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ABSTRACT

Tensors are mathematical representations of physical entities that have magnitude with

multiple directions. Tensor contraction is a form of creating these objects using the Einstein

summation equation. It is commonly used in physics and chemistry for solving problems

like spectral elements and coupled cluster computation. Mathematically, tensor contraction

operations can be reduced to expressions similar to matrix multiplications. However, linear

algebra libraries (e.g., BLAS and LAPACK) perform poorly on the small matrix sizes that

commonly arise in certain tensor contraction computations. Another challenge seen in

the computation of tensor contraction is the difference between the mathematical repre-

sentation and an efficient implementation. This thesis proposes a framework that allows

users to express a tensor contraction problem in a high-level mathematical representation

and transform it into a linear algebra expression that is mapped to a high-performance

implementation. The framework produces code that takes advantage of the parallelism

that graphics processing units (GPUs) provide. It relies on autotuning to find the preferred

implementation that achieves high performance on the available device. Performance results

from the benchmarks tested, nekbone and NWChem, show that the output of the framework

achieves a speedup of 8.56x and 14.25x, respectively, on an NVIDIA Tesla C2050 GPU

against the sequential version; while using an NVIDIA Tesla K20c GPU it achieved speedups

of 8.87x and 17.62x. The parallel decompositions found by the tool were also tested with

an OpenACC implementation and achieved a speedup of 8.87x and 10.42x for nekbone,

while NWChem obtained a speedup of 7.25x and 10.34x compared to the choices made by

default in the OpenACC compiler. The contributions of this work are: (1) a simplified

interface that allows the user to express tensor contraction using a high-level representation

and transform it into high-performance code; (2) a decision algorithm that explores a set

of optimization strategies for achieving performance; and, (3) a demonstration that this

approach can achieve better performance than OpenACC and can be used to accelerate

OpenACC.
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CHAPTER 1

INTRODUCTION

Tensors are mathematical representations of physical entities that have magnitude with

multiple directions [1]. Tensor contraction is a form of creating tensors using the Einstein

summation equation [1, 2, 3]. It is commonly used in physics and chemistry for computing

different techniques like spectral element methods [4] and coupled cluster computations [5].

Spectral element methods are used for modeling fluids [4]; while coupled cluster theory is

used for making an accurate approximation of the atomic and molecular electronic structure

[6].

Mathematically, tensor contraction problems can be reduced to expressions similar to

matrix multiplications. While library implementations could be used (e.g., BLAS and

LAPACK), these routines perform poorly on the small matrix sizes that commonly arise

in certain tensor contraction computations. Another challenge seen in tensor contraction

problems is the disconnection between mathematical representation and the implementa-

tion.

In this thesis work we present how compiler optimization techniques can be exploited

to speed up the computation of tensors on graphics processing units (GPUs). Efficient

computation of these objects can be a challenge when they are small in size, but with

the right transformations it is possible to achieve high performance. We explore how the

optimization techniques used on the CPU can also be applied to these multiprocessing units

to achieve high performance [7]. We also present an interface that allows the computation

to be expressed mathematically. This representation is used to create optimized code for

GPUs.

1.1 Tensors and Tensor Contraction

The elements of a tensor describe a linear mapping between scalars, vectors or other

tensors. The order of a tensor is depends on the amount of dimensions; e.g., 0th order is a

scalar, 1st order is a vector and 2nd is a matrix [3].
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There are numerous ways to produce a tensor; the simplest one is generating a scalar,

vector, or an object with higher dimensions, using unit vectors [1]. For example, Figure 1.1

presents a Cartesian plane with a vector that has a magnitude of 8 and an angle of 60o. A

tensor can be composed by finding the unit vectors in this vector by applying traditional

trigonometry. The results are 4, 4
√

3 and 0 for the x, y and z axis, respectively. These unit

vectors compose a tensor of 1st order (vector).

The tensor product, also known as the Kronecker product (denoted by
⊗

), is another

way for creating tensors, as defined by Equation 1.1. Tensor C is created from tensors A

and B, with sizes of m× n and l × k, respectively, where matrix B is multiplied with each

entry of the matrix A and stored in C [3].

C = A
⊗

B =



a1,1

b1,1 · · · b1,k
...

. . .
...

bl,1 · · · bl,k

 · · · a1,n

b1,1 · · · b1,k
...

. . .
...

bl,1 · · · bl,k


...

. . .
...

am,1

b1,1 · · · b1,k
...

. . .
...

bl,1 · · · bl,k

 · · · am,n

b1,1 · · · b1,k
...

. . .
...

bl,1 · · · bl,k




(1.1)

Some of the important properties of the operator
⊗

are given by:

• Noncommutative: A
⊗

B 6= B
⊗

A

• Transpose is distributive: (A
⊗

B)T = AT
⊗

BT

• Mixed-product property: (AB
⊗

CD) = (A
⊗

C)× (B
⊗

D)

Another form of producing tensors is using a tensor contraction. Tensor contraction

(denoted by ×) is the creation of a new tensor by summing the products between the

components of the primary tensors [1, 2, 3]. Equation 1.2 presents an example of a tensor

contraction between a tensor of 2nd and 1st order (A and b), which produce another tensor

y 

x 

Tensor of order 1 (vector): 

4	
   4√3	
   0	
  

v = 8

∠v = 60o
x = cos(60o)*8 y = sin(60o)*8 z = 0 

Figure 1.1: Representation of a 1st order tensor using the unit vectors 4, 4
√

3 and 0.
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of order 1 (c). The contraction will happen when a pair of indices (one subscript and one

superscript) in the Einstein notation is set equal in the resultant tensor.

c = A× b

ci =
∑
k

Ai
k ∗ bk

(1.2)

Examples of tensor contraction are:

• Dot product: Two tensors of 1st order produce a 0th order tensor.

• Matrix-vector product: Tensor of 2nd order and tensor of 1st order produces a 1st

order tensor.

• Matrix-matrix product: Two tensors of 2nd order produce a 2nd order tensor.

Tensor contraction is not limited to these three examples. Through this thesis work we will

see some cases that use tensors of order 2 and 4 to produce tensors of order 6, while other

cases perform tensor contraction between tensors of order 2 and 3.

1.2 Applications that use Tensor Contraction

Tensor contractions are widely used in many fields. Physicists use them in applications

that compute solutions related to inertia, general relativity or spectral elements. Chemistry

applications use them in the coupled cluster computation. This thesis work focuses on two

real life applications that use tensor contraction: nek5000 and NWChem. While nek5000

uses small sizes, NWChem partitions the data in small chunks to operate within a single

node.

1.2.1 Nek5000: Spectral Elements

Nek5000 is an application that implements a 3-dimensional spectral element discretiza-

tion technique [8, 9]. It executes a conjugate gradient loop that solves Equation (1.3) [10].

Here A, B and C are 3rd order tensors and u is a 2nd order tensor. This equation is

composed of tensor products (A
⊗

B
⊗

C) and a tensor contraction (C × u).

D = A
⊗

B
⊗

C × u (1.3)
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Traditionally, the solution of Equation 1.3 is given by di,j,k =
∑

l

∑
m

∑
nA

l
k ∗Bm

j ∗ Cn
i ∗ ul,m,n.

This summation is computationally intensive and in this case is O(n6). The computational

order increases with increasing dimensions.

Nek5000 expresses the problem as D = (A
⊗

I
⊗

I)× (I
⊗

B
⊗

I)× (I
⊗

I
⊗

C)× u.

Then it uses partial results for computing the final result.

v = (I
⊗

I
⊗

C)u

vi,j,k =
∑
p

Ck
p ∗ ui,j,p

(1.4)

Equation 1.4 creates a new tensor of 2nd order called v. This tensor is generated by

the tensor contraction between u (2nd order) and CT (3rd order). Usually, this solution

is computed as v = u × CT , which resembles a n2 ∗ n × n ∗ n matrix multiplication. The

generated tensor, v, is used to solve the second partial result.

w = (I
⊗

B
⊗

I)v

wi,j,k =
∑
p

Bj
p ∗ vi,p,k

(1.5)

Equation 1.5 represents tensor contraction between two tensors of 3rd order. This is

represented as w(:, :, k)×BT , which is a n batch of n ∗ n× n ∗ n matrix multiplications.

D = (A
⊗

I
⊗

I)× w

di,j,k =
∑
p

Ai
p ∗ wp,j,k

(1.6)

Finally, Equation 1.6 provides the final result for D. This, same as Equation 1.4, is computed

as a matrix multiplication of n ∗ n× n ∗ n2 between A× w.

The optimization presented reduces the amount of computation; in this case, the order

decreased from O(n6) to O(n4). Not only is the amount of computation reduced, but

also it is now expressed as matrix multiplication. Tensor contraction problems are usually

expressed in these representations, making it possible to use popular high performance

linear algebra libraries like BLAS and LAPACK to achieve high performance [11]. On

the other hand, often in practice, the sizes of the tensor are small. Typically, the library

implementations for performing matrix multiplication like DGEMM are tailored for much
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larger sizes, which lead to poor performance [12]. Nek5000 use a specialized kernel tailored

for high performance matrix multiplications of small matrix sizes [7]. When the size is

large enough, then nek5000 uses these libraries to compute the solution. The small sizes in

nek5000 are related to the order of the discretization polynomial. As it increases, the time

required to achieve the convergence point in the computation also increases [10].

1.2.2 NWChem CCSD(T): Coupled Cluster

NWChem is a software package for quantum chemistry and molecular dynamics [13].

We focus on the kernels extracted from the CCSD(T) (coupled cluster theory with full

treatment singles, doubles and triples estimated using perturbation theory) computations

of NWChem [14]. The tensor contraction is given by two tensors of different orders and

produces another tensor with distinct order. This computation resembles a batched matrix

multiplication.

The main kernel is divided into three sets where each set has nine functions that explore

the tensor contraction in different points of the data. The first set (sd t s1) performs a

tensor contraction between two tensors with order 2 and 4. The second (sd t d1) and third

(sd t d2) sets work with two tensors where both are order 4. All three cases store the results

into a tensor of order 6. The CCSD(T) kernels use small sizes since they represent chunks

of a larger tensor contraction problem to be performed in a distributed system. The size

of the slab is arbitrary but it should be small enough to make efficient use of the cache

hierarchy.

1.3 GPUs and Compilers Optimizations for
Achieving Performance

Processes that involve tensor contraction can be computationally and memory intensive,

especially when the order of the tensors get higher. Fortunately, in recent years, an emergent

architecture allows achieving high performance in a conventional desktop computer: graphic

processing units (GPUs). The advantage of GPUs is that the cost and energy consumption

are relatively low compared with the amount of performance they provide.

A GPU is an accelerator connected to the motherboard of the computer through a

PCI-Express port. These units were originally designed to accelerate graphics applications

like games and animated movies. Recently, the high performance computing community has

adopted them for more general purpose use due to the simplified architecture and parallelism

they provide. Figure 1.2 [15] presents the architectural difference between a CPU and a

GPU. Notice that while a CPU has a limited number of registers, GPUs contain a larger
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Figure 1.2: Architectural difference between a CPU (left) and a GPU (right). Green
squares represent the arithmetic logic units (ALU) registers, yellow are the control registers
and orange squares represent memory [15].

amount of simplified registers. GPUs achieve parallelism by using these registers to perform

the same computation over different regions of the data.

Another feature that makes GPUs popular is the programming interface. Users benefit

from an application programming interface (API) known as compute unified device archi-

tecture (CUDA). As an extension of C++, CUDA allows programmers to create kernels for

performing the parallel computation in the GPU. It also provides the tools for expressing

the data transfer between device (GPU) and host (main memory).

Apart from CUDA, OpenACC [16] is a newer API that allows users to develop pro-

grams for GPUs and other accelerators. It uses an OpenMP-like interface (directives for

FORTRAN and pragmas for C++) where users specify which loop nests are going to be

executed on these devices. OpenACC also provides the necessary instructions for copying

data and synchronizing with the host.

Writing highly-optimized code for GPUs requires careful management of the memory

hierarchy, data copies, synchronizations and parallelism granularity, among others. These

strategies are difficult for users to do manually since it requires different transformations

that can lead to a variety of implementations. To address this problem we use a concept

known as autotuning. Autotuning permits the creation of code variants using different

transformations for achieving high performance in a target architecture [17, 7, 18, 19]. It

has been widely used in compilers for strategies that produce better code on CPUs and,

recently, GPUs [20, 21, 22].

1.4 High Performance Tensor Contraction
Interface

Our research goal is to automate the difficult task of code generation for tensor contrac-

tion targeting GPUs. The observations that motivated this thesis work are:
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• Tensor contraction problems can be expressed as matrix multiplications, which allows

the use of high-performance libraries like LAPACK and BLAS. When the sizes of

the tensors are small, these libraries may lead to poor performance because they are

tailored for large sizes [7]. We need a customized optimization strategy to achieve

better performance for these small sizes.

• The same result for a tensor contraction problem can be achieved by different math-

ematical expressions. The decision of choosing which implementation is going to be

used can have an impact on the performance of the application.

• In many cases, the tensor contraction problems are reduced to a batched matrix

multiplication. We want to use the parallelism provided by GPUs to accelerate this

process.

This thesis proposes an interface resulting from these observations. It presents a frame-

work that transform a tensor contraction expressions into high performance code for GPUs.

The tool integrates an interface where the user inputs a high-level pseudo-code that is

close to a tensor contraction representation. It automatically generates a collection of

implementations and uses autotuning to find possible transformations that generate high

performance codes. These implementations are exhaustively explored to select the best

version. The focus of this work is oriented to tensor contraction problems that are small

but that can still consume a large portion of the computation time of real applications.

Figure 1.3 presents a flowchart of the proposed framework. This framework depends on

external information that is an expansion to this work (presented in the gray box area). The

user inputs a high-level representation that resembles the mathematical tensor notation, and

the external tool applies different transformations for reducing the number of operations,

among other optimizations. The output from the external information is a tensor-specialized

representation that is used throughout this system to generate high-performance code.

The tensor representation from the external tool generates a basic C++ implementation

(Chapter 2). The output, in collaboration with a decision algorithm, is used for creating a

series of transformation recipes that describe how to map the code to a GPU (Chapter 3).

Each transformation recipe is an ordered list of the optimization strategies to be applied

on the code for achieving high performance. The set of recipes is used by the CUDA-

Composing High-Level Loop Transformations Tool [23, 17] (CUDA-CHiLL) for creating

different optimized CUDA codes. These codes are tested exhaustively by Orio [24, 25] to

find the best implementation (Chapter 4).
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Figure 1.3: Flowchart of the proposed framework. Gray area represents the external
information, blue rectangles represent files with code, batched figure are the different
transformations and implementations, red rectangles are work done by the framework and
purple rectangles are external tools used.

The goal of this framework is to improve the performance of the application that uses

tensor contraction. The generated code is used to replace the original implementation as

well as, optionally, providing guidance for implementing OpenACC directives.

1.5 Research Contributions

The contributions of this thesis work are:

• Simplifying the implementation of tensor contraction expression using a representation

that resembles mathematical notation.

• Providing a decision algorithm based on autotuning that explores different optimiza-

tion strategies for accelerating small problems related to tensor contraction.

• Demonstrate that this approach can achieve high performance compared to OpenACC

and that the result produced by the framework can also be used to accelerate Ope-

nACC.

1.6 Organization of This Thesis

The rest of this thesis is organized as follows. Chapter 2 presents the mathematical

representation of tensor contraction and how the C++ version is generated. Chapter 3

explores autotuning for generating different sets of transformations, and Chapter 4 shows

how these variants are transformed into code to find the best implementation. Chapter 5
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presents the experimental evaluation of this work as well a discussion of the results. Chapter

6 discusses related work, and Chapter 7 presents a summary and conclusions.



CHAPTER 2

MATHEMATICAL REPRESENTATION OF

TENSOR CONTRACTION

The best-performing implementation of a tensor contraction computation varies de-

pending on the application context and architecture. Let us consider the tensor contraction

in nek5000. Figure 2.1 presents a C++ linearized version of this operation; the original

implementation is written in FORTRAN. It captures how the data layout is in column

major order in memory, which means that the elements of a column in a multidimensional

array are contiguous in memory.

for(e = 0; e < nelt; e++){

for(j = 0; j < lx; j++)
for(i = 0; i < ly; i++)
for(k = 0; k < lz; k++)
for(m = 0; m < lx; m++)
Ur[e*lx*ly*lz + j*ly*lz + i*lz + k] +=

D[m*ly + k] * U[e*lx*ly*lz + j*ly*lz + i*lz + m];

for(j = 0; j < lx; j++)
for(i = 0; i < ly; i++)
for(k = 0; k < lz; k++)
for(m = 0; m < ly; m++)

Us[e*lx*ly*lz + j*ly*lz + i*lz + k] +=
U[e*lx*ly*lz + j*ly*lz + m*lz + k] * Dt[i*ly + m];

for(j = 0; j < lx; j++)
for(i = 0; i < ly; i++)
for(k = 0; k < lz; k++)
for(m = 0; m < lx; m++)
Ut[e*lx*ly*lz + j*ly*lz + i*lz + k] +=

U[e*lx*ly*lz + m*ly*lz + j*lz + k] * Dt[i*ly + m];

}

Figure 2.1: C++ implementation of the tensor contraction performed in nek5000. U, Ur,
Us and Ut are nelt batch of tensors with dimension lx× ly× lz, while D and Dt are lx× ly
tensors.
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Although mathematically these tensor contraction computations are similar to matrix

multiplication, they may be implemented equivalently in different ways as was described in

Chapter 1. This motivated us to create an interface where the user can present the tensor

contraction in a high-level representation and generate a high-performance implementation.

This chapter describes the input to the system, which is based on the tensor-specific

representation of the problem. The input can be generated either by an external tool or

specified by the user. The organization of this chapter is as follows: Section 2.1 presents the

tensor-specific representation, and Section 2.2 shows the extra features needed for handling

the data representation. Section 2.3 presents a summary of this chapter.

2.1 Tensor-Specific Representation

Considering how tensor contraction problems are presented mathematically, we find

some barriers to express them. For example: keyboards do not have a summation key, and

a standard text editor does not have a way to write subscripts. This means that we need

to express the abstraction in a form where every user can write it and understand it.

The variable declarations in this system are similar to FORTRAN. Figure 2.2 presents

how the tensors are expressed in the interface. The user types the name of the tensor,

followed by a colon (:) and the list of indices ordered as they are accessed. For example,

ci,j is expressed in the interface as c:(i,j).

The interface uses the addition (+=) and subtraction (-=) C++ compound symbols

to represent the summation symbol. In this work, the compound symbols are known

as assignments. Then, the regular operator for multiplication (*) is used to represent

the binary product between two input tensors. Figure 2.3a presents how a mathematical

operation is expressed in the framework. It is comprised of the output tensor with the

corresponding indices, an assignment represented by the compound symbol and a binary

operation containing both inputs in the corresponding indices. Each representation in the

system is known as a statement.

Figure 2.3b presents an example of a statement based on the Ur computation of nek5000.

The output tensor, which is ure,i,j,k, is presented as ur:(e,i,j,k), and the input tensors

(dj,m and ue,i,m,k) are d:(j,m) and u:(e,i,m,k). The assignment is a summation (
∑

)

represented by += and the multiplication is handled by *.

Variable:(index_1, index_2, ... , index_i, ... , index_n)

Figure 2.2: Representation of a variable with the accessed indices in the interface.
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Output_Var:(index_1, ... , index_m) [assignment]
Input_Var1:(index_1, ... , index_n) *
Input_Var2:(index_1, ... , index_p)

(a) Composition of a mathematical statement in the interface.

ure,i,j,k =
∑

m dj,m × ue,i,m,k =⇒ ur:(e,i,j,k) += d:(j,m) * u:(e,i,m,j)

(b) Computation of ur expressed in the interface.

Figure 2.3: Representation of the tensor contraction operation in the interface.

2.2 Complete Structure

Section 2.1 presents only the relationship between mathematics and the input, but the

user must also describe the data representation. This work focuses on the following:

• The data layout in memory (row or column major) can have an impact on cache

behavior and memory bandwidth.

• It is important to know if the loops access the data in contiguous or strided order

because the access order to the data can change; the placement is not modified (e.g.,

NWChem).

The functionality of the interface was expanded to address these issues.

Figure 2.4 presents the structure of the input file used by the framework. The function

name, followed by the access specification (multidimensional or linearized), data

layout (row or column major), and if the access is contiguous or strided (pattern).

function name
(op) access: multidimensional | linearized
(op) memory: row | column
(op) pattern: contiguous | strided

define:
var1 = val

...
varN = val

variables:
Var_1:orderN | (size_1, ..., size_N)

...
Var_n:orderN | (size1, ..., sizeN)

operations:
Var_x:(indices) [assignment] Var_y(indices) * Var_z(indices)

...
Var_n:(indices) [assignment] Var_t(indices) * Var_r(indices)

Figure 2.4: Structure of the user input file. The user specifies the function name, extra
features (op stands for optional), define values, variables and the operations.
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Also, it is possible to define variables that are going to be used internally by the framework,

such as the dimension sizes.

In this framework the users must declare a tensor before using it in a statement. A

tensor can be declared in two forms, either specifying the order or specifying the size of

each dimension. User-defined variables can be used for representing the dimensions. Once

the tensors are declared, then the user proceeds with the tensor-specific description. The

interface will use this specification to transform the input file into a C++ function. Figure

2.5 presents an example related to nek5000; Figure 2.5a shows the input file and Figure

local_grad3
memory: column
access: linearize
define:
lx = 10
ly = 10
lz = 10
nelt = 1000

variables:
u:(nelt,lx,ly,lz)
D:(lx,ly)
Dt:(lx,ly)
ur:(nelt,lx,ly,lz)
us:(nelt,lx,ly,lz)
ut:(nelt,lx,ly,lz)

operations:
ur:(e,i,j,k) += D:(k,m)*

u:(e,i,m,j)
us:(e,i,j,k) += u:(e,i,k,m)*

Dt:(m,j)
ut:(e,j,i,k) += u:(e,m,k,j)*

Dt:(m,j)

(a) Input file representing the computa-
tion performed in nek5000.

#define lx 10
#define ly 10
#define lz 10
#define nelt 1000
void local_grad3(double *Ut,double *Us,

double *Ur,double *D,double *U,
double *Dt){

int e, i, j, k, m;
for(e = 0; e < nelt; e++){
for(i = 0; i < lx; i++)
for(j = 0; j < ly; j++)
for(k = 0; k < lz; k++)
for(m = 0; m < lx; m++)
Ur[e*lx*ly*lz+i*ly*lz+j*lz+k]+=
D[m*ly + k] *
U[e*lx*ly*lz+i*ly*lz+j*lz+m];

for(i = 0; i < lx; i++)
for(j = 0; j < ly; j++)
for(k = 0; k < lz; k++)
for(m = 0; m < ly; m++)
Us[e*lx*ly*lz+i*ly*lz+j*lz+k]+=
U[e*lx*ly*lz+i*ly*lz+m*lz+k] *
Dt[j*ly + m];

for(i = 0; i < lx; i++)
for(j = 0; j < ly; j++)
for(k = 0; k < lz; k++)
for(m = 0; m < lx; m++)
Ut[e*lx*ly*lz+i*ly*lz+j*lz+k]+=
U[e*lx*ly*lz+m*ly*lz+j*lz+k] *
Dt[j*ly+m];

}
}

(b) Output produced by the interfaces using the
nek5000 example.

Figure 2.5: Example representing the tensor contraction computed in nek5000. The
interface uses the input file (a) and produces a C++ output (b).
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2.5b the C++ output function. The generated function expects that the input arrays (Ur,

Us andUt for the example presented before) are initialized by the application before using

them.

The interface does not apply the optimizations presented in Chapter 1. The strategies

presented before are oriented to accelerate the computation on CPUs and our target archi-

tecture is a GPU. Since both architectures are different, the framework will explore other

optimization strategies to achieve high performance. For this purpose, the code generated

for nek5000 presents three tensor contractions between 3rd and 2nd order tensors; rather

than two tensor contractions of 2nd order and one operation of 3rd and 2nd order tensors.

Chapter 3 explains in detail the optimizations used by the framework.

2.3 Summary and Contributions

This chapter presents a framework where the user can input a high level expression

that represents a tensor contraction and produce C++ code that implements it. With this

interface the users should not worry about how to implement the tensor contraction and

can focus more on the mathematical description of their problem.

The contribution of this chapter is the introduction of a simplified interface that reduces

the gap between the mathematical representation and the optimized code. It also provides

guidance for code generation.



CHAPTER 3

DECISION ALGORITHM AND

AUTOTUNING

The previous chapter describes how the user expresses the tensor contraction and gen-

erates a basic C++ code that will run on a CPU. The next step is a decision algorithm that

derives a sequence of transformations to be considered for creating an optimized CUDA

implementation. This step involves autotuning, which is a strategy for finding the best

performing implementation among a search space of possible versions.

The main motivation for using autotuning is the fact that the optimization strategies

used for large tensor contraction problems lead to poor performance over small sizes. This

will create a new search space based on different optimization strategies for the computation

of small tensors in a GPU. The autotuning focuses on finding those transformations available

in the search space that generate high performance code. This work targets reducing the

communication to the global memory of the GPU. The first step is creating code that

permits contiguous access among consecutive threads to the data located in the global

memory. Adjacent data, used by coscheduled threads, can be retrieved from global memory

using a single memory transfer. This feature is known as global memory coalescing. It

reduces expensive communication with global memory. Memory coalescing is directly

impacted by the thread and block decomposition. Finding the best thread and block

decomposition is the main target for autotuning.

Apart from memory coalescing, there are other optimization strategies that can affect

performance, such as accessing reused global data from the cache. Cache behavior is also

impacted by thread and block decomposition and loop order. Exploiting the data reuse

available in cache also reduces communication with global memory.

The rest of this chapter is organized as follows. Section 3.1 presents a series of steps to

perform autotuning, and Section 3.2 explains the output. Section 3.3 is a summary of this

chapter.
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3.1 Decision Algorithm

Autotuning focuses on evaluating a search space empirically and finds the optimal

parameters that achieve an optimization goal (performance, energy, among others) [17,

7, 18, 19]. These parameters depend on the input data, target architecture and back-end

compiler to aggressively optimize the implementation. The autotuning proposed in this work

adapts the decision algorithm by Khan et al. [21, 22] for creating an implementation that

achieves high performance. At a high level it generates the thread and block decomposition

(computation partition) and the decisions for copying the data to specific memory levels

(data placement). This information is used to create a set of customized transformation

recipes (as defined in Chapter 1) for the specific tensors in the computation. The specialized

recipes are the output from the decision algorithm that the interface will use to transform

the C++ code from Chapter 2 and test among the multiple implementations.

3.1.1 Data Dependence Analysis

The decision algorithm starts by analyzing data dependences for each statement from

the tensor representation. For the tensors described by the framework, this work can use

a simplified data dependence analysis. The test examines the indices available in the

right hand side of the statement but not in the left hand side. These indices represent

a dependence carried by the corresponding loop. The goal of the test is to identify the

loops that do not carry dependences and can be performed in parallel. For example, Figure

3.1 presents the tensor representation file for the function sd t d1 1 in the coupled cluster

(NWChem) example. The only index listed, for this case, in the right hand side that does

sd_t_d1_1
memory: column
pattern: strided
define:
h3u = 16
h2u = 16
h1u = 16
p6u = 16
p5u = 16
p4u = 16
h7u = 16

variables:
t3:(h3u,h2u,h1u,p6u,p5u,p4u)
t2:(h7u,p4u,p5u,h1u)
v2:(h3u,h2u,p6u,h7u)

operations:
t3:(h3,h2,h1,p6,p5,p4) -= t2:(h7,p4,p5,h1) * v2:(h3,h2,p6,h7)

Figure 3.1: Tensor representation of NWChem sd t d1 1.



17

not appear in the left hand side is h7, making it the loop that carries the dependence. The

data dependences analysis stores in two different arrays the loops that can be performed in

parallel and those that have dependences.

The information from the analysis also identifies which indices of the two input tensors

in a statement exhibit contiguous access in memory. For the purpose of generated tensor

contraction code in this framework, the tensor where the loop indices are iterated from

inner-most to outer-most access contiguous data. We will use the C++ output from the

tensor representation of sd t d1 1, presented in Figure 3.2, to explain this in details. In this

case, the indices in v2 go from innermost to outermost loops (h3, h2 and then p6) and t2

loops are outermost to innermost (p4, p5 and h1). Therefore, the elements of v2 will be

accessed in contiguous order while t2 will not be contiguous. The tensor implementation

that achieves contiguous data access, in this work, is defined as the contiguous tensor.

3.1.2 Thread and Block Decomposition

The decision algorithm exposes the important decisions and the thread and block de-

composition that makes efficient use of the GPU. In this document we will call Threadx

and Thready the threads in the coordinates X and Y in the computational grid of the GPU.

Also, Blockx and Blocky refer to the blocks in the respected coordinates. Although it is

possible to use the threads available in the Z coordinate, we omit it since it can produce an

amount of threads that exceed the quantity supported by the device.

The data analysis is used for generating the computational grid of the GPU. The

contiguous tensor will be used for finding the thread and block decompositions for the GPU

computation that can achieve memory coalescing. The loop that allows contiguous access to

the data in the contiguous tensor is the innermost that does not carry a dependence. This

loop is set as Threadx. Allowing this thread to access contiguous data achieves memory

coalescing, as shown in Figure 3.3.

The rest of the implementation depends on the number of parallel loops found by the

for (int p4=0; p4<p4u; p4++)
for (int p5=0; p5<p5u; p5++)
for (int p6=0; p6<p6u; p6++)
for (int h1=0; h1<h1u; h1++)
for (int h2=0; h2<h2u; h2++)
for (int h3=0; h3<h3u; h3++)
for (int h7=0; h7<h7u; h7++)
t3[h3+h3u*(h2+h2u*(h1+h1u*(p6+p6u*(p5+p5u*p4))))] -=
t2[h7+h7u*(p4+p4u*(p5+p5u*h1))] * v2[h3+h3u*(h2+h2u*(p6+p6u*h7))];

Figure 3.2: C++ code generated for NWChem sd t d1 1.
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Data1 Data2 Data3 Data4 DataN-1 DataN 

Thread1 Thread2 Thread3 Thread4 ThreadN-1 ThreadN 

… 

… 

Block1 Block2 BlockN 

Figure 3.3: Representation of the threads accessing data located in the global memory of
the GPU.

dependence test. After setting Threadx, the algorithm starts selecting parallel loops from

inner to outer in the contiguous tensor. Once all loops are selected, and if they are less

than three, the algorithm proceeds to select parallel indices from the other input tensor

(t2 in Figure 3.2). It will choose from innermost loops (last indices for this tensor) to

the outermost. This is because the outermost loops carry data reuse for one of the input

tensors, which is more likely to access data that resides in the cache. Accessing consecutive

portions of the data linearizes the access among threads and blocks and optimize the data

reuse in cache. The data reuse comes from the likelihood that the data for Threadi is in

cache due to the Threadi−1 access.

3.1.3 Optimizations at Thread Level

Tensor contraction problems have multiple dimensions (i.e., array dimensions and loop

levels). It is possible that, after the thread and block decomposition is created, nested loops

can appear inside the kernel of the GPU for performing the operations on multiple regions

of the data. The decision algorithm identifies these loops and applies different optimizations

to achieve higher performance at the thread level. If the data layout specified by the user

is column major order, accessing it can cause an increase in cache misses. This is because

CUDA access the data in row major order. The algorithm will permute the parallel loops

inside a kernel if the data layout is column major to reduce the misses. Tensor contraction

operations can contain data that can be reused at thread levels. The algorithm copies these

data to the registers of the GPU to reduce communication with global memory.

In some cases, as in nek5000, the computation of a tensor contraction is divided into

multiple kernels. If two or more kernels share the same footprint of the loops and they do not

have a fusion-preventing data dependence, the algorithm will fuse them. This optimization

reduces the amount of iterations to be performed as well the number of kernel calls. After

creating these transformations, the interface tests the different variants of thread and block
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decomposition to find the one with the best performance. This test will generate a master

recipe that is going to be used to create the specialized recipes.

3.1.4 Master Recipe and Specialized Recipes

Figure 3.4 represents an example of the master recipe generated for sd t d1 1. In this

example loops h3 produce the memory coalescing in the data related to tensor v2, which

is set as Threadx. Loops h2 (Blockx) and p6 (Blocky) allow contiguous access across

blocks, while loop h1 (Thready) exploits reuse of the data available for the tensor t2. The

iterations of p4 and p5 are permuted since the data layout is column major. The data

related to the computation of loop h7 can be copied into register to exploit reuse.

The information presented by the master recipe describes the possible thread and block

decomposition to be considered, as well the data placement. It is possible to apply multiple

transformations at the thread level to improve the performance by exploring multiple unroll

factors. The different optimization strategies that can be applied at thread level produce

distinct versions of the code. For the purpose of this work, the loops that carry dependences

are unrolled by unroll factors that evenly divide the size of the iteration space. Only these

factors are considered because it prevents unbalanced loops as well as the introduction of

conditionals.

Figure 3.5 represents the information for generating a collection of recipes for sd t d1 1

with size 16 in each dimension. Since h7 is the loop to be unrolled, then the multiple

recipes are created by the following unroll factors: no unrolling, two, four, eight and fully

unroll (16). The tool will test these different parameters to find the fastest implementation.

Chapter 4 explains in details how these tests are performed.

permute_loops("p5","p4"))
cuda_decomposition(block={"h2","p6"},thread={"h3","h1"})
copy_to_registers("h7")

Figure 3.4: Master recipe generated for the sd t d1 1 example.

permute_loops("p5","p4"))
cuda_decomposition(block={"h2","p6"},thread={"h3","h1"})
copy_to_registers("h7")
unroll_(h7)
unroll_factors(no unroll, 2, 4, 8, full unroll)

Figure 3.5: Expression of the specialized recipes generated for sd t d1 1.
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3.1.5 Shared Memory versus Cache

The steps for performing autotuning in this work do not use other optimization strategies

mentioned in the decision algorithm by Khan et al. [21, 22] since the data sizes are small.

Loop tiling can change the thread and block decomposition so that there are not enough

threads to comprise the GPU scheduling unit (i.e., a warp). Also, the decision algorithm

optimizes only for one input tensor (contiguous tensor), allowing the other input to access

data in an arbitrary order. This often results in one of the tensors not having coalesced

memory accesses.

Khan et al. alleviate the problem related to the noncontiguous tensor by copying such

data in coalesced order into shared memory. We do not perform this optimization due

to the overhead introduced by copying the data as well thread synchronization. To better

understand this, Figure 3.6 presents the code for sd t d1 1 performing on the GPU with size

int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
double newVar;
__device__ __shared__ double _P1[16];
for(int p5 = 0; p5 <= 15; p5 += 1)
for (int p4 = 0; p4 <= 15; p4 += 1){

newVar = T3[tx + 16*(ty + 16*(by + 16*(bx + 16*(p5 + 16*p4))))];
_P1[tx] = T2i[tx + 16*p4 + 4096*by + 256*p5];
__syncthreads();
for (int h7 = 0; h7 <= 15; h7 += 1)
newVar -= _P1[h7] * v2[tx + 16 * (ty + 16 * (bx + 16 * h7))];

__syncthreads();
T3[tx + 16*(ty + 16*(by + 16*(bx + 16*(p5 + 16*p4))))] = newVar;

}

(a) CUDA implementation of the sd t d1 1 using shared memory.
int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
double newVar;
for(int p5 = 0; p5 <= 15; p5 += 1)
for(int p4 = 0; p4 <= 15; p4 += 1){

newVar = T3[tx + 16*(ty+16*(by+16*(bx+16*(p5+16*p4))))];
for(int h7 = 0; h7 <= 15; h7 += 1)

newVar -= T2i[h7 + 16*p4 + 4096*by + 256*p5]

* v2[tx + 16*(ty + 16*(bx + 16*h7))];
T3[tx + 16*(ty + 16*(by + 16*(bx + 16*(p5 + 16*p4))))] = newVar;

}

(b) CUDA implementation of the sd t d1 1 without using shared memory.

Figure 3.6: CUDA implementations of the sd t d1 1 with (a) and without (b) using shared
memory.
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16. The use of shared memory, as presented in Figure 3.6a, adds a thread synchronization

inside the loop nest. This compromises the time spent in the kernel in comparison with the

implementation that does not use shared memory (Figure 3.6b).

Optimizing the shared memory to reduce synchronization leads to changing the thread

and block decomposition. Figure 3.7 presents the code optimized for shared memory that

reduces the synchronization; it sets loop h3 as Threadx, p4 as Thready, p5 as Blockx and

h1 as Blocky. This implementation allows memory coalescing in global memory and places

the contiguous data in shared memory. It also performs memory padding to prevent shared

memory bank conflicts. This version changes the cache behavior because data in outer

dimensions are no longer in contiguous order. Figure 3.8 presents a bandwidth analysis

performed by the NVIDIA Visual Profiler [26] for the codes presented in Figure 3.7 (shared

memory) and Figure 3.6b (nonshared memory). The bandwidth for the L2 cache is 43.14

GB/s in the shared memory implementation, and the nonshared version is 119.49 GB/s;

while in L1 cache we have 226.8 GB/s and 469.44 GB/s, respectively. In device memory we

have 36.05 GB/s for the shared memory implementation and 43.12 GB/s for the nonshared

version. This demonstrates that the thread and block decomposition of the nonshared

memory implementation better uses the cache.

3.2 Output

The master recipe and specialized recipes examples presented before (Figures 3.4 and

3.5, respectively) are representations used by the tool for storing the optimization strategies

internally. Figure 3.9 shows an example of the annotation system that will be used with the

C++ generated in Chapter 2 for code generation. It presents the annotations generated for

the coupled cluster (Figure 3.9a) and the spectral elements (Figure 3.9b).

__device__ __shared__ double _P1[16*17];
double newVar;
_P1[tx + 17 * ty] = T2i[tx + 16 * ty + 4096 * by + 256 * bx];
__syncthreads();
for(int p6 = 0; p6 <= 15; p6 += 1) {
for(int h2 = 0; h2 <= 15; h2 += 1) {
newVar = T3[tx + 16 * (h2 + 16 * (by + 16 * (p6 + 16 * (bx + 16 * ty))))];
for(int h7 = 0; h7 <= 15; h7 += 1){
newVar -= _P1[h7 + 16 * ty] * v2[tx + 16 * (h2 + 16 * (p6 + 16 * h7))];

}
T3[tx + 17 * (h2 + 16 * (by + 16 * (p6 + 16 * (bx + 16 * ty))))] = newVar;
}

}

Figure 3.7: CUDA implementation of sd t d1 1 optimized for shared memory.
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Figure 3.8: Bandwidth difference among memory hierarchy between optimized shared and
nonshared memory implementations.

UF0[] = [1,2,4,8,16];

permute(0,("p5","p4","p6","h1",
"h2","h3","h7"))

cuda(0,block={"h2","p6"},
thread={"h3","h1"})

registers(0,"h7")
unroll(0,"h7",UF0)

(a) Output generated by the decision algorithm
for sd t d1 1.

UF0[] = [1,2,5,10];
UF2[] = [1,2,5,10];

cuda(0,block={"e","j"},
thread={"k","i"})

cuda(2,block={"e","j"},
thread={"k","i"})

registers(0,"m")
registers(1,"m")
registers(2,"m")

fuse(0,1)
unroll(0,"m",UF0)
unroll(2,"m",UF2)

(b) Output generated by the decision algorithm
for nek5000.

Figure 3.9: Annotations generated by the decision algorithm for sd t d1 1 (a) and nek5000
(b).

Table 3.1 presents the definition of each annotation created. The statement number

is assigned by the system automatically depending on the order, from 0 to N − 1. The

transformation will be applied by the order of the numbers. For example, in the nek5000

example it will first work on statement 0 (ure,i,j =
∑

k di,k × ue,k,j), transforming it into

CUDA. Then the data that can be reused are moved to registers. Statements 0 and 1 are

fused since they share the same iteration space and are unrolled by the UF0 factors. This
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Table 3.1: Definitions of the annotations generated by the decision algorithm.

Definitions of the annotations

Transformation Parameters Meaning

UFN list with integers list of unroll factors

permute statement number (integer) permute the loops
new loops order (strings) of statement N

to the new order

cuda statement number (integer) Transform statement N
loops for blocks (strings) into CUDA with the proper
loops for threads (strings) threads and blocks

registers statement number (integer) Copy the data of
loop (string) statement N at loop level

X to registers

fuse statements Fuse the iterations
of the specified statements

unroll statement number (integer) Unroll loop X
loop level (string) at statement N

UFN or amount (integer) with the specified amount

will be performed for statement 2.

The annotation system can be divided into two stages of the decision algorithm. The

permute, cuda, registers and fuse annotations represent the master recipe, while

unroll with the list of factors (UFi) serve as the customized recipes. This annotation will

be used by the interface for code generation, which is explained in Chapter 4.

3.3 Summary and Contributions

This chapter presents a decision algorithm that employs autotuning for finding the

best-performing implementation in the search space. It focuses on automatically gener-

ating a thread and block decomposition optimized for global memory coalescing. This

decomposition allows reusing the data located in cache memory rather than optimizing for

shared memory. Finally, it applies standard transformations like permute and unroll to

further optimize the performance.

The main contribution presented in this chapter is an algorithm that generates the proper

decisions for the thread and block decomposition oriented to small tensor contraction prob-

lems. It demonstrates that tuning for shared memory on the GPU for these problems does

not produce the same performance behavior as expected from large matrix multiplication.

The algorithm benefits from having small iterations, which makes the data reuse available

in the L1/L2 cache preferable to the transfer from shared memory to registers.



CHAPTER 4

CUDA CODE GENERATION

In the previous chapter we presented how the interface automatically generates loop

transformations recipes using a decision algorithm. This chapter describes how it converts

the information from the decision algorithm to CUDA code. The code generation in this

work is divided in two parts: code transformation and performance measurement.

The rest of this chapter is organized as follows. Section 4.1 shows how the output

from the decision algorithm is transformed into CUDA code, and Section 4.2 presents the

performance measurement. In Section 4.3 a summary and the contributions from this

chapter are presented.

4.1 Code Transformation

The interface uses the Composing High-Level Loop Transformations Tool [23, 17] (CHiLL)

to perform code transformation. CHiLL is a source-to-source compiler based on the polyhe-

dral transformation [27, 28] and code generation framework. It uses transformation recipes

that specify a series of transformations and applies them over a loop nest. CHiLL has

an extension, CUDA-CHiLL [20, 29] that permits users to generate CUDA code from a

sequential loop nest. The resultant code will replace the original loop nest to execute the

kernel on a GPU. The loop transformations expressed in the recipe can be applied to the

GPU code. Figure 4.1 presents an example of a CUDA-CHiLL recipe using the spectral

element problem. At a high-level, this recipe fuses the computations of Ur and Us, and

generates two CUDA kernels: one for the fused loop nests and another for Ut. Then, it

copies the data that have been reused at loops level m to the registers, and unrolls them, for

both CUDA kernels, by 2. Table 4.1 presents the annotation that generates the command

specified in the recipe.

The output of a CUDA-CHiLL script is a function that contains all the necessary infor-

mation for CUDA (data allocation/copy, kernels and kernel calls). In case there are multiple

statements specified, this will generate a kernel for each statement with the corresponding
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init("_orio_chill_.c","local_grad3",0)
dofile("cudaize.lua")

nelt=100
lz=10
lx=10
ly=10

distribute({0,2},1)
distribute({0,1},4)
cudaize(0,"local_grad3_GPU_0"{D=lx*ly,ut=nelt*lx*ly*lz,
us=nelt*lx*ly*lx,ur=nelt*lx*ly*lz,u=nelt*lx*ly*lx,
Dt=lx*ly},{block={"e","j"},thread={"i","k"}},{})

cudaize(2,"local_grad3_GPU_2"{D=lx*ly,ut=nelt*lx*ly*lz,
us=nelt*lx*ly*lx,ur=nelt*lx*ly*lz,u=nelt*lx*ly*lx,
Dt=lx*ly},{block={"e","j"},thread={"i","k"}},{})

copy_to_registers(0,"m","ur")
copy_to_registers(1,"m","us")
copy_to_registers(2,"m","ut")
fuse({0,1,2,3,4,5},4)
unroll(0,4,2)
unroll(2,4,2)

Figure 4.1: Example of generated CUDA-CHiLL recipe for nek5000. The recipe uses the
unroll factors 2 and 2 to generate CUDA kernels.

Table 4.1: Definitions of the CUDA-CHiLL commands used in the nek5000 recipe.

Definitions of CUDA-CHiLL commands

Command Annotation

distribute automatically generated when multiple statements are
specified; distributes the loops in different kernels

cudaize cuda
copy to registers registers

fuse fuse
unroll unroll

data copy. For example, Figure 4.2 presents the function created by CUDA-CHiLL using

the recipe presented in Figure 4.1, and Figure 4.3 shows the kernels generated. In the

local grad3 function, the kernel calls (local grad3 GPU 0 and local grad3 GPU 2)

refer to the statements of the input file presented in Figure 2.5a.

In the example of Figure 4.2, the computation of each statement has the following struc-

ture: starts with memory allocation (cudaMalloc), then data copy to device (cudaMemcpy),

kernel call (local grad3 N GPU), data copy to host and finally memory free (cudaFree).

This structure causes a performance degradation due to the costly data copy from/to the

host. The information from the arrays u, D and Dt are reused in all kernel calls. In other

words, the function is doing two unnecessary memory allocations, copies and frees that
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void local_grad3(double *ut,double *us,double *ur,double *D,double *u,
double *Dt){
cudaMalloc(((void **)(&devO1Ptr)),100000 * sizeof(double ));
cudaMemcpy(devO1Ptr,ur,100000 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMalloc(((void **)(&devO2Ptr)),100000 * sizeof(double ));
cudaMemcpy(devO2Ptr,us,100000 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMalloc(((void **)(&devI1Ptr)),100 * sizeof(double ));
cudaMemcpy(devI1Ptr,D,100 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMalloc(((void **)(&devI2Ptr)),100000 * sizeof(double ));
cudaMemcpy(devI2Ptr,u,100000 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMalloc(((void **)(&devI3Ptr)),100000 * sizeof(double ));
cudaMemcpy(devI3Ptr,Dt,100000 * sizeof(double ),cudaMemcpyHostToDevice);
dim3 dimGrid0 = dim3(100,10);
dim3 dimBlock0 = dim3(10,10);
local_grad3_GPU_0<<<dimGrid0,dimBlock0>>>(devO1Ptr,devO2Ptr,devI1Ptr,devI2Ptr,

devI3Ptr);
cudaMemcpy(ur,devO1Ptr,100000 * sizeof(double ),cudaMemcpyDeviceToHost);
cudaMemcpy(us,devO2Ptr,100000 * sizeof(double ),cudaMemcpyDeviceToHost);
cudaFree(devO1Ptr);
cudaFree(devO2Ptr);
cudaFree(devI1Ptr);
cudaFree(devI2Ptr);
cudaFree(devI3Ptr);

cudaMalloc(((void **)(&devO1Ptr)),100000 * sizeof(double ));
cudaMemcpy(devO1Ptr,ut,100000 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMalloc(((void **)(&devI1Ptr)),100000 * sizeof(double ));
cudaMemcpy(devI1Ptr,u,100000 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMalloc(((void **)(&devI2Ptr)),100 * sizeof(double ));
cudaMemcpy(devI2Ptr,Dt,100 * sizeof(double ),cudaMemcpyHostToDevice);
dim3 dimGrid1 = dim3(100,10);
dim3 dimBlock1 = dim3(10,10);
local_grad3_GPU_2<<<dimGrid1,dimBlock1>>>(devO1Ptr,devI1Ptr,devI2Ptr);
cudaMemcpy(ut,devO1Ptr,100000 * sizeof(double ),cudaMemcpyDeviceToHost);
cudaFree(devO1Ptr);
cudaFree(devI1Ptr);
cudaFree(devI2Ptr);

}

Figure 4.2: Function generated by CUDA-CHiLL using the nek5000 recipe.

increase the execution time.

The interface modifies the output from CUDA-CHiLL automatically to reuse the data

where safe and reduce the transfers between GPU and host memory. It creates a ta-

ble with the arrays (host) variables and the corresponding device variables. Those de-

vice variables that are repeated will be renamed by just increasing the specified num-

ber; for example, since devI2Ptr is u in the first kernel call, the interface will change

Dt to devI3Ptr in the second call. Followed by this, it will rename the device vari-

able to the first created. This means that, using the same example variables, the in-

terface will rename u as devI2Ptr in the second kernel. The proper changes will be

done to the kernel calls too, for example, local grad3 GPU 2 call will be changed to
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__global__ void local_grad3_GPU_0(double *ur,double *us,double *D,double *u,
double *Dt){
newVariable0 = ur[1000 * bx + 10 * ty + 100 * by + tx];
newVariable1 = us[1000 * bx + 10 * ty + 100 * by + tx];
for (k = 0; k <= 8; k += 2) {

newVariable0 = newVariable0 + D[m * 10 + tx]

* u[bx * 10 * 10 * 10 + by * 10 * 10 + ty * 10 + m];
newVariable0 = newVariable0 + D[(m + 1) * 10 + tx]

* u[bx * 10 * 10 * 10 + by * 10 * 10 + ty * 10 + (m + 1)];
newVariable1 = newVariable1 + u[bx*10*10*10 + by*10*10 + m*10 + tx]

* Dt[ty*10 + m];
newVariable1 = newVariable1 + u[bx*10*10*10 + by*10*10 + (m+1)*10 + tx]

* Dt[ty*10 + (m + 1)];
}
ur[1000 * bx + 10 * ty + 100 * by + tx] = newVariable0;
us[1000 * bx + 10 * ty + 100 * by + tx] = newVariable1;

}

__global__ void local_grad3_GPU_2(double *ut,double *u,double *Dt){
newVariable2 = ut[1000 * bx + 100 * ty + 10 * by + tx];
for (m = 0; m <= 8; m += 2) {

newVariable2 = newVariable2 + u[bx*10*10*10 + m*10*10 + by*10 + tx]

* Dt[ty*10 + m];
newVariable2 = newVariable2 + u[bx*10*10*10 + (m+1)*10*10 + by*10 + tx]

* Dt[ty*10 + (m+1)];

}
ut[1000 * bx + 100 * ty + 10 * by + tx] = newVariable2;

}

Figure 4.3: CUDA kernels generated by CUDA-CHILL using the nek5000 recipe.

local grad3 GPU 2<<<dimGrid2,dimBlock2>>>(devO3Ptr,de- vI2Ptr,devI3Ptr).

The repeated entries from the table are removed to prevent the introduction of unnecessary

instructions.

Once the variables are replaced, the interface reorganizes the structure of the function.

It uses the variables in the table mentioned before to create the data allocation and copy

instructions. Since the repeated variables were removed, the new set of instructions reuses

the data available in the GPU. Then, it adds the kernel with the proper thread and

block declarations and the synchronization call (cudaThreadSynchronize()). After

all kernels are added, the interface will add the instructions necessary for copying the data

to the host and freeing it. Figure 4.4 presents the modified CUDA-CHiLL function created

by the interface. This version of local grad3 reduces the amount of operations to be

performed related to memory allocation and frees from eight to six operations, and the

data copy instructions from eleven to nine. In other words, the modification removed four

unnecessary operations by modifying the code to exploit data reuse on the GPU.

The interface also performs modifications to the generated kernels from CUDA-CHiLL. It
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void local_grad3(double *ut,double *us,double *ur,double *D,double *u,
double *Dt){
cudaMalloc(((void **)(&devO1Ptr)),100000 * sizeof(double ));
cudaMalloc(((void **)(&devI1Ptr)),100 * sizeof(double ));
cudaMalloc(((void **)(&devI2Ptr)),100000 * sizeof(double ));
cudaMalloc(((void **)(&devO2Ptr)),100000 * sizeof(double ));
cudaMalloc(((void **)(&devI3Ptr)),100 * sizeof(double ));
cudaMalloc(((void **)(&devO3Ptr)),100000 * sizeof(double ));
cudaMemcpy(devO1Ptr,ur,100000 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMemcpy(devI1Ptr,D,100 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMemcpy(devI2Ptr,u,100000 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMemcpy(devO2Ptr,us,100000 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMemcpy(devI3Ptr,Dt,100 * sizeof(double ),cudaMemcpyHostToDevice);
cudaMemcpy(devO3Ptr,ut,100000 * sizeof(double ),cudaMemcpyHostToDevice);
dim3 dimGrid0 = dim3(100,10);
dim3 dimBlock0 = dim3(10,100);
local_grad3_GPU_0<<<dimGrid0,dimBlock0>>>(devO1Ptr,devI1Ptr,devI2Ptr);
cudaThreadSynchronize();
dim3 dimGrid1 = dim3(100,10);
dim3 dimBlock1 = dim3(10,10);
local_grad3_GPU_2<<<dimGrid1,dimBlock1>>>(devO2Ptr,devI2Ptr,devI3Ptr);
cudaThreadSynchronize();
cudaMemcpy(ur,devO1Ptr,100000 * sizeof(double ),cudaMemcpyDeviceToHost);
cudaMemcpy(us,devO2Ptr,100000 * sizeof(double ),cudaMemcpyDeviceToHost);
cudaMemcpy(ut,devO3Ptr,100000 * sizeof(double ),cudaMemcpyDeviceToHost);
cudaFree(devI1Ptr);
cudaFree(devO3Ptr);
cudaFree(devO2Ptr);
cudaFree(devO1Ptr);
cudaFree(devI2Ptr);
cudaFree(devI3Ptr);

}

Figure 4.4: CUDA-CHiLL output function modified by the interface related to nek5000.

will search through each kernel generated to linearize the unrolled expressions. For example,

rather than var = var + A[i] and var = var + A[i+1], it will be changed to one

statement as var = var + A[i] + A[i+1]. This optimization will allow the compiler

to reduce the copy from the register var as well as the number of accumulations to be

performed. Figure 4.5 shows the kernel calls after the modifications are applied.

4.2 Performance Measurement

As mentioned before, the interface needs to measure the performance of each specified

parameter created by the decision algorithm. This means that the interface must create,

modify and test a CUDA-CHiLL script for each unroll factor presented in the output from

the decision algorithm. The focus of this section is to automatically be able to generate

these scripts and measure the output. The interface uses Orio [24, 25] to perform these

tasks.

Orio is a tool that allows the user to insert annotations in their codes for specifying
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__global__ void local_grad3_GPU_0(double *ur,double *us,double *D,double *u,
double *Dt){
newVariable0 = ur[1000 * bx + 10 * ty + 100 * by + tx];
newVariable1 = us[1000 * bx + 10 * ty + 100 * by + tx];
for (k = 0; k <= 8; k += 2) {

newVariable0 = newVariable0 + D[m * 10 + tx]

* u[bx*10*10*10 + by*10*10 + ty*10 + m] + D[(m+1)* 10 + tx]

* u[bx*10*10*10 + by*10*10 + ty*10 + (m+1)];
newVariable1 = newVariable1 + u[bx*10*10*10 + by*10*10 + m*10 + tx]

* Dt[ty*10 + m] + u[bx*10*10*10 + by*10*10 + (m+1)*10 + tx]

* Dt[ty*10 + (m+1)];
}
ur[1000 * bx + 10 * ty + 100 * by + tx] = newVariable0;
us[1000 * bx + 10 * ty + 100 * by + tx] = newVariable1;

}

__global__ void local_grad3_GPU_2(double *ut,double *u,double *Dt){
newVariable2 = ut[1000 * bx + 100 * ty + 10 * by + tx];
for (m = 0; m <= 8; m += 2) {
newVariable2 = newVariable2 + u[bx*10*10*10 + m*10*10 + by*10 + tx]

* Dt[ty*10 + m] + u[bx*10*10*10 + (m+1)*10*10 + by*10 + tx]

* Dt[ty*10 + (m+1)];

}
ut[1000 * bx + 100 * ty + 10 * by + tx] = newVariable2;

}

Figure 4.5: Nek5000 CUDA kernels modified by the interface.

different parameterized transformations. It creates a skeleton code to test these parameters,

execute a search over them and determine the best implementation. The search can be

specialized by the user by invoking different techniques like exhaustive search, nelder-mead

simplex [30], simulated annealing [31], among others.

Orio provides support to work in collaboration with other tools by creating Python

modules. We created an external module that calls CUDA-CHiLL for code transformation.

Figure 4.6 presents the interaction between CUDA-CHiLL and Orio. The output generated

in Chapter 3 is used by this module to generate the annotations required by Orio. Figure

4.7 presents an Orio example for the spectral element problem. The annotations required

by Orio are divided in two parts: PerfTuning and CHiLL. PerfTuning handles the

definitions and arguments for tuning the experiments, including the compiler building

commands, input variables and optimization parameters. In this example, the definition

performance params will use the unroll factors created by the autotuner as the pa-

rameters to be studied. CHiLL transforms each annotation into the proper CUDA-CHiLL

instruction as presented in Table 4.1.

Orio automatically generates each script containing the variations specified by the

parameters. These scripts will go through the process of code generation and modification
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Figure 4.6: Flowchart representing the interaction between Orio and CUDA-CHiLL. Red
rectangles present the process performed in Orio, orange is the part performed in CHiLL,
green is the output from CHiLL, purple is the modified output and blue is the final output.

as explained in Section 4.1. It uses the skeleton code to measure the performance of each

implementation and select the best version. This version will be passed to the interface,

which will hand it to the user as the final output. The user must replace the original

function on the application with the new implementation.

4.3 Summary and Contributions

This chapter presents a system for selecting the best implementation among the transfor-

mations found by the decision algorithm. It uses a combination of two autotuning tools, Orio

and CUDA-CHiLL, to evaluate the performance associated with the parameters generated

by the decision algorithm. It also automatically optimizes the performance of the generated

functions by removing unnecessary data copies, memory allocations and frees, and reusing

data available in the GPU. After measuring each implementation exhaustively, it decides

the best performing version as the final output to the user.

The contribution in this chapter is a mutual benefit for both tools. Orio was expanded

to support CUDA loop optimization as well code transformation by using CUDA-CHiLL.

On the other hand, the annotation system allows us to automatically study multiple CUDA-

CHiLL scripts using one representation. Also, the interface presents a system for modifying

the output from CUDA-CHiLL that reduces the amount of operations to be performed. This

feature can be integrated to future versions of CUDA-CHiLL for better code generation.
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/*@ begin PerfTuning (
def performance_params {

param UF0[] = [1,2,5,10];
param UF2[] = [1,2,5,10];

}
) @*/
/*@ begin CHiLL (

cuda(0,block={"e","j"},thread={"k","i"})
cuda(2,block={"e","j"},thread={"k","i"}
registers(0,"k")
registers(1,"m")
registers(2,"k")
fuse(0,1)
unroll(0,"k",UF0)
unroll(2,"k",UF2)

) @*/

for(e = 0; e < nelt; e++){
for(j = 0; j < lx*ly; j++)
for(i = 0; i < lz; i++)
for(k = 0; k < lx; k++)
ur[e*lx*ly*lz + j*lz + i] +=

D[k*ly + i] * u[e*lx*ly*lz + j*lz + k];

for(j = 0; j < lx; j++)
for(i = 0; i < ly; i++)
for(k = 0; k < lx; k++)
for(m = 0; m < ly; m++)
us[e*lx*ly*lx + j*ly*lx + i*lx + k] +=
u[e*lx*ly*lx + j*ly*lx + m*lx + k] * Dt[i*ly+m]);

for(j = 0; j < lx; j++)
for(i = 0; i < ly*lz; i++)
for(k = 0; k < lx; k++)
ut[e*lx*ly*lz + j*ly*lz + i] +=
u[e*lx*ly*lz + k*ly*lz + i] * Dt[j*ly + k];

}

Figure 4.7: Example of the annotation for Orio related to nek5000.



CHAPTER 5

EXPERIMENTAL EVALUATION

This chapter presents the experimental evaluation of the system developed. The results

presented are from the two benchmarks based on the scientific applications that have been

used throughout this thesis: nekbone and specialized NWChem kernels. Section 5.1 presents

the background of the benchmarks, and Section 5.2 discusses the methodology for handling

the experiments. Section 5.3 presents the results related to the CUDA code generated by

the framework. Section 5.4 discusses the results obtained in OpenACC, and Section 5.5

focuses on the impact in the performance caused by different implementations. Section 5.6

is a summary of this chapter.

5.1 Benchmarks

Nekbone is a mini-app used to study the tensor contraction operations and the com-

munication costs presented in nek5000 [8, 9]. It computes the spectral element solution

using the specialized kernel mentioned in Chapter 1 [7]. This computation is performed

in a conjugate gradient iteration to solve a 3-dimensional Poisson equation. Each iteration

computes the following for each element:

• Urijk = DilUljk: recast as a p× p matrix multiplied by a p× p2 matrix

• Usijk = DjlUilk: recast as p matrix-matrix multiplies with p× p matrices

• Utijk = DklUijl: recast as a p2 × p matrix multiplied by a p× p matrix

After processing the data related to U, nekbone performs the same process in Wr, Ws and

Wt. This thesis focuses on the sizes of: 8×8×8, 10×10×10 and 12×12×12, representing

lx × ly × lx in the code presented in Chapter 2. The nelt size used for all experiments

was 1000. As with nek5000, nekbone uses tensors of small sizes due to the discretization

polynomial [10].

The specialized NWChem kernels are a set of functions created by Jeff Hammond

for performance optimization experiments [14]. These kernels recast the computations
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of the tensor contraction engine (TCE) coupled cluster for double and triple interactions

(CCSD(T)) presented in NWChem [13, 14]. The kernels tested were sd t s1, sd t d1 and

sd t d2 with sizes 10, 12 and 16 for each dimension. As commented on Chapter 1, these

sizes represent chunks of a larger tensor contraction to be computed in a distributed system.

5.2 Methodology

The experimental evaluation of the codes generated by the system starts by extracting

the functions corresponding to the tensor contraction computations of each application.

These functions were reproduced by using the user input as explained in Chapter 2. The

user inputs were created by hand. The interface automatically generates the different

implementations by applying the techniques presented in Chapters 3 and 4; and it selects

the fastest code in an average of 100 tests using the skeleton code. For each benchmark,

the original kernels were replaced by hand with the outputs produced by the interface.

We tested the following versions of each benchmark: sequential, OpenMP (4 Threads),

OpenACC, and the CUDA generated code. The average of five runs of each version is used

to represent the gigaflops per second. For all versions of each benchmark, the gigaflops and

timing information were computed only for the kernels that apply the tensor contraction.

The experiments were conducted on a system with an Intel i7 930-2.8 Ghz and 4

Gigabytes of RAM using Ubuntu 14.04 64-bits. The GPUs tested were Tesla C2050, a

Fermi generation architecture, and Tesla K20, a Kepler generation. In this thesis work, the

Portland Group compiler (PGI) version 14.3 with OpenACC support and CUDA 5.5 was

used to conduct the experiments.

5.3 CUDA Generated Code Results

Results from the experiments related to nekbone are shown in Figure 5.1. Figures

5.2, 5.3, and 5.4 correspond to the three different kernels of NWChem. These results are

the measurements of four versions: sequential (blue line, diamond), OpenMP with four

threads (red line, square), OpenACC (dashed lines), and the code generated from the

system (solid lines) in Fermi (purple lines, circle) and Kepler (green lines, triangles). For

the OpenACC version, the OpenACC compiler decided automatically which optimizations

should be applied and the thread and block decomposition. This version is referred to as

näıve OpenACC. For all cases that use the GPU, the data copying to/from the device was

optimized by moving it outside the main computation loops of the benchmarks.

Table 5.1 shows the speedup achieved by the generated kernels for nekbone over the

sequential, OpenMP and OpenACC implementations. These implementations achieved up
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Figure 5.1: Performance achieved by the different implementations of nekbone.
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Figure 5.2: Performance achieved by the different implementations of sd t s1.

to 8.87x of speedup compared to the sequential implementation. Compared with OpenMP

and OpenACC, the generated kernels outperformed these two implementations by 2.68x

and 38.18x, respectively.

Table 5.2 presents the speedups obtained by the CUDA code for the kernels related to

NWChem. The results of sd t s1 show that the generated code increases the performance

up to 5.12x compared with the sequential implementation, while OpenMP was surpassed

by 18.79x. This CUDA code performed up to 35.21x faster in comparison with OpenACC.

In the case of sd t d1, the generated CUDA code improves the performance up to
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Figure 5.3: Performance achieved by the different implementations of sd t d1.
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Figure 5.4: Performance achieved by the different implementations of sd t d2.

9.78x over the sequential implementation, and 4.49x compared with OpenMP. OpenACC

performed up to 70.11x slower than the automatically-produced code. For sd t d2, the

generated code exceeds the sequential version by 17.62x, and the OpenMP implementation

was outperformed by 4.85x. The results also indicate that this implementation performed

up to 52.40x faster than the OpenACC version.

Related to the GPU implementations, for most cases the performance scales with tensor

size. This relationship can also be seen in the näıve OpenACC implementation. Also,

for NWChem, the results show that the benchmarks achieved very different performance
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Table 5.1: Speedups achieved by the generated code for nekbone over the sequential,
OpenMP and OpenACC implementations.

Speedup achieved by code generated in nekbone

Size GPU Sequential OpenMP OpenACC

8× 8× 8
Fermi 7.62x 1.46x 17.16x
Kepler 7.89x 1.52x 38.18x

10× 10× 10
Fermi 8.56x 1.77x 14.72x
Kepler 8.81x 1.83x 35.92x

12× 12× 12
Fermi 8.24x 2.48x 13.92x
Kepler 8.87x 2.68x 36.27x

Table 5.2: Speedups achieved by the code generated for NWChem over the sequential,
OpenMP and OpenACC implementations.

Speedup achieved by code generated in NWChem

Kernel Size GPU Sequential OpenMP OpenACC

sd t s1

10 Fermi 1.64x 5.85x 25.79x
Kepler 2.18x 7.79x 35.21x

12 Fermi 3.02x 10.58x 18.96x
Kepler 5.12x 17.94x 30.36x

16 Fermi 2.78x 13.19x 11.98x
Kepler 3.96x 18.79x 19.06x

sd t d1

10 Fermi 4.64x 3.09x 38.86x
Kepler 6.02x 4.01x 70.11x

12 Fermi 5.45x 3.91x 33.24x
Kepler 6.64x 4.77x 53.32x

16 Fermi 8.15x 3.75x 35.14x
Kepler 9.58x 4.49x 44.47x

sd t d2

10 Fermi 5.79x 2.28x 23.26x
Kepler 9.95x 4.85x 52.40x

12 Fermi 14.25x 3.16xx 19.99x
Kepler 17.62x 3.91x 30.23x

16 Fermi 5.30x 1.25x 13.53x
Kepler 5.78x 1.36x 16.65x

ranging from 8.39 GFLOPS/s to 46.57 GFLOPS/s. Although the kernels share the same

data structure, each kernel accesses data differently, causing differences in the performance.

5.4 OpenACC Results

For all benchmarks, the näıve OpenACC version was substantially slower than the se-

quential implementation. The observed performance for nekbone ranges from 0.91 GFLOP-

S/s to 2.86 GFLOPS/s while the sequential version performed between 4.04 GFLOPS/s to

5.26 GFLOPS/s. The näıve OpenACC implementation of NWChem was also slower than
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the sequential version. It ranges from 0.33 GFLOPS/s to 1.10 GFLOPS/s compared with

0.86 GFLOPS/s to 5.17 GFLOPS/s, which is the performance achieved by the sequential

version.

The NVIDIA Visual Profiler was used to study what was causing the slowdowns in the

näıve OpenACC codes. The results from profiling the benchmarks indicate that the thread

and block decomposition generated by the compiler does not use the GPU efficiently. We

use the code presented in Figure 5.5, the näıve OpenACC implementation for sd t d1 1, as

an example to explain this problem. The decomposition generated by the compiler for the

case where each dimension has size of 16 is as follows:

Block Thread
X 32 1
Y 1 16

The profiler revealed that this decomposition provides only 50% of the warp execution

efficiency. In other words, the code does not take advantage of the scheduling unit of the

GPU. The performance of OpenACC was optimized by implementing the thread and block

decomposition found by the decision algorithm and also explicitly moves the output variable

to registers.

Figure 5.6 presents the OpenACC implementation after indicating the following thread

and block decomposition:

Block Thread
X 16 16
Y 16 16

#pragma acc kernels loop present(t2[0:tile4],v2[0:tile4], t3[0:tile6]) {
#pragma acc loop independent
for (int p4=0; p4<p4u; p4++)
#pragma acc loop independent
for (int p5=0; p5<p5u; p5++)

#pragma acc loop independent
for (int p6=0; p6<p6u; p6++)

#pragma acc loop independent
for (int h1=0; h1<h1u; h1++)

#pragma acc loop independent
for (int h2=0; h2<h2u; h2++)

#pragma acc loop independent
for (int h3=0; h3<h3u; h3++)
for (int h7=0; h7<h7u; h7++){

t3[h3+h3u*(h2+h2u*(h1+h1u*(p6+p6u*(p5+p5u*p4))))] -=
t2[h7+h7u*(p4+p4u*(p5+p5u*h1))] * v2[h3+h3u*(h2+h2u*(p6+p6u*h7))];

}
}

Figure 5.5: Näıve OpenACC implementation of sd t d1 1.
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#pragma acc kernels loop present(t2[0:tile4],v2[0:tile4], t3[0:tile6]) {
#pragma acc loop independent
for (int p4=0; p4<p4u; p4++)
#pragma acc loop independent
for (int p5=0; p5<p5u; p5++)

#pragma acc loop independent gang(16)
for (int p6=0; p6<p6u; p6++)

#pragma acc loop independent gang(16)
for (int h1=0; h1<h1u; h1++)

#pragma acc loop independent vector(16)
for (int h2=0; h2<h2u; h2++)

#pragma acc loop independent vector(16)
for (int h3=0; h3<h3u; h3++)
for (int h7=0; h7<h7u; h7++)

t3[h3+h3u*(h2+h2u*(h1+h1u*(p6+p6u*(p5+p5u*p4))))] -=
t2[h7+h7u*(p4+p4u*(p5+p5u*h1))] * v2[h3+h3u*(h2+h2u*(p6+p6u*h7))];

}

Figure 5.6: OpenACC implementation of sd t d1 1 with the thread and block decompo-
sition specified.

This optimization allowed OpenACC to increase the memory bandwidth related to the

communication between L1 and L2 cache. Also, moving the output variable to the register

level, vard1 1 as presented in Figure 5.7, improved the bandwidth related to device

memory. Figure 5.8 presents the difference in memory bandwidth between the näıve

implementation and after applying the optimizations. The data reads (red bars) associated

with L1/L2 cache increased from 6.593 GB/s to 258.672 GB/s, while the writes (blue) gain

#pragma acc kernels loop present(t2[0:tile4],v2[0:tile4], t3[0:tile6]) {
double vard1_1;
#pragma acc loop independent
for (int p4=0; p4<p4u; p4++)
#pragma acc loop independent
for (int p5=0; p5<p5u; p5++)

#pragma acc loop independent gang(16)
for (int p6=0; p6<p6u; p6++)

#pragma acc loop independent gang(16)
for (int h1=0; h1<h1u; h1++)

#pragma acc loop independent vector(16)
for (int h2=0; h2<h2u; h2++)

#pragma acc loop independent vector(16)
for (int h3=0; h3<h3u; h3++){
vard1_1 = t3[h3+h3u*(h2+h2u*(h1+h1u*(p6+p6u*(p5+p5u*p4))))];
for (int h7=0; h7<h7u; h7++)
vard1_1 -= t2[h7+h7u*(p4+p4u*(p5+p5u*h1))] *

v2[h3+h3u*(h2+h2u*(p6+p6u*h7))];
t3[h3+h3u*(h2+h2u*(h1+h1u*(p6+p6u*(p5+p5u*p4))))] = vard1_1;

}
}

Figure 5.7: OpenACC implementation of sd t d1 1 with computational grid and registers
data specified.
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Figure 5.8: Memory bandwidth performance related to näıve and tuned OpenACC
implementations.

a boost from 5.023 GB/s to 13.614 GB/s. In the results for the device memory bandwidth,

the data reads (purple) grow from 0.408 GB/s to 17.632 GB/s and writes (green) from

6.2 GB/s to 17.001 GB/s. These optimizations improved the data reuse available in cache

memory, which reduces the communication with global memory. The profiler also showed

that the new implementation uses 100% of the warp execution efficiency. The information

copied to registers in the third implementation was specified by hand since the private

clause in OpenACC did not work properly. It is expected that this problem will be resolved

in future OpenACC compiler implementations.

Figure 5.9 presents a comparison between the tuned OpenACC implementations and

the codes generated by the interface presented in this thesis. This figure shows the results

related to nekbone with size 12 × 12 × 12, and all benchmarks related to NWChem with

size 16. In some cases, tuning for OpenACC outperforms the CUDA code created by the

framework. For example, the optimized OpenACC version of NWChem sd t d1 performed

1.06x faster on Kepler. Also, for sd t d2, the optimized OpenACC performed 1.14x faster

than the fastest CUDA implementation on Kepler.

Table 5.3 presents the speedups achieved by the different OpenACC implementations

over the sequential implementation with the previous sizes. When the computational grid

generated by the decision algorithm was specified in the OpenACC implementation of

nekbone, the performance increased to 3.74x over the sequential implementation. Moving
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Figure 5.9: Performance difference between optimized OpenACC and the CUDA generated
code. The sequential version is used as baseline.

Table 5.3: Speedups achieved by OpenACC after adding the different optimizations.

Speedups achieved by tuning OpenACC

Benchmark GPU Näıve New Grid Registers

nekbone
Fermi 0.59x 2.54x 2.56x
Kepler 0.24x 3.74x 3.97x

sd t s1
Fermi 0.23x 2.77x
Kepler 0.21x 3.92x

sd t d1
Fermi 0.23x 4.00x 7.25x
Kepler 0.22x 5.55x 10.34x

sd t d2
Fermi 0.39x 4.5x 4.57x
Kepler 0.35x 6.50x 6.61x

the data that can be reused to the register level increased the performance by 3.97x. In

sd t s1, providing the thread and block decomposition accelerated the computation up to

3.92x over the sequential implementation. The register level optimization was not used

in this benchmark since the output is not accumulated. Specifying the decomposition in

sd t d1 increased the performance up to 5.55x, and moving the data to registers improved it

up to 10.34x over sequential. NWChem sd t d2 achieved 6.50x speedup over the sequential

implementation after using the thread and block decomposition from the decision algorithm;

while moving the reusable data to the registers increased the performance up to 6.65x. These
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results suggest that there is a possibility to expand the autotuning for optimizing OpenACC

codes.

5.5 Performance Difference due to
Implementation

Chapters 1 and 2 mention that the mathematics can have an impact on the performance.

For example, the functions that perform tensor contraction on the CPU in nek5000 and

nekbone changes the order of the tensors to accelerate the process. The code generated

by the interface omits this optimization, as well for the OpenACC code created, since

the architecture of the GPU is different. For this reason the generated code treats the

computation in nek5000 as a tensor contraction between order 3 and order 2 rather than

the computation presented in Section 5.1.

Yet, there is also a difference in the performance related to the code generated by the

interface and OpenACC. The results for optimizing OpenACC in nekbone achieved perfor-

mance of 23.13 GFLOPS/s. Compared with the CUDA implementation (41.50 GFLOPS/s),

both using the same optimization strategies, this code performed 1.79x slower. These

implementations were profiled with the NVIDIA Visual Profiler and it was found that

functions related to the computation of W generated the following decompositions:

Block Thread
X 8 8
Y nelt 32
Z 8 -

Block Thread
X 10 10
Y nelt 25
Z 10 -

Block Thread
X 12 12
Y 12 21
Z nelt -

These grids present a size of ThreadY that was not specified, and create a BlockZ , which

is not supported in CUDA. In other words, although the computational grid was specified,

the OpenACC compiler does not always generate the desired grid.

The interface was modified for preventing the loop fusions and generating the same

computation as the CPU version of nek5000. The new nekbone code for GPU, referring to

CUDA and OpenACC, now performs two tensor contractions of 2nd (Ur, Us) and one tensor

contraction of order 3 with order 2 (Us), as presented in Section 5.1. Table 5.4 presents the

new thread and block decomposition for OpenACC and the CUDA code generated by the

modified framework. Although the new computational grids of OpenACC are more similar

compared with the CUDA code, the compiler creates a different grid in some cases.

Figures 5.10 and 5.11 present the performance achieved by the new implementations of

nekbone using OpenACC and the new CUDA code generated from the framework. The new

version of OpenACC (dotted lines, purple for Fermi and green for Kepler) show it achieved
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Table 5.4: Thread and block decomposition generated by the OpenACC compiler and the
decision algorithm for nekbone after using the optimizations of CPU.

Thread and block decompositions for nekbone

Function Size Coordinate OpenACC CUDA
(Block | Thread) (Block | Thread)

Ur (Wr)
8 X 8 | 8 nelt | 1

Y nelt | 32 8 | 64

10 X 10 | 10 nelt | 1
Y nelt | 25 10 | 100

12 X 12 | 12 nelt | 1
Y nelt | 21 12 | 144

Us (Ws)
8 X nelt | 8 nelt | 8

Y 8 | 8 8 | 8

10 X nelt | 10 nelt | 10
Y 10 | 10 10 | 10

12 X nelt | 12 nelt | 12
Y 12 | 12 12 | 12

Ut (Wt)
8 X nelt | 8 nelt | 1

Y 1 | 8 64 | 8

10 X nelt | 10 nelt | 1
Y 1 | 10 100 | 10

12 X nelt | 12 nelt | 1
Y 1 | 12 144 | 12

up to 54.81 GFLOPS/s, making a speedup of 3.27x over the optimized implementation

presented in Section 5.4 (dashed lines). In the case of the new CUDA code generated by

the framework, the results show that this implementation did not improve the performance.

This means that the original code generated by the framework (solid lines) outperformed

the new CUDA code (square dots lines) by 1.46x.

Table 5.5 presents the speedup achieved by the new OpenACC implementation over

the original CUDA version of nekbone generated by the framework. These results show

that the new kernels for OpenACC outperformed the CUDA generated kernels by 1.32x.

The CUDA code presents the same behavior related to tensor size and performance: as

the work increases, the difference in performance between OpenACC and CUDA reduces.

The results for sizes 10 and 12 in Fermi show that the generated CUDA code was up to

1.2x faster than the new OpenACC, while in Kepler this difference is reduced as the size

of the problem increases. These results suggest that the OpenACC code requires different

optimization strategies compared with CUDA.
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Figure 5.10: Performance achieved by nekbone using the CPU computation strategies in
OpenACC.
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Figure 5.11: Performance achieved by nekbone using the CPU computation strategies in
CUDA.

5.6 Summary

This chapter presents the results achieved from the experimental evaluation of the tool

presented in this thesis. It demonstrates that when using autotuning with the proper

guidance it is possible to achieve high performance in the tensor contraction problems

for tensors of small size. Nekbone improved up to 8.87x compared with the sequential



44

Table 5.5: Speedups achieved by the new OpenACC implementation over the fastest
CUDA version of nekbone.

Speedup of new OpenACC over CUDA

Size Fermi Kepler

8 1.16x 1.32x

10 0.91x 1.28x

12 0.80x 1.07x

implementation, while NWChem demonstrated a speedup of 17.62x.

Using the guidance provided by the tool, OpenACC achieved higher performance too.

It achieved up to 16.67x of speedup compared with the sequential version. In some cases,

OpenACC outperformed the code generated by our tool. These results show that is possible

to combine the optimizations from the OpenACC compiler with the decisions found by

the decision algorithm to achieve equal or higher performance. We see the potential for

combining OpenACC with autotuning to improve its performance.

Finally, this chapter confirms the statement made in Chapter 1: the GPU requires

different optimization strategies compared to the CPU. When the interface produced CUDA

code using the CPU strategies, it performed up to 1.46x slower than using the optimizations

presented in Chapter 3. On the other hand, the OpenACC compiler applies other strategies

that alter the specified thread and block decomposition. This observation suggests that the

optimizations required to achieve high performance in CUDA should not necessarily be the

same for OpenACC. The autotuning studies related to OpenACC should also consider the

transformations applied by the compiler to achieve high performance in the GPU.



CHAPTER 6

RELATED WORK

Tensor contraction is an active research area, especially in mathematics, quantum chem-

istry and computing. Many libraries and tools have been developed for applying mathemati-

cal optimization as explained in Chapter 1. These tools focus on large sizes, multiprocessors

and distributed systems. Other works are related to accelerating applications that involve

tensor contraction operations.

This chapter presents related research based on the topics that this thesis emphasizes.

Section 6.1 shows different tools that focus on optimizing tensor contraction problems.

Section 6.2 presents different projects based on accelerating applications that use tensor

contraction.

6.1 Optimization Tools

6.1.1 Tensor Contraction Engine

The Tensor Contraction Engine (TCE) is a tool for generating FORTRAN code using

an input with a Mathematica-style expression [11, 32]. The main focus of TCE is to

create an efficient implementation from the input given. It applies a series of mathematical

transformations to reduce the number of operations and minimize the requirements to fit the

computation storage by applying loop fusion. The output generated by TCE is optimized

for minimizing the communication to CPU memory. TCE also can create code targeting

multiprocessor machines.

6.1.2 Super Instruction Assembly Language

The Super Instruction Assembly Language (SIAL, pronounced “sail”) [33] is a runtime

system developed for accelerating the problems related to coupled clusters. It focuses on

large dense tensors and parallel architectures. In SIAL, the algorithms are expressed for

computing the data using blocks of numbers instead of performing the operations in the
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traditional method. This allows the system to handle the data efficiently, as well as permits

the runtime system to overlap the computation with communication.

SIAL programs performs over a Super Instruction Processor (SIP), which is a parallel

virtual machine in the runtime. The SIP deals with the complexities of a parallel hardware,

like I/O operations, super instructions, among others.

6.1.3 Cyclops Tensor Framework

The Cyclops Tensor Framework (CTF) [34] is a runtime system for coupled clusters

problems and distributed systems. It allows the user to input the problem using Einstein

notation for tensors. The mathematical transformations are applied to the input for op-

timizing the number of operations. The runtime system will then focus on generating an

implementation that efficiently uses the available resources, optimizing memory usage and

communication. This system not only finds the best implementation, but also presents to

the user how the data should be decomposed in order to achieve higher performance.

6.1.4 Tensor Library

The libtensor [35] is a C++ library of classes for post-HartreeFock electronic structure

methods. It can also be used for computing other methods that requires tensor algebra like

coupled clusters and equation of motion. The library performs the computation by splitting

the work in smaller blocks and applies a parallel divide-and-conquer algorithm to perform

the tensor algebra.

6.1.5 Build To Order Blas

The Build To Order Blas (BTO) compiler [36, 37] is a tool focused on linear algebra, yet

it can be used for solving problems related to tensor contraction of 1st and 2nd order. This

tool permits the users to express the linear algebra problem at a higher level and generate

code from this representation. The user inputs a MATLAB like code used for generating

multiple versions in C, where each implementation contains different optimization strategies.

It tests all implementations to find the best performing code. Also, BTO can rearrange

mathematically the input from the user for achieving higher performance, reducing the

order of operations or permitting better reuse of the data available in the different memory

hierarchies.
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6.1.6 Multi-element problems on GPU

Linh Ha et al. [38] present a survey on different methods used for solving multi-element

problems. It also explains an efficient methodology for partitioning the computational grid

of a GPU depending on the size of the data. The thread and block decomposition will focus

on maximizing the computation across threads, blocks or an intermediate implementation

to achieve better performance in the given input. The proposed methodology achieved up to

65% of the theoretical bandwidth in comparison with other approaches. Even for problems

that focus on sizes from 2× 2 to 32× 32, the performance achieved was better compared to

libraries like CUBLAS and LAPACK.

6.2 Accelerating Tensor Contraction Applications

6.2.1 Nekbone and Nek5000 on GPU

The nekbone proxy application also has been optimized on GPUs [39]. The CESAR

Co-Desing Center created a series of hand-coded OpenCL kernels for tensors of sizes 8×8×8

to 12×12×12. Results from these experiments achieved 100-200 GFlops using an NVIDIA

GTX 590 (Fermi generation) in the tensor contraction operations.

The CRESTA project [40] created a version of nek5000 that uses multiple GPUs. Results

from the experiments achieved a speedup of 1.59x using 512 NVIDIA TESLA K20x (Kepler

architecture) GPUs in comparison with a CPU-only implementation (512 nodes with 8192

cores). The tests were performed on the CRAY XK7 TITAN system.

6.2.2 Autotuning on Nek5000

CHiLL was used for accelerating the nek5000 application [7] on a CPU. This work

used autotuning and specialization for optimizing the matrix multiplication kernel for small

matrices. The kernel contains a series of calls tailored for specific sizes that take advantage

of different cache and registers, also single instruction multiple data (SIMD) code generation

and instruction level parallelism (ILP). The results from this work present a speedup of 2.2x

in the CRAY XT5 JAGUAR system.



CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter summarizes the thesis and the contributions it has made. Also, it discusses

future work to expand the capabilities of the tool developed.

7.1 Summary and Conclusions

The main conclusion from this thesis is that the optimization strategies for tensor

contraction must take into account three aspects: mathematics, computational device and

compilers. The mathematical optimizations reduce the number of operations and/or sim-

plify the interaction. The computational device optimizations explore how to efficiently use

the available resources. Using compiler optimizations allows extracting more performance

from these resources. In difference with the research work presented in Chapter 6, the

contributions of this thesis focus on small size problems and GPUs rather than larger

tensors and multiprocessors or distributed systems.

This thesis describes an interface where the users can express tensor contraction prob-

lems and generate high-performance code for NVIDIA GPUs. The tool focuses on the idea

of parallelizing the batched matrix multiplication using a GPU for small tensors. These

sizes present a challenge since the optimization strategies required are different compared

to large sizes. Also, even though the size of these tensors are small, they can consume a

large portion of the time spent in the computation. The tool is divided in three stages,

based on the steps mentioned before: mathematical representation, decision algorithm and

autotuning and code generation.

The mathematical representation allows the user to input the code using an expression

that resembles Einstein notation for tensor contraction. The contribution of this stage

is that it simplifies the implementation by allowing the user to focus on optimizing the

mathematics rather than spending effort in implementing the solution.

The decision algorithm exposes the optimization strategies required to achieve high

performance on the computational device, which in this thesis is a GPU. The contribution
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of this step is an algorithm that creates a thread and block decomposition focused on

achieving memory coalescing. It also generates a search space of specific implementations

that can achieve high performance on the GPU. We show that tensor contraction problems

on GPUs require different strategies for achieving high performance compared to the CPUs.

The autotuning and code generation stage explores the possible compiler optimizations

and implementations strategies that achieve better performance. We combined two tools

(CUDA-CHiLL and Orio) for studying the search space created by the decision algorithm

and producing high performance CUDA code. The contribution is a mutual benefit for both

tools for studying a search space.

Finally, the tool is not limited to CUDA implementations only. In this thesis, the

guidance provided by the interface is also applied to OpenACC. The contribution related

to OpenACC is a possibility for expanding the autotuning framework to generate high-

performance code for this API. In some cases, OpenACC outperfomed the CUDA versions

generated by the tool.

7.2 Future Work

The mathematical representation in this work depends on a user input. This framework

will be attached to a tool that optimizes the mathematics for reducing the number of

operations. The extension is referred to as the gray dashed box in Figure 1.3. This work is

a collaboration with Thomas Nelson and Dr. Elizabeth Jessup, both from the University

of Colorado.

In Chapter 4, it was mentioned that Orio supports other strategies for pruning the search

space. The interface will be expanded for using these methods to reduce the time spent

in the exhaustive search. This work is in collaboration with Dr. Boyana Norris from the

University of Oregon.
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