
i.

M P - L O C K s : R e p la c in g H a r d w a r e S y n c h r o n iz a t io n P r im it iv e s w it h

M e s s a g e P a s s in g * >h :r. '.ii* V

Chen-Chi Kuo, John B. Carter, Ravindra Kuramkote ,

n ' ' ' {chenchi, retrac, kuramkot}@cs.utah.edu
in i-tlh, •' WWW: http://www.cs.utah.edu/projects/avalanche r. >■

Shared memory programs guarantee the correctness of concurrent accesses to shared data using
■ ,, interprocessor synchronization operations. The most common synchronization operators are locks,

which are traditionally implemented in user-level libraries via a mix of shared memory accesses
L and hardware synchronization primitives like test-an d-set. In this paper, we argue that synchro­

, . nization operations implemented using fast message passing and kernel-embedded lock managers
are an attractive alternative to dedicated synchronization hardware. We propose three message

j> i passing lock (M P -L O C K) algorithms (centralized, distributed, and reactive) and provide guide- ■;
lines for implementing them efficiently. MP-LOCKs reduce the design complexity and runtime
occupancy of DSM controllers and can exploit software’s inherent flexibility to adapt to differing

(;-!:>< applications lock access patterns. We compared the performance of MP-LOCKs with two common
shared memory lock algorithms: test-an d -test-an d -set and M C S locks and found that MP-LOCKs

" scale better. For machines with 16 to 32 nodes, applications using MP-LOCKs ran up to 186%
faster than the same applications with shared memory locks. For small systems (up to 8 nodes),
MP-LOCK performance lags shared memory lock performance due to the higher software overhead.

:,-i.,, However, three of the MP-LOCK applications slow down by no more than 18%, while the other
two slowed by no more than 180%. Given these results, we conclude that locks based on message

5 ’ passing should be considered as a replacement for hardware locks in future scalable multiproces-
, i sors that support efficient message passing mechanisms. In addition, it is possible to implement

efficient software synchronization primitives in clusters of workstations by using the guidelines we
- 'i > proposed. , ,

- i v Keywords: Distributed shared memory, multiprocessor computer architecture, synchro­
nization, lock, unlock.

r;, :■ ’ ’ • .< • i' .ti .<> . ■ ^ . , i '' ■■■ . ■

1 .> «i:: !/.-■ ' l --< x i “ ! : , .:vv

UUCS-98-021
V

Department of Computer Science
University of Utah, Salt Lake City, UT 84112

1 November 5, 1998

’ T h is work was su p p o rted by th e Space an d N aval W arfare S ystem s C om m and (SPA W AR) an d A dvanced R esearch
P ro je c ts A gency (A R P A), C om m unication an d M em ory A rch itec tu res for Scalable P aralle l C om puting , A R PA o rder
B 9 9 0 u n d e r SPAW AR co n trac t #N 00039-95-C -0018

1

http://www.cs.utah.edu/projects/avalanche

1 I n t r o d u c t i o n

Shared memory has become an increasingly popular paradigm for writing parallel programs. One

of the purported advantages of shared memory compared to message passing is that it is easier

to program. Programmers are not forced to track the location of every piece of data that might

be needed. However, to guarantee semantic correctness, shared memory programs must control

concurrent accesses to shared data via synchronization operations, the most common of which are

lock and unlock. Without an efficient implementation of synchronization, fine-grained parallelism

is impossible. An inefficient implementation of synchronization impacts the performance of shared

memory programs both directly, via the time required to perform the synchronization operations,

and indirectly, by increasing the amount of time processes are blocked waiting for other processes to

relinquish locks. As a general rule, multiprocessor architects tend to implement primitive operations

using custom hardware. For example, lock and unlock operations traditionally have been imple­

mented using a combination of hardware-implemented shared memory and atomic synchronization

primitives (e.g., test-and-set (T&S), compare-and-swap, and load-linked/store-conditional [4,6,7,

9]). Recently, however, the designers of the Cray T3E[23] broke this rule and abandoned the ded­

icated high performance hardware barrier network that was supported in the T3D. Their stated

reason for this move was, “We have yet to encounter an application in which barrier time is a

large fraction of total run-time, and the dedicated barrier network is expensive...” . We believe

a similar argument applies to locks and that emerging high performance message passing mecha­

nisms make locks based on message passing a viable alternative to hardware locks in future scalable

multiprocessors. ' r;'" " ‘ : m r i. . ■ . . !

Test-and-Set (T&S) locks [7] spin on shared memory locations using hardware T&S instructions

until the previous lock holder releases the lock by writing a “0” in to the lock variable. The major

problem with T&S locks is that every T&S instruction performed while spinning involves global

communication. Test-Test-and-Set (T&T&S) locks [21] add an extra shared-memory “load” before

the T&S primitive to eliminate these unnecessary migrations by delaying the execution of these

global T&S instructions until the previous lock holder frees the lock. However, if multiple nodes

are waiting for a lock to be released, all of their local copies of the cache line holding the lock are

invalidated as part of the unlock operation. This leads to a flurry of global coherence traffic as

each node reloads the lock and performs its lock test, which itself invalidates all remote copies of

the lock. Inserting a backoff delay between subsequent T&S instructions reduces the impact of this

lock contention, thereby alleviating occupancy problems in the controllers and reducing average

lock acquisition latency [21]. , . 4,,

■>

2

M ellor-Crum m ey and Scott (M CS) [16] locks avoid global spinning entirely by maintaining a

distributed queue of processes waiting for a lock. The proposed implementation uses a combination

of shared memory and fetch-and-store and/or compare-and-swap instructions to implement the

distributed queue in such a way that waiting processes spin only on a local shared memory location.

When a lock is released, only the next process in the wait queue, if any, will perform a coherence

operation. In addition to improving performance, this design also guarantees that locks are granted

in FIFO order. The downside of MCS locks is that they involve more global operations than T&T&S

locks when a lock is free. ■ ■ ■ > >

Because the performance of T&T&S and MCS locks are heavily dependent on the lock access

patterns of cooperative parallel processes, Lim and Agarwal proposed an adaptive scheme called

Reactive locks [14] that adopts either T&T&S or MCS lock semantics depending on the degree of

lock contention.

Finally, the Queue-On-Lock-Bit (QOLB) mechanism [5] associates a special lock bit with cache

lines of data. QOLB allows applications to queue waiting for the data to be unlocked, similar to full

and empty bits, and was included as part of SCI specification [8]. QOLB’s primary advantage over

the above lock mechanisms is that it naturally collocates data with the locks that protect it, thereby

potentially reducing the amount of communication necessary to perform a critical section. While a

complete hardware implementation of QOLB may be the most efficient lock mechanism proposed,

it requires significant changes to processor, cache controller, and DSM protocol engine designs. In

particular, QOLB requires specialized non-blocking EnQOLB and DeQOLB processor instructions and

changes to processor cache and DSM controller designs so that spinning on the “shadow” copies

of data does not trigger coherency transactions. Because they are unsuitable for implementation

on multiprocessors based on current commodity microprocessors, we do not consider QOLB locks

further.

Unfortunately, conventional shared memory lock mechanisms (T&T&S, MCS, and Reactive

locks) were designed based on the performance characteristics of bus-based architectures. On

these machines, broadcast invalidations or updates are cheap. However, as remote access becomes

increasingly expensive in scalable architectures and as the gap between the speeds of processor and

I/O widens, other approaches must be considered.

T&T&S, MCS, and Reactive locks need a combination of hardware atomic primitives and shared

memory. Although support for basic shared memory operations is a fundamental part of build­

ing a DSM multiprocessor, supporting hardware synchronization operations requires extra hard­

ware resources and design effort (e.g., special registers and additional state machines in the DSM

controller). However, many contemporary multiprocessor architectures support efficient message

3

passing in addition to shared memory [11, 12, 20], and an increasing number of high performance

of network interfaces and protocols have been proposed [1, 3, 19, 26, 28]. We propose that this

low latency message passing support be exploited to implement synchronization, rather than us­

ing hardware synchronization primitives. We call this method of implementing lock primitives via

message passing M P -L O C K . •< 'yn\ •>?{.) vino A iw , i-r, ; • -,m .

[,) t r r f l .•>. ,fi! i t II f (i - 1 - ■:: ■ ; - . * i ! ■ i ' '; I . i < I ■ >(! >(! i /. r , f I (11 I i i f 1. .i > I ’ ■: I ' -

 ̂ Instead of using primitive synchronization operations and shared memory to acquire and release

locks, MP-LOCKs send messages to lock managers, which mediate lock requests. In our imple­

mentation of MP-LOCKs, the lock managers are embedded inside the operating system kernel to

guarantee fast responses to lock requests. In addition to eliminating the design overhead of support­

ing scalable synchronization primitives in hardware, software’s inherent flexibility can be exploited

to provide different implementations of locks (e.g., T&TfcS style, QOLB style, etc.). MP-LOCKs

also can minimize the number of network transfers required to transfer lock ownership, because

they do not suffer from unnecessary invalidations and reloads due to the use of general purpose

shared memory protocols. Furthermore, MP-LOCKs offload work from the DSM controller to the

network controller, thereby reducing DSM controller occupancy. Finally, MP-LOCK’s software

implementation makes prefetching data (as in QOLB) feasible without the need for non-standard

hardware, which should shrink critical sections [10]. u--.fi• = .n: •■m-.h -. . ii •>; ,

r , : 'r f » • i : v y, , j. ; , ' ' /' I : . ti i! i< n ‘ ■« • » '•>t- ■ ; - "'rw ’'in * - • * i • '' »■,- > : r ■ > l ■

To evaluate the tradeoffs of implementing locks in software, we compared the performance

of message passing locks with T&T&S and MCS locks on five application programs with fairly

heavy synchronization requirements. Although most previous locking studies have concentrated on

microbenchmarks, we focused on complete applications to determine the overall impact of using the

various locking mechanisms. We found that message passing locks scale better - for machines with

16 to 32 nodes, applications using MP-LOCKs ran up to 186% faster than the same applications

with shared memory locks. For small systems (up to 8 nodes), MP-LOCK performance lags shared

memory lock performance due to the higher software overhead. However, three of the MP-LOCK

applications slow down by no more than 18%, while the other two slowed by no more than 180%.

Iv The remainder of this paper is organized as follows. In Section 2 we describe T&T&S locks, MCS

locks, and MP-LOCKs in detail. Section 3 presents some implementation issues involved in making

MP-LOCKs efficient. We describe our simulation environment, test applications, and experimental

setup in Section 4, and present the results of our experiments in Section 5. In Section 6, we discuss

related work. Finally, we draw conclusions and discuss future work in Section 7. i , J/t .'' ntiiu •

4

2 Background ■* . ■

In this section, we discuss three implementation of shared memory locks (T & T & S , M C S and Re­

active) and three implementations of MP-LOCK (centralized , distributed and reactive) protocols.

The shared memory locks in our study are based a write invalidate coherence protocol.

We classify lock acquire into three categories depending on the state it is in: remote idle acquire,

local idle acquire, and remote busy acquire. A lock is in remote idle acquire state when node Y

attem pts to acquire the lock after some other node X has released it. The acquire in this case

will succeed after the remote operations to detect and update the lock status are completed. The

local idle acquire state is the same as the remote idle acquire state, except X and Y are the same

nodes. Both of the idle cases occur frequently when there is less contention. A lock is in remote

busy acquire state when acquire from node Y is issued before the current lock holder, a different

node X, releases the lock. This occurs frequently when there is high contention for locks. We found

that performance of an implementation primarily depends on two factors: the number of messages

(what we call hops) that must be sent to acquire or release a lock when the lock is in each of the

state and the number of interrupts required on all nodes to acquire or release.

2.1 T&T&S Im plem entation t ,

T&T&S lock first reads the value of the lock variable and issues atomic primitives , i.e.,

fe tc h ^ a n d se t , on the lock variable if value from the read is zero. Otherwise, it backs off and

tries the locks again. In our study, we adopt the exponential backoff scheme. When the lock is in

local idle state, the lock variable is cached locally and T&T&S implementation performs a local

read and a local fetch_and_set operation. T&T&S performs best under this scenario since it re­

quires only two local accesses. When the lock is in remote idle state, the lock variable is cached at

a remote node and the first load must traverse up to 4 hops to obtain the shared copy of the lock

variable. The subsequent atomic operation must also traverse another 4 hops before the acquire

completes. Hence, it takes totally 8 hops even though the lock is free. When the lock is busy, the

extra load preceding atomic primitive minimizes the impact of global spinning, but still there is a

global flurry of activity at lock release time as each node refetches valid copies of the lock variable.

This generates at least 12 global messages to acquire a lock when it is in remote busy state.

2.2 M CS Im plem entation ,

MCS locks reduce the amount of global traffic during heavy contention. MCS maintains a dis­

tributed waiting queue per lock in shared memory. Data structure for each distributed queue

5

includes a queue entry per node and a tail pointer. To save remote traffic, the home page for queue

entry is allocated at the node that owns the entry. There is a flag field per queue entry that is used

for local spinning and signaling. The tail pointer points to the queue entry of the node that is the

last one to enter the queue. Acquiring a lock involves only two nodes if lock is currently held: the

node in the tail and the one requesting the lock. Releasing lock also involves two nodes: the one

releasing the lock and the one next to the releaser in the queue. Unlike the T&T&S, the nodes

waiting on a lock in MCS spin locally without generating any global traffic. However, maintaining

distributed queue incurs more overhead than T&T&S. Like T&T&S implemetation, MCS avoids

generating global traffic when the lock is in the local idle state. When the lock is in remote idle

state, MCS needs up to 4 hops for doing f e tc h - a n d s to r e into the queue entry at the tail pointer

location. When the lock is in remote busy state, requesters enter distributed queue by updating tail

pointers. This takes up to 4 hops if valid data is not in home node. It takes another 4 more hops to

store its pointer to its own queue entry into its predecessor’s queue entry. Then the requester spins

locally on the flag in its queue entry waiting for the predecessor’s signal. When the predecessor

releases the lock, it obtains the pointer to its follower’s queue entry in 4 hops, and updates the

flag in the queue entry in another 4 hops. Finally, the next node in the queue refetches the valid

value of the flag in 4 hops and acquires the lock. That amounts to 12 hops after the lock release.

However, MCS restricts the number of global messages and hence performs better than T&T&S

when there is heavy contention. Nevertheless, when only a few number of nodes (2 or 3 nodes)

contend for the same lock, MCS might perform poorly compared to T&T&S since it requires more

global operations to maintain distributed queue. . . .

. ", . ■ .1 : ■ . 1 ! .. !V..: .

2.3 R eactive Im plem entation ’ ' 1

Reactive locks adopt to the best behavior of T&T&S or MCS locks based on the observed lock

contention. One limitation of Reactive implementation is that they use local information while

making the decision to adopt. This may not be precise since it is hard to accurately calculate

the degree of lock contention. For example, Reactive implementation may mistakenly switch lock

protocol from MCS to T&T&S looking at idle acquires by one of the processes even though that

might be followed by a burst of acquire attempts from other processes. After improperly switching,

Reactive implementation requires attempts from one node to fail for a few time before the protocol

is switched back to MCS. .. . , ■ ,, • > - . ; ■■ n ■

6

. *•'. A < ■! 1 , ■ •;! . > • , ' -■! ■ . ' • - i >, ■ . .j, ■ ■

MP-LOCK is built upon software and using the existing message passing mechanisms without

requiring any special-purpose hardware or atomic primitives. The MP-LOCK model has lock m an­

agers that manage lock ownerships. We evaluated three lock manager organizations: (i) a single

centralized lock manager (MP-cent), (ii) a set of cooperating lock managers running on each node

(MP-dist), and an adaptive distributed manager that reverts to centralized mode when there is

less contention (MP-react). Rather than using shared memory loads/stores and atomic primitives,

MP-LOCK synchronization libraries send lock requests to a lock manager, which will either queue

the request until it can be satisfied or forward the request to the lock manager that currently has

the lock. We evaluated both user-level and in-kernel lock manager and found that the context

switch overhead of user-level lock manager is significant. Therefore, in this paper we restrict our

focus to in-kernel lock manager. ,, ,

A Lock that is in local idle state frequently is often reacquired by the same node before it is

acquired by other nodes. Therefore, an efficient lock scheme should “cache” lock ownership locally

for subsequent acquires. “Caching” comes naturally for shared memory locks. Therefore, it is

important that MP-LOCK implementations have this property. When the lock is in remote busy

state and pending lock requests are just queued in centralized lock manager, it takes two hops to

transfer ownership after a lock is released (one hop from the lock holder to the lock manager and

one hop to the requester). However, if requests are “forwarded” to the node currently holding the

lock or to the node at the end of the waiting queue, it costs only one hop to pass lock ownership.

When the lock is in remote idle state, it is infrequently reacquired by the same node. This type

of lock does not benefit from “caching” and “forwarding” . It can be most efficiently handled by

returning lock ownership to a centralized manager.

In MP-cent, lock managers handle both lock and unlock requests. A node acquires a lock by

performing a non-blocking send to a designated lock manager and then spins while waiting for a

reply. The releasing node does a non-blocking send to the central lock manager. Acquire request is

granted immediately if the lock is free. Otherwise, acquire request is queued until lock ownership

is returned. Conceptually, MP-cent is similar to T&T&S that snoops on a centralized location.

However, T&T&S requires up to 8 hops to read valid lock variable and to acquire the exclusive

ownerships if the lock is free. Acquiring a lock in MP-cent requires only 2 hops and one interrupt

at the central lock manager under all circumstances. MP-cent performs well when there is less

contention and different processes acquire the lock. However, the lack of support for “caching” and

“forwarding” leads to poor performance when the lock is in local idle or remote busy state.

2 .4 M P - L O C K I m p l e m e n t a t i o n i :

7

In MP-dist, lock managers cooperate to manage a distributed queue of pending lock requests.

When a process wants to acquire a lock, it consults its local lock manager. If the lock is free and the

lock ownership is cached locally, the local lock manager returns the lock immediately. Otherwise,

the process sends the lock request to a designated remote lock manager, which either returns the

lock or forwards the request. To release a lock, a process consults its local lock manager. If a

request is pending, ownership of the lock is forwarded to the requesting process directly in a single

message. If no request is pending, the local lock manager caches the lock ownership. • ' •,i

MP-dist performs well for locks that the processes try to acquire when they are heavily contested

or frequently reused. During heavy contention, lock ownerhip will be passed between successive

owners directly via a single message, and the extra latency and messages required to forward the

lock request to the end of the queue is effectively hidden as part of the required stall until the lock

is free. When lock reacquisitions (local idle acquire state) is common, M P-dist’s caching of lock

ownerships makes acquire very cheap. However, when the lock is in remote idle state for majority

of acquires, MP-dist performs relatively poorly - it requires on average 3 hops (messages) and 2

interrupts to transfer the ownership from the current holder and to the requester. , ,

Because different applications have very different lock request patterns, we developed a reactive

lock protocol, akin to Reactive locks [14], called MP-react. Since lock managers mediate both

lock acquire and release requests, they have accurate knowledge of lock access patterns. A central

lock manager initially grants “uncachable” locks so that lock ownership is returned when locks are

released. Acquire requests on these locks require two hops to be satisfied, as in MP-cent. If the lock

manager detects repeated requests from the same node without request from other nodes, it grants

a “cachable” instance of the lock so that it can be reacquired by the node without performing any

remote operations. When a lock is heavily contested, lock manager will “forward” acquire requests

as in MP-dist so that ownership transfers will take one hop. MP-react has better information than

Reactive locks because the central lock manager can track global access patterns and thus can make

more effective decision about when to switch modes. ,

We summarize in Table 1 the overhead of acquiring a lock for each of the implementations we

considered when the lock is local id le , remote id le , or remote busy state. In the case of local idle

and remote idle states, the acquire overhead shown is the amount of work required to detect that

the lock is idle and resume the requesting process. In the case of remote busy acquire, acquire

overhead is the amount of work required to transfer the lock from a releaser to the acquirer at the

release point. When the lock is in local idle state, only local operations are required for all lock

schemes except MP-cent to acquire a lock. In both remote idle and busy states, shared memory

locks always require more hops than MP-LOCK. However, the MP-LOCK implementations might

8

Lock Scheme Local Idle Remote Idle Remote Busy
T&T&S Oh 8h 12h
MCS Oh 4h 12h
Reactive Oh 4h 12h
MP-cent N /A 2h +li 2h + li
MP-dist Oh 3h+2i lh
MP-react Oh 2h + li lh

iiOi- - ' ■, (i : ■ :
T able 1 Cost and Latency of Various Lock Schemes (h: network hop. i: interrupt)

incur interrupts due to their software implementation. We will describe efforts to minimize the

overhead of MP-LOCK’s software implementation in Section 3.

3 Im plem entation Issues in M P-LOCK , , . .

To minimize the overhead of MP-LOCK’s software implementation, we used a low latency message

passing mechanism called Direct Deposit (DD) [26] and embedded lock managers in the kernel. W,Te

also carefully distributed lock management across nodes to minimizeload imbalance effects. In this

section, we describe the pertinent implementation details that impact performance.

To avoid load imbalance, we employ one lock manager per node for all three MP-LOCK algo­

rithms. We statically assign each lock to a single lock manager in a round robin fashion when it

is allocated (e.g., lock 1 is managed by the lock manager on node 1, lock 2 by node 2,..., and lock

N + l by node 1). Other distribution methods, e.g., first touch, are possible but were not considered.

This distribution of lock management mitigated the effect load imbalance, as shown in Section 5.

To alleviate the overall impact of using software lock managers, we embed them in the kernel.

This reduces the impact to application processes running on the node of handling remote requests.

The decision to embed the lock managers in the kernel raises the question of where to cache lock

ownership in the MP-dist and MP-react algorithms when the lock is released and no other request is

pending: in the application process or in the kernel lock manager. Caching in the user application

allows a lock to be reacquired by the same process inside of a local library routine, making it

effectively free. However, to satisfy a remote request, we would be forced to deliver the application

process a signal to reclaim the lock ownership, which takes 3500 cycles to perform on our kernel.

Therefore, we chose to cache lock ownership within the kernel lock managers. Application processes

use a light weight system call to return lock ownership to the kernel-embedded lock managers,

which allows remote lock requests to be satisfied quickly without performing a context switch, and

to reacquire locally cached locks. ■ ' 4 - ■ i ^

i9

Finally, we employed the low latency Direct Deposit (DD) protocol to communicate between lock

managers. DD is a sender-based protocol (SBP) [28], which means tha t it employs a connection-

based mechanism tha t enables the sender to manage a reserved receive buffer within the receiving

process’ address space tha t is obtained when the connection is established. The sender directs

placement of messages within tha t buffer via an offset carried within the message header. The

semantics of DD allow for asynchronous sends, i.e., the send call can simply request transmission

of the message and return immediately. Coupled with an appropriate network interface, an SBP

can achieve 0-copy message reception directly to the receiver’s virtual address space and allow

transmissions to occur in parallel with continued computation by the sending process.

DD supports user mode message reception. A user level receive consists simply of checking

the valid llag of the incoming connection’s notification. Polling for incoming messages is thus

an extremely inexpensive operation. The message buffers can completely reside in the receivers’

address space, which yields a used-mode receive capability.

4 Performance Evaluation \ : ,

4.1 E xp erim en ta l S etu p .

All experiments were performed using an execution-driven simulation of the HP PA-RISC archi­

tecture called Paint (PA-interpreter)[25]. Paint was derived from the Mint sim ulator[29]. Our

simulation environment includes detailed simulation modules for a first level cache, system bus,

memory controller, network interconnect, and DSM engine. It provides a multiprogrammed pro­

cess model with support for operating system code, so the effects of OS/user code interactions are

modeled. The simulation environment includes a kernel based on 4.4BSD tha t provides schedul­

ing, interrupt handling, memory management, and limited system call capabilities. Simulating the

kernel provides a fair accounting for our software-based MP-LOCK overheads. , , ,

,c All experiments were conducted using a Simple-COMA-based architecture [22] with an infinite

DRAM page pool and a 1-Mbyte direct-mapped LI cache. The reason we chose a large LI cache

size and a “perfect” Simple-COMA-based architecture is to eliminate the effects of shared data con­

flict/capacity misses, which could lead to skewed performace for the T&TfcS and MCS algorithms

shared due to memory allocation effects. The modeled processor and DSM engine are clocked at

120MHz. The system bus modeled is H P’s Runway bus, which is also clocked at 120MHz. All cycle

counts reported herein are with respect to this clock. We model a 4-bank main memory controller

tha t can supply da ta from local memory in 58 cycles. For our interconnect, we modeled a Myrinet

network [2] with 1-cyle propagation delays and a 16-port Myrinet switch. For experiments with

fewer than 16 nodes, only one switch is required. For the 32-node configuration, we use a 2X2 mesh

topology. We ran our experiments with two different switch fall through delays of 4 and 176 cycles

to model high-end commercial DSM systems such as the SUN UE1.0000 [27], SGI Origin 2000 [13]

and Mercury Interconnect Architecture [30] tha t use specialized high speed interconnects and other

DSM systems or clusters of workstations tha t use less aggressive ofF-the-shelf interconnects [15].

The characteristics of the LI cache and network tha t we modeled are shown in Table 2. As a result

of the modeled machine characteristics, the average 2-hop lock acquire operation required 1400 to

1700 cycles in the MP-LOCK implementations depending on the network delay. Finally, we varied

the number of nodes from 4 to 32. ' , ~"
' a".-;-. , ’ ; wr,

: 1 V -; ■ '■ .; •)!/£:

4 .2 B e n c h m a r k P r o g r a m s i. ’ ’

We used five programs to conduct our study: mp3d from the SPLASH benchmark suite [24], barnes,

r a d io s i ty , and r a y tr a c e from the SPLASH-2 benchmark suite [31], and spark98 from a sparse

m atrix kernel suite [18]. Table 3 shows the inputs used for each test program.

Table 4 presents the distribution of lock categories for the applications we studied. Because

the access patterns do not change dramatically with different interconnect speeds, we show the

distribution only for the fast interconnect model.

Component Characteristics
LI Cache Size: 1-Mbytes. 32 byte lines, direct-mapped, virtually indexed, physically tagged,

non-blocking, up to one outstanding miss, write back, 1-cycle hit latency
Networks 1 cycle propagation, 16-port switch , port contention (only) modeled

Fall through delay: 4 and 176 cycles

T ab le 2 Cache and Network Characteristics , ,,'H /O!

Applications Type of Simulation Inputs

barnes Barnes-Hut N-body 16k particles
mp3d Hypersonic flow 20k molecules, 10 steps, the lock version
radiosity The equilibrium distribution

of light in a scene
room . , , , , .

raytrace 3-D rendering car
spark98 Kernel doing sparse matrix

vector product operations
sflO sparse matrix, the lock version

Table 3 Classification of the simulated benchmarks and their inputs

11

Applications total lock pairs
(locks per milisec)

Local Idle Remote Idle Remote Busy
(interrupts inside CS)

barnes (4 nodes) 68871(15.0) 73% 25% 2% (2%)
barnes (8 nodes) 68972(31.0) 63% 30% 8% (4%)
barnes (16 nodes) 69150(60.0) 52% 29% 19% (6%)
barnes (32 nodes) 69468 (114.0) 47% 28% 25% (7%)
mp3d (4 nodes) 407996(148.0) 26% 73% 1% (0%)
mp3d (8 nodes) 407918(235.0) 13% 86% 0% (0%)
mp3d (16 nodes) 408020(403.0) 7% 92% 1% (0%)
mp3d (32 nodes) 408126(700.0) 4% 94% 2% (0%)
radiosity (4 nodes) 198991(23.0) 57% 37% 6% (3%)
radiosity (8 nodes) 210186(42.0) 47% 33% 20% (6%)
radiosity (16 nodes) 266657(84.0) 34% 32% 34% (3%)
radiosity (32 nodes) 474261(98.0) 19% 22% 59% (2%)
raytrace (4 nodes) 95472 (26.0) 38% 52% 10% (2%)
raytrace (8 nodes) 95480(46.0) 20% 43% 37% (5%)
raytrace (16 nodes) 95497 (79.0) 5% 16% 79% (4%)
raytrace (32 nodes) 95532 (105.0) 1% 3% 96% (0%)
spark98 (4 nodes) 2088644(290.0) 77% 23% 0% (0%)
spark98 (8 nodes) 2088648(505.0) 75% 25% 0% (0%)
spark98 (16 nodes) 2088656(849.2) 69% 31% 0% (0%)
spark98 (32 nodes) 2088672(1345.0) 63% 37%. 0% (0%)

ilfi
T ab le 4 Lock access patterns in barnes, mp3d, r a d io s i ty , r a y tra c e and spark98.

Results are obtained from the MP-dist simulations with the fast interconnect.

We believe various synchronization access patterns are well represented by the choice of these

five applications. Among these five applications, lock contention in three applications goes up,

although to different degrees, as the number of nodes increases. In barnes, 50% of locks are reused

even with 32 nodes due to the application’s excellent temporal locality. However, the number of

remote busy locks increases from 2% to 25%. Most local idle locks in r a d io s i ty are transformed

into remote busy locks as the number of nodes increases. In an extreme case, 96% of locks fall into

the remote busy category in r a y tr a c e with 32 nodes. Mp3d and spark98 have the lowest level of

lock contention among the five applications. 99% of lock acquires in these two applications are idle

locks. The degree of lock contention remains the same even as the number of nodes varies. Because

of mp3d’s poor shared data temporal locality, most of its locks tha t protect the shared data fall into

the remote idle category. As opposed to mp3d, locks in spark98 show excellent temporal locality and

most of them can be satisfied locally if lock caching is implemented. In Table 4, in t e r r u p ts in s id e

CS represents the frequency with which nodes executing inside a critical section are interrupted by

incoming forwarded requests, which only occurs in M P-dist and M P-react. When this occurs,

critical sections are artificially lengthened, which degrades performance. Fortunately, it does not

occur frequently in the applications we studied. , . . • . . , ■

v'i' wmewm'r uoijji^h'cn ■■■>•■," ■.> ! . : 1 • ' ■ ■ i * t f ■ . > ■ .

. . -n o . K ,• j f j j . l - , , ; ' ! - .*? t .. ' ■ ; , . . ■) ' : i ; - i i ’ >: 1 ' • :

5 R esults ' ’T ̂ I ' ■ ■' ■ ‘i: >'■■■' ■ •"> " '■ ■

Figures 1, 2, and 3 present the performance of MCS, T&T&S, MP-cent, MP-dist, and M P-react

on these five applications. Four graphs are presented for each application. The top two graphs

present the results using the fast interconnect model, while the bottom two graphs present the

results using the slow interconnect model. The two graphs on the left present the execution time of

the application using each lock implementations relative to the MCS lock version. The two graphs

on the right break down the time the application spent performing various tasks. U-shmem denotes

cycles spent while accessing shared memory - the increased DSM controller occupancy of shared

memory locks can cause higher shared memory stall times. Kern denotes cycles spent performing

the basic kernel operations required by all configurations (e.g., system calls) plus time spent exe­

cuting the kernel-embedded lock managers in MP-LOCKs. U-instr and U-lclmem denotes cycles

spent performing user-level instructions and accessing noil-shared (local) memory. Barrier and lock

denote cycles spent waiting for barrier and lock/unlock operations to complete, respectively. All

results include only the parallel phase of the programs. i■■ ̂ ̂ ,! ■ ,

The five applications can be divided into two categories: applications whose lock access pattern

changes with the system configuration (barnes, r a d io s i ty and ra y tra c e) and applications whose

lock access patterns remain unchanged (mp3d and spark98).

Locks in barnes are used as follows. Accesses to each space cell are protected by per-cell

locks, and the global ma,ximum and minimum values also are protected by locks. During each

time step, processes load bodies into an octree structure tha t represents 3-D space. This phase

generates the majority of the program ’s synchronization operations. Although the average critical

section is long, the chance of two processes contending for the same lock is small. As shown in

Table 4, only 2% of the locks are busy in a 4-node system and 73% of the locks are “reused” by

the same node. Octree initialization is followed by a long computation phase, which accounts for

most of the execution time. Thus, as detailed in Figure 1, the time spent on synchronization is

small compared to the overall execution time, so there is little need for special hardware support

for locking - MP-LOCKs can provide equal or better performance than shared memory locks. As

shown in Figure 1, the shared memory lock implementations (MCS and T&T&S) and MP-LOCK

implementations (distributed and reactive) perform equally well in all cases except for the 32-node

13

slow interconnect configuration. The lack of caching penalizes MP-cent, which underperforms the

other four implementations by about 5%. - • ».i., ... -....ji. ;-

A number of patterns are evident in the results. The degree of lock contention increases from 2%

to 25% as the number of nodes increases from 4 to 32 (see Table 4). The relatively high degree of lock

contention in the 32-node configuration causes the performance of T&T&S to drop dramatically,

which is in line with previous studies [10, 14, 16]. In addition, the performance of shared memory

locks is heavily impacted by interconnect latency and the number of remote memory accesses

required. Even MCS requires more remote memory accesses than MP-dist as shown in Table 1,

and as a result M P-dist outperforms MCS by 8% in the 32-node slow interconnect configuration.

Finally, increased controller occupancy and cache conflicts in large configurations increases the

user shared memory access time noticeably for the shared memory locks, while the lock manager

overhead of the MP-LOCK implementation scales well.

The r a d io s i ty program is used to produce realistic computer-generated images of complex

scenes by accounting for both direct illumination by light sources and indirect illumination through

multiple reflections. Locks are used to protect a number of data structures. First, load balancing

is implemented using distributed task queues - idle processes dequeue tasks from non-empty task

queues maintained by other processes, which are protected by locks. Another lock isused to im­

plement a global barrier and another is used to protect a buffer pool. The degree of contention

for these three sets of locks depends on the number of nodes. For smaller systems (4 - 8 nodes),

most of the time these locks fall into the local idle category, but as the number of nodes increases,

contention for these locks increases. In addition, locks are used to protect patches th a t make up

the image as they are subdivived, but there is little contention on these locks due to their fine

granularity. However, the poor temporal locality of these patch locks result in most accesses to

them being of remote idle variety - in the 4-node configuration, one third of lock accesses are to

remote idle locks.

Due to the low level of contention and M P-LOCK’s higher software overhead, MCS locks perform

18% better than MP-LOCKs in the 4-node fast interconnect configuration. However, with a slow

interconnect, the increased shared memory access time reduces the performance gap to 13%. As

the number of nodes increases, contention increases. This leads to an decrease in the percentage

of local idle locks from 57% to less than 20%, and an increase in the percentage of remote busy

locks from 6% to about 60%. Regardless of configuration, the percentage of remote idle locks is

constant about 20% because of the large amount of fine grained patch locks, which have poor

locality. As a result of these changed in lock access pattern, M P-react starts to outperform MCS at

the 16-node configuration and by the time the configuration reached 32 nodes, it outperforms MCS

14

locks by up to 64%. Comparing just the MP-LOCK schemes, when contention is low, MP-cent

outperforms MP-dist, as expected, but as the number of nodes and/or network latency increases,

MP-dist prevails. MP-react, which is able to adapt to the best of MP-cent and M P-dist, performs

up to 10% better than either schemes, h* nr- >- i\ i . . i - m.„

R ay trace renders a three-dimensional scene using ray tracing. Major data structures include

the ray trees, a hierarchical uniform grid, and an octree-like data structure tha t represents the

scene being rendered. Locks in r a y tr a c e are used as follows. All shared data is allocated from

a pre-allocated shared memory pool protected by a single lock. Like r a d io s i ty , r a y tr a c e uses

distributed task queues, with a lock protecting each queue. In the 4- and 8-node configurations, the

lock protecting the memory pool falls is mostly remote idle, a category tha t accounts for 52% of

lock requests. In these same small configurations, the locks protecting the distributed task queues

are mostly local idle. Thus, for small configurations, shared memory locks perform up to 14%

better than MP-LOCKs. As number of nodes increase and load imbalance occurs, processes begin

to perform task stealing, which causes the task queue locks to become busy. The memory pool lock

also becomes busy. As a result, 97% of the locks in the 32-node configuration are heavily contested,

which causes MP-LOCKs to perform up to 75% for several reasons. First, MP-LOCKs can better

handle highly contested locks because they can forward locks in a single message. Second, the

impact of lock manager interrupts on user processes is amortized effectively. Finally, MP-LOCKs

do not increase DSM controller occupancy, which helps to reduce shared memory access times.

Mp3d and Spark98 represent applications whose lock contention does not change dramatically

with system configuration. Mp3d solves a problem in rarefied fluid flow simulation. Most synchro­

nization in mp3ed occurs during the move phase. Locks are used to atomically update the cell data

of the active space array. The degree of contention on these locks is extremely low - as presented

in Table 4, 2% or fewer of the locks are found in busy state. Locks in mp3d have poor temporal

locality and there is very little reuse, so most locks fall into the remote idle category. In this case,

MP-LOCKs require up to two interrupts (one at the lock manager and one at the current lock

holder) and three interconnect hops to acquire a lock. Thus, for 4 and 8 nodes, shared memory

locks outperform the MP-LOCK implementations by up to 180%. The performance gap shrinks

as the number of nodes and/or network latency increases. For example, MP-LOCKs perform bet­

ter than MCS in the 16-node configuration with a slower network and up to 186% better in the

32-node configuration. Performance improves even though the number of locks in the remote idle

state increases from 73% in the 4-node configuration to 94% in the 32-node configuration. Two

factors can explain the poor scalability of shared memory locks: (i) the tight dependence between

shared memory lock performance and remote memory access latency and (ii) the severe impact on

DSM controller occupancy caused by shared memory locks. Comparing just the MP-LOCK mech­

anisms, MP-cent outperforms MP-dist in the 32-node configuration because 94% of locks accesses

are to remote idle locks. However, only 73% of lock accesses are to remote idle locks in the 4-noode

configuration, so MP-dist outperforms MP-cent because of lock caching. n ‘Km : o i

Spark98 is a sparse matrix multiplication kernel tha t performs a sequence of sparse matrix

vector product (SMVP) operations. Each element in the result vector is protected by a lock. After

multiplying a row of the sparse matrix times the dense vector, a process locks the result vector

elements for which it computed a non-zero inner product so that it can add its partial result to the

result vector. These locks have good temporal locality due to the way tha t processes are assigned

work. The number of locks tha t are reused ranges from 77% in the 4-node configuration to 63%

in the 32-node configuration. Hence, spark98 benefits greatly from lock caching, as can be seen

by the relative performance of MP-cent and MP-dist. In the 4-node and 8-node configurations,

shared memory locks perform 70% better than MP-LOCKs due to their low-latency lock/unlock

routines. W ith increase in the number of nodes and/or network latency, however, MP-LOCKs

perform up to 163% better than shared memory locks. Because of high percentage of reuse, MP-

dist outperforms MP-cent. However, as the number of nodes increases from 4 to 32, the number of

locks in remote idle state increases from 23% to 37%, which dramatically closes the performance

gap between MP-cent and M P-dist. ; I " ■- *»n r •• w.nn . .i , ; •• !<, i >i

In summary, for applications with high lock contention, the best MP-LOCK algorithm outper­

forms the best shared memory lock algorithm by up to 186%. In particular, MP-LOCKs tend to

outperform shared memory locks once the the system size reaches 16 nodes with a fast interconnect

or 8 nodes with a slow interconnect. The superior scalability of MP-LOCKs on these applications

occurs for several reasons. First, MP-LOCKs handle remote busy locks better than shared memory

locks, because it can forward lock ownership in a single message. To achieve similar performance,

shared memory locks would require special hardware shared memory protocols not present in mod­

ern machines [17]. Second, MP-LOCKs neither increase DSM controller occupancy nor interfere

with shared memory data accesses, which can lead to significantly lower average remote memory

latency for non-lock shared data. Finally, the software overhead induced by lock managers can

be amortized across nodes, which reduces its impact. For applications with low lock contention,

MP-LOCKs underperform the best shared memory lock implementation on small systems (4 nodes

or 8 nodes) by up to 15% in three applications and no more than 180% in the remaining two

applications. Fast hardware shared memory lock implementations can handle low contention locks

more efficiently than MP-LOCKs. Given the trends we observed, we expect tha t MP-LOCKs will

scale better than shared memory locks as the number of nodes increases beyond 32 nodes. Thus,

16

we believe th a t MP-LOCKs are an attractive alternative to hardware synchronization primitives

for future scalable shared memory multiprocessors th a t support efficient message passing.

6 R elated Work : i ^

In addition to their Reactive lock mechanism tha t adapts between T&T&S and MCS semantics,

Lim and Agarwal [14] proposed a reactive lock mechanism th a t adapts to either shared memory

or message-based style locking. They found tha t a message-passing centralized queue-based lock

(MPCQL) starts to ourperform T&T&S as the number of nodes exceeds four, which agrees with

our results. However, they found tha t MCS locks consistently outperformed MPCQL. Their study

was limited to a set of microbenchmarks, rather than whole programs as presented here, and they

considered only a single centralized message-passing-based protocol for one set of interconnect

speeds and remote shared memory latencies. Our results show tha t a more adaptive MP-LOCK

protocol can outperform even MCS locks, depending on the application locking pattern, network

latency, and machine size.

Kagi and Goodman proposed a software version of QOLB, called SOFTQOLB [10]. SOFT-

QOLB’s implementation is based on the Tempest interface [20]. When they compared the per­

formance of SOFTQOLB against MCS locks and a centralized queue-based lock mechanism, they

found tha t message-passing locks can be as efficient as shared memory locks at low lock contention

and can outperform them when lock contention is high. However, their study only considered

microbenchmarks and low end clusters of workstations, which makes it difficult to compare their

results to ours directly. They did not attem pt to identify the performance bottlenecks of their

SOFTQOLB implementation, nor did they suggest ways to exploit software’s inherent flexibility.

Nevertheless, like our proposed MP-LOCK mechanisms, SOFTQOLB provides an efficient alterna­

tive to conventional hardware locks for emerging scalable multiprocessors. *'■ . '

. . - '

7 Conclusions *

In this paper, we dem onstrate th a t software-based locks are an attractive alternative to hardware-

based implementations. The so-called MP-LOCK approach is based on efficient message passing

mechanisms th a t can be supported by most contemporary multiprocessor interconnects. By basing

locks on message passing rather than dedicated hardware, MP-LOCK reduces the design complexity

and runtime occupancy of DSM controllers. In addition, MP-LOCKs can exploit software’s inherent

17

react-slow-32n

dist-slow-32n

cent-slow-32n

tts-slow-32n

mcs-slow-32n

react-slow-16n

dist-slow-16n

cent-slow-16n

tts-slow-16n

mcs-slow-16n

react-slow-8n

dist-slow-8n

cent-slow-8n

tts-slow-8n

mcs-slow-8n

react-slow-4n

dist-slow-4n

cent-slow-4n

tts-slow-4n

mcs-slow-4n

I I
11
11

W l

I
m e
BKii

m
'm

■ H O P

Ii
m i

react-fast-32n

dist-fast-32n

cent-fast-32n

tts-fast-32n

mcs-fast-32n

react-fast-16n

dist-fast-16n

cent-fast-16n

tts-fast-16n

mcs-fast-16n

react-fast-8n

dist-fast-8n

cent-fast-8n

tts-fast-8n

mcs-fast-8n

react-fast-4n

dist-fast-4n

cent-fast-4n

tts-fast-4n

mcs-fast-4n

CM t- i— CM t- r-

OcoQ.

Fi
gu

re

1
Pe

rf
or

m
an

ce

C
ha

rts

for

ba
rn

es

an
d

m
p3

d.

Le
ft

C
ol

um
n:

Ex
ec

ut
io

n
T

im
e

Re
la

tiv
e

to
M

C
S.

 R
ig

ht

Co
lu

m
n:

Br

ea
kd

ow
n

Ex
ec

ut
io

n
Ti

m
e

(m
se

cs
).

react-slow-32n

dist-slow-32n

cent-slow-32n

tts-slow-32n

mcs-slow-32n

react-slow-16n

dist-slow-16n

cent-slow-16n

tts-slow-16n

mcs-slow-16n

lpp-> react-slow-8n

i s ® dist-slow-8n

m m ® cent-slow-8n

tts-slow-8n

mcs-slow-8n

ITTI

o o o o o o o o o o oo o o o o o o o o oowoinoinowoin

Fi
gu

re

2
Pe

rf
or

m
an

ce

C
ha

rts

for

ra
di

os
it

y
an

d
ra

yt
ra

ce
.

Le
ft

C
ol

um
n:

E
xe

cu
tio

n
Ti

m
e

Re
la

tiv
e

to
M

C
S.

 R
ig

ht

C
ol

um
n:

B
re

ak
do

w
n

Ex
ec

ut
io

n
Ti

m
e

(m
se

cs
).

F ig u re 3 Performance Charts for spark98. Left Column: Execution Time Relative to
MCS. Right Column: Breakdown Execution Time (msecs).

flexibility to support lock protocols th a t intelligently adapt to differing application lock access

patterns.

We evaluated the performance of three MP-LOCK algorithms against tha t of two efficient

hardware-based locks algorithms, test-and-test-and-set[21] and MCS locks[16], on five applications

with a variety of lock access patterns. We found tha t MP-LOCKs scale better than T&T&S or MCS

locks because they avoid the use of shared memory and instead support direct point-to-point transfer

of lock ownership during periods of high lock contention. As a result, MP-LOCKs consistently

perform equal to or better than hardware locks for systems consisting of sixteen or more nodes.

In the extreme, the use of MP-LOCKs improved performance by up to 186%. However, for small

system sizes, e.g., 4 - 8 nodes, interrupt handling and software overhead caused the performance of

the MP-LOCK versions to lag th a t of shared memory locks. However, the difference was no more

than 18% in three applications and no more than 180% in the remaining two applications.

Focusing on the MP-LOCK algorithms in isolation, we found th a t MP-cent performed best

for applications like mp3d with poor lock locality, and thus frequent remote idle accesses. The

20

reason is tha t for these applications relinquishing locks back to a per-lock centralized lock manager

minimizes message traffic. However, when contention is high or locks are reused frequently, MP-

dist significantly outperforms MP-cent, because direct lock forwarding and lock caching effictively

handle these situations. M P-react exploits global access pattern observations to adaptively switch

between centralized and distributed modes, which leads to good overall performance and the best

performance for applications tha t demonstrate a mix of access patterns.

This paper makes several contributions. We present the results of the first study tha t compares

the performance of message passing locks and shared memory locks on macrobenchmarks. We

took great pains to conduct a fair comparison by including a detailed 4.4BSD-based kernel in our

simulation environment. This kernel provides scheduling, interrupt handling, and system call capa­

bilities to accurately simulate the software overhead of the proposed message passing mechanisms.

Second, we identified the tradeoffs for shared memory locks and message passing locks as sys­

tem sizes and network latencies vary. These results should assist future architects when designing

their synchronization mechanisms. Third, we classified the lock access patterns of five well-known

shared memory benchmarks on various number of processors, which will help other researchers

understand the locking behavior of these applications. Finally, we provided guidelines for designing

synchronization mechanisms in clusters of workstations th a t are equipped with message passing

communication mechanisms. For example, we show tha t lock caching is essential when designing

message-passing based locks. - ■

In the future, we plan to further minimize interrupt overhead, which causes performance prob­

lems in small systems, by evaluating various application-level polling strategies tha t will allow us

to eliminate the need for kernel-level lock managers. We also plan to investigate techniques to

exploit QOLB-style lock-data collocation in the MP-LOCK algorithms. Doing so has the potential

to eliminate a large amount of coherence traffic. Since messages can easily carry the data pro­

tected by a lock along with lock ownership, this might appear trivial at first glance. However,

a straightforward implementation would require modification to conventional DSM controllers to

avoid coherence traffic in response to writing the data to the new lock owner’s memory. Finally, we

plan to investigate more intelligent adaptive locking protocols tha t better exploit the global lock

access pattern information tha t can be gleaned by lock managers. , w t ^

References • i! : ! 1 : ' ' ’

[1] A. Basu, V. Buch, W. Vogels, and T. von Eicken. U-net: A user-level network interface for parallel and
. distributed computing. In Proceedings o f the 15th A C M Sym posium on O perating S ystem s P rin cip les,

December 1995.

21

[2] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and W.-K. Su. Myrinet
- A gigabit-per-second local-area network. IE E E M IC R O , 15(1):29—36, February 1995.

[3] G. Buzzard, D.Jacobson, M. Mackey, S. Marovich, and J. Wilkes. An implementation of the hamlyn
sender-managed interface architecture. In Proceedings o f the Second Symposium, on O perating S ystem
D esign and Im plem enta tion , October 1996. , i. . u- * ' <

[4] R.P. Case and A. Padegs. Architecture of the ibm system 370. C om m unications o f the A C M , 21(1):73—
96, January 1978.

[5] J. R. Goodman, M. K. Vernon, and P.J. Woest. Efficient synchronization primitives for large-scalc cache-
coherent multiprocessor. In Proceedings o f the 3rd Sym posium on A rchitectural Support fo r P rogram m ing
Languages and O perating System s, pages 64-75, April 1989.

[6] A. Gottlieb and C.P. Kruskal. Coordinating parallel processors: A parallel unification. C om puter
A rch itecture N ew s, 9(6): 16—24, October 1981.

[7] International Business Machines Inc. IB M S y s te m /3 6 0 P rin cip les o f O peration, ninth edition, May
1970.

[8] D.V. James. Distributed directory scheme: Scalable coherent interface. IE EE C om puter, 23(6):74—77,
June 1990.

[9] E.H. Jensen, G.W. Hagensen, and J.M. Broughton. A new approach to exclusive data access in shared
memory multiprocessors. Technical Report UCRL-97663, Lawrence Livermore National Lab, November
1987. , ..

[10] A. Kagi, D. Burger, and J.R. Goodman. Efficient synchronization: Let them eat qolb. In Proceedings
o f the 24th A nnual In tern a tion a l Sym posium on C om pu ter A rchitecture, May 1997.

[11] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B.-H. Lim. Integrating message-passing and
shared-memory; early experience. In Proceedings o f the 1993 Conference on the P rin cip les and P ractice
o f P aralle l Program m ing, pages 54-63, May 1993. , ,, , ,

[12] J. Kuskin and D. Ofelt et al. The Stanford FLASH multiprocessor. In Proceedings o f the 2 1 st Annual
In ternational Sym posium on C om puter A rchitecture, pages 302-313, May 1994.

[13] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly scalable server. In IS C A 97, pages
241-251, June 1997.

[14] Beng-Hong Lim and Anant Agarwal. Reactivc synchronization algorithms for multiprocessors. In
Proceedings o f the Sixth Sym posium on A rchitectural Support fo r Program m ing Languages and O perating
S ystem s (A S P L O S -V I), pages 25-35, October 1994.

[15] T. Lovett and R. Clapp. STiNG: A CC-NUMA compute system for the commercial marketplace. In
Proceedings o f the 23rd A nnual In ternational Sym posium on C om puter A rchitecture, pages 308-317,
May 1996.

[16] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-memory
multiprocessors. A C M Trans, on C om puter S ystem s, 9(1):21—65, February 1991. .

[17] Maged M Michael and Michael L. Scott. Scalability of atomic primitives on distributed shared memory
multiprocessors. Technical Report 528, University of Rochester Computer Science Department, July
1994.

[18] D. O’Hallaron, J. Shewchuk, and T. Gross. Architectural implications of a family of irregular compu­
tations. In Proceedings o f the Fifth Annual Sym posium on High P erform ance C om pu ter A rchitecture,
pages 80-89, February 1998.

-1 : 1. . .
[19] S. Paikin, Lauria, and A. Chien. High performance messaging on workstations: Illinois fast messages

(fm) for myrinet. In Proceedings o f Supercom puting ’88, 1995.

122

[20] S.K. Reinhardt, J.R. Larus, and D.A. Wood. Tempest and Typhoon: User-level shared memory. In
Proceedings o f the 21st Annual In ternational Sym posium on C om pu ter A rch itecture, pages 325-336,
April 1994.

[21] L. Rudolph and Z. Segall. Dynamic decentralized cache schemes for mimd parallel processors. In
Proceedings o f the 11th Annual In ternational Sym posium on C om pu ter A rchitecture, pages 340-347,
May 1984.

[22] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin. An argument for Simple COMA. In Proceedings
o f the F irs t A nnual Sym posium on High P erform an ce C om puter A rchitecture, pages 276-285, January
1995.

[23] Steven Scott. Synchronization and communication in the T3E multiprocessor. In Proceedings o f the
7th Sym posium on A rch itectural Support fo r Program m ing Languages and O perating S ystem s, October
1996.

[24] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications for shared-memory.
Technical Report CSL-TR-91-469, Stanford University, April 1991.

[25] L.B. Stoller, R. Kuramkote, and M.R. Swanson. PAINT: PA instruction set interpreter. Technical
Report UUCS-96-009, University of Utah - Computer Science Department, September 1996.

[26] L.B. Stoller and M.R. Swanson. Direct deposit: A basic user-level protocol for carpet clusters. Technical
Report UUCS-95-003, University of Utah - Computer Science Department, March 1995. Also available
via WWW under http://www.cs.utah.edu/projects/avalanche.

[27] Sun Microsystems. Ultra Enterprise 10000 System Overview. http://www.sun.com/servers/datacenter/products/starfire.

[28] M.R. Swanson and L.B. Stoller. Low latency workstation cluster communications using sender-based
protocols - computer science department. Technical Report UUCS-96-001, University of Utah, March
1996. Also available via WWW under http://www.cs.utah.edu/projects/avalanche.

[29] J.E. Veenstra and R.J. Fowler. Mint: A front end for efficient simulation of shared-memory multipro­
cessors. In M A S C O T S 1994, January 1994.

[30] W. Weber, S. Gold, P. Helland, T. Shimizu, T. Wicki, and W. Wilcke. The mercury interconnect
architecture: A cost-effective infrastructure for high-performance servers. In ISC A 97, June 1997.

[31] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings o f the 22nd Annual In tern a tion a l Sym posium on
C om pu ter A rchitecture, pages 24-36, June 1995.

23

http://www.cs.utah.edu/projects/avalanche
http://www.sun.com/servers/datacenter/products/starfire
http://www.cs.utah.edu/projects/avalanche

