LEMA: A Tool for the Formal Verification of
Digitally-Intensive Analog/Mixed-Signal Circuits

Andrew N. Fisher*,

Satish Batchu', Kevin Jones!, Dhanashree Kulkarni®,

Scott Little?, David WalterY, Chris J. Myers*

*University of Utah, Salt Lake City, UT 84112, USA

TQualcomm, Raleigh, NC, USA

fLockheed Martin Corporation, Aberdeen, MD, 21005 USA

$Intel Corporation, Hillsboro, OR 97124, USA

Abstract—The increasing integration of analog/mixed-signal
(AMS) circuits into system designs has further complicated an al-
ready difficult verification problem. Recently, formal verification,
which has been successful in the purely digital domain, has made
some in-roads in the AMS domain. This paper describes one such
formal verification tool for AMS circuits, LEMA. In particular,
LEMA is capable of generating a formal model from simulation
traces that, when coupled with a formal property provided in
our new property language, can be model checked with one of
three model checkers within LEMA. This paper briefly describes
the capabilities of the LEMA AMS verification tool flow.

I. INTRODUCTION

The increasing demand for smaller, more efficient circuits
has created a need for both digital and analog designs to scale
down. Digital technologies have been successful in meeting
this challenge, but analog circuits have lagged behind due
to limited automation support. Analog design must rely on
specialists leading to the 20 percent of a circuit that is analog
requiring 40 percent of the design effort. To address this
problem, portions of traditionally analog designs are now
constructed using digital components. One example is the
phase lock loop (PLL) which was once completely analog is
now mostly digital as shown in Fig. 1.

@ DLF
—

REF CLK

I
l TDC F—,
I

Digitally-intensive AMS design of a PLL.

Digital

Fig. 1.

While the addition of digital circuitry has reduced some of
the design burden, it has made the verification problem more
challenging. The typical method of verifying AMS designs
is to simply use detailed transistor-level (SPICE) simulations,
the same method used in analog designs. Since analog designs
typically do not have large transistor counts, performing the
detailed calculations required by SPICE simulations has been
viable. Adding digital components, however, greatly increases
the number of transistors leading to much longer simulation
times. For example, it can take weeks or even months to
complete simulations for a PLL. Such long simulation times
make system-level simulations difficult, if not impossible.

978-1-4799-4132-2/14/$31.00 ©2014 IEEE

1]Virginia State University, Petersburg, VA 23806, USA

To improve verification efficiency, one can attempt to
extend the digital methods to AMS designs. One such method
is model checking, which checks a property over all reachable
states of a circuit. Using non-determinism, model checking
can make less assumptions about the environment and design
parameters, making it a promising mechanism for verifying
a design taking into account noise, process variations, and
uncertain initial conditions. The challenge then becomes in-
corporating the analog behaviors into the digital formalisms.
That is, to create a formal model that takes into account both
the discrete nature of the digital portions of the design, as
well as, the continuous nature of the analog portions. Once
a formal model is created, then one can turn to the problem
of creating properties to capture the desired behavior. Finally,
one can use formal methods to verify that the model satisfies
the given properties. A survey of recent techniques and tools
for AMS verification can be found in [1].

This paper focuses on the LPN Embedded Mixed-Signal
Analyzer (LEMA) which is a tool that seeks to enable the formal
verification of AMS circuits. LEMA’s tool flow is shown in
Fig. 2. LEMA takes the transistor-level SPICE simulation traces
from a traditional analog circuit verification approach and a
set of discrete thresholds, and it applies a model generator to
produce a formal model that we developed called a labeled
Petri net (LPN) [2]-[5]. The properties that LEMA can verify
can be provided using the Language for Analog/Mixed-Signal
Properties (LAMP), which is a simple, intuitive language for
expressing AMS circuit properties [S]-[7]. LEMA includes a
property compiler that can convert a LAMP property into an
LPN. The model and property LPNs can be combined in order
to check that the model satisfies the property. This checking
can be done either through simulation or model checking. For
simulation, LEMA includes a translator that can convert LPNs
into a SystemVerilog model that can then be simulated using a
standard SystemVerilog simulator [3]. Formal verification can
also be performed by LEMA using one of three model checkers:
an exact binary decision diagram (BDD) model checker [8],
a satisfiability modulo theory (SMT) bounded model checker
[8], or a conservative model checker that uses zones [9]. All
three model checkers provide a pass/fail result, and, in the case
of failure, they can provide an error trace.

This paper is organized as follows. Section II describes the
model generator. Section III introduces the property compiler
for LAMP. Section IV presents the translator to SystemVerilog.
Section V describes LEMA’s three model checkers. Finally,
Section VI discusses future directions.

1017

Simulation

LAMP
Traces Thresholds
Property \/
Compiler Model
Generator

Labeled Petri Net
(LPN)
/ l \ SystemVerilog
Zone—Based

Model
SMT Bounded
Model Checker Model Checker

oo

Pass or Fail + Error Trace

BDD-Based
Model Checker

Fig. 2. LEMA’s tool flow.

II. MODEL GENERATOR

As indicated in the introduction, in order to use formal ver-
ification on AMS designs, one needs a method for constructing
formal models that takes into account the continuous nature of
analog designs. For example, before the PLL in Fig. 1 can be
verified, one needs to be able to construct a formal model of
the voltage controlled oscillator (VCO), a purely analog circuit
that outputs a clock whose frequency depends on an input
voltage. LEMA’s chosen formalism for modeling such circuits
is LPNs. An example LPN generated by LEMA is shown in
Fig. 3.

An LPN consists of places and transitions along with
Boolean and continuous variables. The places keep track of
the current state and the transitions move the LPN from one
state to another. Transitions have an enabling condition, a
delay, and a set of assignments. In order for a transition to
fire, the enabling condition must be true for the minimum
amount of time provided by the delay and must fire before
the maximum amount of delay. When the transition fires, the
associated assignment statements are executed updating the
corresponding variables.

Creating LPNs by hand is a tedious process and is not
easy to convince AMS designers to do. Consequently, LEMA
provides a model generator that takes as input the more
familiar transistor-level SPICE simulations together with some
threshold values and automatically constructs an LPN model
[2]-[5]. The thresholds divide the space of continuous vari-
ables into regions. These regions become the places and the
boundaries between the regions are indicated with enabling
conditions on transitions. Furthermore, the model generator
can identify some transitions as being discrete which have
transitions in value after a delay.

The VCO model shown in Fig. 3 is generated using a set of
three traces providing the frequency for three separate voltage
values. LEMA creates a discrete variable out representing the
output clock and adds delay functions f3(ctl) and f4(ctl)
which vary based on the input control voltage. These functions
produce a linear interpolation between the points of observa-
tion in the provided simulation traces. Thus, the two states, p4
and pb, create the oscillations of the output clock. When the

control voltage changes, the circuit cannot instantly respond
with the appropriate oscillation, as it takes some amount of
time for the output to settle into the right value. During this
time, the circuit is unstable and has a varying frequency of
oscillation until it settles into the right value. This unstable
behavior is represented in the model by the places p2 and
p3 together with delay functions f1(ctl) and f2(ctl). When
the control voltage changes, the model changes the stable
signal to false (indicating the unstable phase) and one of the
transitions pt4 or pt5 fires moving the model into the left
diamond. After some time, the stable signal is changed to
true (indicating the stable phase) and one of the transitions
pt6 or pt7 fires moving the model into the right diamond. In
order to construct this unstable period, LEMA also includes an
algorithm for recognizing the unstable part of the oscillation
provided in the simulation trace. This procedure is described
in more detail in [3], [5].

III. PROPERTY COMPILER

After a formal model has been created, the next step is to
create a property to describe the desired behavior. For this
purpose, LEMA provides the input language LAMP which
includes the following statements [5]-[7]:

o delay(d) - wait for d time units.

e wait(b) - wait until expression b becomes true.

o waitPosedge(b) - wait for a positive edge on b.

e wait(b, d) - wait at most d time units for b to become true.

o assert(b, d) - ensures that b remains true for d time units.

o assertUntil(b1, b2) - ensures that bl remains true until b2.

o if-else statement for selections.

e always(conditionsList){statements} - continue to exe-
cute statements until one of the signals in the list of variables
conditionsList changes, then break out.

Listing 1 is a LAMP property to verify that the VCO has
the correct frequency response for each input voltage. This
property waits a delay of 1000 time units for the signal to
stabilize. Next, it waits for the positive edge of the output clock
out. The frequency is then checked by the internal always
block. This block asserts that the clock remains high for the
appropriate amount of time, then it waits for the clock to go
low in 3 time units, checks that the clock remains low for the
appropriate amount of time, and finally waits for the clock to
go high again within 5 time units. The property continues to
check the frequency until the control voltage ct! changes. Upon
a change in the control voltage, the property breaks out of the
inner always and starts again at the delay. In order to check
that a model satisfies a property, the property is translated
into a corresponding LPN. For the LPN generation process,
each statement in LAMP has a corresponding template LPN.
A portion of the LPN that the property in Listing 1 compiles
into is shown in Fig. 4. Note that transition prop_tFail0 is a
failure transition. After composing the property LPN with the
model LPN, a failure is indicated if this transition can fire.

IV. TRANSLATOR

In order to check a property using a system-level sim-
ulation, LEMA can encode an LPN in SystemVerilog. In
SystemVerilog, places become logic variables and transitions
become wires. A low signal in a logic variable implies that the

1018

pt4

t1
[fo(cth)]

-
!

{~(stable > 1)T*

<out:=uniform(49,50)> \ [0]
‘ 6 / \
{(stable > 1)}
@ ©2 3 (0] 5 t6
f [f1(cth)] [f2(cth)] {(mbfg > 1) [£3(ctl)] [f4(ctD)]
{ﬂ(stabtl(r): >1)} <out:=uniform(0,2)> <0ut:=uniform(49,50)>< Out:=unit[0rm(19.50)> <out:=uniform(0,2)> <out:=uniform(49,50)>
[0]

<out:=uniform(0, 2)>

ptS

Fig. 3. LPN model for a VCO.

{~(stable > 1)}

[0] /
pt7

{(stable > 1)}
[0]

property VCO {
real ctl;
real out;
always {
delay (1000);
waitPosedge (out>=40);
always (ctl) {

assert (out >= 40, f3(ctl));
wait (out <= 30, 3);
assert (out <= 30, f4(ctl));

wait (out >= 40,

}

5);

}
}

prop_t2
- (o
\ <_ctli=ctl> o
rop_t0 rop_t0_8 prop_t13
(&2 (et = _ct)} (0]
[1000] 0

prop/ t8
—(_ctl = ctl
{ (,c[0 cth}

{5 8*
H {‘f?c‘ﬁ[o:]ian} —

prop_tl_5 rop_tl_8
- > 40) A (ctl = _ctl =(ctl = _ctl
{=(out >)[O](ct _eth} { FC [0]70)}

| e

rop_t1l
) A

Listing 1. A LAMP property for a VCO.

place is not marked and a high signal indicates it is marked.
Initially, all places are set low, then after a delay, the initial
places are marked to start the simulation. A transition fires
by sending a pulse on the wire, that is, the transition wire
is set high and then set back low. This process is handled
by an assign statement whose delay is set by a custom
function and an assignment composed of a conjunction of
the marking needed for this transition and the transition’s
enabling condition. The custom delay function handles the
setting of the wire high after suitable delay and resetting the
wire low immediately after the transition occurs. Finally, an
always statement is added that is triggered by the positive
edge of the transition wire. The body of the always statement
handles updating the state by setting the incoming places low,
the outgoing places high, and making any necessary signal
assignments. A portion of the VCO model could be translated
as shown in Listing 2.

V. MODEL CHECKERS

Verification can also be performed using a model checker
that determines all possible reachable states and whether or not
a failure transition ever occurs. LEMA has three different model
checkers. It has a BDD-based model checker that is exact, but
it trades performance for memory efficiency [8]. It also has
an SMT-based bounded model checker that scales better, but

(ctl = _ctl)}
[0] - =
/

rop_tFail0

0T A (etl = —ctl)}
?z > BRI = ey

t A (ctl = _ct]

out = A ==

L.

™ ‘/—,{ﬂ rgt[(;]:tlcztl)}

Fig. 4. A portion of the property LPN for Listing 1.

{(out > 4%
:

{—(out >

prop_t7
{(ctl=_ct))}
[0]

it can only prove there are no failure transitions in a specified
number of iterations [8]. Finally, it has a conservative zone-
based model checker that lies somewhere between the SMT
and BDD model checkers [9]. While it is not exact, it has
better performance than the BDD model checker, and it can
prove that failure transitions never fire which the SMT model
checker cannot. Due to space limitations, this paper focuses
on the zone-based model checker.

Zone’s are a subset of Euclidean space formed by intersect-
ing half-planes associated with equations of the form v < a,
v > a, or v; —v; < a where v, v;, and v; are variables
and a is a constant. In two dimensions, zones are polygons
formed by using only lines forming a 90° or 45° angle with
the coordinate axes. LEMA’s zone-based model checker is a
form of reachability analysis. In reachability analysis, one

1019

"timescale 1ps/1fs
module VCO(input real ctl ,output real out);
wire tO ,tl ,t2,t3 ,t4 ,t5,t6;
wire pt4 ,pt5,pt6,pt7;
logic pO,pl,p2,p3.,p4.,p5;
initial begin
p0=0; pl1=0; p2=0; p3=0; p4=0; p5=0;
#1 p0 = 1; // initial marking
end
assign #(delay(~1t0,0))
~ (stable >=1));

t0=(p0 &&

always@ (posedge t0) begin
p0O = 0; pl = 1; out = uniform(0,2);

end
endmodule
Listing 2. Portion of the SystemVerilog for the VCO model.

TABLE L VERIFICATION RESULTS FOR A VCO CIRCUIT.
Property Control Signals Time (s) States Verifies?
Phase Checker 2 0.158 18 yes
Phase Checker 3 0.161 18 yes
Phase Checker 4 0.161 24 yes
Phase Checker 2,3,4 reg. int. 0.195 24 yes
Phase Checker 2,3,4 random 1.411 336 yes

finds all possible states that are reachable from the initial
states. Of course, with continuous variables, the state space
is infinite and so must be divided into equivalence classes of
states. Zones are used to collect the continuous portion of a
set of states together into a finite representation. The basic
algorithm is a depth-first search. The algorithm starts with
the initial state set and finds all possible events. An event
is chosen and fired. Then the resultant state set is found,
time is allowed to move forward as far as possible without
causing another event, and then all possible events are found
again. This process continues until one reaches a state set
found before or no events are possible. At this point, the
algorithm backs up to the previous state set and another event
is chosen. The algorithm ends when all events have been
explored. Initially, zone-based methods were used to verify
timed automata; however, LEMA uses warping [9] to allow
zones to be applied to non-rate one continuous variables in
addition to clock variables. With warping, variables are scaled
by their rate, turning them into rate-one variables and then the
resulting figure is over-approximated by a zone.

Table I shows the results of applying the zone-based model
checker to the combination of the generated VCO model
LPN from Section II and the property LPN corresponding
to Listing 1 as described in Section III. The first three lines
show the result when the model is put into an environment
that outputs a single control voltage. The fourth line allows
the control voltage to change to one of three values, then the
control voltage remains at that level for a fixed amount of time
before allowing another level to be chosen. Finally, the fifth
line has an environment that is allowed to randomly choose a
time to switch to one of three control voltage levels.

VI. DISCUSSION

LEMA has made some strides into the verification of AMS
circuits by providing a complete tool flow that is aimed at
being easier for the non-formal methods user. The complete
process of creating a model, inputting a property, and running
verification can be done without knowing anything about LPN's
and model checkers. Although progress has been made, LEMA
still has some challenges to face. Currently, work is being done
to more fully extend LEMA to general LPNs by extending the
zone-based checker to handle continuous variables with ranges
of rates. In addition, another model checker is being added
that uses the more general polyhedral class of octagons [10]
to reduce the number of possible false negatives.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CCF-1117515.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation. In the past, this work has also been supported
by an SRC Graduate Fellowship, SRC contracts 2002-TJ-
1024, 2005-TJ-1357, 2008-TJ-1851, and a grant from Intel
Corporation.

REFERENCES

[11 M. H. Zaki, S. Tahar, and G. Bois, “Formal verification of analog
and mixed signal designs: A survey,” Microelectronics Journal,
vol. 39, no. 12, pp. 1395 — 1404, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0026269208002085

[2] S. Little, D. Walter, K. Jones, C. Myers, and A. Sen, “Analog/mixed-
signal circuit verification using models generated from simulation
traces,” The Inernational Journal of Foundations of Computer Science,
vol. 21, no. 2, pp. 191-210, 2010.

[3] S.Batchu, “Automatic extraction of behavioral models from simulations
of analog/mixed-signal (AMS) circuits,” Master’s thesis, University of
Utah, Salt Lake City, UT, USA, 2010.

[4] D. Kulkarni, S. Batchu, and C. J. Myers, “Improved model generation
of AMS circuits for formal verification,” 2011 Virtual Worldwide Forum
for PhD Researchers in Electronic Design Automation, Nov 2011.

[5] D. Kulkarni, “Formal verification of digitally-intensive analog/mixed
signal circuits,” Master’s thesis, University of Utah, Salt Lake City,
UT, USA, 2013.

[6] D. Kulkarni, A. N. Fisher, and C. J. Myers, “A new assertion property
language for analog/mixed-signal circuits,” in Specification Design
Languages (FDL), 2013 Forum on, Sept 2013, pp. 1-8.

[71 A. N. Fisher, D. Kulkarni, and C. J. Myers, “A new assertion property
language for analog/mixed-signal circuits,” in Languages, Design Meth-
ods, and Tools for electronic System Design: Selected Contributions
from FDL 2013, ser. Springer-Verlag, M.-M. Louérat and T. Machne,
Eds., vol. 311, Oct. 2014.

[8] D. Walter, S. Little, C. Myers, N. Seegmiller, and T. Yoneda, “Verifi-
cation of analog/mixed-signal circuits using symbolic methods,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 12, pp. 2223 -2235, dec. 2008.

[9]1 S. Little, N. Seegmiller, D. Walter, C. Myers, and T. Yoneda, “Verifi-
cation of analog/mixed-signal circuits using labeled hybrid petri nets,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, pp. 617-630, 2011.

[10] A. Miné, “The octagon abstract domain,” Higher-Order and Symbolic
Computation, vol. 19, no. 1, pp. 31-100, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10990-006-8609- 1

1020

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20140625080313
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Left
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryList_V1
 qi2base

