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ABSTRACT

Advances in technology have produced efficient and powerful scientific instruments
for measuring biological phenomena. In particular, modern microscopes and next-
generation sequencing machines produce data at such a rate that manual analysis is no
longer practical or feasible for meaningful scientific inquiries. Thus, there is a great need
for computational strategies to organize and analyze huge amounts of data produced by
biological experiments. My work presents computational strategies and software solutions
for application in image analysis, human variant prioritization, and metagenomics.

The information content of images can be leveraged to answer an extremely broad
spectrum of questions ranging from inquiries about basic biological processes to highly
specific, application-driven inquiries like the efficacy of a pharmaceutical drug. Modern
microscopes can produce images at a rate at which rigorous manual analysis is impossible.
| have created software pipelines that automate image analysis in two specific applications
domains. In addition, | discuss general image analysis strategies that can be applied to a
wide variety of problems.

There are tens of millions of known human genetic variants. Prioritizing human
variants based on how likely they are to cause disease is of huge importance because of
the potential impact on human health. Current variant prioritization methods are limited by
their scope, efficiency, and accuracy. | present a variant prioritization method, the VAAST
variant prioritizer, which is superior in its scope, efficiency, and accuracy to existing variant
prioritization methods.

The rise of next-generation sequencing enables huge quantities of sequence to be
generated in a short period of time. No field of study has been affected by rapid

sequencing more than metagenomics. Metagenomics, the genomic analysis of a population



of microorganisms, has important implications for pathogen detection because
metagenomics enables the culture-free detection of microorganisms. | have created
Taxonomer, a comprehensive metagenomics pipeline that enables the real-time analysis of

read datasets derived from environmental samples.
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CHAPTER 1

INTRODUCTION

Computational approaches to large-scale biological data

Increasingly, experiments in the biological sciences are producing data at a scale that
cannot be analyzed manually, even with a team of scientists, and the rate of data production is
expected to only increase (Jiang & Liu, 2015; Seife, 2015). While large amounts of data present
many opportunities for scientific discovery, this data deluge presents scientists with many
challenges. The challenges associated with dealing with massive amounts of data are
intrinsically computational, and have created a rising importance of effective computational
techniques to store, organize, and analyze data. My research focus has been to develop
computational techniques to analyze large datasets (datasets of sufficient size as to be
impractical to analyze manually) of biological interest. In my dissertation, | detail specific
computational approaches and applications in image analysis, human genetic variant

prioritization, and metagenomics.

Image analysis

Image analysis is becoming increasingly important in the biosciences. Image data
provides a wealth of phenotype information that can be used to understand biological
mechanisms in a wide range of applications, including experiments to uncover gene function or to
determine the impact of a pharmaceutical drug (Carpenter et al., 2006). Increasingly
sophisticated imaging techniques and microscopes produce quality data in such quantities that
would take a team of researchers months to manually process the results of a single experiment.

Thus, the potential impact of image analysis automation is enormous.



Image data acquired from experiments present many different challenges to an
automated analysis. These challenges include the deep complexity represented in images,
image quality, cell boundaries that are not completely defined, asymmetrical illumination, small
sample sizes, high dimensionality, and small effect sizes between experimental groups of interest.
These challenges together with the amount of data that needs to be processed present a
significant computational challenge.

Because of the focused nature of most experiments, there is no single analysis pipeline
that will work to analyze the images and produce meaningful statistics for all experiments. Thus,
it is necessary to understand both image analysis methods and the statistics used to process the
resulting data in order to draw meaningful conclusions from images produced by biological
experiments. There are, however, existing image analysis software that is both modular and
designed to allow experimental scientists (not just computational experts) to analyze their data.
Examples include CellProfiler and Imaged (Carpenter et al., 2006; Collins, 2007). Although these
software packages exist, it is my belief that a user must have at least a conceptual understanding
of the methods employed in order to direct an analysis and draw meaningful conclusions from
images. | opt to use the excellent open source image analysis libraries available for the Python
programming language and construct custom image analysis pipelines. These open source
libraries include ndimage in SciPy, Scikit-lmage, Python Imaging Library (PIL), Mahotas, and
OpenCV. These libraries include excellent implementations of most major image analysis
algorithms and are typically designed to work on numpy arrays for speed. Chapter 2 describes
an image analysis pipeline | constructed using the Python programming language to processes
images of the flatworm S. mediterranea. Chapter 3 describes an application of image analysis to
quantify muscle fiber cell size, for which | also constructed an analysis pipeline using Python to
analyze the images and perform statistical analysis of the analyzed output.

Here | will give a high level description for conceptual understanding of a few
fundamental image analysis procedures. These core image analysis procedures include image

thresholding, erosion and dilation methods, and feature size and location quantification.



Thresholding

Image thresholding / binarization is the process of separating pixels into a foreground and
background.

An example of image thresholding is shown in Figure 1.1. There are many thresholding
methods to choose from, but they can be broken into two broad categories: global and local
thresholding. Global thresholding methods choose a single pixel value with which to divide all the
pixels of the image into foreground and background. Global thresholding can be effective with
relatively simple images where the lighting is uniform. However, global thresholding is ill suited
when there is asymmetric illumination in an image, like that of Figure 1.1 A. In these cases, a
local thresholding method is usually better suited. Local thresholding methods choose different
thresholding values to use at different locations in the image. Figures 1.1 B and 1.1 C are the
results of different local thresholding methods. Clearly, the method of Figure 1.1 B is superior in
this application to that of Figure 1.1 C. Local thresholding methods can be broken into two
categories: Scale-dependent and scale-independent methods (Blayvas, Bruckstein, & Kimmel,
2006). Scale-dependent methods have a specified neighborhood size around each pixel that is
used to calculate a local threshold. Fox example, we may consider a 20 x 20 box of pixels
around every pixel to be its neighborhood and use the pixel information of the neighborhood to
calculate a threshold value for the particular pixel. Scale-independent methods do not specify
any particular neighborhood size around a pixel; instead, they typically combine pixel intensity
measures for regions of many different sizes around the pixel. Scale-dependent methods can be
very effective in solving problems when there is an expectation about the size of the objects of
interest. Scale-dependent methods also have the advantage of being simpler to understand and
implement.

Figure 1.2 A is an image taken by a BD Pathway Bioimager of the flatworm S.
mediterranea. The purpose of the experiment that produced these images was to quantify the
neoblasts in mutant animals produced by an RNAIi screen and compare the neoblast counts to
control animals. The neoblasts are stained prior to imaging so they become the brightest points

of light in the image. | used a scale-dependent method to threshold these images because of



asymmetric illumination produced by the microscope with the some of the images. Figure 1.2 B
shows the results of this thresholding method — you can see the neoblasts were easily separated
from the image background using this thresholding technique.

In my experience, there is no single thresholding method that is going to work for all
images. | recommend testing a few methods, including both global and local, scale-dependent
and scale-independent, on a few of your images and selecting the method that works best for

your particular data.

Erosion and dilation

Once an image is thresholded adequately, it becomes possible to count and quantify
features in the image. Often times, the features of interest in an image are not completely
separate in the image after thresholding and need to be separated before quantifying their size.
For example, Figure 1.3 is an image taken by a confocal microscope of the cross section of a
mouse Tibialis anterior muscle. Our purpose in analyzing this image is to quantify the size of the
muscle fibers, which in Figure 1.3 are outlined by the red channel.

Applying a thresholding procedure to Figure 1.3 results in Figure 1.4 A. Thresholding the
image does not provide enough separation between the muscle fibers to quantify their size
because many of the fibers are still touching. Erosion is a process that shrinks features in the
image and thereby enables the separation of the features. Applying one erosion step to Figure
1.4 A results in Figure 1.4 B and applying two erosion steps to Figure 1.4 A results in Figure 1.4
C. The fibers in both Figure 1.4 B and 1.4 C look separate enough to do quantification. In
general, when using erosion to isolate features as we have done here, it is desirable to do the
minimum amount of erosion necessary to isolate the features. By using the least amount of
erosion, we are able to use the maximum amount of image data. If the experiment were to
include comparing muscle fiber size between groups of animals, it would be critically important to
use the same erosion steps when doing the image analysis since erosion systematically changes

the measurable size of the muscle fibers.



Feature size and location quantification

After an image has been thresholded and appropriate erosion steps have been taken to
isolate the features of interest, it is possible to quantify the size and location in the image of each
of the features. In the case of the muscle fiber image shown in Figure 1.3, the objective is to
quantify the size of each of the muscle fibers (outlined by red). Once the image looks like Figure
1.4 B or 1.4 C, quantification can take place. Here | will give a short description of a common
method used to quantify the size of isolated features. This method begins by selecting a pixel
that is above the threshold (white pixels in Figures 1.4 A, B, C) and then looks at all of its
neighbors — every pixel has 8 neighbors. For every neighbor that is a foreground pixel, this
process is repeated for each neighbor until no more neighboring foreground pixels are found.
These pixels are saved as a single feature and this process is repeated until no more foreground
pixels are left in the image. We now have a collection of pixels grouped by feature. At this point,
we know the size of each feature in pixels. In addition, by taking the average of the x and y
coordinates of each pixel of a feature we find its center of mass, which is often a location quantity
of interest. It is important to note that the center of mass thus calculated can be different from the
visual center of a feature. An example is of a banana shaped feature — its center of mass would

lie outside the feature.

Human variant prioritization

Over the past decade, sequencing costs have dropped precipitously. The super-
exponential drop in sequencing costs has led to a massive increase in sequencing-related
research and applications (Katsonis et al., 2014). This ever-increasing wealth of sequence data
has resulted in an explosion of known human variants. For example, the NCBI's dbSNP
database contains well over 100 million human variants. This available panoply of human
variation presents significant challenges to interpretation, and of particular importance is how to
rank human variants according to their risk for causing or contributing to disease.

SIFT and PolyPhen were among the first recognized methods to prioritize human variants

and are still viewed as a standard for variant prioritization (Ng & Henikoff, 2003; Ramensky, Bork,



& Sunyaev, 2002). SIFT uses information about amino acid conservation and the biochemical
properties of the amino acids to assign a score to the observed nonsynonymous substitution.
Like SIFT, PolyPhen is informed using amino acid conservation information, but in addition,
PolyPhen also incorporates information about protein structure to score nonsynonymous
substitutions. SIFT and PolyPhen still compare favorably to many methods that have since been
developed to prioritize nonsynonymous amino acid changes (Dong et al., 2014).

Both SIFT and PolyPhen prioritize only nonsynonymous variants. In real applications,
this limitation is extremely problematic since the vast majority of known human genetic variation is
noncoding, and there are many known disease-causing variants in humans that fall outside the
category of nonsynonymous protein coding change (Ritchie, Dunham, Zeggini, & Flicek, 2014).
Prioritization of noncoding variants is a much more difficult problem than prioritization of
nonsynonymous variants because there is comparably much less information available in
noncoding regions. However, projects like ENCODE are attempting to functionally annotate
noncoding regions by systematically assaying all functional genomic elements (Dunham et al.,
2012).

Methods are needed that can accurately prioritize both coding and noncoding human
genetic variation. Kircher et al. developed CADD, a machine learning approach to human variant
prioritization that can score all SNVs and small indels in the human genome and is more effective
than existing methods for variant prioritization (Kircher et al., 2014). CADD works by comparing
incidence of simulated variants to fixed derived alleles in the human lineage. This clever
comparison allows them to quantify the depletion of fixed derived alleles in the human lineage for
all locations in the genome. The main idea is that genomic locations that have a relative
depletion for fixed variation in the human lineage are more likely to have a functional
consequence. However, CADD cannot score larger indels or other structural variation.

| have developed a variant prioritization method based on the VAAST likelihood, and in
contrast to other available methods, it is able to prioritize all annotated variation across the
human genome (Hu et al., 2013; Yandell et al., 2011). This method is called the VAAST Variant

Prioritizer (VVP). The core concept behind VVP is to calculate a score for a variant that indicates



how potentially damaging it is. This score is then compared to scores of known healthy human
variants and its percentile rank is calculated. A high percentile rank (> 99) indicates that the
variant looks more damaging than the majority of known healthy human variation. Implicit to this
method is the problem of choosing how to organize healthy human variants into ‘lookup’ bins
against which variants can be compared. Empirically, | have found that creating separate
lookups for a set of user-specified annotated genomic features (usually genes) and then further
segmenting the lookups into coding and noncoding categories produces an effective and efficient
way to prioritize human variants. Details of VVP and its performance characteristics, including

comparisons to CADD, are given in Chapter 4.

Metagenomics

Metagenomics is the genomic analysis of a population of microorganisms (Handelsman,
2004). Metagenomic analysis involves extracting DNA or RNA from an environmental sample,
sequencing it, and using the sequence reads to identify organisms present in the sample.

The majority of microorganisms cannot be grown in a laboratory, but through
metagenomic analysis, these microorganisms can be observed and studied since culturing is not
required. For this reason, metagenomics holds incredible promise in terms of the possible
questions it opens to investigation (Brady & Salzberg, 2009).

With falling sequencing costs, metagenomics projects have produced huge amounts of
sequence data (Wood & Salzberg, 2014). The goal of a metagenomic analysis is to classify
every read with as much taxonomic precision as possible. Blast is an extremely effective tool for
comparing a query sequence to a database in order to produce a taxonomic classification, and is
the standard of taxonomic classification accuracy. As such, the blast suite is the traditional
choice for metagenomic analysis, but as sequence datasets have grown, blast is not fast enough
to produce meaningful results in a reasonable amount of time (Wood & Salzberg, 2014).

Acquiring metagenomics results rapidly from an environmental sample has important
consequences that because of the potential for real-time pathogen identification in response to

disease outbreak and infections (Lipkin, 2013). Because metagenomics is hypothesis neutral,



novel pathogens that contribute to disease can be identified, unlike the specific assays that are
current medical practice for pathogen detection.

| have developed Taxonomer, a software pipeline for comprehensive metagenomic
anlaysis. Taxonomer employs k-mer based methods to enable taxonomic classification based on
rapid nucleotide and protein searches with a novel statistical approach that improves its accuracy
over existing k-mer based methods while maintaining computational efficiency. Taxonomer also
enables host transcription profiling. Full details and benchmarking of Taxonomer are given in

Chapter 5.

K-mer based metagenomics

The need for metagenomic methods that are rapid enough to analyze the huge amount of
sequence data has led to a proliferation of k-mer based methods. A k-mer is a k length substring
of DNA sequence. For instance, the 3-mers of AAGGCGTC would be AAG, AGG, GGC, GCG,
CGT, and GTC. Instead of using an alignment method that matches a seed (a k-mer) and then
extends the alignment, k-mer based methods simply check for the presence or absence of a k-
mer. This is a far more simple calculation than alignment seeding and extension; for this reason,
k-mer-based methods can be hundreds or thousands of times faster than alignment based
methods (Buchfink, Xie, & Huson, 2015; Patro, Mount, & Kingsford, 2014; Wood & Salzberg,
2014). Although the calculations in k-mer-based methods are simpler, the accuracy of read
assignment from k-mer-based methods can be equivalent to that of the more computationally
expensive alignment extension based approaches, even with sequencing errors (Buchfink et al.,
2015; Edwards et al., 2012; Patro et al., 2014; Wood & Salzberg, 2014). In metagenomics,
where rapid and accurate taxonomic assignment is more important than the information of a

complete alignment, k-mer-based methods are the practical choice.

Database design
To unlock the speed of k-mer-based methods, careful database design and

implementation choices are required. Here | will give an overview of the construction of a k-mer



database for rapid queries, as well as a search strategy for k-mers. In order to create the
database, all the k-mers in the reference sequences need to be identified. Effective software
tools exist that will identify all the k-mers and their counts in a set of reference sequences, e.g.,
Jellyfish, Kanalyze, and KMC 2 (Audano & Vannberg, 2014; Deorowicz, Kokot, Grabowski, &
Debudaj-Grabysz, 2015; Margais & Kingsford, 2011). These k-mer counting tools all produce
similar output tables of the k-mers and their counts; these tables can then be organized to allow
for rapid k-mer queries. One possible organization of these tables for rapid queries depends on
the concept of a k-mer minimizer (Figure 1.5) (Roberts, Hayes, Hunt, Mount, & Yorke, 2004). K-
mers are organized into blocks based on a shared minimizer, and within the block, the k-mers are
sorted in lexicographical order (Figure 1.6). An important observation is that overlapping k-mers
often share the same minimizer (Wood & Salzberg, 2014). Since k-mers are organized into
blocks by the minimizer they share, overlapping k-mers can first be searched in the minimizer
block from the preceding k-mer and only calculate the minimizer if the k-mer is not found. Within
a k-mer block, a binary search is used since the k-mers are in lexicographical order. This
minimizer indexed query scheme produces astounding speeds even with extremely large
datasets (Wood & Salzberg, 2014).

Another important implementation consideration to maximize speed is to represent k-
mers as unsigned 64 bit integers; this can be achieved by using 2 bits to represent each of the 4
DNA base pairs. This numerical representation limits the length of k-mers to 31 bp in length, but
is critical for good performance on large datasets. Implementation details of numerical k-mer
representation are given in the papers describing Jellyfish, Kanalyze, and the source code of

Kraken (Audano & Vannberg, 2014; Margais & Kingsford, 2011; Wood & Salzberg, 2014).
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Figure 1.1: Original Image (A), note the assymetric illumination. The thresholding problem
presented in (A) is to separate the letters from the rest of the image. Results of thresholding or
binarization procedures (B,C). Different procedures yield better or worse results depending on
the image, which is why its necessary to sample several procedures before choosing one for an
analysis. Images taken and modified from (Blayvas et al., 2006).
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Figure 1.2: Image of S. meditteranea with stained neoblasts taken from a BD Pathway
Bioimager (A). A scale-dependent thresholding method was able to effectively separate the
neoblasts (shown in red) from the rest of the background (B).
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Figure 1.3: Stained cross section of the tibialis anterior muscle of a mouse. The red
channel outlines the borders of the muscle fibers.
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Potential minimizers

Figure 1.5: K-mer minimizer. To find the minimizer of a k-mer (shown in blue), all k-mers of a
specified size smaller (shown in orange) than the original k-mer are generated from the k-mer in
question. The k-mer minimizer (shown in light blue) is the potential minimizer that is the
lexicographically smallest.
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Figure 1.6: K-mer database organization by minimizer. K-mers (shown in blue) are
organized into blocks based on shared minimizers. Minimizers (shown in orange) point
beginning of k-mer blocks that are sorted in lexicographical order.
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CHAPTER 2

IMAGEPLANE: AN AUTOMATED IMAGE ANALYSIS PIPELINE FOR HIGH-THROUGHPUT

SCREEN USING THE PLANARIAN SCHMIDTEA MEDITERRANEA

Published as: Flygare, S., Campbell, M., Ross, R. M., Moore, B., & Yandell, M. (2013).
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ABSTRACT

ImagePlane is a modular pipeline for automated, high-throughput image analysis and in-
formation extraction. Designed to support planarian research, ImagePlane offers a self-
parameterizing adaptive thresholding algorithm; an algorithm that can automatically
segment animals into anterior—posterior/left-right quadrants for automated identification of
region-specific differences in gene and protein expression; and a novel algorithm for
quantification of morphology of animals, independent of their orientations and sizes.
ImagePlane also provides methods for automatic report generation, and its outputs can be
easily imported into third-party tools such as R and Excel. Here we demonstrate the
pipeline’s utility for identification of genes involved in stem cell proliferation in the pla-
narian Schmidtea mediterranea. Although designed to support planarian studies, ImagePlane
will prove useful for cell-based studies as well.

Key words: biology, functional genomics, genomics.

1. INTRODUCTION

T HE COMMERCIAL AVAILABILITY OF AUTOMATED MICROSCOPES equipped with robotic sample-handling
capabilities is making possible complex image-based assays that employ functional genomics tech-
niques such as RNAI to investigate gene function at the genome scale (Kamath and Ahringer, 2003; Paddison
and Hannon, 2003; Boutros et al., 2004; Kuttenkeuler and Boutros, 2004). These screens typically generate
many thousands of images that must be processed and analyzed. Current paradigms of image processing and
analysis generally involve graphical user interfaces (GUIs) to prepackaged collections of image-processing
algorithms. Users typically employ these packages to process images one at a time or in batch mode using
pull-down menus and check buttons. Although these software packages are useful, they also present re-
searchers with practical difficulties when modification and customization are required. Obtaining the legal
permissions and corporate support for customization, for example, is often a troublesome task. These have

Eccles Institute of Human Genetics, University of Utah, and School of Medicine, Salt Lake City, Utah.
*These three authors contributed equally to this work.

583

19



584 FLYGARE ET AL.

driven the development of publicly available image-processing libraries such as ImageJ (Collins, 2007;
Papadopulos et al., 2007).

Although GUI-based packages are extremely useful, using them to process thousands of images even in
batch mode can be time-consuming and exhausting. The large numbers of images generated by high-
throughput image-based screens thus necessitate more automated approaches that minimize the need for
GUI-mediated user interactions. Indeed, the ultimate goal of such automation (somewhat paradoxically) is
the creation of image analysis pipelines that can rapidly extract information from large numbers of images
without anyone ever actually looking at the images. In many respects, the challenges here resemble those
previously encountered in the domain of genome annotation. Early genome annotation efforts were human-
driven, with teams of investigators manually inspecting the details of aligned expressed sequence tags
(ESTs) and proteins to a sequenced genome in order to deduce the intron—exon structures of novel genes
(Oliver et al., 1992; Fleischmann et al., 1995). For reasons of economy and scale, the genomics field has
gradually moved away from manual approaches, and today most genomes are annotated in an automated
fashion (Curwen et al., 2004; Liang et al., 2009; Holt and Yandell, 2011). Today’s image-based screens
offer very similar challenges, and similar solutions are needed. A key point to appreciate in this regard is
the distinction between solutions to basic problems in image processing—such as segmentation, regis-
tration, and thresholding—and the issues surrounding practical approaches to automated high-throughput
image analysis. Like today’s automated genome annotation pipelines (Curwen et al., 2004; Holt and
Yandell, 2011), the challenge here is not so much to develop new techniques and algorithms, but rather to
integrate existing tools and approaches into efficient, reliable, and accurate pipelines for automated in-
formation extraction and analyses of large collections of images.

Some of the most exciting opportunities for high-throughput image analyses involve screens of differ-
entiating cells and embryos that employ RNAi and siRNA techniques to systematically perturb gene
function at the genome scale. One problem here is the three-dimensionality of developing plant and animal
embryos, which significantly complicates automated analyses. The need to register and segment images of
un-orientated, morphologically complex embryos is a great challenge, one being addressed by many
researchers today (Eliceiri et al., 2012). Although algorithmic breakthroughs are something to look forward
to, there are other alternatives. One is to restrict the dimensionality of the problem by choosing less
irregularly shaped organisms and tissues. In this regard, the planarian Schmidtea mediterranea is an
obvious choice. Long renowned for its ability to regenerate, recent work has also shown that this planarian
is an excellent model for stem cell biology. Equally important, planarians are literally flatworms. This fact
greatly simplifies automated analyses. As our results demonstrate, S. mediterranea can be treated as two-
dimensional for many image analysis applications; this has allowed us to largely circumvent the com-
plexities associated with analyses of embryos and tissues having complex three-dimensional morphologies.

With these considerations in mind, we have developed an automated image analysis pipeline for pla-
narian research called ImagePlane. This pipeline provides a self-configuring means to automatically
threshold images, and to automatically identify and count stained cells. ImagePlane can also automatically
segment images of planarians into anterior—posterior (A-P)/left-right (L-R) quadrants, a prerequisite for
automated identification of region-specific differences in gene and protein expression. ImagePlane also
provides a novel algorithm that allows rough, but rapid, quantification of morphological phenotypes in-
dependent of differences in animal orientation and size. This is an important step forward for planarian
researchers, as animals can, and usually do, vary in size from individual to individual and between
experimental batches. ImagePlane also provides practical methods for automatic report generation, and its
outputs can be easily imported into third-party tools such as R and Excel. Here we demonstrate Im-
agePlane’s utility using an image-based RNAI screen to identify genes involved in stem cell proliferation in
the planarian S. mediterranea. Although designed primarily to support planarian studies, ImagePlane
should prove useful for any high-throughput image-based investigation of approximately two-dimensional
biological samples, including cell-based studies, and sectioned histological samples.

2. METHODS
2.1. Basic screen

We used a high-affinity antibody for phosphorylated histone 3 (H3P) (Millipore, Billerica, MA) to
identify mitotic cells in S. mediterranea. Previous work has shown that this antibody provides effective
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means to identify neoblastic stem cells that are maintained throughout adult life (Hendzel et al., 1997,
Newmark and Sanchez Alvarado, 2000; Reddien et al., 2005a). The screen proceeds as follows. First,
animals are fed E. coli transformed with a plasmid designed to produce dsRNA of a chosen gene. Whole
animals are fixed and stained with H3P antibody. cdc23 was used as a positive RNAi control; this gene
causes a twofold increase in the numbers of H3P-positive nuclei upon RNAi feeding (Reddien et al.,
2005a). The Caenorhabditis elegans unc-22 gene was used as a negative (placebo) control (Moerman et al.,
1986; Yandell et al., 1994; Reddien et al., 2005a). Up to this point, this screen is identical to the one used by
Reddien et al. (2005a). Next, animals were imaged using a BD Pathway Bioimager with a 10X objective.
Animals were arrayed on 96-well plates with 44 RNAi-fed animals for three different genes, including 18
positive control (cdc23) and 15 negative control (unc-22) animals.

2.2. Determining animal outline and size

First, a simple algorithm is employed that iteratively computes an average weighted-by-pixel intensity to
find the valley between the signal and background for each image. This algorithm works by starting with a
guess, and then iteratively changing this guess until the number of background pixels weighted by intensity
is equal to the foreground pixels weighted by intensity.

Next, each image is binarized by setting all the pixels below this value to 0 (minimum intensity) and
above this value to 255 (maximum intensity). Ideally, every pixel with intensity above this threshold value
is part of an animal. However, it is possible to have an image that has other objects (dust, etc.) outside the
worm that also pass this particular thresholding filter. If objects exterior to the worm are not excluded, then
the size of the worm will be miscalculated. Thus, objects exterior to the worm need to be differentiated.
This is done using a recursive algorithm to determine which of the objects that passed the threshold is the
largest. The following seven steps give a conceptual overview of how this is done. (1) Consider every pixel
in the image as unvisited. (2) Move through the image-row by column until an unvisited pixel is found that
is above the previously determined threshold. Call this pixel P, and create an image object called O. (3)
Mark P as visited and add P to O. (4) Consider the neighbors (pixels within one row or column) of P. For
each neighbor that is above the threshold, call the neighbor P and repeat from step three. (5) Once steps 3
and 4 have concluded, O is a complete object in the image. Repeat from step 2. (6) Once all the pixels are
visited, the O with the largest amount of pixels is considered the worm. (7) Set all pixels not in the largest
O to 0. Relative animal size is then calculated as the number of pixels contained within its boundaries.
Absolute size is obtained using scaling information contained in image metadata, or passed as an additional
parameter. For cell-based studies, in which there may be multiple objects of interest in the same image, an
optional size parameter can be set so that every object exceeding this value is identified.

2.3. A self-parameterizing thresholding algorithm

Once the locations, boundaries, and size of each animal are determined, the next task is to count H3-P-
stained nuclei. Once absolute numbers are obtained, these can be converted to densities by dividing by
animal size, effectively controlling for differences in animal sizes. The fact that stained neoblasts are often
present at different pixel intensities complicates this operation, as there is no single threshold value that
could be applied to the entire image that could accurately isolate the neoblasts. For these reasons, we
implemented two different adaptive thresholding algorithms for inclusion in ImagePlane, a scale-dependent
and scale-independent method. Complete details of these algorithms are given by Blayvas et al. (2006). In
our hands, the adaptive thresholding methods performed best. This algorithm computes the threshold value
for each pixel in the image through local weighted averages that are derived from max—min calculations
across the interior of the animal in each image (Blayvas et al., 2006) (see Figs. 1 and 2 for additional
details).

2.4. Image sectorization

Adapting previous work in C. elegans (Peng et al., 2008), we implemented a graph-based algorithm to
automatically find the midline and left and right sides of an animal (see Fig. 3 for an example). Inter-
estingly, we found that this algorithm performed poorly on some of our images. Further analyses deter-
mined that its performance was inversely proportional to the animals overall eccentricity; for example, it
does well on long, thin animals, but poorly on more oval-shaped animals—a finding consistent with the
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FIG. 1. Operation of the Niblac (scale dependent) and multiresolution (scale independent) automatic thresholding
algorithms. These algorithms compute a thresholding surface that is used to isolate stained neoblasts. (A) A typical
image of stained neoblasts in a flatworm. (B) The threshold surface computed by the Niblac algorithm for the image in
(A). (C) The automatically identified neoblasts (in red) after applying the computed threshold surface shown in (B). (D)
The threshold surface computed by the multiresolution algorithm for the image in (A). (E) The automatically identified
neoblasts (in red) after applying the computed threshold surface shown in (D).

algorithm of Peng et al. (2008), since it was developed for processing images of C. elegans, which are long
and thin, whereas planarians are more oval-shaped. Supplementary Figure S1 (Supplementary Material is
available online at www.liebertonline.com/cmb) documents this phenomenon. It also demonstrates that our
algorithm, which is based on a segmentation approach, performs much better on oval-shaped animals—the
vast majority of planarian images (Fig. 3 and Supplementary Fig. SI). Asymmetric expression can be
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quantified by taking the ratio between the numbers of stained nuclei in an animal’s A-P halves and L-R
sides—note that even in the absence of knowledge of which end of an animal is anterior or which side is
left, asymmetric expression along the A-P and L-R axes can still be measured and compared between sets
of images. The statistical significance of the asymmetries is evaluated by randomly permuting the x,y
coordinates of fluorescing nuclei, and rescoring each quadrant 100 times. Asymmetries larger than any of
those found in the 100 permuted images are judged statistically significant.

A B c

FIG. 3. Automated segmentation and sectorization of a 96-well plate. (A) Each worm’s outline and midline are first
determined. (B) The animals are then sectorized into four quadrants before counting cells (not shown). (C) A sample
96-well plate, automatically processed by ImagePlane in situ.
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FIG. 4. Results summary for two different threshold algorithms. Summary of neoblast densities obtained automat-
ically with ImagePlane for a dataset of 44 images with 18 cdc23 knockdown animals, 11 piwi2 knockdown animals, and
a control set of 15 unc22 animals. (A) Results using Niblac thresholding. Tukey adjusted p-values for comparisons
between groups: cdc23 to piwi2 = 0.06, cdc23 to unc22 < 0.01, piwi2 to unc22 = 0.33. (B) Results using multi-
resolution thresholding. Tukey adjusted p-values for comparisons between groups: cdc23 to piwi2 = 0.51, cdc23 to
unc22 < 0.01, piwi2 to unc22 = 0.08. Error bars denote variance.

2.5. Quantitation of results

With methods in place to determine the size, location, and neoblast count of the animal in the image, the
neoblast density is computed as the neoblast count divided by the size (in pixels) of the animal. These
counts are output as simple tab-delimited files containing columns for image id, animal size, neoblast
counts, and density. These files are easily imported into Excel and R for subsequent analyses and figure
generation. Figure 4 shows an example output processed using an R macro (provided in software down-
load) to generate a simple graphical report.

2.6. Quantifying morphologies

ImagePlane also includes an orientation and scale-invariant algorithm for detection, quantification, and
analyses of morphological abnormalities such as those produced by RNAi gene knockdown experiments. The
algorithm operates by first finding the outline of any automatically detected animal; this is accomplished using
the algorithm previously described. ImagePlane then deduces the orientation of the animal by comparing the
number of rows and columns transversed by the animal. Depending on the orientation of the animal, either the
row or column lengths between the outline points are normalized by dividing by the size of the animal (in
pixels) and recorded. Variation in the normalized distances produces a two-dimensional signature of the shape.
Examples are shown in Figure 5A. These signatures have several important properties. First, they are orientation
resistant, meaning that the orientation of the animal does not drastically affect the shape. Second, they are scale
invariant; in other words, two animals with the same shape but of very different sizes will have similar
signatures. Third, differences in any two signatures can be easily quantified, allowing us to group similar
expression patterns and body morphologies (see Fig. 5B for an example).

3. RESULTS AND DISCUSSION

Planarians are renowned for their ability to regenerate (Reddien et al., 2005a); this ability is based on
specialized neoblasts (Newmark and Sanchez Alvarado, 2000; Reddien et al., 2005b). These cells are the only
proliferating cells in the planarian (Baguiia, 1974), and are found scattered throughout the animal. Neoblast
progeny replace cells lost though normal cell turnover and are stimulated to proliferate when the animal is
injured. With the successful introduction of dsRNA technology into planarians (Sdnchez Alvarado and
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FIG. 5. A scale-invariant algorithm for quantifying morphologies. (A) Three randomly chosen shapes. Their cor-
responding morphological signatures are shown below each shape. (B) Cladogram representation of a neighbor-joining
tree created using distances between the morphological signature for each shape shown on the tree’s leaves.

Newmark, 1999; Reddien et al., 2005a), S. mediterranea has become the first invertebrate regeneration model
system in which gene function can be analyzed. These facts, coupled with the availability of its annotated
genome sequence (Cantarel et al., 2008; Robb et al., 2008), make S. mediterranea an ideal system to carry out
functional genomics screens aimed at identification of genes involved in regulating stem cell proliferation. S.
mediterranea has another equally important characteristic: it is literally a flatworm. This makes it ideal for
image-based screens. To date, however, no general-purpose image analysis pipeline has been available to
assist with high-throughput analyses of planarian images. We have developed ImagePlane to fill this need.
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Automated analyses typically begin with automatic binarization of 96-well plate images, such as those
generated by an automated confocal microscope, such at the BD imager. This step identifies the animal’s
outline and calculates its total pixel area. Next, an adaptive thresholding algorithm (Blayvas et al., 2006) is
used to distinguish signal from noise within the interior of each animal’s outline. This is necessary because
the intensity of stained cells and nuclei differ from image to image and even within individual images (Fig.
1). Thus, an adaptive approach is desirable because it allows this threshold to vary in a dynamic fashion
within the animal boundaries and between individual images. Another advantage of adaptive approaches
such as Niback’s (Blayvas et al., 2006) is that it requires minimal user inputs in order to determine the
optimal threshold. This is a significant advantage, as it circumvents the need for users to manually inspect
each image and to laboriously determine an optimal threshold by trial and error, as they would using a GUI-
based platform such as Metamorph, Volocity, and ImageJ. After thresholding, ImagePlane uses its auto-
mated cell/particle counting algorithm—the same one used to identify animal boundaries in the first step of
the pipeline—to identify stained cells and nuclei within animal boundaries.

To assess the accuracy of each of these steps, we carried out a double-blind experiment in which animals
were H3-P-stained for neoblasts, which were manually counted, and compared these results to those
produced automatically by ImagePlane. As Figure 2 indicates, the accuracy of the automated approach is
very good as judged by a Pearson’s R of both the Niblack and multiresolution methods. The Pearson
correlation of both the Niblack and multiresolution methods is 0.94. A paired r-test was used to test for
differences between the manual and automated counts. Niblack’s method was not significantly different
from the manual count, but the multiresolution was judged significantly different with a p-value <0.01. The
high correlation but significant difference between the manual counting and the multiresolution method is
because of moderate but consistent undercounting.

ImagePlane also provides automated means for identifying A-P and L-R inhomogeneity in neoblast
densities, such as those that might be produced in RNAi knockdown experiments of morphogens governing
cell proliferation (Reddien et al., 2005b). This is accomplished using a modified form of the algorithm
developed by Peng et al. (2008) for C. elegans studies. ImagePlane’s algorithm sectorizes animals into four
quadrants: anterior, posterior, left, and right. This algorithm allows users to automatically identify dif-
ferences in expression along the length of an animal and between its and L-R halves. Asymmetric ex-
pression is quantified by taking the ratio between the numbers of staining nuclei in each quadrant—note
that even in the absence of knowledge of which end of an animal is anterior or which side is left,
asymmetric expression along the A-P and L-R axes can still be measured and compared between sets of
images. Figure 3 shows a sample 96-well plate for which each well’s image has been automatically
processed to identify the animal outlines and to sectorize them. Also provided is an automated means for
determining the statistical significance of these asymmetries. This is done by randomly permuting the x,y
coordinates of fluorescing nuclei, and rescoring each quadrant 100 times. Asymmetries larger than any of
those found in the 100 permuted images are judged statistically significant. Although our results did not
contain any such asymmetries for the genes we analyzed, this functionality will likely prove useful for
those carrying out screens aimed at identification of asymmetrically localized transcripts and proteins.

Figure 4 summarizes a proof-of-principle analysis. This figure demonstrates the automated detection of
the effects of RNAi knockdowns of two genes, piwi2 and cdc23, known to be involved in planarian
neoblast maintenance, and proliferation (Reddien et al., 2005a, 2005b); these are compared with a negative
control, unc22 (Moerman et al., 1986; Yandell et al., 1994; Reddien et al., 2005a) (see Methods). Previous
experiments have shown that when the gene cdc23 is knocked down (silenced) in S. mediterranea, the
neoblast density increases as compared with wild-type animals (Reddien et al., 2005a). It has also been
shown that when the gene piwi2 is knocked down, the neoblast density remains the same as compared with
a wild-type animal, but that progeny cells fail to divide (Reddien et al., 2005b). For our proof-of-principle
analyses, a dataset of 44 images was collected with 18 animals fed RNAi knockdown constructs for cdc23,
11 animals for piwi2, and a control set of 15 animals that were treated to knock down unc22. All 44 images
were analyzed using ImagePlane’s scale-dependent and scale-independent algorithms (Fig. 4A and B,
respectively), and for each image, the neoblast density was computed 7 days post-feeding of the RNAi
construct. These results demonstrate that ImagePlane, using either algorithm, was able to automatically
detect a significant difference between unc22 and cdc23 (p <0.05)—with no difference between piwi2 and
unc22 (p>0.05), Tukey multiple comparison method (R Core Team, 2012).

ImagePlane also addresses another challenge frequently encountered in high-throughput image-based
screens of whole cells and animals: the need to automatically detect and quantify morphological changes.
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To speed such analyses, we have developed a scale-invariant algorithm that can automatically quantitate
changes in body morphology. Although techniques currently exist to detect and quantify particular mor-
phological changes, to our knowledge, our algorithm is the first to do so in an entirely ab initio fashion, and
should be widely applicable to many different types of high-throughput biological screening assays. The
algorithm operates by creating a two-dimensional summary or signature of each animal’s outline. Examples
are shown in Figure 5A. These signatures have several important properties. First, they are orientation
resistant, meaning that the animal’s orientation does not alter the signature appreciably. Second, the
signatures are scale invariant; in other words, two animals with the same shape but of different sizes will
have the same signature. This is a very desirable property for biological applications, especially for
planarian research, as planarians differ quite dramatically in size from animal to animal and between
experimental batches. A third advantage of this approach is that differences in any two signatures can be
easily quantified. This makes it possible to rapidly and automatically group images with similar body
morphologies. Figure 5B demonstrates this functionality, showing a neighbor-joining tree (Saitou and Nei,
1987) based on the signatures produced for images shown on the leaves.

3.1. Implementation and availability

ImagePlane is written in the Python programming language. ImagePlane consists of five basic Python
modules that provide a set of interlocked methods that cover the essential activities that typify these
screens: automatic determination of animal outlines and size; automatic image thresholding; methods for
counting labeled populations of cells; and sectorization for quantitation of morphological changes induced
by experimental manipulations. It is free for academic use and is available for download.

4. CONCLUSIONS

ImagePlane provides a set of interlocked methods that cover the essential activities of automatic determi-
nation of animal outlines and size; automatic image thresholding; methods for counting labeled populations of
cells; and sectorization and quantitation of morphological changes induced by experimental manipulations. In
the tradition of genome annotation pipelines, our goal has been to produce a practical pipeline for automated
analysis of large collections of images, rather than to advance the basic science of image processing. As such,
ImagePlane is an example of the new and growing domain of Bioimage informatics (Eliceiri et al., 2012) and is
designed to support high-throughput 96-well screens such as the one described here (see Methods). Our goal has
been to enable analyses of large numbers of images in an entirely automated fashion, without having to inspect a
single image, and without extensive training or pipeline tuning procedures. As our results demonstrate,
ImagePlane can analyze large numbers of images rapidly, accurately, and in an ab initio fashion.
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SUMMARY

Adult muscle’s exceptional capacity for regeneration is mediated by muscle stem cells, termed satellite cells. As with many stem cells,
Wnt/B-catenin signaling has been proposed to be critical in satellite cells during regeneration. Using new genetic reagents, we explicitly
test in vivo whether Wnt/B-catenin signaling is necessary and sufficient within satellite cells and their derivatives for regeneration. We
find that signaling is transiently active in transit-amplifying myoblasts, but is not required for regeneration or satellite cell self-renewal.
Instead, downregulation of transiently activated B-catenin is important to limit the regenerative response, as continuous regeneration is
deleterious. Wnt/B-catenin activation in adult satellite cells may simply be a vestige of their developmental lineage, in which p-catenin
signaling is critical for fetal myogenesis. In the adult, surprisingly, we show that it is not activation but rather silencing of Wnt/B-catenin

signaling that is important for muscle regeneration.
INTRODUCTION

Adult vertebrate muscle has an exceptional capacity
for regeneration, mediated by a dedicated population of
muscle stem cells. These muscle stem cells, termed satellite
cells, were first identified by their unique anatomical posi-
tion between the sarcolemma and basement membrane of
myofibers (Mauro, 1961). Subsequently, satellite cells were
found to express the transcription factor Pax7 (Seale et al.,
2000), and Pax7 is required for their maintenance in adult
mice (Glnther et al., 2013; Kuang et al., 2006; Oustanina
et al.,, 2004; Relaix et al., 2006; von Maltzahn et al.,
2013). Recent genetic labeling and ablation studies in
mouse, using Pax7“"*K mice, have definitively established
that satellite cells are the endogenous stem cells necessary
and sufficient for muscle regeneration (Lepper et al.,
2009, 2011; Murphy et al.,, 2011; Sambasivan et al.,
2011). During regeneration, satellite cells activate, prolifer-
ate, and give rise to transit-amplifying myoblasts, which
differentiate into myocytes that fuse with one another
to form multinucleate myofibers. In addition, like other
stem cells, satellite cells self-renew.

Canonical Wnt/B-catenin signaling is an important regu-
lator of many adult stem cells (Holland et al., 2013) and has
been proposed to be critical for satellite cells and muscle
regeneration. Wnts are secreted glycoproteins that func-
tion as ligands, and B-catenin is the central mediator of
canonical Wnt signaling (Niehrs, 2012). In the absence of
Wnts, B-catenin is phosphorylated and targeted for degra-
dation. The binding of Wnts to their receptors leads to
the formation of stabilized, unphosphorylated B-catenin

that translocates to the nucleus, where it binds to TCF/
LEF proteins and activates transcription of Wnt-responsive
genes. Many studies have identified Wnt pathway com-
ponents as being active during muscle regeneration (Brack
et al., 2008, 2009; Le Grand et al., 2009; Polesskaya et al.,
2003; Zhao and Hoffman, 2004). Based largely on gain-
of-function, primarily in vitro experiments, multiple labs
have proposed that Wnt/p-catenin signaling is essential
for muscle regeneration, although the conclusions of these
papers are often contradictory (reviewed in von Maltzahn
etal., 2012). However, no studies have explicitly examined
in vivo whether Wnt/B-catenin signaling is necessary and
sufficient specifically within satellite cells and their deriva-
tives for muscle regeneration.

In this study, we use a highly sensitive reporter of Wnt/
B-catenin signaling (TCF/Lef-H2B-GFP™$; Ferrer-Vaquer
et al,, 2010), as well as a reagent (Pax7<"E872) that our lab
has generated to genetically manipulate satellite cells
with high specificity and efficiency (Murphy et al., 2011),
to test the role of this signaling pathway specifically within
satellite cells and their derivatives during muscle regenera-
tion. We find that Wnt/B-catenin signaling is transiently
active in myoblasts during regeneration. However, B-cate-
nin is not required cell autonomously for muscle regen-
eration. Instead, downregulation of transiently activated
B-catenin is critical for limiting the regenerative response,
as continuous regeneration deleteriously leads to increased
fibrosis and an increased number of small myofibers. Thus,
surprisingly, we show that it is not activation of Wnt/f-cat-
enin signaling but rather silencing of this activation that is
important for muscle regeneration.
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RESULTS

Wnt/B-Catenin Signaling Is Transiently Active in
Myoblasts during Regeneration

Multiple studies have established that Wnts, Frizzled recep-
tors, nuclear B-catenin, coactivator BCL9, TCF/LEF re-
porters, and also Wnt antagonists secreted Frizzled-related
proteins (sFRPs) are expressed during muscle regeneration
(Brack et al., 2007, 2008; Le Grand et al., 2009; Otto
et al., 2008; Polesskaya et al., 2003; Zhao and Hoffman,
2004). However, activation of Wnt/p-catenin signaling
has not been explicitly tested and quantified within the
myogenic lineage in vivo during the time course of regen-
eration. To test whether and when Wnt/B-catenin
signaling is active in myogenic cells, we used the sensitive
TCF/Lef:H2B-GFP" reporter (Ferrer-Vaquer et al., 2010), in
which cells with active Wnt/p-catenin signaling express
nuclear localized GFP. To determine the percentage of
myogenic cells with active Wnt/p-catenin signaling during
regeneration, the right tibialis anterior (TA) muscles of
TCF/Lef-H2B-GFP™* mice were injured via BaCl, injection
(Caldwell et al., 1990), injured TAs (and uninjured control
TAs) collected at different days postinjury (dpi), and mono-
nuclear myogenic cells analyzed via fluorescence-activated
cell sorting (FACS). CD31-CD45-SCA1-INTEGRINa7+ cells
were identified as myogenic (Yi and Rossi, 2011) and
include satellite cells, myoblasts, and potentially myocytes
(Figure 1A). In uninjured muscle, an average of 6% of
myogenic cells was GFP+, indicating that Wnt/B-catenin
is active in few myogenic cells (Figures 1B and 1C). How-
ever, at 1 dpi, 23% of myogenic cells were GFP+, although
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Figure 1. Wnt/B-Catenin Signaling Is
Transiently Active in Myoblasts after
Injury

(A-C) Mononuclear myogenic cells (A)
transiently express TCF/Lef:H2B-GFP reporter
at 1 dpi (n = 3 mice for each time point; B
and C).

(D-L) At 1 dpi, only 3% of satellite cells
(D-F) but 41% of myoblasts (G-I) and 11%
of myocytes (J-L) are GFP+ (n = 3 mice).
Arrows show GFP+ cells. The scale bar rep-
resents 100 pum.

£ Error bars in (C) represent one SEM.

H2B-GFP

H2B-GFP
126%

H2B-GFP!

this declines to 0.6% by 3 dpi. To determine in which
myogenic cells Wnt/B-catenin signaling is transiently
active, we analyzed sections of TAs from TCF/Lef:-H2B-
GFP™* mice at 1 dpi via immunofluorescence (Figures
1D-1L). Whereas only 3% of PAX7+ satellite cells and
11% of MYOGENIN+ myocytes were GFP+, 41% of
MYOD+ cells were GFP+. MYOD+ cells may be either acti-
vated PAX7+MYOD+ satellite cells or PAX7—MYOD+ myo-
blasts. Because few PAX7+ cells were GFP+, we interpret the
GFP+MYOD+ cells to be myoblasts. Thus we find that Wnt/
B-catenin signaling is transiently active during muscle
regeneration at 1 dpi, particularly in myoblasts.

Canonical Wnt/B-Catenin Signaling Is Effectively
Abrogated in Satellite Cells and Their Progeny in
Pax7CERT2/+.8_Catenin 4% Mice

Our analysis of TCF/Lef:H2B-GFP"* mice demonstrates that
Wnt/B-catenin signaling is transiently active in myoblasts
during muscle regeneration. To test whether Wnt/p-catenin
signaling is necessary specifically within myogenic cells
for regeneration, we conditionally deleted 3-catenin in satel-
lite cells using Pax7“"“*R2/+.8_catenin®/1-%;Rosa™ ™ “/* mice.
In Pax7°*R72 mice, Cre-mediated recombination occurs
specifically and efficiently (>94% recombination) in Pax7+
satellite cells after delivery of tamoxifen (TAM) (Murphy
et al., 2011). The B-catenin loss-of-function allele creates a
functional null following Cre-mediated deletion of exons
2-6, thus inactivating signaling (Brault et al., 2001). The
fate of recombined cells was tracked via the Rosa™'™¢
reporter, which ubiquitously expresses membrane-bound
Tomato until Cre-mediated recombination excises Tomato,
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resulting in membrane-bound GFP expression (Muzumdar
et al, 2007). We analyzed Pax7<ERT2/*,6.catenin®/?-,;
Rosa™™™5/* mice and compared them to Pax7¢PRT24,
8-catenin®’*;Rosa™ ™%/ mice to control for any possible
B-catenin heterozygous phenotype. Satellite cells are the
only cells that express Pax7 in uninjured muscle (Murphy
et al., 2011). Therefore, by delivering TAM before injury,
in control Pax7¢"*ERT2/+. g_catenin®’*;Rosa™ ™ /* mice, nearly
all satellite cells and their progeny express GFP and all are
heterozygous for g-catenin, whereas in mutant Pax7¢ kT2,
B-catenin®/?-%;Rosa™ "™ %* mice, nearly all satellite cells and
their progeny express GFP and are null for g-catenin.

We tested whether pg-catenin was efficiently and
completely deleted in satellite cells and their progeny in
Pax7CERT2/. 8_catenin®/M?-%;Rosa™ %+ mice. To test that
exons 2-6 of B-catenin were genetically deleted, we isolated
by FACS nonmyogenic TOMATO+ and myogenic GFP+
cells from TAs of control and mutant mice given five
10 mg doses of TAM, injured via BaCl,, and harvested at
5 dpi (when there are maximal number of satellite cells;
Murphy et al., 2011). We isolated genomic DNA and used
PCR to identify 8-catenin wild-type (WT), fl2-6, and 42-6 al-
leles (Brault et al., 2001). In control mice, TOMATO+ and
GFP+ cells were positive for both WT and 42-6 alleles (Fig-
ure STA available online). In contrast, in mutant mice,
TOMATO+ cells contained both fi2-6 and 42-6 alleles,
whereas myogenic GFP+ cells contained only the 42-6
allele (Figure S1A). To test that genetic loss led to loss of
B-catenin protein, we analyzed B-catenin protein expres-
sion in nonmyogenic TOMATO+ and myogenic GFP+ cells
FACS isolated from TAs 5 dpi of control and mutant mice.
Whereas B-catenin was detectable in 23% and 17% of non-
myogenic TOMATO+ cells in control and mutant mice,
respectively, its detection in myogenic GFP+ cells dropped
from 76% in control to 1% in mutant mice (Figures
S1C and S1D). Together, these experiments indicate that
B-catenin is effectively deleted in satellite cell-derived
myogenic cells in Pax7“ kT2, g_catenin®12-6;Rosa™ ™"+
mice in response to TAM.

We next tested whether Wnt/p-catenin signaling was
effectively abrogated in Pax7¢"ERT2/%,8_catenin®/f12- mice.
To do this, we generated control Pax7<"ER12/*;g.catenin**;
TCF/Lef-H2B-GFP™* and mutant Pax7°"ERT2/.8_catenin®/12-6;
TCF/Lef-H2B-GFP™* mice, gave them five TAM doses,
injured TAs, and harvested muscle 1 dpi (when TCF/
Lef:H2B-GFP reporter levels are highest in myogenic cells).
CD31-CD45-SCA1-INTEGRINa.7+ myogenic cells were iso-
lated by FACS from control and mutant mice and analyzed
for GFP. Whereas 25% of control myogenic cells were GFP+,
only 2.5% of mutant myogenic cells were GFP+, indicating
that, by 1 dpi, canonical Wnt/B-catenin signaling is nearly
completely abolished (Figures S1E and S1F). To further
determine whether Pax7"®R72/*;8_catenin®/M?- mice effec-

tively abolished Wnt/B-catenin signaling in muscle, we
analyzed these mice during development. We have pre-
viously shown, using Pax7'“"*;8-catenin®/"?* mice, that
B-catenin regulates the number and slow fiber type of
fetal myofibers (Hutcheson et al., 2009). If Pax7<"ERT/,
B-catenin®?* mice work as effectively, fetal mice given
TAM during development should demonstrate a similar
phenotype. To test this, timed pregnant dams were given
TAM (E11.5, E13.5, and E15.5), pups harvested at E18.5,
and hind limbs sectioned and analyzed as before (Hut-
cheson et al., 2009). We found that, similar to Pax7'*;
B-catenin%6, in Pax7C"*ERT2/*,8_catenin®/?° mice, there
were fewer myofibers and a loss of slow myofibers in
many muscles, particularly in the soleus (Figures S2A and
S2B). Thus, Pax7<"“ERT2/%,6.catenin®f?¢ mice effectively
abrogate Wnt/B-catenin signaling in myogenic cells and
recapitulate phenotypes previously reported for fetal
myogenesis.

B-catenin Is Not Required for Satellite Cells to
Regenerate Muscle or to Self-Renew

Having established that Pax7CTERT2/,8_catenin®/N2-9;
Rosa™ ™%+ mice, upon TAM delivery, effectively abrogate
B-catenin signaling in myogenic cells, we tested whether
satellite cells and their progeny require p-catenin to regen-
erate muscle. Pax7"ERT2/*.8_catenin®/M%;Rosa™ ™"/ and
littermate control Pax7"“ERT2/*,8_catenin®/*;Rosa™ ™"/
mice were given five doses of TAM and then the right TA
injured via BaCl,. BaCl, injury induces a stereotyped
pattern of muscle regeneration, with the peak of number
of satellite cells and regenerating myofibers 5 dpi and
regeneration complete by 28 dpi (Murphy et al., 2011).
We found that, at 5 dpi, there was no difference between
mutant and control muscle in either the number or pro-
liferation of PAX7+ satellite cells (Figure 2A). Satellite cells
give rise to MYOD+ cells, and the peak number of
MYOD+ cells after BaCl, injury occurs at 3 dpi (Murphy
et al., 2011; M.M.M. and G.K., unpublished data). Sur-
prisingly, despite activation of the TCF/Lef:H2B-GFP™/*
reporter in a large number of MYOD+ cells (see above),
B-catenin deletion did not alter the number or proliferation
of MYOD+ cells (Figure 2B). Myoblasts differentiate into
myocytes, and these myocytes fuse into regenerating myo-
fibers, characterized by their expression of embryonic
myosin heavy chain (MyHCemb), an immature form of
MyHC replaced by slow (MyHCI) and fast isoforms (MyH-
CII) as nascent myofibers mature. However, we found no
difference in the amount of MyHCemb between mutant
and control muscle at 5 dpi (Figure 2C), indicating loss of
B-catenin does not affect regeneration of new myofibers.
At 28 dpi, there continued to be no deleterious effect on
muscle stem cells or regeneration. To determine whether
B-catenin is required for satellite cells to self-renew and
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Figure 2. B-Catenin Is Not Required for Satellite Cells to Regenerate Muscle or Self-Renew

At 3 dpi (B; n =3 control; n =3 mutant), 5 dpi (A and C; n =5 control; n = 5 mutant), and 28 dpi (D-G; n = 6 control; n = 5 mutant mice),
B-catenin deletion does not affect number or proliferation of satellite cells (A and D), number or proliferation of myoblasts (B), amount of
regenerating myofibers (C), or total muscle CSA (C and E). (F and G) After three rounds of injury (n = 5 control; n = 5 mutant mice),
f3-catenin deletion does not alter satellite cell self-renewal (F) or total muscle CSA (G). (E and G) At 28 dpi and after reinjury, myofibers are

shifted to larger CSA when B-catenin is deleted. The scale bar (F) for all panels represents 100 pm. See also Figures S1-S3. Error bars in all
histograms represent one SEM.

return to their niche, we compared the number of PAX7+ lamina differed (Figure 2D). In addition, regeneration was
satellite cells between mutant and control mice at 28 dpi. also unaffected, as neither the average myofiber cross-
However, neither the number nor location of satellite cells  sectional area (CSA) nor the number of myofibers was
within their niche beneath the myofibers’ LAMININ+ basal  affected by B-catenin deletion (Figure 2E). Interestingly,
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Figure 3. Loss of B-Catenin Does Not Affect Satellite Cell Contribution to Regenerated Myofibers

At 5 dpi (A; n=5 control; n=5 mutant), 28 dpi (A and B; n =6 control; n="5 mutant mice), or after reinjury (A, C, and D; n =5 control; n=5
mutant mice), B-catenin-null satellite cells regenerate GFP+ myofibers. Sections through entire contralateral and injured TA and extensor
digotorum longus (EDL) muscles (B and C) and whole-mount images of contralateral and reinjured TAs (D). The scale bars represent 100 pm

(A) or 0.5 mm (B and C). See also Figures S1-S3.
Error bars in (A) represent one SEM.

the distribution of the CSA of individual myofibers shifted
to larger sizes with B-catenin deletion, but the overall area
of the TA muscle was unaffected (Figure 2E). In summary,
loss of B-catenin has no deleterious effect on the ability of
satellite cells to self-renew, activate, proliferate, differen-
tiate into myoblasts, or regenerate myofibers.

Although our data indicate that B-catenin is not required
within myogenic cells for muscle regeneration, potentially
the function of B-catenin may only be uncovered after mul-
tiple rounds of regeneration. To test this, we successively
injured the TA and allowed it to regenerate three times
(strategy in Figure 2G). Even after repeated rounds of regen-
eration, we detected no difference between mutant and
control mice in satellite cell self-renewal, average myofiber
CSA, or number of regenerated myofibers (Figures 2F and
2G). Similar to our findings at 28 dpi, we observed that

the CSA of individual myofibers was shifted to larger sizes
with loss of B-catenin, although the overall area of the TA
was not changed (Figure 2G). Thus, B-catenin is not
required in myogenic cells to regenerate muscle even after
multiple rounds of regeneration.

A possible explanation for the lack of a defect in muscle
regeneration with deletion of B-catenin may be techni-
cal issues with the Pax7¢ERT2/*+.g_catenin®/M?-%;Rosa™ "/
mice. As satellite cells are highly proliferative, a few nonre-
combined “escaper” satellite cells, retaining one wild-type
allele of @-catenin, could potentially outcompete g-cate-
nin-null cells and regenerate muscle. To test this, we
compared the amount of GFP, representative of the contri-
bution of satellite cells, in muscle from mutant and control
mice and found no difference in GFP at 5 or 28 dpi or after
multiple rounds of reinjury (Figure 3). Recently, it has been

Stem Cell Reports | Vol. 3 | 475-488 | September 9, 2014 | ©2014 The Authors 479




Stem Cell Reports

Wht/B-Catenin Signaling in Muscle Regeneration

A 5dpi Cc

PAX7+ Satellite Cells MYOGENIN+ Myocytes

MYOD+ Myoblasts

MyHCembs+
generati

ng Fibers
TN harvest
"4
RIS
g I3 i
S g8
§ §¢
Q
83
’«é b Key
Qal
Pax7 CreeaTzs,
Peatenin **;
g Rosa mme»
IR
2
g g8 e
& 8% in 1
Q Peatenin "*;
%53 et
]
QA

s W H
PAXT+ PAXT* Cells/ % PHH3*PAXT+/ MyoD* MyoD* Cells/ % PHH3tMyoD*/ Myog*  Myog* Cells/ % PHH3*MyoG*/| % M
MyoD*Cells i+
1s007Cell ps oot Zﬂn‘ceux so0- el 15 mmé gzsyo s - Ol o thm? %M%ns Cells el :
120 350 1.75. 400, 100. 1.75. 400 100, 175 = 6.
1000, 300, 15 15 350 15 2. s
750. 250. 125 0 7 125 = L 125 = .
200. 200 50, 1 50 1
500, 150. 075 075 s 075 10 3
250 100. 05 100 25, 05 100 25 [ 5 2
50. 025 025 50 025 1
o 0. o o o, o o o o 0 o
E 28dpi F MyHCemb+ H o 1
PAX7+ Satellite Cells MYOGENIN+ Myocytes Regenerating Fibers Yy harvest Sirius Red+ MCT
D | @i 5eV
. BaCl 28dpi )
gn
N F s . " Gtuiicat
£ ta Myofiber Size Distribution
& SE
g &% 3500
NE)
NE®
X § g 3000
S 2500
LS
2000
% 1500
g
E g 3 1000
&
§ S £ 500
g €
S gt 0
N&E® %
N T8 % B,
] %, ﬁ;b
Qo Hoechst
PAXT* PAX7* Cells/ MYOG* MYOG* Cells/ % MyHCemb/ Ave Fiber Fibers/  Total Area
Cell mm2 Cells mm2 Tofal Area CSA um2 mm2 mm2
60 200 5255007 25 peb oo 025 1200 FEMTS 05, s
350 50. 02 1000 600. % &
= Y 6
s 4. - 800 500. % 10
200 30 600 o0, 4 75
150 01 300. 3
2
100 0.05. 09 200. 2 8,
50 29 200 100. ¥ 25.
o o o o o. 0 0

Ploaxzs satelite cetis | Kmyoaening Myocytes L

5
5

BaCl,# 60dpi
R e 3
[ Myofiber Size Distribution £
£ Sk T
S gt ©
NES @
x 80 o
] '3
Qa
By
g 8
§ &t
§ §F
NES
SR coin
T PO R
Qo Hoechst E s
PAX7+ PAXT* Cells/ MYOG* MYOG Cells/ Ave Fiber Fibers/  Total Area g €%
Cells mm?2 Cel mm2 CSA um2 mm: mm2 ‘ﬂ)‘ o
100 6050050 200 1220551 25 T peo a7 1200 8 ]
350 e 17 jed 1000 500 4 398
200 150. o AL Al
250 « 125 e 800 500, s
200 20, 100 600 4o R
150 5 7 10 300 3
100 " 50. =0 200. 2
% 10 et s 200 100 1
0 0. 0. 0 0 0. 0

(legend on next page)

480 Stem Cell Reports | Vol. 3 | 475-488 | September 9, 2014 | ©2014 The Authors



Stem Cell Reports

Wht/B-Catenin Signaling in Muscle Regeneration

shown that continuous administration of TAM during
muscle regeneration may be required to completely delete
a gene of interest in satellite cells (Giinther et al., 2013).
We repeated our experiments injuring TA muscles of
mutant and control mice but with continuous TAM admin-
istration (strategy in Figure S3C) and analyzed muscles at
28 dpi. Similar to our previous results, we found no differ-
ence in satellite cell self-renewal or their contribution to
regeneration (Figures S3A, S3B, and S3D). As we saw previ-
ously, the distribution of the CSA of individual myofibers
was shifted to larger sizes with loss of B-catenin but now re-
sulted in a slight increase (but not significant; p = 0.07) in
the average CSA of myofibers and a slight decrease (but
not significant; p = 0.08) in the number of myofibers,
although the overall CSA of the muscle was unaffected
(Figure S3C). Thus, we show in Pax7"ERT2/+; g catenin®/1%-¢;
Rosa™"™%* mice that satellite cells are able, despite loss of
B-catenin, to effectively regenerate muscle. Also, the
finding that two different stringent TAM strategies give
similar results argues that the lack of a deleterious pheno-
type is unlikely to be a false-negative result.

In summary, we show by in vivo conditional deletion of
B-catenin that, despite activation of Wnt/B-catenin sig-
naling within myogenic cells, B-catenin is not required
within satellite cells or their derivatives for muscle regener-
ation or satellite cell self-renewal.

Constitutive Activation of B-Catenin in Satellite Cells
Alters Myoblast Kinetics, Resulting in a Prolonged
Regenerative Response
Our experiments demonstrate that, although B-catenin is
not required, Wnt/B-catenin signaling is transiently active
in myogenic cells during muscle regeneration. This pre-
sents an alternative hypothesis: whereas Wnt/p-catenin
signaling is not required, once activated, prompt downre-
gulation of signaling may be important for proper muscle
regeneration. To test this, we constitutively activated p-cat-
enin in satellite cells and their derivatives and assayed for
effects on muscle regeneration.

To constitutively activate -catenin, we used Pax7¢"ERT2+,
B-catenin™*;Rosa™"%* mice. In the B-catenin™ allele, Cre
mediates deletion of exon 3 and the formation of a stabi-

lized, constitutively active form of B-catenin (Harada et al.,
1999). We confirmed that GFP expression reflects recombi-
nation in the B-catenin locus by isolating by FACS GFP+
myogenic and TOMATO+ nonmyogenic cells from TA mus-
cles of control Pax7<"ERT?/.g catenin*’*;Rosa™ ™% and
mutant Pax7ERT2%,8_catenin™*;Rosa™ ™+ mice given
five TAM doses, injured, and harvested 5 dpi. Using genomic
DNA and PCR, we found in control mice both GFP+ and
TOMATO+ cells contained only the WT allele (Figure S1B).
In mutant mice, TOMATO+ cells contained both the fI3
and WT alleles, whereas GFP+ cells had only the WT allele
because the primer-binding sites for the fI3 allele were
deleted by recombination (Figure S1B). Therefore, after
TAM delivery to Pax7<"ERT2/*; 6_catenin™"*;Rosa™ "™ %* mice,
GFP+ myogenic cells constitutively activate B-catenin.

We examined whether constitutive activation of B-cate-
nin affected the expansion or self-renewal of satellite
cells during muscle regeneration. Comparison of mutant
Pax7CERT2/+, 8_catenin™*;Rosa™ ™ 5/* with littermate con-
trol Pax7C"ERT2/+8_catenin®™*;Rosa™™%* mice revealed
that, at 5 dpi, when the number of satellite cells peaks,
there was no difference in the number or proliferation of
PAX7+ satellite cells with constitutive B-catenin activation
(Figure 4A). At 28 dpi, when muscle regeneration is com-
plete, there was no difference in the number of satellite
cells that had self-renewed (Figure 4E), although at 60
dpi, there was a slight (but not significant; p = 0.09)
decrease in satellite cells with constitutive B-catenin activa-
tion (Figure 4]). Thus, constitutive B-catenin activation did
not alter the expansion of satellite cells or significantly
impair their return to the niche during regeneration.

The transient activation of Wnt/B-catenin signaling in
myoblasts suggests that B-catenin may regulate myoblast
expansion or differentiation during regeneration. Nor-
mally, the number of MYOD+ cells peaks at 3 dpi and
declines by 5 dpi, and MYOD+ cells are absent at 28 dpi
(Figures 2B and 4B; Murphy and Kardon, 2011; data not
shown). At 5 dpi, there was a significant 1.79-fold increase
in the number of MYOD+ cells (p = 0.02) with constitutive
B-catenin activation, although there was no difference in
proliferation of these cells (Figure 4B). There was no differ-
ence in either the number or proliferation of MYOGENIN+

Figure 4. Constitutive Activation of B-Catenin Alters the Kinetics of Myoblast Differentiation, Resulting in a Prolonged Regen-

erative Response

(A-D) At 5 dpi (n =6 control; n = 6 mutant), constitutive B-catenin activation does not alter expansion or proliferation of satellite cells (A)
but increases the number of myoblasts (B) at the expense of regenerating myofibers (D).

(E-I) At 28 dpi (n = 4 control; n = 5 mutant mice), B-catenin activation causes continued presence of myocytes (F) and regenerating
myofibers (G), smaller regenerating myofibers (H), unresolved fibrosis (I), and results in TAs with larger CSA (H).

(J-L) At 60 dpi (n =3 control; n = 3 mutant mice), with B-catenin activation, myocytes (K) and smaller myofibers (L) are still present.
(M) B-catenin activation does not alter sarcomere structure of regenerated myofibers (n = 3 control; n = 3 mutant mice).

The scale barin (K) for sections (A-C), (E-G), and (I-K) represents 100 um. The scale barin (M) represents 10 pm. See also Figure S1. Error

bars in all histograms represent one SEM.
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Figure 5. Constitutive Activation of B-Catenin Does Not Affect Satellite Cell Contribution to Regenerated Myofibers
At 5 dpi (A; n =6 control; n = 6 mutant) or 28 dpi (A and B; n = 4 control; n = 5 mutant mice), satellite cells with constitutive B-catenin
regenerate GFP+ myofibers. Sections through entire contralateral and injured TA and EDL muscles (B). The scale bars represent 100 um (A)

or 0.5 mm (B). See also Figure S1. Error bars in (A) represent one SEM.

myocytes (Figure 4C), but there was a slight decrease (high
variance precluded significance; p = 0.10) in the amount of
MyHCemb+-regenerating myofibers (Figure 4D). The lack
of change in PAX7+ cells, increased number of MYOD+
cells, and decreased area of MyHCemb+-regenerating myo-
fibers suggest that constitutive activation of B-catenin
prolongs the time that myogenic cells remain as MYOD+
myoblasts.

To test if constitutive activation of p-catenin blocks myo-
fiber differentiation, we examined TAs at 28 dpi, when
regeneration is normally complete. No MYOD was ex-
pressed in either Pax7<"“R12/%;6.catenin™*;Rosa™ ™"+ or
Pax7C"ERT2/%, 8_catenin™*;Rosa™ ™%+ mice (data not shown),
and so the MYOD+ myoblasts present at 5 dpi do not remain
in an undifferentiated state. In control mice, few MYO-
GENIN+ myocytes or actively regenerating MyHCemb+
myofibers remained at this time point, but in Pax7¢" k1%,
B-catenin™*;Rosa™™* mice, there was a 6.8-fold increase
in myocytes (p = 0.008) and a 3.6-fold increase in regenerat-
ing myofibers (p =0.009; Figures 4F and 4G). This increase in
regenerating myofibers was reflected in a shift to smaller
myofibers (Figure 4H). Interestingly, the total CSA of the
TAs was significantly increased with constitutive B-catenin
activation (p = 0.05; Figure 4H). This increased muscle size
may partially result from a slight increase in Sirius Red+ con-
nective tissue (but not significant; p = 0.09; Figure 4I), and
this increase in fibrosis may reflect that the regenerative
response is ongoing. In total, these data show that, at 28
dpi, when muscle regeneration is normally complete,
constitutive activation of B-catenin leads to a prolonged

regenerative response, which is reflected in the continued
presence of myocytes, actively regenerating myofibers and
unresolved fibrosis.

We examined regenerated TAs at 60 dpi to test whether
constitutive B-catenin activation had long-term effects on
muscle regeneration. We found there was a 2.7-fold increase
in MYOGENIN+ myocytes in Pax7<"ERT28.catenin™/;
Rosa™ "% compared with control mice (p = 0.05; Fig-
ure 4K). Although there was no expression of MyHCemb
in either genotype (data not shown), there was an increased
number of smaller (likely newly regenerated) myofibers
(Figure 4L). Thus, even at 60 dpi, the regenerative response
is ongoing.

Potentially, constitutive B-catenin activation could pre-
vent myogenic cells from regenerating muscle, and all re-
generated muscle could result from a small population of
nonrecombined escaper cells. To test this, we compared
GFP expression (which reflects constitutive p-catenin acti-
vation) in Pax7<"“ERT2, 8_catenin™*;Rosa™™%/* and con-
trol Pax7CERT2/+:8_catenin™*;Rosa™ ™% mice. At 5 dpi,
there was slightly less GFP expression in mutant mice
(but not significant; p = 0.09; Figure 5A), but this likely re-
flects the decrease in regenerated myofibers (Figure 4D).
However, at 28 and 60 dpi, there was no difference in
GFP expression between mutant and control mice, as
nearly all regenerated myofibers with centralized myonu-
clei were GFP+ (Figures 5A and SB). This demonstrates
that, whereas constitutive activation of p-catenin prolongs
the regenerative response, ultimately it does not prevent
myogenic cells from regenerating muscle.
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B-catenin is also a member of the adherens junction com-
plex and localizes to the membrane of muscle fibers, and its
overexpression can cause muscle structural defects (Kra-
merova et al., 2006; Nastasi et al., 2004). Thus, constitutive
B-catenin activation in myogenic cells might cause muscle
structural defects. To test this, we analyzed myofibers from
Pax7 " ERT2/. 8_catenin™/*;Rosa™T™"%* mice 4 weeks after
injury. However, analysis of regenerated GFP+ myofibers
for sarcomere structure did not reveal any obvious defects
(Figure 4M).

In summary, constitutive activation of B-catenin in satel-
lite cells and their derivatives prolongs the regenerative
response to muscle injury. Whereas constitutive p-catenin
activation does not prevent muscle regeneration or affect
sarcomere structure of regenerated myofibers, it signifi-
cantly affects the kinetics of muscle regeneration. Activa-
tion and proliferation of satellite cells is unaltered, but
myoblasts and subsequently myocytes and smaller regen-
erating myofibers are present for an extended period,
long after regeneration is normally complete.

B-Catenin Is Not Necessary but Is Sufficient to Regulate
Slow Myofiber Type during Muscle Regeneration
B-catenin has been implicated in the determination of mus-
cle fiber type. Previously, we showed that B-catenin is a
necessary and sufficient positive regulator of the differentia-
tion of slow MyHCI+ myofibers during fetal myogenesis
(Hutcheson et al., 2009; Figure S2). Therefore, we tested
in vivo whether B-catenin regulates the differentiation of
slow myofibers during muscle regeneration. However, exam-
ination of mutant Pax7“"®RT2/*.g._catenin®/?%;Rosa™ ™/
and control Pax7<"ERT2.8_catenin®*;Rosa™"%* mice re-
vealed no difference in MyHCI expression at either 5 or 28
dpi (Figures 6A and 6B). In satellite cell-derived C2C12
cells, expression of fast MyHCIIb is directly regulated by
B-catenin binding, via TCF/LEF, to the MyHCIIb promoter
(Shanely et al., 2009). Again, examination of mutant and
control mice revealed no difference in MyHCIIb expression
at 28 dpi (Figure 6C). Because constitutive B-catenin is suf-
ficient to drive all fetal myogenic progenitors to differen-
tiate into slow MyHCI+ myofibers (Hutcheson et al.,
2009), we tested whether constitutive B-catenin activation
in satellite cells would have a similar effect on regenerated
myofibers. We found a 4.5-fold increase in MyHCI expres-
sion (p = 0.0004) in Pax7C"ERT2/*:8_catenin*/*;Rosa™ ™"/
versus Pax7CERT2/+8_catenin®*;Rosa™ ™" “* mice at 5 dpi
(Figure 4D). At 28 dpi, there continued to be a 4-fold in-
crease in MyHCI expression (p = 0.009; Figure 4E) with
constitutive B-catenin activation, and this effect was some-
what maintained at 60 dpi (but not significant; p = 0.09;
Figure 6F). However, whereas only a small percentage of
the myofibers are MyHCI+, 80%-90% of the myofibers
are GFP+ and satellite cell derived (Figure 5A). This small

number of MyHCI+ myofibers may reflect an incomplete
conversion to a slow fiber type or that nerve-derived signals
significantly modulate fiber type. Altogether, our data
demonstrate that, during adult muscle regeneration, p-cat-
enin is not necessary for differentiation of slow MyHCI+ or
fast MyHCIIb+ myofibers. However, B-catenin is sufficient
to cell autonomously positively regulate MyHCI expression
but, unlike during fetal myogenesis, cannot convert all my-
ofibers to a slow MyHCI+ fiber type during regeneration.

DISCUSSION

Wnt/B-catenin signaling has been proposed to be critical
for adult muscle regeneration (reviewed in von Maltzahn
et al., 2012). Here, we explicitly test the role of this
signaling pathway specifically within satellite cells and
their derivatives during muscle regeneration in vivo. We
find that Wnt/B-catenin signaling is transiently active in
myoblasts during muscle regeneration. However, unlike
previous studies, we find that B-catenin is not required in
myogenic cells for regeneration, but instead downregula-
tion of transiently activated B-catenin is critical for limiting
the regenerative response. Thus, we show that it is not
activation but rather silencing of Wnt/p-catenin signaling
that is important for muscle regeneration (summarized in
Figure 7).

Using the highly sensitive TCF/Lef:H2B-GFP™® reporter,
we demonstrate that Wnt/B-catenin signaling is transiently
active during muscle regeneration, specifically in myo-
blasts 1 dpi. Our finding that myoblasts transiently trans-
duce Wnt/B-catenin signals agrees with previous analyses
of nuclear B-catenin and TOPGAL reporter expression
(Brack et al., 2007, 2008). Results from others (Abiola
et al., 2009; Le Grand et al., 2009; Polesskaya et al., 2003;
Zhao and Hoffman, 2004) show that Wnts are upregulated
during regeneration, although the cellular origin of these
Whnts is unresolved. The Wnt antagonists, SFRPs 1, 2, and
4 are also strongly upregulated during regeneration (Le
Grand et al., 2009; Zhao and Hoffman, 2004), and this
likely is the endogenous molecular mechanism by which
Wnt/B-catenin signaling, activated at 1 dpi, is subsequently
silenced.

We explicitly tested the requirement for B-catenin in sat-
ellite cells and their derivatives for muscle regeneration.
Despite efficient deletion of B-catenin, satellite cells were
able to self-renew and regenerate muscle (although a subtle
phenotype, undetectable in our assays, is possible). Inter-
estingly, we did see that with B-catenin deletion myofibers
shifted to larger cross-sectional areas at 28 dpi or with
reinjury. Given that constitutive p-catenin activation pro-
longed regeneration and resulted in a shift to smaller, re-
generating myofibers, the shift to larger myofibers with
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loss of B-catenin may indicate premature differentiation of
myofibers. However, the finding that TAs regenerated from
B-catenin satellite cells are GFP+ and do not differ in overall
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Figure 6. B-Catenin Is Not Necessary but
Is Sufficient to Regulate Slow Myofibers
during Regeneration

(A-C) B-catenin deletion does not alter the
amount of slow MyHCI+ (A and B) or fast
MyHCIIb (C) myofibers (at 5 dpi: n = 5
control, n = 5 mutant; at 28 dpi: n = 6
control, n = 5 mutant mice).

(D-F) B-catenin activation increases the
amount of slow MyHCI+ myofibers (at 5 dpi:
n =6 control, n = 6 mutant; at 28 dpi: n =4
control, n = 5 mutant).

Error bars in all histograms represent one
SEM.

size from control TAs suggests that a potential requirement
of B-catenin to inhibit premature differentiation is modest,
at best. Consistent with the lack of a significant phenotype
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Figure 7. Model of Role of Wnt/B-Catenin Signaling in Adult
Muscle Regeneration

(A) During wild-type regeneration, Wnt/B-catenin signaling is
transiently active in myoblasts.

(B and C) Deletion of B-catenin in satellite cells and their de-
rivatives does not alter muscle regeneration (B), but constitutive
[B-catenin activation alters the kinetics of myoblast differentiation
(C), leading to a prolonged regenerative response.

with B-catenin loss, previous studies have produced contra-
dictory findings. Most experiments have been conducted
in vitro and, using a variety of techniques to inhibit p-cat-
enin signaling, have found decreased satellite cell prolifer-
ation (Otto et al., 2008), less differentiation (Brack et al.,
2008; Descamps et al., 2008; Kim et al., 2008), or more dif-
ferentiation (Gavard et al., 2004; Tanaka et al., 2011). Only
Brack et al. (2008, 2009) inhibited Wnt/B-catenin signaling
in vivo, via injection of sFRPs into regenerating TAs or ge-
netic deletion of B-catenin coactivators BCL9 and BCL9-2
(via MyfSCT9+; Bcl9'o*1ox0 . Bc]9. 210X mjce) after BaCl, or
freeze injury. They concluded that Wnt/B-catenin is neces-
sary to promote muscle differentiation, but addition of
sFRPs blocks both canonical and noncanonical Wnt
signaling (Li et al., 2008) and does not specifically target

myogenic cells, and the genetic BCL9/BCL9-2 deletion
potentially affects satellite cell development. Thus, previ-
ous phenotypes attributed to B-catenin necessity in satel-
lite cells for regeneration may reflect in vitro conditions
or in vivo reveal the role of canonical signaling in muscle
progenitors during development or in other cell types
involved in muscle regeneration or the function of nonca-
nonical signaling in regeneration.

The transient activation of Wnt/p-catenin signaling in
myoblasts suggested the alternative hypothesis that not
activation but silencing of signaling is critical for proper
muscle regeneration. To test this, we examined the effects
of constitutive B-catenin activation. Previous studies
testing this have primarily been conducted in vitro, via
‘Wnt3a or LiCl delivery to cultured satellite cells, and found
constitutive Wnt/B-catenin signaling either prevents differ-
entiation (Gavard et al., 2004; Kuroda et al., 2013; Tanaka
et al., 2011) or promotes differentiation and fusion (Ber-
nardi et al., 2011; Brack et al., 2008; Han et al., 2011; Pan-
sters et al., 2011). Two papers (Brack et al., 2008; Le Grand
et al., 2009) tested in vivo (using either BaCl, or freeze
injury) the effects of increased signaling and concluded
that Wnt/B-catenin signaling promoted premature differ-
entiation. However, these in vivo experiments activated,
via ectopic Wnt3a, signaling in all cell types (including
muscle connective tissue fibroblasts and endothelial cells)
during regeneration. Our experiments constitutively acti-
vating B-catenin specifically in satellite cells revealed that
satellite cells are largely insensitive to increased B-catenin,
as we saw no effects on satellite cell expansion or prolifera-
tion after injury. However, constitutive B-catenin activation
did alter the kinetics of the regenerative process, as myo-
blasts (which normally transiently express B-catenin) and
subsequently myocytes and regenerating myofibers are
present for an extended period. Thus, continued activation
of B-catenin signaling prolongs the myoblast phase of
regeneration, although it does not ultimately block differ-
entiation. This prolonged regeneration negatively impacts
muscle structure as it results in smaller myofibers and
increased fibrosis.

Our study is a cautionary warning about the conclusions
of Wnt/B-catenin signaling functional significance that
can be drawn from reporter and gain-of-function experi-
ments. Multiple reporters have been developed for Wnt/
B-catenin signaling (reviewed in Barolo, 2006). Although
they differ in their sensitivities, a finding of reporter activ-
ity is considered a good indicator that endogenous Wnt/
B-catenin signaling is active. However, our data show that
presence of activity does not necessarily imply a biological
requirement for that activity. In addition, gain-of-function
experiments reveal whether cells are sensitive to Wnt/
B-catenin signaling but again do not demonstrate signaling
necessity. Loss-of-function studies, particularly when
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conducted conditionally (to limit the spatial and temporal
scope of deletion) and in vivo, are essential for determining
the necessity of signaling. In fact, in our study, the combi-
nation of reporter and gain- and loss-of-functions experi-
ments show that it is not activation but rather silencing
of signaling that is important. In wild-type mice, this
silencing is likely accomplished by the early and strong up-
regulation of sFRPs during muscle regeneration (Le Grand
et al., 2009; Polesskaya et al., 2003; Zhao and Hoffman,
2004).

The finding that Wnt/B-catenin signaling must be
silenced during adult regeneration naturally raises the
question of why signaling is activated. Our previous anal-
ysis of Wnt/B-catenin signaling during fetal myogenesis
demonstrated that B-catenin is required for regulation of
fetal myofiber differentiation (Hutcheson et al., 2009).
Similar to the classic argument about the origin and func-
tion of the Spandrels of San Marcos (Gould and Lewontin,
1979), activation of Wnt/B-catenin signaling in adult myo-
blasts might simply be a vestige of their developmental
lineage, in which B-catenin signaling is required for fetal
myogenesis (Hutcheson et al., 2009; Murphy and Kardon,
2011).

Comparison of the role of Wnt/B-catenin signaling dur-
ing fetal myogenesis and adult regeneration reveals
intriguing similarities and differences between fetal and
adult stem cells and myoblasts. Loss-of-function experi-
ments demonstrate that, during fetal myogenesis, B-cate-
nin is critical for regulating the number and fiber type of
myofibers that differentiate from PAX7+ stem cells and
yet, in the adult B-catenin, is dispensable for the differenti-
ation and fiber type of myofibers regenerated from PAX7+
satellite cells. This difference between fetal and adult
stem cells is reminiscent of the difference between the
development and maintenance of hematopoietic stem
cells (HSCs); B-catenin is essential for HSC generation
(Ruiz-Herguido et al., 2012) but later appears to be dispens-
able for maintenance of embryonic HSCs (Ruiz-Herguido
et al., 2012) and adult HSC function (Cobas et al., 2004).
Gain-of-function experiments demonstrate that differenti-
ating fetal and adult myofibers are similarly sensitive to
B-catenin, as constitutive B-catenin activation is sufficient
to convert both types to slow MyHCI+ myofibers, although
this conversion is more complete during fetal myogenesis.
However, most striking is the difference in p-catenin sensi-
tivity between fetal and adult PAX7+ stem cells. In the
fetus, constitutive activation of B-catenin causes a dramatic
expansion of PAX7+ stem cells (Hutcheson et al., 2009). In
contrast, in the adult B-catenin, activation does not expand
the number of PAX7+ satellite cells but rather the number
of transit-amplifying MYOD+ myoblasts. Altogether, our
experiments indicate that, despite their close lineage rela-
tionship (Hutcheson et al., 2009; Murphy and Kardon,
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2011), fetal and adult PAX7+ stem cells differ in their
requirement of and sensitivity to p-catenin. Limiting the
sensitivity of highly proliferative satellite cells to p-catenin
may be important for decreasing the adult risk of cancer
from oncogenic B-catenin signaling.

EXPERIMENTAL PROCEDURES

Mice

All mouse lines were previously reported: Pax7<"“®f2 (Murphy
etal., 2011); B-catenin'>° (Brault et al., 2001); B-catenin™ (Harada
et al., 1999); Rosa™T™¢ (Muzumdar et al., 2007); and TCF/
Lef-H2B-GFP™ (Ferrer-Vaquer et al., 2010). Mice were bred onto
C57/BL6J background and used at 6-8 weeks of age.

FACS Cell Isolation and Analysis

Mononuclear myogenic cells and fibroblasts were isolated from
injured right and uninjured left TAs, incubated with antibodies if
needed (Table S1), and analyzed via FACS (details in Supplemental
Experimental Procedures). Myogenic cells and fibroblasts were iso-
lated from TCF/Lef:H2B-GFP'$ mice using strategy of Yi and Rossi
(2011). For Pax7<"FRT2/, 8_catenin®"*;Rosa™ ™% and Pax 7"ER T2/,
B-catenin™*;Rosa™ "™+ mice and their controls, myogenic cells were
isolated via GFP and nonmyogenic cells via TOMATO. Genomic
DNA of cells was isolated and alleles of g-catenin determined via
PCR using primers of Brault et al. (2001) and Harada et al. (1999).

Muscle Injury and Tamoxifen Delivery

Injury was induced by injecting 25 pl of 1.2% BaCl, in normal sa-
line into right TA. Left TA served as uninjured control. For admin-
istration prior to injury, TAM was delivered via gavage in 10 mg
doses. For continuous delivery before and after injury, TAM was
delivered intraperitoneally at 3 mg/40 g body weight per injection.
All mouse experiments were conducted under the oversight of
University of Utah Institutional Animal Care and Use Committee.

Immunofluorescence, Histology, and Microscopy

For section immunofluorescence, flash-frozen muscles were
sectioned, fixed in paraformaldehyde, and labeled viaimmunoflu-
orescence or stained with Sirius Red (details in Supplemental
Experimental Procedures). Sirius Red sections were imaged on a
Zeiss Axioplan2 microscope. Immunofluorescent sections were
imaged on a Nikon AR1 confocal or widefield microscope. Each
confocal image is a composite of maximum projections, derived
from stacks of optical sections.

Quantification and Statistics

Quantification of PAX7+, MYOD+, or MYOGENIN+ nuclei and
amount of GFP, MyHCemb, MyHCI, MyHCIIb, or ECM was quan-
tified using Image J (details in Supplemental Experimental Proce-
dures). For each variable, counts of two sections across the entire
TA were averaged for three to six individuals of each genotype
per time point and analyzed using a Student’s two-tailed t test.
On all bar charts, mean + 1 SEM shown. Fiber distribution was
determined using MuscleQNT (developed by S.D.F. and M.Y. and
available at https://github.com/stevendflygare/muscleQNT). In
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brief, MuscleQNT is an image analysis pipeline implemented in Py-
thon designed to identify borders (through adaptive thresholding
and a series of erosion and dilation steps) of LAMININ+ myofibers
and quantify the number and CSA of all myofibers in a muscle
cross-section. Histograms and summary statistics of myofiber sizes
are generated, and histogram error bars are the result of permuta-
tion tests. All displayed histograms were statistically significant
via the Kolmogorov-Smirnov test.
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CHAPTER 4

HUMAN VARIANT PRIORITIZATION

VAAST variant prioritizer

Variant prioritization is the process of categorizing individual variants into groups based
on some desired property. For example, often it is of research and medical interest to prioritize
genetic variants according to how likely they are to contribute to disease. A major challenge of
variant prioritization is that some genes naturally tolerate more variation than others, including
missense and other protein coding variants. Thus, in order to successfully prioritize variants, the
local genetic context of a variant is very important.

The NCBI’'s dbSNP database contains over 100 million human variants. Methods are
needed that accurately and efficiently prioritize all known human genetic variants, not just those
that induce a protein coding change or any other specified subset of variants; human genetic
variants of nearly every conceivable annotation category have been associated with or shown to
cause disease or phenotypic differences. Many software tools exist to prioritize human variants;
however, they all suffer from significant limitations (Kircher et al., 2014). CADD is currently the
most comprehensive tool available, and can prioritize SNVs and small insertion-deletion (indel)
mutations (Kircher et al., 2014). However, CADD cannot process larger indels. To address the
shortcomings of these other existing software tools, | have developed VVP, the VAAST Variant
Prioritizer. VVP enables rapid, comprehensive, and accurate prioritization of all human variants.
VVP is able to score all variation that can be annotated by Ensemble’s Variant Effect Predictor
(VEP) and, as | demonstrate below, is the fastest and most accurate tool available. VVP
leverages the likelihood developed by Yandell et al. for VAAST and thus incorporates information

about background allele frequency, amino acid change severity, and evolutionary conservation in
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order to prioritize human variation (Hu et al., 2013; Yandell et al., 2011). Because VVP
incorporates allele frequency information in its scoring process, it is able to use zygosity
information about the variants, which most other tools, including CADD, do not; thus, VVP is
aware of dominant or recessive variation, which to my knowledge is not part of any other variant
prioritization tool. VVP is implemented in Python and is available for academic use through the

Yandell lab github repository.

VVP methodology

VAAST is a highly effective software tool that uses a burden test to identify genes
responsible for disease (Rope et al., 2011). VAAST scores each genetic variant in the affected
individuals using a likelihood equation that incorporates information about allele frequency in the
target and background populations, amino acid change severity, and evolutionary conservation
(Hu et al., 2013; Yandell et al., 2011). After scoring each variant using the likelihood, VAAST
then filters through the scored variants to identify the highest scoring variant(s) that fit the
specified penetrance and inheritance model (VAAST will choose one homozygous variant or two
heterozygous variants for each target individual when a recessive model is specified). The
VAAST gene burden score is then the sum of the scores of these identified variants. The
statistical significance of the burden of a gene is determined by permuting the background and
target populations. For full details on the VAAST methodology, see Yandell et al. (2011).

Although VAAST scores every variant using its likelihood, it does not provide a
framework with which to prioritize individual variants. One cannot directly prioritize variants using
the VAAST likelihood scores because there is no notion of the significance of the magnitude of
the difference between any two scores. VVP overcomes this limitation by normalizing the VAAST
likelihood scores into percentiles. This is done by calculating their percentile rank against three
types of lookups that are built by cataloging healthy human variation in a background population.
In this application, a lookup is defined as the percentile ranks of VAAST likelihood scores of
healthy human variation. The three types of lookups are for coding variants, noncoding variants

in a gene, and intergenic variants. Separate lookups for coding variants and noncoding variants
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are created for every gene and a single lookup is used for all intergenic variation. Through
benchmarking, | have found this segmentation of the lookups works well, but it is a matter of
further research to determine the best way to separate the lookups.

Suppose we have a genetic variant X in gene A with VAAST likelihood score of 9.2, and
that gene A has a corresponding lookup Y. By comparing 9.2 to the percentiles of lookup Y,
suppose we find that 9.2 has a percentile of 75. The VVP score of X is then 75. The
interpretation of this result for variant X is that its score is greater than or equal to 75% of healthy
human variants in gene A. In practice, a good cutoff is to consider variants with VVP scores
higher than 98 to be potentially damaging (top 2% of variation). It is important to note that the
lookups are entirely empirical, which means there are no parametric assumptions made about the
shape or scale of the healthy human variation for any gene. | believe this is a strength of VVP, as
there is very large variation in the shape of the distribution of scores in different genes (Figure
4.1).

The background human variation that is used to generate the lookups has a very large
impact on the behavior and performance of VVP. Optimally, the background would have its
variants called with the target variants of interest. However, | have used the 1000 genomes
phase 3 variant calls as a general lookup with good success. Figure 4.2 shows that using variant
calls from a background that was called with the target individuals to generate the lookups results
in less noise in the VVP prioritization results. This is due to a higher relative VVP score in the
background that was called with the target individuals than using the 1000 genomes phase 3
variant calls to generate the lookups. An important point brought out by Figure 4.2 is the
comparability of VVP scores. The disease causing variant has a VVP score of 80 when using the
lookups based on the 1000 genomes phase 3 variant calls and a VVP score of 100 when using
the background that was called together with the target individuals; VVP scores are comparable
to one another as long as the same background lookups are used to process the target variants
of interest. However, VVP scores generated from different background lookups should not be

compared since the VVP score is a lookup-specific measure of how extreme a variant score is.
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Background lookup generation

In order to generate the background lookups to produce VVP scores, a vcf file of
genotypes for the background individuals that has been annotated by VEP is required. Specific
VEP annotation requirements are specified in the code distribution of VVP. The lookup
generation then proceeds by scoring every individual with a variant genotype against every other
individual in the vcf file using the VAAST likelihood. These scores are saved in separate bins for
coding and noncoding variants for each gene. Intergenic scores are also saved in a separate bin.
After processing all the variants for any particular feature, the lookup is created for each bin by
calculating every percentile from 0 to 100 given the scores in the bin. These lookups are saved in

an output file for use in scoring target variants.

Target variant scoring

Once background lookups have been generated, variants can be assigned VVP scores.
The target variant file must also be in vcf format with VEP annotations. As in the background
calculation, every variant genotype is scored using the VAAST likelihood. The percentile rank of
the VAAST score is calculated using the appropriate background lookup. The current
implementation of VVP will score target VCF files that have multiple individuals in them by scoring
every individual genotype separately. A future direction is to combine VVP scores in the same

gene from multiple individuals to calculate a burden score.

VVP results

Benchmarking was done with variants from the ClinVar database. | used ClinVar variants
that were labeled as pathogenic or benign that had a known mode of inheritance of either
dominant or recessive. Using this information, | was able to test VVP on variants that cause both
recessive and dominant disorders and compare its results to both CADD and SIFT (Figure 4.3).
Figure 4.3 shows VVP outperforms CADD or SIFT on this test dataset. VVP and CADD are able

to score far more variants than SIFT (Figure 4.4).



48

CADD provides downloadable tables with precomputed scores for all SNVs and many
small indels. However, as of writing this, the implementation of CADD is extremely slow and
takes about a week to process the NA12878 vcf from 1000 genomes phase 3 data. However,
given all the precomputed data, it is not difficult to imagine an implementation of CADD that
scales well with growing datasets. SIFT scores can also be precomputed for all possible coding
changes and thus also scales to large datasets (especially since SIFT scores a small fraction of
possible human variation). VVP is also a very scalable approach since the background lookups
need to be computed once and then target variants can be processed very quickly. VVP takes
~10 hours to process the entirety of NA12878 phase 3 vcf with 20 cpus. This time can be
shortened further with the use of more processors. CADD'’s current implementation does not
have the ability to utilize more cpus than its default operation, and therefore cannot take
advantage of modern servers with many cpus.

VVP and CADD are currently the only variant prioritization tools with a broad ability to
categorize human genetic variation. VVP has superior variant prioritization accuracy, can
prioritize more indel and structural variation, and is much faster than the current implementation

of CADD. Thus, VVP is currently the best single tool for broad human variant prioritization.

References

Hu, H., Huff, C. D., Moore, B., Flygare, S., Reese, M. G., & Yandell, M. (2013). VAAST 2.0:
Improved variant classification and disease-gene identification using a conservation-
controlled amino acid substitution matrix. Genetic Epidemiology, 37(6), 622—34.
doi:10.1002/gepi.21743

Kircher, M., Witten, D. M., Jain, P., O’'Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A
general framework for estimating the relative pathogenicity of human genetic variants.
Nature Genetics, 46(3), 310-5. doi:10.1038/ng.2892

Rope, A. F., Wang, K., Evjenth, R., Xing, J., Johnston, J. J., Swensen, J. J., ... Lyon, G. J.
(2011). Using VAAST to identify an x-linked disorder resulting in lethality in male infants due
to n-terminal acetyltransferase deficiency. American Journal of Human Genetics, 89(1), 28—
43. doi:10.1016/j.ajhg.2011.05.017

Yandell, M., Huff, C. D., Hu, H., Singleton, M., Moore, B., Xing, J., ... Reese, M. G. (2011). A
probabilistic disease-gene finder for personal genomes. Genome Research, (21), 1529—
1542. doi:10.1101/gr.123158.111



49

>

g8 8 B 3 3 8

Frequency (counts)

8

250

Frequency (counts)
— n
2 8

8

60 80 100 120
VVP score

Figure 4.1: Histograms (A, B) are of different genes. Note the large difference in distribution of
VVP scores between these genes. Most genes have very different distributions from one another.
Not only are the distribution shapes highly variable, but also the relative number of variants in a
gene. Some genes have thousands of known variants, while others may only have a handful.
This is why, | believe, empirical lookups are better for prioritization than a parametric model.
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gene KCNQ1. Red dashed vertical line indicates score and relative position of known disease
causing mutation. In the matched background (top panel), the signal is much stronger than in the
background of the 1000 genomes phase 3 data (bottom panel).
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Figure 4.3: ROC curves for CADD, VVP, and SIFT. VVP is a better at discriminating between
the pathogenic and benign ClinVar variants than CADD or SIFT. VVP is shown with its
performance on homozygous and heterozygous variants since variants causing both recessive
and dominant disorders are part of this benchmarking subset. Neither CADD nor SIFT
distinguishes between homozygous and heterozygous variants so their performance is shown

without dividing the variants by zygosity.
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Figure 4.4: Stacked bar plots showing the classifications decisions on NA12878 variants. SIFT
is only able to score a small subset of all variation. CADD predicts more variants to be damaging

in the coding regions of this healthy individual.
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Introduction

Metagenomics, the genomic analysis of a population of microorganisms, makes possible
the profiling of microbial communities in the environment and the human body at unprecedented
depth and breadth. Its rapidly expanding use is revolutionizing our understanding of microbial
diversity in natural and man-made environments and is linking microbial community profiles with
health and disease (Afshinnekoo et al., 2015; Dickson, Martinez, & Huffnagle, 2014; Firth et al.,
2014; Gilbert, Jansson, & Knight, 2014; Human Microbiome Project Consortium, 2012; Louis,
Hold, & Flint, 2014; Mayer, Tillisch, & Gupta, 2015; Sherrard, Tunney, & Elborn, 2014; L. Zhao,
2013). To date, most studies have relied on PCR amplification of microbial marker genes (e.g.,
bacterial 16S rRNA), for which large, curated databases have been established (“The
Greengenes Database. http://greengenes.secondgenome .com,” n.d.; “UNITE,” 2014; Yilmaz et
al., 2014). More recently, higher throughput and lower cost sequencing technologies have
enabled a shift towards enrichment-independent metagenomics. These approaches reduce bias,
improve detection of less abundant taxa, and enable discovery of novel pathogens (Chiu, 2013;
Lipkin, 2013; Shakya et al., 2013). In addition, they promise to revolutionize how infectious
diseases are diagnosed and are of great interest for rapid, field-based biodefense testing. While
conventional, pathogen-specific nucleic acid amplification tests are highly sensitive and specific,
they require a priori knowledge of likely pathogens (i.e., they answer the question ‘is pathogen X
present’). The result is increasingly large, yet inherently limited diagnostic panels to enable
diagnosis of the most common pathogens (Caliendo et al., 2013). Exhaustive follow-up testing
may be required if first-line tests are negative. In contrast, enrichment-independent high-
throughput sequencing allows for unbiased, hypothesis-free detection and molecular typing of a
theoretically unlimited number of common and unusual pathogens (i.e., answering the question
‘what pathogen is present’). Unbiased, sequencing-based pathogen detection has led to the
diagnosis of previously unrecognized infections and discovery of novel pathogens in select cases
(see Wilson et al., 2014 for example). Its wide adoption is likely to revolutionize the laboratory

diagnosis of infectious diseases and will aid in the rapid response to public health emergencies.
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While direct pathogen identification from high-throughput sequencing data is generally
the goal, other analysis modalities are possible. Differentiating viral from bacterial infections, for
example, can indicate whether antibiotic treatment is necessary. This has traditionally been
attempted through phenotyping of the host leukocyte response (e.g., leukocyte count, differential
cell count) or protein markers (e.g., C-reactive protein, procalcitonin). More recently, microarray-
based host transcript expression profiling from blood leukocytes has been used to demonstrate
proof-of-concept for differentiating infectious etiologies (X. Hu, Yu, Crosby, & Storch, 2013a; Zaas
et al.,, 2013, 2009). Here too, high-throughput sequencing has much to offer. The greater
sensitivity and unbiased nature of RNA-seq enables simultaneous pathogen detection and host-
response profiling. Such data could be used to better inform treatment, potentially overcoming
many of the limitations of current infectious disease tests (Caliendo et al., 2013; Hudson, Woods,
& Ginsburg, 2014).

Wide availability of next-generation sequencing instruments, lower reagent costs, and
streamlined sample preparation protocols have enabled an increasing number of investigators to
perform high-throughput DNA and RNA-seq for metagenomics studies. However, analysis of
sequencing data is still forbiddingly difficult and time consuming, requiring bioinformatics skills,
computational resources, and microbiological expertise that is not available in many laboratories,
especially diagnostic ones. Clearly, more computationally efficient, accurate, and easy-to-use
tools for comprehensive diagnostic and metagenomics analyses are needed.

Here we describe Taxonomer, an integrated, ultrafast tool for metagenomic sequence
analysis. Taxonomer enables novel analysis modalities of unmatched complexity in an easy-to-
use format, including the following: (1) comprehensive panmicrobial detection and discovery, (2)
host-response profiling, (3) interactive result visualization, and (4) access through a web-based
user interface, which eliminates the need for specialized hardware or expertise. Taxonomer
operates at speeds comparable to the fastest, ultrafast tool Kraken (up to 4 million reads per
minute), but unlike Kraken, Taxonomer supports both nucleotide and protein-based classification
using a single integrated algorithmic framework (Wood & Salzberg, 2014). This means that

Taxonomer can be used for many additional applications such as virus detection and
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phylogenetic classification, while providing greater accuracy and comprehensive taxonomic
profiling at 1-2 orders of magnitude faster classification speeds than alignment-based tools such
as those used by SURPI (Naccache et al., 2014). Moreover, Taxonomer also enables new
analysis modalities that are crucial for understanding both complex metagenomic data and for
developing unbiased diagnostic approaches. Taxonomer can be used in the analysis of DNA
and/or RNA (total or poly-A selected) sequencing; it is not restricted to short reads (i.e., can be
used to analyze contigs assembled from metagenomics datasets); and is the only ultrafast
metagenomics tool that provides integrated means for quantification of human transcripts,
allowing simultaneous identification of pathogens, assessment of their relative abundance, and
quantification of the patient’s transcriptional response to the infection.

Taxonomer is the result of a multidisciplinary effort and enables these applications
through a set of four integrated tools (Binner, Classifier, Protonomer, and Afterburner) (Figure
5.1a; see methods for details). Collectively, these four interlocking modules provide synergistic
means for nucleotide and protein-based homology searches, phylogenetic classification, and host
transcriptional profiling. Taxonomer is available via an iobio web-service (Figure 5.1b), allowing
rapid, highly interactive analyses accessible through personal computers and mobile devices
without the need for special computational infrastructure on the user side (Miller, Qiao, DiSera,
D’Astous, & Marth, 2014).

Here we demonstrate the power of Taxonomer using both, synthetic and biological data
sets, and evaluate its speed and classification accuracy by comparing it to state-of-the-art tools
for sequence alignment (BLAST), rapid metagenomic data analysis (Kraken, SURPI), marker
gene-based microbial classification (RDP Classifier), protein searches (RapSearch2, DIAMOND),
and RNA-seqg-based transcriptional profiling (Sailfish, and Cufflinks) (Altschul, Gish, & Miller,
1990; Buchfink, Xie, & Huson, 2015; Cole et al., 2014; Naccache et al., 2014; Patro, Mount, &
Kingsford, 2014; Trapnell et al., 2010; Wood & Salzberg, 2014; Y. Zhao, Tang, & Ye, 2012). As
we demonstrate, Taxonomer is ultrafast, more accurate, and more comprehensive in scope, and
enables new modalities of analysis for clinical metagenomics datasets not provided by any other

tool.
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Methods
Binner module

Identifying small numbers of pathogen sequences hidden among vast numbers of host
and/or microbiota-derived sequencing reads is a major algorithmic challenge for metagenomics-
based pathogen detection tools. The standard approach is to use digital subtraction (Borozan,
Watt, & Ferretti, 2013), whereby all sequencing reads are first aligned to the host's genome
sequence. This is the approach used by SURPI (Naccache et al., 2014), for example. During
subtraction, reads of host origin are removed. Additional subtraction steps may be used for
removal of nonrelevant microbial sequences, including those known to represent reagent
contamination or sequencing adaptors (Gire et al., 2014). A greatly reduced number of
presumably relevant microbial sequences are then classified by alignment to larger reference
databases. Since only the remaining reads are matched with selected reference sequences,
pathogens can be missed entirely if they are homologous to sequences in the subtraction
database. Taxonomer overcomes this inherent limitation of digital subtraction by means of its
‘Binner’ module (Figure 5.1a), which compares each read to every reference database in parallel,
assigning them to broad, nonexclusive taxonomic categories.

Taxonomer’s binner database is created by counting unique 21bp k-mers in different
taxonomic/gene datasets using Kanalyze (version 0.9.7) (Audano & Vannberg, 2014). Each
taxonomic/gene dataset represents a ‘bin’ in which query sequences can be placed based on
their k-mer content. Each database is assigned a unique bit flag that allows k-mers that belong to
one or more bins to be recognized and counted. The k-mer counts are merged into a binary file
that contains the k-mers and the database flag. This binary file shares a similar organization to
our classification databases, and is organized to optimize query speed. Reads are then assigned
to the taxonomic group(s) with which most k-mers are shared. Ties are resolved based on the
bins we expect the majority of sequences to arise from. High binning accuracy is possible
because of the minimal intersections (0.47%) of k-mer content from comprehensive human and
microbial reference databases. Optimal k-mer count cutoffs were determined by Youden’s

indexes and F1 scores and ranged from 3 to 13 (Akobeng, 2007). To eliminate binning of reads
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containing adapter sequence, by default, the binner ignores k-mers present in lllumina Tru-Seq
adapters. A database of External RNA Controls Consortium (ERCC) control sequences allows

quantification of ERCC spike-in controls.

Classifier module

Classification in Taxonomer is based on exact k-mer matching. Taxonomer uses
databases that are optimized for rapid k-mer queries that store every reference in which a k-mer
is found as well as an associated k-mer weight for every reference. The fundamental question for
classification is how likely it is that a particular k-mer (K;) originates from any reference sequence,

ref.. To answer this question, Taxonomer calculates a k-mer weight:

Crep(Ky)/Cap(K;)

KWrefi(K;) =
refi(K:) Cap(K;)/Total kmer count

where C represents a function that returns the count of Ki. C(Kj) indicates the count of the Kjin a
particular reference. Cy(K;) indicates the count of K; in the database. This weight provides a
relative, database specific measure of how likely it is that a k-mer originated from a particular
reference. In order to classify a query sequence, we calculate the sum of the k-mer weights for
every reference that has a matching k-mer in the query sequence. Suppose that there are N
possible k-mers from query sequence Q. Then, for every reference, ref;, that shares a k-mer with

Q, the total k-mer weight for ref; is:

TKW (ref) = Z KWref; (K;)

j=1

Each read is assigned to the reference that has the maximum total k-mer weight. In the case of a

tie, the query sequence is assigned to the taxonomic lowest common ancestor (LCA).
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Protonomer module

We developed a mapping scheme between amino acids and their corresponding codons
to facilitate mapping in protein space while using the same strategies and speed we developed
for classification in nucleotide space. When the amino acid database is built for classification,
Taxonomer assigns every amino acid to just one codon. This unique mapping, which we term a
non-degenerate translation, is used to generate an artificial DNA sequence that corresponds to
the protein sequence in the database. This DNA sequence is entered into Taxonomer’'s
nucleotide classification databases. Query reads are translated into all 6 reading frames using the
same non-degenerate translation scheme used to build the database and each translated frame
is then classified. K-mer weighting and read classification assignment are performed as described
above. The default Protonomer database is a subset of UniRef90 (see Databases for details).
Empirically, we found a k-mer size of 30 (10 amino acids) to perform best. We chose to classify
viruses in protein space because of their high mutation rates, genetic variability, and incomplete
reference databases (Anthony et al., 2013). Figure 5.2 presents benchmark data for Protonomer
and two other rapid protein search tools, RAPSearch2 (employed by SURPI) and DIAMOND (an
ultrafast, BLAST-like protein search tool), using RNA-seq data from respiratory samples of 24
children with documented viral infections as determined by an FDA-cleared molecular test
(eSensor Respiratory Virus Panel, GenMark) for which complete viral genomes could be
manually constructed (Buchfink et al., 2015; Y. Zhao et al., 2012). Viral reads were defined by
mapping all reads binned as ‘Viral’ or ‘Unknown’ to the manually constructed viral genomes
(Geneious, version 6.1). Sensitivity and specificity were determined based on detection of known
viral reads (true positives) and nonviral reads (true negatives). Protonomer provides a single
taxonomic identifier per read as the classification assignment, which makes interpretation of
results extremely simple. Neither RAPSearch2 nor DIAMOND classify a read; instead, they only
provide blast-like alignment information. For benchmarking against RAPSearch2 and DIAMOND,
the LCA of the alignment with the lowest E-value was assigned as the classification. All tools
were benchmarked using the same (Taxonomer’s default) reference sequences as their database.

Both Protonomer and RAPSearch2 process paired reads by concatenating them together with a -
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' between mate pairs. DIAMOND does not support paired end reads, so each pair was searched
separately, and the hit with the lowest e-value from each read was used to make the classification

assignments.

Afterburner

To increase recovery of distantly homologous viral proteins, Taxonomer offers two
options. First, unclassified reads can be further analyzed using the Afterburner module, a
degenerate k-mer matching engine that employs a collapsed amino-acid alphabet. In a manner
similar to that employed by DIAMOND, we used k-means clustering on the BLOSUM®62 matrix to
generate a compressed amino acid alphabet (Buchfink et al., 2015). By using the collapsed
amino acid alphabet, we are able to achieve higher sensitivity in classification with sequences
that are more diverged at the expense of a higher false positive rate when compared with
Protonomer. In addition, the Taxonomer package provides utility scripts to manufacture relevant
read subsets for de novo assembly. Importantly, Taxonomer is not restricted to short reads,

allowing re-analysis of resulting contigs for still greater classification sensitivity (Figure 5.2).

Host gene expression estimations

Taxonomer also uses its nucleotide classifier to assign reads to host reference transcripts.
By default, these are transcripts and corresponding gene models (GTF file) from the ENSMBL
human reference sequence, GRCh37.75. Empirically, we found that a k-mer size of 25 worked
best for mapping reads to human transcripts. We benchmarked Taxonomer’s gene expression
estimates against Sailfish’s and Cufflinks’ using both biological and synthetic data (Patro et al.,
2014; Trapnell et al., 2010). To generate the benchmark data shown in Figure 5.3a, we ran
Taxonomer in a standalone fashion. We had Taxonomer output all ties between transcripts
during the classification step; we then randomly assigned a read to a single transcript. We used
these transcript level assignments to calculate gene level expression. We next employed a linear
regression to correct for transcript assignment bias in a similar fashion to Sailfish. The reported

correlations were then calculated using these corrected values. This level of gene expression
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analysis is not currently available through the web interface because of the way data are
streamed; however, the results given from the web interface are a very good approximation
(Spearman correlation > 0.93 on a set of genes that both methods have positives counts and
Spearman correlation > 0.75 when the gene set is unrestricted). In the first experiment, we
employed gPCR results taken from the microarray quality control study (MAQC)BS; specifically,
human brain tissue samples (Accession numbers SRR037452, SRR037453 , SRR037455 ,
SRR037455 , SRR037458). We also compared performance using synthetic RNA-seq reads
(2x76bp, n=15,000,000) generated with the Flux Simulator tool. TopHat was used to produce
alignments for Cufflinks (Griebel et al., 2012; Trapnell, Pachter, & Salzberg, 2009). Like

Taxonomer, Sailfish does not need external alignment information.

Databases

The Classifier and Protonomer databases are modular and easily constructed, consisting
only of multi-fasta files with a ‘parent tag’ on their definition lines. These tags describe each
reference sequence’s immediate phylogenetic parent-taxon. Bacterial classification is based on
a marker gene approach (16S rRNA gene) and the Greengenes database (reference set with
operational taxonomic units, OTU, clustered at 99%, version 13_8 (DeSantis et al., 2006;
McDonald et al.,, 2012). This reference set contains 203,452 OTU clusters from 1,262,986
reference sequences. The taxonomic lineage for each OTU was used to create a hierarchical
taxonomy map to represent OTU relationships. To support the OTU ‘species’ concept, the
taxonomy was completed for ranks in the taxonomic lineage that had no value. Unique dummy
species names from the highest taxonomic rank available were used to fill empty values.
Versions of the Greengenes database were formatted for use within BLAST, the RDP Classifier,
and Kraken. Fungal classification is also based on a marker gene approach (internal
transcribed spacer, ITS, rRNA sequences) and the UNITE database (version
sh_taxonomy_qiime_ver6_dynamic_s_09.02.2014) (Koljalg et al., 2013). This reference set
contains 45,674 taxa (species hypothesis, SH) generated from 376,803 reference sequences with

a default-clustering threshold of 98.5% and expert taxonomic curation. Dummy names were



62

created for ranks that had no value. Versions of the unite database were formatted for use with
BLAST, the RDP Classifier, and Kraken. Viral classification and discovery is done using the
protein sequences from UniRef90 downloaded on June 16, 2014. The database was reduced to
289,486 viral sequences based on NCBI taxonomy. Phage sequences were separated, leaving a
total of 200,880 references for other viruses. NCBI taxonomy was used to determine the
sequence relationship. For testing purposes, additional bacterial classification databases were
constructed from RefSeq (identical to Kraken’'s full database; n=210,627 total references;
n=5,242 bacterial references, using NCBI taxonomy), and the complete ribosomal database
project databases download on September 24, 2014 (n=2,929,433 references, using RDP

taxonomy).

Database construction

Databases are constructed to maximize query speed. K-mers are stored in
lexicographical order and k-mer minimizers are used to point to blocks of k-mers in the database.
Once a block of k-mers is isolated, a binary search is used to complete the query. This scheme
provides extraordinary query speeds, as demonstrated by (Wood & Salzberg, 2014). We employ
the same basic database layout as Kraken, with the important difference that instead of storing
just the LCA of a k-mer, we also store the k-mer count and every reference (up to an adjustable
cutoff) with associated k-mer weight. Detailed information about the database format and layout is

available upon request.

Gene classification protocols

We extracted reference sequences from widely used, curated public databases for
benchmark experiments (Yilmaz et al., 2014). These reference sequences were used to generate
synthetic read datasets having a variety of read-lengths and error rates using wgsim. PCR-
amplified 16S rRNA gene sequences from two metagenomics studies on stool and the home

environment were also used (Lax et al., 2014; Subramanian et al., 2014). The analysis was
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limited to taxa with relative abundance >0.1% per sample (10 random samples were selected

from each study).

Bacterial 16S rRNA

From the SILVA 119 nonredundant small-subunit ribosomal sequence reference
database, we extracted bacterial reference sequences between 1200-1650bp of length and
excluded references annotated as cyanobacteria, mitochondria, and chloroplasts (Yilmaz et al.,
2014). Only high-quality references without ambiguous bases, alignment quality values >50%,
and sequence quality >70% were included. All the above values are reported by SILVA. Percent
identity to the closest Greengenes OTU was determined by MegaBLAST using hits with a query
coverage >80% (Zhang, Schwartz, Wagner, & Miller, 2000). Synthetic reads (100bp single-end,
100bp paired-end, 250 paired-end) were generated from these reference sequences at 5X

coverage.

Fungal ITS

To test the accuracy of identifying fungal ITS sequences that are not represented in the
UNITE database, we utilized the UNITE_public_dataset (version_15.01.14) (Koljalg et al., 2013).
Percent identity to the closest UNITE species hypothesis (SH, OTU’s clustered at 98.5%) was
determined by MegaBLAST using hits with a query coverage >80%. Synthetic reads (250bp
single-end) were generated from these reference sequences at 5X coverage. Due to the variable
length of ITS sequences (mean 585bp, range 51-2,995bp, n=376,803), paired-end sequences

were not generated.

Classification criteria for reference methods

BLAST
Default MegaBLAST parameters were used. Top scoring references were identified and
used to assign OTUs/SHs. Multiple OTUs/SHs were assigned to synthetic reads when more than

one OTU/SH reference shared 100% identity. If no OTU/SH had 100% identity to a read, then all
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OTUs within 0.5% of the top hit were assigned to the read. The taxonomy of the assigned
OTUs/SHs was compared and the highest rank in common was used to assign a taxonomic value
to the read. The percent identity was used to determine the assignment of the highest taxonomic
rank. Sequence reads with >97% identity to a reference were assigned to species, >90% identity

to genus, and <90% to family when lineage information was available at this rank.

RDP Classifier
RDP Classifier analyses were performed on a local server (see below). Classifications

were resolved to the rank with a minimum confidence level of 20.5.

Kraken
Kraken analyses were performed on a local server (see below). Kraken reports the taxon

identifier for each read’s final taxonomic assignment.

SURPI
SURPI analyses were performed using an Amazon EC2 instance through the published
Amazon Machine Image. SURPI reports the best hit for its mapping tools (SNAP, RAPSearch2),

which were used for comparison (Zaharia et al., 2011).

Taxonomer implementation

Taxonomer was written in C with Python bindings through Cython. An implementation of
Taxonomer that contains the entire pipeline functionality was written in C and drives the iobio web

interface.

Server specifications

Benchmarking was performed on a machine with Red Hat Linux, 1TB of RAM, and 80

CPUs. Number of CPUs was restricted to 16 unless otherwise noted.
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Web-service and visualization

Taxonomer is publically available as a web-service built upon the iobio framework (Miller
et al., 2014). It is available at taxonomer.iobio.io. Complex metagenomic data can be processed
quickly and effectively interpreted through web-based visualizations. Figure 5.1b illustrates the
interface. As reads are being streamed to the analysis server, a pie chart is presented
summarizing the results of the binning procedure. When one of the bacterial, fungal, viral, or
phage bins of the pie chart is selected, the results of the Classifier/Protonomer modules are
displayed in a sunburst visualization. Additional information is provided at the top of the web page
about how many reads were sampled, the number of reads classified, and the detection threshold.
The detection threshold informs a user about how abundant a particular organism must be in
order to be detected with the number of reads sampled. This provides an indicator of the
sensitivity of detection in the sample. In addition, a slider allows the user to select an absolute

cutoff for the minimum number of reads required in order to be displayed in the sunburst.

DNA and RNA-seq of patient samples

Nucleic acid extraction

Samples (75-200uL) were extracted using the QlAamp Viral RNA extraction kit (Qiagen).
Extraction was carried out as described by the manufacturer with the exception of the AW1
washing step. For this step, 250uL of AW1 wash buffer was added to the QlAamp Mini column
before centrifugation at 8000 rpm. Then, 80uL of DNase | mix (Qiagen) containing 10uL of
RNase-free DNase | and 70uL of Buffer RDD was added to the column for on column DNase
digestion. After incubation at room temperature for 15 min, an additional 250uL of AW1 was
added to the column before centrifugation at 8000 rpm. The manufacturer suggested protocol
was continued at this point with column washing using Buffer AW2. After all washing steps, RNA
was eluted in 60uL of water. Extraction for total DNA was performed using 75-200uL of sample
with the DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer’s instructions. DNA

was eluted in 200 uL of nuclease-free water.
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Depletion of human DNA

Microbial DNA was enriched with NEBNext Microbiome DNA Enrichment Kit (NEB).
Briefly, MBD2-Fc-bound magnetic beads were prepared by combining 3uL of MBD2-Fc protein
with 30uL of Protein A Magnetic Beads per sample and placing the mixture in a rotating mixer for
10 min at room temperature before washing with 1X Binding Buffer. Extracted DNA (200ng in
200puL) was added to 50uL 5X Binding Buffer. The resulting 250uL were added to MBD2-Fc-
bound magnetic beads for 15 min at room temperature with rotation. The enriched microbial DNA

was cleaned-up with Agencourt AMPure XP Beads (Beckman Coulter).

Library generation

For HiSeq and MiSeq sequencing, indexed cDNA libraries were produced from extracted
RNA using the TruSeq RNA Sample Prep Kit v2 (lllumina) omitting poly-A selection. RNA was
dried and resuspended in 19.5 uL of Elute, Prime, Fragment Mix. The remainder of the library
preparation was conducted per manufacturer’s instructions. Before library generation from DNA,
enriched microbial DNA was fragmented with the Covaris S2 Ultrasonicator using intensity 5, duty
cycle 10%, and 200 cycles/burst for 80 seconds all at 7 °C. Libraries generated from fragmented
enriched microbial DNA were prepared using the KAPA Hyper Prep Kit (KAPA Biosystems)
according to the manufacturer’s instructions. PCR cycles used for library amplification were
dependent upon the amount of input DNA and 13 cycles were used for these experiments.
Libraries were quantitated by qPCR using the KAPA SYBR FAST ABI Prism gPCR Kit (KAPA
BioSciences) and the Applied Biosystems 7900HT Fast Real-Time PCR System (Applied
Biosciences). Library size was determined with the Agilent High Sensitivity DNA Kit and Agilent
2100 Bioanalyzer. After pooling of indexed sequencing libraries, a second qPCR and bioanalyzer
run was performed to estimate the final concentration before sequencing. For lon Proton
sequencing, indexed cDNA libraries were produced from extracted RNA using the SMARTer
Universal Low Input RNA Kit (Clontech) with numbers of PCR cycles ranging from 10-15 based

on RNA yield.
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Sequencing
Pooled sequencing libraries were analyzed on a HiSeq 2500 (2x100bp), MiSeq (2x250bp,
both lllumina), or lon Proton (median read length 139bp, Life Technologies) instruments

according to manufacturers’ protocols.

Statistical analyses

For gene expression analyses, we report both the Pearson and Spearman correlations as
was done before (Patro et al., 2014). The Pearson correlation of the log transformed gene
expression estimates necessitates the removal of any genes whose estimated expression is
0. The log transform prevents outliers from dominating the correlation. We also report the
Spearman correlation, for which the log transform is not as necessary since it is a correlation

based on ranks. Thus, the exclusion of genes with estimates of 0 can be avoided.

Results

Below, we present a series of benchmark analyses using biological and synthetic
datasets; these include a large number of pediatric respiratory samples from the Centers for
Disease Control and Prevention (CDC) Etiology of Pneumonia In the Community (EPIC) study as
well as published data (Gire et al., 2014; Grard et al., 2012; Y. Hu et al., 2013; Jain et al., 2015).
Our benchmark comparisons to other ultrafast tools for metagenomic classification, such as
Kraken and SURPI as well as more established analysis tools, such as BLAST and RDP
Classifier, demonstrate Taxonomer’s speed and accuracy, and how it enables new analysis

modalities.

Non-greedy binning

To demonstrate the advantage of Taxonomer’s non-greedy binning algorithm, we
compared high-level taxonomic assignments made by SURPI (which employs a greedy digital
subtraction approach using SNAP) to those of Taxonomer’s Binner for RNA-seq data (Zaharia et

al,, 2011). While high-level taxonomic assignments agree for 73.8% of reads, Taxonomer
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assigned 16% of reads an ambiguous origin (i.e., they match equally to multiple databases), 96%
of these were classified as human by SURPI. This was mostly due to highly conserved ribosomal
and mitochondrial sequences (data not shown), but similar effects were also apparent for fungal
sequences (18% classified as human by SURPI). Taxonomer’s alignment-free binning approach
was also able to capture more phage/viral sequences (7,426) than the alignment-based method
(5,798), and resulted in fewer unclassified sequencing reads (3.2% vs. 4.5%). Consistent with
lower abundance of rRNA and mtRNA sequences in DNA sequencing data, Taxonomer had
many fewer ambiguous assignments (0.04%, of which 40% were classified as human and 59%
as viral by SURPI; overall agreement 98.7%). In addition to decreased numbers of false
negatives, the Binner also provides users of the Taxonomer web-service with a high-level
overview of the contents of even the largest and most complicated dataset within the first second

or so of computation.

Analysis time and completeness of classification

Table 5.1 presents time and classification percentages for Taxonomer, Kraken, and
SURPI. For this analysis, we used RNA-seq data from three virus-positive respiratory tract
samples with a range of host vs. microbial composition profiles (Graf, 2015). Kraken was the
fastest tool requiring about 1.5 min/sample on average, but because it relies on nucleic acid-level
classification only and uses a single reference database, it classified fewer reads than
Taxonomer and SURPI. Although SURPI enables amino acid-level searches for virus detection
and discovery, this greatly extended analysis times to between 1.5 and >12 hours. Like SURPI,
Taxonomer provides both nucleic acid and protein-based microbial classification. Taxonomer also
automatically creates host gene expression profiles. Moreover, all these analyses are carried out
very quickly; Taxonomer achieved times similar to Kraken requiring on average ~5 minutes to
classify 5-8x10° paired-end reads using 16 CPUs. Moreover Taxonomer classified the largest
number of reads in 2 of the 3 samples and tied with SURPI for the third sample. Collectively,

these results provide an introduction and overview of how Taxonomer combines the ultrafast
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speed of Kraken with an extended suite of analysis and search capabilities that exceed those of

SURPIL.

Bacterial and fungal classification accuracy

A comprehensive classification database is essential for mitigating errors resulting from
imperfect matches to query sequences. RefSeq is one solution, but it contains only some 5,000
sequenced bacterial taxa (at the time of access), whereas available 16S rRNA sequences
suggest existence of at least 100,000 to 200,000 OTUs given existing sequence databases (Cole
et al., 2014; McDonald et al., 2012; Yilmaz et al., 2014). Reads derived from taxa that are absent
from the classification database can result in false negative and false positive classifications,
especially at the genus and species level. Performance of classification tools is frequently only
tested with synthetic reads derived from the reference database; i.e., perfect matches exist for all
synthetic reads. For microbial classification, this is a highly artificial challenge, as novel species or
strains are routinely encountered in clinical or environmental samples.

To provide a more realistic challenge, we generated synthetic reads from bacterial 16S
rRNA sequences in the SILVA database lacking perfect matches in Taxonomer’'s Greengenes-
derived reference database (468 of 1013 source references, 46%, had no perfect match in the
classification database) (Yilmaz et al.,, 2014). This is why Taxonomer employs a marker gene
approach and a custom Greengenes-derived database for prokaryotic classification.

The utility of Taxonomer’s approach is illustrated in Figure 5.4a, demonstrating that
SURPI, Kraken, and Taxonomer differ greatly as regards accuracy when using their default
databases and command lines to classify error-free, synthetic 16S rRNA-derived reads. At the
species level, for example, Taxonomer correctly classifies 59.5%, incorrectly classifies 15.7%,
and fails to classify 24.8% of the reads. By comparison, Kraken classifies 29% of the reads to the
correct species, and exhibits a high false positive rate, classifying every remaining read (71%)
incorrectly. The results for SURPI have been split into two columns reflecting the fact that SURPI,
unlike Taxonomer and Kraken, classifies each read from a mate pair independently, and in many

cases, these assignments are discordant. Thus, the right-hand portion of the SURPI column
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records the classification rates when either read from a mate pair is classified correctly; the left-
hand portion records the rates for classifying both mates to the same taxon. As can be seen,
SURPI underperforms both Taxonomer and Kraken.

Figure 5.4b shows performance comparison of Taxonomer with the RefSeq (Kraken
default), RDP, and Greengenes (Taxonomer default) databases. Using its default database,
Taxonomer correctly classifies 59.5% of the reads, and recovers 94.9% of species. Using
Kraken’s default database (RefSeq DB), Taxonomer's values drop to 27% and 71.6%,
respectively, similar to Kraken’s results when using the same database: 29% and 71%,
respectively. Also presented in Figure 5.4b are Taxonomer’s classification and recovery rates
using the RDP database (Cole et al., 2014). Although Taxonomer misclassified very few reads
using the RDP database, overall performance was substantially better using Taxonomer’s default
database.

Figure 5.4c shows benchmarks for four different classification tools, MegaBLAST, the
RDP Classifier, Kraken, and Taxonomer, all using Taxonomer’s default 16S database (Cole et al.,
2014; Sayers et al., 2010). SURPI is not included in this panel, as it provides no means for
employing user-provided databases. Overall, Taxonomer’s performance closely approximates
that of the RDP Classifier, an established reference tool. At the species level, Taxonomer and
RDP classify 59.5% and 61.4% of reads correctly, and recovery rates are very similar. Note that
Kraken’s classification and recovery rates improve dramatically using Taxonomer’s database
compared to its own, but that Taxonomer still correctly classifies 13.5% more reads compared to
Kraken (59.5% vs. 46%) and also has a lower false positive rate (15.7% vs. 20.1%). Taxonomer
also outperforms Kraken as regards taxon recovery rate (94.9% vs. 83%), and Taxonomer’s false
recovery rate is also lower (23.3% vs. We also examined the impact of read length and
sequencing error rates upon classification accuracy. As would be expected, performance
improved for all tools as a function of read lengths. We also found Taxonomer and Kraken to be
more sensitive to sequencing errors than BLAST and the RDP Classifier. This is not surprising
given their reliance upon exact k-mer matching. Nevertheless, these same analyses demonstrate

that Taxonomer’s nucleotide classification algorithm is tolerant to ~5% random error, with
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Taxonomer achieving greater classification accuracies than Kraken. Figure 5.4d shows
classification and recovery rates using Taxonomer’s fungal database. As can be seen, the same
general trends are seen in both Figure 5.4c and Figure 5.4d, demonstrating that Taxonomer’s
performance advantages are not restricted to bacterial classification.

Since quantifying microbial community composition is a frequent goal of metagenomics
studies, we also compared Taxonomer’s bacterial abundance estimates to those of the RDP
Classifier using recently published 16S amplicon sequencing data and RNA-seq-based
metagenomics (Figure 5.4e) (Lax et al., 2014; Subramanian et al., 2014). Taxonomer’s
abundance estimates are highly correlated with RDP’s across taxonomic levels for all three
datasets. Spearman Correlation coefficients (p) were 0.96 and 0.997 (order) and 0.858 and 0.826
(genus) for 16S amplicon data as well as 0.992 (order) and 0.955 (genus) for RNA-seq.
However, Taxonomer’s average analysis times were 260 to 440-fold faster (Figure 5.4e).
Collectively, these benchmarks illustrate the important role of Taxonomer’s classification

databases and the power and speed of its classification algorithm.

Viral classification accuracy

Taxonomer uses reads from the ‘viral’ and ‘unknown’ bins for detection of viral and phage
sequences via its Protonomer module (Figure 5.1a). To test classification performance, we
compared Protonomer to two rapid protein search tools, RAPSearch2 (employed by SURPI) and
DIAMOND (an ultrafast, BLAST-like protein search tool), using RNA-seq data from respiratory
samples of 24 children with documented viral infections (Figure 5.2) (Buchfink et al., 2015; Y.
Zhao et al., 2012). Protonomer demonstrated the best overall performance, being more sensitive
(median 94.6%) than DIAMOND (90.5%) and more specific (90.7%) than RAPSearch2 (88.0%).
As expected, sensitivity for all tools correlated with pairwise identities of viral genome to reference
sequences with DIAMOND being most vulnerable to novel sequence polymorphisms. Of note,
DIAMOND does not support joint analysis of paired sequencing reads. In this comparison, we
used results of the mate pair with the lowest E-value rather than reconciling results of read mates,

which likely results in optimistic performance estimates for DIAMOND. Protonomer is also the
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fastest of the three tools in classifying 10" to 10° reads/sample (Protonomer: 14 seconds;
DIAMOND: 37 seconds in default and 46 seconds in sensitive modes; RAPSearch2: 343
seconds in default and 169 seconds in rapid modes).

We also used Taxonomer to analyze published RNA-seq data from three patients in
whom viral pathogens of great public health significance were detected. These included a serum
sample from a patient with hemorrhagic fever caused by a novel rhabdovirus (Bas Congo Virus,
Figure 5.2d), a throat swab from a patient with avian influenza (H7N9 subtype, Figure 5.2e), and
a plasma sample from a patient with Ebola virus (Figure 5.2f). Taxonomer detected the relevant
viruses (or close relatives after removal of target sequences from the reference database) in all
three cases, thus demonstrating the utility of Taxonomer for rapid virus detection and discovery in
public health emergencies. Given its web-based deployment, this means that analysis results can

be quickly shared and reviewed by experts, even across great geographic distances.

Human mRNA transcript profiling

Taxonomer also provides means for host response profiling, which is of growing interest
for infectious diseases testing as well as quality control for cell lines and tissues where microbial
contaminants may confound transcript expression profiles and lead to unsafe biologicals (Hudson
et al., 2014; Mariotti et al., 2012). Taxonomer is the only ultrafast metagenomics tool with this
capability. Taxonomer’s default databases also include ERCC control sequences, allowing users
to normalize transcript counts. We compared Taxonomer's expression profiles to those of
standard transcript expression profiling tools (Sailfish, Cufflinks) (Patro et al., 2014; Trapnell et al.,
2010). Taxonomer’s quantification of synthetic reads and a commercially available RNA standard
is accurate over a broad range of transcript abundance. Indeed, accuracy was intermediate
between Sailfish’s and Cufflink’s (Figure 5.3A), demonstrating that Taxonomer provides state-of-
the-art means for measuring transcript abundance.

To demonstrate utility of Taxonomer’s capacity for simultaneous pathogen detection and
transcript expression profiling, we analyzed RNA-seq data from respiratory samples of patients

with influenza A virus infection (n=4) with varying abundance of host versus microbial RNA
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(Figure 5.3b) and compared mRNA expression profiles to those of asymptomatic controls (n=40)
(Anders & Huber, 2010; Jain et al., 2015). Influenza A virus could be detected in all samples by
Taxonomer (see example in Figure 5.3c). Expression profiles for 17 host genes were significantly
higher in influenza-positive patients (Figure 5.3d, examples in Figure 5.3f) and their expression
profiles clearly differentiated cases from controls (Figure 5.3e). Gene ontology assignments for
the top 50 genes demonstrated their involvement in recognition of pathogen-associated
molecular patterns and antiviral host response (Figure 5.3g, Figure 5.3h). Most but not all of
these genes are known to be differentially regulated in response to influenza virus or other viral
infections in vitro or in peripheral blood of patients (Goujon et al., 2013; Haller, Staeheli,
Schwemmle, & Kochs, 2015; X. Hu et al., 2013a; Zaas et al., 2013, 2009). Together, these
results demonstrate the accuracy and power for discovery and a potential future diagnostic

application of Taxonomer’s combined pathogen detection and host response profiling.

Application of Taxonomer for microbial detection in a variety of real-world scenarios

In Figure 5.5, we show that Taxonomer can be used to detect previously unrecognized
infectious diseases, to identify microbial contamination of stem cell cultures, and that it generates
highly similar results with data from three commonly used next-generation sequencing platforms.
We analyzed RNA-seq data from plasma of patients in whom Ebola virus disease was suspected
but who had tested negative for Ebola virus (Gire et al., 2014). As was reported, Taxonomer
detected HIV, Lassa virus, Enterovirus (typed by Taxonomer as Coxsackievirus), and GB virus C
(data not shown). However, Taxonomer also detected previously unrecognized bacterial
infections (Chlamydophila psittaci, Elizabethkingia meningoseptica), which may have caused the
patients’ symptoms (Figure 5.5a). C. psittaci is the agent of psittacosis, an uncommon zoonotic
infection acquired from birds, that generally causes fever, headache, cough, and may also
present with diarrhea. E. meningoseptica is a ubiquitous gram-negative bacterium that
characteristically causes meningitis or sepsis in newborns but also immunocompromized adults.
Given a high level of suspicion (as in an ongoing outbreak), these infections may have triggered

testing for Ebola virus.
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Taxonomer is not restricted to short reads, allowing reanalysis of the resulting contigs for
greater classification sensitivity. Figure 5.5b shows Taxonomer results of 2,325 contigs generated
from ‘viral’ and ‘unknown’ RNA-seq reads from a respiratory sample of a child with pneumonia
(run time 6 seconds) (Jain et al., 2015). Four contigs were identified as unclassified members of
the family Anelloviridae with 44%-60% predicted protein sequence identity to the most similar
anellovirus. We also reanalyzed these data using Afterburner in combination with Protonomer,
keeping track of resulting taxon assignments of each of the 239 reads in the anellovirus Trinity de
novo assembly. Protonomer classified 19/239 of reads as anellovirus; Protonomer+Afterburner
identified 89/239 reads as anellovirus. Protonomer did not misclassify any anellovirus reads,
whereas Afterburner misclassified 110 of the anellovirus to other viral taxa. While probably not
pathogenic, detection of this divergent Anellovirus demonstrates the power of Taxonomer for
virus discovery.

Figure 5.5¢ shows RNA-seq data from induced pluripotent stem cell cultures with and
without Mycoplasma contamination. Quality control of the RNA-seq results with Taxonomer
immediately highlighted bacterial contamination (pie chart) and identified the organism as M.
yeatsii.

Lastly, Taxonomer detected highly similar proportions of viral (influenza A, NP swab) and
bacterial (Mycoplasma pneumonia, bronchoalveolar lavage) pathogens in respiratory tract
samples subjected to 2 different library preparation methods and 3 different next-generation
sequencing platforms (methods, Figure 5.5d). With each of the three platforms, >99% viral reads
identified by Taxonomer were classified as influenza A virus. Proportion of bacterial 16S reads
identified as Mycoplasma pneumoniae varied more (MiSeq 69.3%, HiSeq 65.9%, lon Proton
30.5%). These results demonstrate the versatility of Taxonomer and how it can be used with a
variety of sequencing instruments to detect previously missed pathogens and for quality control of

expression profiling studies.
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Discussion

In Taxonomer, we have created a tool that is fast, accurate, and capable of the gamut of
analyses required to take full advantage of large and complex DNA/RNA-seq datasets for
metagenomics. Taxonomer provides fast and effective means for read and contig classification, is
substantially more accurate than the fastest available tools (Kraken or SURPI), and achieves
accuracies on 16S amplicon data that closely approach the current standard, RDP. This is made
possible by Taxonomer’'s comprehensive databases, its novel k-mer weighting approach, and its
ability to carry out nucleotide and protein-based searches and classification within a single
integrated algorithmic and visualization framework. Moreover Taxonomer is very fast, requiring
only a few minutes to carry out its broad array of analyses. On the same typical HiSeq 2500
datasets, Taxonomer is hours faster than SURPI, days faster than RDP, and within minutes of the
fastest published tool, Kraken, which only provides nucleotide classification.

We have produced a tool that is equally applicable to DNA and RNA-seq data, providing
maximum flexibility for detection of known and unknown bacteria, fungi, as well as RNA and DNA
viruses. Current estimates predict that the vast majority of bacteria, fungi, and viruses remain
unknown and are thus not represented in reference sequence databases (Anthony et al., 2013;
Koljalg et al., 2013; Rinke et al., 2013; Yarza et al., 2014). We have shown that 16S sequences
(but not synthetic reads derived from other genomic targets) from the same unrepresented
bacteria are almost always correctly binned by Taxonomer (but not erroneously classified),
highlighting the advantages of Taxonomer’'s marker gene-based approach both for discovery of
novel organisms and for avoiding misclassifications pitfalls (Afshinnekoo et al., 2015). Integrated
means to search and classify in nucleotide and protein space improves sensitivity, especially for
detection of viruses. This is due to high mutation rates and high sequence diversity in many viral
phyla, rendering sequence homologies more readily detectable at the protein level rather than at
the nucleotide level.

Taxonomer’s integrated framework means that microorganisms can be classified in
nucleotide or protein space using the same k-mer weighting-based approach and classification

algorithm. The result is greater tolerance for sequencing errors, better sensitivity, more accurate
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abundance estimates, and execution times that exceed even those of the fastest published
protein search tools. This speed and breath of functionality is crucial, as many clinical samples
contain complex mixtures of bacterial, fungal, and viral taxa. We have successfully demonstrated
the use of Taxonomer in real-world scenarios to identify a diverse set of known viruses
(respiratory viruses, HIV, Lassa virus, Coxsackievirus, GB virus C), unexpected viruses (Bas
Congo Virus, avian influenza A virus H7N9), and unrecognized bacteria and viruses in previously
test-negative patients (Anellovirus, Chlamydophila psittaci, Elizabethkingia meningoseptica).
Taxonomer also provides automatic means to classify host gene expression using the
same integrated methodology, a functionality that enables new analysis modalities for ultrafast
metagenomics. For example, the simultaneous identification of viral pathogens and
characterization of host transcriptional responses provides information that can be leveraged for
greater diagnostic power and precision. Similar results have been obtained using blood, but our
demonstration of Taxonomer’s ability to rapidly identify children with influenza virus infection
directly from upper respiratory tract specimens using only their (own) mucosal gene expression
profiles has important implications for diagnosis and discovery (X. Hu et al., 2013a; Zaas et al.,
2009, 2013). Other, equally novel applications are also possible. Examples include differentiating
true infections from asymptomatic carriage based on the host response, characterizing chronic
infections in immunocompromised patients, and real-time monitoring of the impacts of
antimicrobial treatment in conjunction with host-transcriptional responses, all of which hold much
promise for improved patient care, antimicrobial stewardship, and epidemiological investigations.
We further demonstrate how Taxonomer is used to address a crucial, widespread
unrecognized microbial contamination or infection issue in RNA-seq studies, which can heavily
confound transcriptional responses of cells in culture or from biopsy (Olarerin-George &
Hogenesch, 2015). In addition, sample contamination by exogenous sequences directly or
through their presence in commonly used laboratory reagents and kits can lead to erroneous
genome assemblies and disease associations, further highlighting the need for thorough quality
control of sequencing reads (Cantalupo, Katz, & Pipas, 2015; Merchant, Wood, & Salzberg, 2014;

Naccache et al., 2013; Rosseel, Pardon, De Clercq, Ozhelvaci, & Van Borm, 2014; Smuts, Kew,
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Khan, & Korsman, 2014; Strong et al., 2014). This is of particular concern when source DNA or
RNA is of low concentration, such as is the case with single-cell sequencing studies (Lusk, 2014).
Clearly, Taxonomer’s ability to simultaneously quantify transcriptional responses and to monitor
DNA and RNA-seq datasets for signs of infection and contamination will benefit scientific and
diagnostic applications alike. Lastly, metagenomic sequencing data are usually purged of host
sequences prior to deposition in public sequence databases to guarantee anonymity of patients
(Rotmistrovsky & Agarwala, 2011; Sherry, 2011). During analysis of some such sequences with
Taxonomer, varying numbers of human sequences were detected, suggesting that the Binner
module is more effective at detecting (and removing) host-derived sequences than currently used
tools (Gire et al., 2014). Therefore, screening of metagenomics datasets with Taxonomer prior to
their submission could improve protection of study subjects’ privacy.

Finally, with Taxonomer, we have sought to democratize these analyses by providing a
fast interactive web service based upon the iobio visualization toolkit (Miller et al., 2014). As our
analyses of RNA-seq data from patients harboring viral pathogens of great public health
significance demonstrate, Taxonomer provides effective means for rapid virus detection for
patient care and discovery in public health emergencies. The ability to conveniently upload and
rapidly analyze samples from personal computers and mobile devices via the Taxonomer web-
portal means that analysis results can be quickly shared and reviewed by experts, even across
great geographic distances enhancing collaborations and facilitating public health responses. As
costs and turn-around times for high-throughput sequencing continue to fall, Taxonomer will
enable a rapidly growing number of diagnostic laboratories with access to sequencing
instruments to analyze data in a meaningful timeframe without having to invest in computational

infrastructure or bioinformatics expertise.
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Figure 5.1. Overview of Taxonomer architecture and user interface. (a) Taxonomer’s
architecture. Raw FASTA, FASTQ, or SRA files (with or without gzip compression) are the input
for Taxonomer. For paired-end data, mate pairs are analyzed jointly. Taxonomer consists of four
main modules. The ‘Binner’ module categorizes (‘bins’) reads into broad taxonomic groups (host
and microbial) followed by comprehensive microbial and host gene expression profiling at the
nucleotide (‘Classifier’ module) or amino acid-level (‘Protonomer and ‘Afterburner’ modules).
Normalized host gene expression (gene-level read counts) and microbial profiles. Read subsets
can be downloaded for custom downstream analyses (b) Taxonomer web-service. To further
remove barriers for academic and clinical adoption of metagenomics, we developed a web
interface for Taxonomer that allows users to stream sequencing read files (stored locally or http
accessibly) to the analysis server and interactively visualize results in real-time. Main features are
described in grey boxes. Taxonomic classification of bacteria, fungi, and viruses is visualized as a
sunburst graph (center), in which the size of a given slice represents the relative abundance at
the read level. Taxonomic ranks are shown hierarchically with the highest rank in the center of the
graph. Sequences that cannot be classified to the species level, either because they are shared
between taxa or represent novel microorganisms, are collapsed to the lowest common ancestor
and shown as part of slices that terminate at higher taxonomic ranks like genus or family.
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Figure 5.2. Performance of the ‘Classifier’ module for bacterial and fungal classification,
and bacterial community profiling. (a) Taxonomer provides superior sensitivity and specificity
for read-level bacterial classification compared to two other rapid classification tools SURPI and
Kraken when using each tool’s default settings and databases: nt (SURPI), RefSeq (Kraken), and
Greengenes 99% OTU (Taxonomer). Results for SURPI are based on correct identification by
either (dark bar) or both (light bar) read mates. (b) Of the three commonly-used reference
databases RefSeq (n=210,627; 5,242 bacterial genomes), Greengenes 99% OTU (n=203,452),
and RDP (n= 2,929,433), Taxonomer provides greatest read-level (top) and taxon-level (bottom,
that gives the percentage of bacterial species identified) sensitivity for bacterial classification at
only a moderate decrease in specificity when using the Greengenes database compared to the
RDP and RefSeq databases (simulated 16S rDNA as in panel a). Because of its large size and
greater completeness, the RDP database provides the greatest species-level specificity at the
tradeoff of sensitivity. For ease of reference, the top right-most column is repeated from panel a.
(c) Bacterial classification accuracy of Taxonomer is similar to the RDP Classifier and superior to
Kraken at the read-level (top) and taxon-level (bottom, all using the Greengenes database).
Given the applied criteria, BLAST is less sensitive but more specific. (d) Taxonomer also
performs similar to the RDP Classifier and better than Kraken for classification of synthetic fungal
internal transcribed spacer (ITS) sequences at the read-level (top) and taxon-level (bottom). (e)
Taxonomer classifies bacterial 16S rRNA reads at >200-fold increased speed compared to the
RDP Classifier (times for 1 CPU, multithreading not available for RDP Classifier) while providing
highly comparable bacterial community profiles when using 16S rRNA gene amplicon sequencing
and shotgun metagenomics. Spearman correlation coefficients (p) of abundance estimates are
shown for Taxonomer and the RDP Classifier at the order and genus-levels using the
Greengenes 99% OTU reference database.
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Figure 5.3. Performance characteristics of the ‘Classifier’ module for host transcript
expression profiling. (a) Published RNA-seq data from a commercially available RNA standard
(MAQC) were analyzed by Taxonomer, Sailfish, and Cufflinks and estimated transcript
expression was compared to data obtained by quantitative PCR (qPCR). Gene-level Pearson and
Spearman correlation coefficients for RNA-seq versus qPCR were 0.85 and 0.84 for Taxonomer,
0.87 and 0.86 for Sailfish, and 0.80 and 0.80 for Cufflinks, respectively. (b) Application of
Taxonomer to metagenomic RNA-seq data from routine respiratory samples from patients with
influenza infection (n=4). (¢) Panel C shows classification of viral sequencing reads by
Protonomer and typing of this strain as influenza A(H1N1)pdmQ9 (top right sample from panel A).
(d) Differential gene-level mRNA expression profiles from 4 patients with influenza A virus
compared to asymptomatic controls (n=40; top 50 differentially expressed genes are shown).
Expression profiles for 17 genes were significantly higher in influenza-positive patients. (e)
Expression profiles for the 17 most differentially expressed genes differentiate cases from
controls (principal component analysis, PC1 and PC2 explaining 93.8% of the total variance). (f)
Normalized expression levels for individual patients of seven of the top 17 genes. Gene ontology
assignments for enrichment of biological processes (g) and molecular functions (h) are shown.
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Figure 5.4. Performance of the ‘Classifier’ module for bacterial and fungal classification,
and bacterial community profiling. (a) Taxonomer provides superior sensitivity and specificity
for read-level bacterial classification compared to two other rapid classification tools SURPI? and
Kraken when using each tool’'s default settings and databases: nt (SURPI), RefSeq (Kraken), and
Greengenes 99% OTU (Taxonomer). Results for SURPI are based on correct identification by
either (dark bar) or both (light bar) read mates. (b) Of the three commonly-used reference
databases RefSeq (n=210,627; 5,242 bacterial genomes), Greengenes 99% OTU (n=203,452),
and RDP (n= 2,929,433), Taxonomer provides greatest read-level (top) and taxon-level (bottom,
which is the percentage of bacterial species identified) sensitivity for bacterial classification at
only a moderate decrease in specificity when using the Greengenes database compared to the
RDP and RefSeq databases (simulated 16S rDNA as in panel a). Because of its large size and
greater completeness, the RDP database provides the greatest species-level specificity at the
tradeoff of sensitivity. For ease of reference, the top right-most column is repeated from panel a.
(c) Bacterial classification accuracy of Taxonomer is similar to the RDP Classifier and superior to
Kraken at the read-level (top) and taxon-level (bottom, all using the Greengenes database).
Given the applied criteria, BLAST is less sensitive but more specific. (d) Taxonomer also
performs similar to the RDP Classifier and better than Kraken for classification of synthetic fungal
internal transcribed spacer (ITS) sequences at the read-level (top) and taxon-level (bottom). (e)
Taxonomer classifies bacterial 16S rRNA reads at >200-fold increased speed compared to the
RDP Classifier (times for 1 CPU, multithreading not available for RDP Classifier) while providing
highly comparable bacterial community profiles when using 16S rRNA gene amplicon sequencing
and shotgun metagenomics. Spearman correlation coefficients (p) of abundance estimates are
shown for Taxonomer and the RDP Classifier at the order and genus-levels using the
Greengenes 99% OTU reference database.
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Figure 5.5. Sample applications of Taxonomer. (a) Taxonomer detected a previously
unrecognized Chlamydophila psittaci infection (psittacosis), in Plasma from a patient with
suspected Ebola virus disease in Sierra Leone (SRR1564804)*. The 16S rRNA gene was
covered a mean of 7,035-fold with the consensus 16S rRNA sequence from this isolate sharing
99.9% identity with the type strain (6BC, ATCC VR-125, CPU68447) enabling reliable
identification’”. Positions of 2 single nucleotide polymorphisms are highlighted in red. (b)
Taxonomer detected a novel Anellovirus in a nasopharyngeal swab. Pie chart and sunburst show
contig-level classification (de novo assembly with Trinity 6). Mapping reads back to a manually-
constructed viral consensus genome sequence showed x-fold coverage, 68.5% pairwise
nucleotide-level identity and 44%-60% predicted protein identity with TTV-like mini virus isolate
LIL-y1 (EF538880.1). (c) Identification of Mycoplasma yeatsii contamination in RNA-seq data
from cultured iPS cell (right) compared to non-contaminated iPS cell culture (left) based on read
binning (top). High expression of rRNA is demonstrated by 32% of RNA-Seq reads mapping to
the M. yeatsii 16S rRNA gene (245,000X coverage, 99.4% sequence identity with type strain GIH
(MYU67946). (d) Taxonomer is compatible with different sequencing protocols, recovering similar
proportions of viral (influenza A, 0.43% to 0.55% of all reads) and bacterial (Mycoplasma
pneumoniae, 16S rRNA sequences representing 0.004% to 0.006% of all reads) pathogen
sequences when sequencing samples on 3 commonly-used sequencers with 2 different library
preparation methods. Samples were known to be positive for influenza A(H1N1)pdm09 and M.
pneumoniae based on diagnostic PCR test.
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Table 5.1. Processing time of Taxonomer compared to rapid classification pipelines SURPI and
Kraken. Five RNA-Seq samples generated from nasal specimens with varying degrees of
taxonomic composition illustrate the effect on pipeline speeds. (Human-blue; Bacteria-orange;
Fungal-green; Virus-red; other-yellow; unclassified-grey).

kad)

Sample : o,
Composition,  Pathogen Application  Subtraction Binning Classification Protein T9tal % Rcfads
Search Time  Classified
Total Reads
Taxonomer - S5m 22s 10s 5.5m 99%
Kraken - - 1.5m - 1.5m 99%
SURPI 3.3m - 74m 15m 92m 98%
6,599,164
Taxonomer - 8m 40s 30s 9.2m 7%
Influenza A Kraken - - 1.5m - 1.5m 66%
virus
SURPI 9.8m - 208m 18m 236m 78%
7,542,552
Taxonomer - 5.2m 56s 10s 6.3m 97%
- - - 0,
HMPV Kraken 13m 1.3m 93%
SURPI 56m - 648m 24m 728m 95%

6,252,311




CHAPTER 6

CONCLUSIONS

Computational approaches to biological data

Experiments in the biological sciences increasingly are producing datasets large enough
that manual analyses are impossible. This increase in data presents a lot of scientific opportunity
as well as challenges computationally in the analysis. In my dissertation, | have presented
effective computational solutions to analyze image data, prioritize human genetic variants, and to

comprehensively analyze metagenomic data.

Image analysis

Modern microscopes can produce thousands on high quality images in a relatively short
amount of time. Thus, automated image analysis has a large impact potential in many of the
biological sciences. There are many excellent open source image analysis packages for the
Python programming language that provide implementations of standard image analysis functions.
Using Python and open source image analysis packages, | created an open source image
analysis pipeline, ImagePlane, to process images of S. mediterranea (details of the pipeline are
given in chapter 2) (Flygare, Campbell, Ross, Moore, & Yandell, 2013). Chapter 3 demonstrates
the application of image analysis to analyze muscle fiber size with another open source image
analysis pipeline | created, MuscleQNT, which is also written in Python. MuscleQNT includes
functionality to analyze images of stained muscle cross sections, create histograms of muscle
fiber sizes, and perform statistical tests to find biologically relevant differences between mutant

and control animals. To my knowledge, when created, these image analysis pipelines provided
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unique analysis ability in their particular application domains. MuscleQNT has enabled analyses
that have been published.

These pipelines demonstrate the power of combining existing image analysis and
statistical libraries into tools that enable directed analyses that would otherwise be incomplete or
impossible. | believe that scientists performing or directing the analysis of images need at least a
basic understanding of core image analysis procedures like image thresholding, erosion and
dilation methods, and feature size and location quantification. An understanding of these
methods will enable an increased ability to craft and interpret the analyses specific to the data
and experiment at hand. Chapter 3 is an excellent example of crafted image analysis together

with statistical / graphical analysis for the specific experiment.

Human variant prioritization

As sequencing costs have dropped, the amount of human sequencing has skyrocketed,
which has resulted in tens of millions of known variants in public databases (the NCBI's dbSNP
database contains more than 100 million human variants). Given all this known variation,
perhaps the most important question to be asked is how to rank variants according to their
relative risk in human disease. Given any particular variant, how do we determine how likely it is
to contribute to human disease? This is the task of variant prioritization. There have been many
methods published as solutions to human variant prioritization; however, all of them suffer from
significant limitations (Katsonis et al., 2014; Kircher et al., 2014). Perhaps the greatest limitation
of the majority of these tools is they are not able to prioritize all variants — instead, they prioritize
some small subset like variants that induce nonsynonymous changes. To my knowledge, CADD
and VVP are the only tools that can prioritize nearly all variants. Both can prioritize all SNVs, and
CADD can prioritize smaller indels, while VVP can prioritize all indels that can be annotated by
VEP. VVP is built on the VAAST likelihood and utilizes lookups based on healthy human
variation to prioritize variants. | have shown that not only is VVP able to prioritize more variants
than CADD, it is faster and more accurate. Thus, VVP is the leading tool for human variant

prioritization.
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VVP scales well to large datasets because of the organization of the lookups and because
the computational work required to process a single variant is unchanged with respect to the
number of individuals in the background and very nearly unchanged with respect to the number of
individuals in the target. A very exciting future direction is to develop a burden test using the VVP
framework. This would provide a scalable solution to performing burden tests with cohorts that

have tens of thousands of cases and controls.

Metagenomics

Metagenomics holds enormous promise to revolutionize our understanding of the
microbial world and pathogen diagnostics by providing a hypothesis free method to query
microorganisms in an environmental sample (Brady & Salzberg, 2009). Of particular importance
is using metagenomics to find microorganisms that are responsible for human iliness from a fluid
or tissue sample.

Modern metagenomics produce datasets with tens of millions of short reads from an
environmental sample. From a computational perspective, the metagenomics problem is to
classify every read with as much taxonomic precision as possible. BLAST contains the
functionality necessary to classify reads; however, it is too slow to be practical on large read sets
that are now common. Faster approaches are necessary (Wood & Salzberg, 2014).

| created Taxonomer: a collection of tools that enable rapid analysis of metagenomics
datasets. Taxonomer provides functionality to classify reads in both nucleotide and protein space
and provides RPKM estimates of host gene expression. A website using the iobio framework
provides easy and rapid access to Taxonomer’s capabilities. Extensive benchmarking has shown
that Taxonomer is not only more comprehensive in its classification abilities than any other single
tool, but is also extremely fast and provides accurate results.

Central to Taxonomer’s speed and accuracy is a novel k-mer-based weighting scheme
that provides a rapid and powerful way to classify read sequences. In addition, a novel
transformation enables the same algorithms that classify reads in nucleotide space to classify the

same reads in protein space with only a moderate penalty in memory usage and an extremely
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small time penalty. Because of the powerful mapping capability of the k-mer-based weighting
scheme, Taxonomer is also able to rapidly quantify gene expression with accuracy equal to that
of the best available transcript profiling software. Taxonomer’s extensive capabilities make it a
tool that is able to work effectively in answering many different questions important in the

application of metagenomics to both research and medical diagnostics.

Summary and future directions

In my dissertation, | have presented effective computational approaches and applications
to a wide variety of data analysis problems in the biological sciences. Specifically, | have
presented compelling solutions to image analysis, human variant prioritization, and
metagenomics. All the methods and applications | have presented in this dissertation have
exciting future possibilities, in particular in the areas of human variant prioritization and
metagenomics. Extending VVP to include a burden test would provide a highly scalable solution
to identify genes responsible for disease in settings with extremely large numbers of target and
background individuals. Taxonomer can be further improved with better sequence databases to
improve classification accuracy and making the web interface as comprehensive as possible in its

analysis capabilities while keeping it relatively simple to use.
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