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ABSTRACT �

Gait analysis is an important tool for diagnosing a wide variety of disorders, with 

its increasingly accepted benefits culminating in the widespread adoption of motion 

analysis laboratories. A modern analysis laboratory consists of a multicamera marker 

tracking system for 3D reconstruction of kinematics and multiple high-fidelity load 

transducers to determine ground reaction force and enable inverse-dynamics for 

biomechanics. There is a need for an alternative motion analysis system which does not 

require a fixed laboratory setting and is lower in cost; freeing the motion capture from the 

laboratory and reducing the technology costs would enable long-term, home-based, 

natural monitoring of subjects.  

 This thesis describes two contributions to the end goal of an inexpensive, mobile, 

insole-based motion analysis laboratory. First is the application of an inertial-

measurement-unit calibration routine and zero-velocity-update algorithm to improve 

position and orientation tracking. Second is the development, from basic sensor to 

prototype, of an insole capable of measuring 3 degree-of-freedom ground reaction force. 

These contributions represent a proof-of-concept that quantitative gait analysis, complete 

with dynamics, is possible with an insole-based system.   
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 

This section presents the motivation for human motion analysis and proposed 

benefits of a mobile motion analysis laboratory (MAL) over traditional systems. The 

previous research is reviewed prior to stating contributions and current research. 

 
 

1.1 Background 
�

Human gait is the primary form of personal locomotion and a large contributing 

factor in an individual’s quality of life and independence. Because of this, and the 

prevalence of a variety of gait disorders [1], there has been significant research into 

quantitative motion analysis, with particular activity since the 1970s. In the 1970s and 

1980s, video camera systems were deployed which enabled 3-dimensional kinematics 

tracking and dynamic analysis when coupled with floor-mounted force plates or 

instrumented treadmills. This type of motion analysis laboratory enabled physicians to 

perform studies and diagnose pathologies for individual patients [2][3]. 

There is a commonality in the modern motion analysis lab, and though there are 

exceptions, a typical MAL today will contain: 

1. A passive or active marker and camera system for tracking movements. 
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2. Load transducers for measuring ground reaction force (GRF) and center of 

pressure (CoP). 

3. Electromyogram electrode systems for approximation of individual 

muscle activation levels.   

With data from the first two items, it is possible to use inverse dynamics (via the 

Newton-Euler equations of motion) to compute the loads and torques at the subject’s 

joints, an important piece of clinical gait analysis. 

With full inverse dynamics, experienced clinicians alter their initial, premotion 

analysis treatment suggestions 52%-89% of the time, typically reduce the number of 

surgeries performed and risk therein, and in general produce more improved outcomes 

for patients [4].   

The benefits of human gait analysis are now rarely argued against, and the 

previously described type of analysis and laboratory equipment is the gold standard for 

diagnosing human gait disorders; however, there are a few evident shortcomings 

manifesting from the technologies used. Simply: the equipment is, for most purposes, 

fixed to the laboratory setting and, in addition, contains significant costs.  

Multicamera motion capture systems rely on direct-linear transformations to 

perform 3D reconstruction of the markers in space. This is a function of the geometry of 

the cameras and requires each marker to be viewed by at least 2 cameras at any given 

time. Typically, due to limitations in viewing from any particular vantage, a MAL will be 

outfitted with 6-12 cameras surrounding the subject. This defines a volume in the center 

in which kinematics capture can take place. Motion capture outside the laboratory would 

require setting up this system of cameras and recalibrating them using marker sets of 
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known geometries. This is not feasible for most clinical motion capture, and combined 

with the fixed location of the load cells, limits gait analysis to a laboratory or hospital 

setting.  

The second issue with current MAL setups is the high cost. The costs associated 

with a current gait analysis lab were estimated above $300,000 for initial setup and 

$50,000-$300,000/year in the year 2004 [4]. The videocameras require high-bandwidth 

connections back to a high-performance computer for computation of 3D motion; and 

load cells are often on the order of $1,000-$10,000 [5].  

The author proposes that addressing these two issues by developing new 

technologies will provide clinicians and physicians with greater tools to understand, 

diagnose, and prevent gait disorders. It is believed that instrumentation for mobile and 

low-cost motion analysis will result in long-term and ubiquitous study of subjects, 

improving the quantity and quality of data by capturing natural motions in common 

environments.  

To enable freedom from a laboratory setting, the device or devices should be free 

of external-reference requirements, such as cameras or magnetic sensors. Additionally, 

for low-cost, the system should not require high-cost manufacturing techniques or 

sophisticated sensor systems. A wearable system using commonly available components 

is suggested.   

 
 

1.2 Previous Work 

   The need for a lower cost, less restricted system for motion analysis was 

proposed ten years ago in the form of instrumentation for a shoe [6]. The instrumentation 

3
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consisted of a resistive bend sensor to measure plantar- and dorsiflexion of the foot, a 3 

axis angular rate gyroscope, a 3 axis accelerometer, force-sensitive resistors (FSR) for 

stride timing, sonar sensors for step height, and an electric field sensor for the same 

purpose. This system, and those similar to it [7][8][9], provided primarily gait phase 

detection and timing statistics and did not enable full inverse-dynamics calculation. The 

reasons for this are the system’s inability to measure force accurately (FSRs are 

inaccurate and nonlinear, and only measure force in one direction) and an inability to 

accurately determine motion in 3D for any period of time. 

Advances in the quality of micro-electromechanical (MEMS) inertial 

measurement units (IMU) have caused significant and varied research into their 

application for motion tracking (see Chapter 2, Section 1.) This approach for motion 

tracking is currently in the commercial world; however, current companies suggest their 

products only provide 3D orientation, acceleration, and angular velocity [10,11]    

Less active is the field of research in achieving true 3 degree-of-freedom 

measurement in a wearable system, though its importance to clinical gait analysis is 

equally significant. A review of the current state of insole GRF measurement can be 

found in Chapter 4, Section 1. In summary, the most accurate and mature current 

approaches use load cells replacing or augmenting the sole of a shoe, such as that of 

XSens Technologies ForceShoe. An instrumented shoe introduces uncertainty about 

alteration from a subject’s natural gait and adoption in subjects due to the lack of 

transparency and deviation from their preferred sneaker.  Perhaps most importantly, 

however, is the fact that the shoes measure the force and torques at the shoes sole, not at 
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the foot, as a gait lab does (subjects are typically tested barefoot on the forceplate) and an 

insole is proposed to do.  

 

1.3 Contributions 

 Contributions contained in this thesis fall into two primary categories: the 

contributions to IMU motion tracking and the contributions to ground reaction force 

measurement in an insole.  

 In terms of IMU motion tracking, this thesis describes the application of a novel 

calibration system to low-cost IMUs. Physical experiments were performed in a motion 

analysis laboratory and the data were analyzed iteratively with different calibrations to 

determine the stability of the calibration system over time, with unique combinations of 

state-estimation (on/off) and calibration (user calibrations and factory) to determine the 

relative benefit of each aid to motion tracking. Additionally, absolute performance was 

evaluated over 5 trials with successful motion tracking.  

 Insole GRF contributions begin at the design and development of the tactile 

sensor. A novel sensor was developed using the design process of: design, construct, 

evaluate, redesign, and repeat. Numerous iterations of the tactile sensor where 

manufactured and evaluated, software was written for data capture, and analysis and an 

algorithm was developed to estimate force from the variety of signals produced by the 

hardware. Linear regression was used to train a variety of sensor models (linear, square, 

and cubic signal models, and those containing signal derivatives and combinations) and a 

linear model was found to be sufficient.  

5
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 A physical sensor testing protocol was developed and the required tools (3 axis 

linear stage with distance encoders and 6DOF force measurement) was designed and 

constructed using primarily off-the-shelf components.  

 Adapting the validated tactile sensor to an insole was performed. A flex circuit 

was constructed and the silicone molding process for required optical geometries was 

defined and executed. A complete insole was produced and exponents performed in a 

motion analysis lab to evaluate performance. The concept that 3DOF GRF can be 

measured in a low-cost insole was proven successfully from design of principle sensor 

operation to construction of functional prototype.      

  

1.4 Overview 

 The following chapters in this thesis have been submitted, or have been prepared 

for submission, for inclusion in conferences and journals.  

 In Chapter 2, a journal publication is presented describing the application of the 

IMU toolset to human gait. This paper is accepted for publication in the OMICS Journal 

of Bioengineering and Biomedical Sciences; Special Issue on Emerging Technology for 

Use in Rehabilitation.   

 In Chapter 3, a conference publication is presented which details the development 

of the tactile sensor for 3 degree-of-freedom pressure measurement. This paper is 

submitted to the 2012 IEEE EMBC/RAS International Conference on Biomedical 

Robotics and Biomechatronics. 
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In Chapter 4, a conference publication is presented which describes the 3DOF 

GRF sensing insole. This paper is submitted to the 2012 IEEE EMBC/RAS International 

Conference on Biomedical Robotics and Biomechatronics. 

 In Chapter 5, the main conclusions of the thesis are presented, along with 

recommendations for future work. 
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Introduction and Motivation
Human motion tracking and analysis is an active subject of study 

covering a large range of applications from healthcare to entertainment. 
Traditionally, human motion tracking has relied on external camera or 
magnetic systems, obtrusive instrumentation, or high cost equipment; 
a review of techniques may be found in [1]. In a clinical sense, the 
former both have the ability to influence analysis thought patient 
physical or mental discomfort, and the latter can be inhibiting to large-
scale or long-term monitoring.

MEMS inertial measurement units (IMU), consisting of 
accelerometers and angular rate gyroscopes, have been applied 
to segment tracking for applications from the medical field to the 
entertainment industry [2-13]. IMUs have the benefit of being 
relatively small and unobtrusive, unlike instrumented linkages, and 
they are also self contained (requiring no specific environment for 
operation), unlike stereographic camera, vision, and magnetic tracking 
systems.  Their mass adoption in the consumer electronics world has 
resulted in powerful sensors for continually decreasing cost and size.  
However, common problems exist in IMU use for segment tracking, 
predominantly the bias drift of the sensors and the non-linearities 
inherent in low-cost manufacturing, both of which notably introduce 
imperfect gravity cancellation [14].

Recent advances in real-time bias adjustment by the authors [15] as 
well as the development of a novel, inexpensive calibration system for 
low-cost IMUs [16], have encouraged a revisiting of the applicability 
of IMU gait analysis in general application, in particular with regard to 
accuracy and system cost.

The low-cost calibration of MEMS inertial sensors provides 
complex sensor models that account for scale factor nonlinearity, 
anisotropic sensitivity, and gyro specific force sensitivity [16]. 

This affords greater accuracy of measurement, particularly in 
estimating the required gravity cancellation. When double-integrating 
the acceleration signals for position even, small errors and unaccounted 
angular manufacturing tolerances can greatly affect the accuracy of 
tracking. This problem has typically limited the usefulness of IMU 
motion tracking for any real world tasks.

Our previous state estimation work [15] demonstrated that for 
human-scale, intermittent motion a sensor-level algorithm based on 
easily measured parameters enables real-time bias adjustment. This 
system is non-specific to application provided there are regular periods 

of rest. This has been demonstrated successfully on a small unmanned 
ground vehicle [16]. 

This paper investigates whether human gait provides long 
enough periods of rest to apply the state estimation algorithm for bias 
adjustment. This, combined with the calibration system developed, 
affords low-cost IMU based bioinstrumentation for human-motion 
tracking.

Materials and Methods
Inertial measurement unit

The IMU used is shown in Figure 1. Details of the sensor can be 
found in [16]. In short, the external dimensions are within 50 × 37 
× 75 mm and it contains four independent accelerometer triads and 
two independent gyrotriads. The sensors are sampled at 1000Hz with 
a 16-bit A/D. The redundancy of the sensors allows for a weighted 
combination based on the static variance of each individual axis. At 
any time, saturated sensors are weighted out of the resulting signal.

Calibration
The calibration system previously developed, fully described in 

[16], and provides an average improvement of 5.7% and 24% over linear 
models for the accelerometers and gyros, respectively. This improves 
the state estimation described above, and combined they greatly reduce 
the compounding error resulting from multiple integrations over time. 
The calibration hardware is low cost and consists of a series of blocks 
manufactured to specific linear and angular dimensions (Figure 2). 
By exciting combinations of gyro- and accelerometer- axes through 
a predefined series of pure translational and rotational motions, a 
novel mathematical model is populated. This model includes non-
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linearities, anisotropic effects and gyro-acceleration sensitivity. The 
hardware is low-cost and the calibration straightforward; however 180 
actions are required to define the model. This results in a calibration 
time of approximately 4-6 hours. For home or clinical healthcare, a 
6 hour calibration at each use would severely limit the applicability 
and adoption of an IMU based motion tracking device. Th is paper 
investigates the temporal stability of IMU calibration, that is: will the 
device require recalibration at each use; and if not re-calibrated at each 
use, how much benefit is lost?  It is proposed that if the calibration is 
relatively static then periodic human segment motion can be accurately 
captured using wearable IMUs that are calibrated prior to the first use.

State Estimator
The state estimator works as described in [16]. It is a method of zero-

velocity update intended to be application inspecific and was originally 

developed for mobile robotics tracking in GPS deficient environments. 
Zero velocity updates use a still period to re-bias accelerometer and 
gyros to minimize cumulating integration errors; they are typically 
based on step detection (using simple feature detection in accelerometer 
and gyro- scope signals [17,18] or insole pressure measurement) and 
assume a no-slip condition with the ground.  If a slip occurs, this error 
is accumulated for the remainder of the trial. Th e method described 
herein uses the measured noise parameters of the IMU to determine 
periods of still, therefore increasing the robustness of the system in 
irregular terrain and eliminating the no-slip requirement. Th e bias-
adjusting estimator has two tunable parameters for both accelerometers 
and gyroscopes:  the length of time a signal must drop into the noise 
band of the sensor before being considered a still period (rather than 
noise or other abnormalities) and what magnitude to consider the noise 
band.  These parameters are optimized on a given trial and applied to 
the algorithm prior to execution.

Experimental Procedure
Experiments were conducted in a motion analysis laboratory 

(MAL) which contains an 8-camera stereographic motion capture 
system (Vicon, Oxford, UK) for 3d motion tracking. The system has 
sub-millimeter accuracy and was utilized at a 1 kHz capture rate. 
The IMU was attached to the rigid cap of a steel-toed boot. Mounted 
securely to the IMU was an L shaped block with vision-system markers 
identifying the IMU coordinate system.  Th e IMU is attached via 
a shielded cable to the DAQ system and powered by a constant DC 
power supply. Two types of trials were performed:  Normal, unaffected 
gait on level ground (four trials) and natural stair climbing and descent 
of three steps (two trials). Both types of trails were used to examine 
calibration stability and the contributions of each aid (calibration and 
bias-update routine).

Analysis Methods and Techniques
A goal of this work was to determine the usefulness of the two tools 

(calibration and bias-update) and as such each gait trail was analyzed 
to determine the maximum error between IMU measurement and 
ground truth in a six configurations:
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This set of routines provides information as to the contribution 
of each tool; as well as providing an indication of the stability of 
calibrations by applying calibrations 1, 2 and 3 to the trails under 
otherwise identical conditions.  Note calibrations 1 and 2 are from a 
common operator and 3 a different operator.

Results
To investigate the stability of calibration, Figure 4 demonstrates the 

relative difference in error by using three calibrations from different 
dates on the four walking gait trials. Likewise, to determine the relative 
effect of bias- adjustment and calibration, Table 1 displays the percent 
error reduction by applying our calibration routine, applying the bias-
update algorithm; and applying both.

To determine the success of a low-cost IMU for gait tracking, 
all trials were analyzed with state estimation on and our calibration 
active. Figure 5 shows the angle, velocity, and position IMU tracking 
as well as truth from the camera system of a walking trial. Errors are 
shown in the rightmost plots. Figure 6 is the same trial as in 5 with both 
aids disabled, i.e. no bias updates and using the factory calibration. 
Figure 7 is a representative stairs trial. Table 2 contains the errors as 
a percentage of total distanced travelled, directionally for X, Y, Z and 
rotations. Y is the direction of primary progress in all trials, Z height, 
and X the lateral axis.

Discussion and Conclusions
The results are greatly improved by the process of calibrating 

and applying zero-velocity updates, as evidenced by comparing the 
representative stair (Figure 7) and gait (Figure 5) tracking results 
using the aids to the same walking trial without (Figure 6). The results 
Table 1 quantifies the improvement made by each aid. Note that state 
estimation alone makes the largest contribution to the error reduction; 
but also that the calibration improvements are non-trivial. The 
additional improvement of the calibration above state estimation alone 
is 104.75mm ± 163.82mm.

The low-cost, self calibration routine appears to be static across 
the walking trials as seen in Figure 4. The data does not show a trend 
for more recent calibrations to be more accurate, therefore a single, 
careful calibration to a new IMU is suspected to be sufficient for some 
months. Studies will continue with continuing calibration to further 
determine the stability of the parameters. Absolute errors as a percent 
of the distance travelled are shown in Table 2. Note that the mean error 
in the direction of progress is approximately 6%, with a particularly 
poor result in stair trial 2. The reason for this trial’s poor performance 
has not been identified. Th e relatively larger error percentages in X 
and Z are in part due to the minimal amount of displacement in those 
directions. Their absolute errors are lower than those of the progressive 
direction.

Angular tracking is consistently strong across trials.

The work shown within demonstrates the vast error reduction 
in in-expensive IMU-based motion tracking made by using a low-
cost, clinically feasible calibration routine as well as a bias-updating 
zero-velocity update algorithm.  3D tracking has been previously 
demonstrated to achieve errors under 1% [4,19], however this work 
uses more costly, and high-performance gyroscopes.  A goal of this 
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work is to achieve reasonable results without requiring expensive 
equipment.

Future work will include larger scale studies of gait using IMUs and 
validation of the technique.  Incorporation of the IMU into a removable 
insole and application of on-board digitization and wireless transfer 
will both improve the accuracy of the results and the ease of use. This 
will enable application for rehabilitation, for instance: to track distance 
traveled or to provide real-time feedback to improve gait and stride 
length. Rehabilitation to improve range of motion is also of interest.
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An optical 3D force sensor for biomedical devices

Lucas Samuel Lincoln, Morgan Quigley, Brandon Rohrer, Curt Salisbury, and Jason Wheeler

Abstract—In this paper we describe the development of an
optical sensor that is low profile, inexpensive, physically robust,
and suitable for contact with soft tissue. It is constructed using
commercially available integrated circuits, a printed circuit
board, and layers of silicone elastomer. The sensor exhibits
modest drift and hysteresis, as well as some temperature
sensitivity, for which we compensate. We demonstrate how the
raw sensor signals can be used to infer both normal and shear
forces. The sensor proves to be particularly sensitive to shear
forces, reporting them accurately and with minimal coupling
between them.

I. INTRODUCTION

Low profile tactile sensors have been proposed for many

applications including robot hands and skins [1], [2], [3] and

biomechanical sensing at human/machine interfaces (e.g. in

prosthetic sockets [4]). Many different types of tactile sen-

sors have been proposed, including force sensitive resistors,

which are available commercially, capacitive [4], optical [3],

[2] and MEMS sensors. A recent review of tactile sensing

can be found in Cutkosky, et al. [5].

The vast majority of the sensors in the research and patent

literature sense normal loads (loads perpendicular to the sens-

ing surface) but not shear loads (loads parallel to the sensing

surface). For many applications, it would be beneficial to

sense both. For instance in robotic hands, shear information

could be used to improve object manipulation and tactile

exploration. This information has also been shown to be

important in monitoring prosthetic socket interface loads [6].

Multi-axis sensing has been primarily accomplished using

traditional strain gauge-based load cells, which are typically

large and expensive.

Several three-axis tactile sensors have been proposed.

Capacitive sensors have been designed to infer shear infor-

mation of overlapping conductors through a dielectric [4].

MEMS systems have been constructed with small cantilevers

with piezo-resistive traces embedded in an elastomer [7], [8],

[9]. These sensors have good sensing performance but have

relatively small load capacity and are frail. Optical shear

sensors have also been proposed. Missinnee et al. use a

Vertical-Cavity Surface Emitting Laser which is mechani-

cally separated from a photodiode by a silicone layer so that

the two are displaced relative to one another by shear loads

[10]. This sensor cannot sense normal pressure or easily

differentiate between the two shear axes.
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M Quigley is a Ph.D. student in the AI Lab at Stanford University,
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B Rohrer, C Salibury, and J Wheeler are with Sandia National Labo-
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cmsalis, jwwheel}@sandia.gov

a) b)

c) d)

Fig. 1. The optical sensor’s operating principle. a)-b) Normal loads move
the reflective surface closer to the emitter, increasing the intensity of the
light at the detector. c)-d) Shear loads move the absorptive portion of the
polymer relative to the emitter, changing the intensity of the light at the
detector.

In the present work, we present a three-axis optical sensor

design which makes both normal and shear measurements.

The sensor consists of small, inexpensive, surface-mount

integrated circuits with multiple layers of silicone elastomer

and is well suited for applications where a compliant material

covers a rigid body (e.g. robot skins or prosthetic sockets).

II. SENSOR DESIGN

A. Principle of Operation

The sensor uses reflected light intensity to detect the

proximity of a reflective material. As a normal load is

applied to the reflective material, the interstitial transparent

material compresses and the reflective material moves closer

to the light source (emitter) and light sensor (detector). This

causes the detector to detect increased reflected light from

the emitter. (See Fig. 1a and 1b) Shear loads are sensed

by adding absorptive regions to the reflective layer. An

applied shear load changes the ratio of absorptive to reflective

material between the emitter and the detector. The changes

the amount of light reflected back to the detector. (See Fig. 1c

and 1d)

Because each sensor configuration only provides informa-

tion about a single degree of freedom, a taxel (from “tactile

pixel”) that provides three axes of information requires at

least three sensors. Deducing the direction and magnitude

of applied loads is most straightforward if the directional

sensitivities of the three axes are independent.

B. Hardware and Implementation

The light emission and sensing were achieved using a

photomicrosensor (EE-SY199, Omron Corporation, Kyoto,
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Fig. 2. Photograph of a five-sensor taxel (tactile sensing pixel). a) The entire printed circuit board, containing the sensors and the signal conditioning
and preprocessing electronics. b) The sensors and their resistors. c) The photomicrosensor array, after coating with epoxy, but before coating with silicone.
The center sensor is number 5. The chip to the lower right is a temperature sensor.

Japan) which contains both an infrared LED and phototran-

sistor in the same package. This component was selected for

its small size (approximately 3.2mm x 1.7mm x 1.1mm),

wide-angle detection field, and the fact that its peak sensi-

tivity occurs at approximately 1mm. We constructed a three-

axis sensor consisting of five of these sensors: one which

detected normal loads, two which detected shear in one

direction, and two which detected shear in an orthogonal

direction. (See Fig. 2) Initial characterization focused on

the output from three of these sensors (2, 3, and 5), the

simplest functional embodiment of the system. These sensors

were cast in clear epoxy (ES1902 Hysol, Locktite, Henkel,

Düsseldorf, Germany) up to the height of their top surface.

A 1mm thick layer of transparent silicon (Dragon Skin Fast,

Smooth-On, Inc., Easton, Pennsylvania) was used for the

transparent resilient material. A thickness of 1mm of the

same material was used for the opaque material, with a white

die (White Silc Pig, Smooth-On, Inc., Easton, Pennsylvania)

added to create the reflective surfaces and a black die (Black

Silc Pig, Smooth-On, Inc., Easton, Pennsylvania) added to

create the absorptive surfaces. A 6mm square was chosen

for the geometry of the absorptive-reflective boundary. The

reflective square was centered over the sensor for detecting

normal loads. Two orthogonal boundaries of the square were

placed directly over the two shear sensors (see Fig. 3). The

opaque silicone was cast on top of the transparent silicone.

Because the materials were similar silicone formulations,

the interface bond was excellent. The silicone assembly was

then bonded to the clear epoxy with a clear instant adhesive

(Loctite 403, Henkel, Düsseldorf, Germany). Based on each

sensor’s field of view, it is estimated that taxels can be as

close as 9 mm from center to center.

The datasheet for the sensor suggests a 4mA drive current

for the LED. Given a supply voltage of 5V and a voltage

drop across the LED of 1.2V, we used a 1kΩ current-limiting

resistor in series with the LED to set the LED drive current to

3.8mA. We found through experiment that a load resistance

of 100kΩ for the phototransistor with a 5V supply voltage

gave us maximum sensitivity without saturating.

The sensors within a given taxel were close enough to

one another that each phototransistor detected the cumula-

tive reflected light from all of the LEDs. This secondary

illumination saturated the phototransistors. To address this,

we only drove one emitter at a time. The response time of

the phototransistor was dependent upon the phototransistor

reflective

opaque 

material

absorptive 

opaque 

material

clear 

resilient 

material

clear

rigid 

material

reflective

optical

sensors

6 mm+ Z direction

+ X direction

+ Y direction

2

3

5

Fig. 3. Physical configuration of a single three-sensor taxel (sensors 1
and 4 from Figure 2 omitted). Changes in the reflected light intensity at the
sensors allow measurement of normal and shear loads in three axes.

load resistance. Our 100kΩ resistor caused an exponential

transient response with a 100μs time constant. In order to

capture an accurate measurement from the phototransistor,

we needed to wait until the phototransistor signal settled.

Consequently, we set the LED pulses to be 1ms long.

The phototransistor signal was sampled at 400μs, 500μs,

600μs and 700μs, and these four samples were averaged to

generate a single phototransistor measurement (see Fig. 4).

A single taxel measurement required measuring all three of

the sensors and took a total of 3ms.

III. SENSOR CHARACTERIZATION

A. Method and Apparatus

A sensor designer and integrator is concerned about a

variety of sensor characteristics when selecting a sensor for

a particular application. We characterized several of these:

the load sensitivity, hysteresis, drift, temperature sensitivity,

and dynamic response of the prototype tactile sensor. All

data were captured at 10kHz through a 16-bit National

Instruments DAQ board (NI-PCI6229, National Instruments,

Austin, TX). The data included the three photodetector

analog signals and the three binary emitter states.

1) Load Sensitivity: We characterized the sensitivity of

each of the three sensors in the taxel to normal and shear

loads. To apply and measure shear and normal loads, we

built and designed a test fixture (see Fig. 5) which consisted
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Fig. 5. The testing apparatus, including a three-axis linear stage, six-axis
force transducer, and printed circuit board containing the three-axis tactile
sensor.

of a three-axis linear stage (LT3, Thorlabs, Newark, NJ)

attached to an optical breadboard and retrofitted with three

optical encoders (S4-360-125-B-D, US Digital, Vancouver,

WA) to record linear translation of the three stages (<1μm

resolution). The optical encoder signals were sampled at

10kHz using a USB data-acquisition device (PhidgetEncoder,

Phidgets, Calgary, Alberta, Canada). A six-axis load cell

(Gamma US-30-100, ATI Industrial Automation, Apex, NC)

was also rigidly attached to the breadboard, and the force

and torque data were recorded through the same 16-bit NI

DAQ board. The three-axis tactile sensor was mounted on

top of the load cell. An effector plate attached to the stage

applied loads to the top of the optical sensor through manual

control of the linear stages.

Using this apparatus, we cycled stage displacements of

approximately 1mm in a single direction (e.g. along the

normal axis or one of the shear axes) at a time. Cycles were

generated for all three directions and the sensor response was

compared to the measured forces.

2) Cyclic Drift: To characterize the drift of the taxel

output over time when driven by a cyclic load, we placed it in

a single-axis load frame (MTS Systems Corp., Cary, NC) and

loaded it in the normal direction. The load was cycled from

32 to 180kPa in a 0.5Hz triangle wave for approximately 2

hours. The MTS machine load cell data was recorded on the

NI DAQ card.

3) Static Drift and Temperature Sensitivity: To character-

ize the static drift of the taxel, a 67N load with a contact

area of 645mm2 was placed on it, resulting in a sustained

normal load. The sensor data were recorded for a period of

16 hours. Ambient thermal data were also recorded on the

NI DAQ card.

4) Dynamic Response: To characterize the dynamic re-

sponse of the taxel, it was positioned in a vise such that

closing the jaws applied a normal load. The vice was then

quickly closed on the taxel, resulting in a step-like response.

Only sensor 5 was measured, with only its emitter on, for

the duration of the experiment. In this fashion, we ensured

that the sample rate was not limited by the serial sampling

scheme for the three sensors.

5) Sensor modeling: With basic sensor characterization

complete, data from all five sensors on the board were

gathered for testing and validation. A five sensor arrangement

resulted in a similarly sized taxel but provided redundant

sensors for sensing shear, possibly increasing accuracy. Al-

though the emitters were active only in pulses, the detectors

were on continuously. The light from a single emitter could

reach multiple detectors, providing additional information.

With five sensors, each emitter pulse provided five values,

and an entire pulse train (5ms at 1ms/pulse with five sensors)

provided 25 signals. All 25 emitter-detector signals were

captured while the sensor was subjected to complex three-

dimensional loads. The system was trained using a linear-

least-squares regression to determine coefficients (α) of the

linear model:

px = αx1D1E1 + αx2D1E2 + αx3D1E3 + ...
αx23D5E3 + αx24D5E4 + αx25D5E5 + αx26

py = αy1D1E1 + αy2D1E2 + αy3D1E3 + ...
αy23D5E3 + αy24D5E4 + αy25D5E5 + αy26

pz = αz1D1E1 + αz2D1E2 + αz3D1E3 + ...
αz23D5E3 + αz24D5E4 + αz25D5E5 + αz26

(1)

In the model notation, DiEj is the signal from detector

i while illuminated by emitter j. Other models were tested

as well: non-linear polynomial models up to the 3rd order

and models incorporating the slope of the incoming signals.

Performance was most consistent across trials with the linear

least squares regression of Equation 1. For comparison, two

reduced-order models were assessed as well. In a 5 signal

model (Equation 2), detectors only reported on measure-

ments made while their own emitter was active. These signals

typically appeared to be the largest in magnitude and the

most sensitive to changes in load.
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px = αx1D1E1 + αx2D2E2 + αx3D3E3+
αx4D4E4 + αx5D5E5 + αx6

py = αy1D1E1 + αy2D2E2 + αy3D3E3+
αy4D4E4 + αy5D5E5 + αy6

pz = αz1D1E1 + αz2D2E2 + αz3D3E3+
αz4D4E4 + αz5D5E5 + αz6

(2)

In a further reduced model, only three signals were used.

(Equation 3) As can be seen in Figure 2, there were two

sensors positioned to measure shear in the x-direction and

two more for the y-direction. In the three sensor model, two

of the redundant sensors were ignored.

px = αx1D2E2 + αx2D3E3 + αx3D5E5 + αx4

px = αy1D2E2 + αy2D3E3 + αy3D5E5 + αy4

px = αz1D2E2 + αz2D3E3 + αz3D5E5 + αz4

(3)

B. Results

1) Load Sensitivity: Figure 7 shows the response of

the three sensors to loads in x (shear), y (shear), and z
(normal). Sensor 3 had a sensitivity of approximately -

15.7mV/kPa to shear loads in x while sensors 5 and 2

had sensitivities of approximately 0mV/kPa and 0.7mV/kPa,

respectively. Sensor 2 had a sensitivity of approximately -

19.4mV/kPa to shear loads in y while sensors 5 and 3 both

had sensitivities of approximately 0mV/kPa. Sensor 5 had a

sensitivity of approximately -0.58mV/kPa to normal loads in

z while sensors 2 and 3 had sensitivities of approximately -

0.44mV/kPa and -0.96mV/kPa, respectively, although both

contained significant nonlinearities in their responses to

moderate normal loads. The hysteresis of sensors 2, 3, and

5 was approximately 10%, 9%, and 7%, respectively.

2) Cyclic Drift: Figure 8a shows the response of sensor

5 to 10 loading and unloading cycles at the beginning of the

cyclic drift test and 10 loading and unloading cycles at the

end of the test. The sensor response drifted approximately

50mV over the 2 hour test. The sensitivity at the beginning

was -0.28mV/kPa and the sensitivity at the end was -

0.26mV/kPa. The taxel used for this test was of slightly

different construction than that used for the sensitivity mea-

surements, and had a lower sensitivity to normal loads.

3) Static Drift and Thermal Sensitivity: Figure 8b shows

the response of sensor 5 to a static load over approximately

16 hours. The sensor response drifted approximately 32mV

over the 16 hour test. Figure 8c shows the same data as a

function of ambient temperature. The sensor had a thermal

sensitivity of approximately 11mV/◦C. This is consistent

with the value found on the datasheet for the sensor. Figure

8b also shows the static drift when temperature effects were

removed. In this case, the static drift was approximately 4mV.

4) Dynamic Response: Figure 8d shows the response of

sensor 5 to a step-like load in time and the z axis load

as measured by the ATI force sensor. The load reflects the

contact pressure on the top surface of the silicone, while the

sensor voltage reflects the translation of an internal, reflective

boundary. Two notable features of data can be explained by

viscoelastic effects: 1) sensor 5 lagged the ATI signal on the

upward slope of the curve and 2) the ATI signal relaxed by

approximately 10kPa on the plateau.

5) Modeling results: Figure 6 demonstrates the sensi-

tivities of each of these terms to a varying x load at a

fixed normal pressure. Plots in a row in this figure are

from a common detector; and plots in a column are from

a common emitter. Plots on the diagonal represent the self

emitter/detector signal (those signals which were character-

ized in the previous section of this paper). Off-diagonal

terms are detector responses to other emitters. The figure

demonstrates that some of the non-self emitter/detector com-

binations provide information to shear forces, and, though

less sensitive than the self-illuminated terms, may contribute

to the more accurate measurement of force.

All 78 coefficients in the 25-signal model (Eq. 1) were

calculated using data collected during one trial, and the

model’s accuracy was evaluated by applying the coefficients

obtained to the data from a second trial. The optical sensor

signals recorded during the validation trial were used as

inputs to the model, and the pressure predicted by the model

was compared against that measured with the load cell.

A characteristic comparison is shown in figure 9, showing

optical sensor results along with load cell results. Shear

determination was accurate to an root-mean-square (rms)

error of 2.4kPa in x and 3.2kPa in y for the representative

trial displayed in figure 9. The rms error for the normal

pressure was 11.4kPa.

The coefficients for the five signal (Eq. 2) and three signal

models (Eq. 3) were calculated as well. The data collected

for evaluating the reduced-order models was different than

the data collected for evaluating the 25 signal model in

several ways. For the reduced-order models, the forces

were applied by hand, rather than by turning the knobs

on a three-axis stage. This resulted in data that was more

complex (it changed simultaneously in multiple axes) and

18



1

2

3

x−pressure (shear, kPa)

se
ns

or
 v

ol
ta

ge
 (V

)

1

2

3

y−pressure (shear, kPa)

1

2

3

z−pressure (normal, kPa)

d5

d2
d3

a) b) c)

−10 0 10 20 30 −10 0 10 20 30 −120 −80 −40 0

-15.7 mV/kPa

0.7 mV/kPa

0.0 mV/kPa

0.0 mV/kPa

-19.4 mV/kPa

0.0 mV/kPa

-0.4mV/kPa

-1.0 mV/kPa

-0.6mV/kPa

Fig. 7. Sensor responses to loading in the directions indicated, with approximate sensitivities.

0-100-200
1.4

1.45

1.5

1.55

1.6

1.65

pressure (kPa)

se
ns

or
 re

sp
on

se
 (V

)

 

 

begining
end

0 20 40 60 80 100 120
25

50

75

100

time (ms)

pr
es

su
re

 (k
Pa

)

 

 

sensor
ATI

0 5 10 15
1.62

1.63

1.64

1.65

1.66

time (hrs)

se
ns

or
 re

sp
on

se
 (V

)

 

 
raw response
thermally compentated response

22 23 24 25
1.62

1.63

1.64

1.65

temperature (C)

se
ns

or
 re

sp
on

se
 (V

)

a) c)b) d)

Fig. 8. a) Sensor 5 response to cycling in the z (normal) axis. 10 cycles at the beginning of the test (dark blue) differ from 10 cycles after approximately
2 hours (light blue). b) Sensor 5 response in time subject to a static load in the z-axis. c) Sensor 5 response to changes in ambient temperature. d) Sensor
5 response in time to a step-like load in the z-axis and the z-axis load as measured by the ATI force sensor.

model 25 signal 5 signal 3 signal
x (shear) error 2.4 kPa 4.0 kPa 4.4 kPa
y (shear) error 3.4 kPa 5.3 kPa 5.6 kPa

z (normal) error 11.4 kPa 12.6 kPa 12.6 kPa

TABLE I

MODELING ERRORS IN EACH OF THREE AXES.

of lower magnitude (the stages had greater force-production

capabilities than the investigators’ hands). While this made

direct comparison between the data challenging, it did result

in data with characteristics similar to those expected in

robotics and prosthetics applications. Additional differences

were introduced in the analysis of the data. For the reduced-

order models, 10 data sets were collected, and the models

were evaluated using leave-one-out-cross-validation. They

were trained on 9 of the data sets, and tested on the tenth,

and this process was repeated for each of the ten data sets.

The results were then averaged together.

As a result of these differences, comparisons between the

25 signal model and the reduced-order models must be made

with caution. However, comparison is still instructive. The

error in all three models is summarized in Table I.

The reduced-order models showed a somewhat lower

performance (higher rms error) than the full 25 signal model.

This is not surprising, since the 25 signal model makes

use of more information, although for reasons mentioned

earlier care should be taken in interpreting this difference.

Particularly interesting is the comparison between the five

signal and three signal models. The performance difference is

relatively small, even indistinguishable in the case of normal

loads.

C. Discussion

The taxel’s sensitivity in measuring shear suggests that

it may be a viable sensor for use in robotic and prosthetic

tactile sensing applications. Its normal sensitivity was more

than an order of magnitude lower. Its potential usefulness as

a sensor for normal loads has yet to be established, however

our experience with the device gives encouragement that its

normal sensitivity can be improved and its error in predicting

normal forces decreased.

The taxel drifted about 35kPa over the course of 2 hours

of cyclic loading. Though we did not record temperature

during this experiment, the information we gathered from the

static drift experiment leads us to believe that the cyclic drift

observed was largely due to temperature. During the static

drift experiment, we measured the ambient temperature and

the data show that the drift observed can be attributed almost

entirely to thermal fluctuation. We suspect that by incorpo-

rating the taxel’s thermal sensor into the postprocessing of

its sensor measurements, we can eliminate the cyclic and

static drift. As shown in the characterization of the dynamic

response, the sensor had a significant response lag. The lag

had no significant pure delay component, but consisted of

viscoelastic-like behavior, almost certainly due to the silicone
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in its structure.

All three linear models provided reasonable pressure

measurement performance. Surprisingly, the reduced-order

models performed on par with the full 25 signal model. This

has implications for the design of future generations of the

sensor. Using three sensors instead of five will make taxels

cheaper, smaller, and easier to fabricate. Using three signals

instead of 25 will decrease the taxel’s information demands,

increasing its sampling rate and the amount of data the can

be transmitted, processed, and stored or any given system.

The greatest opportunity for improving the taxel is in its

sensitivity to normal loads. We plan to address this in two

ways: 1) by making the sensor more sensitive to compression

and 2) by refining the model of its operation. Preliminary

data suggests that the sensitivity of the taxel to normal

loads is highly dependent on the thickness of the transparent

silicone (the clear resilient layer in Fig. 3). Thinner silicone

appears to yield more sensitive taxels. The taxels evaluated

in this paper all had a clear silicone thickness of 1-1.5mm.

An initial analysis suggests that a 0.5mm-thick layer may

yield normal sensitivities that are higher by a factor of 2-5.

We also plan to refine the model of the sensor beyond

the linear models discussed above. Temperature compen-

sation was not applied to these validation studies, but we

have shown that it is an important component of error in

environments where temperature is not controlled. And we

have not yet examined models in which the three axes are

dependent on one another. But likely the most important

improvement we can make to our models is to explicitly

account for hysteresis. The failure of the taxel to behave

linearly is evident in the single-axis characterizations (see

Fig. 7) and even in that simple case was responsible for

a significant amount of error. By explicitly accounting for

hysteresis in a model that retains a small amount of sensor

history, we plan to reduce the error in all three sensing axes.
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An elastomeric insole for 3-axis ground reaction force measurement

Lucas Samuel Lincoln, Stacy J. Morris Bamberg, Erin Parsons, Curt Salisbury, and Jason Wheeler

Abstract— Measurement of the ground reaction force vec-
tor is important in clinical gait analysis and biomechanics
research, for example to enable inverse dynamic calculations.
Instrumented insoles allow biomechanical data to be collected
outside of the motion analysis laboratory in many environments.
However, current insole-based approaches typically measure
only the vertical component of the reaction force and the
plantar center of pressure. This work describes the development
and evaluation of a silicone insole capable of measuring the
complete three dimensional reaction force vector. The insole is
optically based and low-cost with no complex manufacturing
requirements. Accuracy over five nominal gait trails is shown
to be on the order of 10% of the force range, with mean errors
of 10.7 N in the shear directions and 68.1 N in normal. The
insole can provide a simple mobile platform that allows kinetic
gait data to be collected in many environments while minimally
affecting the wearer’s gait.

I. INTRODUCTION

Human motion analysis is an important tool for the

identification and diagnoses of pathological gait disorders

or abnormalities. Though there are a handful of motion

analysis techniques of various technical sophistication, the

modern motion analysis laboratory (MAL) typically shares

a common set of equipment: a stereographic camera system

for 3D linkage kinematics, with passive or active markers

attached to the subject; one or more 3- or 6-axis force

plates embedded in the floor for ground reaction force (GRF)

and plantar center of pressure (CoP) measurement; a video

camera for qualitative analysis; and an electromyography

(EMG) recording system to estimate muscle activation.

This type of laboratory is valuable due to its ability to

quantify joint kinematics, kinetics and muscle activity. The

use of force plates and camera systems in a MAL has

provided clinicians and researchers with a robust set of

tools for analyzing human motion for nearly 30 years [1],

[2]. Inverse dynamic analysis can be performed to calculate

external joint forces and torques. Additionally, algorithms

such as computed muscle control [3] can be used to esti-

mate muscle forces. This approach has several advantages

over competing methods for muscle force estimation, such

as the use of embedded in-vivo transducer placement [4]

which is prohibitively invasive and EMG measurement [5]

which is most effective for large, superficial muscles. GRF
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measurement using force plates is the current state of the art

for most kinetic motion analysis research.

Despite these advantages, there are some distinct disad-

vantages to the use of conventional MAL equipment. First,

an external reference motion capture system, such as room-

mounted force plates and cameras, limits motion capture to

a laboratory setting. In these systems, the temporal amount

of data which can be captured is limited by the subject’s

time in the laboratory and the spatial amount of data which

can be captured is limited by the working volume of the

laboratory. The range of gaits that can be captured is also

limited by the environment; though stairs and ramps can be

instrumented, common household and workplace obstacles

must be brought in and adapted to function with a force

plate to simulate daily tasks [6], [7], [8].

Additionally, the biomechanics of the foot are difficult to

analyze in these systems because force plate data capture

the GRF from the CoP of the shoe sole rather than the

foot. Different types of shoes can affect the gait parameters

and change the plantar pressure distribution on the foot [9].

Measuring the pressure distribution inside the shoe can allow

a more direct, accurate, and detailed measurement of the foot

plantar pressures and allow more accurate analysis of the

biomechanics of the foot joints and muscles.

Finally, in order to evaluate the chronic effects of gait dis-

orders or parameters, motion capture must take place often,

or over long time scales. Ideally, data can be captured in the

everyday environment of the subject to evaluate the effects

of stairs, ramps, terrain and obstacles on gait characteristics.

The authors assert that a low cost, external-reference free,

and mobile motion analysis system holds immense value for

motion analysis; as well as asserting that an insole-based

solution is preferred. Mobile kinematic gait analysis systems

have been developed but kinetic measurement systems are

immature relative to MAL technology.

Several instrumented insoles and shoes are available for

vertical GRF and CoP measurement. The GaitShoe (Mas-

sachusetts Institute of Technology, Boston, MA, USA) has

been shown to estimate vertical GRF using force-sensitive-

resistors (FSRs) [10]. CoP has also been estimated with the

LEAFS (University of Utah, Utah, USA) insoles using FSRs

and validated against force plate data [11]. The Parotec Sys-

tem (Paromed Medizintechnik, Neubeuern, Germany) insole

uses 24 microsensors embedded within a hydrocell to obtain

CoP data [12]. The BioFoot (Instituto de Biomecanica de

Valencia, Valencia, Spain) contains 64 piezoelectric sensors

to acquire detailed plantar pressure distributions [13]. The

F-scan (Tekscan Inc., Boston, MA, USA) uses 960 pressure

sensors for an insole measurement system, which has been
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used to detect GRF events such as initial contact and toe-off

[14].

Insole technology for measuring shear forces began with

magneto-resistive sensor technology in the fore-aft direction

[15] and later adapted to measuring shear forces in two

directions [16] in the 1980’s. The magneto-resistive trans-

ducers can be coupled with load cells to obtain three-axis

GRF with an insole [16]. The Kent Shear System (Kent

University, Canterbury, UK) developed a bi-axial shear stress

insole measurement system using piezoelectric resistors [17].

These shear insoles are constructed using cork and leather

that are the same thickness as the transducer, so the subject’s

foot can come in direct contact with the shear transducer.

The XSens ForceShoe (XSens Technologies, Enschede,

Netherlands) uses MEMS 3D inertial sensors in combination

with load cells in an instrumented shoe to acquire three-

axis GRF and CoP [18]. The ability of the ForceShoe

to measure the GRF in three directions has significantly

improved mobile motion analysis. However, the instrumented

shoe design may alter the wearer’s gait, must be fit carefully

and is expensive. The insole Parotec System has the capa-

bility to measure three-axis GRF using the shear modulus

of elasticity of the hydrocell [19] but, has not yet been

successfully implemented in research due to the sensitivity

of the sensor locations [12]. The M3D system (Doshisha

University, Kyoto, Japan), uses small, mobile force plates

and inertial measurement units (IMU) attached externally to

various shoe types and sizes to measure three-axis GRF and

CoP [20].

The insoles developed from previous research have been

shown to accurately measure vertical GRF and plantar CoP.

There is a need to measure three-axis GRF in order to

accurately use inverse dynamics to resolve the joint kinetics

and muscle forces. Although the instrumented ForceShoe can

measure three-axis GRF, its applicability is limited by its

high cost, limited range of shoe types/sizes and potential

confounding effects on the wearer’s gait. The work presented

in this paper describes a novel, low-profile insole for mea-

suring three-axis GRF and CoP with low cost tactile sensors,

embedded in a silicone mold that can be adapted to various

shoe types and sizes.

II. INSOLE DEVELOPMENT

The present work describes an elastomeric insole consist-

ing of five 3-axis optical tactile sensor sites. The sensors are

mounted on a flexible printed circuit board (PCB) and are

embedded in silicone so as to not be felt by the wearer. The

insole can be placed in most shoes within minimal effect

on comfort or performance. The details of the sensors and

insole are provided below.

A. Sensor Principal of Operation

The sensor uses reflected light intensity to detect the

proximity of a reflective material. As a normal load is

applied to the reflective material, the interstitial transparent

material compresses and the reflective material moves closer

to the light source (emitter) and light sensor (detector). This

a) b)

c) d)

Fig. 1. The optical sensor’s operating principle. a)-b) Normal loads move
the reflective surface closer to the emitter, increasing the intensity of the
light at the detector. c)-d) Shear loads move the absorptive portion of the
polymer relative to the emitter, changing the intensity of the light at the
detector.
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Fig. 2. Configuration of five photomicrosensors embedded in a silicone
insole covered with a silicone mask.

causes the detector to detect increased reflected light from

the emitter. (See Fig. 1a and 1b) Shear loads are sensed

by adding absorptive regions to the reflective layer. An

applied shear load changes the ratio of absorptive to reflective

material between the emitter and the detector. The changes

the amount of light reflected back to the detector. (See Fig. 1c

and 1d)

B. Sensor Construction

The tactile sensor uses photomicrosensors (EE-SY199,

Omron Corporation, Kyoto, Japan) containing a light emitter

and detector. The emitter is potted in optically clear epoxy

(ES1902 Hysol, Locktite, Henjel, Dusseldorf, Germany) and

a clear layer of silicone rubber (Dragon Skin FAST, Smooth-

On, Inc, Easton, Pennsylvania) is adhered atop the sensor.

Attached to the top of the clear, resilient silicone layer is an

opaque silicone layer with a pattern of absorptive (black) and

reflective (white) areas. Utilizing 5 photomicrosensors, and

designing the geometry of the microsensor layer and silicone

mask, the sensor responds to strain in the elastomer in three
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Fig. 3. Photo of the insole constructed, with silicone features above the
sensor sites, not yet molded.

directions with limited coupling between axes (see figure 2).

If all the emitters are on simultaneously, some of the

detectors saturate. Therefore, the emitters are pulsed such

that one emitter is on for 1ms, followed in sequence by each

other emitter. Each emitter illuminates all detectors to some

degree. This provides 25 different signals over 5ms for a 5

sensor array (5 pulsed emitters illuminating 5 detectors.)

C. Insole Construction

The insole was designed to utilize multiple instances

(taxels) of the sensor described in the previous section.

Each taxel is a 5 photomicrosensor layout as described in

the previous section. Taxel positions within the shoe are

based on the work in [10] and [11], which enables accurate

determination of CoP. The insole was designed on a flex

circuit which is then molded into silicone to produce the

insole. Each taxel is first covered in epoxy up to the top of the

photomicrosensors. A thin (1-2 mm) layer of clear silicone

is then molded and bonded to the top of the epoxy layer.

Finally, the opaque silicone layer, with white squares directly

over the microsensor array and black everywhere else, is

molded directly to the top of the clear silicone. Because the

silicone layers are identical (other than the color) the bond

between these layers is excellent. The opaque layer can be

very thin. In the insole used in the present work, the opaque

layer was about 2mm, resulting in a total insole thickness of

about 5.5mm.

Fig. 4. Photo of the insole constructed and molded, ready for insertion
into the shoe.

The insole with masks attached above the taxels is shown

in figure 3. Note there is a header on the back of the insole

on the lateral side of the shoe used to output the analog

signals to the data acquisition system (DAQ). Fig. 4 displays

the insole molded in silicone and ready for insertion into the

shoe.

D. Training and Validation

As mentioned above, each taxel produces 25 unique sig-

nals related to the three-axis force measurement. With 5

taxels in this iteration of the insole, 125 total signals are

produced. A linear least squares regression is used to train a

model of the form:

Force = α1D1E1 + α2D1E2 + α3D1E3
+α4D1E4 + ...+ α124D125E4
+α125D125E5 + α126

(1)

where D1E1 is the response of detector 1 to emitter 5,

and each α is a regression coefficient.

Coefficients are determined through a regression using at

least 3 aggregate trials unique from the validation dataset.

III. EXPERIMENTAL PROCEDURE

A MAL was used for ground-truth measurement of the

parameters of interest and was outfitted with a stereographic

camera system (VICON, Oxford, UK) capable of sub-

millimeter, 3D, passive, marker tracking, captured at 100Hz.

In addition, the lab floor is outfitted with a ATMI OR6-7-

2000-TT force plate with a resolution of 2.6lb over a range of

1000lb within a 18.25 x 20 x 3.25 in workspace. Force plate

data werwe sampled at 1 kHz. The insole data were captured

using a 16bit National Instruments (Austin, TX, USA) DAQ

at 8kHz.

Tests on a single subject with the insole inside a common

sneaker were performed. The shoe requires no alteration and,

qualitatively, the insole imparts no unusual fit to the subject.

A marker coordinate system was attached to the shoe to

provide a transformation between shoe and MAL frames

for sensor training purposes. The shoe, with the insole and

marker system, is shown in Fig. 5. Note that the coordinate

system markers are only required for the sensor training and
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Fig. 5. Picture of insole in common shoe, with markers attached to examine
angular deviations. Note the insole header passing out the lateral side of the
ankle.

validation; and not for common data capture in the insole’s

end-use. The subject walked forward and backward across

the force plate at a natural cadence. Each trial consisted

of 6-8 steps (half forward, half reverse) and a total of 5

trails were analyzed. Manual synchronization of the MAL

and insole data was performed in post-processing; a series

of impulses were imparted by stomping quickly on the force

plate at the start and end of the trial to provide temporal

markers for alignment.

Though the insole develops 125 signals in time, a number

of the traces on the flex circuit had intermittent connectivity

issues as a result of poor layout and construction in this

initial prototype. Unreliable signals are not included in the

regression of validation, reducing the number of contributing

signals (to a minimum of 97).

IV. RESULTS

Error was computed as the magnitude of the difference of

the force measurements taken from the insole and the force

plate.

The mean and standard deviation of error in each trial are

displayed in Table I. Trials are listed in chronological order.

Likewise, Table II displays the error as the percentage of the

range of forces measured with the ground-truth force plate.

TABLE I

DIRECTIONAL ERRORS ON ALL 5 TRIALS, IN NEWTONS.

Trial X (N) Y (N) Z (N)
1 25.85± 45.71 9.43± 12.53 72.31± 121.01
2 9.61± 16.52 6.54± 10.33 66.30± 119.75
3 11.40± 17.46 7.25± 11.42 72.47± 106.40
4 9.97± 16.77 7.41± 10.15 64.76± 94.44
5 11.90± 18.26 7.94± 10.53 64.64± 94.29

Fig. 6 presents the result of a particular trail, trained on

the aggregate of all other trials. Time between approximately

8 seconds and 18 seconds are the alternating forward and

reverse steps across the force plate. Times outside this range

contain impulses used to synchronize data. The mean errors

TABLE II

DIRECTIONAL ERRORS ON ALL 5 TRIALS, IN PERCENT OF TRUE FORCE.

Trial X Y Z
1 11.07%± 19.6% 6.13%± 8.14% 12.02%± 16.8%
2 3.67%± 6.31% 4.29%± 6.79% 8.81%± 15.92%
3 3.34%± 5.12% 3.48%± 5.48% 7.65%± 11.23%
4 3.49%± 5.87% 3.14%± 4.30% 8.57%± 12.49%
5 2.94%± 4.51% 4.02%± 5.33% 6.21%± 9.06%

in the trail presented in Fig. 6 were 3.5%, 3.1%, and 8.6%
of the range in X, Y and Z, respectively.

Likewise, fig. 7 presents the result of another trial, again

trained on the aggregate data of all other trails. In this plot,

the synchronization pulses are not shown. The mean errors

in Fig. 7 were 2.9%, 4.0%, and 6.2% in X, Y, and Z,

respectively.

V. DISCUSSION AND CONCLUSIONS

The results demonstrate successful proof-of-concept mea-

surement of three degree-of-freedom GRF in an insole-based

system. Mean errors were within 10% of the range in these

trials. This level of accuracy is somewhat lower than load-cell

based systems. However, the insole system is less expensive,

easier to manufacture, and should have a very small effect on

the user’s gait. Chronic gait GRF monitoring is possible with

the system described, and it may be particularly useful for

gait characterization outside of the laboratory environments.

It is interesting to note that the relative errors in all three

directions are similar. The tactile sensors used in the present

work are known to be much more sensitive to shear loads

than normal loads (approximately one order of magnitude).

The magnitude of the GRF in the vertical direction is

much larger than the anterior/posterior and medial/lateral

directions. These two factors result in the sensor error being

somewhat uniform (as a percent of the true force).

Several known issues with the current system contribute

to the error. The most evident is the analog continuity in the

current layout of the flex-circuit. As mentioned previously,

a number of sensors are shorted intermittently in-shoe,

reducing the number of signals with which to determine

force. This will be solved in future iterations with on-board

digitization. Synchronizing the force plate and insole data for

training and validation is currently performed by hand and,

as such, has inherent repeatability and precision problems.

Future work will incorporate simultaneous data capture on

one machine to reduce this variability. In the tactile sensor

design and characterization, the sensor is shown to have

temperature dependence, however the insole as constructed

does not contain temperature monitoring or compensation.

This is a possible avenue of improvement. Other possible

improvements which we are exploring include more sensor

sites, repositioning of sensors, alternative insole thickness,

silicones of different durometer and more advanced training

models that incorporate nonlinearity and hysteresis.
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 
�
�
�

5.1 Conclusions 

 This thesis describes the development and application of enabling improvements 

for an insole-base motion analysis laboratory.  

 Algorithmic improvements were applied to MEMS IMU motion tracking and 

reduced errors by an average of 99.55% over the same trails without the improvements. 

The low-cost calibration system was demonstrated to be relatively static, supporting its 

use in a clinical setting. The state estimation routine was tuned for gait analysis tested on 

normal walking and stair-climb trials. The 3-dimensional position of the foot in a typical 

walking gait and over stairs was tracked accurately with errors of approximately 10%.     

 A novel sensor was developed, constructed, and evaluated for measuring both 

shear and normal force in a low-profile package. It utilizes available components to 

remain low-cost and require no complex manufacturing. A regression technique and 

signal processing approach was developed for the sensor and validated over a series of 

tests – a single taxel of the design working as a tactile sensor provides pressure 

estimation accuracy greater than 1psi for both shear and normal.  
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 With a novel 3 axis sensor developed, an insole was designed and constructed. 

The sensor fits comfortably within a common sneaker and requires no alteration. It is able 

to measure the 3-dimensional ground reaction force with an accuracy on the order of 

10%, and is the only low-cost, insole-based system able to measure 3D GRF at this level.    

 

5.2 Future Work 

This document described work which serves as a proof-of-concept of new 

technologies required for an insole-based mobile motion analysis lab. There are vast 

improvements to be made in future iterations based on the principles described herein.  

 The IMU calibration routine and subsequent model could be improved by the 

inclusion of temperature compensation. MEMS IMU outputs are sensitive to temperature 

and compensating for these would continue to reduce errors. Additionally, the calibration 

hardware could increase in complexity somewhat (to include simple linear and angular 

measurement) to improve the accuracy of the model developed.  

 The zero-velocity-update algorithm could be vastly improved if made application-

specific and incorporated into a GRF sensing insole. Using the shear and normal force 

measurement of the insole would enable a reliable identification of step, and likely even 

slip using shear force profiles, and one would not risk bias-updating during motion.  

 The tactile sensor developed could be optimized for the expected range of forces 

seen in normal gait by altering the dimensions of the sensor placement, mask geometry, 

and thickness and hardness of silicone.  

 Perhaps most importantly, the insole developed requires redesign to insure signal 

fidelity across all photomicrosensors. A system with digitization at each sensor site 
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would overall reduce board complexity and improve robustness. The insole should be 

redesigned to include digitization, and to incorporate IMU hardware for further studies of 

the proposed mobile motion analysis system as a whole.   
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