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ABSTRACT 

 Intrinsically unstructured protein (IUP) regions and conformational disorder are 

increasingly recognized for their prevalence in the eukaryotic genome and functional 

importance in disease-related proteins and biological regulatory processes.  The dynamic 

molecular motions inherent in these regions, as well as those found in structured protein 

regions, are proving to be important targets of regulation.  The autoregulation of DNA 

binding in the transcription factor Ets-1 provides an example of how a flexible, 

unstructured region can modulate the activity of a structured, regulatable unit by affecting 

the dynamic character of the protein. 

 This thesis explores the mechanism of phosphorylation-dependent regulation of 

Ets-1 DNA binding.  The serine-rich region (SRR) of Ets-1 is shown to be predominantly 

unstructured before and after Ca
2+

-dependent phosphorylation.  Phosphorylation of the 

SRR is shown to stabilize the regulatable unit, which is composed of domains responsible 

for DNA binding and autoinhibition, and to reduce the DNA-binding affinity of an Ets-1 

fragment that is amenable to spectroscopic analysis.  NMR-based experiments further 

determine that phosphorylation partially dampens the fast timescale mobility of the SRR 

and enhances its localization to the regulatable unit.  Aromatic residues adjacent to the 

phosphor-acceptor sites are found to be required for the reported 100-fold decrease in 

binding affinity and inhibitory structural alterations.  The juxtaposition of phospho-

acceptor site and aromatic residue are shown to form a functional unit within the SRR 

which can be artificially amplified to further increase aromatic residue-dependent, 



phosphorylation-induced inhibition of Ets-1.  We conclude the discovery of a new 

mechanism whereby phosphorylation of an IUP region enhances a transient hydrophobic 

interaction, modulating the activity of a structured unit without adopting a structured 

conformation. 
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The true nature of proteins: structured vs. disordered / 

rigid vs. dynamic 

 

To use a picture, I would like to say that enzyme and glucoside have to fit to each other 

like a lock and key in order to exert a chemical effect on each other.  -- Emil Fischer, 

1852-1919 (Lemieux and Spohr, 1994). 

 

Over a century ago, Emil Fischer used the analogy of a “lock and key” to explain 

the amazing specificity found among different types of similar enzymes, all of which 

participate in hydrolysis of glucoside multimers.  Whereas one enzyme could hydrolyze 

α- but not β-glycosidic bonds, another could hydrolyze β- but not α-glycosidic bonds 

(Lemieux and Spohr, 1994).  In his analogy, the enzyme is a lock, whose active site is 

comparable to a key-hole.   The enzyme’s substrate, of course, is the key.  Just like the 

unique shape and size of a key allows it to fit the key-hole of its lock, Fischer 

hypothesized that only a substrate of the correct shape and size can fit into the active site 

of a particular enzyme. 

 Studies like those performed by Emil Fischer have led to the widely-accepted 

belief that the three-dimensional (3-D) structure of a given protein is the major 

determinant of that protein’s function.  The understanding that amino acid sequence 

determines the tertiary fold of a protein gave birth to the widely accepted sequence-

structure-function paradigm in molecular and cellular biochemistry (Anfinsen and 

Redfield, 1956).  Further support came in 1965 when the 3-D structure of lysozyme, 

which had co-crystallized with its bound inhibitor, showed that catalysis was almost 

certainly facilitated by the precise locations of amino acids within its active site (Blake et 

al., 1965).  Since that time, 66,212 structures of proteins and protein complexes, solved 

by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, have 

been deposited into the Protein Data Bank (PDB; www.pdb.org). Though not intended, 
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the beautiful molecular graphics of these molecules has reinforced the static, rigid view 

of functional protein structure. 

Functional importance of being intrinsically unstructured / 

disordered 

 

Although the existence of a disordered element to proteins has long been 

acknowledged, a recent paradigm shift has arisen with the recognition that over 50% of 

the eukaryotic proteome can be classified as intrinsically unstructured or disordered 

(Dunker et al., 2000).  Thus, advances in experimental characterization and 

computational prediction of unstructured proteins and protein regions have severely 

challenged the classic dogma of structure-function (Dunker et al., 2008).  To qualify as 

intrinsically unstructured, a protein needs to contain at least one region that is >30 

residues in length which displays an unstructured, disordered profile.  According to this 

definition, a striking 25-30% of eukaryotic proteins contain more residues in a disordered 

conformation than in one of order (Oldfield et al., 2005).  Interestingly, these intrinsically 

unstructured proteins (IUPs) are noticeably overrepresented in disease-related proteins.  

Close to 75% of known cancer-related proteins, 70% of signaling proteins, and an 

astonishing 94% of transcription factors are predicted to have one or more regions of 

intrinsic disorder (Iakoucheva et al., 2002; Liu et al., 2006; Midic et al., 2009).  Regions 

of intrinsic disorder are often characterized by their low sequence complexity, low 

content of bulky amino acids (Phe, Trp, Tyr, Met, Val, Leu, and Ile), and high occurrence 

of certain polar and charged amino acids (Ser, Pro, Lys, Gln, Glu, and sometimes Gly and 

Ala) (Obradovic et al., 2003; Romero et al., 2001).  For this reason, IUP regions remain 

unstructured in isolation, as they are unable to sufficiently bury the hydrophobic core 

required to fold spontaneously (Dyson and Wright, 2005). 
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The role of conformational disorder is widely recognized for its importance at 

sites of posttranslational modification and ligand binding, and in modular proteins, as a 

flexible linker sequences between two structural domains (Iakoucheva et al., 2004; 

Uversky and Dunker, 2010).  An excellent example is the flexible, unstructured N-

terminal tail of histones which are bound and modified by enzymes which add or remove 

methyl, acetyl, or phospho-marks, allowing for the recruitment of chromatin remodelers 

and other DNA-associated proteins (Segal and Widom, 2009).  It has also been noted that 

upon ligand binding or other molecular event, IUP sequences often go through an 

induced transition from a disordered conformation to one of structured order (Dyson and 

Wright, 2005).  The intrinsically disordered KID domain of the transcription factor 

CREB, for instance, is folded into two α-helices following phosphorylated and 

subsequent interaction with the KIX domain of the co-activator p300 (Sugase et al., 

2007). 

Inherently functional IUP regions, however, have only recently been recognized 

and reported as having a significant role in biology (Wright and Dyson, 1999).  These 

regions have a direct role in regulatory processes while remaining in an unstructured 

state; in other words, they require a disordered conformation to perform their function 

(Mittag et al., 2010).  Exactly how these IUPs perform their biological function remains 

an unsolved problem. 

NMR techniques for detecting protein dynamics and 

conformational mobility 

 

In reality, IUP regions are not the only part of proteins with dynamic character.  It 

is now recognized that structured and unstructured regions alike undergo a wide range of 

motions in terms of both time and distance scales (Boehr et al., 2006).  A variety of  
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spectroscopic experiments now make it possible to study dynamic motions in proteins 

over time scales between 10
-12

 and 10
5
 seconds and over distance scales of 0.1 to 2000 Å 

(Figure 1.1) (Boehr et al., 2006; Liang et al., 2006; Stein et al., 2009).  Molecular motion 

within any of these time frames, which span from bond vibrations to global unfolding 

transitions, may be functionally significant and directly related to enzymatic catalysis, 

ligand binding, and/or other forms of molecular recognition (Boehr et al., 2006; Henzler-

Wildman et al., 2007). 

Slow timescale motions 

Slow molecular motions, such as the transient unfolding of one α-helix in the B-

domain of protein A, and the amino and carboxyl helices of cytochrome c, occur on a 

msec-to-sec timescale and are readily observed by hydrogen exchange (HX) experiments 

with detection by NMR spectroscopy or mass spectrometry (Figure 1.1) (Bai et al., 1997; 

Bai et al., 1994; Englander and Mayne, 1992).  Backbone amides in an unfolded peptide 

region rapidly exchange hydrogen (protons or deuterons, when applicable) with aqueous 

solvent (Englander, 1998).  Amide protons which are protected by the hydrogen bonding 

associated with α-helix formation, however, exchange only after local or global 

fluctuations that disrupt this bonding (Englander, 2000).  Amide HX measurement can, 

therefore, both identify labile regions of structure as they exchange hydrogen with 

solvent under native and mild-denaturing conditions, indicating the transient unfolding of 

structural elements, and provide a measure of the rates and free energy changes 

associated with these conformational fluctuations (Bai et al., 1995; Englander, 2000).  

Structural reinforcement brought about by a binding event or posttranslational 
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modification can also be observed as an increase in protection against HX (Amero et al., 

2009; Lee et al., 2008). 

Intermediate timescale motions 

Intermediate amplitude motions, which generally occur on the μsec-to-msec 

timescale, such as the conformational rearrangement of the SH3 domain of the 

Drosophila protein drk or the allosteric transitions of aspartate transcarbamoylase, are 

frequently detected by heteronuclear spin relaxation techniques (Figure 1.1) (Mulder et 

al., 2001; Tollinger et al., 2001; Velyvis et al., 2007).  Exposure to the nuclear spin of 

neighboring molecules causes conformationally-dynamic nuclei to encounter different 

chemical and magnetic environments, producing changes in the rate of spin relaxation 

(Rex).  These changes can be quantified using a suite of heteronuclear relaxation or 

relaxation dispersion experiments (Kay, 1998; Palmer, 2001).  Arguably, these motions 

are most relevant to biological processes, including ligand binding and enzymatic 

catalysis. 

Fast timescale motions   

 Dynamic peptide backbone mobility on the nsec and sub-nsec timescales, like 

those observed in loop regions of staphylococcal nuclease, can also be detected by NMR 

relaxation measurements (Figure 1.1) (Kay et al., 1989; Palmer, 2001; Palmer et al., 

2001).  These motions are commonly observed for exposed, flexible loop regions of 

proteins, and have recently gained attention for their prevalence in intrinsically 

disordered polypeptide sequences.  Common techniques for monitoring these motions 

include spin relaxation experiments which measure spin-spin relaxation (T2) or spin-

lattice relaxation (T1), or nuclear Overhauser effect (
1
H[

15
N]NOE) (Kay et al., 1989). 
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In instances where dynamic interactions are too transient to be observed by 

traditional NMR methods, the use of paramagnetic relaxation enhancement (PRE) 

measurements has been utilized to determine the location and behavior of flexible, 

unstructured protein regions (Lee et al., 2008).  The presence of a paramagnetic metal ion 

bound with high affinity, or an organic molecule attached covalently, essentially bleaches 

out the NMR signal of any nuclei that is within its functional proximity.  The use of an 

Amino Terminal Cu
2+ 

/Ni
2+

 (ATCUN) binding motif in PRE spectroscopy was pioneered 

by Dr. Lewis E. Kay as a means of extending the distance restraint limit of ~5 Å for 
1
H-

1
H NOEs, to a range of ~10-20 Å (Donaldson et al., 2001).  Site-directed spin labels 

(SDSL), originally developed by Dr. Harden M. McConnell and utilized for PRE in the 

lab of Dr. Wayne L. Hubbell, has extended the measurable distance of PRE up to ~ 80 Å, 

making it a powerful technique for studying more distant, transient interactions 

(Altenbach et al., 1989; Hubbell and McConnell, 1968; Hubbell et al., 1996; Jeschke, 

2002). 

Ets-1 and the ETS family of transcription factors 

This thesis focuses on the ETS protein, Ets-1, and its autoinhibition of DNA 

binding as a model to study the functional significance of protein dynamics within, and 

between, structured and unstructured regions.  Over the past two decades, the ETS family 

of regulatory transcription factors has emerged as a model for sequence-specific DNA 

binding in the field of gene regulation.  Identified by a highly conserved ETS DNA 

binding domain, family members bind a core GGAA/T consensus sequence via direct 

contact with the phosphate backbone in the major groove (Figure 1.2) (Nye et al., 1992; 

Wasylyk et al., 1993; Wei et al., 2010).  Currently, 27 human members of the ets family 
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have been identified with ETS domain sequence conservation ranging from 38-97%.  

Outside the ETS domain, a wide range of sequence and structural differences, including 

the presence or absence of entire protein domains involved in binding partner recruitment 

and transcriptional activation, give variety to the family.  The sequence specific ETS 

DNA binding domain, however, remains highly conserved.  Once bound, these 

transcription factors have been shown to regulate a myriad of cellular processes in normal 

and cancerous human cells through regulation of transcriptional targets (Oikawa and 

Yamada, 2003).  Ets factors are known to bind the promoters and regulate expression of 

genes as widely recognized as those encoding p53 and BRCA1/2, and as common as 

RPS26, a “housekeeping” ribosomal protein involved in cellular metabolism (Baker et 

al., 2003; Hollenhorst et al., 2007; Venanzoni et al., 1996). The presence of mutated ETS 

family members in human cancer and other diseases illustrates the medical importance of 

this gene family (Dittmer, 2003; Lincoln and Bove, 2005; Oikawa, 2004). 

Ets-1 structural organization 

Knowledge of the structural elements of the Ets-1 protein has been a contributing 

factor in understanding its biological function.  Ets-1 is a 50 KDa, multi-domain protein 

shown to be expressed at high levels in the lung, spleen, and thymus (Hollenhorst et al., 

2004) (Figure 1.3).  In the C-terminal portion of the Ets-1 protein is the 85-amino acid 

DNA binding ETS domain; this region of the protein is necessary and sufficient for 

sequence-specific DNA binding.  The ETS domain displays a winged-helix-turn-helix 

motif that must be structurally intact for DNA binding to occur (Figure 1.3) (Donaldson 

et al., 1996; Graves et al., 1996).  Its N-terminal “Pointed” (PNT) domain, which is only 

conserved in 1/3 of the family, mediates protein-protein interactions.  More especially, in 
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Protein-Interaction Transactivation 

ETS Domain PNT (Pointed) 

DNA Binding 
Ets-1 

Figure 1.3 Schematic representation of Ets-1.  Structured Pointed 

(PNT) domain (green) and ETS domain (red) are displayed.  The 

transcriptional activation domain (TAD) lies between these two 

structured domains.   

TAD 
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response to receptor tyrosine kinase signaling through the RAS/MAPK signaling 

pathway, ERK2-phosphorylation of specific threonine/serine residues adjacent to the 

PNT domain augments recruitment of the transcriptional co-activator CBP/p300 by Ets-1 

(Foulds et al., 2004).  Intriguingly, the PNT domain serves as both a docking site for 

ERK2 to enhance phosphorylation of these residues, as well as an interface for binding 

the TAZ1 domain of CBP/p300.  Between these to structural domains is a poorly 

characterized transcriptional activation domain (TAD) that is thought to synergize with 

the PNT domain and play a major role in regulating transcriptional activation while 

acting as an unstructured linker (Gegonne et al., 1993; Yang et al., 1998). 

Autoinhibition in Ets-1 

Quantitative studies have determined that the DNA-binding activity of Ets-1 is 

inhibited (Figure 1.4) (Hagman and Grosschedl, 1992; Jonsen et al., 1996; Lim et al., 

1992).  In vitro electrophoretic mobility shift assay (EMSA) were used to determine the 

dissociation constant (KD) of the full-length Ets-1 protein at 2x10
-10

 M (Jonsen et al., 

1996).  Studies attempting to isolate the minimal DNA-binding domain of Ets-1 

concluded that deletion of either the N-terminal or C-terminal regions flanking the ETS 

domain resulted in a 10-fold increase in DNA-binding affinity (KD ≈ 2x10
-11

 M) (Jonsen 

et al., 1996).  The existence of activating mutants of this sort is a defining characteristic 

of autoinhibition, a regulatory phenomenon that has become both widely accepted and 

studied over the past 30 years (Cooper et al., 1986; Pufall and Graves, 2002). 

Relief and reinforcement of autoinhibition as a regulatory strategy 

Autoinhibition can be defined as the negative regulation of the activity associated 

with one region of a protein through an intramolecular interaction with a separate region 
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KD (M) 

2 x 10-10 

2 x 10-11 

HIGH 

LOW 

Figure 1.4 Autoinhibition of Ets-1 revealed through deletion mutagenesis and 

EMSA binding studies.  DNA-binding affinities (expressed as equilibrium dissociation 

constants) for full length Ets-1 and three Ets-1 deletion fragments.  Both ΔN331 and 

ΔC415, as individual truncation mutants, display a DNA binding affinity of 

approximately 2 x 10-11 M (Jonsen et al., 1996) indicating the presence of interacting 

inhibitory elements in both the N- and C-terminal regions flanking the ETS domain. 

ΔC415 

ΔN331 

Ets-1 

2 x 10-11 
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of the polypeptide.  This intramolecular interaction may be a direct steric effect, like 

occluding the functional domain from interacting with a ligand, or allosteric in nature, 

like inducing a conformational change that renders the protein inactive.  The repressive 

effects of an autoinhibitory domain may be imposed upon protein activities ranging from 

DNA binding and protein-protein interactions to transcriptional activation and enzymatic 

catalysis (reviewed in Pufall and Graves, 2002a). 

Regardless of the nature of the interaction, a means of relieving the autoinhibition 

is usually also in place as a regulatory strategy.  This allows cellular proteins to be held in 

an off (or attenuated) state until, in response to a specific signaling event, the inhibition is 

lifted and a higher level of protein activity is observed.  A common means of relieving 

autoinhibition is through the intermolecular binding of a second molecule, which 

displaces the intramolecular interaction between autoinhibitory and functional domain 

(Courtneidge, 1985; Misura et al., 2000; Rohatgi et al., 2000).  Other general strategies 

for relieving autoinhibition include proteolytic cleavage of the autoinhibitory domain and 

posttranslational modifications (Brown et al., 2000; Lin et al., 1999; Simons et al., 1998).  

On the other hand, some intermolecular binding events and posttranslational modification 

have been shown to reinforce autoinhibition through stabilizing the intramolecular 

interaction between the autoinhibitory and functional domains (Courtneidge, 1985; 

Misura et al., 2000).  Thus we see that an autoinhibited protein, with the ability to have 

this inhibition relieved and/or reinforced, provides a mechanism for fine-tuning protein 

activity in the cellular environment in response to growth, developmental, or apoptotic 

signaling.  Ets-1 is a prime example of a protein whose autoinhibition can be both 

reinforced and relieved by separate cellular events. 
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The autoinhibitory mechanism of Ets-1 

Detailed study of Ets-1 deletion fragments, including structural analysis, has 

determined that the inhibitory sequences flanking the ETS domain of Ets-1 are helical in 

nature and that the globular fold of the protein allows the two domains to pack together, 

forming an autoinhibitory module located distal to the DNA-binding interface of the 

tertiary structure (Figure 1.5) (Lee et al., 2005; Petersen et al., 1995; Skalicky et al., 

1996).  In the DNA-bound state the protein displays an unfolded inhibitory helix HI-1 

(Petersen et al., 1995).  Consistent with these findings, structural disruption of the 

inhibitory module, either through deletion of an inhibitory domain or introduction of a 

point mutation that induces unfolding of HI-1, causes the DNA-binding affinity to 

increase 10-fold (Figure 1.4) (Cowley and Graves, 2000; Garvie et al., 2002; Jonsen et 

al., 1996; Petersen et al., 1995).  Additional NMR-based experimentation over the last 

decade has developed an allosteric model of autoinhibition in Ets-1.  In this model, the 

inhibitory module is intramolecularly connected to the DNA-binding domain through a 

network of amino acids located in the core of the protein (Figure 1.6) (Pufall et al., 2005).  

Activating and inhibitory changes to the inhibitory module are communication through 

the core, down to the DNA-binding interface.  The core is comprised of ~25 residues, the 

majority of which are hydrophobic in nature and display a dynamic character on a μsec-

to-msec timescale – meaning they are ordered into predominant secondary and tertiary 

structure that exhibits substantial internal molecular motions – which we propose is 

essential for regulating autoinhibition in Ets-1.  Dampening of the internal motions of this 

dynamic core is associated with both a well-structured inhibitory module and a decrease 

in DNA-binding affinity, leading to an inactive conformation.  Fragments of Ets-1 in 
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HI-1 HI-2 H1 S1 S2 H2 H3 S3 S4 H4 H5 

440 331 301 415 

ETS Domain 

Inhibitory module 

DNA binding interface 

Figure 1.5 Helical inhibitory regions flanking the ETS 

domain form a module distal to the DNA binding interface.  

(A) Schematic representation of the secondary structural 

elements found in residues 301-440 of Ets-1 (α-helix, cylinder 

[H]; β-sheet, arrow [S]).  (B) NMR structure (1R36.pdb) of the 

ETS domain and inhibitory module of Ets-1 (Pufall et al., 2005). 

H5 

H4 

HI-1 

HI-2 

A 

B 
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DNA binding interface 

Figure 1.6 NMR structure highlighting the 

dynamic core of Ets-1.  Both the amide 1H-
15N chemical shifts and µsec-to-msec 

timescale dynamics for the ~25 residues 

(green) comprising the core change 

progressively from activated to autoinhibited, 

and from autoinhibited to phospho-inhibited 

(adapted from Pufall et al., 2005).   
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which critical inhibitory helices have been deleted, or mutated to cause helical unfolding 

are representative on the active state, displaying a higher degree of internal molecular 

motion and binding DNA with 10-fold higher affinity than the full-length, wild-type Ets-

1 protein (Cowley and Graves, 2000; Jonsen et al., 1996; Pufall et al., 2005).   

Additionally, the NMR chemical shifts of dynamic core residues are progressively 

perturbed as the level of Ets-1 inhibition is increased.  This co-linear pattern of inhibitory 

changes is a hallmark of a molecule in equilibrium between at least two conformational 

states, where the end points represent the fully active and fully inactive state, respectively 

(Volkman et al., 2001).  Intermediate chemical shifts, rather than an alternative 

conformation for Ets-1, represent the average state of the population in equilibrium.  

Together, these findings support an allosteric model in which dynamic conformational 

sampling within the ETS domain provides Ets-1 with the ability to actively bind DNA 

with high affinity, while the less dynamic, inactive form of the protein displays reduced 

DNA-binding affinity.  Indeed, recent NMR studies of the lac repressor protein have 

shown that scanning of DNA sequences in search of sequence-specific binding site 

requires a dynamic DNA-binding domain (Kalodimos et al., 2004).

Ets-1 autoinhibition is regulated by an intrinsically unstructured 

protein region and phosphorylation of that region 

 

In addition to the inhibitory helices, an IUP region plays a role in Ets-1 

autoinhibition.  Adjacent to the N-terminal inhibitory domain is a highly flexible, serine-

rich region (SRR) that contains no well-defined structure, as evidenced by an NMR 

secondary-structure propensity score, amide HX measurement, and missing electron 

density in that region of its X-ray crystal structure (Garvie et al., 2002; Skalicky et al., 

1996).  The unstructured SRR, however, stabilizes the autoinhibitory module, dampens 
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the dynamic nature of the core, and reduces DNA-binding affinity an additional 10-fold 

(Pufall et al., 2005).  Phosphorylation of three specific serine residues in the SRR further 

depresses the internal motion of the molecule and decreases DNA-binding affinity 

another 50- to 100-fold, while retaining flexibility and peptide backbone conformational 

mobility (Figure 1.7) (Cowley and Graves, 2000; Pufall et al., 2005).  Furthermore, 

changes in NMR chemical shifts for dynamic core residues shared by Ets-1 fragments 

containing and lacking an inhibitory SRR are further perturbed, in a co-linear pattern, 

upon phosphorylation of the SRR (Pufall et al., 2005). 

Multi-site phosphorylation of the SRR has been documented in vivo in response 

to T- and B-cell receptor activation and calcium release and studied in vitro using the 

Ca
2+

/Calmodulin-Dependent Protein Kinase II (CamKII) (Cowley and Graves, 2000; 

Fisher et al., 1991; Pognonec et al., 1988; Pognonec et al., 1989; Pufall et al., 2005).  The 

phosphorylation-induced decrease in DNA-binding affinity leads to a decrease in 

promoter occupancy in vivo (data not shown), as well as reduced expression of 

granulocyte macrophage colony stimulating factor (GM-CSF) and stromelysin-1 (MMP-

3) (Baillat et al., 2002; Liu and Grundstrom, 2002).  Mutation of these serine residues is 

sufficient to eliminate phosphorylation-induced reinforcement of autoinhibition in vitro 

and reduce Calcium ionophore-induced repression of reporter activity in vivo (Cowley 

and Graves, 2000; Liu and Grundstrom, 2002; Pufall et al., 2005).  Often, multi-site 

phosphorylation-induced changes in protein activity are seen as a binary “off/on” switch, 

in which a threshold is achieved after the addition of a critical number of modifications.  

Such is the case with nuclear factor of activated T cells (NFAT1) and Sic1 (Okamura et 

al., 2000; Orlicky et al., 2003; Salazar and Hofer, 2003).  Ets-1, however, exhibits 
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Figure 1.7 Phosphorylated SRR remains dynamic, 

without secondary structure or a fixed position, 

while functionally regulating Ets-1 autoinhibition.  

Phosphorylation of the unstructured SRR (yellow) 

causes a dampening of the dynamic core of Ets-1 and a 

50- to 100-fold decrease in DNA binding affinity 

(Cowley and Graves, 2000; Pufall et al., 2005).   
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variable control of DNA binding as progressively increasing levels of phosphorylation 

progressively reinforce autoinhibition (Pufall et al., 2005).

Ets-1 autoinhibition is relieved through cooperative protein partner 

binding 

 

Previous studies found of Ets-1 can be counteracted through synergistic DNA 

binding with the partner protein core-binding factor alpha2 (CBFα2; also known as 

RUNX1, AML1 or PEBP2) (Figure 1.8) (Goetz et al., 2000; Wotton et al., 1994).  Not 

only does cooperative DNA binding have an activating effect similar in magnitude to the 

level of repression conferred by autoinhibition, but mutant forms of Ets-1 which are 

deficient in autoinhibition do not show cooperative DNA binding with RUNX1 (Goetz et 

al., 2000).  These initial studies were performed using either the region of the Mo-MLV 

enhancer with binding sites for both Ets-1 and RUNX1, or the artificial composite site, 

SC1/core, which contains the high-affinity Ets-1 binding site, SC1, and the RUNX site 

from the Mo-MLV enhancer, spaced optimally for co-occupancy.  Recent studies 

performed in the Graves lab using chromatin immunoprecipitation coupled with genome-

wide microarray analysis have identified in vivo binding sites for Ets-1 in the Jurkat 

human T-cell line (Hollenhorst et al., 2007).  Binding sites displaying strong ETS 

consensus binding sequences were found to be redundantly occupied by Ets-1 as well as 

Elf1 and/or GABPα, two mammalian members of the ets family.  However, sites found to 

be occupied more specifically by only one of the three ets factors displayed weaker ETS 

binding sites (i.e., ETS binding sequences that vary from the consensus) coupled with a 

binding site for a cooperative protein partner.  For example, the MDSO25 and BTRC 

promoters both contain a weak ETS binding site and a core RUNX site separated by a 

single amino acid.  These promoters are bound specifically by Ets-1, and not the other 
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RUNX1 Ets-1 

Figure 1.8 Cooperative binding with 

RUNX1 relieves autoinhibition in Ets-1.  

DNA-binding affinity of Ets-1, bound 

cooperatively with RUNX1, is similar to that 

of an uninhibited fragment (or point mutant) 

of Ets-1 alone (Goetz et al., 2000).  In vivo 

consensus site from Ets-1 and RUNX1 ChIP-

Seq (Hollenhorst et al., 2009). 
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two ets proteins, in vivo, and also display dual occupancy with RUNX1 (Hollenhorst et 

al., 2009; Hollenhorst et al., 2007). 

Holes in the story: what we do not know about Ets-1 autoinhibition 

The biochemical and structural effects of the unstructured SRR on Ets-1 

autoinhibition indicates a possibly transient intramolecular interaction with the remainder 

of the protein.  The increased effects observed upon phosphorylation of the SRR may be 

an indication of an enhanced interaction.  However, as I began my thesis work, a number 

of unanswered questions remained about the functional significance and mechanism of 

the SRR and its place in the allosteric model.  Where is the interface for the proposed 

interaction between the unstructured SRR and structured regulatable unit?  What is the 

chemical nature of this transient interaction?  How does phosphate addition cause the 

observed inhibitory effects? 

Summary 

Studies of Ets-1 presented in this thesis report provide insight and answers to 

questions about the structural and biochemical basis for the autoinhibitory effects of the 

SRR on Ets-1 DNA-binding affinity.  Chapter 2 reports the direct comparison of the 

autoinhibitory phenomenon with and without SRR phosphorylation of a single Ets-1 

species.  It details structural changes to the SRR, inhibitory helices, and ETS domain 

observed upon SRR phosphorylation.  It also reveals a previously undetectable 

interaction interface between the unstructured SRR and structured regulatable unit by 

means of a recently developed NMR technique.  Chapter 3 investigates the chemical 

forces required for phosphorylation-induced changes to Ets-1 binding affinity and protein 

structure.  We discovered a novel role for aromatic residues in association with 
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phosphorylation of the SRR and thus extended the mechanistic model of Ets-1 

autoinhibition, significantly.  The complete thesis not only advances our understanding of 

autoinhibition in Ets-1, but also gives a great new example of how an IUP region can 

perform a regulatory function by interacting transiently with a broad interface, while 

retaining a disordered conformation. 
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CHAPTER 2 

THE AFFINITY OF ETS-1 FOR DNA IS MODULATED BY 

PHOSPHORYLATION THROUGH TRANSIENT 

INTERACTION OF AN UNSTRUCTURED 

REGION 

This chapter was reprinted with permission from 2008 Elsevier Ltd.  J. Mol. Biol. (2008) 382(4), 

1014–1030. 
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effects in Ets-1, including DNA binding characterization of ΔN279
2p

.  I was also responsible for 

the expression and purification of all isotopically-labeled proteins for which NMR data is 

reported.  

 

 

 

 

 



The Affinity of Ets-1 for DNA is Modulated by
Phosphorylation Through Transient Interactions
of an Unstructured Region
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Introduction

Regions of intrinsic disorder are being identified
with increasing frequency as targets of protein
regulation.1–3 Two general features of these regions
have been described: first, they adopt an ordered
conformation in order to perform their function; and
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Thus, Ets-1 displays a 1000-fold range in DNA
binding affinity, from a state completely activated
by deletion or biological partners to a fully phos-
phorylated, repressed state.
The mechanism of autoinhibition and its reinfor-
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and its phosphorylation reduces the m
microsecond timescale motions of th
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overall stabilization, as shown by incre
tion from amide hydrogen exchange (H
with chemical shift perturbation map
NMR-based observations indicated that
in a conformational equilibrium betw
two states. The active state, which can
exhibits conformational mobility withi
HI-2 of the inhibitory module and, imp
DNA recognition helix H3.6 This led t
that the dynamic nature of Ets-1
sampling of conformations necessary
DNA recognition sites with high affinity
reduction in these dynamics shifts the eq
a more rigid, low-affinity state.
The shift between dynamic-active

inactive states is reminiscent of th
allosteric transition between the relaxe
forms of a protein.16 However, distin
model, the phosphorylation-dependen
between the two states of Ets-1 is not
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toward the inhibited conformation, fur
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To further our understanding of the
of Ets-1 autoinhibition and to dete
structured and unstructured protein
interact, we investigated several unre
tures of the allosteric model. Does the S
directly with the ETS domain and inhib
to mediate its stabilizing effect? Does
upon phosphorylation? What is the ph
ical nature of this interaction between
tured, flexible region and a dynamic
region? In particular, are electrost
involved due to the addition of nega
upon phosphorylation? To address thes
we demonstrate that SRR phospho
creases the global thermodynamic sta



Ets-1 fragment. Using NMR spectroscopy, we also
show that the SRR is predominantly unstructured
both before and after phosphorylation. However,
addition of phosphates to the SRR subtly dampens
its fast timescale motions detected by 15N relaxa-
tion, as well as restricting the conformational
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that extends from the inhibitory module to the
DNA-binding interface, and that this localization is
more persistent upon phosphorylation. These
observations suggest that transient intramolecular
interactions can affect the dynamic nature of the
ETS domain and its inhibitory elements, thus
supporting an allosteric mechanism of autoinhibi-

NA-binding
ion through

Fig. 1. (a) The structural organization of Ets-1, showing the protein interaction PNT domain (cyan), transactivation
domain (TAD, white), and serine-rich region (SRR, yellow), along with the regulatable unit, composed of the DNA-
binding ETS domain (red), and inhibitory module (purple). (b) The secondary structural elements ofΔN279 (α-helix, H; β-
strand, S) and sequence of residues 279–300 of the truncated SRR*, including sites of Ca2+-dependent kinase
phosphorylation (S282 and S285; dots) and a Gly-Ser-His motif resulting from thrombin cleavage of an N-terminal His6-
tag. (c) Allosteric model of autoinhibition in which free Ets-1 exists in equilibrium between rigid-inactive and flexible-
active states, the latter characterized most conspicuously by the unfolding of HI-1. The structures shown are for isolated
ΔN301 (left, 1R36.pdb), DNA-bound ΔN280 (right, 1MDM.pdb), and a proposed DNA-free state with HI-1 unfolded
(middle). (d) A view of DNA-bound ΔN280, oriented as in the cylinder model in Figs. 6c and 7d. (e) A summary of the
EMSAs of DNA binding by Ets-1 truncation constructs, showing the equilibrium dissociation constants, KD, and the fold
inhibition relative to ΔN331, the completely de-repressed fragment of Ets-1. The shorter fragments (ΔN301, ΔN296,
ΔN292, andΔN286) have modest effects, whereas the longer constructs have a higher level of inhibition. Phosphorylation
of S282 and S285 (ΔN2792p) represses DNA binding significantly relative to unmodified state ΔN279. This recapitulates
the behavior of ΔN244.6 ΔN281 results from deletion of V280 from ΔN280 during E. coli expression, and ΔN279 and
ΔN2792p have an N-terminal Gly-Ser-His motif.
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Results

SRR phosphorylation thermodynamically
stabilizes the regulatable unit
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tantly, two phosphoacceptor sites, S282 and S285,
which act additively with the more N-terminal sites
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between the flexible, unstructured SR
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Fig. 2. Phosphorylation stabilizes Ets-1.
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in ΔN244, are retained in ΔN280. In addition,
although all residues of the ΔN2445p SRR are
conformationally dynamic,6 a Lipari-Szabo model-
free analysis20 of their amide 15N T1, T2, and
heteronuclear 1H{15N}-nuclear Overhauser effect
(NOE) parameters showed non-uniform mobility.
Specifically, residues 280–300 have restricted fast

ma
ent
to
ts-
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is)
is6
g. 1

To ensure that ΔN279, containing the minimally
sized SRR* (residues 279–300), retained both the
autoinhibition and phosphorylation effects, we
measured the DNA-binding activity of a series of
N-terminal truncations by quantitative electro-
phoretic mobility-shift assays (EMSAs) and com-
pared these data to the affinity of unrepressed

ibition (Fig.
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ecessary for
pectrometry
he efficient
S285 (data
ibited a KD
d reduction
us, ΔN279
hosphoryla-
amide and
2792p were
clear NMR
d S4).8 We
s that the

1018 Phosphorylation-dependent Ets-1 Autoinhibition

37
timescale motions relative to the re
terminal portion of the SRR (Supplem
Figs. S1 and S2). Accordingly, we chose
the former region, and developed an E
spanning residues 279–440. This fragm
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Fig. 3. The SRR* of ΔN279 and ΔN2792p

predominant secondary structure, and phosp
does not alter the secondary structure of the
module or ETS domain. Shown are the s
structural propensity (SSP) scores for ΔN27
ΔN2792p (b), along with ΔSSP (c), the cha
phosphorylation, derived from available main
13C, and 15N chemical shifts (and using ran
phosphoserine chemical shifts25). Values appro
and –1 are indicative of well defined α-helic
strands, respectively.24 The phosphoserines are
by dots, and missing data points correspond t
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ary Data
focus on
1 species
t is pre-
resulting
tag. For
b).

ΔN331 to assess the level of autoinh
1e). All deletions exhibited reduced au
indicating that residues 279–300 are n
full repression. Importantly, mass s
and gel electrophoresis confirmed t
phosphorylation of ΔN279 at S282 and
not shown). The resulting ΔN2792p exh
of ∼5×10−8 M, representing a ∼100-fol
relative to unmodified ΔN279. Th
recapitulated both autoinhibition and p
tion effects. The signals from backbone
sidechain nuclei of ΔN279 and ΔN
assigned using a suite of heteronu
experiments (Supplemental Figs. S3 an
confirmed by chemical shift analyse
secondary structure elements of the
module and ETS domain were th
observed in previous X-ray crystallog
NMR spectroscopic studies of various
ments (Fig. 3 and Supplementary Data
Therefore, we were poised to study th
phosphorylation of the SRR using a
characterized species, ΔN279. To dist
full-length SRR of ΔN244 from the trun
ΔN279, we designate the latter as SRR

SRR* is unstructured and dynamic

Previous biophysical comparison of Δ
ΔN280 indicated that the SRRwas unstr
suggested that there were no losses
structural elements upon phosphorylati
mentary Data Fig. S2).6,18 These findin
investigated with the better-behaved
cies, thus enabling more complete assign
detailed assessment of any changes with
species upon SRR* phosphorylation.
structure elements were identified by
the 1Hα, 13Cα, 13Cβ, and 13CO chemica
the CSI,21 RCI,22 TALOS,23 and SSP24 alg
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structured regulatable unit, the SRR
exhibited random coil chemical shifts
and ΔN2792p (Fig. 3). Thus, the SRR
predominant secondary structure in bot
dified and phosphorylated states. T
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amide HX using a combination of 1H-1

zation transfer and 1H-2H exchange exp
both ΔN279 and ΔN2792p, the SRR
amide HX rates within a factor of ∼
predicted for a random coil polypeptide
sequence (Fig. 4a and c). These data set
that the truncated SRR* does not adopt
nant conformation in either the unm
phosphorylated states of ΔN279. Final
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13C-edited nuclear Overhauser effect spectroscopy-
heteronuclear single quantum correlation (NOESY-
HSQC) spectra were recorded to determine if any
persistent inter-residue contact was detectable either
within the SRR* or between the SRR* and the
regulatable unit. Only intra- and nearest-neighbor
inter-residue 1H-1H NOE interactions were ob-

ran
re
ot
enc
he
bet

Phosphorylation partially dampens the flexibility
of the unstructured SRR*

Earlier analysis of ΔN2445p indicated that SRR
was conformationally dynamic,6 but no direct test of
phosphorylation effects on the same species was
possible. Thus, 15N relaxation experiments were

dified and
the regula-

1, T2, and
1H

s, and 0.82±
. In contrast,
edly differ-

1, T2, and
1H

Fig. 4. Amide HX measure-
ments provide insights into the
structure, stability, and dynamics
of the Ets-1 deletion fragments
(500 mM NaCl, 28 °C). (a) The
comprehensive backbone amide
HX protection factors of ΔN279,
determined from slow H2O-2H2O
exchange (pH* 6.50, black) and fast
H2O-H2O CLEANEX (pH 7.50,
gray; pH 8.25, white) measure-
ments. Residues 305–308 exchanged
too slowly to be characterized by
CLEANEX, yet too fast to be
detected after transfer into 2H2O
buffer, and thus their protection
factors fall within the range of ∼30
to 200 (up arrows). The SRR* is
predominantly unstructured, show-
ing little protection against HX. The
inhibitory helices HI-1 and H1-2, as
well as the DNA recognition helix
H3, undergo relatively facile HX. (b)
However, the presence of the SRR*
stabilizes the inhibitory module and
ETS domain against HX by up to
~4-fold. The relative protection
factors for ΔN279 versus ΔN301,
obtained from H2O-2H2O exchange
(pH* 6.5, black) and/or CLEANEX
measurements (pH 7.5, gray; pH
8.25,white) are shown. (c) Phosphory-
lation of S282 and S285 further
stabilizes the N-terminal inhibitory
helix of ΔN279 against amide HX.
The amide protection factors of
residues 280–320 in ΔN2792p

(black), ΔN279 (gray), and ΔN301
(white), acquired from CLEANEX
exchange experiments at pH 7.5 are
shown. Up arrows indicate minimal
estimated values. Filled circles indi-
cate the phosphoacceptor serines,
and missing data correspond to
prolines (*) or amides with weak or
overlapping NMR signals. Slow
amide HX kinetics, which require
measurements over many months,
were not determined for ΔN2792p.
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served within the SRR*, and no long-
was detected between the SRR* and the
unit in ΔN279 or ΔN2792p (data n
Together, these assays yielded no evid
persistent structural element within eit
the SRR*, nor any long-lived interaction
SRR* and the regulatable unit.
ge NOE
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0.08, respectively (500 mMNaCl, 28 °C)
amides within the SRR* displayed mark
ent relaxation properties with average T



{15N}-NOE values of 645±66 ms, 113±39 ms, and
0.34±0.20, respectively (Fig. 5a). These parameters
corresponded to isotropic Lipari-Szabo model-free
S2 values of 0.97±0.06 for the regulatable unit and
0.49±0.16 for the SRR*. In particular, the longer T2
lifetimes and lower 1H{15N}-NOE values indicated
substantially greater, but importantly not unrest-
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the amide 1HN and 15N chemical shifts of ΔN301,
ΔN279, and ΔN2792p (Fig. 6a) Although not
inducing any persistent, regular structure within
the SRR*, phosphorylation altered the amide che-
mical shifts of S282 and S285, as well as those of
adjacent residues (Fig. 6b). Such local changes are
expected, at least in part, from inductive and electric
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e inhibitory
bridged via
ix H1 (Fig.
usly in the
hosphoryla-
erturbations
ip between

Fig. 5. The heteronuclear 1H
{15N}-NOE values of ΔN279 (a),
ΔN2792p (b), and (c) the difference,
ΔNOE=NOE (ΔN2792p) – NOE
(ΔN279), recorded in 500 mM
NaCl at 28 °C. The uniformly high
NOE ratios of residues 301–440 in
both ΔN279 and ΔN2792p are indi-
cative of well-ordered backbone
segments, except in regions such
as the HI-1/HI-2 and H2/H3 loops,
as discussed in detail for ΔN3018

Conversely, as shown byNOE ratios
b0.6, the SRR* in both ΔN279 and
ΔN2792p exhibits flexibility on the
sub-nanosecond timescale. This
motion is not totally unrestricted, as
the NOE values are mostly N0.2.
Furthermore, positive ΔNOE values
for residues 279–285 indicate that
phosphorylation marginally dam-
pens this fast timescale motion.
Filled circles indicate the phosphoac-
ceptor serines, and missing data
correspond to prolines (*) or amides
with weak or overlapping NMR
signals.
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ricted, conformationalmobility on a sub-
timescale for the truncated SRR* th
structured ETS domain and inhibito
Upon phosphorylation, the SRR* r
ΔN2792p remained conformationally f
tive to the regulatable unit (Fig. 5b and c
the 1H{15N}-NOE values of these residu
slightly to 0.39±0.17, and the T2 values d
82±27 ms, whereas the rest of the prot
measurably perturbed. Thus, phosph
S282 and S285 partially dampens the fa
mobility of the truncated SRR*.

SRR* and phosphorylation-depende
in the regulatable unit

The SRR* is dynamic and lacks any p
structure, yet this region stabilizes the
unit against global unfolding in a phosp
dependent manner. Insights into the m
this stabilization were provided by a co
nosecond
for the
module.
idues of
ible rela-
owever,

increased
reased to
was not
lation of
timescale

changes

ominant
gulatable
rylation-
anism of
arison of

field effects.25 More interestingly, w
majority of the peaks displayed in
HSQC spectra of ΔN301 and ΔN279
imposable, clear perturbations due to t
of the SRR* occurred for correspondi
within the inhibitory module, H1, and
recognition helix H3 of the ETS doma
These perturbations increased upon p
tion to form ΔN2792p (Fig. 6a and b; Sup
Data Fig. S5). Amide chemical shifts
sensitive to subtle local environmental c
thus these results indicated that struc
tions occur in a region of the regulatable
unmodified and, even more so, the pho
SRR*. This region includes residues in th
module and the DNA-binding interface,
a hydrophobic network involving hel
6c).6 Importantly, as observed previo
longer ΔN244, mutants with varying p
tion levels exhibited chemical shift p
that followed a co-linear relationsh



Fig. 6. Amide 1HN and 15N chemical shift perturbations of the inhibitory module and DNA-binding interface by the
SRR* are enhanced by phosphorylation and partially reduced with increasing ionic strength. (a) The combined backbone
amide and tryptophan indole (insert) chemical shift perturbations (Δδ) for corresponding residues in ΔN279 (black) and
ΔN2792p (red) versusΔN301 at 500mMNaCl, and (b)ΔN2792p versusΔN279 in 0 mM (red) and 500mM (black) NaCl are
shown. A difference plot of the data in (b) is provided as Supplementary Data Fig. S5. The histogram bar for the smaller
change is shown in front of that for the larger change. The absence of a bar indicates that the Δδ could not be measured
unambiguously for a given residue due to spectral overlap or weak signals in at least one species or condition. Filled
circles and asterisks represent the phosphoacceptor serines and prolines, respectively. (c) As expected, S282 and S285
underwent the largest chemical shift changes upon phosphorylation, with smaller effects occurring for adjacent amides
within the SRR*. However, spectral perturbations also occurred in the inhibitory module, H1, and the DNA-binding
interface, as shown by mapping the amide shift difference between ΔN2792p and ΔN279 at 0 mM NaCl onto the ΔN301
structure (magenta, Δδ N0.15 ppm; cyan, 0.10–0.15 ppm; yellow, 0.05–0.10 ppm). The two views are rotated by 60° about
the vertical axis. The orientation of the left ribbon diagram is equivalent to Fig. 1d. (d) A co-linear relationship is observed
between chemical shift and increasing autoinhibition, indicating an allosteric shift in the conformational equilibrium of
the regulatable core.6 This is illustrated by an overlay of the sidechain indole signals of W338 in four constructs at 500 mM
NaCl (ΔN301, black; ΔN279, red; ΔN2792p, green; ΔN2445p, blue). ΔN301 is poorly soluble in low ionic strength buffers,
thus precluding comparisons at reduced concentrations of salt.
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chemical shift and DNA-binding affinity (Fig. 6d).6

This correlation confirms an allosteric shift in the
conformational equilibrium of the regulatable unit
with increasing autoinhibition.
HX measurements were also used to monitor the

effects of the SRR* on the local and global stability of
the regulatable unit in ΔN279. As summarized in
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allosterically modulated through transient interac-
tions with the SRR. However, such interactions were
not observed through NOESY measurements (not
shown). The lack of detectable intramolecular 1H-1H
NOEs between the SSR* and the regulatable unit,
which typically arise from protons within ∼5 Å of
one another in well ordered proteins, may be due to

ations and/
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Fig. 4a, HI-1 and HI-2 are marginally sta
protection factors only∼10-fold greater
the unstructured SRR*. Furthermore, am
H3 of the ETS domain also exhibi
protection factors of ∼1000, indicative o
local conformational fluctuations of
recognition helix. In contrast, amides in
and H2 and β-strands S1, S2, and S4
underwent HX at rates near six orders o
slower than expected for a random coil p
demonstrating that they form the stable
ETS domain and likely exchange v
unfolding pathway. Qualitatively, the H
ΔN279 is similar to that measured
ΔN301.8 Quantitatively, however, amid
out the regulatable unit exchanged by u
slower inΔN279 than inΔN301, demon
the SRR* stabilizes the regulatable u
fluctuations leading to HX by ∼−0.
(Fig. 4b). This parallels the increased au
of ΔN279 relative to ΔN301. Notably
measurable increase in HX protectio
occurred for L422, a residue that is im
the integrity of the autoinhibitory modu
is located at the C terminus of H4, whic
to-head with HI-1.8,10 Phosphorylation
S285 further reduced the HX rates of the
unit. A clear trend for this is observed a
of HI-1 and within HI-1/HI-2 loop,
protection factors increased progress
least sixfold in the order ΔN301, Δ
ΔN2792p (Fig. 4c). Thus, as observed i
study of ΔN2445p, both amide HX
relaxation measurements (Fig. 5) r
increased damping of internal moti
regulatable unit with increasing autoinh

SRR* transiently interactswith the regu

Previously, we postulated that the str
dynamic properties of the regulatab

Fig. 7. The SRR* is localized to a region
recognition helix H3, and phosphorylation e
observed for the backbone amides and trypto
reflected by a linear regression analysis of th
Resonances that completely broaden upon
absence of a bar indicates that data could not
weak signal. Filled circles and asterisks repr

values of ΔN279 (b) and ΔN2792p (c) are mappe
The upper and lower views are the ribbon and c
backbone amides, while the larger balls indica
scheme is red, slope b–0.4 (i.e. largest PRE); ora
unavailable are shaded in gray. (d) Insights in
diagram of ΔN301, showing negatively-charge
(green), and neutral polar/Gly (white) residues
unit, colored and positioned as in Fig. 1e, is pro
with HX
t those of
es within
modest

ignificant
e DNA
elices H1
f ΔN279
agnitude
ypeptide,
re of the
a global
profile of
rlier for
through-
∼4-fold
ting that
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kcal/mol
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tural and
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many factors. These include low popul
or an ensemble of conformations wit
contacting the remainder of the protein,
correlation times for these interactio
spectral degeneracy.
In contrast to 1H-1H NOE measure

experiments are sensitive to longer-rang
transient short-range, interactions.26 Th
utilized the amino-terminal copper
binding (ATCUN) motif engineered
terminus of ΔN279 to help localize the
respect to the regulatable unit by PRE.
formed by the N-terminal Gly-Ser-Hi
remaining after thrombin cleavage of t
binds Cu2+ with high affinity (KD ∼10−1

the case of an ordered ATCUN motif, p
distances of ∼10–20 Å can be mea
enhanced 1H relaxation due to the unpai
in the paramagnetic metal ion. The s
protons closer than this lower limit a
broadened beyond detection. However
tional averaging will attenuate this 1/r
effect.26 Thus, we have used this app
qualitative indicator of the proximity o
methyl protons in ΔN279 and ΔN2
bound Cu2+ probe.
PRE measurements revealed a prefe

zation of the ATCUN motif in Δ
respect to the regulatable unit. As
1H-15N and 1H-13C HSQC signals
residues immediately adjacent to this
as V280 and S282, became undetec
formation of a 1:1 Cu2+:protein compl
However, significant PREs were ob
residues located in the loop pre
(notably, L337 and W338), in H3, i
between H3 and S3 (I401 and I402),
and adjacent to H4 (D417 and L4
mapped onto the structure of ΔN30
most affected by the ATCUN-boun
along a region on one face extending f

he regulatable unit spanning from the inhibitory helix HI-
ances this localization. (a) Paramagnetic relaxation enhanc
an indoles (inset) ofΔN279 (black) andΔN2792p (red) in 500
lots of 1H-15N HSQC signal intensities versus equivalents of
dition of ∼1 equivalent of CuSO4 have slopes approachi
measured unambiguously for a given residue due to spectra
t the phosphoacceptor serines and prolines, respectively. T

d onto the ΔN301 structure (rotated about the vertical axis as indicated).
orresponding surface diagrams, respectively. The smaller balls represent
te either Asn/Gln sidechain NH2 or aliphatic methyl groups. The color
nge, –0.4↔–0.325; yellow, –0.325↔–0.25. Residues for which data were
to enhanced DNA-binding inhibition may be derived from the surface
d (Asp, Glu; red), positively-charged (Arg, Lys, His; blue), hydrophobic
. The orientations match those in (c). A cylinder model of the regulatable
vided for orientation of the leftmost structures in (b–d).



the inhibitory module to the recognition helix H3
of the DNA-binding interface (Fig. 7b).
Phosphorylation of ΔN279 caused a similar, but

stronger PRE effect (Fig. 7a and c). Once again,
relaxation enhancement was observed within the
inhibitory module, H1, and H3. However, in the
case of ΔN2792p, a larger number of residues at this

interface were affected by paramagnetic relaxation.
Together, these data indicated that the SRR* inter-
acts with one face of the regulatable unit, and that
this effect is enhanced upon the phosphorylation of
S282 and S285. Residues within the same region also
displayed chemical shift perturbations due to the
presence of the SRR* (Fig. 6). We postulate that these
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PREs and spectral shift changes reflect direct
interactions of the SRR* to allosterically modulate
the structure and dynamics of the regulatable unit.
This correspondence indicates also that phosphor-
ylation contributes to autoinhibition by reinforcing
these interactions.
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SRR* interactions are not predomina
electrostatic

The SRR* is net negatively-charged
asparate/glutamate residues, and thi
increased upon phosphorylation of S28
(Fig. 1b). These observations prompted
esis that electrostatic forces might m
interactions between the SRR and the
unit. To test this possibility, urea d
assays were done with ΔN2445p unde
of varying ionic strength. Surprisingly
little change in the stability of ΔN
increasing the concentration of KCl from
500 mM (Fig. 2c). In contrast, the mid-
denaturation profile of ΔN244 remaine
50 mM and 100 mM KCl, yet showe
cooperativity at 500 mM KCl. These
against a major role of electrostatic int
the global stabilization of ΔN244 by SRR
ylation. To explore this phenomenon
also compared the amide chemical shif
and ΔN2792p under native conditions
ionic strengths (Fig. 6a and b; Supplem
Fig. S5). For most (∼2/3) residues, the m
shift perturbations resulting from phos
increased when the concentration of
lowered from 500 mM to 0 mM. Thus,
SRR* phosphorylation on the regulat
partially ionic strength-dependent. H
observation of clear spectral differenc
ΔN279 and ΔN2792p at even 500
suggests that electrostatic interactions
dominant driving force for phosphoryla
dent autoinhibition.

Discussion

Allosteric model of autoinhibition

Here, we describe new insights into
ism of phosphorylation-dependent auto
Ets-1 DNA binding. Our previous allo
for autoinhibition was developed from
lines of evidence; namely, the labile na
HI-1, including its unfolding upon DN
and the impact of both the SRR and it
ylation on the dynamic character of the
and flanking inhibitory module.6–10,19

proposes that a conformational equilib
for the ETS domain and associated
module in the absence of DNA, an
equilibrium can be the target of regula
flanking SRR, as well as by its phosphor
1c). This study expands the eviden
y
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mapping the intramolecular interactio
SRR* and the regulatable unit, inc
recognition helix, via chemical shif
analyses. Importantly, the analyses wer
on ΔN279, a more easily manipulata
fragment containing a truncated SRR
phosphoacceptor serines. The presence
279–300 from the SRR increases the auto
ΔN279 by∼15-fold, from the modest lev
by the regulatable unit (ΔN301) to a lev
that observed with native Ets-1 and
Phosphorylation of S282 and S285 rei
effect by an additional ∼100-fold (Fig. 1
levels observed with native Ets-1 and Δ
Surprisingly, although required for au

the truncated SRR* lacks any predomina
in ΔN279 or ΔN2792p, as evidenced by
chemical shifts, the absence of detect
NOE interactions to the regulatable
minimal protection from amide HX (Fi
Supplementary Data Fig. S2). Howev
formational disorder of the SRR* is not
unrestricted, as 15N relaxation me
revealed that the SRR* exhibits nan
picosecond timescale mobility greater
the well-ordered regions of the regulata
dampened relative to the highly flexible
the termini of a deletion fragment suc
(Fig. 5; Supplementary Data Fig. S1). The
of ΔN279 in both its unphosphorylated
phorylated state also enabled analysis t
strated the mobility of the SRR* was fu
modestly, dampened upon phosphoryl
observations support the original alloste
autoinhibition by correlating phosp
effects on reducing SRR* dynamics wit
effectiveness of the SRR* in inhibiting DN
The role of the truncated SRR* in

autoinhibition was investigated thermod
and spectroscopically by analyzing the
presence and its phosphorylation on the
unit. The SRR* stabilizes the regul
against fluctuations that lead to amid
4). Phosphorylation of S282 and S285 en
effect, as observed most notably for the
HI-1, which had been shown to be unf
DNA-bound state.9,10 Within the contex
phosphorylation also dramatically st
regulatable unit against thermal- and
induced global unfolding (Fig. 2) an
millisecond to microsecond timesca
detected by relaxation dispersion ex
Detailed chemical shift comparison
ΔN301, ΔN279, and ΔN2792p indica
truncated SRR* either directly or indirec
the structure of a contiguous reg



regulatable unit encompassing the inhibitory mod-
ule and helices H1 and H3 of the ETS domain, and
that the perturbations increase with phosphoryla-
tion (Fig. 6). Interestingly, a comparison of SSP
scores, which predict secondary structure from
chemical shift information, shows small but distinct
patterns of increased α-helical and β-strand values
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shift perturbations upon addition of the SRR* and
further upon phosphorylation. As noted previously,
these elements are linked by a dynamic, hydrophobic
network that includes the intervening helix H1 of the
ETS domain.6 Thus, we speculate that transient sur-
face contactsmade by the SRR allosterically transduce
effects broadly through the regulatable unit.
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for several regions of ΔN2792p vers
including the N-terminus of HI-1 and
inhibitory module and S1, S2, and
recognition helix H3 in the ETS doma
Although it is unclear how to interpre
for folded regions of proteins,24 ba
correlation of secondary chemical
dynamics noted by Wishart and co-wo
suggests that the spectral changes occu
phosphorylation also reflect the stabiliz
regulatable unit into a more rigid confo
In our previous work on Ets-1 DNA

used similar data to propose an alloste
ism of regulation. According to this mo
domain and inhibitory module pack
form a regulatable unit that is confo
flexible, as shown by amide HX, 15

relaxation, and proteolysis measurem
presence of the SRR and increasin
phosphorylation progressively shift the
structure and dynamics of the regulatab
more rigid state with reduced DNA af
linear change in the amide chemica
residues in the inhibitory module and D
interface that correlates with increasing
tion provided clear evidence for an
between dynamic-active and rigid-inac
Such a diagnostic co-linear change was
ited by ΔN279 and ΔN2792p (Fig. 6d). N
mechanism is allosteric from two com
perspectives: DNA binding via the ET
coupled to a conformational change in th
module that is highlighted by the unfold
a helix distal to the “DNA effector
phosphorylatable SRR serves as an “int
effector”, shifting the conformation, dyn
erties, and stability of the regulatable un
rigid inactive state, refractory to DNA b
To explore the mechanism by which

predominantly unstructured and confo
flexible element, could be an intramolecu
effector, we sought experimental evid
direct interaction with the regulatable
effects, measured using Cu2+ bound to
motif of ΔN279 (Fig. 7), revealed trans
tions consistent with the flexible, yet not u
dynamic properties of the SRR. Phos
enhanced the magnitude or lifetime of th
tions. These PRE effects correlate with
dampened fast timescale mobility and red
the SRR* in ΔN2792p versus ΔN279 (F
addition, PRE mapping demonstrate
truncated SRR* interacts with both th
module and the DNA recognition helix
and 7) along one contiguous surface of the
unit. Many of these same residues display
ΔN279,
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(Fig. 3c).
SP scores
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Electrostatic forces are not dominan
allosteric regulation

We next considered the possible phys
nature of the transient interactions
allosteric control of Ets-1 DNA binding
has four negatively-charged residues (
E289, and D290) in segments require
inhibition, as demonstrated through del
sis (Fig. 1e). Phosphorylation of S28
increases further the net negative charge
Also, many of the residues most affe
presence of the SRR*, as shown by PR
ments, lie along the positively-char
binding interface of the ETS domain. A
we asked whether electrostatic interac
have a role in mediating the transient in
the SRR* with the regulatable unit. Pre
observed that the millisecond to micros
scale motions of ΔN279 and ΔN2792p

NMR relaxation-dispersion measurem
dampened in buffers of reduced salt co
(data not shown).6 Also, the phosp
dependent chemical shift perturbati
regulatable unit by the SRR* generall
with increasing ionic strength (Fig.
Supplementary Data Fig. S5), sugge
electrostatic contributions to autoinhib
ever, even in 500 mMNaCl, clear differe
between the 1H-15N HSQC spectra of Δ
ΔN279. More dramatically, the stability
against urea-induced denaturation
change between measurements made
and 500 mM KCl (Fig. 2). It is difficult t
extent of screening expected for the int
association of the phosphorylated SRR
regulatory unit. Nevertheless, persistent
tral perturbations and the lack of a
difference in the [urea]1/2 of ΔN2445

large range of ionic strength argues stro
a dominant role of electrostatic inte
mediating the phosphorylation-depende
tion of the regulatable unit, and by i
DNA-binding autoinhibition.
Alternatively, we note that the trun

contains several hydrophobic amino a
Y283, F286, Y288, Y291, and L295) i
adjacent to negatively-charged Asp or G
and the phosphoacceptor serines. P
association of the SRR* with the regu
involves hydrophobic contacts to that n
chains on a surface patch between HI-1
also show PRE effects upon addition
ΔN279 (Fig. 7d). A mechanistic model fo
involve phosphorylation-dependent



some fluctuating aromatic/hydrophobic clustering
within the SRR to enable greater aromatic/hydro-
phobic interaction with the regulatable unit. All
known Ets-1 vertebrate orthologs display overall
N95% identity at the amino acid level, and thus the
importance of these hydrophobic residues is not
predictable from homology arguments. However,
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in order to function (however, see Ref. 29).1 In
contrast, our previous work and the new results
presented here show that the multiply phosphory-
lated SRR of Ets-1 is able to inhibit binding by over
two orders of magnitude in KD despite its predomi-
nantly unstructured and flexible character. A similar
example of a functionally important regulator that
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we note that the above residues lie in
Ets-1 that shares N80% amino acid
conservation relative to highly rel
which also displays autoinhibitory pro
of the six hydrophobic residues are con
Ets-1 and Ets-2 vertebrate orthologs, w
being a variant only in mouse Ets-1. S
mutational studies of these individu
within the SRR* should help define
roles of electrostatic and hydrophobic
in autoinhibition.

A possible steric component to regu
DNA binding

One feature of our findings suggest
possible mechanistic contributions to th
of DNA binding. PRE measurements de
that the SRR* transiently interacts with
binding interface of the ETS domain. Su
tion of the negatively-charged phospho
near the recognition helix H3 coul
autoinhibition by sterically blocking and
statically repelling DNA. Previous kin
revealed that autoinhibition results ma
reduction in the lifetime of the bound
complex.19 However, a small reduction
tion rates, as would be expected for ste
mechanism, was also observed. Note t
electrostatic repulsion mechanism is
disruption of the inhibitory module thr
tion of its hydrophobic core leads
autoinhibition and insensitivity to phos
effects without changing the net charge
fragments studied.10–12 That is, the simp
of the SRR and phosphorylated serine re
not attenuate DNA binding affinity. Tog
data indicate that the allosteric and a
steric contributions to autoinhibition
intimately linked. That is, the integ
inhibitory module is thermodynamicall
turally coupled to the proper juxtapos
SRR with respect to regulatory unit, as
both modulating the equilibrium pop
dynamic-active and rigid-inactive sta
possible blockage of the DNA-bindin
Although the allosteric component of t
ism is well established, dissecting the
magnitude of the steric contribution re
detailed mutational and kinetic analysis

Adoption of structure is not require
regulation of Ets-1 autoinhibition

Most studies of intrinsically disorde
segments report a transition to a stable c
region of
sequence
d Ets-2,
ties. Five
ved in 16
the sixth
-directed
residues
relative

eractions

ion of

dditional
nhibition
onstrated
he DNA-
localiza-
ated SRR
reinforce
r electro-
c studies
y from a
-1/DNA
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blockage
a global
likely as
gh muta-
loss of

orylation
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presence
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er, these
possible
re likely
y of the
nd struc-
n of the
uired for
ations of
and for
interface.
mechan-
ture and
res more

for SRR

protein
ormation

retains disorder both before and aft
phosphorylation events is found wit
cyclin-dependent kinase inhibitor Sic1.3

Sic1 displays a switch-like behavior
associates with the WD40 domain
ubiquitin ligase subunit Cdc4 only afte
its nine possible sites have been phosp
Each of the phosphorylation sites is a
binding motif for the WD40 domain, an
has been proposed to result from a thres
cumulative “polyelectrostatic” interact
sary for net binding of Sic1 to Cdc4.30 In
Ets-1, however, electrostatic forces do n
be crucial to the autoinhibitory mech
variable or “rheostat-type” regulation,
an all-or-none switch, is accomplished
sive addition/removal of phosphates to
SRR segment.6 As part of this rheostatic
a correlation between dampened nan
picosecond timescale dynamics of the S
adoption of a predominant structure, a
millisecond to microsecond conformatio
ity of the regulatable ETS domain and
module are observed. A link between ch
fast motions of flexible segments to re
intermediate timescale dynamics has
mented recently for enzymatic catalysis.
characterization of such dynamic mec
biological processes is of great importanc
preponderance of unstructured protei
encoded by the genome.

Flexible SRR allows for rapid respon
signals

The properties of Ets-1 are ideal fo
sensitive integration of signals. Intrins
dered regions, such as the SRR, are freq
of post-translational modification. In th
tured forms, they allow unfettered ac
chemical moieties of the sidechains, an
energy barriers to adopting the co
required for rapid binding and modi
signal transduction machinery. For e
response to Ca2+ release, Ca2+ depend
such as CamKII, are activated and, in
phorylate multiple serines within the f
However, as noted above, phosphorylat
induce and persistent structure within t
does it cause stable binding of this re
regulatable unit of Ets-1. Instead, the
lated SRR region stays available for mod
other kinases or, importantly, phosphat
calcineurin, which can also becom
depending on the nature and leng
stimulation.34 Furthermore, we showed



increasing the phosphorylation level of the SRR
progressively attenuates the affinity of Ets-1 for
DNA. Thus, by maintaining flexibility, regardless of
the modification state, the SRR can be modified
rapidly and the DNA-binding affinity of Ets-1 fine-
tuned by the kinase/phosphatase balance in the cell.
On the basis of these structural and biochemical
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composed of a 9 bp consensus site (underlined) embedded
in the following complimentary 27-mers that include 4 bp
overhangs:

5′-TCGACGGCCAAGCCGGAAGTGAGTGCC-3′ (top
strand);
5′-TCGAGGCACTCACTTCCGGCTTGGCCG-3′ (bottom

μM protein
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nol, 0.1 mM
spectropolari-
final spectra
°C. Thermal
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properties, the SRR of Ets-1 can serve as a
for Ca2+ signaling, thereby modulating g
sion at the level of DNA binding wi
sensitivity.

Methods

Sample expression, purification,
and phosphorylation
Expression and purification of Ets-1 fragm
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equation for
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In this equa-
lded baseline
lded baseline
ee energy of
he midpoint

a cryoprobe-
eter at 28 °C.
M protein in
fer (pH 6.5)
T, 10% (v/v)
. The sample
concentration
K (Pall Life
ilter Devices

analysis were

tm /
performed according to previous methods.6

ing ΔN244, ΔN280, ΔN286, ΔN292, ΔN296
were sub-cloned into the pET22b vector
expressed in E. coli BL29(λDE3) cells, and
conventional ion-exchange and gel-filtratio
graphy. The gene encoding ΔN279 with a
His6 tag was cloned into the pET28a vector
mutation of the codon from the vector
methionine to the native R279 by the QuikCh
(Stratagene). ΔN279 was expressed in E. col
cells. After lysis by sonication into 50 mM
500 mMNaCl, 1 mM PMSF, 1 mMDTT, 20 m
and centrifugation at 40,000 rpm for 40 mi
natant was loaded onto a 5 mL nickel Seph
(GE Biosciences), and eluted in the same b
gradient of 20 mM–500 mM imidazole. P
were combined with thrombin (5 units/
Sigma) and 2.5 mM CaCl2, dialyzed over
20 mM sodium citrate, pH 5.3, 100 mM NaC
and purified as described above for non
structs. After thrombin cleavage, the resu
contains three additional, non-native N-term
(Gly-Ser-His). [U-15N]-, [U-13C,15N]-, and [
tively [methyl-13C] Ile/Val/Leu labeled samp
and ΔN279 were prepared as describe
concentrations were quantified by measurin
at 280 nm using a predicted ε280 of 3812
(ExPASy Protparam‡).

All Ets-1 fragmentswere phosphorylated u
published protocol.6 Samples at a final con
∼25 μM were incubated for 1 h at 30 °C in 5
pH 7.5, 10 mM magnesium acetate, 0.5 mM
DTT, 1 μMcalmodulin, 200 nM calmodulin ki
ATP. The reaction mixtures were then dilu
25 mM Tris, pH 7.9, 10% (v/v) glycerol, 1
loaded onto a strong anion-exchange colu
Pharmacia), and eluted with a 50 mM–4
gradient. Peak fractions were pooled, analyz
spray ionization mass spectrometry, and sto

Electrophoretic mobility-shift assays

EMSAs were performed on Ets-1 fr
described,6,12 using a high-affinity ETS

‡http://ca.expasy.org/tools/protparam.h
ntegrator
e expres-
exquisite

ents were
nes encod-
nd ΔN301
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urified by
chromato-
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llowed by
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ge method
29(λDE3)
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g the same
tration of
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e II, 1mM
1:10 with
M EDTA,
(MonoQ,
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by electro-
at 4 °C.

ments as
ding site

strand).

Circular dichroism and denaturation
measurements

Circular dichroism (CD) spectra of 30
samples, dialyzed into 25 mM potassium p
7.9, 100 mM KCl, 1 mM β-mercaptoetha
EDTA, were recorded using a Jasco J-720
meter with a 0.1 cm pathlength cuvette. The
represent the average of six scans at 25
denaturation measurements were perform
water-circulating temperature-controlled 0
length cuvette. The water temperature was
a Neslab RET-110. Samples were allowed to e
10 min between temperature changes, a
spectra represent the average of three s
temperature. Urea denaturation measure
carried out with a series of protein samp
urea. A 10 M urea stock was prepared with 0
dialysis buffer, and then samples were add
volume of protein solution to generate equim
at the desired concentrations of urea. The CD
each sample was measured at 222 nm and 2
AVIV 62DS spectropolarimeter. The va
represents the average of readings acquired
1 s−1 for 100 s. Data were analyzed by no
blank-corrected CD signal versus the most n
recorded (θmin):

yobs ¼ 1� uobs=umin

followed by fitting to a standard two-state
urea-induced protein unfolding:35

yobs ¼ yF þ yUðe�ðmð½urea�1=2�½urea�Þ=R

1þ e�ðmð½urea�1=2�½urea�Þ=RTÞ

with yF=yF
o+bF[urea] and yU=yU

o +bU[urea].
tion, yF

o and yU
o are the folded and unfo

intercepts, bf and bu are the folded and unfo
slopes, m is the linear dependence of fr
unfolding on [urea], and [urea]1/2 is t
concentration of denaturant for unfolding.

Spectral assignments

All NMR spectra were recorded on
equipped Varian Inova 600 MHz spectrom
A typical NMR sample consisted of 0.1–0.3 m
0.35–0.50 mL of 20 mM phosphate buf
containing 0.02% (w/v) NaN3, 5 mM DT
2H2O, and either 0, 50, or 500 mM NaCl
conditions were adjusted by dialysis or by
and buffer exchange using MicroSep 3
Sciences) or Amicon Ultra 5K Centrifugal F
(Millipore Corp.). Spectral processing and
performed with NMRpipe36 and Sparky§.

l § http://www.cgl.ucsf.edu/home/sparky



Assignments for the backbone and selected sidechain
1H, 15N, and 13C resonances of ΔN279 and ΔN2792p were
obtained using multidimensional NMR experiments
acquired on a series of [U-15N]-, [U-13C,15N]-, or [U-15N]-
selectively [methyl 13C]-Ile/Val/Leu-labeled proteins, as
described.8 Simultaneous 3D 15N,13C-NOESY-HSQC, cen-
tered on the methyl (τm=140 ms), aliphatic (τm=150 ms),
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and aromatic (τm=150 ms) C regions, as w
NOESY-HSQC (τm=150 ms) spectra were
both ΔN279 and ΔN2792p. The first three r
Ser-His) were not assignable due to rapid am
strength-dependent chemical shifts were o
1H-15N HSQC spectra recorded with ∼0.5 m
∼0.1–0.3 mM [15N]protein, initially in 0 m
which samples of sample buffer containing 5
added. Chemical shift perturbations were ca
the combined 1H and 15N shift differences a

Dd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DdHð Þ2þ 0:1*DdN

� �2q

and mapped onto the NMR-derived structu
(PDB accession code 1R36.pdb) using MolM

Backbone amide hydrogen exchange

Slow amide proton-deuterium HX rates, k
were measured from a series of 1H-15N H
recorded after rapid transfer of the [15N]prot
buffer (28 °C, pH* 6.5, 500 mM NaCl), as
ΔN301.8 Rapid amide proton–proton HX
acquired for both ΔN279 and ΔN2792p (28
NaCl, pH 7.5 and pH 8.25) using the C
method.38 Predicted exchange rates, kpred, fo
tured protein containing the ΔN279 se
calculated with the program SPHERE39 us
alanine reference data corrected for amino a
temperature, and isotope effects.40,41 In
ΔN2792p, reference kpred values for ph
serines were estimated by replacing S282 an
sequence with aspartates. Amide-specific p
tors were calculated as the ratio kpred/kex
protection factor can be interpreted as the
equilibrium constant describing fluctuation
closed, non-exchangeable state and a transie
exchange-competent state, and thus provides
the residue-specific free energy changes, Δ
(kpred/kex), governing local or global co
equilibria detected by HX.

Backbone amide relaxation

Backbone amide 15N relaxation paramete
labeled ΔN279 and ΔN2792p samples in bot
500 mM NaCl were acquired at 28 °C, as
Curve fitting and relaxation rate calcu
performed with either Sparky or a Matlab
Works, Inc.) macro supplied by W.-Y. Choy
Toronto). Error analysis was facilitated b
Monte Carlo routine. Due to the dynam
residues 279–300, only per-residue Lipari-S
free fits20 were obtained using a Matlab ma
by L.E. Kay (University of Toronto).

ATCUN paramagnetic relaxation enhance
measurements

Immediately before Cu2+ titrations,ΔN279
samples were exchanged into 20 mM Bis-T
as 3D N
uired for
ues (Gly-
HX. Ionic
ined from
amples of
NaCl, to
aCl were

lated from

of ΔN301
7

for ΔN279
C spectra
into 2H2O
cribed for
ates were
, 500 mM
NEX-PM

n unstruc-
nce were
poly-D,L-
type, pH,
e case of
horylated
285 in the
ection fac-

proteinwere used to limit the possible effects o
Cu2+ binding or intermolecular paramagne
The titrations were monitored with 1H-15N a
HSQC spectra. An approximate 1:1 ratio of
was ascertained when the normalized inte
methyl and amide peaks of V280 approach
value, typically 0–5% of the original value.

1H-15N HSQC-detected amide 1HN T2 (=
tion measurements28 of ΔN279 and ΔN279
∼1 equivalent of CuSO4 were recorded
Residue-specific amide PRE values were ca

DR2 ¼ R2ðCu2þboundÞ � R2ðCu2þf

Alternatively, PRE values were evaluated
during the Cu2+ titration by plotting the
1H-15N and/or 1H-13C-HSQC peak intensit
equivalents of Cu2+ added. Since a linear
between the reduction of peak intensities
equivalents of Cu2+ was observed due to t
linear regression analyses were performed
points ranging from 0:1 ∼1:1 Cu2+ to p
Slopes decreasing from 0 to –1.0 represent
are increasingly affected by high-affinity Cu
the limit of being broadened beyond de
complete saturation of the ATCUN motif.
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Introduction 

According to the long-accepted structure-function paradigm, amino acid sequence 

determines the three-dimensional structure of a protein, which structure determines its 

function (Dunker et al., 2008b; Radivojac et al., 2007; Uversky and Dunker, 2010).  

Advances in experimental characterization and computational prediction of unstructured 

proteins and protein regions, however, have challenged this well-established dogma 

(Boehr et al., 2006; Dunker et al., 2002; Dunker et al., 2008a; Dyson and Wright, 2005; 

Wright and Dyson, 1999).  Recent reports predict that over half of the eukaryotic 

proteome can be classified as intrinsically unstructured, having at least one region, >30 

residues in length, displaying an unstructured or disordered profile, and that 25-30% of 

these proteins are mostly disordered (Dunker et al., 2000; Oldfield et al., 2005; Uversky, 

2002).  Furthermore, there is an overrepresentation of these intrinsically unstructured 

proteins (IUPs) in disease-related and biological regulatory processes. For example, close 

to 75% of known cancer-related proteins, 70% of signaling proteins, and 94% of 

transcription factors are predicted to have one or more regions of intrinsic disorder 

(Iakoucheva et al., 2002; Liu et al., 2006; Midic et al., 2009). 

The role of conformational disorder has been recognized for its importance in 

providing flexible linkers between structural domains within modular protein, in bearing 

sites of posttranslational modification, and ligand binding (Iakoucheva et al., 2004; 

Uversky and Dunker, 2010).  Often, these regions undergo disorder-to-order transitions 

upon ligand binding (Dyson and Wright, 2005).  In contrast, the role of functional IUP 

regions has only recently been recognized and reported (Wright and Dyson, 1999).  

Examples have been reported in which these regions have a direct role in regulatory 
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processes while remaining in an unstructured state (Mittag et al., 2010).  The biochemical 

mechanisms employed by these functional IUPs have yet to be elucidated. 

The autoregulation of DNA binding in the transcription factor Ets-1 employs one 

such region of intrinsic disorder.  The serine-rich region (SRR) lacks any predominant 

structure yet plays an essential role in both constitutive and reinforced autoinhibition of 

DNA binding (Lee et al., 2008; Pufall et al., 2005).  The SRR is positioned N-terminal to 

the regulatable unit of Ets-1, which consists of the DNA-binding ETS domain as well as 

four flanking inhibitory helices, which fold into a tertiary structure, termed the inhibitory 

module (Hagman and Grosschedl, 1992; Jonsen et al., 1996; Lim et al., 1992; Skalicky et 

al., 1996).  Together, the SRR, inhibitory module and ETS domain have a DNA-binding 

affinity comparable to the full-length protein; approximately 10- to 20-fold lower than the 

full binding potential of the ETS domain (Figure 3.1 A) (Lee et al., 2008; Pufall et al., 

2005).  Phosphorylation of the SRR by Ca
2+

/calmodulin-dependent protein kinase II 

(CaMKII) causes a further one 100-fold decrease in DNA-binding affinity (Figure 3.1 A) 

(Lee et al., 2008; Pufall et al., 2005). 

According to the current model for Ets-1 autoinhibition, a conformational 

equilibrium of the regulatable unit exists between a flexible-active and a rigid-inactive 

state.  Regulation of this equilibrium affects DNA binding.  Though a fixed location is 

not observed, the SRR makes transient interactions with the regulatable unit and, thus, 

shifts the equilibrium (Figure 3.1 B) (Lee et al., 2008).  Phosphorylation of the SRR 

enhances the transient localization (Figure 3.1 B) (Lee et al., 2008).  The chemical nature 

of this transient interaction, which allows the SRR to function as an intramolecular 

effector of DNA-binding affinity over three orders of magnitude, has yet to be 
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Figure 3.1 Autoinhibition in Ets-1.  (A) Schematic representation 

of Ets-1 and Ets-1 truncations (with and without SRR 

phosphorylation, P) with corresponding values for equilibrium 

dissociation constant (KD) and relative DNA binding affinity.  

Structural organization of the C-terminal domains; including the 

serine-rich region (SRR, yellow) and the regulatable unit, 

comprising the DNA-binding ETS domain (red) and autoinhibitory 

module (purple).  Also shown are the secondary structural elements 

of ∆N279 (α-helix, cylinder [H]; β-sheet, arrow [S]; and 

unstructured, rectangle) and primary sequence of amino acid 

residues 279-300 of the truncated SRR, with a Gly-Ser-His motif 

remaining after thrombin cleavage of an N-terminal His6-tag and 

sites of Ca2+-dependant kinase phosphorylation (S282 and S285; 

dots).  (B) Structural model of autoinhibition in Ets-1 depicting a 

dynamic, two-state conformational equilibrium (within brackets) 

between the flexible-active state (center-right), which is competent 

to bind DNA (far right) and is characterized by a disrupted 

autoinhibitory module (as indicated by the obvious unfolding of 

helix HI-1), and the rigid-inactive state (center-left), which is 

refractory to binding and which is stabilized by phosphorylation 

and the observed increase in localization of the SRR to the 

regulatable unit (far left) (adapted from Lee et al., 2008).  The 

Protein Data Bank (PDB) structures displayed are that of DNA-

bound ∆N280 (center-right and far-right, 1MDM.pdb) and isolated 

∆N301 (center-left and far-left, 1R36.pdb), with SRR and 

phosphorylated SRR (yellow) added to emphasize the effects of 

phosphorylation on structural dynamics and localization of the SRR 

to the regulatable unit. 
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determined.  One clue to mechanism derives from analysis of the dynamic character of 

the SRR (Lee et al., 2008; Pufall et al., 2005).  NMR-based experiments have shown that 

the SRR is unstructured and flexible on the sub-nanosecond timescale (Figure 3.1 A).  

Upon phosphorylation, internal motions of the SRR are decreased partially without 

adopting secondary structure.  Addition of the SRR, especially in its phosphorylated state 

dampens the dynamic motions within the regulatable unit as well.  Thus, the mechanism 

of action of the SRR exploits its disordered state to affect the dynamics of a more 

structured region. 

In this report, we demonstrate that aromatic residues in the SRR, though not 

required for serine phosphorylation, are required for phosphorylation-dependent 

reduction in Ets-1 DNA-binding affinity.  We further present an allelic series of Ets-1 

variants that display progressive inhibition.  Each mutant bears a different number of 

tandemly repeated phospho-acceptor units with the required adjacent aromatic residue.  

Finally, we observed that phosphorylation-induced structural changes, previously 

correlated with Ets-1 autoinhibition, are altered by the loss of four aromatic residues in 

the SRR, thus providing a structural correlate to the functional data.  We conclude that 

aromatic residues in the unstructured SRR are essential for the phosphorylation-induced, 

inhibitory effects on DNA binding that function through conformational alterations.  The 

integration of phosphorylation-dependent charge effects and hydrophobic forces within a 

disordered region represents a novel regulatory pathway for IUPs. 
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Results

The phospho-acceptor SRR is highly conserved 

in Ets-1 

 

Conservation of Ets-1 protein sequences from 16 vertebrate species provides 

insight into a potential functional role for the unstructured SRR.  While the entire Ets-1 

protein sequence displayed 63% homology across all 16 species, the highly conserved 

DNA-binding domain was 79% identical (data not shown).  The 22 amino acids SRR, 

which bares the phospho-acceptor sites, displays 78% identity, emphasizing the potential 

functional importance of this unstructured protein region (Figure 3.2).  The prevalence of 

highly conserved acidic and aromatic amino acid residues, particularly adjacent to the 

sites of phosphorylation, suggested a possible mechanistic role for these residues in Ets-1 

autoinhibition and phosphorylation effects.  We investigated the functional importance of 

these residues through a combination of charge reversal and alanine replacement via site-

directed mutagenesis.

Electrostatic forces do not drive Ets-1 

Autoinhibition 

 

Due to the negative charge of ~ -2 at neutral pH held by phosphate moieties, it is 

common for electrostatic forces to play a major role in the mechanism of 

phosphorylation-induced changes to protein structure and function.  To understand the 

role of electrostatic forces in constitutive and phospho-enhanced autoinhibition of Ets-1, 

we made single- and multi-site substitutions at the two phospho-acceptor sites (serines 

282 and 285) as well as the four adjacent acidic residues (aspartic acids 284, 287, and 

290, and glutamic acid 289).  The resulting effect on inhibition of DNA binding, as 
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Figure 3.2 Amino acid sequence conservation of residues 279-

300 of the unstructured SRR of Ets-1 ΔN279.  (A) Weblogo 

displaying sequence conservation among 16 vertebrate species 

(human, mouse, rat, horse, cow, pig, dog, marmoset, opossum, 

platypus, armadillo, chicken, Xenopus, zebrafish, stickleback, and 

pufferfish).  Coloring scheme is used to emphasize chemical 

character of residues; basic (blue), acidic (red), hydrophobic 

(green), neutral  (purple), and serine (black), with letter height 

directly proportional to the degree of conservation.  Inhibitory 

phosphorylation sites (●) within CamKII recognition motifs [S-F/Y-

E/D] are indicated.  (B) ClustalW sequence alignment of 16 

vertebrate species with identical residues (*), and similar residues 

(.) indicated.  Inhibitory phosphorylation sites (●) within CamKII 

recognition motifs [S-F/Y-E/D] are also indicated. 
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indicated by the equilibrium dissociation constant (Kd) of Ets-1, was determined by 

electrophoretic mobility shift assay (EMSA). 

Substitution of positively-charged amino acid residues at the two sites of 

phosphorylation had no measurable effect on binding affinity, indicating that a simple 

introduction of positive charge is not sufficient to activate DNA binding in N279 Ets-1 

(Table 3.1).  Mutagenesis of the four Asp/Glu residues to alanine likewise had no 

significant effect on DNA-binding affinity.  However, mutation of these residues, or loss 

of the negative-charge they provide, abolished the Ca
2+

/calmodulin-dependent protein 

kinase II (CaMKII) consensus site for phosphorylation.  Therefore, the effect of these 

mutations on phosphorylation-induced inhibition could not be explored directly.  

Attempts to mimic the phosphates through amino acid substitution of serine 282 and 285 

with either aspartic acid or glutamic acid did not yield a potent, inhibited species, 

indicating that the negative charge provided by these residues, at the site of 

phosphorylation, was not sufficient to observe the 100-fold decrease in DNA-binding 

affinity.  It is also interesting to note that loss of electrostatic interaction potential in the 

SRR did not affect the level of basal autoinhibition.  These results suggested that 

phosphorylation-induced inhibition of Ets-1 DNA binding may not result from a direct 

charge-charge interface between the SRR and the regulatable unit.

Phosphorylation-induced inhibition of Ets1 is 

dependent upon aromatic residue 

 

To determine to role of hydrophobic or van der Waals interactions in Ets-1 

autoinhibition and phosphorylation effects, we mutated the aromatic residues (Φ) 

adjacent to the phospho-acceptor sites.  Mutagenesis of four aromatic residues (tyrosine 
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Figure 3.3 Aromatic residues are essential for phosphorylation effects.  (A) 

Phosphorimage of a representative Electrophoretic Mobility Shift Assay 

(EMSA) gel used in equilibrium binding studies.  For each binding 

experiment, a constant amount of radiolabeled DNA duplex containing a high 

affinity ETS binding site was mixed with an Ets-1 protein under varying 

concentrations between 10-13 and 10-6 M, with each lane representing a 3-fold 

increase.  Bound vs. unbound DNA was detected on a native gel and visualized 

by phosphorimaging and quantified.  (B,C) Equilibrium binding analysis 

performed without phosphorylation (open symbols) or with phosphorylation 

(closed symbols) of ΔN279  (B, circles) and ΔN279 with four aromatic SRR 

residues mutated to alanine (ΔN279 4ΦA) (C, squares).  DNA binding 

isotherms were generated, as described under “Materials and Methods,” with 

fraction bound DNA ( [PD] / [Dt] ) plotted against free protein concentration ( 

[protein] ).  Data points with error bars represent the average ± standard 

deviation for three independent experiments. 
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283, 288, and 291, and phenylalanine 286) to alanine had no effect on the DNA-binding 

affinity of Ets-1 (Figure 3.3 C; Figure 3.4).  Thus, the basal level of auto-inhibition was 

not dependent upon the SRR aromatic residues.  However, though complete 

phosphorylation was observed in the four aromatic residue-mutant (4ΦA), there was a 

dramatic loss of phosphorylation-induced inhibition.  Whereas the affinity of wild-type 

Ets1 ∆N279 was reduced 100-fold upon phosphorylation (Figure 3.3 B), only a modest, 

3-fold decrease was observed for the 4ΦA mutant (Figure 3.3 C).  Substitution of these 

four aromatic residues with glycine produced a similar effect on ΔN279 before and after 

phosphorylation (Figure 3.4).  Thus, the hydrophobicity of alanine was not playing a 

residual role in the observed 3-fold effect. 

The previously-studied full-length Ets-1 and ∆N244 fragment, which also display 

a 50-100 fold phosphorylation-induced decrease in binding affinity (Cowley and Graves, 

2000; Pufall et al., 2005), likewise lost the ability to be fully phospho-regulated upon 

introduction of the aromatics-to-alanine mutations (Figure 3.4).  These results suggest a 

mechanistic interdependence between phosphorylation effects and adjacent aromatic 

residues in the phosphorylation-induced inhibition of Ets-1 DNA binding.  We proposed 

that the phospho-acceptor / aromatic combination formed the functional unit of the SRR.

Variable phospho-regulation of Ets1 requires 

adjacent aromatic residues 

 

A previous report demonstrated the graded effect of individual phosphate 

additions on the binding affinity of Ets-1 (Pufall et al., 2005).  We hypothesized that this 

type of variable control could be recapitulated in the smaller ∆N279 fragment by creating 

variable numbers of phospho-acceptor / aromatic units (Ser-Φ-Asp).  Indeed, a graded 

increase in the level of phosphorylation-induced inhibition was observed following 
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substitution of native residues with increasing numbers of phospho-acceptor / aromatic 

units (Figure 3.5).  As with ∆N279, loss of the aromatic residues within these units 

abrogated the effects of phosphorylation on DNA binding.  These results demonstrated 

that phosphorylation-induced inhibition in Ets-1 could be graded across a wider range 

than is currently observed in a biological context and supports the proposal that 

phosphate moieties with adjacent aromatic amino acid residues are a functional unit of 

the SRR.

Loss of aromatic residues effects 

phosphorylation-induced 

structural changes 

 

Phosphorylation-induced structural changes in the regulatable unit, which 

function through shifts in the conformational equilibrium, have been linked with 

reinforcement of Ets-1 autoinhibition, i.e., reduced DNA-binding affinity (Lee et al., 

2008; Pufall et al., 2005).  These structural changes were detected by observing chemical 

shift changes (or perturbations) in
 1
H- 

15
N heteronuclear single quantum correlation 

(HSQC) spectra.  Based on the reduction in phosphorylation induced-decrease of DNA-

binding affinity for the aromatic mutant (Figure 3.3 B, C), we predicted a dampening of 

phosphorylation-induced chemical shift perturbations would be observed.  We recorded 

and compared HSQC spectra under identical conditions for ΔN279 and ΔN279
2p 

as well 

as ΔN279 4ΦA and ΔN279 4ΦA
2p

.  As amide chemical shifts are extremely sensitive to 

changes in chemical environment, some mild aromatic mutation-induced chemical shift 

perturbations were observed for residues within the regulatable units of the 

unphosphorylated proteins (Figure 3.6 - green spacers).  More importantly, the magnitude 

and directionality of the phosphorylation-induced chemical shift perturbations for these 
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Figure 3.5 Variable numbers of aromatic / 

phosphorylated serine units lead to variable DNA 

binding affinity.  (A) summary of EMSA binding data for 

ΔN279 proteins containing a variable number of the 

CaMKII phospho-acceptor motif [S-Y/F-D] replacing native 

sequence.  KD and fold inhibition, relative to ΔN301 

(ΔSRR), for ∆N279 and the SRR mutants indicated, in the 

absence and presence of phosphorylation.  +2p, +3p, +4p 

and +5p phosphorylation states were verified by ESI mass 

spectrometry.  (B) Logarithmic comparison of fold 

inhibition, relative to ΔN301 for ∆N279 and the SRR 

mutants indicated, in the absence and presence of 

phosphorylation.  For each protein, KD values represent the 

mean ± standard error for at least two experiments.  Fold 

inhibition ± propagated error is the ratio of mean 

experimental KD and the reported KD for Ets-1 ∆N301, with 

error  bars representing standard error of the ratio of the 

mean KD values of the tested species compared to ∆N301. 
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Figure 3.6 Individual changes in phosphorylation-

induced chemical shift perturbations.  (A) Changes to 

backbone amide 1H and 15N chemical shifts (Δshift) of the 

indicated amino acid residue upon phosphorylation of Ets-1 

ΔN279 (red), ΔN2792p (blue), ΔN279 4ΦA (cyan), and 

ΔN2792p 4ΦA (gold).  A relationship between the 

magnitude of chemical shift perturbation (Δshift) and 

degree of inhibition has been reported previously (Pufall et 

al., 2005; Lee et al., 2008).  The directionality and 

magnitude of the phosphorylation-induced Δshift for key 

residues is readily observed for ΔN279 (red  blue, solid 

arrow).  In the case of the 4ΦA aromatic mutant, however, 

not only has the magnitude of the Δshift been significantly 

reduced, but the direction has also been altered (cyan  

gold, dashed arrow), indicating a change in the way the 

conformational equilibrium is affected by phosphorylation 

in the aromatic mutant compared to wild-type.  Extreme 

ends of arrow heads and tails represent the center of shift 

peaks for phosphorylated and unphosphorylated samples, 

respectively.  Green spacers indicate aromatic mutation-

induced chemical shift perturbation of the 

unphosphorylated protein. 
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same residues in wild-type ΔN279 were noticeably diminished in the aromatic mutant 

following phosphorylation (Figure 3.6 - arrows).  These results provide independent 

evidence that the aromatic mutations are disrupting the established autoinhibitory 

mechanism of Ets-1. 

The regions of ΔN279 in which the pattern of phosphorylation-induced chemical 

shift perturbations was most altered included the SRR, the area spanning inhibitory helix 

HI-2 and helix H1 of the ETS domain, the region containing the DNA-contacting helix 

H3, and inhibitory helix H4 (Figure 3.7 A).  Phosphorylation-induced chemical shift 

perturbations for ∆N279 4ΦA, however, were markedly reduced in all of these areas 

relative to ∆N279 (Figure 3.7 B).  Two SRR aromatic residues (F286 and Y288) in 

particular, were significantly less affected by phosphorylation following mutation to 

alanine.  In summary, structural alterations observed within the regulatable unit upon 

phosphorylation of the aromatic mutant SRR were dampened compared to wild-type. 

Discussion 

 The focus of this study has been the biochemical basis for the transient interaction 

and inhibitory effects observed between the evolutionarily conserved, unstructured SRR 

and the regulatable unit of Ets-1.  We have demonstrated the absence of a major role for 

direct charge-charge interactions in the autoinhibitory mechanism of Ets-1, and the 

requirement for aromatic residues in the phosphorylation-induced inhibition of DNA 

binding.  We have also provided supporting evidence for the variable control of binding 

affinity through graded addition of phosphates within the context of the aromatic residue-

containing, CaMKII phospho-acceptor motif.  Finally, structural effects of 

phosphorylation of Ets-1 were also shown to be aromatic residue-dependent.  These 
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Figure 3.7 Global view of phosphorylation-induced 

chemical shift perturbations.  Changes to backbone 

amide 1H and 15N chemical shifts (Δshift) upon 

phosphorylation of Ets-1 ΔN279 (A) and ΔN279 4ΦA (B).  

Structural organization of ΔN279 is provided (above) for 

reference.  Δshift bars reaching above the shaded box are 

considered to be perturbed by phosphorylation (see 

Materials and Methods).  The absence of a bar indicates 

that the Δshift could not be measured unambiguously for a 

given residue due to spectral overlap or weak signals in at 

least one of the directly compared species.  Filled circles 

and asterisks represent the phospho-acceptor serines and 

prolines, respectively.  Two SRR aromatic residues (F286 

and Y288) are marked as previously indicated (Φ).  

Example residues from Figure 3.6 (S332, G333, K377, 

and L418) are also marked (red arrows).    
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findings provide evidence for a mechanistic interdependence between phosphates and 

adjacent aromatic residues in the phosphorylation-induced inhibition of Ets-1 DNA 

binding. 

 The structural model for autoinhibition in Ets-1 involves shifting the two-state 

conformational equilibrium of the regulatable unit from a dynamic-active to a rigid-

inactive state.  Phosphorylation of the flexible, unstructured SRR has been shown to 

promote the inactive state by stabilizing the inhibitory module and dampening the 

dynamics of the hydrophobic core (Pufall et al., 2005; Lee et al., 2008).  Mechanistically, 

this is achieved as the fast timescale motion of the SRR is decreased and the transient 

localization of the SRR to the regulatable unit is enhanced, whereby allosteric effects on 

regulatable unit dynamics occur.  This study provides insight into the chemical nature of 

the phosphorylation-enhanced autoinhibitory mechanism.  Though the negative charge of 

a phosphate moiety can certainly enhance electrostatic interactions (Gorbunoff, 1984), in 

the case of Ets-1 autoinhibition there does not appear to be a positively charged interface 

to which the net negatively-charged, phosphorylated SRR binds in a “lock-and-key”-type 

interaction.  This is evidenced by the relative insensitivity of phosphorylation-induced 

chemical shift perturbations to changes in salt concentration (Lee et al., 2008).  The 

phospho-enhanced stability of the regulatable unit against urea denaturation is also 

insensitive to changes in salt concentration (Lee et al., 2008).  Additionally, mutational 

analysis of the phospho-acceptor serines, reported in this work, indicates that positively-

charged amino acid substitution at those positions does not have an activating effect on 

DNA binding and that negatively-charged amino acid substitutions are not sufficiently 

strong to mimic the effects of phosphorylation (Table 3.1).  Loss of electrostatic 
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interaction potential through substitution of the four Asp/Glu SRR residues with alanine 

was also unable to activate DNA binding, suggesting that phosphate addition does not 

simply enhance those negative charges already dispersed throughout the SRR.  

Unfortunately, the position of acidic residues adjacent to the phospho-acceptor site is 

absolutely required for in vitro CaMKII phosphorylation.  Without effective phospho-

mimetic mutants, we could not test the effects of acidic residue loss on phosphorylation-

induced inhibition. 

 The under-representation of evolutionarily conserved aromatic residues in 

disordered, unstructured protein regions continues to be observed and predicted 

(Obradovic et al., 2003; Romero et al., 2001).  The surprising presence of four bulky, 

hydrophobic, aromatic residues in the unstructured SRR of murine Ets-1 led to our 

investigation of their possible role in the autoinhibitory mechanism (Figure 3.2).  Similar 

to the mutation of the four Asp/Glu residues, mutation of the four aromatic SRR residues 

to either alanine or glycine did not activate DNA binding in the unphosphorylated state 

(Figure 3.4).  However, upon phosphorylation of the two phospho-acceptor serines, the 

100-fold inhibitory effect observed for wild-type ΔN279 was almost completely lost in 

the ΔN279 4ΦA mutant (Figure 3.3 B, C).  Importantly, we were able to recapitulate the 

loss of inhibitory phosphorylation effects in full-length Ets-1, as well as the ΔN244 

truncation, by introducing the 4ΦA mutation (Figure 3.4).  Phosphorylation-induced 

perturbation of NMR chemical shifts for residues in ΔN279 was also diminished in 

overall effect and altered in pattern in ΔN279 4ΦA, indicating that phosphorylation-

induced, inhibitory structural changes to the regulatable unit are also dampened in the 
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aromatic mutant (Figure 3.6; 3.7).  This correlation between structural alterations and 

DNA-binding affinity is a hallmark of Ets-1 autoinhibition.  

 The SRR of full-length Ets-1 extends from residue 244-300 (Cowley and Graves, 

2000).  Within this larger region, a total of seven potentially modified Ca
2+

-dependent 

phosphorylation sites have been observed (Pufall et al., 2005).  However, of these, only 

three have been shown to contribute to the graded, inhibitory effects of phosphorylation 

on the DNA binding affinity of Ets-1 (Pufall et al., 2005).  All three of these phospho-

acceptor sites exist within the context of the conserved, CaMKII recognition motif [S-

Y/F-D/E].  We showed that artificial amplification of the phospho-serine / aromatic unit 

further inhibits Ets-1 DNA binding.  As the length of the SRR has proven to be an 

important contributing factor to the level of autoinhibition in Ets-1 (Lee et al., 2008), 

addition of phospho-acceptor motifs were engineered as substitutions for native amino 

acid residues, rather than insertions.  Interestingly, and consistent with other data 

presented in this work, phospho-acceptor motif-substitution within the SRR had no effect 

on the basal levels of DNA binding inhibition in ΔN279.  Upon full phosphorylation of 

the altered SRRs, however, a proportional increase in the level of inhibition is observed 

(Figure 3.5).  Moreover, these hyper-phosphorylation effects remain dependent upon the 

presence of the aromatic residue adjacent to the phospho-acceptor site. 

Taken together, these data suggest that the phosphorylation-induced changes to 

the SRR and regulatable unit are driven by transient hydrophobic or van der Waals 

intramolecular interactions, which are enhanced following covalent modification of the 

SRR by Ca
2+

-dependent kinase.  These interactions may exist between aromatic / 

hydrophobic residues in the SRR and the regulatable unit, or be confined to within the 
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SRR (Figure 3.8).  Further experimentation designed to observe structural alterations 

within an isolated SRR, as well as more precise paramagnetic relaxation enhancing 

(PRE) site-direct spin labeling (SDSL) experiments are already under way to elucidate 

the nature of the aromatic-dependent intramolecular interaction. 

Previous reports have described intrinsically unstructured domains that modulate 

the activity of a structured core through intramolecular interactions, as well as 

phosphorylation-mediated control of intrinsically disordered proteins (Honnappa et al., 

2006; Jonker et al., 2006).  Proposed mechanisms of action for the IUP regions have 

included participation as a ligand or other factor binding site, adopting structure / order 

upon modification, and even remaining functionally unstructured while masking a 

binding interface or making polyelectrostatic interactions (Borg et al., 2007; Dunker et 

al., 2005; Iakoucheva et al., 2004; Mittag et al., 2010; Oldfield et al., 2008; Serber and 

Ferrell, 2007).  We have discovered a new mechanism in Ets-1, whereby phosphorylation 

of an IUP region enhances a transient hydrophobic interaction, modulating the activity of 

a structured unit without adopting a structured conformation. 

Materials and methods 

Expression plasmids 

Mutation of acidic, aromatic, and phospho-acceptor serine residues within the 

SRR were performed by QuikChange site-directed mutagenesis (Statagene), and 

confirmed by DNA sequencing (University of Utah HCS Core DNA Sequencing 

Facility).  Substitution of native sequence for tandem repeats of the phospho-acceptor 

motif [S-Y/F-D] was accomplished by engineering unique restriction sites at the 5’ 

(Bsu36I) and 3’ (AvrII) end of the SRR coding sequence.  Restriction double digest was 
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used to excise the coding sequence for the SRR.  Parental vector was treated with Calf 

Intestinal Phosphatase (CIP), resolved on a 1% Agarose gel, and purified by gel 

extraction (Qiagen).  Complimentary 5’-phosphorylated oligonucleotides encoding 

mutant version of the SRR were ordered from the University of Utah HCS Core 

DNA/Peptide Facility, dissolved in water, and annealed by boiling for 5 minutes and 

cooling slowly over 6 - 8 hours.  Oligonucleotide duplexes were ligated into purified, 

open parental vector using T4 DNA ligase (Invitrogen).  Positive clones were screened by 

DNA sequencing and artificial restriction sites were reverted to native sequence through 

QuikChange.

Sample expression, purification, and 

phosphorylation 

 

Expression and purification of Ets-1 ΔN279 proteins from the pET28a vector 

(Invitrogen) were performed according to previous methods (Lee et al., 2008).  Proteins 

were expressed in E. coli BL21(λDE3) cells with cultures grown at 37 °C and induced at 

OD600 = 0.9 with 1 mM IPTG.  After continued growth for 3 hours at 30 °C, cultures 

were harvested by centrifugation at 7000 x g for 10 minutes, and resuspended in 25 ml 

extraction buffer (25 mM Tris, pH 7.5, 1 M NaCl, 0.1 mM EDTA, 10 mM imidizole, 2 

mM β-mercaptoethanol (BME), and 1 mM phenylmethylsulfonyl fluoride (PMSF).  

Following lysis by sonication, and ultra-centrifugation at 42,000 rpm for 45 minutes, 

soluble supernatant was bound to a 5 mL HisTrap Nickel Sepharose column (GE 

Biosciences) with the use of the ÄKTA FPLC system (Amersham Pharmacia Biotech).  

Purified proteins were eluted with a gradient of 10 mM-250 mM imidizole and peak 

fractions were detection by monitoring UV absorbance at 280 nm.  Like fractions were 

determined by resolving peak fractions on a 15% SDS polyacrylamide gel and visualized 
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by Coomassie staining.  Fractions were combined, treated with 5 units thrombin (Sigma) 

per mg ΔN279 protein and 2.5 mM CaCl2 to remove the His6-tag, and dialyzed overnight 

against 25 mM Tris, pH 7.9, 50 mM KCl, 1 mM ETDA, 2.5 mM CaCl2, 1 mM DTT, and 

10% (v/v) glycerol.  Following thrombin cleavage of the His6-tag, ΔN279 proteins 

contain a non-native, N-terminal tri-peptide motif (Gly-Ser-His).  The buffer exchanged, 

cleaved samples were submitted to ultra-centrifugation at 40,000 rpm for 40 minutes and 

soluble protein was loaded onto a 5 mL HiTrap S-Sepharose ion exchange 

chromatography column (GE Biosciences).  Purified proteins were eluted with a gradient 

of 50 mM-300 mM KCl, concentrated to < 13 ml, and loaded onto a HiLoad 26/60 

Superdex 75 gel filtration column (Pharmacia) for size exclusion chromatography.  

Unphosphorylated protein was eluted in storage buffer (25 mM Tris, pH 7.9, 300 mM 

NaCl, 1 mM EDTA, 1mM DTT, and 10% (v/v) glycerol), concentrated to between 20 

µM-50 µM and 25 µl aliquots were snap frozen in liquid nitrogen and stored at -80 °C for 

use in assay.  Protein identities were confirmed by intact molecular weight confirmation 

through electrospray ionization mass spectrometry (ESI-MS) (University of Utah HCS 

Core Mass Spectrometry Facility)  Protein concentrations were determined by two 

independent measurements; absorbance at 280 nm using the predicted ε280 of 38360 M-1 

cm-1 (Protein Properties Calculator - 

www.basic.northwestern.edu/biotools/proteincalc.html) and Bio-Rad protein assay 

compared to BSA standards. 

Concentrated proteins were phosphorylated for 1 - 2 hours at 30 °C in storage 

buffer plus 10 mM MgAcetate, 0.5 mM CaCl2, 1 µM Calmodulin (Sigma), 200 nM 

Ca
2+

/calmodulin-dependent protein kinase II (CaMKII), and 1 mM ATP (Sigma).  The 
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reaction was dialyzed overnight against 25 mM Tris, pH 7.9, 40 mM KCl, 1 mM ETDA, 

2.5 mM CaCl2, 1 mM DTT, and 10% (v/v) glycerol, followed by ultra-centrifugation at 

40,000 rpm for 40 minutes.  Soluble, phosphorylated proteins were then loaded onto a 

10/10 MonoQ FPLC column (Pharamcia) for strong ion-exchange chromatography and 

eluted with a gradient of 40 mM-300 mM KCl.  Purified, phosphorylated proteins were 

concentrated to > 20 µM and snap frozen in liquid nitrogen for storage at -80 °C.  

Homogeneity of phosphorylated proteins was verified by ESI-MS. 

Full length Ets-1 and ΔN244 proteins were purified as above, except without a 

His6-tag and Nickel Sepharose chromatography. 

Expression and purification of CaMKII 

Murine CaMKIIα was expressed from a baculovirus. Sf9 cells were grown in 

serum-free medium to a density of 2e10
6
 cells/mL, and infected with a P3 viral solution.  

The cells were harvested by centrifugation at >20% lysis, as observed by trypan blue 

staining, and resuspended in CaMKII buffer containing 10 mM Tris (pH 7.5), 1 mM 

ethylene glycol-bis-(2-aminoethyl) N,N,N',N'-tetraacetic acid (EGTA), 1 mM EDTA, 5 

mM DTT, and a mix of protease inhibitors.  Cells were then lysed using a Dounce 

homogenizer and centrifuged to remove insoluble material.  CaMKII was precipitated by 

the addition of 60% w/w (NH4)2SO4 to the supernatant, resuspended, and bound to a 

calmodulin column (CaM Sepharose, Amersham Biosciences).  The column was washed 

with CamKII buffer containing 1 M NaCl, and CaMKII was eluted with 50 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.5), 50 mM NaCl, 2 mM 

EDTA, 2 mM EGTA, 1 mM DTT, and 1 mM benzamidine.  Fractions containing protein 

were dialyzed into 100 mM HEPES (pH 7.5), 50% (v/v) glycerol, 10% (v/v) ethylene 
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glycol, 1 mM EDTA, 1 mM benzamidine, and 5 mM DTT, concentrated to ~30 µM, and 

stored at -20°C.

Electrophoretic Mobility-Shift Assay (EMSA) 

 

EMSAs of Ets-1 proteins were performed as previously described (Pufall et al., 

2005).  Equilibrium binding conditions were established between a single Ets-1 protein 

and a duplex of radio-labeled, 27-mer oligonucleotides containing a high affinity ETS 

binding site, termed SC1: 

5’- TCGACGGCCAAGCCGGAAGTGAGTGCC -3’ (top strand); 

5’- TCGAGGCACTCACTTCCGGCTTGGCCG -3’ (bottom strand). 

Oligos were labeled with [γ
32

-P] ATP using T4 polynucleotide kinase (Invitrogen) 

and annealed by boiling for 5 minutes and slowly cooling over 6 - 8 hours.  DNA 

concentration was kept constant at 2.5e
-12

 M, while Ets-1 protein concentrations ranged 

over six orders of magnitude.  Reactions were incubated for 3 - 4 hours in a buffer 

containing 25 mM Tris, ph 8.0, 0.1 mM EDTA, 60 mM KCl, 6 mM MgCl2, 200 µg/mL 

BSA, 10 mM DTT, 2.5 ng/µl poly dIdC, and 10% (v/v) glycerol, and resolved on an 8% 

native polyacrylamide gel.  Gels were dried using a Bio-Rad gel dryer and exposed to a 

blank phosphorimage screen overnight.  Binding reactions were visualized and quantified 

by phosphorimaging on a STORM scanner.  Equilibrium dissociation constants (KD) 

were measured by non-linear least squares fitting of the free protein concentration [P] 

versus fraction of DNA bound ([PD]/[D]t) to the equation [PD]/[D]t = 1/(1 +(KD/[P])) 

using Kaleidagraph (v 3.51, Synergy Software).  DNA concentration is kept constant at 

10 - 100 fold lower that the predicted and confirmed KD to create conditions under which 
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unbound protein [P] is in excess for all reactions.  These conditions allow for the 

assumption the [P] is equal to total protein [Pt]. 

Preparation of protein samples for NMR 

E. coli were freshly transformed and grown in M9 minimal medium supplemented 

with vitamins.  
15

N labeling was accomplished by the addition of 1 g 99% 
15

NH4Cl, 10 g 

glucose, and 10 mg Celtone-N (Cambridge Isotopes) per liter of media.  Cultures were 

induced at OD600 = 0.9 with 1 mM IPTG, growth for 4 hours at 30 °C, and harvested, 

purified, and phosphorylated as described above.  Samples were dialyzed against 20 mM 

sodium phosphate (pH 6.5), 0.1 mM EDTA, 1 mM DTT and 50 mM NaCl for spectral 

data collection and comparisons with other Ets-1 fragments.  Final sample concentrations 

were 0.3 to 0.5 mM for ΔN279 proteins. 

Calculation of chemical shift perturbations 

15
N labeled versions of wild type ΔN279 and ΔN279 4ΦA with and without 

phosphorylation were expressed and purified as described above.  
1
H-

15
N HSQC spectra 

were recorded under identical conditions: 20 mM sodium phosphate (pH 6.5), 0.1 mM 

EDTA, 1 mM DTT, 50 mM NaCl, at 25°C.  A linear change in chemical shifts (was 

calculated as follows: [(1H)
2
 + (15N/(6.5))

2
]

1/2
.   values greater than 5-fold over the 

estimated background were considered significant.  All NMR spectra were recorded on a 

cryoprobe-equipped Varian Inova 600 MHz spectrometer at 25 °C.  A typical NMR 

sample consisted of 0.3–0.5 mM protein in 0.35–0.50 mL of NMR buffer (listed above).  

The sample conditions were adjusted by dialysis and concentration using Amicon Ultra 
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3K Centrifugal Filter Devices (Millipore Corp.).  Spectral processing and analysis were 

performed with NMRpipe and Sparky. 
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Cell signaling and transcriptional regulation of gene expression 

Proper biological growth and development is dependent upon the cells ability to respond 

to the need for changes in gene expression.  Cell signaling pathways, often culminating in 

posttranslational modification of target proteins, are a common means of relaying information 

about cellular needs.  Transcription factors that bind DNA in a sequence-specific manner are 

vital for this kind of regulation.  Ets-1 is a sequence-specific DNA-binding protein which 

responds to at least two distinct signaling pathways, resulting in transcriptional responses. 

Autoinhibition of Ets-1 controls its DNA-binding ability and can be alleviated by protein 

partnership, or enhanced by Ca
2+

 signaling-induced phosphorylation of specific serine residues 

located in a disordered region adjacent to the DNA-binding and autoinhibitory domains.  The 

mechanistic role of phosphorylation in this unstructured serine-rich region (SRR) is the scope of 

this project. 

Summary 

This dissertation describes an advance in our understanding of how Ets-1 autoinhibition 

is regulated in a structural manner and how an intrinsically unstructured protein (IUP) region 

functions in biology.  Prior to this work, a connection between changes in DNA binding affinity 

and structural alterations was reported for Ets-1 (Pufall et al., 2005).  To investigate the 

relationship between these changes, we fully characterized a minimal C-terminal fragment of 

Ets-1 (ΔN279), which recapitulates the DNA-binding affinity of the full length protein before, 

and after Ca
2+

-dependent phosphorylation (Chapter 2).  Having done this, we were able to 

monitor and report the direct effects of phosphorylation on the unstructured SRR and structured 

regulatable unit of the same Ets-1 protein.  Our next goal was to elucidate the chemical forces 

responsible for these phosphorylation effects in an effort to understand how the flexible, 
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unstructured SRR performs its function (Chapter 3).  We found no evidence for a dominant 

electrostatic interaction affecting the affinity of ΔN279.   However, the 100-fold decrease in 

DNA-binding affinity observed upon phosphorylation of ΔN279 was almost completely lost 

following mutation of four SRR aromatic residues to alanine (4ΦA) or glycine (4ΦG).  This loss 

of phosphorylation effect was also observed upon mutation of the same aromatic residues in the 

longer ΔN244 fragment, the full length Ets-1 protein, and a hyper-phosphorylated ΔN279 

mutant.  A comparable reduction in phosphorylation-induced structural alterations was also 

observed, once again connecting inhibitory structural changes with the DNA-binding affinity of 

Ets-1. 

Discussion 

A model for autoinhibition in Ets-1 

The ability of Ets-1 to bind DNA with high affinity is controlled by autoinhibition 

(Jonsen et al., 1996).  Biochemical and structural studies of Ets-1 have led to the development of 

the following model.  In the absence of DNA, the regulatable unit (ETS domain and inhibitory 

module) exists in a conformational equilibrium between an active state, which is competent to 

bind DNA, and an inactive state, which is refractory to binding (Lee et al., 2008).  The active 

state is characterized by an unfolded inhibitory helix HI-1 and a high degree of internal 

molecular motion.  The inactive state, in contrast, displays a folded helix HI-1 and a reduced 

level of internal dynamic character.  A single Ets-1 protein, therefore, exists in equilibrium 

between these two states, without adopting a steady, average conformation.  Cellular events 

resulting in a change in DNA-binding affinity stabilize one conformation over the other, shifting 

the equilibrium towards the active or inactive state.  Binding partners, such as RUNX1, have 

been shown to increase Ets-1 binding affinity in vitro, and are thought to stabilize the dynamic, 
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active conformation (Goetz et al., 2000).  The unstructured SRR has been shown to promote the 

inactive state by partially stabilizing the inhibitory module and dampening the internal molecular 

motion of Ets-1 (Pufall et al., 2005).  This, of course, causes a measurable reduction in DNA 

binding affinity.  Ca
2+

-dependent phosphorylation of the SRR further stabilizes the inhibitory 

module, reduces the internal dynamic motions, and dramatically decreases Ets-1 DNA-binding 

affinity.  Insights into how an unstructured protein region can have such a profound effect come 

from studying the region itself (Lee et al., 2008).  Though phosphorylation does not induce any 

predominant secondary structure, the fast timescale mobility of the SRR is partially reduced 

following phosphate addition.  Accompanying this decrease in dynamic motion is an enhanced 

localization of the SRR to the regulatable unit.  Phosphorylation-induced structural and binding 

effects can be disrupted by mutating four aromatic residues adjacent to the phospho-acceptor 

sites (Chapter 3).  Therefore, we conclude that phosphorylation function with the aromatic 

residues to regulate autoinhibition and control Ets-1 binding affinity. 

The phosphate-aromatic connection 

IUP regions are commonly identified by observing a low content of bulky amino acid 

residues, including tyrosine, phenylalanine, and tryptophan (Obradovic et al., 2003; Romero et 

al., 2001).  When aromatic residues are reported in unstructured regions, they are often shown to 

be near sites of posttranslational modification.  These aromatic residues are frequently required 

for binding to the enzyme active site, as with the unstructured C-terminal tail of Ddc1, a subunit 

of the 9-1-1 checkpoint clamp (Navadgi-Patil and Burgers, 2009).  Phospho-acceptor site-

associated aromatic residues in Ddc1 are essential for Mec1/ATR activation because they are 

required for phosphorylation of the adjacent sites.  Another commonly reported feature of 

aromatic residues in modified IUP regions is their requirement for binding-induced structure 
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formation, as with the intrinsically disordered KID domain of the transcription factor CREB 

(Sugase et al., 2007).  In this case, the KID domain becomes phosphorylated and undergoes a 

disordered-to-ordered transition, forming two α-helices that interact with the KIX domain of the 

co-activator p300.  The formation of the helices and subsequent intermolecular interaction are 

dependent upon three bulky, hydrophobic residues that lie on one face of helix αB.  The SRR of 

Ets-1, however, has not been shown to adopt any predominant secondary structure upon 

phosphorylation or inter/intramolecular interaction and is still efficiently bound and modified by 

Ca
2+

-dependent kinase upon mutation of adjacent aromatic residues to alanine or glycine 

(Chapter 2; Chapter 3).  The persistent disorder observed in the SRR of Ets-1 may be an essential 

part of its novel functional mechanism.  In discussing Ets-1 autoinhibition, one research group 

noted that a disordered conformation may permit more fine-tuned regulation, as it permits rapid 

access to both kinase and phosphatase, allowing integration of multiple signaling pathways and 

the modulation of transcription at the level of DNA binding (Mittag et al., 2010).  Additionally, 

because transient hydrophobic clustering is not highly specific, the enhanced interaction may be 

more sensitive to variable phosphorylation in both number and location of the modification.  In 

this way, dynamic character is an evolutionary conserved mechanism for creating the observed 

“rheostat” behavior.  This transient hydrophobic clustering may occur between residues within 

the SRR itself, causing the observed decrease in sub-nanosecond timescale motion (Figure 3.8).  

The partial restriction of mobility would result in an apparent enhancement of the intramolecular 

interaction, as both time of interaction and proximity may increase.  Alternatively, 

phosphorylation may force aromatic residues in the SRR to cluster transiently with surface-

exposed hydrophobic residues of the regulatable unit.  Indeed, a large pocket of hydrophobic 

residues has been observed at the surface of transient interaction (Lee et al., 2008).  This 
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interaction could also result in a dampening of SRR mobility and, of course, an enhanced 

localization to the regulatable unit. 

The dynamic core of Ets-1 

According to the allosteric model for Ets-1 autoinhibition, the inhibitory module is 

intramolecularly connected to the DNA-binding domain through a dynamic, hydrophobic core of 

amino acid residues (Figure 1.6).  The magnitude of NMR chemical shift perturbations for these 

residues is proportional to the level of inhibition.  Dampening of the internal molecular motion of 

this dynamic core is associated with a decrease in DNA-binding affinity and other inactive 

conformation indicators, while fragments displaying a higher degree of dynamic motion bind 

DNA with higher affinity (Cowley and Graves, 2000; Jonsen et al., 1996; Pufall et al., 2005).  

This pattern is reminiscent of the dynamic regulation of internal molecular motion for the 

bacterial lac repressor (Kalodimos et al., 2004).  Only a highly dynamic form of the lac repressor 

protein is capable of scanning DNA sequences in search of a sequence-specific binding site.  One 

might envision an evolutionarily conserved mechanism in which phosphorylation-induced 

dampening of Ets-1 dynamics leads to changes of sequence specificity, and/or the level of Ets-1 

core dynamics changes in response to sequence-specific DNA binding.  In this way, the dynamic 

character of Ets-1 allows the conformational sampling required for Ets-1 to actively bind DNA, 

while a less dynamic form of the protein displays reduced DNA-binding affinity.  

Phosphorylation of the unstructured SRR may enhance transient interactions between adjacent 

aromatic residues and partially exposed, dynamic core residues.  Though a fixed interface may 

never be observed, multiple short-lived hydrophobic interactions could act to dampen the 

internal molecular motion of the core, decreasing the dynamic conformational sampling required 

for high affinity DNA binding. 
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Future directions 

Aromatic residue-dependent SRR localization 

 Chapter 2 of this dissertation reports a transient interaction between the unstructured SRR 

and structured regulatable unit, observed by measuring NMR paramagnetic relaxation 

enhancement (PRE).  This interaction is enhanced following phosphorylation of the SRR.  In 

Chapter 3, the phosphorylation-induced decrease in Ets-1 DNA-binding affinity was shown to be 

aromatic residue-dependent.  Our model predicts that the phosphorylation-induced enhancement 

of the transient interaction is also dependent upon the presence of aromatic residues adjacent to 

the phospho-acceptor sites.  Recent improvements in the use of site-directed spin labels (SDSL) 

for measuring PRE have increased the utility and accuracy of this type of NMR spectroscopy.  

SDSL experiments comparing phosphorylation effects in ΔN279 with ΔN279 4ΦA are in 

progress. 

Analysis of the SRR in isolation 

Ca
2+

-dependent phosphorylation has been shown to decrease the sub-nanosecond 

timescale mobility of the SRR (Lee et al., 2008).  Phosphorylation effects have been shown to be 

aromatic residue-dependent (Chapter 3).  Transient hydrophobic clustering has been implicated 

as the mechanism of phosphorylation-induced inhibition of Ets-1.  This transient interaction may 

take place between the SRR and the regulatable unit or between residues located within the SRR.  

By studying the SRR in isolation (without the presence of the regulatable unit) we can determine 

whether the phosphorylation-induced decrease in fast timescale motion requires complimentary 

residues on the surface of the regulatable unit.  If phosphorylation effects are observed in the 

isolated SRR, an isolated aromatic mutant SRR should be refractory to these effects.  If the 

mobility of the isolated SRR is not affected by phosphorylation, and interaction with the 
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regulatable unit is required to detect these effects, the presence of phospho-specific NMR 

chemical shift perturbations would be observed only upon titration of the isolated, 

phosphorylated SRR onto the regulatable unit.  We have already been successful in expressing 

and purifying the isolated SRR with and without phosphorylation.  Though DNA-binding studies 

aimed at inhibiting the regulatable unit by adding the phosphorylated SRR in-trans were 

inconclusive (data not shown), NMR experiments exploring the effects of phosphorylation on an 

isolated SRR, as well as adding the phosphorylated SRR to the regulatable unit in-trans, are 

currently underway.  As the transient nature of this intramolecular interaction may require the 

high local concentration brought about by a cis-acting SRR, the affinity of the phosphorylated 

SRR for the regulatable unit may be enhanced by the use of the hyper-phosphorylated SRR 

described in Chapter 3. 

Binding-induced changes to Ets-1 dynamics 

An evolutionarily-conserved mechanism, like that observed for the bacterial lac 

repressor, in which protein dynamics regulates binding affinity, has been suggested for Ets-1 

(Kalodimos et al., 2004; Pufall et al., 2005).  Accordingly, changes in the dynamic internal 

molecular motion of Ets-1 are predicted upon DNA binding.  Determination of the dynamic 

character of Ets-1 ΔN279 bound to an optimized, high-affinity DNA sequence, and a low-affinity 

sequence will test whether this mechanistic model plays a role in binding tolerance to a range of 

biological sites.  In addition, cooperative protein partnership, which has been shown to increase 

Ets-1 DNA-binding affinity in vitro, may also function by affecting protein dynamics.  

Monitoring the dynamic character of Ets-1 ΔN279 in the presence of cooperative binding 

partners, such as RUNX1, will contribute to a thorough understanding of how Ets-1 dynamics 

and DNA-binding affinity are connected. 
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