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Abstract

The speed gap between processors and memory system is becoming the performance bottleneck for many 
applications, and computations with strided access patterns are among those that suffer most. The vectors 
used in such applications lack temporal and often spatial locality, and are usually too large to cache. In 
spite of their poor cache behavior, these access patterns have the advantage of being predictable, which can 
be exploited to improve the efficiency of the memory subsystem.

As a promising technique to relieve memory system bottleneck, prefetching has been studied in its 
various forms, and so is dynamic memory scheduling. This study builds on these results, combining a 
stride-based reference prediction table, a mechanism that prefetches L2 cache lines, and a memory controller 
that dynamically schedules accesses to a Direct Rambus memory subsystem. We find that such a system  
delivers impressive speedups for scientific applications with regular access patterns (reducing execution time 
by almost a factor of two) without negatively affecting the performance of non-streaming programs.
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Processor speeds continue to increase rapidly; so do memory speeds, but in a much slower fashion. Dynamic 

caching has long been used to bridge the gap between microprocessor and DRAM performance, but the 

effectiveness of reactive memory hierarchies is rapidly diminishing [BGK95, BGK96]. As a result, memory 

system bottlenecks are becoming the limiting performance factors for many applications, and streamed 

computations with strided access patterns are among those whose performance suffers most acutely. The 

vectors used in such applications are not reused quickly, and are often too large to cache, and thus they 

lack temporal locality. In addition, when the strides are not small, the accesses lack spatial locality. In 

spite of their poor cache behavior, these access patterns have the advantage of being predictable, and this 

predictability can be exploited to improve the efficiency of the memory subsystem — the memory controller 

and the DRAM back end. ;

Previous work has examined memory scheduling mechanisms in the context of compiler or application- 

supplied information about access patterns, either in uniprocessors [McK96, HMS+ 99, Mat99] or vector 

machines [CEV98]. Our work evaluates the potential benefits of hardware-only dynamic access ordering, 

and strives to address two questions: 1 ) how much information about future access patterns is necessary for 

access ordering to be profitable? and 2) given information about access patterns, how much can performance 

be improved?

For current processor and memory technologies, the processor’s natural reference stream provides the 

ordering mechanism with few choices about which access to issue next, and this lack of choice severely limits 

the memory controller’s ability to exploit properties of the DRAM backend or to alleviate burstiness on the 

bus. Fortunately, access ordering techniques have much more opportunity to improve performance when 

knowledge of future access patterns is available (e.g., when prefetching is used). This paper investigates 

the extent to which a particular combination of a hardware prefetching mechanism and reordering memory 

controller can improve performance for a suite of benchmarks ranging from vector kernels to irregular heap- 

and pointer-intensive programs to  regular scientific applications.

Many others have studied hardware prefetching in depth [Jou90, FCJV97, DDS95, PK94]. This study 

leverages their work to provide an access-ordering memory controller with information about reference pat-
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terns. The systems we investigate combine a stride-based reference prediction table, a mechanism that 

prefetches L2 cache lines, and a memory controller that dynamically schedules accesses to a Direct Rambus 

memory subsystem [Ram99]. We implement a simple, greedy reordering policy, and evaluate its performance 

impact on a set of integer and floating-point applications as well as a set of vector kernels. By avoiding DRAM  

bank conflicts and bus-turnaround delays, our approach consistently delivers performance that exceeds that 

of prefetching alone. We find that our mechanisms deliver consistently good performance on two systems 

with different memory interleavings. Applications with little streaming potential occasionally suffer negli

gible performance degradations, but these adverse effects are rare for a system that combines incremental 

prefetching with access ordering. Most of our experiments demonstrate at least a small improvement in 

performance, and for several regular, memory-intensive programs and kernels, execution time is more than 

halved.

2 R elated Work

Prefetching encompasses a broad range of memory access techniques involving software, hardware, or both. 

The purely software approach relies on a compiler to generate instructions to preload data [MLG92, MNS92], 

or an application writer to modify source code to achieve the desired behavior [Bro95, PK95, Lee93]. Hybrid 

approaches include hardware support for prefetch operations, exposing those mechanisms to software. For 

instance, they might augment the ISA with a prefetch instruction [Edm9o], redefine a load to a specific 

register (e.g., to register 0, as in the PA-RISC architectures [Kan96]), or provide programmable prefetch 

engines [Che95] or programmable stream buffers [McK96].

Chiueh [Chi94] proposes a programmable prefetch engine that fetches vector data for the next loop 

iteration. This data is stored in a special buffer, the Array Register File, until the corresponding iteration is 

executed, at which point the prefetched data is transferred to cache. Using a separate prefetch buffer avoids 

cache conflicts between the current and future working sets of vector data, but not between the vectors and 

the scalar data that they may displace. The scheme has a limited prefetch distance, the time between a 

prefetch operation and the corresponding load instruction.
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Baer and Chen [BC91], Fu and Patel [FP91], and Sklenar [Skl92] propose dynamic vector prefetch units 

that induce stream parameters at run-time. The cache-based sequential hardware prefetching of Dahlgren et 

al. [DDS95] eliminates the need for detecting strides dynamically. To minimize the number of unnecessary 

prefetches, the prefetch distance of these run-time techniques is generally limited to a few loop iterations (or 

a few cache lines). As in the approach we investigate, the prefetched data may replace other needed data, or 

may be evicted before it is used. Hardware-only prefetching [BC91, Jou90, DDS95, FCJV97, Skl92] thus has 

the advantage of being transparent, but because of its speculative nature, care must be taken to keep from 

lowering application performance by increasing contention in the caches and wasting bus bandwidth on useless 

prefetches. Nonetheless, some commercial machines include such mechanisms [Cra93, Sco96, CHK+96].

Prefetching masks memory latency, but generally does not attem pt to improve the operation of the 

memory system back end. Prefetching techniques can be rendered more effective by combining them with 

access ordering — static or dynamic techniques to improve memory performance by changing the order of 

memory requests [MW95] — to exploit the architectural and device characteristics of the underlying memory 

system.

Most dynamic access ordering approaches to date have relied on the compiler or the application to supply 

reference pattern information. For instance, Palacharla and Kessler [PK95] investigate code restructuring 

techniques to exploit a unit-stride read-ahead stream buffer and page mode memory devices on the Cray 

T3D [Cra93]. The read-ahead mechanism operates like Jouppi’s stream buffers [Jou90], prefetching the next 

sequential cache line on a demand cache-line fill. In Palacharla and Kessler’s approach, the order in which 

vectors are fetched is decided at compile-time, but they avoid cache conflicts by determining at run-time 

the amount of each vector to fetch at once. They measure a performance improvement of up to 75% in two, 

three, and four-stream examples. The performance benefits are substantial, but this approach offers little 

flexibility: “programming” the streaming mechanism amounts to rearranging the source code to present the 

hardware with an appropriate sequence of addresses. Effectively exploiting these stream buffers thus requires 

significant modifications to the source program. Getting the best performance requires that interference be 

taken into account, and thus the optimal amount to preload for each data structure of cannot be generated 

until run time.
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McKee et al. [McK96] rely on the compiler [BD91] to detect streams and generate code to program their 

memory controller’s stream buffers at run time. The memory controller reorders the stream accesses to  

exploit the parallelism of the interleaved banks and to exploit locality of reference within the DRAM ’s page 

buffers. They demonstrate speedups of up to a factor of thirteen for streaming kernels on their uniprocessor 

prototype hardware. That system contained only two interleaved DRAM banks, and thus increasing the 

number of references that hit in the page buffers accounted for most of the performance improvements. 

Hong et al. [HMS+99] adapt the approach to single-device Direct Rambus memory systems. Bus-turnaround 

delays become a limiting performance factor for these highly parallel, pipelined memory systems. Most of the 

improvement from access ordering comes from overlapping operations to multiple banks and from minimizing 

the number of times the memory controller switches between reading and writing. Neither of these studies 

evaluates the impact of reordering stream accesses on whole-program performance.

Corbal et al. ’s Command Vector Memory System [CEV98] also exploits parallelism and locality of refer

ence to improve effective bandwidth for vector accesses on out-of-order vector processors with dual-banked 

SDRAM memories. The vectorizing compiler generates vector commands requesting multiple, independent 

words. Instead of sending individual requests to specific devices, the memory controller broadcasts these 

vector commands. The memory subsystem orders requests to each dual-banked device, attempting to overlap 

precharge operations to each internal SDRAM bank with access operations to the other. This system buffers 

stream data in vector registers within the CPU.

Like the Command Vectory Memory System, M athew’s Parallel Vector Access unit [Mat99] operates on 

vector commands and exploits SDRAM device characteristics, gathering strided data even more efficiently. 

This subsystem is part of a memory controller [CHS+ 99] that increases processor cache and memory bus 

utilization by dynamically remapping physical memory, thereby letting applications control how their data 

is cached on chip. This approach prefetches and buffers data within the memory controller until the CPU 

requests them.
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Figure 1: System Architecture.

3 Architecture

Our approach reduces access latency and improves bus utilization by combining dynamic access ordering 

within the memory controller with a prefetching mechanism that incorporates transparent hardware stream  

detection. Figure 1 illustrates the system organization, which includes a Reference Prediction Table [BC91] 

(RPT) between the CPU and the L2 cache. The RPT observes the reference pattern generated by the CPU  

to detect strided access patterns and then to prefetch L2 cache lines based on these patterns. The prefetches 

increase the average number of ready accesses at the memory controller, allowing it to prioritize references 

in an attempt to avoid unnecessary bus turnaround delays and to exploit parallelism in the Direct Rambus 

RDRAM back end.

3.1 Prefetching Mechanism

Our prefetching hardware is based on the reference prediction tables introduced by Chen and Baer [BC91], 

and is organized as a 64-entry, four-way associative cache indexed by the addresses of memory reference 

instructions. The RPT is not on the critical path to memory, and does not slow normal cache accesses. Each 

entry of RPT maintains four fields:

•  tag: the address of the load/store instruction,

•  prev^address: the previous operand address for that instruction,

•  stride: the difference between the last two operand addresses, and

•  state: two bits used to indicate past history for this reference pattern (one of {initial, transient, 
irregular, stready}).
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Figure 2 depicts the state transition mechanism. By tracking stores as well as loads, the RPT prefetches 

cache lines for the write-allocate/write-back L2 cache. Prefetch requests are issued when an RPT entry is 

at steady state and has correctly predicted the current operand address (i.e., addr — prev .addr  =  stride). 

For a prefetch distance of d, the RPT issues requests for addr +  s tr id e , addr +  2 x stride, . . .  addr +  d x 

stride.  To avoid re-issuing reqests for pending data.The prefetching operations for a given stream obey a 

sliding window protocol: if at the point when address addr  is referenced the prefetches for addr +  stride  

. . .  addr  +  (d — 1 ) x s tr ide  have already been issued, then only one new request (addr  +  d  x stride)  will be 

generated. The window status is represented by two registers, [L,R],  indicating the range of offsets from 

the most recently referenced stream element addr  for which prefetch requests may be issued (so the valid 

prefetch addresses range from addr +  L x  s tr ide  to addr +  R x  s tride).  When the request for addr +  L x  stride  

is issued, the window is updated to \L +  l,i? ]. As outstanding prefetches arrive, the implicit base addr  is 

incremented by str ide ,  and the window slides to [L, R — 1]. If L >  R, the window is empty, and no prefetches 

for this stream remain outstanding. If stream elements are consumed at the same rate that they are being 

prefetched, the window enters a steady state. The regular nature of the request sequence eliminates the need 

for any buffering of requests within the prefetcher. We can simply invalidate the R PT when doing context 

switches. However, since we are not simulating mutiple programming in this study, we leave quantifying the 

impact of context switches for future work.

We investigate mechanisms with both fixed and adaptive prefetch distances (as in the designs of Farkas et 

al. [FCJV97] for a different machine model with additional stream buffers). The adaptive scheme prefetches 

streams incrementally, starting with a unit prefetch distance, and doubling it (up to the maximum distance 

supported) every time another element of the stream is referenced. We refer to a reference with the ap

propriate stride as a “prefetch hit” , even though the element the processor references, triggering a prefetch 

operation, and the element for which we initiate that prefetch are separated by the prefetch distance multi

plied by the stream stride. As distance increases, so does the threshhold for the number of references that 

must be observed in a stream pattern before future cache lines in the sequence are prefetched. This decreases 

the likelihood that spurious stream prefetches will be issued, but it can increase contention in the cache.
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update stride update stride

Figure 2: Reference Prediction Table state transitions.

Prefetch misses (data addresses that do not fit the established pattern for that memory instruction) signal 

the stream ends. The RPT we model can support up to 32 outstanding requests.

3.2 Direct Rambus DRAMs

Although the memory core — the banks and sense amps — of RDRAMs is similar to that of other DRAMs, 

the architecture and interface are unique. An RDRAM is actually an interleaved memory system integrated 

onto a single memory chip. Its pipelined microarchitecture supports up to four outstanding requests. The 

Direct Rambus interface converts the 10 ns on-chip bus, which provides 16 bytes on each internal clock, to 

a two-byte wide, external, 1.25 ns bus. By transferring 16 bits of data on each edge of the 400MHz interface 

clock, even a single Direct RDRAM chip can yield up to 1.6 G bytes/sec in bandwidth.

All communication to and from an RDRAM is performed using packets. Each command or data packet 

requires four 2.5 ns clock cycles to transfer. ROW command packets are used for activate (ACT) or precharge 

(PRER) operations. COL command packets are used to initiate data transfer between the sense amps and 

the data bus (via RD or W R  commands), or to  retire data in the chip’s write buffer. The smallest addressable 

data size is 128 bits (two 64-bit stream elements). The full memory bandwidth cannot be utilized unless all 

words in a DATA packet are used. Note the distinction between the RDRAM transfer rate (800 MHz), the 

RDRAM interface clock rate (400 MHz), and the packet transfer rate (100 MHz). “Memory cycles” refer to 

the 400 MHz interface clock.

Table 1 gives the relevant Direct RDRAM timing parameters used in our simulations. The RDRAM  

cores incorporate 16 banks in a “double bank” architecture, where adjacent banks share sense amplifiers.



parameter cycles (2.5 nsec) description

tpACK 4 packet transfer time
tRC 28 row (i.e., page miss) cycle time or RDRAM banks:

interval between successive ROW ACT requests to same bank
tRAS 20 RAS-asserted time of RDRAM bank: interval between

ROW ACT packet and next ROW packet w / PRER to same bank
tRP 8 row precharge time: interval between ROW PRER and 

ROW ACT packets to same bank
t-RR 8 RAS-to-RAS time of RDRAM device: interval between 

successive ROW ACT packets to same device (any banks)
tRCD 9 RAS-to-CAS delay: interval between ROW ACT and 

COL RD or WR packets
tcAC 8 CAS access delay (page hit latency): delay between 

start of COL RD packet and valid data
tcW D 6 CAS write delay: interval between COL WR packet and 

write data
tcc 4 CAS-to-CAS time of RDRAM bank: interval between 

successive COL packets
tRDP 4 interval between last COL RD packet and ROW PRER 

packet

Table 1: Direct Rambus timing parameters for Min -45 -800 part [Ram99].

(so no two adjacent banks can be active simultaneously) [Ram99]. Note that we do not model the DRAM  

write buffers in detail, but all other timing interactions are simulated accurately.

3.3 Memory Controller

Dynamic stream detection mechanisms have only a local view of the program’s behavior, and thus are 

inherently lim ited in the amount of “future information” that they can provide to the access ordering 

hardware. This restricts the choices available to the ordering hardware, which limits the extent to which the 

memory controller can exploit the parallelism of multiple memory devices and many interleaved banks. On 

the other hand, the limited choice simplifies the burden on the access ordering mechanism. The reordering 

circuitry cannot lengthen the timing path to memory, and therefore needs to be simple.

We model only one ordering algorithm here. The ordering mechanism implements a greedy policy that 

attem pts to  keep the pipelined Rambus memory channel busy by giving highest priority to the access that 

can be issued soonest. The circuitry maintains a candidate for the next memory access whenever there is 

more than one access queued, and for each incoming request it compares the soonest-issue time with that of 

the candidate to  decide which to issue next. When two accesses have the same issue time, they are serviced 

in FIFO order, with the restriction that reads do not bypass writes in the case of a conflict. We investigated 

an ordering scheme that gives demand accesses priority over prefetches, but the differences in execution time
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were less than 1 % for our benchmarks, and such a scheme requires a mechanism to let the memory controller 

distinguish between prefetches and demand cache line fills. The computation of the next candidate can 

be completely overlapped with other memory activity, thus our approach requires only a single additional 

comparison to do the ordering. For the purposes of this study, we assume that this comparison can be 

accomplished within the memory cycle time.

4 Experim ental M ethodology

We use cycle-level simulation to evaluate the effectiveness of the proposed memory system. Our dynamically 

scheduled superscalar simulator is based on sim-outorder, one of the simulation models from the SimpleScalar 

toolset version 2.0 [BA97]. These tools use a MIPS-like instruction set, and they only execute user-level code, 

thus we do not model the effects of OS interactions on application memory performance. The simulator we 

use has been modified to model a Direct Rambus memory system, in addition to modeling to stream detection 

mechanism described in Section 3.3. We choose the Rambus model for several reasons: it represents the 

state of the art in affordable, high performance memory systems; its organization and interface are unique, 

presenting the memory system designer with an interesting set of challenges; and it achieves its performance 

through a pipelined interface to a highly parallel subsystem, realizing the performance potential of which 

requires that operations be carefully scheduled and overlapped as much as possible.

4.1 Machine Model

Table 2 lists details of our SimpleScalar configuration. We model a 4:1 ratio in CPU cycles to memory cycles, 

or a 1.6 GHz processor and 400 MHz Rambus Channel. The CPU performs out-of-order execution with a 

16-entry instruction window, issuing up to four instructions per cycle. To investigate how the pressure on the 

memory system affects the opportunity for access reordering mechanisms, we also model a more aggressive 

superscalar processor with the instruction window size and the issuing width to be 32 and 8 respectively. The 

two-level, nonblocking cache hierarchy consists of separate, identical first-level instruction and data caches 

of 64 kilobytes each. The LI caches are two-way associative and are virtually index and physically tagged; 

each has 32-byte lines, and a one-cycle hit latency, and can support up to eight outstanding misses. The L2
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ifetch queue size 4
issue width 4
load-store queue 8
register update unit 16
L I instruction cache 
L I data cache

nonblocking 
64 K 

2-way 
32-byte lines 

1 cycle latency 
virtually indexed, physically tagged 

write-allocate, write-back 
8 MSHRs

L2 unified cache nonblocking 
256K 
4-way 

64-byte lines 
6 cycle latency 

physically indexed, physically tagged 
write-allocate, write-back 

8 MSHRs
memory Direct Rambus DRAMs 

1/4 CPU clock speed

Table 2: SimpleScalar configuration parameters

cache is 256 kilobytes and four-way associative with 64-byte lines. It has a six-cycle hit latency, is physically 

indexed and tagged, and can support up to eight outstanding misses. The L2 cache capacity is scaled down, 

since the workloads we use to evaluate our system are relatively small compared to the working sets of real 

applications (see Table 4 for details of our benchmarks’ on-chip memory hierarchy performance). The chip 

real estate consumed by the mechanisms we introduce to support prefetching and reordering might reduce 

the L2 capacity slightly, but certainly not by the factor we have modeled here.

4.2 Memory Models

The memory systems we model consist of eight 64 Mbit Direct Rambus devices on a single channel. We 

examine two memory organizations: cache-line interleaved (for the 64-byte L2 cache lines), and page in

terleaved. Both organizations use a closed-page precharge policy, i.e., the DRAM page is closed and the 

sense amplifiers are precharged after each access. The memory controller tries to hide precharge latencies 

by overlapping them with references to other banks or devices whenever possible.

The organization of our memory systems differs substantially from the single-device systems studied by 

Hong et al. [HMS+ 99], since our systems contain eight devices (and afford substantially more parallelism). 

Their systems fetch individual stream elements instead of performing cache line fills, as we do here: accessing
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the larger granularity of data can reduce the opportunity to overlap precharges with accesses to other banks 

or devices. Nonetheless, we find that precharge delays can usually be overlapped with other activity, and 

thus we do not investigate systems with open-page policies here.

4.3 Benchmark Suite

Most of our benchmarks come from the SPEC95 suite; we simulate them for the test inputs, unless otherwise 

noted. m88ksim is a chip simulator for the Motorola 88100 microprocessor, gcc is the c c l  pass of the version

2.5.3 gcc compiler (for SPARC architectures) used to compile the 67-kilobyte file “lintegrate.s” . compress 

is the SPEC95 data compression program run on an input file of ten thousand characters. I i  is an Xlisp 

interpreter run on the “queens” problem for a 8 x 8 board. su 2cor applies a Monte-Carlo method to the 

computation of masses of elementary particles in the framework of the Quark-Gluon theory, and hydro2d 

solves hydrodynamical Navier Stokes equations to compute galactical jets, mgrid is a multi-grid solver in 3D 

potential field, and swim solves shallow water equations using finite difference approximations (all three are 

run on the ref input). ’

In addition, we investigate a set of smaller benchmarks with both pointer- and array-based access pat

terns [ABS94]. be is the gnu basic calculator, ks is a graph partitioning tool, f t  performs a minimum span 

calculation, and y a cr2 is a channel routing program.

4.4 Microbenchmarks

To put our results in perspective with previous results on compiler-assisted dynamic access ordering, we 

also use the benchmark kernels of Hong et al. [HMS+ 99] to evaluate our design’s performance potential. 

Table 3 lists these kernel access patterns, daxpy, copy, and scale are from the BLAS (Basic Linear Algebra 

Subroutines) [DDDH90]. vaxpy denotes a “vector axpy” operation that occurs in matrix-vector multiplication  

by diagonals: a vector a multiplied by a vector x  plus a vector y. We run each kernel for 10,000 iterations 

for two access patterns: unit-stride and stride-ten (large enough that only one data element resides in each 

L2 cache line, and even, giving rise to more DRAM bank conflicts).
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Kernel A ccess P a tte rn

copy f o r  ( i= 0 ;  i < L x S ;  i+ = S ) 
y [ i ] = x [ i ] ;

daxpy f o r  Ci—0 ; i < L x S ;  i+ = S ) 
y [ i ]  += a  X x [ i ]  ;

sw ap f o r  ( i= 0 ;  i < L x S ;  i+ = S ) 
{ r e g = x [ i ] ;  x [ i ] = y [ i ] ;  y [ i ] = r e g ; }

vaxpy f o r  ( i= 0 ;  i < L x S ;  i+ = S ) 
y [ i ] + = a [ i ]  x  x [ i ] ;

Table 3: Benchmark kernel access patterns.

Benchmark Cycles Instructions Loads Stores L2
Misses

DTLB
Misses

Total
Streams

Mean
Lengthcache line 

interleaved
page

interleaved
(thousands)

compress 41209 44079 35684 7366 5989 130325 74 119666 27
gcc 220928 217253 224072 58587 31770 426005 10088 1778862 7
m88ksim 229730 229977 492995 85451 41825 13891 350 3295413 14
li 545036 545008 956747 286320 168848 2380 8513 16058335 4
hydro2d 2363036 2141605 967197 191856 58693 12022852 896 6643674 25
mgrid 1250866 1266649 1137368 399864 16229 4627143 279 7349938 39
su2cor 787081 783229 1034337 250716 79981 704370 43599 3077429 56
swim 1821060 1676789 1306225 327039 85805 5463881 1014565 3528529 89
anagram 9659 9676 17946 4298 1740 8221 160 100425 10
be 9286 9268 14262 3190 1803 2264 55 52132 3
ft 15131 15120 23957 4170 1462 3506 24 59769 32
ks 10338 10320 12307 5310 109 1695 1691 473260 4
yacr2 17946 17921 37972 6091 3846 2127 47 417072 13
copy 564 444 336 70 23 2817 9 19 1728
copy stride 10 3526 2643 346 70 23 28338 53 62 528
daxpy 611 484 356 80 23 2818 9 19 1728
daxpy stride 10 3603 2657 366 80 23 28345 53 62 528
swap 492 462 426 90 43 1917 9 20 2141
swap stride 10 2762 2614 436 90 43 23149 53 63 678

Table 4: Characteristics of each baseline run.

5 Results

Table 4 details the performance characteristics of each benchmark, including the execution time on both  

memory organizations, the number of instructions retired, and the number of those that are loads or stores. 

The table also gives statistics on the on-chip memory hierarchy performance and on the number of streams 

recognized and the average length of dynamically recognized stream access patterns for the whole program.

Figure 3 and Figure 4 summarize the performance (relative to the each benchmark baseline) of the 

adaptive-distance prefetching schemes for the two memory interleavings, with and without dynamic reference 

reordering at the memory controller. The similarity in these graphs illustrates that for the benchmarks 

used, the mapping of addresses to memory banks makes little performance difference for applications that 

hardly benefit from stream prefetching. For the applications and kernels that do benefit from streaming, 

the performance differences between the organizations ranges from 7% to less than 1% of the baseline
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Figure 3: Normalized execution times for a cache line interleaved system and prefetching with an adaptive prefetch 
distance, with and without dynamic access ordering at the memory controller.

execution time, but which system performs better varies from benchmark to benchmark. The hardware 

stream detection and memory-controller access scheduling benefit the stream-oriented applications, regardless 

of the underlying memory interleaving.

swim, mgrid, and hydro2d are the most stream-oriented applications of the suite, swim uses over three 

million dynamically recognized streams, and has the longest mean stream length of the non-kernel bench

marks. mgrid accesses exhibits about twice as many stream patterns, but the average stream length is only 

half as long. hydro2d accesses slightly fewer streams, with a slightly smaller average length, but its enjoys 

similar speedups to mgrid. The explanation lies in hydro2d’s cache performance: with an LI miss rate of 

10% and an L2 miss rate of over 36%, this application exhibits little locality and is very memory intensive 

(over 36% of the instructions executed are loads or stores). In contrast, su2cor exhibits behavior similar 

to hydro2d in terms of number and average length of streams, yet it derives almost no benefit from stream  

prefetching and reordering. In this case, the on-chip cache hierarchy performs quite well. W ith fewer than 

3% of the references missing in the LI cache and fewer than 8% missing in the L2, su2cor leaves little 

opportunity for memory prefetching to affect performance.

The pointer benchmarks exhibit a relatively high number of stream patterns, but the ones with the 

most streams have the shortest average stream lengths, and those with the longest stream lengths use fewer 

streams. Performance for these applications does not improve from streaming and reordering, but neither 

does it degrade. The larger integer benchmarks with similar stream characteristics (gcc, m88ksim, and l i )  

also exhibit stable performance. The dynamic behavior of these programs is not conducive to streaming: in
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Figure 4: Normalized execution times for a page interleaved system and prefetching with an adaptive prefetch 
distance, with and without dynamic access ordering at the memory controller.

the case of be, for instance, fewer than 2% of the memory accesses occur in detectable streams. For gcc, 

this rate rises to almost 10%, but the average stream length is but seven references, and only about 9% of 

the memory references make up strided access patterns. I i  has such a small working set that fewer than 

1% of the L2 accesses miss, and the memory reference patterns for this benchmark are sufficiently irregular 

that the average stream length is under five.

Figure 5 and Figure 6 illustrate how different RPT prefetch distances affect the performance of a rep

resentative set of the benchmarks. Applications that benefit from streaming tend to perform better with 

larger thresholds, but this is not always the case. For example, on a page-interleaved system, the unit-stride 

copy kernel in Figure 6(e) slows down by up to 20% at a prefetch distance of two, and by over 4% at a 

prefetch distance of either, whereas simply prefetching the next cache line (a scheme that sometimes slows 

performance, since prefetches are issued without the prefetcher’s actually recognizing any access patterns) 

improves performance by over 6%.

Common sense dictates that the prefetch distance needs to be about the same as or larger than the cache 

line to realize much benefit beyond the prefetching side effects of the usual demand cache line fills for unit 

stride patterns. Table 5 gives statistics on the number and effectiveness of prefetches issued for each of the 

prefetching schemes and each of the benchmarks highlighted in Figures 5 and 6 . Increasing the window up 

to 16 puts the portion of prefetch requests that have arrived in cache by the time they’re accessed by the 

processor between 26% and 81% for the application benchmarks. For the copy kernel, this effectiveness 

rate hits 92%. Nearly all the prefetches hit either in cache or in the MSHRs, so even when prefetched data
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is not ready when the processor requests it, the latency observed by the CPU will be reduced. Table 6 

shows how the L2 miss rate goes down with the prefetch distance, but these improvements do not continue 

to scale. Larger prefetching distances run the risk of lowering memory system performance by generating 

prefetches beyond the ends of the streams and by increasing contention in the cache. Also, prefetched data 

that arrives too early could be evicted before it is used. Table 7 gives the ECMP(Excessive L2 Cache Misses 

per Successful Prefetch) values for the benchmarks we used. We can see that though cache pollution by 

prefetching exists for most of the benchmarks, none of the benchmarks have more than one L2 cache miss 

caused by a successful prefetch. In another word, for the prefetching mechanism we used, the speedup from 

prefetching outperforms contention pollution, so there’s overall performance increase. It’s of interest to note 

that, for some of the benchmarks, there’s no cache pollution at all. On the other hand, the L2 cache misses 

plus successful prefetches are even fewer than those without prefetching. This is because in some of the 

prefetched data, there happen to be unexpected but useful data that turn out to serve future cache requests, 

thus reducing cache misses.

For stream-intensive programs, using an incremental prefetch distance performs almost as well as the 

largest prefetch distance we study (16). The adaptive mechanism sometimes slows these applications slightly, 

but it also mitigates performance degradations for programs with pathological access patterns (i.e., lots of 

very short streams). This approach delivers robust performance, especially when combined with access 

ordering to exploit the characteristics of the underlying memory system.

Note that the benefit of prefetching and reordering goes down dramatically for the kernels with a stride- 

ten access pattern. Each stream element accessed brings in a cache line whose other contents are unneeded. 

This prevents the memory latency from being amortized over more than one access, and the stream s’ large 

cache footprint creates significant contention. Nonetheless, with prefetching and reordering the stride-ten 

copy kernel suffers only about half the L2 cache misses of the baseline (but twice as many as the unit-stride 

version of the kernel), and overall execution time is reduced by about 10% of the baseline’s.

All of our simulation results reinforce one basic conclusion: reordering never hurts. Realizing nontrivial 

speedups requires a prefetch distance that is large enough to give the reordering mechanism a choice about 

which banks it accesses when. For the benchmarks we simulate, dynamically scheduling DRAM accesses at
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Benchmark cache line nterleaved page interleavedd -  1 d = 2 d = 4 d = 8 d = 16 adaptive d = 1 d = 2 “ = 4 d = 8 d = 16 adaptive
compress prefetched 98980 99082 99142 99307 99707 99598 98980 99082 99142 99307 99707 99598

% in cache 2.4 5.2 11.2 20.6 26.3 24.4 2.6 16.2 16.6 25.0 30.6 28.8
% in MSHRs 97.1 94.3 88.2 78.7 72.8 74.7 96.9 83 3 82.8 74.3 68.4 70.3

gcc prefetched 32432 36136 43325 55459 81273 44594 31305 34954 41575 53621 76865 45154
% in cache 16.7 21.7 32.6 40.3 46.2 36.2 17.1 23.3 34.1 42.9 46.4 35.7
% in MSHRs 65.0 55.6 44.7 29.5 16 9 38.4 64.6 57.2 43.9 30.2 16.3 37.4

m88ksim prefetched 9574 9603 9644 9721 9867 9760 0 9603 9643 9720 9867 9760% in cache 0.4 1.1 4.5 8.5 16 7 15.1 0.0 14 14.4 13.1 21.4 20.0% in MSHRs 97.4 96.6 92.9 88.3 78.9 81.3 0.0 96.3 83.0 83.7 74.2 76.4
li prefetched 1064 1095 1134 1171 1218 1172 1064 1096 1134 1154 1206 1158% in cache 0.4 3.0 7.8 14.9 24.4 17.2 1.2 3.9 11.1 15.3 26.3 18.7

% in MSHRs 95.3 92 5 87.1 78.3 66.1 75.1 95.0 91.8 84.5 77.1 63 4 72.8
hydro2d prefetched 11402061 11412350 11428218 11433220 11437641 11433632 11402047 11412339 11428177 11433221 11437608 11433629

% in cache 6.0 11.6 20.9 45.2 53.0 61.8 3.5 8.3 20.6 45.1 50.2 61.6% in MSHRs 91.5 85.8 76.5 52.2 44.4 35.6 93.9 89.1 76.8 52.3 47.2 35.8
mgrid prefetched 4250296 4336082 4464169 4472589 4468109 4484937 4250201 4336047 4464147 4472574 4488092 4484882% in cache 13.6 19.7 75.2 83.0 88.1 82.6 15.5 22.3 77.2 86.1 90.4 84 3

% .n MSHRs 86.2 80.1 24.4 16.6 11.2 16.7 84.2 77.4 22.4 13.4 8.8 15.0
su2cor prefetched 2133760 2157283 2208597 2264564 2353542 2310965 2133770 2157287 2208580 2264585 2353590 2311037

% in cache 4.3 B.2 21.7 27.3 28.3 28.7 4.3 9.5 21.2 27.6 28.7 28.8% in MSHRs 32.6 28.6 14.5 8.8 7.1 7.7 32.6 27.4 14.9 8.5 6.8 7.5
swim prefetched 7819037 7828283 7839100 7840869 7844758 7841088 7818296 7827452 7839100 7840342 7847694 7844146% in cache 7.1 17.3 29.4 51.5 63.2 63.3 9.2 16.0 29.4 52.9 64.4 64 6% in MSHRs 61.4 51.3 39.3 17.2 5.3 5.3 59.2 52.5 39.3 15.6 4.1 3.9
anagram prefetched 3402 3883 4830 5536 6205 5015 3402 3883 4830 5536 6205 5015% in cache 1.8 6.1 12.9 27.9 81.0 33.3 1.8 6.3 13.6 28.4 80.2 32.8% in MSHRs 91.7 87.8 81.8 66.5 12.0 61.7 91.6 87.6 81 0 66.0 12.9 62.2
copy prefetched 2666 2666 2667 2666 2671 2669 2667 2666 2668 2666 2672 2670% in cache 0.0 0.0 0.1 0.1 74.8 74.5 0.0 0.0 0.2 0.1 92.8 92.5% in MSHRs 98.4 98.4 98.3 98.3 23.5 23.8 98.4 98.4 98.1 98.3 5.4 5.7
copy prefetched 19770 19770 19795 19794 19797 19795 19770 19770 19795 19794 19797 19795stride 10 % in cache 4.1 4.1 14.8 14.8 61.2 61.8 2.8 4.1 8.8 14.8 52.5 53.2% in MSHRs 95.9 95.9 85.2 65.2 38.8 38.2 97.2 95.9 91.2 85.2 47.5 46.8
daxpy prefetched 2666 2666 2667 2666 2671 2669 2667 2666 2668 2666 2672 2670% in cache 0.0 0.0 0.1 0.1 83.8 83 6 0.0 0.0 0.2 0.1 92.8 92.6% in MSHRs 98.4 98.4 98.2 98.3 14.5 14.6 98.4 98.4 98.1 98.3 5.4 5.7
daxpy prefetched 19770 19770 19795 19794 19797 19795 19770 19770 19795 19794 19797 19795stride 10 % in cache 6.5 6.5 14.4 14.4 61.5 61.9 2.9 6.5 9.4 14.4 54.0 54.6% in MSHRs 93.5 93.5 85.6 B5.6 38.5 38.1 97.1 93.5 90.6 85.6 46.0 45.4
swap prefetched 2666 2666 2667 2666 2673 2671 2667 2666 2668 2666 2674 2672% in cache 0.0 0.0 0.1 0.1 59.2 59.0 0.0 0.0 0.2 0.1 59.3 59.1% in MSHRs 64.3 64.3 64.2 64.2 5.0 5.2 64.3 64.3 64.1 64.2 4.9 5.1swap prefetched 19793 19793 19794 19793 19796 19794 19793 19793 19794 19793 19796 19794
stride 10 % in cache 1.6 1.6 7.3 7.3 34.5 34.3 1.6 1.6 6.3 7.3 31.7 31.6% in MSHRs 61.3 61.3 55.7 55.7 28.5 28.6 61.4 61.3 56.7 55.7 31.3 31.4

Table 5: Number of prefetches issued and the percentage thereof that were useful (i.e., that hit in either L2 cache 
or the R P T ’s MSHRs) for the benchmarks in Figure 5 and Figure 6.

Benchmark

Percentage of Baseline L2 Cache Misses
cache line interleaved page interleaved

1 d = 2 d = 4 d = 8 d =  16 adaptive d =  1 d = 2 d =  4 d = 8 d =  16 adaptive
compress 99.3 97.3 92.7 85.6 81.3 82.7 99.1 88.9 88.6 82.2 78.0 79.4
gcc 100.6 98.1 99.2 96.1 97.3 98.9 99.7 99.1 97.9 96.6 95.4 99.2
m88ksim 100.2 99.8 97.4 94.6 88.7 89.8 0.0 99.3 90.2 91.2 85.2 86.1
su2cor 141.4 129.8 86.2 69.9 65.9 67.9 141.1 125.7 87.0 69.0 64.7 67.2
li 99.6 98.6 97.2 94.7 90.3 93.3 99.4 98.8 98.2 96.5 91.2 94.6
mgrid 87.6 81.7 27.6 20.0 14.9 20.3 85.8 79.2 25.7 17.0 12.7 18.7
hydro2d 95.5 90.4 81.7 58.9 51.5 43.0 98.1 93.7 82.2 59.0 54.2 43.3
swim 90.1 75.5 58.1 26.4 9.8 9.8 87.0 77.3 58.1 24.3 8.0 7.7
anagram 102.4 100.6 96.4 86.4 47.6 83.5 102.4 100.5 96.0 86.1 48.2 83.9
copy 100.0 100.0 99.9 99.9 29.1 29.4 100.0 100.0 99.8 99.9 12.0 12.3
copy stride 10 97.2 97.2 89.7 89.7 56.9 56.5 98.0 97.2 93.8 89.7 62.9 62.5
daxpy 100.0 100.0 99.9 99.9 20.5 20.8 100.0 100.0 99.8 99.9 12.0 12.3
daxpy stride 10 95.5 95.5 90.0 90.0 56.8 56.4 98.0 95.5 93.5 90.0 61.9 61.5
swap 100.0 100.0 99.8 99.8 17.4 17.8 100.0 100.0 99.7 99.8 17.3 17.7
swap stride 10 98.6 98.6 93.8 93.8 70.6 70.7 98.6 98.6 94.6 93.8 72.9 73.1

Table 6: Percentage of L2 cache misses for each streaming scheme relative to the baseline for the benchmarks in 
Figure 5 and Figure 6.
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Benchmark
Excessive L2 Cache Misses per Successful Prefetch * 100

cache line interleaved page interleaved
d = 1 d =  2 d = 4 d = 8 d = 16 adaptive d -  1 d = 2 d = 4

00li d = 16 adaptive

compress 0.63 0.65 0.66 0.71 0.91 0.87 0.64 0.65 0.66 0.70 0.92 0.86
gcc 18.36 -17.62 23.95 -0.54 45.11 26.09 33.32 28.20 29.93 34.59 50.08 18.72
li -1.28 -1.53 1.11 4.92 5.81 4.23 0.10 1.91 7.02 9.37 10.25 9.69
hydro2d 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01
mgrid 0.04 0.08 0.10 0.14 0.23 0.22 0.04 0.08 0.10 0.14 0.23 0.22
su2cor 47.85 47.65 46.10 46.00 47.02 48.23 47.85 47.65 46.10 46.00 47.01 48.21
swim 0.09 0.10 0.12 0.14 0.18 0.15 0.21 0.22 0.24 0.27 0.31 0.29
anagram 8.18 7.87 7.35 8.26 12.52 6.74 8.18 7.86 7.34 8.26 12.53 6.75
copy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
copy stride 10 0.00 0.00 0.00 0.00 -0.56 -0.53 0.00 0.00 0.00 0.00 -0.46 -0.54
daxpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
daxpy stride 10 0.00 0.00 0.00 0.00 -0.37 -0.36 0.01 0.02 0.01 0.02 -0.47 -0.55
swap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
swap stride 10 0.00 0.00 0.00 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.09 0.09

Table 7: ECMP(excessive L2 cache misses per successful prefetch) scaled by 100 for some of the benchmarks in 
Figure 5 and Figure 6.

the memory controller lowers the execution time by up to another 8.4% of the baseline’s performance for 

an incremental prefetch mechanism that can “look” into the future by up to sixteen stream references. For 

the more aggressive, 8-issue processor, access ordering gives better speedups since it increases the pressure 

on the memory system, and correspondingly increases the opportunity for ordering mechanisms to improve 

performance. For example, swim gains a speedup up to 7.1% after reordering in our baseline CPU set up, 

while it reaches 9.9% for the 8-issue processor. Since the RDRAMs we model use a closed-page precharge 

policy, the speedup by reordering comes from exploiting the parallelism in the RDRAM systems.

6 Conclusion

One current architectural trend is to  migrate more intelligence into the memory system [CHS+ 99, OCS98, 

RDK+98] to help bridge the processor/memory performance gap. This paper explores the potential for 

diverse applications to benefit from hardware-only memory access ordering, and shows how relatively simple 

mechanisms can realize at least some of that potential. The strided prefetcher is able to provide the memory 

controller’s access-ordering mechanism with enough choice to make more efficient use of the memory system  

back end.

We investigate a particular point in the design spectrum for streaming hardware, and demonstrate that 

a straightforward and modest-sized reference prediction table that prefetches into the L2 cache, coupled
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with a simple DRAM scheduling mechanism, can deliver substantial performance gains for memory-bound, 

stream-intensive applications. W ith respect to  the “how much future knowledge =  how much performance?” 

questions that sparked this investigation, in general we find that the more references in sequence required 

to define a stream, the more robust the performance benefits for all types of applications. Next-cache-line 

prefetchers generate too many spurious prefetches, and distance-two prefetchers often perform even worse. 

Distances of eight or sixteen yield the best performance for our benchmarks and systems. Combining these 

with simple access ordering at the memory controller yields further decreases in execution time ranging from 

an insignificant margin up to 8%. ,

Our results are promising: '

•  for the prefetching schemes we study, the memory interleaving does not materially affect the memory 
controller’s ability to optimize performance;

• larger prefetch distances equate to better performance for nearly all applications;

•  our prefetching model delivers consistent performance increases, even in the absence of memory re
ordering, and in spite of additional cache contention; and

• given sufficient choice with respect to scheduling DRAM accesses, an access-ordering memory controller 
can deliver significant speedups.

In particular, a memory subsystem that combines incremental prefetching with a reordering DRAM sched

uler decreases the execution times of a set of memory-intensive inner loops by over a factor of two (rivaling the 

performance of Hong et a/’s compiler-assisted, single-RDRAM dynamic access ordering system [HMS+ 99]). 

Moreover, our system delivers comparable benefits for several of the larger scientific applications we simulate 

(hydro2d, mgrid, and swim), without slowing the performance of non-stream applications.
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