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Shared memory programs guarantee the correctness of concurrent accesses to shared data using 
■ ,, interprocessor synchronization operations. The most common synchronization operators are locks, 

which are traditionally implemented in user-level libraries via a mix of shared memory accesses 
L and hardware synchronization primitives like test-an d-set. In this paper, we argue that synchro­

, . nization operations implemented using fast message passing and kernel-embedded lock managers 
are an attractive alternative to dedicated synchronization hardware. We propose three message 

j> i passing lock (M P -L O C K ) algorithms (centralized, distributed, and reactive) and provide guide- ■; 
lines for implementing them efficiently. MP-LOCKs reduce the design complexity and runtime 
occupancy of DSM controllers and can exploit software’s inherent flexibility to adapt to differing 

(;-!:>< applications lock access patterns. We compared the performance of MP-LOCKs with two common 
shared memory lock algorithms: test-an d -test-an d -set  and M C S  locks and found that MP-LOCKs 

"  scale better. For machines with 16 to 32 nodes, applications using MP-LOCKs ran up to 186% 
faster than the same applications with shared memory locks. For small systems (up to 8 nodes), 
MP-LOCK performance lags shared memory lock performance due to the higher software overhead.

:,-i.,, However, three of the MP-LOCK applications slow down by no more than 18%, while the other 
two slowed by no more than 180%. Given these results, we conclude that locks based on message 

5 ’ passing should be considered as a replacement for hardware locks in future scalable multiproces- 
, i sors that support efficient message passing mechanisms. In addition, it is possible to implement 

efficient software synchronization primitives in clusters of workstations by using the guidelines we 
- 'i > proposed. .. ........................... .. . , , . . . .  . ....................................
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1 I n t r o d u c t i o n

Shared memory has become an increasingly popular paradigm for writing parallel programs. One 

of the purported advantages of shared memory compared to message passing is that it is easier 

to program. Programmers are not forced to track the location of every piece of data that might 

be needed. However, to guarantee semantic correctness, shared memory programs must control 

concurrent accesses to shared data via synchronization operations, the most common of which are 

lock and unlock. Without an efficient implementation of synchronization, fine-grained parallelism 

is impossible. An inefficient implementation of synchronization impacts the performance of shared 

memory programs both directly, via the time required to perform the synchronization operations, 

and indirectly, by increasing the amount of time processes are blocked waiting for other processes to 

relinquish locks. As a general rule, multiprocessor architects tend to implement primitive operations 

using custom hardware. For example, lock and unlock operations traditionally have been imple­

mented using a combination of hardware-implemented shared memory and atomic synchronization 

primitives (e.g., test-and-set  (T&S), compare-and-swap, and load-linked/store-conditional [4,6,7,  

9]). Recently, however, the designers of the Cray T3E[23] broke this rule and abandoned the ded­

icated high performance hardware barrier network that was supported in the T3D. Their stated 

reason for this move was, “We have yet to encounter an application in which barrier time is a 

large fraction of total run-time, and the dedicated barrier network is expensive...” . We believe 

a similar argument applies to locks and that emerging high performance message passing mecha­

nisms make locks based on message passing a viable alternative to hardware locks in future scalable 

multiprocessors. ' r;'" " ‘ : m r  i. . ■ . . !

Test-and-Set (T&S) locks [7] spin on shared memory locations using hardware T&S instructions 

until the previous lock holder releases the lock by writing a “0” in to the lock variable. The major 

problem with T&S locks is that every T&S instruction performed while spinning involves global 

communication. Test-Test-and-Set  (T&T&S) locks [21] add an extra shared-memory “load” before 

the T&S primitive to eliminate these unnecessary migrations by delaying the execution of these 

global T&S instructions until the previous lock holder frees the lock. However, if multiple nodes 

are waiting for a lock to be released, all of their local copies of the cache line holding the lock are 

invalidated as part of the unlock operation. This leads to a flurry of global coherence traffic as 

each node reloads the lock and performs its lock test, which itself invalidates all remote copies of 

the lock. Inserting a backoff delay between subsequent T&S instructions reduces the impact of this 

lock contention, thereby alleviating occupancy problems in the controllers and reducing average 

lock acquisition latency [21]. , . 4,,

■>
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M ellor-Crum m ey and Scott (M CS)  [16] locks avoid global spinning entirely by maintaining a 

distributed queue of processes waiting for a lock. The proposed implementation uses a combination 

of shared memory and fetch-and-store  and/or compare-and-swap  instructions to implement the 

distributed queue in such a way that waiting processes spin only on a local shared memory location. 

When a lock is released, only the next process in the wait queue, if any, will perform a coherence 

operation. In addition to improving performance, this design also guarantees that locks are granted 

in FIFO order. The downside of MCS locks is that they involve more global operations than T&T&S 

locks when a lock is free. ■ ■ ■ > >

Because the performance of T&T&S and MCS locks are heavily dependent on the lock access 

patterns of cooperative parallel processes, Lim and Agarwal proposed an adaptive scheme called 

Reactive locks [14] that adopts either T&T&S or MCS lock semantics depending on the degree of 

lock contention.

Finally, the Queue-On-Lock-Bit (QOLB) mechanism [5] associates a special lock bit with cache 

lines of data. QOLB allows applications to queue waiting for the data to be unlocked, similar to full 

and empty bits, and was included as part of SCI specification [8]. QOLB’s primary advantage over 

the above lock mechanisms is that it naturally collocates data with the locks that protect it, thereby 

potentially reducing the amount of communication necessary to perform a critical section. While a 

complete hardware implementation of QOLB may be the most efficient lock mechanism proposed, 

it requires significant changes to processor, cache controller, and DSM protocol engine designs. In 

particular, QOLB requires specialized non-blocking EnQOLB and DeQOLB processor instructions and 

changes to processor cache and DSM controller designs so that spinning on the “shadow” copies 

of data does not trigger coherency transactions. Because they are unsuitable for implementation 

on multiprocessors based on current commodity microprocessors, we do not consider QOLB locks 

further.

Unfortunately, conventional shared memory lock mechanisms (T&T&S, MCS, and Reactive 

locks) were designed based on the performance characteristics of bus-based architectures. On 

these machines, broadcast invalidations or updates are cheap. However, as remote access becomes 

increasingly expensive in scalable architectures and as the gap between the speeds of processor and 

I/O  widens, other approaches must be considered.

T&T&S, MCS, and Reactive locks need a combination of hardware atomic primitives and shared 

memory. Although support for basic shared memory operations is a fundamental part of build­

ing a DSM multiprocessor, supporting hardware synchronization operations requires extra hard­

ware resources and design effort (e.g., special registers and additional state machines in the DSM  

controller). However, many contemporary multiprocessor architectures support efficient message
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passing in addition to shared memory [11, 12, 20], and an increasing number of high performance 

of network interfaces and protocols have been proposed [1, 3, 19, 26, 28]. We propose that this 

low latency message passing support be exploited to implement synchronization, rather than us­

ing hardware synchronization primitives. We call this method of implementing lock primitives via 

message passing M P -L O C K .  •< 'yn\  •>?{.) vino A iw ,  i-r, ; • -,m .
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 ̂ Instead of using primitive synchronization operations and shared memory to acquire and release 

locks, MP-LOCKs send messages to lock managers, which mediate lock requests. In our imple­

mentation of MP-LOCKs, the lock managers are embedded inside the operating system kernel to 

guarantee fast responses to lock requests. In addition to eliminating the design overhead of support­

ing scalable synchronization primitives in hardware, software’s inherent flexibility can be exploited 

to provide different implementations of locks (e.g., T&TfcS style, QOLB style, etc.). MP-LOCKs 

also can minimize the number of network transfers required to transfer lock ownership, because 

they do not suffer from unnecessary invalidations and reloads due to the use of general purpose 

shared memory protocols. Furthermore, MP-LOCKs offload work from the DSM controller to the 

network controller, thereby reducing DSM controller occupancy. Finally, MP-LOCK’s software 

implementation makes prefetching data (as in QOLB) feasible without the need for non-standard 

hardware, which should shrink critical sections [10]. u--.fi• = .n: •■m-.h -. . ii •>; ,

r , : 'r f » • i : v y, , j. ; , ' ' /' I : . ti i! i< n ‘ ■« • » '•>t- ■ ; - "'rw ’'in * - • * i • '' »■,- > : r ■ > l ■

To evaluate the tradeoffs of implementing locks in software, we compared the performance 

of message passing locks with T&T&S and MCS locks on five application programs with fairly 

heavy synchronization requirements. Although most previous locking studies have concentrated on 

microbenchmarks, we focused on complete applications to determine the overall impact of using the 

various locking mechanisms. We found that message passing locks scale better - for machines with 

16 to 32 nodes, applications using MP-LOCKs ran up to 186% faster than the same applications 

with shared memory locks. For small systems (up to 8 nodes), MP-LOCK performance lags shared 

memory lock performance due to the higher software overhead. However, three of the MP-LOCK  

applications slow down by no more than 18%, while the other two slowed by no more than 180%.

Iv The remainder of this paper is organized as follows. In Section 2 we describe T&T&S locks, MCS 

locks, and MP-LOCKs in detail. Section 3 presents some implementation issues involved in making 

MP-LOCKs efficient. We describe our simulation environment, test applications, and experimental 

setup in Section 4, and present the results of our experiments in Section 5. In Section 6, we discuss 

related work. Finally, we draw conclusions and discuss future work in Section 7. i , J/t .'' ntiiu •
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2 Background ■* . ■

In this section, we discuss three implementation of shared memory locks ( T & T & S , M C S  and Re­

active) and three implementations of MP-LOCK (centralized , distributed and reactive) protocols. 

The shared memory locks in our study are based a write invalidate coherence protocol.

We classify lock acquire into three categories depending on the state it is in: remote idle acquire, 

local idle acquire, and remote busy acquire. A lock is in remote idle acquire state when node Y 

attem pts to acquire the lock after some other node X has released it. The acquire in this case 

will succeed after the remote operations to detect and update the lock status are completed. The 

local idle acquire state is the same as the remote idle acquire state, except X and Y are the same 

nodes. Both of the idle cases occur frequently when there is less contention. A lock is in remote  

busy acquire state when acquire from node Y is issued before the current lock holder, a different 

node X, releases the lock. This occurs frequently when there is high contention for locks. We found 

that performance of an implementation primarily depends on two factors: the number of messages 

(what we call hops) that must be sent to acquire or release a lock when the lock is in each of the 

state and the number of interrupts required on all nodes to acquire or release.

2.1 T&T&S Im plem entation t ,

T&T&S lock first reads the value of the lock variable and issues atomic primitives , i.e., 

fe tc h ^ a n d se t ,  on the lock variable if value from the read is zero. Otherwise, it backs off and 

tries the locks again. In our study, we adopt the exponential backoff scheme. When the lock is in 

local idle state, the lock variable is cached locally and T&T&S implementation performs a local 

read and a local fetch_and_set operation. T&T&S performs best under this scenario since it re­

quires only two local accesses. When the lock is in remote idle state, the lock variable is cached at 

a remote node and the first load must traverse up to 4 hops to obtain the shared copy of the lock 

variable. The subsequent atomic operation must also traverse another 4 hops before the acquire 

completes. Hence, it takes totally 8 hops even though the lock is free. When the lock is busy, the 

extra load preceding atomic primitive minimizes the impact of global spinning, but still there is a 

global flurry of activity at lock release time as each node refetches valid copies of the lock variable. 

This generates at least 12 global messages to acquire a lock when it is in remote busy state.

2.2 M CS Im plem entation  ,

MCS locks reduce the amount of global traffic during heavy contention. MCS maintains a dis­

tributed waiting queue per lock in shared memory. Data structure for each distributed queue
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includes a queue entry per node and a tail pointer. To save remote traffic, the home page for queue 

entry is allocated at the node that owns the entry. There is a flag field per queue entry that is used 

for local spinning and signaling. The tail pointer points to the queue entry of the node that is the 

last one to enter the queue. Acquiring a lock involves only two nodes if lock is currently held: the 

node in the tail and the one requesting the lock. Releasing lock also involves two nodes: the one 

releasing the lock and the one next to the releaser in the queue. Unlike the T&T&S, the nodes 

waiting on a lock in MCS spin locally without generating any global traffic. However, maintaining 

distributed queue incurs more overhead than T&T&S. Like T&T&S implemetation, MCS avoids 

generating global traffic when the lock is in the local idle state. When the lock is in remote idle 

state, MCS needs up to 4 hops for doing f e tc h - a n d s to r e  into the queue entry at the tail pointer 

location. When the lock is in remote busy state, requesters enter distributed queue by updating tail 

pointers. This takes up to 4 hops if valid data is not in home node. It takes another 4 more hops to 

store its pointer to its own queue entry into its predecessor’s queue entry. Then the requester spins 

locally on the flag in its queue entry waiting for the predecessor’s signal. When the predecessor 

releases the lock, it obtains the pointer to its follower’s queue entry in 4 hops, and updates the 

flag in the queue entry in another 4 hops. Finally, the next node in the queue refetches the valid 

value of the flag in 4 hops and acquires the lock. That amounts to 12 hops after the lock release. 

However, MCS restricts the number of global messages and hence performs better than T&T&S 

when there is heavy contention. Nevertheless, when only a few number of nodes (2 or 3 nodes) 

contend for the same lock, MCS might perform poorly compared to T&T&S since it requires more 

global operations to maintain distributed queue. . . .

. ", . ■ .1 : ■ . 1 ! .. !V..: .

2.3 R eactive Im plem entation  ’ ' 1

Reactive locks adopt to the best behavior of T&T&S or MCS locks based on the observed lock 

contention. One limitation of Reactive implementation is that they use local information while 

making the decision to adopt. This may not be precise since it is hard to accurately calculate 

the degree of lock contention. For example, Reactive implementation may mistakenly switch lock 

protocol from MCS to T&T&S looking at idle acquires by one of the processes even though that 

might be followed by a burst of acquire attempts from other processes. After improperly switching, 

Reactive implementation requires attempts from one node to fail for a few time before the protocol 

is switched back to MCS. .. . , ■ ,, • > - . ; ■■ n ■
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MP-LOCK is built upon software and using the existing message passing mechanisms without 

requiring any special-purpose hardware or atomic primitives. The MP-LOCK model has lock m an­

agers that manage lock ownerships. We evaluated three lock manager organizations: (i) a single 

centralized lock manager (MP-cent), (ii) a set of cooperating lock managers running on each node 

(MP-dist), and an adaptive distributed manager that reverts to centralized mode when there is 

less contention (MP-react). Rather than using shared memory loads/stores and atomic primitives, 

MP-LOCK synchronization libraries send lock requests to a lock manager, which will either queue 

the request until it can be satisfied or forward the request to the lock manager that currently has 

the lock. We evaluated both user-level and in-kernel lock manager and found that the context 

switch overhead of user-level lock manager is significant. Therefore, in this paper we restrict our 

focus to in-kernel lock manager. , ............, ,

A Lock that is in local idle state frequently is often reacquired by the same node before it is 

acquired by other nodes. Therefore, an efficient lock scheme should “cache” lock ownership locally 

for subsequent acquires. “Caching” comes naturally for shared memory locks. Therefore, it is 

important that MP-LOCK implementations have this property. When the lock is in remote busy 

state and pending lock requests are just queued in centralized lock manager, it takes two hops to 

transfer ownership after a lock is released (one hop from the lock holder to the lock manager and 

one hop to the requester). However, if requests are “forwarded” to the node currently holding the 

lock or to the node at the end of the waiting queue, it costs only one hop to pass lock ownership. 

When the lock is in remote idle state, it is infrequently reacquired by the same node. This type 

of lock does not benefit from “caching” and “forwarding” . It can be most efficiently handled by 

returning lock ownership to a centralized manager.

In MP-cent, lock managers handle both lock and unlock requests. A node acquires a lock by 

performing a non-blocking send to a designated lock manager and then spins while waiting for a 

reply. The releasing node does a non-blocking send to the central lock manager. Acquire request is 

granted immediately if the lock is free. Otherwise, acquire request is queued until lock ownership 

is returned. Conceptually, MP-cent is similar to T&T&S that snoops on a centralized location. 

However, T&T&S requires up to 8 hops to read valid lock variable and to acquire the exclusive 

ownerships if the lock is free. Acquiring a lock in MP-cent requires only 2 hops and one interrupt 

at the central lock manager under all circumstances. MP-cent performs well when there is less 

contention and different processes acquire the lock. However, the lack of support for “caching” and 

“forwarding” leads to poor performance when the lock is in local idle or remote busy state.

2 .4  M P - L O C K  I m p l e m e n t a t i o n  i :
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In MP-dist, lock managers cooperate to manage a distributed queue of pending lock requests. 

When a process wants to acquire a lock, it consults its local lock manager. If the lock is free and the 

lock ownership is cached locally, the local lock manager returns the lock immediately. Otherwise, 

the process sends the lock request to a designated remote lock manager, which either returns the 

lock or forwards the request. To release a lock, a process consults its local lock manager. If a 

request is pending, ownership of the lock is forwarded to the requesting process directly in a single 

message. If no request is pending, the local lock manager caches the lock ownership. • ' •,i

MP-dist performs well for locks that the processes try to acquire when they are heavily contested 

or frequently reused. During heavy contention, lock ownerhip will be passed between successive 

owners directly via a single message, and the extra latency and messages required to forward the 

lock request to the end of the queue is effectively hidden as part of the required stall until the lock 

is free. When lock reacquisitions (local idle acquire state) is common, M P-dist’s caching of lock 

ownerships makes acquire very cheap. However, when the lock is in remote idle state for majority 

of acquires, MP-dist performs relatively poorly - it requires on average 3 hops (messages) and 2 

interrupts to transfer the ownership from the current holder and to the requester. , ,

Because different applications have very different lock request patterns, we developed a reactive 

lock protocol, akin to Reactive locks [14], called MP-react. Since lock managers mediate both 

lock acquire and release requests, they have accurate knowledge of lock access patterns. A central 

lock manager initially grants “uncachable” locks so that lock ownership is returned when locks are 

released. Acquire requests on these locks require two hops to be satisfied, as in MP-cent. If the lock 

manager detects repeated requests from the same node without request from other nodes, it grants 

a “cachable” instance of the lock so that it can be reacquired by the node without performing any 

remote operations. When a lock is heavily contested, lock manager will “forward” acquire requests 

as in MP-dist so that ownership transfers will take one hop. MP-react has better information than 

Reactive locks because the central lock manager can track global access patterns and thus can make 

more effective decision about when to switch modes. ,

We summarize in Table 1 the overhead of acquiring a lock for each of the implementations we 

considered when the lock is local id le , remote id le , or remote busy state. In the case of local idle 

and remote idle states, the acquire overhead shown is the amount of work required to detect that 

the lock is idle and resume the requesting process. In the case of remote busy acquire, acquire 

overhead is the amount of work required to transfer the lock from a releaser to the acquirer at the 

release point. When the lock is in local idle state, only local operations are required for all lock 

schemes except MP-cent to acquire a lock. In both remote idle and busy states, shared memory 

locks always require more hops than MP-LOCK. However, the MP-LOCK implementations might
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Lock Scheme Local Idle Remote Idle Remote Busy
T&T&S Oh 8h 12h
MCS Oh 4h 12h
Reactive Oh 4h 12h
MP-cent N /A 2h +li 2h + li
MP-dist Oh 3h+2i lh
MP-react Oh 2h + li lh

iiOi- - '  ■, ( i  : ■ :
T able 1 Cost and Latency of Various Lock Schemes (h: network hop. i: interrupt)

incur interrupts due to their software implementation. We will describe efforts to minimize the 

overhead of MP-LOCK’s software implementation in Section 3.

3 Im plem entation Issues in M P-LOCK , , . .

To minimize the overhead of MP-LOCK’s software implementation, we used a low latency message 

passing mechanism called Direct Deposit (DD )  [26] and embedded lock managers in the kernel. W,Te 

also carefully distributed lock management across nodes to minimizeload imbalance effects. In this 

section, we describe the pertinent implementation details that impact performance.

To avoid load imbalance, we employ one lock manager per node for all three MP-LOCK algo­

rithms. We statically assign each lock to a single lock manager in a round robin fashion when it 

is allocated (e.g., lock 1 is managed by the lock manager on node 1, lock 2 by node 2,..., and lock 

N + l by node 1). Other distribution methods, e.g., first touch, are possible but were not considered. 

This distribution of lock management mitigated the effect load imbalance, as shown in Section 5.

To alleviate the overall impact of using software lock managers, we embed them in the kernel. 

This reduces the impact to application processes running on the node of handling remote requests. 

The decision to embed the lock managers in the kernel raises the question of where to cache lock 

ownership in the MP-dist and MP-react algorithms when the lock is released and no other request is 

pending: in the application process or in the kernel lock manager. Caching in the user application 

allows a lock to be reacquired by the same process inside of a local library routine, making it 

effectively free. However, to satisfy a remote request, we would be forced to deliver the application 

process a signal to reclaim the lock ownership, which takes 3500 cycles to perform on our kernel. 

Therefore, we chose to cache lock ownership within the kernel lock managers. Application processes 

use a light weight system call to return lock ownership to the kernel-embedded lock managers, 

which allows remote lock requests to be satisfied quickly without performing a context switch, and 

to reacquire locally cached locks. ■ ' 4 - ■ i ^
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Finally, we employed the low latency Direct Deposit (DD) protocol to communicate between lock 

managers. DD is a sender-based protocol (SBP) [28], which means tha t it employs a connection- 

based mechanism tha t enables the sender to manage a reserved receive buffer within the receiving 

process’ address space tha t is obtained when the connection is established. The sender directs 

placement of messages within tha t buffer via an offset carried within the message header. The 

semantics of DD allow for asynchronous sends, i.e., the send call can simply request transmission 

of the message and return immediately. Coupled with an appropriate network interface, an SBP 

can achieve 0-copy message reception directly to the receiver’s virtual address space and allow 

transmissions to occur in parallel with continued computation by the sending process.

DD supports user mode message reception. A user level receive consists simply of checking 

the valid llag of the incoming connection’s notification. Polling for incoming messages is thus 

an extremely inexpensive operation. The message buffers can completely reside in the receivers’ 

address space, which yields a used-mode receive capability.

4 Performance Evaluation \ : ,

4.1 E xp erim en ta l S etu p  .

All experiments were performed using an execution-driven simulation of the HP PA-RISC archi­

tecture called Paint (PA-interpreter)[25]. Paint was derived from the Mint sim ulator[29]. Our 

simulation environment includes detailed simulation modules for a first level cache, system bus, 

memory controller, network interconnect, and DSM engine. It provides a multiprogrammed pro­

cess model with support for operating system code, so the effects of OS/user code interactions are 

modeled. The simulation environment includes a kernel based on 4.4BSD tha t provides schedul­

ing, interrupt handling, memory management, and limited system call capabilities. Simulating the 

kernel provides a fair accounting for our software-based MP-LOCK overheads. , , ,

,c All experiments were conducted using a Simple-COMA-based architecture [22] with an infinite 

DRAM page pool and a 1-Mbyte direct-mapped LI cache. The reason we chose a large LI cache 

size and a “perfect” Simple-COMA-based architecture is to eliminate the effects of shared data  con­

flict/capacity misses, which could lead to skewed performace for the T&TfcS and MCS algorithms 

shared due to memory allocation effects. The modeled processor and DSM engine are clocked at 

120MHz. The system bus modeled is H P’s Runway bus, which is also clocked at 120MHz. All cycle 

counts reported herein are with respect to this clock. We model a 4-bank main memory controller 

tha t can supply da ta  from local memory in 58 cycles. For our interconnect, we modeled a Myrinet 

network [2] with 1-cyle propagation delays and a 16-port Myrinet switch. For experiments with



fewer than 16 nodes, only one switch is required. For the 32-node configuration, we use a 2X2 mesh 

topology. We ran our experiments with two different switch fall through delays of 4 and 176 cycles 

to model high-end commercial DSM systems such as the SUN UE1.0000 [27], SGI Origin 2000 [13] 

and Mercury Interconnect Architecture [30] tha t use specialized high speed interconnects and other 

DSM systems or clusters of workstations tha t use less aggressive ofF-the-shelf interconnects [15]. 

The characteristics of the LI cache and network tha t we modeled are shown in Table 2. As a result 

of the modeled machine characteristics, the average 2-hop lock acquire operation required 1400 to 

1700 cycles in the MP-LOCK implementations depending on the network delay. Finally, we varied 

the number of nodes from 4 to 32. ' , ~"
' a".-;-. , ’ ; wr,

: 1 V -; ■ '■ .; •)!/£:

4 .2  B e n c h m a r k  P r o g r a m s  i. ........  ’ ’

We used five programs to conduct our study: mp3d from the SPLASH benchmark suite [24], barnes, 

r a d io s i ty ,  and r a y tr a c e  from the SPLASH-2 benchmark suite [31], and spark98 from a sparse 

m atrix kernel suite [18]. Table 3 shows the inputs used for each test program.

Table 4 presents the distribution of lock categories for the applications we studied. Because 

the access patterns do not change dramatically with different interconnect speeds, we show the 

distribution only for the fast interconnect model.

Component Characteristics
LI Cache Size: 1-Mbytes. 32 byte lines, direct-mapped, virtually indexed, physically tagged, 

non-blocking, up to one outstanding miss, write back, 1-cycle hit latency
Networks 1 cycle propagation, 16-port switch , port contention (only) modeled 

Fall through delay: 4 and 176 cycles

T ab le  2 Cache and Network Characteristics , ,,'H /O!

Applications Type of Simulation Inputs

barnes Barnes-Hut N-body 16k particles
mp3d Hypersonic flow 20k molecules, 10 steps, the lock version
radiosity The equilibrium distribution 

of light in a scene
room . , , , , .

raytrace 3-D rendering car
spark98 Kernel doing sparse matrix 

vector product operations
sflO sparse matrix, the lock version

Table 3 Classification of the simulated benchmarks and their inputs
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Applications total lock pairs 
(locks per milisec)

Local Idle Remote Idle Remote Busy 
(interrupts inside CS)

barnes (4 nodes) 68871(15.0) 73% 25% 2% (2%)
barnes (8 nodes) 68972(31.0) 63% 30% 8% (4%)
barnes (16 nodes) 69150(60.0) 52% 29% 19% (6%)
barnes (32 nodes) 69468 (114.0) 47% 28% 25% (7%)
mp3d (4 nodes) 407996(148.0) 26% 73% 1% (0%)
mp3d (8 nodes) 407918(235.0) 13% 86% 0% (0%)
mp3d (16 nodes) 408020(403.0) 7% 92% 1% (0%)
mp3d (32 nodes) 408126(700.0) 4% 94% 2% (0%)
radiosity (4 nodes) 198991(23.0) 57% 37% 6% (3%)
radiosity (8 nodes) 210186(42.0) 47% 33% 20% (6%)
radiosity (16 nodes) 266657(84.0) 34% 32% 34% (3%)
radiosity (32 nodes) 474261(98.0) 19% 22% 59% (2%)
raytrace (4 nodes) 95472 (26.0) 38% 52% 10% (2%)
raytrace (8 nodes) 95480(46.0) 20% 43% 37% (5%)
raytrace (16 nodes) 95497 (79.0) 5% 16% 79% (4%)
raytrace (32 nodes) 95532 (105.0) 1% 3% 96% (0%)
spark98 (4 nodes) 2088644(290.0) 77% 23% 0% (0%)
spark98 (8 nodes) 2088648(505.0) 75% 25% 0% (0%)
spark98 (16 nodes) 2088656(849.2) 69% 31% 0% (0%)
spark98 (32 nodes) 2088672(1345.0) 63% 37%. 0% (0%)

ilfi
T ab le  4 Lock access patterns in barnes, mp3d, r a d io s i ty ,  r a y tra c e  and spark98. 

Results are obtained from the MP-dist simulations with the fast interconnect.

We believe various synchronization access patterns are well represented by the choice of these 

five applications. Among these five applications, lock contention in three applications goes up, 

although to different degrees, as the number of nodes increases. In barnes, 50% of locks are reused 

even with 32 nodes due to the application’s excellent temporal locality. However, the number of 

remote busy locks increases from 2% to 25%. Most local idle locks in r a d io s i ty  are transformed 

into remote busy locks as the number of nodes increases. In an extreme case, 96% of locks fall into 

the remote busy category in r a y tr a c e  with 32 nodes. Mp3d and spark98 have the lowest level of 

lock contention among the five applications. 99% of lock acquires in these two applications are idle 

locks. The degree of lock contention remains the same even as the number of nodes varies. Because 

of mp3d’s poor shared data  temporal locality, most of its locks tha t protect the shared data  fall into 

the remote idle category. As opposed to mp3d, locks in spark98 show excellent temporal locality and 

most of them can be satisfied locally if lock caching is implemented. In Table 4, in t e r r u p ts  in s id e  

CS represents the frequency with which nodes executing inside a critical section are interrupted by 

incoming forwarded requests, which only occurs in M P-dist and M P-react. When this occurs,



critical sections are artificially lengthened, which degrades performance. Fortunately, it does not 

occur frequently in the applications we studied. ... . , . . • . . , ■
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Figures 1, 2, and 3 present the performance of MCS, T&T&S, MP-cent, MP-dist, and M P-react 

on these five applications. Four graphs are presented for each application. The top two graphs 

present the results using the fast interconnect model, while the bottom two graphs present the 

results using the slow interconnect model. The two graphs on the left present the execution time of 

the application using each lock implementations relative to the MCS lock version. The two graphs 

on the right break down the time the application spent performing various tasks. U-shmem denotes 

cycles spent while accessing shared memory -  the increased DSM controller occupancy of shared 

memory locks can cause higher shared memory stall times. Kern  denotes cycles spent performing 

the basic kernel operations required by all configurations (e.g., system calls) plus time spent exe­

cuting the kernel-embedded lock managers in MP-LOCKs. U-instr and U-lclmem denotes cycles 

spent performing user-level instructions and accessing noil-shared (local) memory. Barrier and lock 

denote cycles spent waiting for barrier and lock/unlock operations to complete, respectively. All 

results include only the parallel phase of the programs. i■■  ̂  ̂ ,! ■ ,

The five applications can be divided into two categories: applications whose lock access pattern 

changes with the system configuration (barnes, r a d io s i ty  and ra y tra c e )  and applications whose 

lock access patterns remain unchanged (mp3d and spark98).

Locks in barnes are used as follows. Accesses to each space cell are protected by per-cell 

locks, and the global ma,ximum and minimum values also are protected by locks. During each 

time step, processes load bodies into an octree structure tha t represents 3-D space. This phase 

generates the majority of the program ’s synchronization operations. Although the average critical 

section is long, the chance of two processes contending for the same lock is small. As shown in 

Table 4, only 2% of the locks are busy in a 4-node system and 73% of the locks are “reused” by 

the same node. Octree initialization is followed by a long computation phase, which accounts for 

most of the execution time. Thus, as detailed in Figure 1, the time spent on synchronization is 

small compared to the overall execution time, so there is little need for special hardware support 

for locking -  MP-LOCKs can provide equal or better performance than shared memory locks. As 

shown in Figure 1, the shared memory lock implementations (MCS and T&T&S) and MP-LOCK 

implementations (distributed and reactive) perform equally well in all cases except for the 32-node
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slow interconnect configuration. The lack of caching penalizes MP-cent, which underperforms the 

other four implementations by about 5%. ........ - • ».i., ... -....ji. ;-

A number of patterns are evident in the results. The degree of lock contention increases from 2% 

to 25% as the number of nodes increases from 4 to 32 (see Table 4). The relatively high degree of lock 

contention in the 32-node configuration causes the performance of T&T&S to drop dramatically, 

which is in line with previous studies [10, 14, 16]. In addition, the performance of shared memory 

locks is heavily impacted by interconnect latency and the number of remote memory accesses 

required. Even MCS requires more remote memory accesses than MP-dist as shown in Table 1, 

and as a result M P-dist outperforms MCS by 8% in the 32-node slow interconnect configuration. 

Finally, increased controller occupancy and cache conflicts in large configurations increases the 

user shared memory access time noticeably for the shared memory locks, while the lock manager 

overhead of the MP-LOCK implementation scales well. .. ......................... ...

The r a d io s i ty  program is used to produce realistic computer-generated images of complex 

scenes by accounting for both direct illumination by light sources and indirect illumination through 

multiple reflections. Locks are used to protect a number of data structures. First, load balancing 

is implemented using distributed task queues -  idle processes dequeue tasks from non-empty task 

queues maintained by other processes, which are protected by locks. Another lock isused to im­

plement a global barrier and another is used to protect a buffer pool. The degree of contention 

for these three sets of locks depends on the number of nodes. For smaller systems (4 - 8 nodes), 

most of the time these locks fall into the local idle category, but as the number of nodes increases, 

contention for these locks increases. In addition, locks are used to protect patches th a t make up 

the image as they are subdivived, but there is little contention on these locks due to their fine 

granularity. However, the poor temporal locality of these patch locks result in most accesses to 

them being of remote idle variety -  in the 4-node configuration, one third of lock accesses are to 

remote idle locks.

Due to the low level of contention and M P-LOCK’s higher software overhead, MCS locks perform 

18% better than MP-LOCKs in the 4-node fast interconnect configuration. However, with a slow 

interconnect, the increased shared memory access time reduces the performance gap to 13%. As 

the number of nodes increases, contention increases. This leads to an decrease in the percentage 

of local idle locks from 57% to less than 20%, and an increase in the percentage of remote busy 

locks from 6% to about 60%. Regardless of configuration, the percentage of remote idle locks is 

constant about 20% because of the large amount of fine grained patch locks, which have poor 

locality. As a result of these changed in lock access pattern, M P-react starts to outperform MCS at 

the 16-node configuration and by the time the configuration reached 32 nodes, it outperforms MCS

14



locks by up to 64%. Comparing just the MP-LOCK schemes, when contention is low, MP-cent 

outperforms MP-dist, as expected, but as the number of nodes and/or network latency increases, 

MP-dist prevails. MP-react, which is able to adapt to the best of MP-cent and M P-dist, performs 

up to 10% better than either schemes, h* nr- >- i\ i . . i - m.„

R ay trace  renders a three-dimensional scene using ray tracing. Major data  structures include 

the ray trees, a hierarchical uniform grid, and an octree-like data  structure tha t represents the 

scene being rendered. Locks in r a y tr a c e  are used as follows. All shared data is allocated from 

a pre-allocated shared memory pool protected by a single lock. Like r a d io s i ty ,  r a y tr a c e  uses 

distributed task queues, with a lock protecting each queue. In the 4- and 8-node configurations, the 

lock protecting the memory pool falls is mostly remote idle, a category tha t accounts for 52% of 

lock requests. In these same small configurations, the locks protecting the distributed task queues 

are mostly local idle. Thus, for small configurations, shared memory locks perform up to 14% 

better than MP-LOCKs. As number of nodes increase and load imbalance occurs, processes begin 

to perform task stealing, which causes the task queue locks to become busy. The memory pool lock 

also becomes busy. As a result, 97% of the locks in the 32-node configuration are heavily contested, 

which causes MP-LOCKs to perform up to 75% for several reasons. First, MP-LOCKs can better 

handle highly contested locks because they can forward locks in a single message. Second, the 

impact of lock manager interrupts on user processes is amortized effectively. Finally, MP-LOCKs 

do not increase DSM controller occupancy, which helps to reduce shared memory access times.

Mp3d and Spark98 represent applications whose lock contention does not change dramatically 

with system configuration. Mp3d solves a problem in rarefied fluid flow simulation. Most synchro­

nization in mp3ed occurs during the move phase. Locks are used to atomically update the cell data 

of the active space array. The degree of contention on these locks is extremely low -  as presented 

in Table 4, 2% or fewer of the locks are found in busy state. Locks in mp3d have poor temporal 

locality and there is very little reuse, so most locks fall into the remote idle category. In this case, 

MP-LOCKs require up to two interrupts (one at the lock manager and one at the current lock 

holder) and three interconnect hops to acquire a lock. Thus, for 4 and 8 nodes, shared memory 

locks outperform the MP-LOCK implementations by up to 180%. The performance gap shrinks 

as the number of nodes and/or network latency increases. For example, MP-LOCKs perform bet­

ter than MCS in the 16-node configuration with a slower network and up to 186% better in the 

32-node configuration. Performance improves even though the number of locks in the remote idle 

state increases from 73% in the 4-node configuration to  94% in the 32-node configuration. Two 

factors can explain the poor scalability of shared memory locks: (i) the tight dependence between 

shared memory lock performance and remote memory access latency and (ii) the severe impact on



DSM controller occupancy caused by shared memory locks. Comparing just the MP-LOCK mech­

anisms, MP-cent outperforms MP-dist in the 32-node configuration because 94% of locks accesses 

are to remote idle locks. However, only 73% of lock accesses are to remote idle locks in the 4-noode 

configuration, so MP-dist outperforms MP-cent because of lock caching. n  ‘Km : o i

Spark98 is a sparse matrix multiplication kernel tha t performs a sequence of sparse matrix 

vector product (SMVP) operations. Each element in the result vector is protected by a lock. After 

multiplying a row of the sparse matrix times the dense vector, a process locks the result vector 

elements for which it computed a non-zero inner product so that it can add its partial result to the 

result vector. These locks have good temporal locality due to the way tha t processes are assigned 

work. The number of locks tha t are reused ranges from 77% in the 4-node configuration to 63% 

in the 32-node configuration. Hence, spark98 benefits greatly from lock caching, as can be seen 

by the relative performance of MP-cent and MP-dist. In the 4-node and 8-node configurations, 

shared memory locks perform 70% better than MP-LOCKs due to their low-latency lock/unlock 

routines. W ith increase in the number of nodes and/or network latency, however, MP-LOCKs 

perform up to 163% better than shared memory locks. Because of high percentage of reuse, MP- 

dist outperforms MP-cent. However, as the number of nodes increases from 4 to 32, the number of 

locks in remote idle state increases from 23% to 37%, which dramatically closes the performance 

gap between MP-cent and M P-dist. ; I " ■- *»n r •• w.nn . .i , ; •• !<, i >i

In summary, for applications with high lock contention, the best MP-LOCK algorithm outper­

forms the best shared memory lock algorithm by up to 186%. In particular, MP-LOCKs tend to 

outperform shared memory locks once the the system size reaches 16 nodes with a fast interconnect 

or 8 nodes with a slow interconnect. The superior scalability of MP-LOCKs on these applications 

occurs for several reasons. First, MP-LOCKs handle remote busy locks better than shared memory 

locks, because it can forward lock ownership in a single message. To achieve similar performance, 

shared memory locks would require special hardware shared memory protocols not present in mod­

ern machines [17]. Second, MP-LOCKs neither increase DSM controller occupancy nor interfere 

with shared memory data accesses, which can lead to significantly lower average remote memory 

latency for non-lock shared data. Finally, the software overhead induced by lock managers can 

be amortized across nodes, which reduces its impact. For applications with low lock contention, 

MP-LOCKs underperform the best shared memory lock implementation on small systems (4 nodes 

or 8 nodes) by up to 15% in three applications and no more than 180% in the remaining two 

applications. Fast hardware shared memory lock implementations can handle low contention locks 

more efficiently than MP-LOCKs. Given the trends we observed, we expect tha t MP-LOCKs will 

scale better than shared memory locks as the number of nodes increases beyond 32 nodes. Thus,
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we believe th a t MP-LOCKs are an attractive alternative to hardware synchronization primitives 

for future scalable shared memory multiprocessors th a t support efficient message passing.

6 R elated Work : .........  i ^

In addition to their Reactive lock mechanism tha t adapts between T&T&S and MCS semantics, 

Lim and Agarwal [14] proposed a reactive lock mechanism th a t adapts to either shared memory 

or message-based style locking. They found tha t a message-passing centralized queue-based lock 

(MPCQL) starts to ourperform T&T&S as the number of nodes exceeds four, which agrees with 

our results. However, they found tha t MCS locks consistently outperformed MPCQL. Their study 

was limited to a set of microbenchmarks, rather than whole programs as presented here, and they 

considered only a single centralized message-passing-based protocol for one set of interconnect 

speeds and remote shared memory latencies. Our results show tha t a more adaptive MP-LOCK 

protocol can outperform even MCS locks, depending on the application locking pattern, network 

latency, and machine size.

Kagi and Goodman proposed a software version of QOLB, called SOFTQOLB [10]. SOFT- 

QOLB’s implementation is based on the Tempest interface [20]. When they compared the per­

formance of SOFTQOLB against MCS locks and a centralized queue-based lock mechanism, they 

found tha t message-passing locks can be as efficient as shared memory locks at low lock contention 

and can outperform them when lock contention is high. However, their study only considered 

microbenchmarks and low end clusters of workstations, which makes it difficult to compare their 

results to ours directly. They did not attem pt to identify the performance bottlenecks of their 

SOFTQOLB implementation, nor did they suggest ways to exploit software’s inherent flexibility. 

Nevertheless, like our proposed MP-LOCK mechanisms, SOFTQOLB provides an efficient alterna­

tive to conventional hardware locks for emerging scalable multiprocessors. *'■ . '

. . - ......... '

7 Conclusions *

In this paper, we dem onstrate th a t software-based locks are an attractive alternative to hardware- 

based implementations. The so-called MP-LOCK approach is based on efficient message passing 

mechanisms th a t can be supported by most contemporary multiprocessor interconnects. By basing 

locks on message passing rather than dedicated hardware, MP-LOCK reduces the design complexity 

and runtime occupancy of DSM controllers. In addition, MP-LOCKs can exploit software’s inherent
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F ig u re  3 Performance Charts for spark98. Left Column: Execution Time Relative to 
MCS. Right Column: Breakdown Execution Time (msecs).

flexibility to support lock protocols th a t intelligently adapt to differing application lock access 

patterns.

We evaluated the performance of three MP-LOCK algorithms against tha t of two efficient 

hardware-based locks algorithms, test-and-test-and-set[21] and MCS locks[16], on five applications 

with a variety of lock access patterns. We found tha t MP-LOCKs scale better than T&T&S or MCS 

locks because they avoid the use of shared memory and instead support direct point-to-point transfer 

of lock ownership during periods of high lock contention. As a result, MP-LOCKs consistently 

perform equal to or better than hardware locks for systems consisting of sixteen or more nodes. 

In the extreme, the use of MP-LOCKs improved performance by up to 186%. However, for small 

system sizes, e.g., 4 - 8  nodes, interrupt handling and software overhead caused the performance of 

the MP-LOCK versions to lag th a t of shared memory locks. However, the difference was no more 

than 18% in three applications and no more than 180% in the remaining two applications.

Focusing on the MP-LOCK algorithms in isolation, we found th a t MP-cent performed best 

for applications like mp3d with poor lock locality, and thus frequent remote idle accesses. The
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reason is tha t for these applications relinquishing locks back to a per-lock centralized lock manager 

minimizes message traffic. However, when contention is high or locks are reused frequently, MP- 

dist significantly outperforms MP-cent, because direct lock forwarding and lock caching effictively 

handle these situations. M P-react exploits global access pattern observations to adaptively switch 

between centralized and distributed modes, which leads to good overall performance and the best 

performance for applications tha t demonstrate a mix of access patterns.

This paper makes several contributions. We present the results of the first study tha t compares 

the performance of message passing locks and shared memory locks on macrobenchmarks. We 

took great pains to conduct a fair comparison by including a detailed 4.4BSD-based kernel in our 

simulation environment. This kernel provides scheduling, interrupt handling, and system call capa­

bilities to accurately simulate the software overhead of the proposed message passing mechanisms. 

Second, we identified the tradeoffs for shared memory locks and message passing locks as sys­

tem sizes and network latencies vary. These results should assist future architects when designing 

their synchronization mechanisms. Third, we classified the lock access patterns of five well-known 

shared memory benchmarks on various number of processors, which will help other researchers 

understand the locking behavior of these applications. Finally, we provided guidelines for designing 

synchronization mechanisms in clusters of workstations th a t are equipped with message passing 

communication mechanisms. For example, we show tha t lock caching is essential when designing 

message-passing based locks. - ■

In the future, we plan to further minimize interrupt overhead, which causes performance prob­

lems in small systems, by evaluating various application-level polling strategies tha t will allow us 

to eliminate the need for kernel-level lock managers. We also plan to investigate techniques to 

exploit QOLB-style lock-data collocation in the MP-LOCK algorithms. Doing so has the potential 

to eliminate a large amount of coherence traffic. Since messages can easily carry the data pro­

tected by a lock along with lock ownership, this might appear trivial at first glance. However, 

a straightforward implementation would require modification to conventional DSM controllers to 

avoid coherence traffic in response to writing the data  to the new lock owner’s memory. Finally, we 

plan to investigate more intelligent adaptive locking protocols tha t better exploit the global lock 

access pattern information tha t can be gleaned by lock managers. , w t ^
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