
SUBBAND PARTICLE FILTERING FOR SPEECH ENHANCEMENT

Ying Deng and V. John Mathews

Dept. of Electrical and Computer Eng., University of Utah
50 S. Central Campus Dr., Rm. 3280 MEB, Salt Lake City, UT 84112, USA

phone: + (1)(801) 581-6941, fax: + (1)(801) 581-5281, email: yd4@utah.edu, mathews@ece.utah.edu

ABSTRACT

Particle filters have recently been applied to speech enhancement
when the input speech signal is modeled as a time-varying autore-
gressive process with stochastically evolving parameters. This type
of modeling results in a nonlinear and conditionally Gaussian state-
space system that is not amenable to analytical solutions. Prior work
in this area involved signal processing in the fullband domain and
assumed white Gaussian noise with known variance. This paper
extends such ideas to subband domain particle filters and colored
noise. Experimental results indicate that the subband particle filter
achieves higher segmental SNR than the fullband algorithm and is
effective in dealing with colored noise without increasing the com-
putational complexity.

1. INTRODUCTION

Speech enhancement has been an active area of research during the
past forty years. Speech enhancement algorithms available in the
literature can be broadly divided into two categories - non-model
based and model based algorithms. Representative approaches
in the non-model based algorithms include spectral subtractive-
type algorithms [1, 2] and signal subspace-based algorithms [3, 4].
Model based algorithms employ models of speech in the enhance-
ment process. Autoregressive (AR) models are widely used to rep-
resent the vocal tract transfer function. Example of model based
speech enhancement algorithms include the iterative Wiener filter-
ing approaches [6, 7]. Kalman filtering based algorithms [8, 9, 10]
form another class of model-based speech enhancement algorithms.
Almost all such methods are based on autoregressive modeling of
speech signals and linear Gaussian state-space representation of the
system. Speech enhancement algorithms that assume specific prob-
ability distributions of speech signals and then derive minimum
mean-square error estimates of the clean speech signals [11, 12]
and those that assume composite source models (a composite source
model is composed of a finite set of statistically independent sub-
sources with each subsource representing a particular class of sta-
tistically similar speech sounds) such as Hidden Markov Models
(HMMs) and use different estimators for different classes of speech
signals [13, 14] also belong to the class of model based methods.

AR models of speech used in the iterative Wiener filtering and
Kalman filtering approaches [6, 7, 8, 9, 10] assume that the artic-
ulatory shape of the vocal tract remains fixed throughout the anal-
ysis interval. However, in reality the vocal tract is changing con-
tinuously. To better model the non-stationarity of speech signals,
time-varying autoregressive (TVAR) models of speech have been
proposed [15]. In [16], a TVAR model with stochastically evolv-
ing parameters was adopted and shown to outperform standard AR
models. By transforming between the AR coefficients and the re-
flection coefficients using standard Levinson recursion, Fong [17]
used a time-varying partial correlation (TV-PARCOR) model and
showed that the TV-PARCOR is a better physical representation of
audio signals than the TVAR model. We adopt the TV-PARCOR
model in our method. With the TVAR or TV-PARCOR modeling of
speech signals, the system can be represented in a nonlinear condi-
tionally Gaussian state-space form. Analytic solutions for recursive
Bayesian state estimation exist only for a small number of specific
cases [18]. For nonlinear conditionally Gaussian state-space models

as those discussed in [16, 17] and also in this paper, the integrations
used to compute the filtering distribution and the integrations em-
ployed to estimate the clean speech signal and model parameters do
not have closed-form analytical solutions. Approximation methods
have to be employed for these computations. The approximation
methods developed so far can be grouped into three classes: (1) an-
alytic approximations such as the Gaussian sum filter [19] and the
extended Kalman filter [20], (2) numerical approximations which
make the continuous integration variable discrete and then replace
each integral by a summation [21], and (3) sampling approaches
such as the unscented Kalman filter [22] which uses a small num-
ber of deterministically chosen samples and the particle filter [23]
which uses a larger number of random (Monte Carlo simulation)
samples for the computations. The analytic approximations are
computationally simple but usually fail in complicated situations.
The numerical approximations are only suited for low-dimensional
state-spaces. In [16, 17], particle filters have been successfully em-
ployed for speech enhancement. The methods developed in [16, 17]
were in the fullband domain and only white Gaussian noise with
known variance was considered.

In this paper, we present a speech enhancement algorithm that
employs particle filters in the subband domain. Typically, subband
speech signals have flatter power spectrum as compared to the cor-
responding fullband signals. We can therefore use lower order TV-
PARCOR models for the subband signals. This usually reduces the
computational complexity of the algorithm. We show in this paper
that while maintaining similar computational complexity, the sub-
band modeling can model the speech power spectrum more accu-
rately and result in better enhancement results. The enhanced full-
band speech signals are obtained by synthesizing the enhanced sub-
band speech signals. The particle filter based speech enhancement
algorithms in [16, 17] assume white Gaussian noise with known
variance, which is unrealistic in practical applications. This work
extends the algorithm to solve the enhancement problem in col-
ored noise environments. In order to accomplish this, we model the
colored noise by an AR model and augment the state-space model
for the white noise case. Experimental results show that the sub-
band particle filter achieves higher segmental SNR improvement
than the fullband scheme in white Gaussian noise without increas-
ing the computational complexity. The subband particle filter is also
effective in dealing with colored noise.

The rest of this paper is organized as follows. Section 2 de-
scribes the subband system model and the estimation objectives. In
Section 3, we present the subband particle filter and the noise esti-
mation algorithm. Section 4 provides experimental results. Finally,
we make our concluding remarks in Section 5.

2. THE SUBBAND SYSTEM MODEL

In the fullband domain, the noisy speech y(t) can be expressed as

y(t) = s(t)+n(t), (1)

where s(t) and n(t) are the clean speech signal and the additive
background noise, respectively. The fullband signal is decomposed
into a set of subband signals using an analysis filter bank and the
subband signal can be written as

yi(t) = si(t)+ni(t), (2)
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where i is the subband index.
The component of the clean speech signal si(t) in the ith sub-

band is modeled as a p-th order TVAR process, i.e.,

si(t) =
p

∑
k=1

ai,t(k)si(t− k)+σsi,t esi(t). (3)

Here, ai,t = [ai,t(1), · · · ,ai,t(p)]
T is time-varying AR coefficients

vector associated with the ith subband and esi(t) is a white Gaussian

excitation with unit variance. The variance of the excitation is σ2
si,t
.

We assume that the colored noise statistics change sufficiently
slowly so that they can be approximated as not changing during
short time intervals. In such short time intervals, we model the ith
subband component ni(t) of the colored noise as a q-th order AR
process, i.e.,

ni(t) =
q

∑
k=1

bi(k)si(t− k)+σnieni(t). (4)

Here, bi = [bi(1), · · · ,bi(q)]
T is the i-th subband AR coefficients

vector and eni(t) is a white Gaussian excitation with unit variance.

The variance of the excitation is σ2
ni
and is not known a priori.

Given the clean speech and noise models in the subbands, we
can develop a state-space system model in the following manner.
Let us define xi(t) = [si(t), · · · ,si(t − p+ 1),ni(t), · · · ,ni(t − q+
1)]T , ei(t) = [esi(t)eni(t)]

T and yi(t) = [yi(t)]
T and the system ma-

trices

Ai,t =

[
As

i,t 0p×q

0q×p An
i,t

]

(p+q)×(p+q)

(5)

where

As
i,t =









ai,t(1) ai,t(2) · · · ai,t(p−1) ai,t(p)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0









p×p

(6)

and

An
i,t =









bi(1) bi(2) · · · bi(q−1) bi(q)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0









q×q

. (7)

Let

Bi,t =






σsi,t 0
0(p−1)×1 0(p−1)×1

0 σni
0(q−1)×1 0(q−1)×1






(p+q)×2

(8)

and

Ci,t = [1

p−1
︷ ︸︸ ︷

0 · · ·01

q−1
︷ ︸︸ ︷

0 · · ·0]1×(p+q). (9)

Then, we can rewrite (2), (3) and (4) in state-space form as

xi(t) = Ai,txi(t−1)+Bi,tei(t) (10)

yi(t) = Ci,txi(t). (11)

In order for a sequential minimum mean square error (MMSE)
estimation of the state vector, we have to know the distribution func-
tion p(xi(t)|yi(1 : t)). This distribution can be obtained using the

recursions

p(xi(t+1)|yi(1 : t)) =
∫

p(xi(t)|yi(1 : t))p(xi(t+1)|xi(t))dxi(t) (12)

p(xi(t+1)|yi(1 : t+1)) =

p(yi(t+1)|xi(t+1))p(xi(t+1)|yi(1 : t))

p(yi(t+1)|yi(1 : t))
(13)

Once the distribution function is known, the MMSE estimate of the
state vector is given by

x̂i(t) = E{xi(t)|yi(1 : t)} =

∫

xi(t)p(xi(t)|yi(1 : t))dxi(t). (14)

From the state-space representation (10) and (11), we can see
that if the model parameters ai,t , σsi,t , bi and σni are known, the
estimation problem can be solved using a Kalman filter. However,
the parameters are unknown and have to be jointly estimated with
the state vector xi(t). This results in a conditionally Gaussian state-
space system and has no closed form solution for the computation
of the filtering distribution and the state estimation. Particle filter
as an approximation method is then adopted to solve the estimation
problem in this paper.

Let us define a speech parameter vector θi(t) =
[ai,t(1), · · · ,ai,t(p), logσ2

si,t
]T that is to be estimated with the

state vector xi(t). The noise parameters will be estimated sep-
arately during intervals where speech is absent from the signal.
To facilitate a particle filter solution, we further assume a TV-
PARCOR model [17] for the time-varying AR coefficients of the
speech signal. That is, the time-varying AR coefficients are first
transformed to a set of time-varying reflection coefficients using
Levinson recursion. The corresponding reflection coefficients
is applied a constrained Gaussian random walk model. The
constraints imposed are such that stability of the model is ensured.
The constrained random walk model for the reflection coefficients
is

p(ρi,t |ρi,t−1) =

{

N(ρi,t−1,δ
2
ρ I); if maxk |ρi,t(k)| < 1

0; otherwise
(15)

Here, ρi,t = [ρi,t(1), · · · ,ρi,t(p)]
T is the set of reflection coefficients

associated with the speech signal at time t. The logarithm of speech
excitation variance also follows a Gaussian random walk model,
i.e., we assume that

p(logσ2
si,t
| logσ2

si,t−1
) = N(logσ2

si,t−1
,δ 2

es
). (16)

The estimation objectives then become the computation of the
joint distribution p(xi(t),θi(t)|yi(1 : t)) and the MMSE estimates
E{xi(t),θi(t)|yi(1 : t))}.

3. SUBBAND PARTICLE FILTERING AND NOISE
ESTIMATION

The subband particle filter based speech enhancement algorithm is
illustrated in Figure 1. The algorithm first decomposes the input
signal into subband components, performs enhancement in the sub-
band domain, and then reconstructs the enhanced fullband signal
using a synthesis filter bank. In subsection 3.1, a sequential Monte
Carlo method for estimating the state and speech parameter vector
from the observed noisy signal is presented. In subsection 3.2, we
will discuss the method used to estimate the noise parameters.

3.1 Subband particle filter

The subband particle filter adopted in this paper is the Rao-
Blackwellized particle filter similar to those developed in [16, 17].
For a tutorial discussion of particle filtering, refer to [23]. We
present the algorithm according for our state-space model in what
follows.
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Figure 1: Subband speech enhancement system.

3.1.1 Sequential Bayesian importance sampling

Suppose that it is possible to sample N particles {xm
i (1 : t),θm

i (1 :
t);m = 1, . . . ,N} according to p(xi(1 : t),θi(1 : t)|yi(1 : t)). An
empirical estimate of this distribution is

pN(xi(1 : t),θi(1 : t)|yi(1 : t)) =
1

N

N

∑
m=1

δ(xm
i (1:t),θm

i (1:t)), (17)

where δ(·) is the Dirac delta function. Using this empirical distri-

bution, the MMSE state and speech parameters estimates can be
obtained as

(x̂i(1 : t), θ̂i(1 : t))

=

∫

(xi(1 : t),θi(1 : t))pN(dxi(1 : t),dθi(1 : t)|yi(1 : t))

=
1

N

N

∑
m=1

(xm
i (1 : t),θm

i (1 : t)) (18)

According to the strong law of large numbers, this estimate con-
verges to the true estimate as N goes to infinity [23].

Unfortunately, p(xi(1 : t),θi(1 : t)|yi(1 : t)) is usually too com-
plicated to sample directly. Instead, a simpler distribution π(xi(1 :
t),θi(1 : t)|yi(1 : t)) which can be easily sampled from and whose
support includes that of p(xi(1 : t),θi(1 : t)|yi(1 : t)) is employed.
This method is called Bayesian importance sampling (BIS) [24].
An empirical estimate of p(xi(1 : t),θi(1 : t)|yi(1 : t)) using BIS is
given by

p̂N(xi(1 : t),θi(1 : t)|yi(1 : t)) =
N

∑
m=1

ω̄m
1:tδ(xm

i (1:t),θm
i (1:t)), (19)

where, the normalized importance weights ω̄m
1:t =

ωm
1:t

∑N
m=1 ωm

1:t

and the

importance weights ωm
1:t ∝

p(xm
i (1:t),θm

i (1:t)|yi(1:t))
π(xm

i (1:t),θm
i (1:t)|yi(1:t))

. With the BIS, the

MMSE state and speech parameters estimates can be obtained as

(x̂i(1 : t), θ̂i(1 : t)) =
N

∑
m=1

ω̄m
1:t(x

m
i (1 : t),θm

i (1 : t)). (20)

In order to estimate p(xi(1 : t),θi(1 : t)|yi(1 : t)) at any time
t without changing the past simulated trajectories (xm

i (1 : t −
1),θm

i (1 : t−1)),m= 1, . . . ,N, we employ a sequential BIS scheme.
The basic idea of sequential BIS is that π(xi(1 : t − 1),θi(1 : t −
1)|yi(1 : t−1)) is a factor of π(xi(1 : t),θi(1 : t)|yi(1 : t)), i.e.,

π(xi(1 : t),θi(1 : t)|yi(1 : t)) =

π(xi(1 : t−1),θi(1 : t−1)|yi(1 : t−1))×

π(xi(t),θi(t)|xi(1 : t−1),θi(1 : t−1),yi(1 : t)).

(21)

The importance weights can also be recursively evaluated as

ωm
1:t ∝

p(xm
i (1 : t−1),θm

i (1 : t−1)|yi(1 : t−1))

π(xm
i (1 : t−1),θm

i (1 : t−1)|yi(1 : t−1))
×

p(xm
i (t),θm

i (t)|xm
i (1 : t−1),θm

i (1 : t−1),yi(1 : t))

π(xm
i (t),θm

i (t)|xm
i (1 : t−1),θm

i (1 : t−1),yi(1 : t))

= ωm
1:t−1

p(xm
i (t),θm

i (t)|xm
i (1 : t−1),θm

i (1 : t−1),yi(1 : t))

π(xm
i (t),θm

i (t)|xm
i (1 : t−1),θm

i (1 : t−1),yi(1 : t))

(22)

and the normalized importance weights are ω̄m
1:t =

ωm
1:t

∑N
m=1 ωm

1:t

.

Thus, given an estimate of p(xi(1 : t − 1),θi(1 : t − 1)|yi(1 :
t−1)), the estimate of p(xi(1 : t),θi(1 : t)|yi(1 : t)) is obtained by
augmenting (xm

i (1 : t− 1),θm
i (1 : t− 1)) with (xm

i (t),θm
i (t)),m =

1, . . . ,N and recursively updating the importance weights ac-
cording to (22). (xm

i (t),θm
i (t)),m = 1, . . . ,N are sampled from

π(xi(t),θi(t)|x
m
i (1 : t − 1),θm

i (1 : t − 1),yi(1 : t)). The marginal
distribution p(xi(t),θi(t)|yi(1 : t)) is estimated as

p̂N(xi(t),θi(t)|yi(1 : t)) =
N

∑
m=1

ω̄m
1:tδ(x

m
i (t),θm

i (t)). (23)

3.1.2 Rao-Blackwellization

Recall that p(xi(t),θi(1 : t)|yi(1 : t)) = p(xi(t)|θi(1 : t),yi(1 :
t))p(θi(1 : t)|yi(1 : t)) and that p(xi(t)|θi(1 : t),yi(1 : t)) is a Gaus-
sian distribution that can be analytically evaluated using a Kalman
filter. We assume that the noise parameters are already estimated
and known. Then from the Rao-Blackwell theorem [25], we can re-
duce the estimation variance by only sampling p(θi(1 : t)|yi(1 : t))
and analytically evaluating p(xi(t)|θ

m
i (1 : t),yi(1 : t)) to obtain an

estimate of p(xi(t),θi(1 : t)|yi(1 : t)). We can summarize the Rao-
Blackwellized particle filter as follows.

• Sample π(θi(t)|θi(1 : t − 1),yi(1 : t)) for θm
i (t),m = 1, . . . ,N

and θm
i (1 : t) = (θm

i (1 : t−1),θm
i (t)).

• For m = 1, . . . ,N, evaluate the importance weights up to a nor-

malizing constant ωm
1:t ∝ ωm

1:t−1
p(θm

i (t)|θm
i (1:t−1),yi(1:t))

π(θm
i (t)|θm

i (1:t−1),yi(1:t))

• p(θi(1 : t)|yi(1 : t)) can then be approximated by p̂N(θi(1 :

t)|yi(1 : t)) = ∑N
m=1 ω̄m

1:tδθm
i (1:t).

• The estimates of the speech parameters and the state vector can
be expressed as

θ̂i(t) =
N

∑
m=1

ω̄m
1:tθ

m
i (t) (24)

x̂i(t) =
N

∑
m=1

ω̄m
1:tE{xi(t)|θ

m
i (1 : t),yi(1 : t)}, (25)

where, E{xi(t)|θ
m
i (1 : t),yi(1 : t)} can be computed using a

Kalman filter. For details of Kalman filtering, please refer to
[26].

3.1.3 Resampling

One problem with the sequential BIS is that after several time steps,
many importance weights will have insignificant values. This will
cause large estimation variances. In order to alleviate this problem,
many resampling schemes have been proposed such as sampling
importance resampling [27], residual resampling [28] and strati-
fied resampling [29]. The generic stratified resampling scheme is
adopted in this paper. For details of the algorithm, please refer to
[29].

3.2 Noise parameter estimation

For noise parameter estimation, we first design a voice activity de-
tector in each subband. Then we collect all the noise only segments
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and construct a sequence of noise samples. We can then estimate
the noise parameters using the Yule-Walker method from the noise
only sequence.

The voice activity detector we adopt here is based on the min-
imum controlled recursive averaging noise spectrum estimation
method [12]. We summarize the algorithm as follows. For each
subband noisy signal yi(t), we first estimate the energy recursively
as,

Si(t) = αsSi(t−1)+(1−αs)y
2
i (t), (26)

where 0< αs < 1 is a forgetting factor. Then we track the minimum
value of Si(t) denoted by Si,min(t). A samplewise comparison of
the smoothed energy and the corresponding variable in the previous
frame allows the following update for the minimum value

Si,min(t) = min{Si,min(t−1),Si(t)}. (27)

Finally, we compute the ratio of the smoothed energy to its mini-
mum value and compare the ratio with a threshold T . If the ratio
is larger than the threshold, we consider it speech active. Other-
wise, we consider it noise only. Once the noise only sequence is
obtained, a standard Yule-Walker autoregressive parameter estima-
tion algorithm [30] is applied to get the noise parameters.

4. EXPERIMENTAL RESULTS

The filter bank we used to obtain our experimental results was
a nonuniform pseudo-QMF bank [31, 32] which achieves critical
band division. The length of the prototype filter is 896 samples. A
1s long clean speech signal with sampling rate 16kHz was used. For
noise parameter estimation, the forgetting factor αs was chosen to
be 0.8 and the threshold T was set to 5. For colored noise, we chose
a first order AR model with q = 1 to represent the noise signal in
each subband. We also employed a first order time-varying autore-
gressive model p = 1 for the speech signal in each subband. The
importance distribution was chosen to be the prior distribution, i.e.,
π(θi(t)|θi(1 : t−1),yi(1 : t)) = p(θi(t)|θi(t−1). With the Gaussian
random walk models defined in (15) and (16), it is easy to sample
this prior distribution. The number of particles N was selected as
100 in all the experiments. The variances of the Gaussian random

walk models in (15) and (16) were set to δ 2
ρ = 0.001 and δ 2

es
= 0.01.

For the first set of experiments, we compare the algorithm of
this paper with the fullband Rao-Blackwellized particle filter [17] in
white Gaussian noise to show that our subband particle filter algo-
rithm achieves higer segmental SNR improvement and at the same
time takes similar CPU time per iteration as compared to the full-
band particle filter algorithm. The segmental SNR is a widely used
objective measure for speech enhancement systems and is defined
as

SegSNR

=
1

M

M−1

∑
m=0

10log10









L−1

∑
n=0

|s(n+mL)|2

L−1

∑
n=0

|s(n+mL)− ŝ(n+mL)|2









,

(28)

where s(n) and ŝ(n) denote the clean speech and the enhanced
speech, respectively. Here,M is the number of frames in the speech
segment and L is the number of samples per frame. The segmen-
tal SNR improvement was estimated by subtracting the SegSNR of
the enhanced speech from the SegSNR associated with the noisy
speech. White Gaussian noise was added to a clean speech signal
at different segmental SNRs. Without optimization, the CPU times
were 0.9080s per iteration for the subband algorithm and 0.8982s
per iteration for the fullband algorithm on a standard 1.4 GHz PC.
Table 1 shows the comparison of the SegSNR improvements in this
example. Figure 2 shows the comparison of the estimated clean
speech signal for these two approaches at an input SegSNR of 5

Input SegSNR improvement(dB)
SegSNR(dB) Fullband Subband

-5 6.90 12.37
0 5.15 10.25
5 3.42 9.61
10 2.44 7.52

Table 1: Comparison of SegSNR improvement in white Gaussian
Noise.

Input SegSNR improvement(dB)
SegSNR(dB) Cohen [33] Subband PF

Traffic F-16 Traffic F-16

-5 7.64 5.98 7.82 8.12
0 5.67 4.07 5.30 6.77
5 3.30 2.59 3.14 4.75
10 1.23 0.83 1.11 2.89

Table 2: Comparison of SegSNR improvement in colored noise.

dB. From Table 1 and Figure 2, we can see that the subband do-
main speech enhancement algorithm exhibits much smaller estima-
tion variance and thus much higher segSNR improvement. This
is because while maintaining similar computation complexity, the
subband modeling can model the speech power spectrum more ac-
curately and result in better enhancement results.

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.2

0

0.2

0.4
Input Noisy Speech Signal

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.2

0

0.2

0.4
Fullband RBPF Estimates

clean speech
estimated

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.2

0

0.2

0.4

t

Subband RBPF Estimates

clean speech
estimated

Figure 2: Comparison of the estimated clean speech at input
SegSNR of 5 dB.

For the second set of experiments, we compare the SegSNR
improvement of our algorithm to the two-state modeling algorithm
[33] when the clean speech signal is corrupted by colored noise.
Two colored noise signals - traffic and F-16 noise - were added to
a clean speech signal at different Segmental SNRs. Table 2 shows
the experimental results. From Table 2, we can see that the subband
particle filter performs 2− 3dB better for the F-16 noise case than
the two-state modeling algorithm. The two-state modeling algo-
rithm performs slightly better or similar to the particle filter for the
traffic noise case. However, the performance difference is less than
0.4dB in all cases tabulated in Table 2. Informal listening tests have
also shown that the subband particle filter method exhibits lower
residual noise than the two-state modeling approach [33].
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5. CONCLUSIONS

This paper presented a subband domain particle filter based speech
enhancement system. We have shown through experiments that the
subband domain particle filter performs better in terms of segmen-
tal SNR as compared to the corresponding fullband domain algo-
rithm. The algorithm is able to deal with colored noise, whereas
only white Gaussian noise with known variance was considered
in previous application of particle filters to speech enhancement
[16, 17]. We compared our speech enhancement results in colored
noise with a two-state modeling algorithm [33] and demonstrated
that our method is effective in dealing with colored noise. We have
assumed that the colored noise is stationary in our paper. A noise
parameter estimation that can track the non-stationarity of the back-
ground noise is under development.
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