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Flies are capable of stabilizing their body during free flight by using 
visual motion information to estimate self-rotation. We have built a hard­
ware model of this optomotor control system in a standard CMOS VLSI 
process. The result is a small, low-power chip that receives input directly 
from the real world through on-board photoreceptors and generates mo­
tor commands in real time. The chip was tested under closed-loop con­
ditions typically used for insect studies. The silicon system exhibited 
stable control sufficiently analogous to the biological system to allow for 
quantitative comparisons.

1 Introduction___________________________________________________

Flies use  v isua l m otion  in fo rm ation  to  estim ate se lf-ro tation  an d  generate  a 
com pensa to ry  to rque response to  m ain ta in  stab ility  d u rin g  flight. This w ell- 
s tu d ied  behav io r is kn o w n  as the op tom oto r response. It is in teresting  from  
an  eng ineering  s ta n d p o in t because it extracts re levan t in fo rm ation  from  a 
dynam ic, u n s tru c tu re d  env ironm en t on  the basis of passive sensors an d  uses 
th is in fo rm ation  to  generate  ap p ro p ria te  m o to r com m ands d u rin g  flight. 
This system  is im p lem en ted  in  b iological h a rd w are  th a t is m a n y  o rders of 
m ag n itu d e  sm aller an d  m ore p o w er efficient th a n  charge-coupled  device 
(CCD ) im agers coup led  to  a conven tional d ig ital m icroprocessor.

M uch of the com p u ta tio n  u n d erly in g  the op tom oto r contro l system  is 
perfo rm ed  by  the ho rizon tal system  (HS) cells of the fly v isua l system  
(Geiger & N assel, 1981, 1982; Egelhaaf, H ausen , R eichardt, & W ehrhahn, 
1988; H au sen  & W ehrhahn , 1990; E gelhaaf & Borst, 1993). The three HS cells 
(HSN, HSE, an d  HSS) belong  to  a g ro u p  of 50 to  60 g ian t tangen tia l neu ­
rons hav ing  large dendritic  a rboriza tions in  the lobu lar p la te  region of the 
optic lobe (H ausen , 1981, 1982, 1984; H engstenberg , 1982; K rapp  & H eng- 
stenberg , 1996). HS cells are n onsp ik ing  n eu rons th a t are dep o larized  by  
full-field v isua l m otion  from  the fron t to  the back of the eye an d  hy p er­
po la rized  b y  back-to-front m otion. Each HS cell in teg rates signals from  an  
ip silateral retino top ic a rray  of elem en ta ry  m otion  detectors (EM Ds), un its  
in  the m ed u lla  th a t estim ate local m otion  in  sm all areas of the v isua l field.
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The HS cells synapse onto  descend ing , sp ik ing  neu rons, w h ich  relay  infor­
m ation  to  the m o to r cen ters of the thoracic ganglion.

We b u ilt a  single-chip  in teg ra ted  im ager an d  ana log  com pu ter th a t m im ­
ics the fly op tom otor control system  an d  p roduces com pensa to ry  m otor 
signals in  real tim e. Based on earlier w o rk  b y  M ead  an d  colleagues, w e 
use s ta n d a rd  CM OS field-effect transisto rs opera ting  in  the sub th resho ld  
regim e w here  the sou rce-d rain  cu rren t th ro u g h  the transis to r is exponen ­
tia lly  rela ted  to  its gate vo ltage (M ead, 1989). S im ilar to  n eu ra l system s, all 
our com pu tations are perfo rm ed  in  para lle l b y  ana log  an d  d is trib u ted  cir­
cuits opera ting  in  con tinuous tim e. There is no  softw are; the algo rithm  is 
en tirely  specified b y  the circuit architecture.

Several researchers have b u ilt h ard w are  m odels of insect v isua l system s 
w ith  analog  VLSI (A ndreou  & S trohbehn , 1990; D elbrnck, 1993; Sarpeshkar, 
Bair, & Koch, 1993; E tienne-C um m ings & Van der Spiegel, 1996; M oini et 
al. 1997), d iscrete ana log  hard w are  (Franceschini, P ichon, & Blanes, 1992), 
an d  trad itional CPUs w ith  CC D  cam eras (Srinivasan, C hahl, & Z hang , 1997; 
Lew is, 1998), m an y  of w h ich  have been  in co rpo ra ted  in to  m obile robots. The 
com parisons m ade to  b io logy  have been  qualita tive in  natu re . We p resen t 
here a m ore r igo rous app roach  to  n eu rom orph ic  eng ineering  in  w hich  h a rd ­
w are  m odels are eva lua ted  b y  d irectly  rep licating  experim en ts orig inally  
perfo rm ed  on the ir biological coun terparts.

2 Description of Hardware M od el_________________________________

O ur m otion  detector arch itecture is a delay-and-corre la te  schem e sim ilar 
to  th a t th a t first p ro p o sed  b y  H assenste in  an d  R eichard t (1956) to  explain  
beetle behavior, w here  a  tem pora lly  b an d p a sse d  signal from  one pho to re­
cep tor is m u ltip lied  w ith  the delayed  b an d p assed  signal from  an  adjacent 
photoreceptor. The resu lt is sub trac ted  from  the m irror-sym m etric  opera­
tion  to  rem ove the d irectional insensitive com ponent. The o u tp u t of m any  
such  EM Ds sensitive to  m otion  a t d ifferent locations is a d d e d  an d  low -pass- 
filtered to  g ive the final o u tp u t signal th a t the insect uses to  stabilize its flight. 
There is good  ev idence th a t correla tion-based  EM Ds form  the basis of the 
op tom otor system  in the fly (R eichardt & Egelhaaf, 1988; Borst & Egelhaaf, 
1989).

O ur chip  consists of an  a rray  of pho to recep to rs an d  EM Ds w hose o u tp u ts  
are su m m ed  (see F igure 1). A  lens m o u n ted  over the chip  focuses the im age 
of the ou tside  w o rld  on to  the silicon surface. Each elem en ta ry  m otion  de­
tector uses p h o to d io d es as ligh t sensors. We use a four-transisto r adap tive  
pho to recep to r circuit developed  b y  D elbrnck  (D elbrnck & M ead, 1996) tha t 
p roduces a con tinuous-tim e o u tp u t vo ltage p ro po rtiona l to  the logarithm  
of ligh t in tensity  (see F igure 2a). This circuit has a tem pora l low -pass char­
acteristic w ith  a  cutoff frequency  th a t can be set w ith  a  bias voltage. The 
pho to recep to r is connected  to  a tem pora l deriva tive  circuit (M ead, 1989) 
(see F igure 2b), w hich  has a h igh-pass behavior. T ransient firing, charac-
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Figure 1: M odel of the fly optom otor system im plem ented in silicon. Pho­
toreceptor ou tpu ts are tem porally bandpass filtered and fed into H assenstein- 
Reichardt elem entary m otion detectors (EMDs) consisting of first-order low- 
pass filters (r =  40 ms) followed by multipliers. The HS cell is m odeled sim ply 
as a spatial sum m ation of opponent EMDs. The HS cell response is passed 
through an off-chip low-pass filter (r =  680 ms), mim icking the behavior of the 
thoracic m otor centers, to generate the torque response. The silicon im plem en­
tation includes 13 EMDs w ith  integrated photoreceptors on a single 2.2 m m  x 
2.2 m m  chip fabricated in a standard  2.0 ^ m  CMOS process.

teristic of a  tem pora l h igh-pass response , has been  observed  in  fly lam inar 
cells th a t receive in p u t from  retinal pho to recep to rs (W eckstrom , Juuso la, & 
L aughlin , 1992). Together, the low -pass filtering  of the pho to recep to r an d  the 
h igh-pass filtering  of the tem pora l deriva tive  circuit fo rm  a b an d p a ss  filter, 
w h ich  im proves perfo rm ance b y  e lim inating  D C  illum ination  (w hich con­
ta ins no m otion  in form ation) an d  a tten u a tin g  h igh-frequency  noise such  as 
the 120 H z flicker of AC incandescen t lighting . These b an d p ass  filters w ere 
set to  a ttenua te  frequencies below  2.8 H z  an d  above 10 H z.

The tem pora l deriva tive  circuit relies on  a h igh-gain  differential am plifier 
in  a negative feedback configuration  to  keep  the vo ltage on the capacitor 
equal to  the in p u t voltage. As the capacitor charges an d  d ischarges to  m ain-
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ta in  th is equality , the cu rren ts th ro u g h  the tw o  source follow er transisto rs 
(labeled “sf"  in  F igure 2b) m ay  be m easured . The o u tp u ts  of the tem poral 
deriva tive circuit are these tw o  un id irectional cu rren ts , w h ich  are p ro p o r­
tional to  the positive an d  negative com ponen ts of tem pora l deriva tive of 
the in p u t voltage. This resem bles the O N  an d  OFF channels found  in  m an y
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biological visual systems. One study  suggests ON and OFF channels are 
present in the fly (Franceschini, Riehle, & Nestour, 1989), bu t the evidence 
is mixed (Egelhaaf & Borst, 1992).

We use the phase lag inherent in a first-order low-pass filter as a time de­
lay. The currents from the tem poral derivative circuit are passed to current­
m ode first-order low-pass filter circuits (see Figure 2c) (Himmelbauer, Furth, 
Pouliquen, & Andreou, 1996). These are log-dom ain filters that take advan­
tage of the exponential behavior of field-effect transistors (FETs) in the sub­
threshold region of operation. N ote that tw o filters are needed for each EMD: 
one for the ON channel and one for the OFF channel, w hich are processed in 
parallel. The time constant of the filters is controlled w ith a bias current that 
can be set externally. This time constant can be changed to tune the EMD to 
a specific optimal tem poral frequency. For all the experim ents described in 
this article, we fixed this time constant to 40 ms. This gave our chip a max­
im um  tem poral frequency sensitivity of 4 Hz, similar to motion-sensitive 
neurons in flies (O'Carroll, Bidwell, Laughlin, & W arrant, 1996).

To correlate the delayed and nondelayed signals for m otion com puta­
tion, we use a current-m ode m ultiplier circuit (see Figure 2d). This circuit 
takes advantage of the exponential behavior of subthreshold FETs to per­
form a com putation. Two diode-connected FETs convert the input currents 
into log-encoded voltages. The w eighted sum  of these voltages is com puted 
w ith the capacitive divider on the floating gate of the ou tput transistor, and 
this transistor exponentiates the sum m ed voltages into the ou tput current, 
com pleting the multiplication. A ny trapped  charge rem aining on the float­
ing gates from fabrication is elim inated by exposing the chip to ultraviolet 
light, w hich im parts sufficient energy to the trapped  electrons to allow pas­
sage through the surrounding insulator. This circuit represents one of a 
family of floating-gate MOS translinear circuits developed by M inch that 
are capable of com puting arbitrary pow er laws w ith current-m ode signals 
(Minch, Diorio, Haster, & M ead, 1996). After m ultiplication is perform ed in 
both the ON and OFF channels, these two signals are sum m ed.

Figure 2: Facing page. EMD subcircuits. (a) Photoreceptor. This circuit produces 
an output voltage proportional to the logarithm of light intensity, (b) Temporal 
derivative circuit. In combination with the low-pass filter inherent to the pho­
toreceptor, this forms a temporal bandpass filter with a current-mode output.
(c) Low-pass filter. The time constant of this first-order filter is determined by 
the bias current JT (which is set by a voltage supplied from off-chip) and the 
capacitance C. (d) Multiplier. The devices shown are floating-gate nFET transis­
tors with capacitive inputs. The two inputs couple to the floating gate, forming 
a capacitive divider. The input transistors are diode connected, which converts 
the input currents into log-encoded voltages. The capacitive divider on the out­
put transistor computes a weighted sum of these voltages. The output transistor 
produces a current proportional to the exponental of this sum.



2296 Reid R. Harrison and Christof Koch

One entire EMD (left and right channels) consists of 31 transistors and 25 
capacitors with 8.0 pF of total capacitance. Each EMD takes 0.044 mm2 of silicon 
area in a 2.0 ^m  CMOS process, including the integrated photoreceptors. By op­
erating most of the transistors in the subthreshold regime, we achieve extremely 
low power dissipation (approximately 7.5 / iW  per elementary motion detector).

We built a simple model of the HS cell by constructing a one-dimensional 
array of 13 complete EMDs and linearly summing their outputs. This is easily 
achieved due to the current-mode nature of the EMD output signals; we simply 
tie all the wires together. Dendritic integration is likely to be nonlinear. When 
stimulus size is increased, motion-sensitive neurons in the fly exhibit gain con­
trol, where the response increases less than linearly with size (Borst, Egelhaaf, 
& Haag, 1995; Single, Haag, & Borst, 1997). Our model does not include this 
nonlinear size dependence, but all our experiments use patterns of fixed size.

Figure 3 shows the response of the EMD array to sinusoidal gratings with 
varying temporal frequencies. Data from a fly wide-field motion neuron is 
shown for comparison. Both motion detectors show temporal frequency tun­
ing that is characteristic of the delay-and-correlate motion detector (Adelson 
& Bergen, 1985). The greater width of the fly tuning curve is probably due to 
adaptation of the EMD low-pass filter time constant (de Ruyter van Steveninck, 
Zaagman, & Mastebroek, 1986; Borst & Egelhaaf, 1987; Clifford, Ibbotson, & 
Langley, 1997). Also, bandpass filtering of the photoreceptor signals attenuates 
low- and high-frequency stimuli in our VLSI model. We have measured the re­
sponse of our EMD circuit to drifting sinusoids while varying spatial frequency 
and direction, and have shown that the circuit exhibits tuning similar to that 
observed in insect motion-sensitive neurons (data not shown; see Harrison & 
Koch, 1998).

3 Measuring the Optomotor R esponse_____________________________

3.1 Experiments Previously Performed on Flies. Warzecha & Egelhaaf 
(1996) recently characterized the optomotor behavior of the fly under closed- 
loop conditions. A female sheepfly (Lucilia cuprina, Calliphoridae) was rigidly 
attached to a meter that measured yaw torque produced while the fly attempted 
to turn in response to visual stimuli (see Figure 4a), reducing the fly's behavior 
to a single degree of freedom. Vertical bars were presented to a large region 
of the fly's visual field and could be drifted clockwise or counterclockwise. In 
closed-loop experiments, the fly's yaw torque was measured in real time and 
scaled by a constant gain term to yield angular velocity. This simulates the 
observed dominance of air friction in determining the instantaneous angular 
velocity in flies (Reichardt & Poggio, 1976). The fly's simulated angular velocity 
was subtracted from the angular velocity imposed by the experimenter. The 
resulting signal was used to control the drift rate of the visual stimulus. This 
simulated free-flight conditions and allowed evaluation of the optomotor system 
performance.

The imposed motion schedule consisted of 3.75 s of zero imposed motion, 
then 7.5 s of clockwise rotation at 44 degree s_1. Figure 5a shows the torque
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T em poral F req u en cy  [Hz]

Figure 3: Normalized temporal frequency response of silicon (circles) and fly 
(triangles) motion detectors. Both systems exhibit temporal frequency tuning 
characteristic of correlation-based motion detection schemes. (Temporal fre­
quency is proportional to velocity for constant spatial frequency.) The width 
of the fly tuning curve is probably due to adaptation of the EMD low-pass filter 
time constant (Clifford et al., 1997). The stimulus used for the silicon EMD array 
was a sinusoidal grating with a spatial frequency of 0.03 cycles deg_1, resulting 
in two- to three-pattern wavelengths across the photodetector array. Error bars 
denote standard deviation of chip response during an 800 ms recording interval 
(2 kHz sampling rate), indicating some residual pattern dependence. Fly data 
are normalized mean spike rate (spontaneous activity subtracted) taken from 
an unspecified lobular plate wide-field motion neuron in the blowfly (Calliphora 
erythrocephala). Fly data redrawn from O'Carroll et al. (1996).

data and resulting stimulus position for an individual trial. Figure 5b shows 
the averaged data over 139 trials in a total of five animals. (See Warzecha & 
Egelhaaf, 1996, for details on the experimental protocol.)

The fly is able to stabilize its flight and cancel out most of the imposed motion. 
Simulation results suggest that the nonmonotonic temporal frequency response 
of Reichardt motion detectors results in greater stability for the optomotor con­
trol system (Warzecha & Egelhaaf, 1996). The individual trials show an oscil­
latory component to the torque response around 2 Hz. This oscillation is not 
linked to the stimulus since it is not present in the average torque trace. Oscilla-
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tions are not observed under open-loop conditions, suggesting they arise from 
optomotor feedback (Geiger & Poggio, 1981; Warzecha & Egelhaaf, 1996). No­
tice that despite the large amplitude of the torque oscillations, the position trace 
is not dominated by this effect. This fluctuation amplitude, in terms of number 
of photoreceptors, is close to the amplitude observed in human microsaccades 
(Warzecha & Egelhaaf, 1996). Poggio and colleagues observed similar oscilla­
tions in closed-loop experiments and proposed that they arose from the 60-75 ms 
synaptic delay inherent in the fly visual system (Geiger & Poggio, 1981; Poggio 
& Reichardt, 1981).

3.2 Duplicating Experiments with the Silicon System. We were able to 
replicate these experiments with our silicon analog of the optomotor system 
(see Figure 4b). To provide visual stimulation, we used an LED display with 
a 200 Hz refresh rate, which is currently being used to test flies in closed-loop 
experiments. The stimulation time schedule was identical to the fly experiments, 
but an angular velocity of 50 degrees s_1 was used. Our chip had a much smaller 
field of view (10 degrees) than the fly's, so we set the stimulus distance such that 
the EMD array saw approximately one wavelength of the pattern. The output 
signal from the silicon model of the HS cell was passed through an off-chip first- 
order low-pass filter with a time constant of 680 ms, modeling the behavior of 
the thoracic motor centers (Egelhaaf, 1987; Wolf & Heisenberg, 1990; Warzecha & 
Egelhaaf, 1996). The filtered output of the chip was treated exactly like the signal 
from the torque meter in the fly experiments, and closed-loop experiments were 
run in real time. Figure 5c shows torque and position data from the chip for an 
individual trial, and Figure 5d shows the averaged response over 100 trials.

The silicon system shows the same ability to cancel the imposed motion 
greatly. The fly showed an average drift of 9.4% of the open-loop drift velocity, 
with position fluctuations of 7.8 degrees (standard deviation) about this drift. 
The chip showed an average drift of 22% of the open-loop drift velocity, with 
position fluctuations of 6.2 degrees (S.D.) about this drift. Also, we observe the 
same 2 Hz oscillations in the individual trials. Since we did not build any explicit 
delay into our system, this demonstrates that the phase lags and nonlinearities 
in this simple model are sufficient to produce oscillations, even in the absence 
of additional synaptic delays. In future experiments, we hope to explore how 
these parameters determine the oscillation frequency and amplitude.

Figure 4: Facing page. Experimental methodology. (a) Setup used by Warzecha 
and Egelhaaf (1996) to measure the closed-loop torque response of the sheepfly 
Lucilia. The torque meter output is scaled to produce a measure of what the fly's 
self-motion would be if it were free to rotate. This self-motion is subtracted from 
the imposed motion to determine the pattern motion, creating the illusion of free 
flight in a room with distant walls. (Only rotation, not translation, is simulated.) 
(b) Setup used to replicate the closed-loop experiments with the silicon model. 
The output voltage from the circuit is used in place of the torque meter output 
voltage. The rest of the system is identical to a.
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We have demonstrated a small, power-efficient silicon system built in a standard 
CMOS process that replicates behavior observed in a biological sensorimotor 
control system. Our hardware model senses the image and generates motor 
commands in real time, allowing direct, quantitative comparisons to biological 
systems to be made using the same experimental apparatus.

There are still important differences between our hardware model and the 
biological system. For example, the temporal frequency sensitivity of the sili­
con system is much narrower than the sensitivity of lobular plate neurons (see 
Figure 3). Future instantiations might use spatial instead of temporal bandpass 
filtering to remove the DC component from the input image while maintain­
ing temporal sensitivity. Also, time-constant adaptation in the motion detectors 
could be implemented and explored. It would be interesting to observe visually 
guided behaviors in a hardware model with adaptation enabled or disabled. 
This experiment might be difficult or impossible to achieve with a real animal 
and might lend insight into the benefits of adaptation in sensorimotor systems.

We believe this hardware modeling approach will prove increasingly valu­
able in the future, as biological models of the neural circuitry underlying more 
complex and sophisticated behaviors arise. To simulate a sensorimotor system in 
software, one must construct two models: a model of the biological system and a 
model of the world. The physical environment is an essential element in a senso­
rimotor feedback loop, so this world model must increase in detail as we study 
more advanced behaviors. Since animals interact with their three-dimensional 
environment in very dynamic ways, it may not be long before software simula­
tions of sensorimotor systems require more computational resources to model 
the world than to model the neural circuitry of interest.

By using a physically instantiated hardware model with integrated sensors, 
we can replicate experiments using existing stimuli developed for studying

Figure 5: Facing page. Comparing the fly's optomotor behavior to our silicon 
system. (a) Torque (top panel) and angular position (bottom panel) versus time 
for an individual closed-loop trial with a fly. The dark horizontal bar indicates 
experimenter-imposed rotation. Thin lines on the position trace indicate position 
in the open-loop case. Most of the imposed rotation is cancelled out by the 
optomotor control system. Since the position is proportional to the integral of 
the torque (see text for details), large torque oscillations do not cause large 
position oscillations. (b) Averaged torque response and angular position trace 
for multiple trials (N =  139, 5 flies). The fly showed an average drift of 9.4% of 
the open-loop drift velocity, with position fluctuations of 7.8 degrees (standard 
deviation) about this drift. (c) Chip output signal (analogous to torque) and 
position versus time for the silicon system in an individual trial. (d) Averaged 
torque response and angular position trace for multiple trials (N  100, 1 chip). 
The chip showed an average drift of 22% of the open-loop drift velocity, with 
position fluctuations of 6.2 degrees (S.D.) about this drift. Data in a and b redrawn 
from Warzecha and Egelhaaf (1996).
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animals. This approach also opens up the possibility of endowing our systems 
with real motor capabilities, an obvious extension of the work presented here. We 
could conceivably build mobile robots and test them in complex environments 
that would be extremely difficult to model in software. Neural models may also 
be implemented in software and run on digital computers using traditional CCD 
cameras, but if sensorimotor feedback is of interest, the software must run in real 
time. If mobile robotic systems are used, then the size and power advantages of 
the analog VLSI approach presented here would be especially beneficial.

We believe that neuromorphic engineering represents a new tool for under­
standing complex biological systems and as a testbed for evaluating how theo­
retical models perform in low-accuracy hardware embedded into a noisy world. 
Many of the neural systems being studied involve real-time sensory processing 
and motor control that greatly exceed the capabilities of modern digital com­
puters. As we implement biological models in compact, power-efficient ways, 
this approach may have significant engineering uses as well.
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