averages of Sl9 S2, and S3 in a 
bcc lattice are denoted by (S 1(bcc)), (S 2(bcc)>, and 
(S 3(bcc)), respectively. and S3 have been de­
fined earlier in Eqs. (29) and (33), respectively.
S9 is defined as

S2= [P2(C0Se I*)]' (40)

Note that, by definition, the terms Su S2, and S3 

are sums over all lattice sites, not just occupied 
sites. The terms which appear in Eq. (27), how­
ever, are sums over pairs of atoms and must be 
converted to sums over sites in order to be ex­
pressed as functions of Sl9 S2, and S3. In the case 
of CaF2, the sum over sites was identical to the 
sum over atoms; however, in metallic lithium, 
both I  and S spins range over the same lattice so 
that these sums are not identical. The extra term 
S2 arises from this feature as can be seen by con­
sidering the following term from Eq. (27), which 
will now be converted from a sum over atoms to 
a sum over sites:

Y . A%B)m = P iP jY , A^B2jm j (41)
atom s 

i t  3

where P f and P j  are the probabilities that sites 
i and j, respectively, are occupied by I  spins. 
Since m is, by definition, an S site, P m = 0. Thus

\N,/(Nj + N s) , i * m ,  

j 0 ,  i - m  .

(42)

This results in

i,J ' 1 '

x[s2(bcc) -S2(bcc)] . (43)

Substituting the above and similar expressions in 
Eq. (27), we obtain Eq. (39).

V. COMPARISON WITH OTHER PUBLISHED RESULTS

A. Lithium fluoride

Lang and Moran12 reported measurements in 
LiF(I = 7Li; S = 6Li). They observed that the cross 
relaxation rate as a function of H1S has wings 
characteristic of a Lorentzian or exponential de­
pendence on H1S. This, of course, is consistent 
with the MHW theory. There is an additional com­
plication in this case, though: a third spin specie 
19F. The 6Li nuclei, irradiated by a strong rf 
field H1S, cross relaxes with both the 7Li and 19F 
nuclei simultaneously. Under these conditions, 
fortunately, the 7Li and 19F nuclei cross relax 
much more rapidly with each other than either 
does with 6Li.

In other words, the 7Li and 19F nuclei maintain 
a common spin temperature in the rotating refer­
ence frame (this time rotating with respect to 
19F as well as 7Li and 6Li). Such an assumption 
has been shown to be valid experimentally.13,14 
We thus have, as suggested by DTW ,2

8Li-7Li+(1//TcR)eLi-l9F ’ (44)
The correlation times of these two sets of interac­
tions are given by

l/rCR- (1/TCr)

C/6Li.19F

Sg(fCC')

(45)

(46)

where I  refers to 7Li in Eq. (45) and to 19F in Eq.
(46). The primed notation fee' refers to summa­
tions between two different sublattices, as in the 
case of CaF2 previously discussed. These corre­
lation times are listed in Table I for three differ­
ent crystal orientations. Values for using 
Eqs. (44) and (22) are shown in Fig. 4.

Data was published12 only for H0 in the [ i l l ]  di­

rection. Good agreement is found between this 
data and the MHW theory (see Fig. 4). But Lang 
and Moran12 also reported that their measurements 
for the [ 1 1 0 ] and [ 1 0 0 ] orientations showed that t~ĉ  in­
creases over the [ i l l ]  values an average of about 15 
and 30% for the [110] and [100] directions, respective­
ly. As can be seen in Fig. 4, this agrees qualitatively 
but disagrees quantitatively with the MHW theory
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TABLE I. Correlation times rc  given by Eqs. (45) and 
(46) for the 6L i-7L i cross relaxation and for the 6L i-^ F  
cross relaxation with three different orientations of H0 
in a single crystal of LiF.

Orientation of H0
Interaction pair [100] [110] [111]

6 L i-7 L i 154 Msec 132 Msec 117 Msec
GL i-19F 49.5 41.9 45.2

which predicts increases of as much as ah order 
of magnitude and more. There seems to be some 
limiting process in the sample which doesn’t allow 
the cross relaxation to proceed as quickly as the 
theory would predict.

B. Adamantane

Pines and Shattuck4 reported measurements in 
polycrystalline adamantane (/ = 1 H; S = 13C). They 
found the cross-relaxation rate to be exponential 
in H1S) consistent with the MHW theory.

Adamantane (C10H16) is a cagelike molecule 
which, at room temperature, sits in a face- 
centered-cubic lattice. 15 If we were to calculate 
the cross-relaxation rates for a rigid lattice, we 
would obtain values of the order of 1 0 5 sec“x(rCR 
~ 10 ill sec!) for an rf field H1S % 10 G. The actual 
observed rates range from 1 0 3 to 1 .0  sec"1 over

FIG. 4. Cross-relaxation rates in LiF. Data points 
for [111] are from Ref. 12. The solid lines are calcu­
lated from the MHW theory.

the same range of HIS.
Molecular rotation must be taken into account. 

Adamantane is a very spherical molecule. The 
rotational activation energy is about 3 kcal/ 
mole.16*17 At room temperature, the molecule 
jumps furiously between 24 different orientations 
at a jump rate16 of about 2 x io 16 sec”1. For our 
purposes, then, the Hamiltonian must be averaged 
over these orientations. The dipolar interaction 
coefficients A ik and B ik vanish in this average if 
the indices i  and k refer to nuclei in the same 
molecule. Thus only intermolecular interactions 
need to be considered. To simplify the mathemat­
ics, the molecular rotation may be considered to 
be isotropic. With this model, it can be shown 
that the intermolecular dipolar interaction can be 
calculated exactly by placing all nuclei at the cen­
ter of their respective molecules.18"20 This meth­
od has been successfully used to calculate the 
second moment of the absorption signal in adaman­
tane. 17,21,22

The calculations are thereby greatly simplified, 
and with the same powder-average approximation 
as for lithium (see Sec. IV), we obtain a correla­
tion time23 r q = 122 jusec using

Tr = + i )y ^ 2«56<s1(fcc))
T C

x [ l _ ( S 3(fcc)>/<S1(fcc)>2] .  (47)

As can be seen in Fig. 5, the agreement with the 
experimental data of Pines and Shattuck is fairly 
good.

H|S(gauss)

FIG. 5. Cross-relaxation rates in polycrystalline 
adamantane. Data points are from Ref. 4. Error bars 
are from A. Pines (private communication). The solid 
line is calculated from the MHW theory.
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VI. CONCLUSION

We have shown that the MHW theory is adequate 
for calculating cross-relaxation rates in three 
cases other than CaF2. In each case examined, the 
experimentally measured rates have an exponen­
tial dependence on H1S. Such a dependence has 
been observed in other cases also (see, for ex­
ample, Ref. 5 and the comment in the reference 
in Ref. 4 referring to private communication with 
J. Waugh). This behavior leads us to conclude 
that, in general, very little error is generated in 
the calculation of cross-relaxation rates by as­
suming a Lorentzian correlation function—thus the 
MHW theory appears to be generally valid.
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APPENDIX A: LATTICE SUMS

There are three different types of lattice sums 
necessary for computing the cross-relaxation 
rates in this paper. These are defined by

a

si = E ( ^ ) 6[p*(cose<*)]2’ (A l)

b) [001]

c) [001]

W 'H.H,.— I[010]

noo]

FIG. 6. Definitions of various angles used in Appendix
A.

^ )  [P 2(c o s e j r (A2)

and

*3 = Z

x P 2(coselk)P 2(cosejk) [P 2(cos6i:l)]2, (A3)

where 6 ik, 6jk, 6tJ are angles between H0 and r ik, 
Tjk9r ij9 respectively, [see Fig. 6 (a)]. The lattice 
parameter a0 is the distance between two nearest 
neighbors along the [ 1 0 0 ] direction.

r3k/

For cubic symmetric lattices, these sums can 
be reduced to more convenient forms by introduc­
ing the angles a, 0, y between H0 and the three 
principle axes of the crystal [see Fig. 6 (b)] and the 
angles a ik, (3ikf yik between r ik and the three crys­
tal axes [see Fig. 6 (c)]. We then have

cosOik = cosot cosotik + cos/3 cos/3ife+ cosy cosy ik .

(A4)
Substituting this into Eqs. (A1 )-(A3 ), we can ob­
tain and S3 in terms of these new angles.
In doing this, the following relationships proved 
useful:

cos2 a + cos2/3 + cos2y = 1,

cos2«  cos2/3 + cos2/3 cos2y + cos2y cos2ol = j> -  |(cos4a + cos4j3 + cos4y ) , 

cos6a + cos6j8 +cos6y = -  i  + f(cos4o> +cos40 + cos4y) + 3 cos2a cos2/3 cos2y , 

cos4a cos2/3 + cos4i3 cos2ol + cos4/3 cos2y + cosV cos2/3 + cos4y cos2a + cos4a cos2y 

= i  -  2(cos4a + cos4/3 + cos4y) -  3 cos2a cos2/3 cos2y , 

cos4a cos4/3 + cos40 cos4y + cos4y cos4a

= I  -  (cos4a + cos4/3 + cos4}') -  4 cos2 a cos2/3 cos2y + i(cos8a + cos8/3 + cos8y ) ,

(A5)

(A6 )

(A7)

(A8 )

(A9)
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cos6a cos2/3 + cos6/3 cos2a + cos6/3 cos2y + cos6y cos2j3 + cos6y cos2ol + cos6a cos2y

= -  i  + 1(cos4a + cos4(3 + cosV) + 3 cos2 a cos2/3 cos2y -  (cos8a + cos8/3 + cos8y ) , 

cos4a cos2jS cos2y + cos4/3 cos2y cos2a + cosV cos2ce cos2

(A10)

(A l l )

In cubic lattices, olik9 (3{k, and yik can be cyclically rotated without changing the value of the summation. 
For example,

6
COS O' COS

• ■ ? ( ;£ )  cosV“ -
(A 12)

Also, in cubic lattices, any summation involving 
an odd power of cosines is zero. For example,

£ cos Oi. cos/3. .=0  . (A13)

Using these relations, we obtain the following:

S1=A 1 + B 1(cos4oi +cos4/3 + cos4y ) , 

where

and

r„

4a )

(5 cos4a i(, -  1).

(A14)

(A15)

(A16)

(A17)

Similarly, we obtain for S2 the following: 

S2 =>l2+ fi2(cos4a +cos4/3 + cos4y)

+ C2 cos2a cos2/3 cos2y 

+D 2(cos8a + cos8|3 + cos8y ) , 

where

A 2 = |(343 A'2 -  2322B ' -  2592C' + 1323.D'),

(A18)

B 2 = i ( —2322.A'+ 15 822£2 + 17 388C ' -  9072D'),

(A19)

C 2 = f  (-72 A ' +483B' + 602C2 -  2732?'), (A20) 

D2 = 2-2 (49.4' -  336B'2 -  364C' + 195D2) , (A21)

and

* -? £ )"

£  f e COS Gi•

cos cos cos2'yjfe,

(A22)

(A23)

(A24)

(A25)

(A26)

Also, for S3, we get

S3=A 3 + B3(cos4:ol +cos4/3 + cos4y)

+ C3 cos2ol cos20 cos2y

+D 3(cos8a + cos8]S + cos8y ) .

The expressions for A 3, B z, C3, and D3 are far 
too lengthy to be useful. A much easier procedure 
is to compute S3 for four particular orientations 
using Eq. (A3) and, in terms of these values, com­
pute A 3, B 3, C3, and D 3 using Eq. (A26). For ex­
ample, if S3 is computed for a powder as well as 
for H0 in the [100], [ 110], and [ i l l ]  directions, we 
obtain

^  3 -  100 +  2  O S 3,1 10

+ 8e1S3,xu-3f<S3>,
= — 7 ^ 3 , ioo — 110 

-^3,111+ 7f(S 3>, 

3̂ = ” ̂ §̂ 3,100 “ 1̂ 3̂,110
1 8 9o  

----- 4~ 3 ,111

and

= 15S3̂ 100 + 24S3>110 

+ f S 3> m - ^ ( S 3>.

(A27)

(A28)

(A29)

(A30)

Computing the powder average (S3) is not 
straightforward. Consider, for example, the fol­
lowing term:

f  i3k

X P 2(coseik)P2(cosejk) [P 2(cos6{j) ]2. (A31)

Great simplification occurs if we replace the in­
ternal angles by angles referred to an external 
set of axes. Since Eq. (A31) is independent of 
choice of external axes, let us choose the z axis 
to be along r i j . From the addition theorem forij
spherical harmonics,24 we can write 

P 2(cose Jfc) = fir £  Y2m( r ik)Y*m(HQ) .
m=- 2

Using this identity, we have

(A32)
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K t T E  (A33)

Also, using the composition relation for spherical harmonics,25 we have

YzmiK ) Y 2mJ,Ho) = S ( 4ffg + l ) ) 1/2 + ^ 2)(2020|Z0>r;mi+m2(JHo) , (A34)

where (2m12m2\lmx +m2) and (2020 |Z0) areClebsch-Gordan coefficients.26 Substitution of Eq. (A34) into 
Eq. (A33) gives us

mv m 2 ,

*1»*2

X (2020|Z10)(2020|Z20)2F2Mi(f ift)F 2m2( f ^ )F * mi+m2(4 )y , 2O(a o) . (A35)

Now, we can take the powder average given by

</«*> = ̂  J d"ofm ■ (A36>
Using orthonormality of spherical harmonics,

JdH0 Ytim̂ mJfla)Yh0{H0)=bh l 6m̂ m20, (A37)

and we obtain

(/iift>=fe)3fe)3fe)6̂  E 2^<2M2-Ml,0><!0J0lI0>,ir̂ ‘)y'- ^ '  (A38)
Evaluating this expression, we have

< f iJk) = (a0/̂ jfe)3(«0/r ]k)3(a0/r{j)e ±  [(3 cos20j - 1)(3 cos26} -  1) +4 cosS, sin6, cos6 f sine} + sin26, sin2®,.],
(A39)

where 0 i96 . are angles between r {i (the >2 axis by choice) and r ik9r ij9 respectively. Using this result, we 
finally have

^ 3) = 7Tn ^  ( — V ( —  ̂ [(3 cos20f -  1)(3 cos2#,. -  l )  + 4 cos#* sin0 { cos^i sin0i + sin20f sin2̂ . ] . (A40)
U3^ik 3k Tij

For computational purposes, we can write this as

(S3)= f0«J2 £  r?kr t r ? ? {[3 (? „ - r jkf  - r * (kr%] (r jk + r%) 
i,j

-  «(?„• rjk)H îk+r%) + r ikr% + 4(rik’ rJk)2rlkr% + 7(ru'>r̂ )4} . (A41)

Table II lists computed values for S19 S2, and S3 and associated parameters for five different cubic lat­
tices .27 Three of them, simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fee), are 
straightforward with all indices referring to points on the lattice. Two of them, labeled sc' and fee', in­
volve lattice sums from a nonlattice point k9 in particular a body-centered point.

APPENDIX B: LOCAL FIELD IN LITHIUM 

The local field of 7Li in powdered lithium metal is given by

h 2 ,i) ^  y  r~6T1 . 4y2ss(s + 1)̂  , /̂ ( s  + dats\2iHl t - 5yIKIV + l ) Ni+Ns _1 + 2 ■$!(} +l)Nt +\yzlI(I + W J  J ‘  ̂ '
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TABLE II. Lattice sums as defined in the text of 
Appendix A.

bcc fee fee'

A t -0 .8 0 8 1 9.732 8.924 31.96 -8 3 .6 6

B  i 4.147 -9 .3 3 9 -5 .1 9 2 -1 4 .7 2 280.14

S l.,100 3.339 0.393 3.732 17.24 196.48

S l.,110 1.265 5.062 6.328 24.60 56.41

S i.,111 0.574 6.619 7.193 27.05 9.72

(S l) 1.680 4.128 5.809 23.13 84.42

A  2 5.835 22.42 28.24 806 23 060
-13 .8 9 9 -4 4 .7 6 -58 .68 -1524 -55 3 4 0

c 2 -42 .3 6 7 90.34 48.06 -7483 -1 6 5  800
10.320 22.40 32.70 738 414 90

S 2, 100 2.255 0.054 2.260 20.33 9216

S 2, 110 0.175 2.81 2.986 136.45 579.6

S 2, 111 0.0147 11.66 11.671 48.31 11.93

(S2!> 0.532 3.86 4.389 66.55 2111

^ 3 2.87 29.84 48.0 646 7570
-6 .3 2 -66 .5 0 -9 4 .2 -1370 -17420

c 3 -2 4 .0 4  --244.61 -3 8 1 -3050 -5 5  640

£>3 4.47 37.25 47.9 791 10 090

S 3, 100 1.02 0.59 1.62 67.3 240

S 3, 110 0.27 1.25 6.84 60.0 121.0

* 3 . 111 0.04 -0 .0 0 2 4.24 105.8 75.8

<S3> 0.34 0.030 3.768 58.8 -4 8 .8

A careful evaluation of this expression, using 
well-known properties of lithium metal,28 gives 
Hl i  =1.17 G at 78 °K and HLl = 1.14 G, at 20 °C. 
Others8*29 have reported this theoretical value to 
be HLI = 1.20 G, which is in slight error.

Our particular sample of lithium seemed to have 
a somewhat higher value of HLI than the calculated 
value. The ratio of heat capacities e can be ob­
tained from the experimental data, using Eqs. (3) 
and (4). From Eq. (2) we write

(B2)

In Fig. 7 we plot € as a function of H\s and obtain 
Hl i ~ 1.36±0.05 G.

To verify this result, we measured the local 
field using another method, that is, spin locking 
and then adiabatic demagnetization of to ^non­
zero  value. The resulting magnetization (mea­
sured by turning off and observing the free in­
duction decay) is given by8*30

M  = [H1I/(H21I+H2LI)1/2]M 0. (B3)

By fitting this curve to experimental points (see

FIG.
of H.is

H*g (gauss2)
7. Measured ra tio  of heat capacities as a function 

The straight line shown is the best f it  through
the three data points and the origin .

Fig. 8 ), we obtain HLI = 1.55 ±0.10 G.
Although this value for the local field is some­

what higher than the value obtained from cross- 
relaxation data, the data in Fig. 8 is particularly 
sensitive to small nonadiabatic effects in the de­
magnetization which would cause the local field to 
appear larger than its true value. Our results do 
verify the fact that the local field in our sample 
is indeed significantly larger than the theoretical 
value. This appears to be a peculiarity of our 
sample, perhaps due to a small quadrupolar inter­
action with crystal defects and impurities. Other 
published data seem to also show this effect (see 
Appendix C).

APPENDIX C: LURIE-SLICHTER EXPERIMENT

In 1964 Lurie and Slichter29 (LS) published ex­
perimental results for lithium metal (7 = 7Li;S  = 6Li) 
which demonstrated the validity of spin tempera­
ture concepts in nuclear double resonance. They 
used a pulse sequence identical to that described 
in this paper [see Fig. 1(a)]. This affords us an 
excellent opportunity to compare their data with 
the MHW theory, using Eqs. (22) and (37).

In the Appendix of LS, a calculation of the cross- 
relaxation rate was presented and then applied to 
the experimental data, using an equation equiva­
lent to Eq. (37). We found some minor errors in 
that treatment which we would like to report here.

Equation (A24) in LS should be

C g j r (u ) (u2 -  Sl2,)du  = 1)P<2/ + 1)"' (  £  5 BikBn A\p + £  4 BJtB,v A
' k,p k,k'

(Cl)

Eqs. (A25), (A26), and (A28) in LS consequently are also in error, and Eq. (A29) in LS should finally be

= 1 +
N sS(S + l ) y | (Hj)% \  4 7% M A 2co)f A 1/2 (0 5 . a r )2/cJ2 

NjI(J + l)y?[(ifi)?+i<A*l0//J/ 3 yj V 10K' / ’
(C2)
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FIG. 8. Magnetization follow ing an adiabatic demagne­
tization o f the r f  fie ld  to a value B y  . From  this data, 
the loca l fie ld  o f 7L i was determ ined to be H L I  =1.55 ±  

0.10 G, shown by the arrow  in the figure. The solid line 
shown is obtained from  Eq. (B3) using this value fo r  H L I .

where
5 /  A 20,2=1 W i» )nK’ , (C3)

and

K> ~ ( m+5BimBj j ) /  \ \ B m̂,
it 3 '3  J

(C4)
Similarly, Eq. (A31) in LS should be

J _ _  ( i  , N ,y % S (S  + 1 ) ^ ) 1  \

T IS -  V + N l y 2l I ( I  +  i m ^ H ) J

2 y%
3 y) \ K (C5)

where

FIG. 10. Correction  of F ig. 10 in LS (Ref. 29) using 
Eq. (C5) in this paper instead of Eq. (A31) in LS.

(C6)

and K  is defined by Eq. (27) in this paper.
The theoretical lines in Figs. 9 and 10 in LS 

were also drawn wrong, even if Eqs. (A29) and 
(A31) in LS were used as written. It appears that 
T mjls was evaluated wrong using a factor which was 
2ir too small. This could be due possibly to the 
use of the wrong units for y7 and ys. Accordingly, 
in Figs. 9 and 10 of this paper, the solid curves 
represent the corrected theory of Eqs. (C2) and 
(C5) above. The data on these figures is redrawn 
from Figs. 9 and 10 of LS.

The corrected result, as given in Eq. (C5), is 
identical to what we would obtain from Eqs. (12) 
and (13) if we had assumed the form of G (r) to be 
Gaussian.

G(t ) = c-t2/tc . (C7)
As can be seen in Fig. 10, the agreement between 
data and theory is not very good in this case. If

FIG. 9. Correction  of F ig. 9 in LS (Ref. 29) using Eq. 
(C2) in this paper instead o f Eq. (A29) in LS.

FIG. 11. M j  vs H 1S in lithium metal fo r  iV = 25. The 
data points are from  Ref. 29. The solid line is calcula­
ted from  the MHW theory and Eq. (31) using H LJ =1.4 G.
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we apply the MHW theory [which assumes G(r) to 
be Lorentzian instead of Gaussian], the agreement 
between data and theory is not significantly im­
proved. If, however, we use a local field HL I - 1.4 
instead of 1.2 G, the agreement is much better 
(see Fig. 11). This seems to indicate that the local 
field in their sample of lithium is larger than the

calculated dipolar local field, just as we ob­
served in our sample (see Appendix B). LS also 
made an independent measurement of the local 
field by a method identical to that described in 
Fig. 8 of this paper and determined HLI to be
1.2 G. We do not know the source of this apparent 
discrepancy.
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