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ABSTRACT 

Human Immunodeficiency Virus Type 1 (HIV-1), the causative agent of AIDS, 

encodes four proteins (Nef, Vif, Vpr and Vpu) that have evolved specific roles in 

promoting efficient viral replication and dissemination. A key attribute of these viral 

factors is their ability to interfere with multiple host defense mechanisms through one of 

two ways: manipulation of the ubiquitin proteasome system (UPS) or altered intracellular 

protein trafficking. 

In particular, Vpu is a small integral membrane protein that is expressed late in 

the viral life cycle and found only within HIV-1 and some related simian 

immunodeficiency virus (SIV) isolates. Vpu antagonizes multiple cellular targets that are 

involved in innate and adaptive immunity, including the restriction factor BST-2, a 

family member of cellular “intrinsic” proteins that serve to restrict viral replication 

immediately following viral infection. In this work, we show that Vpu downregulates the 

chemokine receptor CCR7 on the surface of HIV-1-infected primary CD4+ T cells by 

sequestering the protein in a perinuclear compartment (the trans-Golgi Network: TGN). 

This compromises the migratory potential of T cells in a CCR7-dependent manner and 

may have major implications in HIV-1 pathogenesis. 

Additionally, we clarify the mechanisms by which Vpu relies on cullin-RING 

Ligases (CRLs), one of the largest classes of E3 Ubiquitin Ligases within the UPS, to 

downregulate host proteins from the cell surface. Through the use of a neddylation 
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inhibitor, a post-translational modification necessary for CRL activity, we establish that 

Vpu-mediated BST-2, CCR7 and Natural T and B cell antigen (NTB-A) downregulation 

is CRL-independent. This provides further support that Vpu is a multifunctional 

accessory protein that has evolved several ways to interfere with its cellular targets. 
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1.1 Introduction 

After viral entry into cells, viruses must subvert the cellular landscape in order to 

provide a favorable environment conducive for producing new progeny. As intracellular 

obligate parasites, viruses utilize host cellular machinery to effectively transcribe their 

genome, translate the RNA into proteins, and assemble the components into virions for 

the infection of new target cells. In most cases, viral replication and dissemination can be 

controlled and eventually cleared through the effects of the host immune system. 

Pathogens such as Human Immunodeficiency Virus (HIV), however, have evolved 

specific countermeasures to evade host immunity, leading to chronic life-long infections 

that are difficult if not impossible to eradicate.  

Genomically, all retroviruses encode common structural and enzymatic genes 

required for cell entry, reverse transcription, integration, proteolytic processing and viral 

packaging (Gag, Pol, and Env) (Kirchhoff, 2010).  Members of the more complex 

Lentivirus family, which includes HIV, encode additional genes. Some of these are 

regulatory, functioning as transcriptional regulators or assisting with the nuclear export of 

viral mRNAs (Tat and Rev). The other remaining genes (nef, vif, vpu, vpr, and / or vpx) 

encode for “accessory” proteins that, in some cases, are dispensable for viral infection in 

vitro. Instead, accessory proteins are essential in evading the host immune response in 

vivo, leading to efficient viral persistence and pathogenesis (Malim and Emerman, 2008). 

The acquisition of certain accessory genes within HIV and other primate lentiviruses 

most likely reflects an evolutionary tactic to enhance species-specific viral fitness against 

a number of host-selective pressures, including proteins that immediately act on 

inhibiting viral replication and dissemination (“restriction factors”). As such, all 
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accessory proteins possess an inherent ability to serve as viral adaptors, whereby they can 

recruit specific cellular complexes to assist in antagonizing host immune proteins and/or 

modify the host environment to maintain effective immune evasion (Collins and Collins, 

2014).  

Among one of the most common viral counteraction mechanisms is subversion of 

the ubiquitin proteasome system (UPS). Within eukaryotic cells, the UPS is essential in 

regulating protein degradation to maintain cellular homeostasis. Typically, proteins are 

“marked” for degradation through the post-translational addition of ubiquitin onto lysine, 

serine, or threonine residues, resulting in polyubiquitin chains that provide a signal for 

the protein to be degraded by the 26S proteasome (Soucy et al., 2009). The process of 

ubiquitination involves three main steps and is carried out in an enzymatic fashion. First, 

ubiquitin is activated by ubiquitin-activating enzyme (UAE/E1) in an ATP-dependent 

manner (Haas and Rose, 1982). Second, the activated ubiquitin is transferred to an 

ubiquitin-conjugating enzyme (E2) via a transthiolation reaction. Finally, an E2 can 

associate with an ubiquitin ligase (E3) to mediate the polyubiquitination of a target 

substrate recruited by the E3.  

One of the largest and best-characterized E3 ubiquitin ligase complexes are Cullin 

RING Ligases (CRLs). CRLs play a role in regulating many diverse cellular processes, 

some of which include transcription, signal transduction, development, and multiple 

aspects of the cell cycle (Bosu and Kipreos, 2008). CRL complexes consist of a cullin 

scaffold (humans possess seven cullins) onto which a substrate receptor, substrate 

adaptor, and RING-box protein 1 (Rbx1) can load (Petroski and Deshaies, 2005). An E2 

can then interact with Rbx1 to facilitate the transfer of ubiquitin onto the substrate 
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(Figure 1.1).  

Activation of CRLs is accomplished through the addition of the ubiquitin-

homologous NEDD8 (neural precursor cell expressed developmentally down-regulated 

protein 8) onto cullins, a post-translational process termed neddylation (Rabut and Peter, 

2008). This induces a conformational change within cullins whereby they can assemble 

into a full CRL complex through dissociation from CAND1 or GLMN1, which holds 

them in an inactive-bound form (Pierce et al., 2013; Tron et al., 2012; Zheng et al., 2002). 

Conversely, CRLs can be inactivated though deneddylation, a function of the eight-

subunit COP9 signalosome (CSN) complex (Schmaler and Dubiel, 2010).  

With regards to HIV, accessory proteins can act as viral adaptors to recruit CRLs 

for the targeted degradation of specific proteins. Usually, these include restriction factors 

that serve as an “intrinsic” first line of defense against viral infection. For instance, HIV-

1 Vif recruits a cullin5-containing (CRL5) complex to induce the proteasomal 

degradation of APOBEC3G (apolipoprotein G mRNA-editing enzyme, catalytic 

polypeptide-like 3G) (Yu, 2003). In the absence of Vif, APOBEC3G induces lethal G to 

A hypermutations within the retroviral genome due to its cytidine deaminase activity, 

severely impairing viral replication (Harris et al., 2003; Mangeat et al., 2003; Sheehy et 

al., 2002; Zhang et al., 2003). Similarly, the HIV-2 Vpx protein recruits a cullin4-

containing (CRL4) complex to induce SAMHD1 (SAM domain and HD domain-

containing protein 1) proteasomal degradation (Hrecka et al., 2011; Laguette et al., 2011), 

restoring the intracellular pool of deoxynucleoside triphosphates for efficient cDNA 

synthesis (Lahouassa et al., 2012). Furthermore, HIV-1 Vpu degrades CD4 by linking the 

protein to a cullin1-containing (CRL1) complex to increase viral fitness (Figure 1.1) 
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(Margottin et al., 1998).  

This chapter will provide an overview of the recent progress within the Vpu field 

and our current understanding of the strategies employed by this multifunctional viral 

factor to utilize both CRL-dependent and -independent mechanisms to promote immune 

evasion and pathogenesis.   

 
1.2 Acquisition of Vpu and HIV phylogeny 

Lentiviruses chronically infect a wide variety of mammalian species, including  

primates, felids, and wild and domesticated ungulates. In particular, primate lentiviruses 

are found in over 40 different African nonhuman primates (NHP) (Hahn et al., 2000; 

Pandrea et al., 2008), and current knowledge proposes that vpu was obtained from an SIV 

(Simian Immunodeficiency Virus) presently found within some members of the 

Cercopithecus family (Bailes et al., 2003). This vpu-containing SIV was then transmitted 

to chimpanzees and formed a hybrid with an SIV ancestor found within red-capped 

mangabeys (Bailes et al., 2003). Due to overlapping territorial ranges (Central and West 

Africa) and the predatory relationship chimpanzees have with red-capped mangabeys, it 

is likely that a chimpanzee was co-infected with both simian viruses. Consequently, viral 

recombination may have occurred, resulting in the emergence of SIVchz (Pan troglodytes 

troglodytes: Ptt).  This subsequently led to viral spread among chimpanzees, transmission 

into humans and gorillas, and the eventual appearance of HIV-1 and SIVgor (Gorilla 

gorilla gorilla) (Gao et al., 1999; Sharp and Hahn, 2010).  

 There are two types of HIV that cause AIDS within humans: HIV-1 and HIV-2. 

HIV-1 consists of four lineages: Group M (“Main” – the major cause of the worldwide 

AIDS pandemic), Group O (“Outlier”), Group N (“Non M, Non O”), and Group P. Each 
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lineage arose through independent zoonotic (cross-species) transmission events from 

either SIVchz or SIVgor (Group P) (Plantier et al., 2009). HIV-2 emerged through cross-

species transmission from a retrovirus within sooty mangabeys (SIVsm) and is mainly 

restricted to West and Central Africa (along with HIV-1 Groups N, O and P) (Hahn et al., 

2000; Sharp and Hahn, 2010).  

 
1.3 Vpu expression and structure 

Vpu and envelope (Env) are expressed from a single bicistronic mRNA, whereas 

all other HIV-1 products are produced through a complex pattern of alternative splicing 

or proteolyic processing by the Gag and Pol polyproteins (Schwartz et al., 1990). The 

Vpu gene product encodes for an 81-amino-acid type 1 integral membrane phospho-

protein that contains two major structural domains: an N-terminal hydrophobic 

membrane anchor (residues 1-27) and a large 54-residue C-terminal amphipathic region 

that extends into the cytoplasm (Figure 1.2) (Maldarelli et al., 1993; Strebel et al., 1988). 

Vpu has the ability to homo-oligomerize and is mainly localized within intracellular 

membrane regions corresponding to the endoplasmic reticulum (ER), the trans-golgi 

network (TGN), and endosomal compartments (Dube et al., 2009; Klimkait et al., 1990; 

Maldarelli et al., 1993). Synthetic peptides encompassing the Vpu cytoplasmic domain 

LGHQWLILHG�WZR�GLVFUHWH�Į-helical structures separated by a flexible linker containing a pair 

of serine residues (Federau et al., 1996; Henklein et al., 1993; Kochendoerfer et al., 2004; 

Wittlich et al., 2009; Wray et al., 1995; Zheng et al., 2003). These two phosphoacceptor 

sites, serine 52 and 56, lie within a highly conserved C-terminal stretch of residues (47-

58) and are constitutively phosphorylated by the ubiquitous casein kinase II (CKII) 

(Schubert et al., 1994; Tiganos et al., 1998). 
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1.4 Vpu-induced degradation of CD4 

 Primate lentiviruses induce the rapid and sustained cell surface downregulation of 

cluster of differentiation 4 (CD4) to prevent lethal superinfection and premature 

apoptosis of virally infected cells (Wildum et al., 2006). Interestingly, HIV-1 devotes 

Nef, Env and Vpu to target CD4 via three distinct mechanisms. Nef, an early gene 

product, targets pre-existing cell-surface CD4 molecules for lysosomal degradation via a 

clathrin-dependent process (Aiken et al., 1994; Chaudhuri et al., 2007; Rhee and Marsh, 

1994). The Env precursor protein, gp160, retains CD4 within the ER and inhibits its 

transport to the plasma membrane (PM) (Bour et al., 1991; Crise et al., 1990; Jabbar and 

Nayak, 1990). Vpu induces the proteasomal degradation of de novo synthesized CD4 

from the ER, reducing its half-life from 6 hours to approximately 15 minutes to enable 

Env maturation and full viral assembly (Bour et al., 1991; Buonocore and Rose, 1990; 

Willey et al., 1992a, b).  

 Vpu binds CD4 at a short cytoplasmic membrane proximal motif, LSEKKT 

(residues 414-419) (Bour et al., 1995; Lenburg and Landau, 1993; Vincent et al., 1993; 

Yao et al., 1995). Although the exact residues are unknown, NMR studies have suggested 

Vpu’s cytoplasmic Į-helices (C-terminal domain) seem to play an important role in CD4 

interaction (Margottin et al., 1996; Singh et al., 2012). In support of this, a Vpu mutant 

harboring a scrambled primary amino acid sequence within the transmembrane (TM) 

domain still bound CD4 and induced its degradation (Schubert et al., 1996). Interestingly, 

a recent study identified a conserved residue within the Vpu TM domain, tryptophan 22 

(W22), that when mutated to leucine inhibited CD4 degradation but not interaction 

(Magadan and Bonifacino, 2012). Magadan and colleagues showed that W22, which is 
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highly conserved among HIV-1 and some SIVchz strains, instead prevents Vpu 

oligomerization (Magadan and Bonifacino, 2012; Maldarelli et al., 1993). This keeps 

Vpu in its monomeric, active form to presumably retain a favorable interaction with CD4, 

spatially orienting the immune receptor for eventual polyubiquitination of its cytosolic 

tail at lysine and serine/threonine residues (Binette et al., 2007; Magadán et al., 2010).  

 Proteasomal degradation of CD4 relies on the recruitment of Skp1-Cullin1-F-box 

(SCF) E3 Ubiquitin Ligase complex. This was elucidated when a yeast two-hybrid 

approach identified an interaction between Vpu and the human beta transducin-repeat 

containing pURWHLQ��ȕ-TrCP), where &'���9SX�DQG�ȕ-TrCP existed in a ternary complex 

(Margottin et al., 1998). ȕ-TrCP is a member of the F-box protein (FBP) family, currently 

composed of 68 additional proteins (Skaar et al., 2013). FBPs serve as substrate adaptors 

to mediate the formation of an SCF E3 Ubiquitin Ligase Complex that results in the 

degradation of a wide variety of cellular proteins (Mahon et al., 2014)��ȕ-TrCP contains 

an F-box motif necessary for interaction with Skp1 and WD40 repeats that recognize 

canonical phosphodegron motifs present within substrates (Skaar et al., 2013). 

Accordingly, mutation of Vpu’s phosphoserine residues inhibits interaction with ȕ-TrCP, 

preventing CD4 degradation (Margottin et al., 1998). SilHQFLQJ� RI� ȕ-TrCP1 or the 

SDUDORJRXV�ȕ-TrCP2 (HOS) also prevents the ability of Vpu-mediated CD4 degradation 

(Butticaz et al., 2007).  Furthermore, dominant-negative mutants or depletion of cellular 

pools of the ER-associated degradation (ERAD) components VCP (p97), UFD1L, or 

NLP4 inhibit Vpu from degrading CD4 (Binette et al., 2007; Magadán et al., 2010). 

Taken together, these latter findings support how Vpu extracts CD4 from the ER for 

eventual degradation by a cytosolic ubiquitin ligase complex (Figure 1.3).  
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1.5 Vpu-mediated counteraction of BST-2 

1.5.1 BST-2: structure and function 

Bone marrow stromal antigen 2 (BST-2; tetherin) inhibits viral egress of nearly all 

enveloped viruses, including retroviruses, filoviruses, rhapdoviruses, paramyxoviruses, 

arenaviruses, and herpes viruses (Neil, 2013). Accordingly, Vpu counteracts BST-2 in 

HIV-1 infected cells to promote efficient viral release (Neil et al., 2008; Van Damme et 

al., 2008). Constitutive BST-2 expression is cell-type specific and Type 1 IFN inducible 

(Geraghty et al., 1994; Neil et al., 2007; Sakai et al., 1995).  

 BST-2 was initially discovered within terminally differentiated B cells obtained 

from multiple myeloma patients (Goto et al., 1994; Ohtomo et al., 1999). The protein is a 

30-36 kDa type II single pass TM protein that forms stable cysteine-linked dimers 

(Andrew et al., 2009; Goto et al., 1994; Ohtomo et al., 1999; Perez-Caballero et al., 

2009). At the PM, BST-2 resides within cholesterol-rich microdomains (lipid rafts) and 

also localizes within internal membrane compartments: the TGN and early and recycling 

endosomes (Kupzig et al., 2003; Masuyama et al., 2009). Structurally, BST-2 has an 

unusual topology, consisting of a short N-terminal cytoplasmic tail, a TM domain, and an 

ectodomain (extracellular core) that is anchored by a C-terminal glycosyl-

phosphatidylinositol (GPI) moiety (Kupzig et al., 2003). X-ray crystallography of the 

recombinant BST-2 ectodomain identified a 90 Å parallel homodimer constituting a 

disulfide-linked coiled-coil domain structure (Hinz et al., 2010; Schubert et al., 2010). 

Upon viral budding BST-2 dimers adopt an “axial” configuration wherein pairs of TM 

domain or GPI anchors are inserted into assembling virions, while the remaining pairs of 

membrane anchors remain in the infected cell’s plasma membrane (Perez-Caballero et 
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al., 2009; Venkatesh and Bieniasz, 2013). Interestingly, an “artificial” BST-2 composed 

of heterologous protein domains inhibited HIV-1 and Ebola viral release, identifying that 

the configuration of BST-2, rather than the primary sequence, is important for antiviral 

activity (Perez-Caballero et al., 2009).  Moreover, species-specific adaptation to 

counteract BST-2 occurs among all primate lentiviruses through the actions of either Vpu 

(HIV-1) (Neil et al., 2008; Van Damme et al., 2008), Env (HIV-2; SIVagm Tan; SIVmac 

ǻ1HI�LVRODWHV��(Gupta et al., 2009; Hauser et al., 2010; Le Tortorec and Neil, 2009; Serra-

Moreno et al., 2011) or Nef (most SIV isolates) (Jia et al., 2009; Sauter et al., 2009; 

Zhang et al., 2009).  

 
1.5.2 Vpu-mediated BST-2 counteraction: traffic jam in the TGN 

  It is now widely accepted that Vpu-mediated surface downregulation of BST-2 is 

a key mechanism in viral antagonism. Rather than altering the distribution of BST-2 on 

the PM (i.e., within lipid rafts), Vpu interferes with the protein’s normal trafficking 

pattern (Dube et al., 2011; Lopez et al., 2012). BST-2 normally cycles between the PM, 

TGN, and endosomes, with a fraction sorted for lysosomal degradation through the 

coordinated action of the endosomal sorting complex required for transport (ESCRT) 

machinery (Habermann et al., 2010; Janvier et al., 2011; Masuyama et al., 2009; Rollason 

et al., 2007). Internalization of BST-2 from the PM relies on clathrin-mediated 

endocytosis, particularly Adaptor-Protein Complex 2 (AP-2) (Masuyama et al., 2009; 

Rollason et al., 2007). Adaptor-Protein Complex 1 (AP-1) mediates retrieval of BST-2 

from late endosomes back to the TGN (Masuyama et al., 2009; Rollason et al., 2007). In 

both cases, a dual tyrosine motif (Y6xY8; where x is any amino acid) within the 

cytoplasmic domain of BST-2 mediates binding with AP-1/AP-2 (Rollason et al., 2007). 
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On the other hand, Vpu and BST-2 interact through their transmembrane domains (I34, 

L37 and L41  (BST-2), and A14, W22 and A18 (Vpu)), leading to the formation of an anti-

parallel helix-helix interface (Figure 1.2) (Kobayashi et al., 2011; Skasko et al., 2011; 

Vigan and Neil, 2010). Consequently, scrambling of the Vpu TM domain inhibits Vpu 

from antagonizing BST-2 (Schubert et al., 1996; Van Damme et al., 2008). Interestingly, 

Vpu does not increase the constitutive endocytosis rate of BST-2 but rather inhibits de 

novo and recycled BST-2 from trafficking to the PM, sequestering the protein in a 

perinuclear compartment (Dubé et al., 2010; Dube et al., 2011; Dube et al., 2009; Lau et 

al., 2011; Mitchell et al., 2009; Schmidt et al., 2011). This is attributed to Vpu isolates 

possessing a highly conserved region (E59 VSAL63V) within the membrane-distal half of 

their cytoplasmic domain (Kueck and Neil, 2012; McNatt et al., 2013). Specifically, this 

motif mimics a canonical acidic dileucine-based sorting signal ((D/E)xxxL(L/I/M)) that 

mediates interaction with AP complexes (Canagarajah et al., 2013), which Vpu utilizes to 

simultaneously bind BST-2 and AP-1 to prevent de novo and recycled BST-2 from 

reaching the cell surface (Figure 1.4) (Jia et al., 2014).  

Apart from BST-2 downmodulation, Vpu also accelerates the lysosomal, 

degradation of BST-2 in an ECSRT and SCFȕ-TrCP E3 ubiquitin ligase complex-dependent 

manner (Caillet et al., 2011; Douglas et al., 2009; Iwabu et al., 2009; Janvier et al., 2011; 

Mitchell et al., 2009). However, we and others have shown that Vpu-induced surface 

downregulation of BST-2 is independent of ȕ-TrCP and cullin activity (Goffinet et al., 

2010; Ramirez et al., 2015; Tervo et al., 2011). This clarifies that Vpu-induced BST-2 

degradation is a consequence, rather than a cause, of BST-2 surface downregulation, and 

that Vpu utilizes both CRL-dependent and -independent mechanisms to counteract the 
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antiviral function and overall cellular levels of BST-2. 

 
1.5.3 BST-2 and Antibody-Dependent  

Cell-Mediated Cytotoxicity (ADCC) 

 Despite a well-documented role in inhibiting cell-free virus, the immunological 

implications of BST-2’s ability to tether nascent virions at the cell surface had not been 

well understood. In particular, tethered particles leave HIV-1 vulnerable to recognition 

and opsonization by circulating antibodies. One mechanism of clearing antibody-

opsonized cells is ADCC. Classical $'&&�LQYROYHV�WKH�ELQGLQJ�RI�)FȖ5IIIa expressed on 

Natural Killer (NK) cells with the Fc regions on antibodies, leading to the release of NK 

cytotoxic granules to lyse target cells. Two studies concurrently identified that Vpu 

modulates BST-2 surface expression to evade ADCC (Alvarez et al., 2014; Arias et al., 

2014).  Alvarez et. al. showed that HIV-1ǻ9SX-infected cells displayed enhanced IgG 

opsonization and greater NK cell )FȖ5,,,D�VLJQDOLQJ�DQG�GHJUDQXODWLRQ, correlating these 

functions with enhanced BST-2 expression (Alvarez et al., 2014). Meanwhile, the Evans 

group co-cultured an 1.� FHOO� OLQH� FRQVWLWXWLYHO\� H[SUHVVLQJ� )FȖ5,,,D�ZLWK�CEM target 

cells containing a tat-inducible luciferase reporter gene.  In the presence of antibodies 

derived from HIV-1-viremic patients, HIV-�ǻ9SX�FHOOV�ZHUH���-fold more susceptible to 

ADCC than HIV-1-infected cells. Moreover, this effect was enhanced through Type 1 

IFN treatment but inhibited upon knockdown of BST-2 (Arias et al., 2014). Therefore, 

these results suggest that BST-2 serves an important (and until recently underappreciated) 

role in bridging both innate and adaptive antiviral immunity.   
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1.6 Other recently discovered targets of Vpu 

1.6.1 NTB-A and PVR 

NK cells play a vital role in combating the early phases of viral infection through 

multiple mechanisms. These include the production of cytokines to inhibit viral 

replication and dissemination, the participation in ADCC to induce target cell apoptosis 

(as discussed earlier), or the release of cytolytic granules (degranulation) onto infected 

cells (Sowrirajan and Barker, 2011). As such, many viruses (including HIV-1) have 

evolved ways to subvert and incapacitate NK cells from exerting these antiviral 

functions. In particular, Vpu was recently shown to downregulate NK T and B cell 

antigen (NTB-A) (Shah et al., 2010). NTB-A is a Type I transmembrane protein and a 

member of the signaling lymphocytic activation molecule (SLAM) receptor family. It is 

expressed on all NK and CD4+ T cells and acts in a homotypic manner as a co-activating 

receptor on NK cells (Cannons et al., 2011). Successful NK degranulation requires the 

coordinated action of three major classes of receptors: i.) adhesion receptors ii.) 

activation receptors and iii.) co-activation receptors (Bryceson et al., 2006). Thus, by 

decreasing cell surface NTB-A (Fogli et al., 2008; Ward et al., 2007), Vpu impairs the 

ability of NK cells to properly release their cytolytic granules and induce the lysis of 

HIV-1-infected cells (Shah et al., 2010). This finding also supports why NK cells display 

inefficient degranulation despite Vpr upregulating ligands (ULBP1/2) for the NK 

activation receptor NKG2D (Ward et al., 2009). Interestingly, although Vpu binds NTB-

A via transmembrane domain interactions, Vpu does not require CRL activity to 

downmodulate NTB-A (Ramirez et al., 2015; Shah et al., 2010). Rather, Vpu affects the 

glycosylation pattern of NTB-A, thereby affecting its transport to the plasma membrane 
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and retaining NTB-A in the TGN (Bolduan et al., 2013). This novel mechanism further 

alludes to the versatility of Vpu and its interference with cellular targets.  

Recently, it was shown that PVR (poliovirus receptor, CD155) is downregulated 

by both Nef and Vpu (Matusali et al., 2012). PVR is a ligand for the DNAM-1 adhesion 

molecule and is expressed on NK cells, CD8+ T cells, as well as other cell types.  While 

Nef seems to decrease total levels of PVR, Vpu sequesters the ligand in a perinuclear 

compartment (Bolduan et al., 2014; Matusali et al., 2012). Matusali and colleagues 

showed that HIV-�ǻ1HI-infected Jurkat cells were more susceptible to NK cell-mediated 

lysis DQG� WKDW� WKLV� HIIHFW�ZDV�SDUWO\� UHGXFHG�E\�EORFNLQJ�ZLWK�DQ�Į-DNAM-1 antibody, 

suggesting a role for PVR in these functions (Matusali et al., 2012). The contribution Vpu 

alone plays in modulating PVR and NK cell-mediated lysis was not, however, shown. 

Therefore, as DNAM-1 is also involved in cell adhesion and migration, the exact role that 

PVR downregulation plays in HIV-1 pathogenesis will need to be further elucidated, 

particularly in primary cells.  

Finally, in addition to activating receptors, NK cells also possess inhibitory 

receptors (iNKRs) that prevent the inadvertent killing of healthy cells. Among the major 

classes of iNKRs are the Killer Immunoglobulin (Ig) Like Receptors (KIRs), whose 

ligands include the major histocompatibility complex (MHC) class I molecules 

(Sowrirajan and Barker, 2011). Cell surface expression of MHC-I molecules is present on 

all nucleated cells, but is usually downregulated by viruses such as HIV-1 as a means to 

evade cytotoxic T lymphocyte (CTL) responses (Collins et al., 1998; Schwartz et al., 

1996). Indeed, one of the major roles of HIV-1 Nef is to downregulate the MHC-I alleles 

HLA-A and B but not HLA-C or E (Cohen et al., 1999). Since HLA-C and E 
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preferentially protect humans from NK cytotoxicity, this selective MHC downregulation 

provides HIV-1 with the means to effectively avoid recognition by cytotoxic CD8+ T 

cells and NK cells (Cohen et al., 1999). Given that NTB-A and PVR are also 

downregulated by Vpu and Nef, Vpu therefore assists Nef in the coordinated disarming 

of NK cells against HIV-1 infection.  

 
1.6.2 CD1d 

 Invariant Natural Killer T cells (iNKT) are a unique subset of lymphocytes that 

play key roles within the innate immune system through the secretion of antiviral and 

immunoregulatory cytokines. They possess markers typically associated with NK cells as 

well as a semi-invariant T cell receptor (TCR) repertoire: 9Į���DQG�-Į����Į�FKDLQ��paired 

with 9ȕ��� �ȕ� FKDLQ� (Bendelac et al., 2007). iNKT cells bind nonclassical antigen- 

presenting molecules of the CD1 family that present glycolipid antigens rather than 

peptides (Godfrey and Kronenberg, 2004). This leads to iNKT cell activation and 

subsequent effector function. Humans possess four different CD1 molecules that present 

endogenous or exogenous lipid-antigens to iNKT cells: CD1a, CD1b, CD1c (Group I), 

and CD1d (Group II) (Brigl and Brenner, 2004; Moody, 2006). Expression of Group I 

CD1 molecules is mostly limited to Antigen Presenting Cells (APCs), whereas CD1d is 

more widely expressed on APCs, B cells, monocytes, macrophages, and in some 

circumstances, activated T cells (Dougan et al., 2007).  

Both Nef and Vpu contribute to impairing iNKT cell activation through surface 

downregulation of CD1d (Sandberg et al., 2012). Nef accelerates the internalization rate 

of CD1d molecules from the PM in an AP-2-dependent manner, leading to CD1d 

retention in the TGN (Chen et al., 2006; Cho et al., 2005). Vpu, however, inhibits the 
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recycling of CD1d back to the PM, leading to CD1d accumulation within early 

endosomes (Moll et al., 2010). Mutation of Vpu’s serine residues did not abrogate Vpu-

PHGLDWHG�&'�G� GRZQUHJXODWLRQ�� VXJJHVWLQJ� FXOOLQ� DFWLYLW\� DQG� ȕ-TrCP are dispensable 

for this function (Sandberg et al., 2012). Interestingly, a cytoplasmic distal C-terminal 

motif (APW) that is conserved between Group M Vpu proteins was recently identified as 

a critical determinant in Vpu-mediated CD1d downregulation (Bächle et al., 2015). 

Further structural and functional studies will be needed to determine whether this motif 

mediates binding between Vpu and CD1d or to possibly another cellular co-factor.  

 
1.6.3 CCR7 and CD62L 

 Coordinated lymphocyte trafficking between the blood, lymphatics, and 

secondary lymphoid organs (SLO) is essential for the proper development of an immune 

response against pathogens and is primarily controlled through expression of the homing 

molecules CCR7 and CD62L (L-selectin). CCR7 is a chemokine receptor that possesses a 

seven-transmembrane domain-spanning region and heterotrimeric G-protein signaling 

activity. Various subpopulations of T cells constitutively express CCR7, whereas the 

protein is upregulated upon maturation by antigen-presenting dendritic cells (DCs) 

(Forster et al., 2008). Continual lymphocyte recirculation between the bloodstream and 

lymphatic tissues is regulated by CCR7’s two chemokine ligands (CCL19 and CCL21), 

which are expressed in a homeostatic manner within primary and secondary lymphoid 

organs (Legler et al., 2014). The lectin-like receptor CD62L serves as an adhesion 

molecule, binding glycoproteins (i.e., CD34, GlyCAM-1) present on high endothelial 

venules (HEVs). This helps in the capture of leukocytes from the bloodstream and 

facilitates their subsequent “rolling” along HEVs, initiating a cascade of events that 
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culminates in the transmigration of immune cells into SLO (Khan and Kubes, 2003).  

 Recently, we and others have shown that HIV-1 modulates surface expression of 

both CCR7 and CD62L in CD4+ T cells (Ramirez et al., 2014; Trinite et al., 2014; 

Vassena et al., 2015). Vpu physically interacts with CCR7 and is both necessary and 

sufficient to reduce surface levels of the chemokine receptor (Ramirez et al., 2014). 

Rather than inducing degradation, Vpu relocalizes CCR7 within the TGN (Ramirez et al., 

2015; Ramirez et al., 2014). As a consequence, HIV-1-infected primary CD4+ cells 

expressing Vpu are impaired in their ability to migrate in vitro in a CCL19-dependent 

manner (Ramirez et al., 2014).  

 Interestingly, a coordinated effort between Nef and Vpu is necessary to 

downregulate CD62L (Vassena et al., 2015). Vassena et al. showed that both Nef and 

Vpu inhibit the transport of de novo CD62L towards the PM, resulting in the 

sequestration of CD62L within a perinuclear compartment (Vassena et al., 2015). 

Importantly, the adherent and signaling properties attributed to CD62L expression were 

hindered in primary CD4+ T cells infected with HIV-1 (Vassena et al., 2015). Future 

studies within humanized mouse models will likely be necessary to determine the full 

biological implications of HIV-1-mediated CCR7 and CD62L downregulation and how 

these functions may influence viral propagation, dissemination, and / or persistence. 

  
1.6.4 Tetraspanins 

 Humans encode 33 tetraspanins, integral membrane proteins that possess four 

transmembrane-spanning domains. Tetraspanins have a propensity to form homo- and 

hetero-dimers, -trimers or -tetramers with themselves or other proteins (integrins and 

other tetraspanins), resulting in the organization of specialized membrane domains 
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known as tetraspanin-enriched microdomains (TEMs) (Hemler, 2005). TEMs regulate 

many diverse cellular processes, including cell adhesion, motility, fusion, activation, and 

proliferation (Yanez-Mo et al., 2009). In addition to their multifaceted roles within cell 

biology, tetraspanins have also been associated with infectious diseases. Indeed, reports 

have shown that some tetraspanins (CD9, CD53, CD63, CD81, CD82, tetraspanin 14) are 

enriched within HIV-1 budding sites and can be incorporated into viral particles (Thali, 

2011). HIV-1 Gag has been implicated in specifically recruiting tetraspanins to areas of 

HIV-1 assembly, perhaps to provide a favorable environment for viral egress (Hogue et 

al., 2011; Krementsov et al., 2010). Paradoxically, other reports have shown the 

incorporation of tetraspanins into HIV-1 particles renders the virus less infectious 

through inhibiting fusion and entry into target cells (Krementsov et al., 2009; Sato et al., 

2008; Symeonides et al., 2014; Weng et al., 2009). Moreover, although tetraspanins 

accumulate at viral budding sites, a reduction in the overall levels of tetraspanins has 

been observed (Krementsov et al., 2009).  

 Two studies reported that Nef and Vpu alter the cell surface expression of 

members of the tetraspanin family, altering their trafficking through sequestration in a 

perinuclear compartment (Haller et al., 2014; Lambele et al., 2015). Lambele and 

colleagues focused on CD81, a ubiquitous tetraspanin, and showed that Vpu degraded the 

protein in multiple cell types in a proteasomal- and lysosomal-dependent manner 

(Lambele et al., 2015). Moreover, HIV-�ǻ9SX� RU� ǻ1HI� YLULRQV� SURGXced in CD81- 

expressing CEMss cells were less infectious than HIV-1wt virions (Lambele et al., 2015). 

In a similar manner, Haller et al. showed that HIV-�ǻ9SX� RU ǻ1HI� YLUXVHV� GLVSOD\HG�

reduced viral spread, cell migration, and actin rearrangement (Haller et al., 2014). Thus, 
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it seems that both Nef and Vpu regulate overall tetraspanin levels to provide an 

environment conducive to efficient viral dissemination.  

 
1.7 Conclusions 

Despite its small size, Vpu is a multifunctional viral protein that interferes with 

numerous host immune factors through discrete mechanisms. First, Vpu acts as a viral 

adaptor by  “mimicking ” a canonical phosphodegron motif via its phosphoserine 

residues, recruiting ȕ-TrCP and the SCFȕ-TrCP E3 ubiquitin ligase complex to induce CD4 

proteasomal or BST-2 lysosomal degradation (Roy et al., 2014). Second, Vpu alters 

intracellular protein trafficking, resulting in the sequestration of its cellular targets within 

a perinuclear compartment and/or their inability to recycle towards the PM (Figure 1.5). 

The exact residues, domains and/or cellular co-factors necessary for this latter mechanism 

of Vpu are still being defined, although some critical motifs have emerged. In particular, 

residues within the distal cytoplasmic domain of Vpu seem to mediate binding to AP-1 

(ELV), which helps sequester and inhibit the recycling of BST-2 towards the PM, 

resulting in its accelerated degradation (Jia et al., 2014; Kueck and Neil, 2012).  A 

conserved APW motif within the C-terminal domain of Vpu regulates CD1d cell surface 

downregulation (Bächle et al., 2015). Whether these motifs have any effects on other 

recently discovered targets of Vpu awaits further investigation. Moreover, the exact 

biological and functional roles that downregulation of recently described Vpu targets (in 

particular, tetraspanins, CCR7, and CD62L) has in promoting viral pathogenesis remains 

to be determined. Furthermore, another interesting point to consider is the relative 

redundancy of both Vpu and Nef to modulate a number of host cell receptors, albeit via 

different mechanisms. Given their different expression profiles (Nef as an early gene, 
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Vpu as a late gene) and their subcellular locations (Nef on the PM, Vpu within the ER, 

Golgi and endosomes), some studies have suggested HIV-1 evolved to utilize these 

accessory factors to modulate host vesicular trafficking at all stages of viral replication, 

providing the virus with the genetic and functional tools to adapt to an ever-changing 

microenvironment (Haller et al., 2014).   

Finally, among the four lineages of HIV-1 (M, N, O and P), only HIV-1 Group M 

has reached pandemic levels. Using mathematical modeling, Iwami and colleagues 

deduced HIV-1 M Vpu conferred a 2.38-fold increase in the prevalence of HIV-1 human-

to-human transmission (Iwami et al., 2015). This activity was lost in the absence of Vpu, 

with individuals developing intrinsic herd immunity through the antiviral effects of BST-

2, supporting the notion that BST-2 acts as a restriction factor (Iwami et al., 2015).  

Further indirect functional studies in support of this include Vpu alleles from HIV-1- 

infected patients maintaining CD4 and BST-2 antagonistic potential (Pickering et al., 

2014). Moreover, Vpus from Groups N, O, and P do not possess the combined abilities to 

strongly downregulate CD4, NTB-A, or CD1d as well as efficiently counteract BST-2 

(Sauter et al., 2011; Sauter et al., 2009; Sauter et al., 2012; Yang et al., 2011). With the 

recent discovery of other cellular targets downmodulated by Vpu, it will be very 

interesting to see whether other primate lentiviral Vpus display an inefficient ability to 

perform these functions. In any case, a continual understanding of immune evasion 

mechanisms mediated by Vpu will undoubtedly help in our understanding of HIV-1 

pathogenesis, but perhaps also in the rational design of novel therapeutics.   
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Figure 1.1 Manipulation of Cullin-RING Ligases (CRLs) by HIV accessory proteins. 
A-C.) Cullins are modular scaffold proteins. They are comprised of an Rbx protein at 
their C-terminus and different adaptor molecules and substrate receptors at their N-
terminus. Binding of Nedd8 (neddylation) induces a conformational change within CRL- 
complexes, activating them to properly facilitate the transfer of ubiquitin onto substrate 
molecules. D-F.) The HIV accessory proteins Vpu, Vpx, and Vif act as viral adaptors to 
utilize CRL-machinery for the degradation of host immune factors. Figure adapted from 
Mahon et al., 2014. A3G: APOBEC3G. 
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Figure 1.2: Schematic representation of HIV-1 Vpu 
Vpu is an 81-amino-acid Type 1 integral membrane protein. Residues 4-27 encompass a 
membrane anchor region (transmembrane domain). The cytoplasmic portion includes two 
Į-helices, which are separated by a highly conserved region that includes two 
constitutively phosphorylated serine residues. Vpu localizes to the ER, TGN and 
endosomal compartments. Modified from Dube et al., 2010.  
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Figure 1.3: Antagonism of CD4 by HIV-1 Nef and Vpu.  
A.) Nef increases the internalization rate of CD4 molecules on the PM in an AP-2- 
dependent manner. This results in CD4 / Nef complexes within early endosomes and 
eventual CD4 lysosomal degradation. B.) Vpu interacts with CD4 within the ER and 
induces CD4 ubiquitination through recruitment of an SCFȕ-TrCP E3 ubiquitin ligase 
complex. The ERAD machinery subsequently dissociates CD4 from the ER (and Vpu), 
leading to its degradation via the 26S proteasome. PM: plasma membrane; AP-2: 
adaptor-protein complex 2; ER: endoplasmic reticulum; ERAD: ER-associated 
degradation. 
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Figure 1.4: Vpu-mediated counteraction of BST-2. 
BST-2 is a cell-type-specific, Type I IFN-inducible protein that tethers all enveloped 
viruses (including HIV-1) to the cell surface to inhibit viral egress and promote antibody-
dependent cell-mediated cytotoxicity (ADCC). BST-2 normally recycles between early 
endosomes, the TGN and the PM. A fraction of BST-2 is ubiquitinated by the SCFȕ-TrCP 

E3 ubiquitin ligase complex and degraded in the lysosome in an endosomal sorting 
complexes required for transport (ESCRT)-dependent manner. In the presence of Vpu, de 
novo and recycled BST-2 are retained within the TGN. Vpu interacts with AP-1 to 
mistraffick BST-2 to sorting endosomes, resulting in enhanced BST-2 degradation and 
reduction of the protein on the cell surface. As a result, this promotes HIV-1 release and 
decreases ADCC. TGN: trans-golgi network; PM: plasma membrane  
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Figure 1.5: Sequestration of Vpu cellular targets. 
Vpu interferes with host protein vesicular trafficking, thereby reducing expression of 
immune factors at the cell surface. In general, Vpu retains NTB-A, CCR7, CD62L, 
CD155, and CD81 within a perinuclear compartment (most often, the TGN). Vpu also 
hinders the recycling of CD1d towards the PM in early endosomes.  As a result, multiple 
levels of innate and adaptive immunity are compromised, leading to viral persistence and 
pathogenesis.    



CHAPTER 2 

DOWNMODULATION OF CCR7 BY HIV-1 VPU  

RESULTS IN IMPAIRED MIGRATION AND 

CHEMOTACTIC SIGNALING WITHIN 

CD4+ T CELLS 

Reprinted with permission from: Ramirez, P.W., Famiglietti, M., Sowrirajan, B., 
DePaula-Silva, A.B., Rodesch, C., Barker, E., Bosque, A., Planelles, V. (2014). 
Downmodulation of CCR7 by HIV-1 Vpu Results in Impaired Migration and 
Chemotactic Signaling within CD4+ T cells. CellReports 7, 2019-2030 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES: 

Plasmids: The plasmid pcDNA3.1 (Invitrogen) was used as an empty vector control. 

pAcGFP-N1 (Clontech, Mountain View, CA) and pAcGFP-Vpu  were previously 

described (Shah et al., 2010). The vectors expressing VpuA14F-GFP, VpuRD-GFP and 

VpuS52,56N-GFP were generated within the pAcGFP-Vpu by site-direct mutagenesis 

PCR (Stratagene) and confirmed by sequencing. All DHIV viruses mutated in Vpu were 

generated within the DHIV backbone by QuikChange XL site-directed mutagenesis PCR 

(Stratagene) and confirmed by sequencing. The following reagent was obtained through 

the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: pNL4-3 (Cat. # 114) 

from Dr. Malcolm Martin. pNL4-�ǻ9SX�ZDV�FRQVWUXFWHG�E\�SODFLQJ�D�VWRS�FRGRQ�DW�WKH�

start of the Vpu sequence. CCR7 cDNA (Sino Biological, Inc.) was PCR amplified and 

tagged at the carboxy terminus by subcloning into pGEM-mCherry (Addgene, 

Cambridge, MA). To construct pBSXC-CCR7-mCherry, pGEM-CCR7-mCherry was 

digested with XhoI and EcoRI and the 1.8kb fragment was ligated into the BSXC vector. 

To construct pCMVG-CCR7-Flag, CCR7 was isolated from pBSXC-CCR7-mCherry by 

digestion with SpeI and XhoI and then subcloned into pCMVG-GAS2L1 (previously 

digested with NotI and SalI). 

 
Generation of in vitro cultured TCM: Naïve CD4+ T cells were isolated from peripheral 

blood mononuclear cells of healthy, anonymous donors, using the appropriate isolation 

kit (Miltenyi Biotec). Cells were cultured for three days in complete medium (RPMI-

1640 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin-

L glXWDPLQH�� LQ� WKH� SUHVHQFH� RI� Į&'��Į&'��� LPPXQR-EHDGV� �,QYLWURJHQ��� Į,/-4 

�3HSURWHFK�� DQG� Į,/-12 (Peprotech) as previously described (Bosque and Planelles, 
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2009). At day 3, activating and polarizing stimuli were removed and cells were cultured 

in presence of IL-2 (30 UI/ml) for 2 additional days. Cells were then infected with the 

specific viruses used in each experiment and then cultured with IL-2 until the time of 

analysis. 

 
Viruses and infections: The production of pseudotyped viruses was accomplished by co-

WUDQVIHFWLRQ� RI� ��� ȝJ� RI� '+,9� DQG� �� ȝJ� of CXCR4-tropic envelope plasmid (named 

pLET-LAI) by calcium phosphate mediated transfection of HEK293T cells. Eighteen 

hours later, transfection medium was removed and replaced by fresh complete medium. 

Cellular supernatants containing the viral particles were recollected 48 hours post 

transfection, aliquotted and immediately stored at -80°C. Viral titer was assessed using 

the RETROtek p24 ELISA kit (ZeptoMatrix, Buffalo, NY). For the production of 

replication competent HIV-1NL4-3 and HIV-1NL4-3ǻ9SX� YLUXVHV�� ��ȝJ� RI� SODVPLG� ZHUH�

transfected into 293T cells as described above. SupT1 cells were then infected to 

determine an optimal infectious dose to use in primary cells. At day 5 post activation, 

primary CD4+ T cells generated as explained above were infected by spinoculation: 106 

cells were infected with 500 ng/mL p24 for 2 hours at 2900 rpm and 37°C in 1 mL. 

Alternatively, cells were infected with HIV-1NL4-3 and HIV-1NL4-3ǻ9SX�DW�DQ�02, ���YLD�

spinoculation. Virus was then removed and cells were resuspended in complete medium 

supplemented with IL-2 at a concentration of 106 cells/ml. Medium was replaced every 2-

3 days.  

 
Co-immunoprecipitation and immunoblots: Twenty-four hours post transfection, cells 

were lysed for two hours on ice in NETN buffer (100 mM NaCl, .5 mM EDTA , 20mM 
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Tris-Hcl , .0.5% NP-40) containing protease and phophatase inhibitors (Roche). Protein 

concentration was measured by Bradford Assay (Pierce). Anti-Flag was then conjugated 

to Dynabeads Protein G (Invitrogen) for 30 min at RT with rotation. Next, cell lysates 

(100 µg) were incubated with the anti-flag/dynabead mixture for 1 hr at 4°C with rotation 

to allow for precipitation. Immunoprecipitates and 10 µg total-cell lysates were then run 

on a 4-12% denaturing polyacrylamide precast gel (BioRad, Hercules, CA). Proteins 

were transferred to a methanol-soaked polyvinylidene difluoride (PVDF) membrane, 

followed by blocking in 5% skim milk solution in Tris-buffered saline with .1% Tween 

20 (Calbiochem). Membranes were probed overnight with primary antibodies diluted in 

2% skim milk solution at 4°C with rotation. The next day, membranes were probed with 

secondary antibodies for 2 hrs in 2% skim milk solution.  Specific antibody reactions 

were detected using Immobilon Western reagents (Millipore) and membranes developed 

in a GeneGnome bioimaging processor (Syngene, Frederick, MD). 

 
Metabolic labeling and immunoprecipitation: ���7�FHOOV�ZHUH�FRWUDQVIHFWHG�ZLWK��ȝJ�

pCMVG-CCR7-)ODJ� DQG� HLWKHU� �ȝJ� S$F*)3-N1 or pAcGFP-Vpu. Twenty-four hours 

post-transfection, cells were starved for 30 minutes in methionine- and cysteine-free 

DMEM medium (Life Technologies). Cells were then pulse lDEHOHG�ZLWK����ȝ&L�PO�>35S] 

for 30 minutes at 37°C and then immediately harvested (Time 0) or complete DMEM 

medium (Life Technologies) added to cells for the start of the chase period, which lasted 

24 hours. At the time points indicated, cells were washed in PBS and pelleted by 

centrifugation, followed by lysis in radioimmunoprecipitation assay (RIPA) buffer (50 

mM Tris-HCl [pH 8], 159 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% deoxycholic acid) 

containing protease and phophatase inhibitors (Roche) on ice for 5 minutes. Soluble 
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protein was then collected following centrifugation and lysates stored at -80°C. To 

immunoprecipitate CCR7, protein concentration was first measured by Bradford Assay 

(Pierce). Anti-Flag antibody (Sigma) was then conjugated to Dynabeads Protein G 

(Invitrogen) for 30 min at RT with rotation. Next, cell lysates (150 µg) were incubated 

with the anti-flag/dynabead mixture for 1.5 hrs at 4°C with rotation to allow for 

precipitation. Immunoprecipitates were then run on a 4-12% denaturing polyacrylamide 

precast gel (BioRad, Hercules, CA). Gels were fixed (20% MeOH ; 7.5 % Glacial Acetic 

Acid) for 30 minutes and dried for two hours on a Gel Dryer (BioRad). Finally, gels were 

developed in a storage phosphor screen (Molecular Dynamics) and scanned using a 

Typhoon Phosphorimager (GE Healthcare), followed by densitometric quantification 

performed with the ImageQuant software (Molecular Dynamics).   

 
Immunofluorescence Microscopy: HeLa cells were grown on glass coverslips and 

transfected with CCR7-mcherry and Vpu-GFP plasmids using the Lipofectamine 2000 

reagent (Life Technologies). 24 hrs later, cells were washed, fixed with 4% 

paraformaldehyde and permeabilized/blocked (10% rabbit serum and 0.2% Triton-X, in 

PBS), each for 30 minutes at room temperature (RT). Cells were then immunostained for 

1 hour at RT using sheep anti-human TGN46 (Antibody Serotec) followed by a rabbit 

secondary antibody coupled to Alexa 647 (Jackson Immunoresearch) for 30 minutes at 

RT. Cells were counterstained with Hoescht and mounted on slides using FluorSave 

Reagent (Calbiochem). 

 
Calcium mobilization assay: Primary CD4+ T cells were infected with a DHIV-HSA 

virus encoding the heat-stable antigen (HSA/CD24) in place of Vpr, Two days post 
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infection, 3 million cells were loaded with 4 µg/ml Fluo3-AM (Life Technologies) in 1 

ml loading buffer (Hank’s Balanced Salt Solution + 1% FBS) for 30 minutes at 37°C in 

the dark. Cells were washed and stained with APC-Rat Anti-Mouse CD24 (BD-

Pharmingen) for 15 minutes at room temperature in the dark, followed by two washing 

steps. Cells were split at 500,000 cells/tube and resuspended in 500 µl of loading buffer. 

 
Migration assays:  Chemotaxis of activated primary CD4+ T cells was measured by 

PLJUDWLRQ�RI�FHOOV�WKURXJK�D�SRO\FDUERQDWH�ILOWHU�RI���ȝP�SRUH�VL]H�LQ�WUDQVZHOO�FKDPEHUV�

(Corning Costar, Lowell MA). Cells (4 x 105; 100 µl) were added to the upper chamber 

and either medium alone (RPMI supplemented with 0.5% BSA) or medium plus ligand 

����QJ�PO�&&/���RU����QJ�PO�6')�Į�������ȝO�WRWDO��ZHUH�DGGHG�WR�WKH�ORZHU�FKDPEHUV��

After a 1 hour incubation at 37°C, cells from the lower chamber were fixed, 

permeabilized and stained for p24Gag. For cell enumeration, 105 AccuCount Fluorescent 

Particles (Spherotech) were collected via flow cytometry to determine the total number of 

cells that migrated relative to the input (direct staining of 4 x 105 cells). CEM-CCRF cells 

were nucleofected with 2µg of either GFP or Vpu-GFP. Twenty-four later, chemotaxis 

was measured as described above except 3 x 105/100 µl cells were added to the upper 

chamber, a concentration of 1000 ng/ml CCL19 was used and cells were incubated for 3 

hours at 37°C. Data is depicted as a Migration Index (MI) score, which was calculated 

using the following formula: # of cells in sample / # cells in control (absence of ligand). 

 
Antibodies used for flow cytometry: The following human mAb were used: 

phycoerythrin-conjugated (PE)-anti-CD45RO, PE-anti-CXCR4, PE-anti-CD27, 

allophycocyanin-conjugated (APC)-anti-CCR7 (Caltag, Burlingame, CA), APC-anti-CD4 



 64 

(Life Technologies), fluoresceinisothiocyanate-conjugated (FITC)-anti-CCR5 (BD 

Biosciences) mouse-(FITC)-anti-p24 antibody (clone KC57, Beckman Coulter), anti-p-

ERK1/2 (Thr202/Tyr204) rabbit monoclonal antibody (Cell Signaling), goat anti-rabbit 

secondary antibody coupled to Alexa 647 (Molecular Probes, Invitrogen), goat anti-

mouse secondary antibody coupled to Alexa 647 (Molecular Probes, Invitrogen). The 

following reagent was obtained through the NIH AIDS Reagent Program, Division of 

AIDS, NIAID, NIH: Anti-Bst-2 (Cat. # 11722) from Drs. Klaus Strebel and Amy 

Andrew.  

 
Statistics: A paired Student’s t test was used to perform statistical analysis, with P values 

of <0.05 considered statistically significant. 
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4.1 Strategies mediated by HIV-1 for viral persistence 

HIV-1 has emerged as one of the most successful infectious disease agents to 

afflict humanity in the modern world, with a global death toll of over 39 million (World 

Health Organization (WHO), as of 2013). For a virus that causes chronic life-long 

infections (35 million individuals are currently living with the disease), many factors 

contribute to why HIV-1 causes a general lack of host immunological control. Some of 

these include: (1) Latency. As a retrovirus, HIV-1 integrates into the host genome of 

target cells. The absence of viral gene expression during this relatively “dormant” state 

and the cellular reservoirs harboring HIV-1 (long lived resting memory CD4+ T cells) 

contribute to the difficulty in viral eradication by the immune system (Chun et al., 1998; 

Chun et al., 1997). (2) Mutagenic escape variants: reverse transcriptase (RT) lacks 

proofreading capability and has evolved the ability to “jump” (switch templates) during 

reverse transcription (Huber et al., 1989). As a consequence, HIV-1 is highly 

recombinogenic, leading to viral quasispecies that are inadequately recognized by 

neutralizing antibodies and cytotoxic T lymphocytes (CTLs) (Domingo et al., 2012). (3) 

Concealment: Conserved domains within HIV-1 envelope are typically hidden under 

variable loops, only being transiently exposed during viral entry. Thus, epitopes targeted 

by neutralizing antibodies are largely inaccessible (Johnson and Desrosiers, 2002). (4) 

Cell tropism: HIV-1 infection results in the rapid decline of CD4+ T cells, the primary 

cellular target of the virus (Ho et al., 1995; Wei et al., 1995). Helper CD4+ T cells 

indirectly assist in multiple aspects of viral clearance through the release of cytokines, 

stimulating robust humoral and cell-mediated immunity (O'Shea and Paul, 2010). 

Consequently, their elimination severely hampers immunity against any opportunistic 
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infections. (5) Immune evasion through virally encoded factors: HIV-1 possesses 

accessory proteins that serve to specifically impair innate and adaptive immunity as well 

as counteract intrinsic restriction factors. Therefore, from an evolutionary standpoint, the 

acquisition of accessory genes is perhaps one of the main factors that drive persistent 

HIV-1 pathogenesis. Hence, a continual understanding of the exact role and functions 

accessory proteins play in promoting viral persistence may help in the future 

development of new therapeutics to stem viral replication and dissemination.  

 
4.2 CCR7: a new cellular target of the HIV-1  

accessory protein Vpu 

 In this work (Chapter 2), we describe Vpu-mediated reduced cell surface 

expression of the chemokine receptor CCR7 on primary CD4+ T cells. CCR7 is a 

chemokine homing receptor that mediates the coordinated recirculation of T cells 

(specifically naïve and central memory T  (TCM) cells) between the blood and secondary 

lymphoid organs (SLO) (Legler et al., 2014). We found Vpu to be both necessary and 

sufficient for this function.  

Downregulation of CCR7, however, did not correlate with a concomitant decrease 

in total CCR7 levels, but rather a relocalization of the protein within a perinuclear 

compartment: the trans-Golgi Network (TGN). Consequently, we found that HIV-1- 

infected cells were impaired in their ability to migrate towards a CCL19-mediated 

gradient in vitro. The downregulation of CCR7 by Vpu may therefore be a way for the 

virus to hinder the generation of a proper immune response by impairing the ability of T 

cells to migrate into SLO. Conversely, CCR7 downregulation on T cells that become 

infected within lymphoid tissues may allow their egress into efferent lymph vessels, 
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promoting systemic viral spread. Regardless, important mechanistic and biological 

questions regarding this function of Vpu remain, which will be further discussed here.  

 
4.2.1 What domains/residues/motifs within Vpu are 

important for downregulating CCR7? 

Vpu is a Type I integral membrane protein that possesses an N-terminal 

transmembrane domain (TMD) DV� ZHOO� DV� WZR� F\WRSODVPLF� Į-helices separated by a 

conserved region harboring a pair of constitutively phosphorylated serine residues (Dubé 

et al., 2010a). Vpu’s serine residues are necessary to “mimick” a canonical 

phosphodegron motif that recruits an Skp1-Cullin1-F-box (SCFȕ-TrCP) E3 ubiquitin ligase 

to degrade CD4 (Margottin et al., 1998). Randomization of Vpu’s TMD (VpuRD), but 

not mutation of its serine residues, inhibits CCR7 downregulation (Ramirez et al., 2014). 

This suggests the TMD in Vpu is required to modulate CCR7, whereas recruitment of an 

SCFȕ-TrCP E3 ubiquitin ligase complex is likely not necessary. The latter was further 

supported by the ability of Vpu to downmodulate CCR7 despite pharmacological 

inhibition of Cullin-RING ligase (CRL) activity (Ramirez et al., 2015).  

Besides Vpu’s TMD and phosphoserine residues, recent reports have identified 

other functional regions, specifically within the cytoplasmic portion of Vpu, that are 

important for downregulating the restriction factor BST-2 and CD1d (Bächle et al., 2015; 

Kueck and Neil, 2012). First, this includes a Vpu motif (E59xxxL63V64) that resembles an 

acidic-dileucine sorting signal ((D/E)xxxL(L/I/M)). These signals usually facilitate 

binding to Adaptor Protein (AP) complexes (Canagarajah et al., 2013). Accordingly, Vpu 

utilizes the ELV motif to interact with AP-1; sequestering BST-2 within a perinuclear 

compartment (TGN) and reducing its density on the cell surface (Jia et al., 2014). 
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Mutation of this motif, however, only had a partial effect on impairing Vpu’s ability to 

downregulate CCR7 (Figure 4.1). Thus, future studies should focus on depleting cellular 

pools of AP-1 to fully delineate the necessity of this co-factor in Vpu-mediated CCR7 

downregulation.  

Second, Bachle and colleagues utilized chimeras between active (Subtype B) and 

inactive (Subtype C) Vpus to identify a conserved C-terminal APW motif important for 

CD1d downmodulation (Bächle et al., 2015). It is tempting to speculate that the APW 

motif may also play a role in modulating CCR7, given that Vpu also mislocalizes, rather 

than degrades, CD1d (Moll et al., 2010). Moreover, whether the Vpu APW motif 

physically binds CD1d or is necessary to interact with some other cellular factor 

implicated in host vesicular trafficking has yet to be shown.  

 
4.2.2 Does Vpu affect de novo synthesized or recycled CCR7  

from reaching the PM? 

Reports on CCR7 biology have shown that the chemokine receptor is relatively 

stable on the PM unless engagement with one of its ligands (CCL19 / CCL21) occurs 

(Otero et al., 2006). Consequently, we found that Vpu does not increase either the 

constitutive or CCL19-mediated internalization rate of CCR7, consistent with other 

targets of Vpu such as BST-2, NTB-A and CD1d (Dube et al., 2009; Mitchell et al., 

2009; Moll et al., 2010; Ramirez et al., 2014; Shah et al., 2010). Nonetheless, future 

studies should examine in greater detail the internalization rate of CCR7 at longer time-

points (our experiment was carried out in a time frame of 60 minutes) to evaluate: i.) The 

steady-state endocytosis of CCR7 and ii.) Although not likely, whether Vpu has any 

influence on increasing this rate.  
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Our studies also included the treatment of cells with cyclohexamide (CHX), a 

protein synthesis inhibitor, to determine whether Vpu degrades CCR7. We found no 

difference in the total levels of CCR7 within HIV-1 infected cells regardless of CHX 

treatment (Ramirez et al., 2014). While this suggests a mechanism distinct from 

degradation, it does not exclude the ability of Vpu to inhibit de novo synthesized CCR7 

from reaching the PM. In other words, if in the presence of CHX, surface levels of CCR7 

were restored (or partly restored) within Vpu-expressing cells, this would be consistent 

with Vpu blocking the anterograde trafficking of newly synthesized CCR7 molecules. On 

the other hand, if CHX treatment had no effect on Vpu downregulating CCR7, this may 

suggest that Vpu impairs the recycling of CCR7 back to the cell surface, a phenomenon 

that has been reported for both BST-2 and CD1d (Dubé et al., 2010b; Moll et al., 2010).  

Moreover, the ability to infect cells with an inducible HIV-1 provirus may provide 

another alternative for answering some of these mechanistic questions, whereby the 

ability to chronologically monitor CCR7 downregulation by Vpu could be studied in 

greater temporal and spatial details (Dube et al., 2011).  

 
4.2.3 Does Vpu affect the glycosylation pattern of CCR7? 

It was recently reported that Vpu affects the glycosylation pattern of NTB-A, 

where only the high mannose form is detectable within Vpu-expressing cells (Bolduan et 

al., 2013).  Vpu does not degrade NTB-A (Shah et al., 2010), but sequesters the protein in 

a perinuclear compartment: the TGN (Bolduan et al., 2013). As post-translational 

processing occurs within the TGN, blocking the egress of NTB-A from the ER (Brefeldin 

A) or utilizing ER-trapped Vpu mutants (Skasko et al., 2011; Vigan and Neil, 2011) 

inhibited Vpu from affecting NTB-A’s glycosylation pattern (Bolduan et al., 2013). 
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CCR7 contains one N-linked glycosylation site and, like NTB-A, is mislocalized within 

the TGN when Vpu is present (Bolduan et al., 2013; Ramirez et al., 2014). Thus, whether 

Vpu has any role in affecting glycosylation of CCR7, or conclusive evidence that 

downregulation of CCR7 by Vpu occurs via a post-ER mechanism, remains to be 

determined.   

 
4.2.4 Is downmodulation of CCR7 a conserved Vpu function? 

 The vpu open reading frame is expressed within the genomes of both pandemic 

(M) and nonpandemic (N, O and P) HIV-1 groups, as well as some related simian 

immunodeficiency virus (SIV) isolates: SIVcpz (chimpanzee), SIVgor (gorilla), SIVgsn 

(greater spot-nosed monkey), SIVmon (mona monkey), SIVmus (mustached monkey) and 

SIVden (Dent’s mona monkey) (Kirchhoff, 2010). It is now widely accepted that HIV-1 

M, N, O, and P are a direct result of zoonotic transmission from SIVs found within 

central chimpanzees and Western lowland gorillas (Sharp and Hahn, 2010). Remarkably, 

Group M Vpu proteins possess the sole ability to counteract BST-2, CD4, NTB-A and 

CD1d, whereas Groups N, O, and P are either suboptimal antagonists or lack at least one 

of these functions (Sauter et al., 2011; Sauter et al., 2009; Sauter et al., 2012; Yang et al., 

2011). This has led to the speculation that the ability of Group M Vpu to evade intrinsic, 

innate, and adaptive antiviral mechanisms, particularly in the counteraction of BST-2, has 

been a major cause in contributing to the global AIDS pandemic (Kirchhoff, 2010; Sauter 

et al., 2009). Therefore, it would be interesting to determine if Vpu downmodulation of 

CCR7 is a unique attribute of pandemic Group M viruses, or whether this Vpu function is 

maintained between all HIV-1 Groups as well as vpu-encoding SIV strains. Moreover, 

whether non-vpu encoding SIV strains, as well as HIV-2, possess an inherent ability to 
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downregulate CCR7, remains to be determined. Importantly, we have found that Group 

M Vpu isolates obtained from a transmitted founder (TF) or chronic carrier (CC) virus 

(Parrish et al., 2013) preserve the ability to downregulate CCR7 within primary CD4+ T 

cells, implying this Vpu function is not just associated with lab-adapted HIV-1 strains 

(NL4-3; Figure 4.2).  

 
4.2.5 What is the biological significance of CCR7  

downregulation by Vpu in vivo? 

The relevance for HIV-1 downregulating CCR7 in vivo remains unknown. We 

determined that Vpu-expressing cells display altered migration patterns towards the 

CCR7 ligand CCL19 in vitro (Ramirez et al., 2014). This may reflect a strategy by the 

virus to disrupt coordinated lymphocyte trafficking into SLO to evade a proper anti-HIV 

immune response. The recent finding of downregulation of CD62L (our own unpublished 

results) by both Nef and Vpu (Vassena et al., 2015) further supports this, as CD62L is 

necessary (along with CCR7) for lymphocytes to traverse high endothelial venules 

(HEVs) and gain entry into SLO.  

On the other hand, lymph nodes constitute one of the major sites of HIV-1 viral 

replication. Downregulation of CCR7 and CD62L on HIV-1-infected T cells may 

therefore favor exit from lymph nodes and entrance into efferent lymph vessels, 

promoting systemic viral infection. Indeed, to assess whether T cell trafficking had a role 

in the spread of HIV-1, Murooka and colleagues treated BLT (bone 

marrow/liver/thymus) humanized mice with a drug (FTY720: fingolimod) that retains 

lymphocytes within lymphatic tissues (Murooka et al., 2012). High-level viremia was 

prevented only when the drug was given at the time of initial infection, but not when 
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administered during a pre-established infection (Murooka et al., 2012). This latter finding 

was also observed when FTY720 was administered to simian-human immunodeficiency 

virus (SHIV)-infected macaques (Kersh et al., 2009). Taken together, these data suggest 

that T cell migration is important for promoting systemic viral dissemination.  

  Moreover, two phenotypes were observed among T cells infected with GFP-

tagged HIV-1 in BLT mice: a reduction in cell motility (relative to uninfected GFP-

expressing T cells) and the formation of Env-dependent multinucleated syncytia 

harboring long membrane tethers (Murooka et al., 2012). The authors concluded that 

decreased migratory potential might therefore serve to slow down HIV-1-infected cells 

long enough to mediate cell-cell contacts (i.e., virological synapses) for efficient 

intercellular viral transfer while still being motile enough to establish systemic viral 

dissemination (Murooka et al., 2012). Importantly, reduced cell motility was lost upon 

infection with an HIV-1 derived lentiviral vector lacking accessory proteins (Murooka et 

al., 2012). It is therefore tempting to speculate that Vpu and / or Nef may play some role 

in this phenotype, especially since variable decreased expression of CCR7 on HIV- 

infected T cells was observed though not further commented on.  

 
4.3 HIV-1 Vpu: a versatile viral protein 

In our second body of published work (Chapter 3), we established that Vpu is a 

multifunctional accessory factor capable of interfering with cellular targets via CRL-

dependent and -independent mechanisms (Ramirez et al., 2015). All HIV accessory 

proteins can act as viral adaptors by usurping host cellular machinery, with subversion of 

the ubiquitin proteasome system (UPS) being a common tactic. CRLs represent one of 

the largest classes of E3 ubiquitin ligase complexes within the UPS, and as such regulate 
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numerous cellular processes (Bosu and Kipreos, 2008). CRLs may therefore serve as an 

“Achilles heel” that viruses can manipulate to facilitate evasion from host defense 

mechanisms.  

For example, Simian Virus 5 (SV5), a member of the paramyxovirus virus family, 

encodes a V protein that uses a cullin4-containing (CRL4) complex to induce the 

degradation of STAT1/2 (signal transducer and activator of transcription) heterodimers, 

hindering induction of the host interferon response (Precious et al., 2005a; Precious et al., 

2005b; Precious et al., 2007). The Kaposi’s sarcoma-associated herpesvirus (KSHV) 

latency-associated nuclear antigen (LANA) “mimicks” a component of the cullin5-

containing (CRL5) complex to target the tumor suppressors von-Hippel Lindau (VHL) 

and p53 for degradation, providing a favorable environment for tumor progression in 

KSHV-infected cells (Cai et al., 2006). Vaccinia virus (VACV— the smallpox vaccine) 

requires Cullin3 and Rbx1 to replicate, though the exact mechanism and substrates (if 

any) remain unknown (Mercer et al., 2012). Furthermore, the HIV-1 Vif and HIV-2 Vpx 

proteins hijack CRL5 and CRL4 complexes to degrade the restriction factors 

APOBEC3G and SAMHD1, thereby facilitating efficient viral replication (Hrecka et al., 

2011; Laguette et al., 2011; Yu, 2003). 

HIV-1 Vpu relies on the SCFȕ-TrCP E3 Ubiquitin Ligase complex (also known as a 

cullin1-containing complex: CRL1) to induce poly-ubiquitination and subsequent 

proteasomal degradation of CD4 (Margottin et al., 1998; Willey et al., 1992). Vpu also 

utilizes a CRL1 complex to eventually degrade the restriction factor BST-2, though not in 

the same manner as CD4. Instead, Vpu targets BST-2 for endo-lysosomal degradation in 

an ESCRT-dependent manner (Caillet et al., 2011; Douglas et al., 2009; Iwabu et al., 



  88 

2009; Janvier et al., 2011; Mitchell et al., 2009). However, whether Vpu-mediated BST-2 

degradation was a direct cause or consequence of BST-2 surface downregulation 

remained undetermined. Moreover, the requirement of the CRL1 complex in Vpu 

downregulation of BST-2 remained controversial (Goffinet et al., 2010; Mangeat et al., 

2009; Tervo et al., 2011).  

To clarify this dilemma in primary CD4+ T cells, we therefore made use of a 

neddylation-activating enzyme (NAE) inhibitor (MLN4924) to effectively block CRL 

activity (Soucy et al., 2009). Neddylation is a necessary post-translational step that 

induces a conformational change within cullins, thereby activating them (Rabut and 

Peter, 2008). MLN4924 completely abrogated Vpu’s ability to downregulate CD4 but not 

BST-2, CCR7, or NTB-A (Ramirez et al., 2015). Furthermore, primary Vpu isolates 

maintained the ability to down-regulate BST-2 in the presence of MLN4924, suggesting 

recruitment of CRL machinery had not been lost during adaptation to cell culture. 

Finally, siRNA depletion of cellular pools of cullin 1 partially restored CD4, but not 

BST-2 surface levels within Vpu-expressing cells (Ramirez et al., 2015). Taken together, 

these results suggest that BST-2 degradation is a consequence of BST-2 downregulation, 

at least within CD4+ T cells.  

Vpu therefore utilizes both CRL- and non-CRL-mechanisms to interfere with its 

cellular targets and is the only HIV accessory protein presently known to possess these 

dual attributes. Similar to HIV Nef, Vpu can alter the intracellular vesicular trafficking of 

host proteins, thereby reducing their expression at the cell surface. This versatility makes 

Vpu a truly adept protein at modifying the host environment in a manner conducive to 

promoting immune evasion. Consequently, further research into this accessory factor will 
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undoubtedly help in our understanding, and hopefully in better combating, HIV-1 

pathogenesis.  
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Figure 4.1: The Vpu ELV motif plays a minor role in CCR7 downregulation.  
All lentiviral constructs were derived from the HIV-1NL4-3 sequence and possess a frame 
shift mutation within envelope/gp120 but maintain in-frame Tat, Rev, and RRE ORFs. 
These were thus termed “defective” HIV, or DHIV. All vectors used in this study also 
harbored GFP in place of Nef (termed DHIV-GFP). Terminology is as follows – WT: 
DHIV-GFP, Vpu ELV: a virus where the E59L63V64 motif within Vpu was mutated to 
DODQLQHV��ǻ9SX��D�YLUXV�ODFNLQJ�9SX��A.) Primary CD4+ T cells were either mock infected 
or infected with the indicated viruses at an MOI=.5. 72 hrs post-infection, cells were 
surface stained for CCR7 or BST-2 and analyzed by flow cytometry. Histograms 
represent a comparison between GFP-negative (uninfected) and GFP-positive (infected) 
cells. The gray histogram represents an IgG matched isotype control. One representative 
experiment out of two is shown. B.) An aliquot of cells from A were lysed, subjected to 
western blot and probed for p24 and Vpu. ȕ-actin was used as a loading control.   
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Figure 4.2: Primary Vpu isolates maintain the ability to downregulate CCR7 
Lentiviral constructs used were derived from DHIV (as discussed in Figure 4.1) and are 
as follows: i.) GFP in place of Nef or ii.) Replacement of NL4-3 Vpu with primary Vpu 
isolates from either a transmitted founder (T/F; WITO) or chronic carrier (CC; WARO) 
virus. A.) DHIV-GFP (Vpu+/Nef -). B.) DHIV-GFP (Vpu-/Nef-). C.) DHIV-GFP WITO 
(Vpu+/Nef-). D.) DHIV-GFP WARO (Vpu-/Nef-). E.) Primary CD4+ T cells were either 
mock infected or infected at an MOI=1 with the indicated viruses. Cells were 
subsequently stained to assess surface levels of CCR7 72 hrs post-infection between 
uninfected (GFP negative: blue line) and infected (GFP positive: red line) populations. A 
matched IgG isotype control is also shown (Gray histogram). F.) Relative mean 
fluorescence intensity (MFI) values for CCR7 surface levels from (E). Data were 
normalized by setting the MFI values from uninfected (mock) cells to 100% and are 
depicted graphically as +/- SEM. A pairwise Student’s t test between GFP negative and 
GFP positive cells was used to determine statistical significance: **p<.01.  
 
 
 
 
 




