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Mechanical bending of nanoscale thin films can be quite different from that of macroscopic thick 

films. However, current understanding of mechanical bending of nanoscale thin strained bilayer 

films is often limited within the Timoshenko model [Timoshenko, J. Opt. Soc. Am. 11, 233 (1925)], 

which was originally derived for macroscopic thick films. Here, we derive a modified Timoshenko 

formula by including the prominent effect of surface stress played in the nanofilms, which gives a 

much better agreement with the experiments than the classical formula. © 2008 American Institute 

of Physics. [DOI: 10.1063/1.2828043]

Classical bending theory was established a century ago 

by Stoney1 and Timoshenko' in the context of bimetallic 

strip as used in a thermostat. The theory has since been ex

tended for stress analysis in many different areas of applica
tions, such as coating, epitaxial growth of thin films, and 

device interconnection.’” Recently, with the emergence of 

nanotechnology, the classical bending theory has also been 

adopted to explain self-assembly of nanostructures via bend

ing of strained nanoscale thin films,8”10 even for films down
I I 12

to only a few monolayers (MLs, a few angstroms) thick. ' ‘ 
Despite the fact that mechanical response of nanoscale struc

tures, such as bending,13'14 can be drastically different from 

that of macroscopic structures, most existin| theoretical 

analyses of mechanical bending of nanofilms ” are per
formed within the framework of continuum theory, neglect

ing the atomic details of film structure and the intrinsic stress 

of solid surface. For example, classical Timoshenko formula 

has been used to calculate the bending curvature (or radius) 

of rolled-up nanotubes of strained bilayer films. However, 

there exist apparent discrepancies between the theory and 
experimental results.11'15'16 Here, we rederive a modified Ti

moshenko formula that allows us to achieve a much better 

agreement with experiment.

To illustrate our point, we first revisit a recent study of Si 

micro- and nanotubes made by releasing thin partially re
laxed Si layers from their substrate by selective etching,16

8—10
using the “nanomechanical architecture” process. Pure Si 

tubes of different diameters ranging from 0.25 to 2.5 fini 

were fabricated from 3 to 20 nm thick Si films, as shown in 
Fig. 1 (square dots).

Usually, the bending curvature of a bilayer film can be 

analyzed using the classical Timoshenko formula2'17 in the 

general form as
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where a=Ej!Es, Ej and Es are, respectively. Young's modu

lus of the film and substrate, f3=tf/ts is the ratio of film 

thickness fy-and substrate thickness r5, and t=tj+ts is the total 

thickness of the bilayer film. em=(as-cij)/cij is the misfit
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strain where as and cij are, respectively, the lattice constant of 

substrate and film. For the special case of Si tubes (Fig. 1), in 

which both the film and substrate are made of the same ma

terial of Si (one strained and one relaxed), a=  1 and Eq. (1) 
reduces to a simpler form as

6s
(1 + / r (2)

Equation (2) was used by Songmuang et al. to predict the Si 
tube diameters (dashed line in Fig. 1) in comparison with the 

experiment.16 It was assumed that the strained (partially re

laxed) Si layer (film) having a thickness tj=2 nm and under 

an average 2.1% tensile strain relative to the unstrained 

(fully relaxed) Si layer (substrate). However, such a theoret

ical prediction does not agree very well with the experimen
tal results, as shown in Fig. I .16

Another example is the fabrication of GaAs/InAs nano

tubes from rolling up released GaAs/InAs bilayer films of 

only a few MLs thick.11 Nanotubes with diameters ranging 

from 10 to 1000 nm were fabricated, as shown in Fig. 2 

(square dots). The diameters of GaAs/InAs nanotubes have 
been analyzed by a couple of groups11'15 using the classical 

Timoshenko formula. However, there is an apparent discrep

ancy between the theory (dashed line) and experiment 
(square dots), as shown in Fig. 2.11 Further effort using clas

sical Timoshenko formula but adding nonlinear and anhar- 

monic effects15 failed to resolve the discrepancy.

In principle, the Timoshenko formula applies only to 

relatively thick films for which the effect of surface on me-
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FIG. 1. (Color online) Diameters of pure Si micro- and nanotubes as a 

function of thickness of Si layer with fixed thickness of strained Si layer at

2 nm. See Ref. 16 for experimental details.
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FIG. 2. (Color online) Diameters of InAs/GaAs nanotubes as a function of 

thickness of GaAs layer with fixed thickness of InAs layer at 2 ML. See Ref. 

11 for experimental details.

chanical bending can be neglected. An intrinsic property of a 

solid surface is its non-zero surface stress, which is generally 

further enhanced by surface reconstruction.18 For ultrathin 

films that are only a few nanometers thick, surface stress due 

to surface reconstruction or molecular adsorption has been 

shown to affect the film bending behavior significantly.19'20 
Since misfit strain and instrinsic surface stress drive the 

beinding together, apparently, the Timoshenko formula that 

accounts only for misfit strain can not give a good descrip

tion of the bending behavior of nanometer-thick bilayer films 

(it is not only quantitatively inaccurate but can also be quali

tatively incorrect for some cases19). Therefore, to resolve the 
discrepancy between the classic theory and experimental re

sults, as shown in Figs. 1 and 2, a modified Timoshenko 

formula is required for assessing the nanomechanical bend

ing behavior of ultrathin films that are only a few nanometers 
thick. This has to be achieved by taking into account the 

effects of surface stress.

There are two nanoscale surface-stress effects need to be 

added: the intrinsic surface stress due to surface reconstruc

tion and the additional surface stress induced by large bend

ing. One usually assumes the intrinsic surface stress remains 
constant during and after bending. This is approximately true 

for a thick film of very small bending curvature. But the 

bending curvature increases with decreasing film thickness. 

For example, if a film thickness is reduced from 

1 ££.m to 1 nm, its bending curvature will increase by six or

ders of magnitude. The very large bending curvature of a 
nanofilm means a very large bending strain in the film sur

face, which will in turn change the surface stress. Thus, in 

order to derive a more correct bending curvature formula, the 
bending induced additional surface stress in the top (bottom) 
surface must be included.

The top and bottom surface stresses of a bilayer film 

upon bending can be generally calculated as <Xts,bs=o'tso,bsO 

+ Cis,bs£ts,bs- o'tsO ar|d CTbso are, respectively, the intrinsic sur
face stress in top and bottom surface. Cls-bssls-bs are the bend

ing strain (sls and sbs) induced additional surface stress 
where Cls and Cbs denote the “in-plane” elastic constants of 

the top and bottom surface layer, marked as the thin blue and 

pink layers in Fig. 3.

The bending induced strain in the top and bottom surface 

are, respectively, sls=s,„+K(z.Q-tj) = em+ea-KtJ2-Ktj, sbs 

= -(-f,)] = ea + Ktsl 2, where sa=/c[z0-(-rs/2)] = /cz0

FIG. 3, (Color online) Physical and geometric parameters used for the 
derivation.

z=-ts/2. The top and bottom surface strain energies can then 

be calculated as (assuming Cls=Cbs=C')

JEti=A (jlsrfsls =

C't
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Here, A is the surface area. Now, for the case of Si tubes 

(Fig. 1), a=  1 for Ej=Es, then the bending strain energy in 
the film and substrate can be calculated, respectively, as
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Minimization of total energy E=El!t+Eb;t+Efb+E;tb with re

spect to k and sa leads to a modified Timoshenko formula,

6(Eseint,) ^  6 (C 'sJ 6(Acr)
K —  ̂ (1 + /?) +  ̂  ̂ .
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+ Kts/2  is introduced as the average strain of the substrate at
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In Eq. (7), the first two terms account for the misfit strain 
effect and the third for the intrinsic surface stress effect, with 

Acr=(jls0-(jbs0 representing the difference of intrinsic sur

face stress between the top and bottom surface. It reduces to 

Eq. (2) when all the surface stress effects are absent, i.e., 

Acr=0 and C'=  0.
If we examine closely Fig. 1, we notice that the main 

difference between theory and experiment is that the two 

curves have a different dependence (slope) of diameters on 

thickness. This indicates that the classical Timoshenko for
mula fails to correctly predict the scaling of bending curva

ture with the thickness. Comparing Eqs. (7) and (2), we see 

that in Eq. (2) k scales with f 2, while in Eq. (7) k scales
to AIP license or convrinht; see httn://anl.ain.orn/anr/convrinht.isn
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with {af + btT1. This different scaling results from the bend

ing induced surface stress contribution (Cts bsets bs) in Eq. (7). 

Therefore, we will reanalyze the experimental results of pure

Si tubes in Fig. 1 by including the bending induced surface 

stress effect. Assuming e„,=0.021 as in Ref. 16, we can fit 
the experimental data nicely using Eq. (7) with the fitting 

parameters C5' = 16.45 eV/A2 and Acr=113 meV/A2 

(~1.8J/m2). The fitted surface stress difference (Act) is 

consistent with the well-known values of Si(001) surface 

stresss18 as well as the typical values of the surface stress for
71 . ' 7

most solid materials,‘ which are approximately 1-3 J/nf. 

However, the fitted surface elastic constant C' seemed to be 

too large compared to the existing theoretical value in litera
ture with a different sign.“  The reason for such discrepancy 

needs further study. On the other hand, we note that if C' is 

set to zero, no satisfactory fitting can be obtained using either 
Eq. (7) by adjusting sm and/or Act. Thus, the physically im

portant factor is that the diameters of nanotubes scales with 

film thickness differently due to the atomic-level surface 

stress effects, which cannot be predicted by the classical 

bending theory with or without nonlinear and anharmonic 

effects.

Next, we turn our attention to the experimental data of 
GaAs/TnAs nanotubes in Fig. 2. We notice that the main 

difference between the experimental data (square dots) and 

theoretical prediction by classical Timoshenko formula 

(dashed line) is an almost constant shift of curves. We expect 
this shift is caused by the difference of intrinsic surface stress 

between the top GaAs surface and bottom TnAs surface. 

Whereas the effect of bending induced surface stress, which 

will affect the slope of the bending curve as discussed above 

for Si nanotubes, is less important and negligible. Thus, set
ting Cts=Cbs=0 and using a + 1, we derived the following 

modified Timoshenko formula for this special case:

6(EfSjj) + 6(C1crts0 - c 2crbs0) 
k =  — ------ ;--------- y

E r
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Equation (8) gives an excellent agreement with experiment 
shown in Fig. 2 as solid red line with <rts0=49.1 meV/A2 and 

crbs0=54.9 meV/A2. Again, the fitted surface stresses are 

consistent with typical values of solid surfaces.^1

For the most general cases, we will have different elastic 

constants in the film and substrate (Ey#/y, different intrin

sic surface stress (<xts0 # <xbs0) and different in-plane elastic 

constants (Cts# C bs) in top and bottom surfaces. Then we 

must use the most general form of the modified Timoshenko 

formula derived as the following:
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This general formula has been shown to agree very well 

with molecular dynamics simulation results of Si/Ge 

nanotubes.19
In conclusion, we have derived the modified Timosh

enko formula for calculating the bending curvature of nanos

cale strained bilayer films using an energy minimization 

scheme within the framework of continuum mechanics. The 

main modification over the classical formula is to include the 

prominent role of surface stress in two important manifesta
tions. One is the effect of intrinsic surface stress due to dif

ference in surface structure and morphology, which changes 

the bending magnitude. The other is the effect of bending 

induced surface stress due to the large bending curvature, 

which changes the scaling of bending curvature with thick
ness. The modified Timoshenko formula has been used to 

predict the diameters of Si and GaAs/TnAs nanotubes made 

from folding of strained bilayer nanofilms, giving a much 

better agreement with experiments.
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