
 
 

 
COMPUTATIONAL APPROACHES TO BIOLOGICAL DATA 

  
WITH APPLICATIONS IN IMAGE ANALYSIS, 

 
HUMAN VARIANT PRIORITIZATION,  

 
AND METAGENOMICS 

 
 
 

 

 
by 
 

Steven Flygare 
 
 
 

 

 

 
A dissertation submitted to the faculty of  

The University of Utah 
in partial fulfillment of the requirements for the degree of 

 
 
 

 
Doctor of Philosophy 

 
 
 

 

Department of Human Genetics 
 

The University of Utah 
 

August 2015 

 

 

 

 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Steven Flygare 2015 
 

All Rights Reserved 



 

 

The University of Utah Graduate School 
 

 
STATEMENT OF DISSERTATION APPROVAL 

 
 
 The following faculty members served as the supervisory committee chair and members 

for the dissertation of______Steven Flygare__________________.  

Dates at right indicate the members’ approval of the dissertation. 

 

_______Mark Yandell______________________, Chair               __6/12/2015______ 
         Date Approved 
 
 
_______Lynn Jorde_________________________, Member  ___6/12/2015 _____ 
         Date Approved 
 
 
_______Ellen Pritham_______________________, Member  ___6/8/2015_______  
         Date Approved 
 
 
_______Michael Shapiro _____________________, Member  ___6/10/2015______ 
         Date Approved 
 
 
_______Christopher Gregg    _________________, Member  ___6/10/2015______ 
         Date Approved 
 
 
 
 
 
The dissertation has also been approved by______Lynn Jorde___________________  Chair of 

the Department of _________Human Genetics______________________ 

and by David B. Kieda, Dean of The Graduate School. 



 
 
 
 
 
 

ABSTRACT 
 
 
 

	
  
	
  
	
  
	
  

	
  
	
  

Advances in technology have produced efficient and powerful scientific instruments 

for measuring biological phenomena.  In particular, modern microscopes and next-

generation sequencing machines produce data at such a rate that manual analysis is no 

longer practical or feasible for meaningful scientific inquiries.  Thus, there is a great need 

for computational strategies to organize and analyze huge amounts of data produced by 

biological experiments.  My work presents computational strategies and software solutions 

for application in image analysis, human variant prioritization, and metagenomics. 

The information content of images can be leveraged to answer an extremely broad 

spectrum of questions ranging from inquiries about basic biological processes to highly 

specific, application-driven inquiries like the efficacy of a pharmaceutical drug.  Modern 

microscopes can produce images at a rate at which rigorous manual analysis is impossible.  

I have created software pipelines that automate image analysis in two specific applications 

domains.  In addition, I discuss general image analysis strategies that can be applied to a 

wide variety of problems. 

There are tens of millions of known human genetic variants.  Prioritizing human 

variants based on how likely they are to cause disease is of huge importance because of 

the potential impact on human health.  Current variant prioritization methods are limited by 

their scope, efficiency, and accuracy.  I present a variant prioritization method, the VAAST 

variant prioritizer, which is superior in its scope, efficiency, and accuracy to existing variant 

prioritization methods. 

The rise of next-generation sequencing enables huge quantities of sequence to be 

generated in a short period of time.  No field of study has been affected by rapid 

sequencing more than metagenomics. Metagenomics, the genomic analysis of a population 



 

iv

of microorganisms, has important implications for pathogen detection because 

metagenomics enables the culture-free detection of microorganisms.  I have created 

Taxonomer, a comprehensive metagenomics pipeline that enables the real-time analysis of 

read datasets derived from environmental samples. 
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CHAPTER 1 

 

INTRODUCTION 

 

Computational approaches to large-scale biological data 

 Increasingly, experiments in the biological sciences are producing data at a scale that 

cannot be analyzed manually, even with a team of scientists, and the rate of data production is 

expected to only increase (Jiang & Liu, 2015; Seife, 2015).  While large amounts of data present 

many opportunities for scientific discovery, this data deluge presents scientists with many 

challenges.  The challenges associated with dealing with massive amounts of data are 

intrinsically computational, and have created a rising importance of effective computational 

techniques to store, organize, and analyze data.  My research focus has been to develop 

computational techniques to analyze large datasets (datasets of sufficient size as to be 

impractical to analyze manually) of biological interest.  In my dissertation, I detail specific 

computational approaches and applications in image analysis, human genetic variant 

prioritization, and metagenomics.         

 

Image analysis 

 Image analysis is becoming increasingly important in the biosciences.  Image data 

provides a wealth of phenotype information that can be used to understand biological 

mechanisms in a wide range of applications, including experiments to uncover gene function or to 

determine the impact of a pharmaceutical drug (Carpenter et al., 2006).  Increasingly 

sophisticated imaging techniques and microscopes produce quality data in such quantities that 

would take a team of researchers months to manually process the results of a single experiment.  

Thus, the potential impact of image analysis automation is enormous. 
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 Image data acquired from experiments present many different challenges to an 

automated analysis.  These challenges include the deep complexity represented in images, 

image quality, cell boundaries that are not completely defined, asymmetrical illumination, small 

sample sizes, high dimensionality, and small effect sizes between experimental groups of interest.  

These challenges together with the amount of data that needs to be processed present a 

significant computational challenge. 

 Because of the focused nature of most experiments, there is no single analysis pipeline 

that will work to analyze the images and produce meaningful statistics for all experiments.   Thus, 

it is necessary to understand both image analysis methods and the statistics used to process the 

resulting data in order to draw meaningful conclusions from images produced by biological 

experiments.  There are, however, existing image analysis software that is both modular and 

designed to allow experimental scientists (not just computational experts) to analyze their data.  

Examples include CellProfiler and ImageJ (Carpenter et al., 2006; Collins, 2007).  Although these 

software packages exist, it is my belief that a user must have at least a conceptual understanding 

of the methods employed in order to direct an analysis and draw meaningful conclusions from 

images.  I opt to use the excellent open source image analysis libraries available for the Python 

programming language and construct custom image analysis pipelines.  These open source 

libraries include ndimage in SciPy, Scikit-Image, Python Imaging Library (PIL), Mahotas, and 

OpenCV.  These libraries include excellent implementations of most major image analysis 

algorithms and are typically designed to work on numpy arrays for speed.  Chapter 2 describes 

an image analysis pipeline I constructed using the Python programming language to processes 

images of the flatworm S. mediterranea.  Chapter 3 describes an application of image analysis to 

quantify muscle fiber cell size, for which I also constructed an analysis pipeline using Python to 

analyze the images and perform statistical analysis of the analyzed output. 

 Here I will give a high level description for conceptual understanding of a few 

fundamental image analysis procedures.  These core image analysis procedures include image 

thresholding, erosion and dilation methods, and feature size and location quantification. 
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Thresholding 

 Image thresholding / binarization is the process of separating pixels into a foreground and 

background.   

 An example of image thresholding is shown in Figure 1.1.  There are many thresholding 

methods to choose from, but they can be broken into two broad categories:  global and local 

thresholding.  Global thresholding methods choose a single pixel value with which to divide all the 

pixels of the image into foreground and background.  Global thresholding can be effective with 

relatively simple images where the lighting is uniform.  However, global thresholding is ill suited 

when there is asymmetric illumination in an image, like that of Figure 1.1 A.  In these cases, a 

local thresholding method is usually better suited.  Local thresholding methods choose different 

thresholding values to use at different locations in the image.  Figures 1.1 B and 1.1 C are the 

results of different local thresholding methods.  Clearly, the method of Figure 1.1 B is superior in 

this application to that of Figure 1.1 C.  Local thresholding methods can be broken into two 

categories:  Scale-dependent and scale-independent methods (Blayvas, Bruckstein, & Kimmel, 

2006).  Scale-dependent methods have a specified neighborhood size around each pixel that is 

used to calculate a local threshold.  Fox example, we may consider a 20 x 20 box of pixels 

around every pixel to be its neighborhood and use the pixel information of the neighborhood to 

calculate a threshold value for the particular pixel.  Scale-independent methods do not specify 

any particular neighborhood size around a pixel; instead, they typically combine pixel intensity 

measures for regions of many different sizes around the pixel.  Scale-dependent methods can be 

very effective in solving problems when there is an expectation about the size of the objects of 

interest.  Scale-dependent methods also have the advantage of being simpler to understand and 

implement.   

 Figure 1.2 A is an image taken by a BD Pathway Bioimager of the flatworm S. 

mediterranea.  The purpose of the experiment that produced these images was to quantify the 

neoblasts in mutant animals produced by an RNAi screen and compare the neoblast counts to 

control animals.  The neoblasts are stained prior to imaging so they become the brightest points 

of light in the image.  I used a scale-dependent method to threshold these images because of 
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asymmetric illumination produced by the microscope with the some of the images.  Figure 1.2 B 

shows the results of this thresholding method – you can see the neoblasts were easily separated 

from the image background using this thresholding technique. 

 In my experience, there is no single thresholding method that is going to work for all 

images.  I recommend testing a few methods, including both global and local, scale-dependent 

and scale-independent, on a few of your images and selecting the method that works best for 

your particular data.   

 

Erosion and dilation 

 Once an image is thresholded adequately, it becomes possible to count and quantify 

features in the image.  Often times, the features of interest in an image are not completely 

separate in the image after thresholding and need to be separated before quantifying their size.  

For example, Figure 1.3 is an image taken by a confocal microscope of the cross section of a 

mouse Tibialis anterior muscle.  Our purpose in analyzing this image is to quantify the size of the 

muscle fibers, which in Figure 1.3 are outlined by the red channel.   

 Applying a thresholding procedure to Figure 1.3 results in Figure 1.4 A.  Thresholding the 

image does not provide enough separation between the muscle fibers to quantify their size 

because many of the fibers are still touching.  Erosion is a process that shrinks features in the 

image and thereby enables the separation of the features.  Applying one erosion step to Figure 

1.4 A results in Figure 1.4 B and applying two erosion steps to Figure 1.4 A results in Figure 1.4 

C.  The fibers in both Figure 1.4 B and 1.4 C look separate enough to do quantification.  In 

general, when using erosion to isolate features as we have done here, it is desirable to do the 

minimum amount of erosion necessary to isolate the features.  By using the least amount of 

erosion, we are able to use the maximum amount of image data.  If the experiment were to 

include comparing muscle fiber size between groups of animals, it would be critically important to 

use the same erosion steps when doing the image analysis since erosion systematically changes 

the measurable size of the muscle fibers.   
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Feature size and location quantification 

 After an image has been thresholded and appropriate erosion steps have been taken to 

isolate the features of interest, it is possible to quantify the size and location in the image of each 

of the features.  In the case of the muscle fiber image shown in Figure 1.3, the objective is to 

quantify the size of each of the muscle fibers (outlined by red).  Once the image looks like Figure 

1.4 B or 1.4 C, quantification can take place.  Here I will give a short description of a common 

method used to quantify the size of isolated features.  This method begins by selecting a pixel 

that is above the threshold (white pixels in Figures 1.4 A, B, C) and then looks at all of its 

neighbors – every pixel has 8 neighbors.  For every neighbor that is a foreground pixel, this 

process is repeated for each neighbor until no more neighboring foreground pixels are found.  

These pixels are saved as a single feature and this process is repeated until no more foreground 

pixels are left in the image.  We now have a collection of pixels grouped by feature.  At this point, 

we know the size of each feature in pixels.  In addition, by taking the average of the x and y 

coordinates of each pixel of a feature we find its center of mass, which is often a location quantity 

of interest.  It is important to note that the center of mass thus calculated can be different from the 

visual center of a feature.  An example is of a banana shaped feature – its center of mass would 

lie outside the feature.  

 

Human variant prioritization 

 Over the past decade, sequencing costs have dropped precipitously.  The super-

exponential drop in sequencing costs has led to a massive increase in sequencing-related 

research and applications (Katsonis et al., 2014).  This ever-increasing wealth of sequence data 

has resulted in an explosion of known human variants.  For example, the NCBI’s dbSNP 

database contains well over 100 million human variants.  This available panoply of human 

variation presents significant challenges to interpretation, and of particular importance is how to 

rank human variants according to their risk for causing or contributing to disease.    

 SIFT and PolyPhen were among the first recognized methods to prioritize human variants 

and are still viewed as a standard for variant prioritization (Ng & Henikoff, 2003; Ramensky, Bork, 
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& Sunyaev, 2002).  SIFT uses information about amino acid conservation and the biochemical 

properties of the amino acids to assign a score to the observed nonsynonymous substitution.  

Like SIFT, PolyPhen is informed using amino acid conservation information, but in addition, 

PolyPhen also incorporates information about protein structure to score nonsynonymous 

substitutions.  SIFT and PolyPhen still compare favorably to many methods that have since been 

developed to prioritize nonsynonymous amino acid changes (Dong et al., 2014).     

 Both SIFT and PolyPhen prioritize only nonsynonymous variants.  In real applications, 

this limitation is extremely problematic since the vast majority of known human genetic variation is 

noncoding, and there are many known disease-causing variants in humans that fall outside the 

category of nonsynonymous protein coding change (Ritchie, Dunham, Zeggini, & Flicek, 2014).  

Prioritization of noncoding variants is a much more difficult problem than prioritization of 

nonsynonymous variants because there is comparably much less information available in 

noncoding regions.  However, projects like ENCODE are attempting to functionally annotate 

noncoding regions by systematically assaying all functional genomic elements (Dunham et al., 

2012).   

 Methods are needed that can accurately prioritize both coding and noncoding human 

genetic variation.  Kircher et al. developed CADD, a machine learning approach to human variant 

prioritization that can score all SNVs and small indels in the human genome and is more effective 

than existing methods for variant prioritization (Kircher et al., 2014).  CADD works by comparing 

incidence of simulated variants to fixed derived alleles in the human lineage.  This clever 

comparison allows them to quantify the depletion of fixed derived alleles in the human lineage for 

all locations in the genome.  The main idea is that genomic locations that have a relative 

depletion for fixed variation in the human lineage are more likely to have a functional 

consequence.  However, CADD cannot score larger indels or other structural variation. 

 I have developed a variant prioritization method based on the VAAST likelihood, and in 

contrast to other available methods, it is able to prioritize all annotated variation across the 

human genome (Hu et al., 2013; Yandell et al., 2011).  This method is called the VAAST Variant 

Prioritizer (VVP).  The core concept behind VVP is to calculate a score for a variant that indicates 
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how potentially damaging it is.  This score is then compared to scores of known healthy human 

variants and its percentile rank is calculated.  A high percentile rank (> 99) indicates that the 

variant looks more damaging than the majority of known healthy human variation.  Implicit to this 

method is the problem of choosing how to organize healthy human variants into ‘lookup’ bins 

against which variants can be compared.  Empirically, I have found that creating separate 

lookups for a set of user-specified annotated genomic features (usually genes) and then further 

segmenting the lookups into coding and noncoding categories produces an effective and efficient 

way to prioritize human variants.  Details of VVP and its performance characteristics, including 

comparisons to CADD, are given in Chapter 4.  

 

Metagenomics 

 Metagenomics is the genomic analysis of a population of microorganisms (Handelsman, 

2004).  Metagenomic analysis involves extracting DNA or RNA from an environmental sample, 

sequencing it, and using the sequence reads to identify organisms present in the sample.   

 The majority of microorganisms cannot be grown in a laboratory, but through 

metagenomic analysis, these microorganisms can be observed and studied since culturing is not 

required.  For this reason, metagenomics holds incredible promise in terms of the possible 

questions it opens to investigation (Brady & Salzberg, 2009). 

 With falling sequencing costs, metagenomics projects have produced huge amounts of 

sequence data (Wood & Salzberg, 2014).  The goal of a metagenomic analysis is to classify 

every read with as much taxonomic precision as possible.  Blast is an extremely effective tool for 

comparing a query sequence to a database in order to produce a taxonomic classification, and is 

the standard of taxonomic classification accuracy.  As such, the blast suite is the traditional 

choice for metagenomic analysis, but as sequence datasets have grown, blast is not fast enough 

to produce meaningful results in a reasonable amount of time (Wood & Salzberg, 2014).         

 Acquiring metagenomics results rapidly from an environmental sample has important 

consequences that because of the potential for real-time pathogen identification in response to 

disease outbreak and infections (Lipkin, 2013).  Because metagenomics is hypothesis neutral, 
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novel pathogens that contribute to disease can be identified, unlike the specific assays that are 

current medical practice for pathogen detection. 

 I have developed Taxonomer, a software pipeline for comprehensive metagenomic 

anlaysis.  Taxonomer employs k-mer based methods to enable taxonomic classification based on 

rapid nucleotide and protein searches with a novel statistical approach that improves its accuracy 

over existing k-mer based methods while maintaining computational efficiency.  Taxonomer also 

enables host transcription profiling.  Full details and benchmarking of Taxonomer are given in 

Chapter 5.     

 

K-mer based metagenomics 

 The need for metagenomic methods that are rapid enough to analyze the huge amount of 

sequence data has led to a proliferation of k-mer based methods.  A k-mer is a k length substring 

of DNA sequence.  For instance, the 3-mers of AAGGCGTC would be AAG, AGG, GGC, GCG, 

CGT, and GTC.  Instead of using an alignment method that matches a seed (a k-mer) and then 

extends the alignment, k-mer based methods simply check for the presence or absence of a k-

mer.  This is a far more simple calculation than alignment seeding and extension; for this reason, 

k-mer-based methods can be hundreds or thousands of times faster than alignment based 

methods (Buchfink, Xie, & Huson, 2015; Patro, Mount, & Kingsford, 2014; Wood & Salzberg, 

2014).  Although the calculations in k-mer-based methods are simpler, the accuracy of read 

assignment from k-mer-based methods can be equivalent to that of the more computationally 

expensive alignment extension based approaches, even with sequencing errors (Buchfink et al., 

2015; Edwards et al., 2012; Patro et al., 2014; Wood & Salzberg, 2014).  In metagenomics, 

where rapid and accurate taxonomic assignment is more important than the information of a 

complete alignment, k-mer-based methods are the practical choice.    

 

Database design  

 To unlock the speed of k-mer-based methods, careful database design and 

implementation choices are required.  Here I will give an overview of the construction of a k-mer 
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database for rapid queries, as well as a search strategy for k-mers.  In order to create the 

database, all the k-mers in the reference sequences need to be identified.  Effective software 

tools exist that will identify all the k-mers and their counts in a set of reference sequences, e.g., 

Jellyfish, Kanalyze, and KMC 2 (Audano & Vannberg, 2014; Deorowicz, Kokot, Grabowski, & 

Debudaj-Grabysz, 2015; Marçais & Kingsford, 2011).  These k-mer counting tools all produce 

similar output tables of the k-mers and their counts; these tables can then be organized to allow 

for rapid k-mer queries.  One possible organization of these tables for rapid queries depends on 

the concept of a k-mer minimizer (Figure 1.5) (Roberts, Hayes, Hunt, Mount, & Yorke, 2004).  K-

mers are organized into blocks based on a shared minimizer, and within the block, the k-mers are 

sorted in lexicographical order (Figure 1.6).  An important observation is that overlapping k-mers 

often share the same minimizer (Wood & Salzberg, 2014).  Since k-mers are organized into 

blocks by the minimizer they share, overlapping k-mers can first be searched in the minimizer 

block from the preceding k-mer and only calculate the minimizer if the k-mer is not found.  Within 

a k-mer block, a binary search is used since the k-mers are in lexicographical order.  This 

minimizer indexed query scheme produces astounding speeds even with extremely large 

datasets (Wood & Salzberg, 2014). 

 Another important implementation consideration to maximize speed is to represent k-

mers as unsigned 64 bit integers; this can be achieved by using 2 bits to represent each of the 4 

DNA base pairs.  This numerical representation limits the length of k-mers to 31 bp in length, but 

is critical for good performance on large datasets.  Implementation details of numerical k-mer 

representation are given in the papers describing Jellyfish, Kanalyze, and the source code of 

Kraken (Audano & Vannberg, 2014; Marçais & Kingsford, 2011; Wood & Salzberg, 2014). 
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Figure 1.1:  Original Image (A), note the assymetric illumination.  The thresholding problem 
presented in (A) is to separate the letters from the rest of the image.  Results of thresholding or 
binarization procedures (B,C).  Different procedures yield better or worse results depending on 
the image, which is why its necessary to sample several procedures before choosing one for an 
analysis.  Images taken and modified from (Blayvas et al., 2006).       
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Figure 1.2:  Image of S. meditteranea with stained neoblasts taken from a BD Pathway 
Bioimager (A).  A scale-dependent thresholding method was able to effectively separate the 
neoblasts (shown in red) from the rest of the background (B).     
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Figure 1.3:  Stained cross section of the tibialis anterior muscle of a mouse.  The red 
channel outlines the borders of the muscle fibers.  
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Figure 1.4:  Impact of erosion on isolating muscle fibers.  Thresholded image, no erosion (A).  
Thresholded image with one or two erosion steps (B,C).  
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Figure 1.5:  K-mer minimizer.  To find the minimizer of a k-mer (shown in blue), all k-mers of a 
specified size smaller (shown in orange) than the original k-mer are generated from the k-mer in 
question.  The k-mer minimizer (shown in light blue) is the potential minimizer that is the 
lexicographically smallest.      
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Figure 1.6:  K-mer database organization by minimizer.  K-mers (shown in blue) are 
organized into blocks based on shared minimizers.  Minimizers (shown in orange) point to the 
beginning of k-mer blocks that are sorted in lexicographical order. 
 
 
 
 
 
 



 
 
 
 
 
 

CHAPTER 2 

 

IMAGEPLANE: AN AUTOMATED IMAGE ANALYSIS PIPELINE FOR HIGH-THROUGHPUT 

SCREEN USING THE PLANARIAN SCHMIDTEA MEDITERRANEA 

 

 

Published as:  Flygare, S., Campbell, M., Ross, R. M., Moore, B., & Yandell, M. (2013). 
ImagePlane: An Automated Image Analysis Pipeline for High-Throughput Screens Using 
the Planarian Schmidtea mediterranea. Journal of Computational Biology  : A Journal of 

Computational Molecular Cell Biology, 20(8), 583–92. doi:10.1089/cmb.2013.0025 

  

 

Contributions: I wrote the ImagePlane software, helped produce the images used in the analyses, 

was heavily involved in producing all the results, and wrote the methods. 
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CHAPTER 3 

 

TRANSIENTLY ACTIVE WNT/B-CATENIN SIGNALING IS NOT REQUIRED BUT MUST BE 

SILENCED FOR STEM CELL FUNCTION DURING MUSCLE REGENERATION 

 

Published as: Murphy, M. M., Keefe, A. C., Lawson, J. A., Flygare, S. D., Yandell, M., & Kardon, 

G. (2014). Transiently Active Wnt/β-Catenin Signaling Is Not Required but Must Be Silenced for 

Stem Cell Function during Muscle Regeneration. Stem Cell Reports, 3(3), 475–488. 

doi:10.1016/j.stemcr.2014.06.019 

 

Contributions: I wrote software that was used in a significant part of the analysis and helped with 

statistical matters in the data analysis. 
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CHAPTER 4 

 

HUMAN VARIANT PRIORITIZATION 

 

VAAST variant prioritizer 

 Variant prioritization is the process of categorizing individual variants into groups based 

on some desired property.  For example, often it is of research and medical interest to prioritize 

genetic variants according to how likely they are to contribute to disease.  A major challenge of 

variant prioritization is that some genes naturally tolerate more variation than others, including 

missense and other protein coding variants.  Thus, in order to successfully prioritize variants, the 

local genetic context of a variant is very important. 

 The NCBI’s dbSNP database contains over 100 million human variants.  Methods are 

needed that accurately and efficiently prioritize all known human genetic variants, not just those 

that induce a protein coding change or any other specified subset of variants; human genetic 

variants of nearly every conceivable annotation category have been associated with or shown to 

cause disease or phenotypic differences.  Many software tools exist to prioritize human variants; 

however, they all suffer from significant limitations (Kircher et al., 2014).  CADD is currently the 

most comprehensive tool available, and can prioritize SNVs and small insertion-deletion (indel) 

mutations (Kircher et al., 2014).  However, CADD cannot process larger indels.  To address the 

shortcomings of these other existing software tools, I have developed VVP, the VAAST Variant 

Prioritizer. VVP enables rapid, comprehensive, and accurate prioritization of all human variants.  

VVP is able to score all variation that can be annotated by Ensemble’s Variant Effect Predictor 

(VEP) and, as I demonstrate below, is the fastest and most accurate tool available.  VVP 

leverages the likelihood developed by Yandell et al. for VAAST and thus incorporates information 

about background allele frequency, amino acid change severity, and evolutionary conservation in 
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order to prioritize human variation (Hu et al., 2013; Yandell et al., 2011).  Because VVP 

incorporates allele frequency information in its scoring process, it is able to use zygosity 

information about the variants, which most other tools, including CADD, do not; thus, VVP is 

aware of dominant or recessive variation, which to my knowledge is not part of any other variant 

prioritization tool.  VVP is implemented in Python and is available for academic use through the 

Yandell lab github repository.        

 

 VVP methodology 

 VAAST is a highly effective software tool that uses a burden test to identify genes 

responsible for disease (Rope et al., 2011). VAAST scores each genetic variant in the affected 

individuals using a likelihood equation that incorporates information about allele frequency in the 

target and background populations, amino acid change severity, and evolutionary conservation 

(Hu et al., 2013; Yandell et al., 2011).  After scoring each variant using the likelihood, VAAST 

then filters through the scored variants to identify the highest scoring variant(s) that fit the 

specified penetrance and inheritance model (VAAST will choose one homozygous variant or two 

heterozygous variants for each target individual when a recessive model is specified).  The 

VAAST gene burden score is then the sum of the scores of these identified variants.  The 

statistical significance of the burden of a gene is determined by permuting the background and 

target populations.  For full details on the VAAST methodology, see Yandell et al. (2011).   

 Although VAAST scores every variant using its likelihood, it does not provide a 

framework with which to prioritize individual variants.  One cannot directly prioritize variants using 

the VAAST likelihood scores because there is no notion of the significance of the magnitude of 

the difference between any two scores.  VVP overcomes this limitation by normalizing the VAAST 

likelihood scores into percentiles.  This is done by calculating their percentile rank against three 

types of lookups that are built by cataloging healthy human variation in a background population.  

In this application, a lookup is defined as the percentile ranks of VAAST likelihood scores of 

healthy human variation.  The three types of lookups are for coding variants, noncoding variants 

in a gene, and intergenic variants.  Separate lookups for coding variants and noncoding variants 
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are created for every gene and a single lookup is used for all intergenic variation.  Through 

benchmarking, I have found this segmentation of the lookups works well, but it is a matter of 

further research to determine the best way to separate the lookups.   

 Suppose we have a genetic variant X in gene A with VAAST likelihood score of 9.2, and 

that gene A has a corresponding lookup Y.  By comparing 9.2 to the percentiles of lookup Y, 

suppose we find that 9.2 has a percentile of 75.  The VVP score of X is then 75.  The 

interpretation of this result for variant X is that its score is greater than or equal to 75% of healthy 

human variants in gene A.  In practice, a good cutoff is to consider variants with VVP scores 

higher than 98 to be potentially damaging (top 2% of variation).  It is important to note that the 

lookups are entirely empirical, which means there are no parametric assumptions made about the 

shape or scale of the healthy human variation for any gene.  I believe this is a strength of VVP, as 

there is very large variation in the shape of the distribution of scores in different genes (Figure 

4.1).         

 The background human variation that is used to generate the lookups has a very large 

impact on the behavior and performance of VVP.  Optimally, the background would have its 

variants called with the target variants of interest.    However, I have used the 1000 genomes 

phase 3 variant calls as a general lookup with good success.  Figure 4.2 shows that using variant 

calls from a background that was called with the target individuals to generate the lookups results 

in less noise in the VVP prioritization results.  This is due to a higher relative VVP score in the 

background that was called with the target individuals than using the 1000 genomes phase 3 

variant calls to generate the lookups.  An important point brought out by Figure 4.2 is the 

comparability of VVP scores.  The disease causing variant has a VVP score of 80 when using the 

lookups based on the 1000 genomes phase 3 variant calls and a VVP score of 100 when using 

the background that was called together with the target individuals; VVP scores are comparable 

to one another as long as the same background lookups are used to process the target variants 

of interest.  However, VVP scores generated from different background lookups should not be 

compared since the VVP score is a lookup-specific measure of how extreme a variant score is.           
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Background lookup generation 

 In order to generate the background lookups to produce VVP scores, a vcf file of 

genotypes for the background individuals that has been annotated by VEP is required.  Specific 

VEP annotation requirements are specified in the code distribution of VVP.  The lookup 

generation then proceeds by scoring every individual with a variant genotype against every other 

individual in the vcf file using the VAAST likelihood.  These scores are saved in separate bins for 

coding and noncoding variants for each gene.  Intergenic scores are also saved in a separate bin.  

After processing all the variants for any particular feature, the lookup is created for each bin by 

calculating every percentile from 0 to 100 given the scores in the bin.  These lookups are saved in 

an output file for use in scoring target variants.  

 

Target variant scoring 

 Once background lookups have been generated, variants can be assigned VVP scores.  

The target variant file must also be in vcf format with VEP annotations.  As in the background 

calculation, every variant genotype is scored using the VAAST likelihood.   The percentile rank of 

the VAAST score is calculated using the appropriate background lookup.  The current 

implementation of VVP will score target VCF files that have multiple individuals in them by scoring 

every individual genotype separately.  A future direction is to combine VVP scores in the same 

gene from multiple individuals to calculate a burden score.     

 

VVP results 

 Benchmarking was done with variants from the ClinVar database.  I used ClinVar variants 

that were labeled as pathogenic or benign that had a known mode of inheritance of either 

dominant or recessive.  Using this information, I was able to test VVP on variants that cause both 

recessive and dominant disorders and compare its results to both CADD and SIFT (Figure 4.3).  

Figure 4.3 shows VVP outperforms CADD or SIFT on this test dataset.  VVP and CADD are able 

to score far more variants than SIFT (Figure 4.4). 
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 CADD provides downloadable tables with precomputed scores for all SNVs and many 

small indels.  However, as of writing this, the implementation of CADD is extremely slow and 

takes about a week to process the NA12878 vcf from 1000 genomes phase 3 data.  However, 

given all the precomputed data, it is not difficult to imagine an implementation of CADD that 

scales well with growing datasets.  SIFT scores can also be precomputed for all possible coding 

changes and thus also scales to large datasets (especially since SIFT scores a small fraction of 

possible human variation).  VVP is also a very scalable approach since the background lookups 

need to be computed once and then target variants can be processed very quickly.  VVP takes 

~10 hours to process the entirety of NA12878 phase 3 vcf with 20 cpus.  This time can be 

shortened further with the use of more processors.  CADD’s current implementation does not 

have the ability to utilize more cpus than its default operation, and therefore cannot take 

advantage of modern servers with many cpus. 

 VVP and CADD are currently the only variant prioritization tools with a broad ability to 

categorize human genetic variation.  VVP has superior variant prioritization accuracy, can 

prioritize more indel and structural variation, and is much faster than the current implementation 

of CADD.  Thus, VVP is currently the best single tool for broad human variant prioritization.   
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Figure 4.1:  Histograms (A, B) are of different genes.  Note the large difference in distribution of 
VVP scores between these genes.  Most genes have very different distributions from one another.  
Not only are the distribution shapes highly variable, but also the relative number of variants in a 
gene.  Some genes have thousands of known variants, while others may only have a handful.  
This is why, I believe, empirical lookups are better for prioritization than a parametric model.    
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Figure 4.2:  Histograms of VVP scores for 5 individuals that share a disease causing mutations in 
gene KCNQ1.  Red dashed vertical line indicates score and relative position of known disease 
causing mutation.  In the matched background (top panel), the signal is much stronger than in the 
background of the 1000 genomes phase 3 data (bottom panel).        
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Figure 4.3:  ROC curves for CADD, VVP, and SIFT.  VVP is a better at discriminating between 
the pathogenic and benign ClinVar variants than CADD or SIFT.  VVP is shown with its 
performance on homozygous and heterozygous variants since variants causing both recessive 
and dominant disorders are part of this benchmarking subset.  Neither CADD nor SIFT 
distinguishes between homozygous and heterozygous variants so their performance is shown 
without dividing the variants by zygosity.   
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Figure 4.4:  Stacked bar plots showing the classifications decisions on NA12878 variants.  SIFT 
is only able to score a small subset of all variation.  CADD predicts more variants to be damaging 
in the coding regions of this healthy individual.   
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Introduction 

 Metagenomics, the genomic analysis of a population of microorganisms, makes possible 

the profiling of microbial communities in the environment and the human body at unprecedented 

depth and breadth. Its rapidly expanding use is revolutionizing our understanding of microbial 

diversity in natural and man-made environments and is linking microbial community profiles with 

health and disease (Afshinnekoo et al., 2015; Dickson, Martinez, & Huffnagle, 2014; Firth et al., 

2014; Gilbert, Jansson, & Knight, 2014; Human Microbiome Project Consortium, 2012; Louis, 

Hold, & Flint, 2014; Mayer, Tillisch, & Gupta, 2015; Sherrard, Tunney, & Elborn, 2014; L. Zhao, 

2013). To date, most studies have relied on PCR amplification of microbial marker genes (e.g., 

bacterial 16S rRNA), for which large, curated databases have been established (“The 

Greengenes Database. http://greengenes.secondgenome .com,” n.d.; “UNITE,” 2014; Yilmaz et 

al., 2014). More recently, higher throughput and lower cost sequencing technologies have 

enabled a shift towards enrichment-independent metagenomics. These approaches reduce bias, 

improve detection of less abundant taxa, and enable discovery of novel pathogens (Chiu, 2013; 

Lipkin, 2013; Shakya et al., 2013). In addition, they promise to revolutionize how infectious 

diseases are diagnosed and are of great interest for rapid, field-based biodefense testing. While 

conventional, pathogen-specific nucleic acid amplification tests are highly sensitive and specific, 

they require a priori knowledge of likely pathogens (i.e., they answer the question ‘is pathogen X 

present’). The result is increasingly large, yet inherently limited diagnostic panels to enable 

diagnosis of the most common pathogens (Caliendo et al., 2013). Exhaustive follow-up testing 

may be required if first-line tests are negative. In contrast, enrichment-independent high-

throughput sequencing allows for unbiased, hypothesis-free detection and molecular typing of a 

theoretically unlimited number of common and unusual pathogens (i.e., answering the question 

‘what pathogen is present’). Unbiased, sequencing-based pathogen detection has led to the 

diagnosis of previously unrecognized infections and discovery of novel pathogens in select cases 

(see Wilson et al., 2014 for example). Its wide adoption is likely to revolutionize the laboratory 

diagnosis of infectious diseases and will aid in the rapid response to public health emergencies. 
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 While direct pathogen identification from high-throughput sequencing data is generally 

the goal, other analysis modalities are possible. Differentiating viral from bacterial infections, for 

example, can indicate whether antibiotic treatment is necessary. This has traditionally been 

attempted through phenotyping of the host leukocyte response (e.g., leukocyte count, differential 

cell count) or protein markers (e.g., C-reactive protein, procalcitonin). More recently, microarray-

based host transcript expression profiling from blood leukocytes has been used to demonstrate 

proof-of-concept for differentiating infectious etiologies (X. Hu, Yu, Crosby, & Storch, 2013a; Zaas 

et al., 2013, 2009). Here too, high-throughput sequencing has much to offer. The greater 

sensitivity and unbiased nature of RNA-seq enables simultaneous pathogen detection and host-

response profiling. Such data could be used to better inform treatment, potentially overcoming 

many of the limitations of current infectious disease tests (Caliendo et al., 2013; Hudson, Woods, 

& Ginsburg, 2014). 

 Wide availability of next-generation sequencing instruments, lower reagent costs, and 

streamlined sample preparation protocols have enabled an increasing number of investigators to 

perform high-throughput DNA and RNA-seq for metagenomics studies. However, analysis of 

sequencing data is still forbiddingly difficult and time consuming, requiring bioinformatics skills, 

computational resources, and microbiological expertise that is not available in many laboratories, 

especially diagnostic ones. Clearly, more computationally efficient, accurate, and easy-to-use 

tools for comprehensive diagnostic and metagenomics analyses are needed.  

 Here we describe Taxonomer, an integrated, ultrafast tool for metagenomic sequence 

analysis. Taxonomer enables novel analysis modalities of unmatched complexity in an easy-to-

use format, including the following: (1) comprehensive panmicrobial detection and discovery, (2) 

host-response profiling, (3) interactive result visualization, and (4) access through a web-based 

user interface, which eliminates the need for specialized hardware or expertise. Taxonomer 

operates at speeds comparable to the fastest, ultrafast tool Kraken (up to 4 million reads per 

minute), but unlike Kraken, Taxonomer supports both nucleotide and protein-based classification 

using a single integrated algorithmic framework (Wood & Salzberg, 2014). This means that 

Taxonomer can be used for many additional applications such as virus detection and 
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phylogenetic classification, while providing greater accuracy and comprehensive taxonomic 

profiling at 1-2 orders of magnitude faster classification speeds than alignment-based tools such 

as those used by SURPI (Naccache et al., 2014). Moreover, Taxonomer also enables new 

analysis modalities that are crucial for understanding both complex metagenomic data and for 

developing unbiased diagnostic approaches. Taxonomer can be used in the analysis of DNA 

and/or RNA (total or poly-A selected) sequencing; it is not restricted to short reads (i.e., can be 

used to analyze contigs assembled from metagenomics datasets); and is the only ultrafast 

metagenomics tool that provides integrated means for quantification of human transcripts, 

allowing simultaneous identification of pathogens, assessment of their relative abundance, and 

quantification of the patient’s transcriptional response to the infection.  

 Taxonomer is the result of a multidisciplinary effort and enables these applications 

through a set of four integrated tools (Binner, Classifier, Protonomer, and Afterburner) (Figure 

5.1a; see methods for details). Collectively, these four interlocking modules provide synergistic 

means for nucleotide and protein-based homology searches, phylogenetic classification, and host 

transcriptional profiling. Taxonomer is available via an iobio web-service (Figure 5.1b), allowing 

rapid, highly interactive analyses accessible through personal computers and mobile devices 

without the need for special computational infrastructure on the user side (Miller, Qiao, DiSera, 

D’Astous, & Marth, 2014). 

 Here we demonstrate the power of Taxonomer using both, synthetic and biological data 

sets, and evaluate its speed and classification accuracy by comparing it to state-of-the-art tools 

for sequence alignment (BLAST), rapid metagenomic data analysis (Kraken, SURPI), marker 

gene-based microbial classification (RDP Classifier), protein searches (RapSearch2, DIAMOND), 

and RNA-seq-based transcriptional profiling (Sailfish, and Cufflinks) (Altschul, Gish, & Miller, 

1990; Buchfink, Xie, & Huson, 2015; Cole et al., 2014; Naccache et al., 2014; Patro, Mount, & 

Kingsford, 2014; Trapnell et al., 2010; Wood & Salzberg, 2014; Y. Zhao, Tang, & Ye, 2012). As 

we demonstrate, Taxonomer is ultrafast, more accurate, and more comprehensive in scope, and 

enables new modalities of analysis for clinical metagenomics datasets not provided by any other 

tool.  
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Methods 

Binner module 

 Identifying small numbers of pathogen sequences hidden among vast numbers of host 

and/or microbiota-derived sequencing reads is a major algorithmic challenge for metagenomics-

based pathogen detection tools. The standard approach is to use digital subtraction (Borozan, 

Watt, & Ferretti, 2013), whereby all sequencing reads are first aligned to the host’s genome 

sequence. This is the approach used by SURPI (Naccache et al., 2014), for example. During 

subtraction, reads of host origin are removed. Additional subtraction steps may be used for 

removal of nonrelevant microbial sequences, including those known to represent reagent 

contamination or sequencing adaptors (Gire et al., 2014). A greatly reduced number of 

presumably relevant microbial sequences are then classified by alignment to larger reference 

databases. Since only the remaining reads are matched with selected reference sequences, 

pathogens can be missed entirely if they are homologous to sequences in the subtraction 

database. Taxonomer overcomes this inherent limitation of digital subtraction by means of its 

‘Binner’ module (Figure 5.1a), which compares each read to every reference database in parallel, 

assigning them to broad, nonexclusive taxonomic categories.  

 Taxonomer’s binner database is created by counting unique 21bp k-mers in different 

taxonomic/gene datasets using Kanalyze (version 0.9.7) (Audano & Vannberg, 2014).  Each 

taxonomic/gene dataset represents a ‘bin’ in which query sequences can be placed based on 

their k-mer content. Each database is assigned a unique bit flag that allows k-mers that belong to 

one or more bins to be recognized and counted.  The k-mer counts are merged into a binary file 

that contains the k-mers and the database flag. This binary file shares a similar organization to 

our classification databases, and is organized to optimize query speed. Reads are then assigned 

to the taxonomic group(s) with which most k-mers are shared.  Ties are resolved based on the 

bins we expect the majority of sequences to arise from.  High binning accuracy is possible 

because of the minimal intersections (0.47%) of k-mer content from comprehensive human and 

microbial reference databases. Optimal k-mer count cutoffs were determined by Youden’s 

indexes and F1 scores and ranged from 3 to 13 (Akobeng, 2007). To eliminate binning of reads 
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containing adapter sequence, by default, the binner ignores k-mers present in Illumina Tru-Seq 

adapters. A database of External RNA Controls Consortium (ERCC) control sequences allows 

quantification of ERCC spike-in controls. 

 

Classifier module  

 Classification in Taxonomer is based on exact k-mer matching. Taxonomer uses 

databases that are optimized for rapid k-mer queries that store every reference in which a k-mer 

is found as well as an associated k-mer weight for every reference. The fundamental question for 

classification is how likely it is that a particular k-mer (Ki) originates from any reference sequence, 

refi. To answer this question, Taxonomer calculates a k-mer weight: 

 

𝐾𝑊𝑟𝑒𝑓!(𝐾!) =
𝐶!"#(𝐾!) 𝐶!"(𝐾!)

𝐶!"(𝐾!) 𝑇𝑜𝑡𝑎𝑙  𝑘𝑚𝑒𝑟  𝑐𝑜𝑢𝑛𝑡
 

 

where C represents a function that returns the count of Ki. Cref(Ki) indicates the count of the Ki in a 

particular reference. Cdb(Ki) indicates the count of Ki in the database. This weight provides a 

relative, database specific measure of how likely it is that a k-mer originated from a particular 

reference. In order to classify a query sequence, we calculate the sum of the k-mer weights for 

every reference that has a matching k-mer in the query sequence. Suppose that there are N 

possible k-mers from query sequence Q. Then, for every reference, refi, that shares a k-mer with 

Q, the total k-mer weight for refi is: 

 

𝑇𝐾𝑊(𝑟𝑒𝑓!) = 𝐾𝑊𝑟𝑒𝑓!

!

!!!

(𝐾!) 

 
Each read is assigned to the reference that has the maximum total k-mer weight. In the case of a 

tie, the query sequence is assigned to the taxonomic lowest common ancestor (LCA). 
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Protonomer module 

 We developed a mapping scheme between amino acids and their corresponding codons 

to facilitate mapping in protein space while using the same strategies and speed we developed 

for classification in nucleotide space. When the amino acid database is built for classification, 

Taxonomer assigns every amino acid to just one codon. This unique mapping, which we term a 

non-degenerate translation, is used to generate an artificial DNA sequence that corresponds to 

the protein sequence in the database. This DNA sequence is entered into Taxonomer’s 

nucleotide classification databases. Query reads are translated into all 6 reading frames using the 

same non-degenerate translation scheme used to build the database and each translated frame 

is then classified. K-mer weighting and read classification assignment are performed as described 

above. The default Protonomer database is a subset of UniRef90 (see Databases for details). 

Empirically, we found a k-mer size of 30 (10 amino acids) to perform best. We chose to classify 

viruses in protein space because of their high mutation rates, genetic variability, and incomplete 

reference databases (Anthony et al., 2013). Figure 5.2 presents benchmark data for Protonomer 

and two other rapid protein search tools, RAPSearch2 (employed by SURPI) and DIAMOND (an 

ultrafast, BLAST-like protein search tool), using RNA-seq data from respiratory samples of 24 

children with documented viral infections as determined by an FDA-cleared molecular test 

(eSensor Respiratory Virus Panel, GenMark) for which complete viral genomes could be 

manually constructed (Buchfink et al., 2015; Y. Zhao et al., 2012). Viral reads were defined by 

mapping all reads binned as ‘Viral’ or ‘Unknown’ to the manually constructed viral genomes 

(Geneious, version 6.1). Sensitivity and specificity were determined based on detection of known 

viral reads (true positives) and nonviral reads (true negatives). Protonomer provides a single 

taxonomic identifier per read as the classification assignment, which makes interpretation of 

results extremely simple. Neither RAPSearch2 nor DIAMOND classify a read; instead, they only 

provide blast-like alignment information. For benchmarking against RAPSearch2 and DIAMOND, 

the LCA of the alignment with the lowest E-value was assigned as the classification. All tools 

were benchmarked using the same (Taxonomer’s default) reference sequences as their database. 

Both Protonomer and RAPSearch2 process paired reads by concatenating them together with a '-
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' between mate pairs. DIAMOND does not support paired end reads, so each pair was searched 

separately, and the hit with the lowest e-value from each read was used to make the classification 

assignments. 

 

Afterburner 

 To increase recovery of distantly homologous viral proteins, Taxonomer offers two 

options. First, unclassified reads can be further analyzed using the Afterburner module, a 

degenerate k-mer matching engine that employs a collapsed amino-acid alphabet. In a manner 

similar to that employed by DIAMOND, we used k-means clustering on the BLOSUM62 matrix to 

generate a compressed amino acid alphabet (Buchfink et al., 2015). By using the collapsed 

amino acid alphabet, we are able to achieve higher sensitivity in classification with sequences 

that are more diverged at the expense of a higher false positive rate when compared with 

Protonomer. In addition, the Taxonomer package provides utility scripts to manufacture relevant 

read subsets for de novo assembly. Importantly, Taxonomer is not restricted to short reads, 

allowing re-analysis of resulting contigs for still greater classification sensitivity (Figure 5.2).  

 

Host gene expression estimations 

 Taxonomer also uses its nucleotide classifier to assign reads to host reference transcripts. 

By default, these are transcripts and corresponding gene models (GTF file) from the ENSMBL 

human reference sequence, GRCh37.75. Empirically, we found that a k-mer size of 25 worked 

best for mapping reads to human transcripts. We benchmarked Taxonomer’s gene expression 

estimates against Sailfish’s and Cufflinks’ using both biological and synthetic data (Patro et al., 

2014; Trapnell et al., 2010). To generate the benchmark data shown in Figure 5.3a, we ran 

Taxonomer in a standalone fashion.  We had Taxonomer output all ties between transcripts 

during the classification step; we then randomly assigned a read to a single transcript.  We used 

these transcript level assignments to calculate gene level expression.  We next employed a linear 

regression to correct for transcript assignment bias in a similar fashion to Sailfish.  The reported 

correlations were then calculated using these corrected values.  This level of gene expression 
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analysis is not currently available through the web interface because of the way data are 

streamed; however, the results given from the web interface are a very good approximation 

(Spearman correlation > 0.93 on a set of genes that both methods have positives counts and 

Spearman correlation > 0.75 when the gene set is unrestricted). In the first experiment, we 

employed qPCR results taken from the microarray quality control study (MAQC)38; specifically, 

human brain tissue samples (Accession numbers SRR037452, SRR037453 , SRR037455 , 

SRR037455 , SRR037458). We also compared performance using synthetic RNA-seq reads 

(2x76bp, n=15,000,000) generated with the Flux Simulator tool.  TopHat was used to produce 

alignments for Cufflinks (Griebel et al., 2012; Trapnell, Pachter, & Salzberg, 2009). Like 

Taxonomer, Sailfish does not need external alignment information.  

 

Databases  

 The Classifier and Protonomer databases are modular and easily constructed, consisting 

only of multi-fasta files with a ‘parent tag’ on their definition lines. These tags describe each 

reference sequence’s immediate phylogenetic parent-taxon. Bacterial classification is based on 

a marker gene approach (16S rRNA gene) and the Greengenes database (reference set with 

operational taxonomic units, OTU, clustered at 99%, version 13_8 (DeSantis et al., 2006; 

McDonald et al., 2012). This reference set contains 203,452 OTU clusters from 1,262,986 

reference sequences. The taxonomic lineage for each OTU was used to create a hierarchical 

taxonomy map to represent OTU relationships. To support the OTU ‘species’ concept, the 

taxonomy was completed for ranks in the taxonomic lineage that had no value. Unique dummy 

species names from the highest taxonomic rank available were used to fill empty values. 

Versions of the Greengenes database were formatted for use within BLAST, the RDP Classifier, 

and Kraken.  Fungal classification is also based on a marker gene approach (internal 

transcribed spacer, ITS, rRNA sequences) and the UNITE database (version 

sh_taxonomy_qiime_ver6_dynamic_s_09.02.2014) (Koljalg et al., 2013). This reference set 

contains 45,674 taxa (species hypothesis, SH) generated from 376,803 reference sequences with 

a default-clustering threshold of 98.5% and expert taxonomic curation. Dummy names were 
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created for ranks that had no value. Versions of the unite database were formatted for use with 

BLAST, the RDP Classifier, and Kraken. Viral classification and discovery is done using the 

protein sequences from UniRef90 downloaded on June 16, 2014. The database was reduced to 

289,486 viral sequences based on NCBI taxonomy. Phage sequences were separated, leaving a 

total of 200,880 references for other viruses. NCBI taxonomy was used to determine the 

sequence relationship.  For testing purposes, additional bacterial classification databases were 

constructed from RefSeq (identical to Kraken’s full database; n=210,627 total references; 

n=5,242 bacterial references, using NCBI taxonomy), and the complete ribosomal database 

project databases download on September 24, 2014 (n=2,929,433 references, using RDP 

taxonomy).  

 

Database construction  

 Databases are constructed to maximize query speed. K-mers are stored in 

lexicographical order and k-mer minimizers are used to point to blocks of k-mers in the database. 

Once a block of k-mers is isolated, a binary search is used to complete the query. This scheme 

provides extraordinary query speeds, as demonstrated by (Wood & Salzberg, 2014). We employ 

the same basic database layout as Kraken, with the important difference that instead of storing 

just the LCA of a k-mer, we also store the k-mer count and every reference (up to an adjustable 

cutoff) with associated k-mer weight. Detailed information about the database format and layout is 

available upon request. 

 

Gene classification protocols 

 We extracted reference sequences from widely used, curated public databases for 

benchmark experiments (Yilmaz et al., 2014). These reference sequences were used to generate 

synthetic read datasets having a variety of read-lengths and error rates using wgsim. PCR-

amplified 16S rRNA gene sequences from two metagenomics studies on stool and the home 

environment were also used (Lax et al., 2014; Subramanian et al., 2014). The analysis was 
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limited to taxa with relative abundance >0.1% per sample (10 random samples were selected 

from each study).  

 

Bacterial 16S rRNA  

 From the SILVA 119 nonredundant small-subunit ribosomal sequence reference 

database, we extracted bacterial reference sequences between 1200-1650bp of length and 

excluded references annotated as cyanobacteria, mitochondria, and chloroplasts (Yilmaz et al., 

2014). Only high-quality references without ambiguous bases, alignment quality values >50%, 

and sequence quality >70% were included. All the above values are reported by SILVA. Percent 

identity to the closest Greengenes OTU was determined by MegaBLAST using hits with a query 

coverage >80% (Zhang, Schwartz, Wagner, & Miller, 2000). Synthetic reads (100bp single-end, 

100bp paired-end, 250 paired-end) were generated from these reference sequences at 5X 

coverage. 

 

Fungal ITS  

 To test the accuracy of identifying fungal ITS sequences that are not represented in the 

UNITE database, we utilized the UNITE_public_dataset (version_15.01.14) (Koljalg et al., 2013). 

Percent identity to the closest UNITE species hypothesis (SH, OTU’s clustered at 98.5%) was 

determined by MegaBLAST using hits with a query coverage >80%. Synthetic reads (250bp 

single-end) were generated from these reference sequences at 5X coverage. Due to the variable 

length of ITS sequences (mean 585bp, range 51-2,995bp, n=376,803), paired-end sequences 

were not generated. 

 

Classification criteria for reference methods 

BLAST  

 Default MegaBLAST parameters were used. Top scoring references were identified and 

used to assign OTUs/SHs. Multiple OTUs/SHs were assigned to synthetic reads when more than 

one OTU/SH reference shared 100% identity. If no OTU/SH had 100% identity to a read, then all 
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OTUs within 0.5% of the top hit were assigned to the read. The taxonomy of the assigned 

OTUs/SHs was compared and the highest rank in common was used to assign a taxonomic value 

to the read. The percent identity was used to determine the assignment of the highest taxonomic 

rank. Sequence reads with >97% identity to a reference were assigned to species, >90% identity 

to genus, and <90% to family when lineage information was available at this rank.  

 

RDP Classifier 

 RDP Classifier analyses were performed on a local server (see below). Classifications 

were resolved to the rank with a minimum confidence level of ≥0.5.  

 

Kraken 

 Kraken analyses were performed on a local server (see below). Kraken reports the taxon 

identifier for each read’s final taxonomic assignment.  

 

SURPI 

 SURPI analyses were performed using an Amazon EC2 instance through the published 

Amazon Machine Image. SURPI reports the best hit for its mapping tools (SNAP, RAPSearch2), 

which were used for comparison (Zaharia et al., 2011).  

 

Taxonomer implementation  

 Taxonomer was written in C with Python bindings through Cython. An implementation of 

Taxonomer that contains the entire pipeline functionality was written in C and drives the iobio web 

interface. 

 

Server specifications 

 Benchmarking was performed on a machine with Red Hat Linux, 1TB of RAM, and 80 

CPUs. Number of CPUs was restricted to 16 unless otherwise noted. 
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Web-service and visualization 

 Taxonomer is publically available as a web-service built upon the iobio framework (Miller 

et al., 2014). It is available at taxonomer.iobio.io. Complex metagenomic data can be processed 

quickly and effectively interpreted through web-based visualizations. Figure 5.1b illustrates the 

interface. As reads are being streamed to the analysis server, a pie chart is presented 

summarizing the results of the binning procedure. When one of the bacterial, fungal, viral, or 

phage bins of the pie chart is selected, the results of the Classifier/Protonomer modules are 

displayed in a sunburst visualization. Additional information is provided at the top of the web page 

about how many reads were sampled, the number of reads classified, and the detection threshold. 

The detection threshold informs a user about how abundant a particular organism must be in 

order to be detected with the number of reads sampled. This provides an indicator of the 

sensitivity of detection in the sample. In addition, a slider allows the user to select an absolute 

cutoff for the minimum number of reads required in order to be displayed in the sunburst.  

 

DNA and RNA-seq of patient samples 

Nucleic acid extraction  

 Samples (75-200µL) were extracted using the QIAamp Viral RNA extraction kit (Qiagen). 

Extraction was carried out as described by the manufacturer with the exception of the AW1 

washing step. For this step, 250µL of AW1 wash buffer was added to the QIAamp Mini column 

before centrifugation at 8000 rpm. Then, 80µL of DNase I mix (Qiagen) containing 10µL of 

RNase-free DNase I and 70µL of Buffer RDD was added to the column for on column DNase 

digestion. After incubation at room temperature for 15 min, an additional 250µL of AW1 was 

added to the column before centrifugation at 8000 rpm. The manufacturer suggested protocol 

was continued at this point with column washing using Buffer AW2. After all washing steps, RNA 

was eluted in 60µL of water. Extraction for total DNA was performed using 75-200µL of sample 

with the DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer’s instructions. DNA 

was eluted in 200 µL of nuclease-free water. 
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Depletion of human DNA  

 Microbial DNA was enriched with NEBNext Microbiome DNA Enrichment Kit (NEB). 

Briefly, MBD2-Fc-bound magnetic beads were prepared by combining 3µL of MBD2-Fc protein 

with 30µL of Protein A Magnetic Beads per sample and placing the mixture in a rotating mixer for 

10 min at room temperature before washing with 1X Binding Buffer. Extracted DNA (200ng in 

200µL) was added to 50µL 5X Binding Buffer. The resulting 250uL were added to MBD2-Fc-

bound magnetic beads for 15 min at room temperature with rotation. The enriched microbial DNA 

was cleaned-up with Agencourt AMPure XP Beads (Beckman Coulter). 

 

Library generation 

 For HiSeq and MiSeq sequencing, indexed cDNA libraries were produced from extracted 

RNA using the TruSeq RNA Sample Prep Kit v2 (Illumina) omitting poly-A selection. RNA was 

dried and resuspended in 19.5 µL of Elute, Prime, Fragment Mix. The remainder of the library 

preparation was conducted per manufacturer’s instructions. Before library generation from DNA, 

enriched microbial DNA was fragmented with the Covaris S2 Ultrasonicator using intensity 5, duty 

cycle 10%, and 200 cycles/burst for 80 seconds all at 7 °C. Libraries generated from fragmented 

enriched microbial DNA were prepared using the KAPA Hyper Prep Kit (KAPA Biosystems) 

according to the manufacturer’s instructions. PCR cycles used for library amplification were 

dependent upon the amount of input DNA and 13 cycles were used for these experiments. 

Libraries were quantitated by qPCR using the KAPA SYBR FAST ABI Prism qPCR Kit (KAPA 

BioSciences) and the Applied Biosystems 7900HT Fast Real-Time PCR System (Applied 

Biosciences). Library size was determined with the Agilent High Sensitivity DNA Kit and Agilent 

2100 Bioanalyzer. After pooling of indexed sequencing libraries, a second qPCR and bioanalyzer 

run was performed to estimate the final concentration before sequencing. For Ion Proton 

sequencing, indexed cDNA libraries were produced from extracted RNA using the SMARTer 

Universal Low Input RNA Kit (Clontech) with numbers of PCR cycles ranging from 10-15 based 

on RNA yield. 
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Sequencing 

 Pooled sequencing libraries were analyzed on a HiSeq 2500 (2x100bp), MiSeq (2x250bp, 

both Illumina), or Ion Proton (median read length 139bp, Life Technologies) instruments 

according to manufacturers’ protocols. 

 

Statistical analyses 

 For gene expression analyses, we report both the Pearson and Spearman correlations as 

was done before (Patro et al., 2014).  The Pearson correlation of the log transformed gene 

expression estimates necessitates the removal of any genes whose estimated expression is 

0.  The log transform prevents outliers from dominating the correlation.  We also report the 

Spearman correlation, for which the log transform is not as necessary since it is a correlation 

based on ranks. Thus, the exclusion of genes with estimates of 0 can be avoided. 

 

Results 

 Below, we present a series of benchmark analyses using biological and synthetic 

datasets; these include a large number of pediatric respiratory samples from the Centers for 

Disease Control and Prevention (CDC) Etiology of Pneumonia In the Community (EPIC) study as 

well as published data (Gire et al., 2014; Grard et al., 2012; Y. Hu et al., 2013; Jain et al., 2015). 

Our benchmark comparisons to other ultrafast tools for metagenomic classification, such as 

Kraken and SURPI as well as more established analysis tools, such as BLAST and RDP 

Classifier, demonstrate Taxonomer’s speed and accuracy, and how it enables new analysis 

modalities. 

 

Non-greedy binning 

 To demonstrate the advantage of Taxonomer’s non-greedy binning algorithm, we 

compared high-level taxonomic assignments made by SURPI (which employs a greedy digital 

subtraction approach using SNAP) to those of Taxonomer’s Binner for RNA-seq data (Zaharia et 

al., 2011).  While high-level taxonomic assignments agree for 73.8% of reads, Taxonomer 
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assigned 16% of reads an ambiguous origin (i.e., they match equally to multiple databases), 96% 

of these were classified as human by SURPI. This was mostly due to highly conserved ribosomal 

and mitochondrial sequences (data not shown), but similar effects were also apparent for fungal 

sequences (18% classified as human by SURPI). Taxonomer’s alignment-free binning approach 

was also able to capture more phage/viral sequences (7,426) than the alignment-based method 

(5,798), and resulted in fewer unclassified sequencing reads (3.2% vs. 4.5%). Consistent with 

lower abundance of rRNA and mtRNA sequences in DNA sequencing data, Taxonomer had 

many fewer ambiguous assignments (0.04%, of which 40% were classified as human and 59% 

as viral by SURPI; overall agreement 98.7%). In addition to decreased numbers of false 

negatives, the Binner also provides users of the Taxonomer web-service with a high-level 

overview of the contents of even the largest and most complicated dataset within the first second 

or so of computation. 

 

Analysis time and completeness of classification 

 Table 5.1 presents time and classification percentages for Taxonomer, Kraken, and 

SURPI. For this analysis, we used RNA-seq data from three virus-positive respiratory tract 

samples with a range of host vs. microbial composition profiles (Graf, 2015). Kraken was the 

fastest tool requiring about 1.5 min/sample on average, but because it relies on nucleic acid-level 

classification only and uses a single reference database, it classified fewer reads than 

Taxonomer and SURPI. Although SURPI enables amino acid-level searches for virus detection 

and discovery, this greatly extended analysis times to between 1.5 and >12 hours. Like SURPI, 

Taxonomer provides both nucleic acid and protein-based microbial classification. Taxonomer also 

automatically creates host gene expression profiles. Moreover, all these analyses are carried out 

very quickly; Taxonomer achieved times similar to Kraken requiring on average ~5 minutes to 

classify 5-8x106 paired-end reads using 16 CPUs. Moreover Taxonomer classified the largest 

number of reads in 2 of the 3 samples and tied with SURPI for the third sample. Collectively, 

these results provide an introduction and overview of how Taxonomer combines the ultrafast 
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speed of Kraken with an extended suite of analysis and search capabilities that exceed those of 

SURPI.  

 

Bacterial and fungal classification accuracy 

 A comprehensive classification database is essential for mitigating errors resulting from 

imperfect matches to query sequences. RefSeq is one solution, but it contains only some 5,000 

sequenced bacterial taxa (at the time of access), whereas available 16S rRNA sequences 

suggest existence of at least 100,000 to 200,000 OTUs given existing sequence databases (Cole 

et al., 2014; McDonald et al., 2012; Yilmaz et al., 2014). Reads derived from taxa that are absent 

from the classification database can result in false negative and false positive classifications, 

especially at the genus and species level. Performance of classification tools is frequently only 

tested with synthetic reads derived from the reference database; i.e., perfect matches exist for all 

synthetic reads. For microbial classification, this is a highly artificial challenge, as novel species or 

strains are routinely encountered in clinical or environmental samples.  

 To provide a more realistic challenge, we generated synthetic reads from bacterial 16S 

rRNA sequences in the SILVA database lacking perfect matches in Taxonomer’s Greengenes-

derived reference database (468 of 1013 source references, 46%, had no perfect match in the 

classification database) (Yilmaz et al., 2014). This is why Taxonomer employs a marker gene 

approach and a custom Greengenes-derived database for prokaryotic classification.  

 The utility of Taxonomer’s approach is illustrated in Figure 5.4a, demonstrating that 

SURPI, Kraken, and Taxonomer differ greatly as regards accuracy when using their default 

databases and command lines to classify error-free, synthetic 16S rRNA-derived reads. At the 

species level, for example, Taxonomer correctly classifies 59.5%, incorrectly classifies 15.7%, 

and fails to classify 24.8% of the reads. By comparison, Kraken classifies 29% of the reads to the 

correct species, and exhibits a high false positive rate, classifying every remaining read (71%) 

incorrectly. The results for SURPI have been split into two columns reflecting the fact that SURPI, 

unlike Taxonomer and Kraken, classifies each read from a mate pair independently, and in many 

cases, these assignments are discordant. Thus, the right-hand portion of the SURPI column 
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records the classification rates when either read from a mate pair is classified correctly; the left-

hand portion records the rates for classifying both mates to the same taxon. As can be seen, 

SURPI underperforms both Taxonomer and Kraken. 

 Figure 5.4b shows performance comparison of Taxonomer with the RefSeq (Kraken 

default), RDP, and Greengenes (Taxonomer default) databases. Using its default database, 

Taxonomer correctly classifies 59.5% of the reads, and recovers 94.9% of species. Using 

Kraken’s default database (RefSeq DB), Taxonomer’s values drop to 27% and 71.6%, 

respectively, similar to Kraken’s results when using the same database: 29% and 71%, 

respectively. Also presented in Figure 5.4b are Taxonomer’s classification and recovery rates 

using the RDP database (Cole et al., 2014). Although Taxonomer misclassified very few reads 

using the RDP database, overall performance was substantially better using Taxonomer’s default 

database.  

 Figure 5.4c shows benchmarks for four different classification tools, MegaBLAST, the 

RDP Classifier, Kraken, and Taxonomer, all using Taxonomer’s default 16S database (Cole et al., 

2014; Sayers et al., 2010). SURPI is not included in this panel, as it provides no means for 

employing user-provided databases. Overall, Taxonomer’s performance closely approximates 

that of the RDP Classifier, an established reference tool. At the species level, Taxonomer and 

RDP classify 59.5% and 61.4% of reads correctly, and recovery rates are very similar. Note that 

Kraken’s classification and recovery rates improve dramatically using Taxonomer’s database 

compared to its own, but that Taxonomer still correctly classifies 13.5% more reads compared to 

Kraken (59.5% vs. 46%) and also has a lower false positive rate (15.7% vs. 20.1%). Taxonomer 

also outperforms Kraken as regards taxon recovery rate (94.9% vs. 83%), and Taxonomer’s false 

recovery rate is also lower (23.3% vs. We also examined the impact of read length and 

sequencing error rates upon classification accuracy. As would be expected, performance 

improved for all tools as a function of read lengths. We also found Taxonomer and Kraken to be 

more sensitive to sequencing errors than BLAST and the RDP Classifier. This is not surprising 

given their reliance upon exact k-mer matching. Nevertheless, these same analyses demonstrate 

that Taxonomer’s nucleotide classification algorithm is tolerant to ~5% random error, with 
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Taxonomer achieving greater classification accuracies than Kraken. Figure 5.4d shows 

classification and recovery rates using Taxonomer’s fungal database. As can be seen, the same 

general trends are seen in both Figure 5.4c and Figure 5.4d, demonstrating that Taxonomer’s 

performance advantages are not restricted to bacterial classification.  

 Since quantifying microbial community composition is a frequent goal of metagenomics 

studies, we also compared Taxonomer’s bacterial abundance estimates to those of the RDP 

Classifier using recently published 16S amplicon sequencing data and RNA-seq-based 

metagenomics (Figure 5.4e) (Lax et al., 2014; Subramanian et al., 2014). Taxonomer’s 

abundance estimates are highly correlated with RDP’s across taxonomic levels for all three 

datasets. Spearman Correlation coefficients (ρ) were 0.96 and 0.997 (order) and 0.858 and 0.826 

(genus) for 16S amplicon data as well as 0.992 (order) and 0.955 (genus) for RNA-seq.  

However, Taxonomer’s average analysis times were 260 to 440-fold faster (Figure 5.4e). 

Collectively, these benchmarks illustrate the important role of Taxonomer’s classification 

databases and the power and speed of its classification algorithm. 

 

Viral classification accuracy  

 Taxonomer uses reads from the ‘viral’ and ‘unknown’ bins for detection of viral and phage 

sequences via its Protonomer module  (Figure 5.1a). To test classification performance, we 

compared Protonomer to two rapid protein search tools, RAPSearch2 (employed by SURPI) and 

DIAMOND (an ultrafast, BLAST-like protein search tool), using RNA-seq data from respiratory 

samples of 24 children with documented viral infections (Figure 5.2) (Buchfink et al., 2015; Y. 

Zhao et al., 2012). Protonomer demonstrated the best overall performance, being more sensitive 

(median 94.6%) than DIAMOND (90.5%) and more specific (90.7%) than RAPSearch2 (88.0%). 

As expected, sensitivity for all tools correlated with pairwise identities of viral genome to reference 

sequences with DIAMOND being most vulnerable to novel sequence polymorphisms. Of note, 

DIAMOND does not support joint analysis of paired sequencing reads. In this comparison, we 

used results of the mate pair with the lowest E-value rather than reconciling results of read mates, 

which likely results in optimistic performance estimates for DIAMOND. Protonomer is also the 
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fastest of the three tools in classifying 104 to 106 reads/sample (Protonomer:  14 seconds; 

DIAMOND:  37 seconds in default and 46 seconds in sensitive modes; RAPSearch2:  343 

seconds in default and 169 seconds in rapid modes). 

 We also used Taxonomer to analyze published RNA-seq data from three patients in 

whom viral pathogens of great public health significance were detected. These included a serum 

sample from a patient with hemorrhagic fever caused by a novel rhabdovirus (Bas Congo Virus, 

Figure 5.2d), a throat swab from a patient with avian influenza (H7N9 subtype, Figure 5.2e), and 

a plasma sample from a patient with Ebola virus (Figure 5.2f). Taxonomer detected the relevant 

viruses (or close relatives after removal of target sequences from the reference database) in all 

three cases, thus demonstrating the utility of Taxonomer for rapid virus detection and discovery in 

public health emergencies. Given its web-based deployment, this means that analysis results can 

be quickly shared and reviewed by experts, even across great geographic distances. 

 

Human mRNA transcript profiling 

 Taxonomer also provides means for host response profiling, which is of growing interest 

for infectious diseases testing as well as quality control for cell lines and tissues where microbial 

contaminants may confound transcript expression profiles and lead to unsafe biologicals (Hudson 

et al., 2014; Mariotti et al., 2012). Taxonomer is the only ultrafast metagenomics tool with this 

capability. Taxonomer’s default databases also include ERCC control sequences, allowing users 

to normalize transcript counts. We compared Taxonomer’s expression profiles to those of 

standard transcript expression profiling tools (Sailfish, Cufflinks) (Patro et al., 2014; Trapnell et al., 

2010). Taxonomer’s quantification of synthetic reads and a commercially available RNA standard 

is accurate over a broad range of transcript abundance. Indeed, accuracy was intermediate 

between Sailfish’s and Cufflink’s (Figure 5.3A), demonstrating that Taxonomer provides state-of-

the-art means for measuring transcript abundance. 

 To demonstrate utility of Taxonomer’s capacity for simultaneous pathogen detection and 

transcript expression profiling, we analyzed RNA-seq data from respiratory samples of patients 

with influenza A virus infection (n=4) with varying abundance of host versus microbial RNA 
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(Figure 5.3b) and compared mRNA expression profiles to those of asymptomatic controls (n=40) 

(Anders & Huber, 2010; Jain et al., 2015). Influenza A virus could be detected in all samples by 

Taxonomer (see example in Figure 5.3c). Expression profiles for 17 host genes were significantly 

higher in influenza-positive patients (Figure 5.3d, examples in Figure 5.3f) and their expression 

profiles clearly differentiated cases from controls (Figure 5.3e). Gene ontology assignments for 

the top 50 genes demonstrated their involvement in recognition of pathogen-associated 

molecular patterns and antiviral host response (Figure 5.3g, Figure 5.3h). Most but not all of 

these genes are known to be differentially regulated in response to influenza virus or other viral 

infections in vitro or in peripheral blood of patients (Goujon et al., 2013; Haller, Staeheli, 

Schwemmle, & Kochs, 2015; X. Hu et al., 2013a; Zaas et al., 2013, 2009). Together, these 

results demonstrate the accuracy and power for discovery and a potential future diagnostic 

application of Taxonomer’s combined pathogen detection and host response profiling. 

 

Application of Taxonomer for microbial detection in a variety of real-world scenarios 

 In Figure 5.5, we show that Taxonomer can be used to detect previously unrecognized 

infectious diseases, to identify microbial contamination of stem cell cultures, and that it generates 

highly similar results with data from three commonly used next-generation sequencing platforms. 

We analyzed RNA-seq data from plasma of patients in whom Ebola virus disease was suspected 

but who had tested negative for Ebola virus (Gire et al., 2014). As was reported, Taxonomer 

detected HIV, Lassa virus, Enterovirus (typed by Taxonomer as Coxsackievirus), and GB virus C 

(data not shown). However, Taxonomer also detected previously unrecognized bacterial 

infections (Chlamydophila psittaci, Elizabethkingia meningoseptica), which may have caused the 

patients’ symptoms (Figure 5.5a).  C. psittaci is the agent of psittacosis, an uncommon zoonotic 

infection acquired from birds, that generally causes fever, headache, cough, and may also 

present with diarrhea. E. meningoseptica is a ubiquitous gram-negative bacterium that 

characteristically causes meningitis or sepsis in newborns but also immunocompromized adults. 

Given a high level of suspicion (as in an ongoing outbreak), these infections may have triggered 

testing for Ebola virus.  
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 Taxonomer is not restricted to short reads, allowing reanalysis of the resulting contigs for 

greater classification sensitivity. Figure 5.5b shows Taxonomer results of 2,325 contigs generated 

from ‘viral’ and ‘unknown’ RNA-seq reads from a respiratory sample of a child with pneumonia 

(run time 6 seconds) (Jain et al., 2015). Four contigs were identified as unclassified members of 

the family Anelloviridae with 44%-60% predicted protein sequence identity to the most similar 

anellovirus.  We also reanalyzed these data using Afterburner in combination with Protonomer, 

keeping track of resulting taxon assignments of each of the 239 reads in the anellovirus Trinity de 

novo assembly.  Protonomer classified 19/239 of reads as anellovirus; Protonomer+Afterburner 

identified 89/239 reads as anellovirus.  Protonomer did not misclassify any anellovirus reads, 

whereas Afterburner misclassified 110 of the anellovirus to other viral taxa. While probably not 

pathogenic, detection of this divergent Anellovirus demonstrates the power of Taxonomer for 

virus discovery. 

 Figure 5.5c shows RNA-seq data from induced pluripotent stem cell cultures with and 

without Mycoplasma contamination. Quality control of the RNA-seq results with Taxonomer 

immediately highlighted bacterial contamination (pie chart) and identified the organism as M. 

yeatsii.  

 Lastly, Taxonomer detected highly similar proportions of viral (influenza A, NP swab) and 

bacterial (Mycoplasma pneumonia, bronchoalveolar lavage) pathogens in respiratory tract 

samples subjected to 2 different library preparation methods and 3 different next-generation 

sequencing platforms (methods, Figure 5.5d).  With each of the three platforms, >99% viral reads 

identified by Taxonomer were classified as influenza A virus. Proportion of bacterial 16S reads 

identified as Mycoplasma pneumoniae varied more (MiSeq 69.3%, HiSeq 65.9%, Ion Proton 

30.5%). These results demonstrate the versatility of Taxonomer and how it can be used with a 

variety of sequencing instruments to detect previously missed pathogens and for quality control of 

expression profiling studies. 
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Discussion 

 In Taxonomer, we have created a tool that is fast, accurate, and capable of the gamut of 

analyses required to take full advantage of large and complex DNA/RNA-seq datasets for 

metagenomics. Taxonomer provides fast and effective means for read and contig classification, is 

substantially more accurate than the fastest available tools (Kraken or SURPI), and achieves 

accuracies on 16S amplicon data that closely approach the current standard, RDP. This is made 

possible by Taxonomer’s comprehensive databases, its novel k-mer weighting approach, and its 

ability to carry out nucleotide and protein-based searches and classification within a single 

integrated algorithmic and visualization framework. Moreover Taxonomer is very fast, requiring 

only a few minutes to carry out its broad array of analyses. On the same typical HiSeq 2500 

datasets, Taxonomer is hours faster than SURPI, days faster than RDP, and within minutes of the 

fastest published tool, Kraken, which only provides nucleotide classification.  

 We have produced a tool that is equally applicable to DNA and RNA-seq data, providing 

maximum flexibility for detection of known and unknown bacteria, fungi, as well as RNA and DNA 

viruses. Current estimates predict that the vast majority of bacteria, fungi, and viruses remain 

unknown and are thus not represented in reference sequence databases (Anthony et al., 2013; 

Koljalg et al., 2013; Rinke et al., 2013; Yarza et al., 2014). We have shown that 16S sequences 

(but not synthetic reads derived from other genomic targets) from the same unrepresented 

bacteria are almost always correctly binned by Taxonomer (but not erroneously classified), 

highlighting the advantages of Taxonomer’s marker gene-based approach both for discovery of 

novel organisms and for avoiding misclassifications pitfalls (Afshinnekoo et al., 2015). Integrated 

means to search and classify in nucleotide and protein space improves sensitivity, especially for 

detection of viruses. This is due to high mutation rates and high sequence diversity in many viral 

phyla, rendering sequence homologies more readily detectable at the protein level rather than at 

the nucleotide level. 

 Taxonomer’s integrated framework means that microorganisms can be classified in 

nucleotide or protein space using the same k-mer weighting-based approach and classification 

algorithm. The result is greater tolerance for sequencing errors, better sensitivity, more accurate 
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abundance estimates, and execution times that exceed even those of the fastest published 

protein search tools. This speed and breath of functionality is crucial, as many clinical samples 

contain complex mixtures of bacterial, fungal, and viral taxa. We have successfully demonstrated 

the use of Taxonomer in real-world scenarios to identify a diverse set of known viruses 

(respiratory viruses, HIV, Lassa virus, Coxsackievirus, GB virus C), unexpected viruses (Bas 

Congo Virus, avian influenza A virus H7N9), and unrecognized bacteria and viruses in previously 

test-negative patients (Anellovirus, Chlamydophila psittaci, Elizabethkingia meningoseptica).  

 Taxonomer also provides automatic means to classify host gene expression using the 

same integrated methodology, a functionality that enables new analysis modalities for ultrafast 

metagenomics. For example, the simultaneous identification of viral pathogens and 

characterization of host transcriptional responses provides information that can be leveraged for 

greater diagnostic power and precision. Similar results have been obtained using blood, but our 

demonstration of Taxonomer’s ability to rapidly identify children with influenza virus infection 

directly from upper respiratory tract specimens using only their (own) mucosal gene expression 

profiles has important implications for diagnosis and discovery (X. Hu et al., 2013a; Zaas et al., 

2009, 2013). Other, equally novel applications are also possible. Examples include differentiating 

true infections from asymptomatic carriage based on the host response, characterizing chronic 

infections in immunocompromised patients, and real-time monitoring of the impacts of 

antimicrobial treatment in conjunction with host-transcriptional responses, all of which hold much 

promise for improved patient care, antimicrobial stewardship, and epidemiological investigations.  

 We further demonstrate how Taxonomer is used to address a crucial, widespread 

unrecognized microbial contamination or infection issue in RNA-seq studies, which can heavily 

confound transcriptional responses of cells in culture or from biopsy (Olarerin-George & 

Hogenesch, 2015). In addition, sample contamination by exogenous sequences directly or 

through their presence in commonly used laboratory reagents and kits can lead to erroneous 

genome assemblies and disease associations, further highlighting the need for thorough quality 

control of sequencing reads (Cantalupo, Katz, & Pipas, 2015; Merchant, Wood, & Salzberg, 2014; 

Naccache et al., 2013; Rosseel, Pardon, De Clercq, Ozhelvaci, & Van Borm, 2014; Smuts, Kew, 
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Khan, & Korsman, 2014; Strong et al., 2014). This is of particular concern when source DNA or 

RNA is of low concentration, such as is the case with single-cell sequencing studies (Lusk, 2014). 

Clearly, Taxonomer’s ability to simultaneously quantify transcriptional responses and to monitor 

DNA and RNA-seq datasets for signs of infection and contamination will benefit scientific and 

diagnostic applications alike. Lastly, metagenomic sequencing data are usually purged of host 

sequences prior to deposition in public sequence databases to guarantee anonymity of patients 

(Rotmistrovsky & Agarwala, 2011; Sherry, 2011). During analysis of some such sequences with 

Taxonomer, varying numbers of human sequences were detected, suggesting that the Binner 

module is more effective at detecting (and removing) host-derived sequences than currently used 

tools (Gire et al., 2014). Therefore, screening of metagenomics datasets with Taxonomer prior to 

their submission could improve protection of study subjects’ privacy. 

 Finally, with Taxonomer, we have sought to democratize these analyses by providing a 

fast interactive web service based upon the iobio visualization toolkit (Miller et al., 2014).  As our 

analyses of RNA-seq data from patients harboring viral pathogens of great public health 

significance demonstrate, Taxonomer provides effective means for rapid virus detection for 

patient care and discovery in public health emergencies. The ability to conveniently upload and 

rapidly analyze samples from personal computers and mobile devices via the Taxonomer web-

portal means that analysis results can be quickly shared and reviewed by experts, even across 

great geographic distances enhancing collaborations and facilitating public health responses. As 

costs and turn-around times for high-throughput sequencing continue to fall, Taxonomer will 

enable a rapidly growing number of diagnostic laboratories with access to sequencing 

instruments to analyze data in a meaningful timeframe without having to invest in computational 

infrastructure or bioinformatics expertise. 
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Figure 5.1. Overview of Taxonomer architecture and user interface. (a) Taxonomer’s 
architecture. Raw FASTA, FASTQ, or SRA files (with or without gzip compression) are the input 
for Taxonomer. For paired-end data, mate pairs are analyzed jointly. Taxonomer consists of four 
main modules. The ‘Binner’ module categorizes (‘bins’) reads into broad taxonomic groups (host 
and microbial) followed by comprehensive microbial and host gene expression profiling at the 
nucleotide (‘Classifier’ module) or amino acid-level (‘Protonomer’ and ‘Afterburner’ modules). 
Normalized host gene expression (gene-level read counts) and microbial profiles. Read subsets 
can be downloaded for custom downstream analyses (b) Taxonomer web-service. To further 
remove barriers for academic and clinical adoption of metagenomics, we developed a web 
interface for Taxonomer that allows users to stream sequencing read files (stored locally or http 
accessibly) to the analysis server and interactively visualize results in real-time. Main features are 
described in grey boxes. Taxonomic classification of bacteria, fungi, and viruses is visualized as a 
sunburst graph (center), in which the size of a given slice represents the relative abundance at 
the read level. Taxonomic ranks are shown hierarchically with the highest rank in the center of the 
graph. Sequences that cannot be classified to the species level, either because they are shared 
between taxa or represent novel microorganisms, are collapsed to the lowest common ancestor 
and shown as part of slices that terminate at higher taxonomic ranks like genus or family. 
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Figure 5.2. Performance of the ‘Classifier’ module for bacterial and fungal classification, 
and bacterial community profiling. (a) Taxonomer provides superior sensitivity and specificity 
for read-level bacterial classification compared to two other rapid classification tools SURPI and 
Kraken when using each tool’s default settings and databases: nt (SURPI), RefSeq (Kraken), and 
Greengenes 99% OTU (Taxonomer). Results for SURPI are based on correct identification by 
either (dark bar) or both (light bar) read mates. (b) Of the three commonly-used reference 
databases RefSeq (n=210,627; 5,242 bacterial genomes), Greengenes 99% OTU (n=203,452), 
and RDP (n= 2,929,433), Taxonomer provides greatest read-level (top) and taxon-level (bottom, 
that gives the percentage of bacterial species identified) sensitivity for bacterial classification at 
only a moderate decrease in specificity when using the Greengenes database compared to the 
RDP and RefSeq databases (simulated 16S rDNA as in panel a). Because of its large size and 
greater completeness, the RDP database provides the greatest species-level specificity at the 
tradeoff of sensitivity. For ease of reference, the top right-most column is repeated from panel a. 
(c) Bacterial classification accuracy of Taxonomer is similar to the RDP Classifier and superior to 
Kraken at the read-level (top) and taxon-level (bottom, all using the Greengenes database). 
Given the applied criteria, BLAST is less sensitive but more specific. (d) Taxonomer also 
performs similar to the RDP Classifier and better than Kraken for classification of synthetic fungal 
internal transcribed spacer (ITS) sequences at the read-level (top) and taxon-level (bottom). (e) 
Taxonomer classifies bacterial 16S rRNA reads at >200-fold increased speed compared to the 
RDP Classifier (times for 1 CPU, multithreading not available for RDP Classifier) while providing 
highly comparable bacterial community profiles when using 16S rRNA gene amplicon sequencing 
and shotgun metagenomics. Spearman correlation coefficients (ρ) of abundance estimates are 
shown for Taxonomer and the RDP Classifier at the order and genus-levels using the 
Greengenes 99% OTU reference database. 
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Figure 5.3. Performance characteristics of the ‘Classifier’ module for host transcript 
expression profiling. (a) Published RNA-seq data from a commercially available RNA standard 
(MAQC) were analyzed by Taxonomer, Sailfish, and Cufflinks and estimated transcript 
expression was compared to data obtained by quantitative PCR (qPCR). Gene-level Pearson and 
Spearman correlation coefficients for RNA-seq versus qPCR were 0.85 and 0.84 for Taxonomer, 
0.87 and 0.86 for Sailfish, and 0.80 and 0.80 for Cufflinks, respectively. (b) Application of 
Taxonomer to metagenomic RNA-seq data from routine respiratory samples from patients with 
influenza infection (n=4). (c) Panel C shows classification of viral sequencing reads by 
Protonomer and typing of this strain as influenza A(H1N1)pdm09 (top right sample from panel A). 
(d) Differential gene-level mRNA expression profiles from 4 patients with influenza A virus 
compared to asymptomatic controls (n=40; top 50 differentially expressed genes are shown). 
Expression profiles for 17 genes were significantly higher in influenza-positive patients. (e) 
Expression profiles for the 17 most differentially expressed genes differentiate cases from 
controls (principal component analysis, PC1 and PC2 explaining 93.8% of the total variance). (f) 
Normalized expression levels for individual patients of seven of the top 17 genes. Gene ontology 
assignments for enrichment of biological processes (g) and molecular functions (h) are shown. 
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Figure 5.4. Performance of the ‘Classifier’ module for bacterial and fungal classification, 
and bacterial community profiling. (a) Taxonomer provides superior sensitivity and specificity 
for read-level bacterial classification compared to two other rapid classification tools SURPI23 and 
Kraken when using each tool’s default settings and databases: nt (SURPI), RefSeq (Kraken), and 
Greengenes 99% OTU (Taxonomer). Results for SURPI are based on correct identification by 
either (dark bar) or both (light bar) read mates. (b) Of the three commonly-used reference 
databases RefSeq (n=210,627; 5,242 bacterial genomes), Greengenes 99% OTU (n=203,452), 
and RDP (n= 2,929,433), Taxonomer provides greatest read-level (top) and taxon-level (bottom, 
which is the percentage of bacterial species identified) sensitivity for bacterial classification at 
only a moderate decrease in specificity when using the Greengenes database compared to the 
RDP and RefSeq databases (simulated 16S rDNA as in panel a). Because of its large size and 
greater completeness, the RDP database provides the greatest species-level specificity at the 
tradeoff of sensitivity. For ease of reference, the top right-most column is repeated from panel a. 
(c) Bacterial classification accuracy of Taxonomer is similar to the RDP Classifier and superior to 
Kraken at the read-level (top) and taxon-level (bottom, all using the Greengenes database). 
Given the applied criteria, BLAST is less sensitive but more specific. (d) Taxonomer also 
performs similar to the RDP Classifier and better than Kraken for classification of synthetic fungal 
internal transcribed spacer (ITS) sequences at the read-level (top) and taxon-level (bottom). (e) 
Taxonomer classifies bacterial 16S rRNA reads at >200-fold increased speed compared to the 
RDP Classifier (times for 1 CPU, multithreading not available for RDP Classifier) while providing 
highly comparable bacterial community profiles when using 16S rRNA gene amplicon sequencing 
and shotgun metagenomics. Spearman correlation coefficients (ρ) of abundance estimates are 
shown for Taxonomer and the RDP Classifier at the order and genus-levels using the 
Greengenes 99% OTU reference database. 
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Figure 5.5. Sample applications of Taxonomer. (a) Taxonomer detected a previously 
unrecognized Chlamydophila psittaci infection (psittacosis), in plasma from a patient with 
suspected Ebola virus disease in Sierra Leone (SRR1564804)32. The 16S rRNA gene was 
covered a mean of 7,035-fold with the consensus 16S rRNA sequence from this isolate sharing 
99.9% identity with the type strain (6BC, ATCC VR-125, CPU68447) enabling reliable 
identification75. Positions of 2 single nucleotide polymorphisms are highlighted in red. (b) 
Taxonomer detected a novel Anellovirus in a nasopharyngeal swab. Pie chart and sunburst show 
contig-level classification (de novo assembly with Trinity36). Mapping reads back to a manually-
constructed viral consensus genome sequence showed x-fold coverage, 68.5% pairwise 
nucleotide-level identity and 44%-60% predicted protein identity with TTV-like mini virus isolate 
LIL-y1 (EF538880.1). (c) Identification of Mycoplasma yeatsii contamination in RNA-seq data 
from cultured iPS cell (right) compared to non-contaminated iPS cell culture (left) based on read 
binning (top). High expression of rRNA is demonstrated by 32% of RNA-Seq reads mapping to 
the M. yeatsii 16S rRNA gene (245,000X coverage, 99.4% sequence identity with type strain GIH 
(MYU67946). (d) Taxonomer is compatible with different sequencing protocols, recovering similar 
proportions of viral (influenza A, 0.43% to 0.55% of all reads) and bacterial (Mycoplasma 
pneumoniae, 16S rRNA sequences representing 0.004% to 0.006% of all reads) pathogen 
sequences when sequencing samples on 3 commonly-used sequencers with 2 different library 
preparation methods. Samples were known to be positive for influenza A(H1N1)pdm09 and M. 
pneumoniae based on diagnostic PCR test. 
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Table 5.1. Processing time of Taxonomer compared to rapid classification pipelines SURPI and 
Kraken.  Five RNA-Seq samples generated from nasal specimens with varying degrees of 
taxonomic composition illustrate the effect on pipeline speeds. (Human-blue; Bacteria-orange; 
Fungal-green; Virus-red; other-yellow; unclassified-grey). 
 

 
 
 



 
 
 
 
 
 

CHAPTER 6 

 

CONCLUSIONS 

 

Computational approaches to biological data 

 Experiments in the biological sciences increasingly are producing datasets large enough 

that manual analyses are impossible.  This increase in data presents a lot of scientific opportunity 

as well as challenges computationally in the analysis.  In my dissertation, I have presented 

effective computational solutions to analyze image data, prioritize human genetic variants, and to 

comprehensively analyze metagenomic data.   

 

Image analysis 

 Modern microscopes can produce thousands on high quality images in a relatively short 

amount of time.  Thus, automated image analysis has a large impact potential in many of the 

biological sciences.  There are many excellent open source image analysis packages for the 

Python programming language that provide implementations of standard image analysis functions.  

Using Python and open source image analysis packages, I created an open source image 

analysis pipeline, ImagePlane, to process images of S. mediterranea (details of the pipeline are 

given in chapter 2) (Flygare, Campbell, Ross, Moore, & Yandell, 2013).  Chapter 3 demonstrates 

the application of image analysis to analyze muscle fiber size with another open source image 

analysis pipeline I created, MuscleQNT, which is also written in Python.  MuscleQNT includes 

functionality to analyze images of stained muscle cross sections, create histograms of muscle 

fiber sizes, and perform statistical tests to find biologically relevant differences between mutant 

and control animals.  To my knowledge, when created, these image analysis pipelines provided 
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unique analysis ability in their particular application domains.  MuscleQNT has enabled analyses 

that have been published.   

 These pipelines demonstrate the power of combining existing image analysis and 

statistical libraries into tools that enable directed analyses that would otherwise be incomplete or 

impossible.  I believe that scientists performing or directing the analysis of images need at least a 

basic understanding of core image analysis procedures like image thresholding, erosion and 

dilation methods, and feature size and location quantification.  An understanding of these 

methods will enable an increased ability to craft and interpret the analyses specific to the data 

and experiment at hand.  Chapter 3 is an excellent example of crafted image analysis together 

with statistical / graphical analysis for the specific experiment.   

 

Human variant prioritization 

 As sequencing costs have dropped, the amount of human sequencing has skyrocketed, 

which has resulted in tens of millions of known variants in public databases (the NCBI’s dbSNP 

database contains more than 100 million human variants).  Given all this known variation, 

perhaps the most important question to be asked is how to rank variants according to their 

relative risk in human disease.  Given any particular variant, how do we determine how likely it is 

to contribute to human disease?  This is the task of variant prioritization.  There have been many 

methods published as solutions to human variant prioritization; however, all of them suffer from 

significant limitations (Katsonis et al., 2014; Kircher et al., 2014).  Perhaps the greatest limitation 

of the majority of these tools is they are not able to prioritize all variants – instead, they prioritize 

some small subset like variants that induce nonsynonymous changes.  To my knowledge, CADD 

and VVP are the only tools that can prioritize nearly all variants.  Both can prioritize all SNVs, and 

CADD can prioritize smaller indels, while VVP can prioritize all indels that can be annotated by 

VEP.  VVP is built on the VAAST likelihood and utilizes lookups based on healthy human 

variation to prioritize variants.  I have shown that not only is VVP able to prioritize more variants 

than CADD, it is faster and more accurate.  Thus, VVP is the leading tool for human variant 

prioritization. 
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         VVP scales well to large datasets because of the organization of the lookups and because 

the computational work required to process a single variant is unchanged with respect to the 

number of individuals in the background and very nearly unchanged with respect to the number of 

individuals in the target.  A very exciting future direction is to develop a burden test using the VVP 

framework.  This would provide a scalable solution to performing burden tests with cohorts that 

have tens of thousands of cases and controls.     

 

Metagenomics 

 Metagenomics holds enormous promise to revolutionize our understanding of the 

microbial world and pathogen diagnostics by providing a hypothesis free method to query 

microorganisms in an environmental sample (Brady & Salzberg, 2009).  Of particular importance 

is using metagenomics to find microorganisms that are responsible for human illness from a fluid 

or tissue sample.   

 Modern metagenomics produce datasets with tens of millions of short reads from an 

environmental sample.  From a computational perspective, the metagenomics problem is to 

classify every read with as much taxonomic precision as possible.  BLAST contains the 

functionality necessary to classify reads; however, it is too slow to be practical on large read sets 

that are now common.  Faster approaches are necessary (Wood & Salzberg, 2014).   

 I created Taxonomer:  a collection of tools that enable rapid analysis of metagenomics 

datasets.  Taxonomer provides functionality to classify reads in both nucleotide and protein space 

and provides RPKM estimates of host gene expression.  A website using the iobio framework 

provides easy and rapid access to Taxonomer’s capabilities.  Extensive benchmarking has shown 

that Taxonomer is not only more comprehensive in its classification abilities than any other single 

tool, but is also extremely fast and provides accurate results.  

 Central to Taxonomer’s speed and accuracy is a novel k-mer-based weighting scheme 

that provides a rapid and powerful way to classify read sequences.  In addition, a novel 

transformation enables the same algorithms that classify reads in nucleotide space to classify the 

same reads in protein space with only a moderate penalty in memory usage and an extremely 
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small time penalty.  Because of the powerful mapping capability of the k-mer-based weighting 

scheme, Taxonomer is also able to rapidly quantify gene expression with accuracy equal to that 

of the best available transcript profiling software.  Taxonomer’s extensive capabilities make it a 

tool that is able to work effectively in answering many different questions important in the 

application of metagenomics to both research and medical diagnostics.   

 

Summary and future directions 

 In my dissertation, I have presented effective computational approaches and applications 

to a wide variety of data analysis problems in the biological sciences.  Specifically, I have 

presented compelling solutions to image analysis, human variant prioritization, and 

metagenomics.  All the methods and applications I have presented in this dissertation have 

exciting future possibilities, in particular in the areas of human variant prioritization and 

metagenomics.  Extending VVP to include a burden test would provide a highly scalable solution 

to identify genes responsible for disease in settings with extremely large numbers of target and 

background individuals.  Taxonomer can be further improved with better sequence databases to 

improve classification accuracy and making the web interface as comprehensive as possible in its 

analysis capabilities while keeping it relatively simple to use.           
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