
INTERACTIVE DIGITAL PHOTOGRAPHY
AT SCALE

by
Brian Mark Summa

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science

School of Computing
The University of Utah

May 2013

Copyright © Brian Mark Summa 2013
All Rights Reserved

The U n iv e r s i t y o f U tah G r a d u a te S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Brian Mark Summa
has been approved by the following supervisory committee members:

Valerio Pascucci Chair 2/25/2013
Date Approved

Paolo Cignoni Member 12/13/2012
Date Approved

Charles Hansen Member 12/14/2012
Date Approved

Christopher Johnson Member 12/14/2012
Date Approved

Paul Rosen Member 12/14/2012
Date Approved

and by Alan Davis Chair of
the Department of _____________________ School of Computing

and by Donna M. White, Interim Dean of The Graduate School.

ABSTRACT
Interactive editing and manipulation of digital media is a fundamental component in

digital content creation. One media in particular, digital imagery, has seen a recent increase
in popularity of its large or even massive image formats. Unfortunately, current systems
and techniques are rarely concerned with scalability or usability with these large images.
Moreover, processing massive (or even large) imagery is assumed to be an off-line, automatic
process, although many problems associated with these datasets require human intervention
for high quality results. This dissertation details how to design interactive image techniques
that scale. In particular, massive imagery is typically constructed as a seamless mosaic
of many smaller images. The focus of this work is the creation of new technologies to
enable user interaction in the formation of these large mosaics. While an interactive system
for all stages of the mosaic creation pipeline is a long-term research goal, this dissertation
concentrates on the last phase of the mosaic creation pipeline - the composition of registered
images into a seamless composite. The work detailed in this dissertation provides the
technologies to fully realize interactive editing in mosaic composition on image collections
ranging from the very small to massive in scale.

To Delila

CONTENTS
A B S T R A C T .. iii
L IST O F F IG U R E S ..viii
L IST O F T A B L E S .. xvii
A C K N O W L E D G E M E N T S ..x ix
C H A P T E R S
1......M O T IV A T IO N A N D C O N T R IB U T IO N S .. 1

1.1 The Panorama Creation P ip e lin e ... 4
1.2 Boundaries... 7
1.3 Color Correction ... 12

2. R E L A T E D W O R K ... 15
2.1 Image Boundaries: S eam s... 15

2.1.1 Pairwise B oundaries... 15
2.1.2 Graph C u ts ... 16
2.1.3 Alternative Boundary Techniques.. 16
2.1.4 Out-of-Core and Distributed Com putation... 16

2.2 Color Correction: Gradient Domain E diting .. 17
2.2.1 Poisson Image Processing .. 17
2.2.2 Poisson Solvers .. 17
2.2.3 Out-of-Core Com putation.. 19
2.2.4 Distributed C om putation .. 19
2.2.5 Cloud Computing - MapReduce and Hadoop ... 20
2.2.6 Out-of-Core Data Access .. 21

3. SC A LA B L E A N D E F F IC IE N T DATA A C C E S S .. 22
3.1 Z- and HZ-Order Background .. 22
3.2 Efficient Multiresolution Range Q ueries... 25
3.3 Parallel W r i te .. 28
3.4 ViSUS Software Framework .. 28

3.4.1 LightStream Dataflow and Scene G raph .. 31
3.4.2 Portable Visualization Layer - ViSUS AppKit.. 32
3.4.3 Web-Server and P lu g -In .. 33
3.4.4 Additional Application: Real-Time M onitoring .. 34

4. IN T E R A C T IV E S E A M E D IT IN G AT SC A LE ... 36
4.1 Optimal Image B oundaries.. 36

4.1.1 Optimal B oundaries... 36
4.1.2 Min-Cut and M in-P ath .. 37
4.1.3 Graph C u ts ... 38

4.2 Pairwise Seams and Seam Trees ... 38
4.3 From Pairwise to Global Seams ... 40

4.3.1 The Dual Adjacency M e s h ... 41
4.3.2 Branching Points and Intersection R eso lu tio n .. 42

4.3.2.1 Branching points... 43
4.3.2.2 Removing invalid intersections... 44

4.4 Out-of-Core Seam Processing .. 46
4.4.1 Branching Point and Shared Edge P h a s e .. 47
4.4.2 Intersection Resolution P h a se ... 48

4.5 Weaving Interactive S y s te m .. 49
4.5.1 System Specifics.. 49

4.5.1.1 Input.. 49
4.5.1.2 Initial parallel computation.. 50
4.5.1.3 Seam network import... 50

4.5.2 Interactions ... 51
4.5.2.1 Seam bending... 51
4.5.2.2 Seam splitting.. 52
4.5.2.3 Branching point movement... 52
4.5.2.4 Branching point splitting and merging.. 52
4.5.2.5 Improper user interaction.. 52

4.6 Scalable Seam Interactions ... 53
4.7 Results .. 55

4.7.1 Panorama C reation ... 55
4.7.1.1 In-core results... 55
4.7.1.2 Out-of-core results.. 56

4.7.2 Panorama E d iting .. 58
4.7.2.1 Editing bad seams... 58
4.7.2.2 Multiple valid seams... 60

4.8 Limitations and Future W o rk .. 60
5. IN T E R A C T IV E G R A D IE N T D O M A IN E D IT IN G AT S C A L E 64

5.1 Gradient Domain Image P rocessing .. 64
5.2 Progressive Poisson Solver... 65

5.2.1 Progressive Framework .. 65
5.2.1.1 Initial solution.. 66
5.2.1.2 Progressive refinement... 67
5.2.1.3 Local preview... 67
5.2.1.4 Progressive full solution... 68
5.2.1.5 Out-of-core solver.. 69

5.2.2 Data Access... 69
5.2.3 Interactive Preview and Out-of-Core Solver Results................................... 72

5.3 Parallel Distributed Gradient Domain Editing .. 79
5.3.1 Parallel Solver ... 80

vi

5.3.1.1 Data distribution as tiles... 80
5.3.1.2 Coarse solution.. 81
5.3.1.3 First phase: progressive solution... 81
5.3.1.4 Second phase: overlap solution.. 82
5.3.1.5 Parallel implementation details... 82

5.3.2 Results .. 84
5.3.2.1 NVIDIA cluster... 85
5.3.2.2 Longhorn cluster.. 87
5.3.2.3 Heterogeneous cluster... 88

5.4 Gradient Domain Editing on the C lo u d ... 89
5.4.1 MapReduce and H adoop.. 89

5.4.1.1 Input.. 90
5.4.1.2 MapReduce transfer... 90

5.4.2 MapReduce for Gradient D om ain .. 92
5.4.2.1 Tiles.. 92
5.4.2.2 Coarse solution.. 94
5.4.2.3 First (map) phase.. 94
5.4.2.4 Second (reduce) phase.. 94
5.4.2.5 Storage in the HDFS.. 95

5.4.3 Results .. 96
5.4.3.1 Scalability.. 97
5.4.3.2 Fault tolerance... 98

6. F U T U R E W O R K .. 99
A P P E N D IX : M A SSIV E D A T A S E T S ...101
R E F E R E N C E S ... 102

vii

LIST OF FIGURES
1.1 A 360 degree panorama taken of the city of Toronto, Ontario, Canada credited

to Armstrong, Beere and Hime in 1856... 2
1.2 Massive imagery is typically constructed as a mosaic of many smaller images.

(a) A panorama of Salt Lake City comprised of 624 individual images. The
combined image is over 3.2 gigapixels in size. (b) The panorama after being
composited into a single seamless image.. 2

1.3 The three stages of panorama (mosaic) creation. First, the individual images
must be acquired. Second, they are registered into a common coordinate sys­
tem. Third, they are composited (blended) into a single seamless image. My
dissertation research has been to provide technologies to enable interactivity
for the final composition stage while a high-performance back-end provides a
final image... 5

1.4 An example of the three stages of a panorama’s creation. First, the individual
images are acquired, typically, from a handheld camera. Second, for registra­
tion, the common coordinate system for the images is computed. Third, they
are composited (blended) into a single seamless image.. 5

1.5 A diagram to illustrate the main options available during the composition
stage of panorama creation. The most simple process is to merge the image
directly from the registration. The simplest approach is an alpha-blend of the
overlap areas to achieve a smooth transition between images................................ 6

1.6 A simple blending approach is usually not sufficient in mosaics with moving
elements. In these cases, the elements produce “ghosts” (circled here in red)
in the final blend... 7

1.7 (a, e) Two examples (Canoe: 6842 x 2853, 2 images and Lake Path: 4459
x 4816, 2 images) of undesirable, yet exactly optimal seams (unique pairwise
overlaps) for the pixel difference energy. (b, f) A zoom of visual artifacts
caused by this optimal seam. (c, g) The pixel labeling. (d, h) The result
produced by Adobe Photoshop™ . Images courtesy of City Escapes Nature
Photography.. 7

1.8 Hierarchical Graph Cuts has only been shown to work well on hierarchies of
two to three levels. For this four picture panorama example, we can see that
Hierarchical Graph Cuts produces a solution that passes though a dynamic
scene element when using four levels of the hierarchy. A typical input value of a
ten pixel dilation was used for this example. While a larger dilation parameter
could be used, this would require a larger memory and computational cost
which negates the benefits of the technique.. 9

1.9 Even when seams are visually acceptable, moving elements in the scene may
cause multiple visually valid seam configurations. On the top, this figure
shows a four image panorama (Crosswalk: 4705 x 3543, four images) with
three valid configurations. On the bottom, this figure shows a two image
panorama (Apollo-Aldrin: 3432 x 2297, two images) with two valid configu­
rations. Images courtesy of NASA..

2.1 Although the result is a seamless, smooth image, without coarse upsampling
the final image will fail to account for large trends that span beyond a single
overlap and can lead to unwanted, unappealing shifts in color..............................

3.1 (a) The first four levels of the Z-order space filling curve; (b) 4x4 array indexed
using standard Z-order..

3.2 (a) Address transformation from row-major index (i , j) to Z-order index I
(Step 1) and then to hierarchical Z-order index (Step 2); (b) Levels of the
hierarchical Z-order for a 4x4 array. The samples on each level remain ordered
by the standard Z-order...

3.3 Our fast-stack Z-order traversal of a 4x4 array with concurrent index compu­
tation ...

3.4 (a) Naive parallel strategy where each process writes its piece of the overall
dataset into the underlying flle, (b) each process transmits each contiguous
data segment to an intermediate aggregator. Once the aggregator’s buffer
is complete, the data are written to disk, (c) several noncontiguous memory
accesses are bundled into a single message to decrease communication overhead

3.5 The ViSUS software framework. Arrows denote external and internal depen­
dences of the main software components. Additionally this figure illustrates
the relationship with several example applications that have been successfully
developed with this framework. ..

3.6 The LightStream Dataflow used for analysis and visualization of a three­
dimensional combustion simulation (Uintah code). (a) Several dataflow mod­
ules chained together to provide a light and flexible stream processing capa­
bility. (b) One visualization that is the result from this dataflow.........................

3.7 The same application and visualization of a Mars panorama running on an
iPhone 3G mobile device (a) and a powerwall display (b). Data courtesy of
NASA. ..

3.8 Remote visualization and monitoring of simulations. (a) An S3D combustion
simulation visualized from a desktop in the Scientific Computing and Imaging
(SCI) Institute (Salt Lake City, Utah) during its execution on the HOPPER
2 high performance computing platform in Lawrence Berkeley National Lab­
oratory (Berkeley, California). (b) Two ViSUS demonstrations of LLNL sim­
ulation codes (Miranda and Raptor) visualized in real-time while executed on
the BlueGene/L prototype installed at the IBM booth of the Supercomputing
exhibit..

10

21

23

24

27

29

30

32

34

35

ix

4.1 The four-neighborhood min-cut solution (a) with its dual min-path solution
(b). The min-cut labeling is colored in red/blue and the min-path solution is
highlighted in red.. 37

4.2 (a) Given a simple overlap configuration a seam can be thought of as a path
s that connects pairs of boundary intersections u and v. (b) Even in a more
complicated case, a valid seam configuration is still computable by taking pairs
of intersections with a consistent winding about an image boundary. Note that
there is an alternate configuration denoted in gray... 39

4.3 Given two min-path trees associated with a seam’s endpoints (u,v), a new
seam that passes through any point in the overlap (yellow) is a simple linear
walk up each tree... 39

4.4 (a) A solution to the panorama boundary problem can be considered as a
network of pairwise boundaries between images. (b) Our adjacency mesh
representation is designed with this property in mind. Nodes correspond to
panorama images, edges correspond to boundaries and branching points (inter­
sections in red) correspond to faces of the mesh. (c) Graph Cuts optimization
can provide more complex pixel assignments where “islands” of pixels assigned
to one image can be completely bounded by another image. Our approach
simplifies the solution by removing such islands.. 40

4.5 (a) A three overlap adjacency mesh representation. (b) A four overlap initial
quadrilateral adjacency mesh with its two valid mesh subdivisions. (c) A five
overlap pentagon adjacency mesh with an example subdivision. 42

4.6 Considering the full neighborhood graph of a panorama (a), where an edge
exists if an overlap exists between a pair of images, an initial valid adjacency
mesh (b) can be computed by finding all nonoverlapping, maximal cliques in
the full graph, then activating and deactivating edges based on the boundary
of each clique.. 43

4.7 (a) Pairwise seam endpoints closest to a multioverlap (red) are considered a
branching point. (b) This can be determined by finding a minimum point in
the multioverlap with respect to min-path distance from the partner endpoints.
(c) After the branching point is found, the new seams are computed by a
linear lookup up the partner endpoint’s seam tree. (d) To enable parallel
computation, each branching point is computed using the initial endpoint
location (green) even if it was moved via another branching point calculation
(red).. 44

x

4.8 (a) Pairwise seams may produce invalid intersections or crossings in a multi­
overlap, which leads to an inconsistent labeling of the domain. The gray area
on the top can be given the labels A or B and on the bottom either C or D.
(b) Choosing a label is akin to collapsing one seam onto the other. This leads
to new image boundaries, which were based on energy functions that do not
correlate to this new boundary. The top collapse results in a B-C boundary
using an A-B seam (C-D seam for the bottom). (c and d) Our technique
performs a better collapse where each intersection point is connected to the
branching point via a minimal path that corresponds to the proper boundary
(B-C). One can think of this as a virtual addition of a new adjacency mesh
edge (B-C) at the time of resolution to account for the new boundary............... 45

4.9 The phases of out-of-core seam computation. (a) First, branching points are
computed. The seams for all unshared edges can also be computed during
this pass. (b) Second, once the corresponding branching points are computed,
all unshared edges can be computed with a single min-path calculation. (c)
Third, once all the seams for the edges for a given face have been computed,
the intersections can be resolved. Note, the three passes do not necessarily
need to be three separate phases since they can be interleaved when the proper
input data are ready. .. 47

4.10 The low memory branching point calculation for our out-of-core seam creation
technique. (a) Given a face for which a branching point needs to be computed,
(b) the computation proceeds “round-robin” on the edges of the face to com­
pute the needed seam trees. The images that correspond to the edge endpoints
and overlap energy are only needed during the seam tree calculation for a given
edge on the face. Therefore by loading and unloading these data during the
“round-robin” computation, the memory overhead for the branching point
computation is the cost of storing two images, one energy overlap buffer, and
one for the seam trees for the given face... 48

4.11 For intersections that require a resolution seam, the two images which corre­
spond to the overlap needed for the seam must be loaded. In the figure above,
these images are the ones that correspond to the endpoint of the diagonal,
resolution adjacency mesh edge... 49

4.12 Overview of Panorama Weaving. The initial computation is given by steps
one through four, after which the solution is ready and presented to the user.
Interactions, steps five and six, use the tree update in step four as a background
process. Additionally, step six updates the dual adjacency mesh......................... 50

4.13 Importing a seam network from another algorithm. The user is allowed to
import the result generated by Graph Cuts (a) and adjust the seam between
the green and purple regions to unmask a moving person (b). Note that this
edit has only a local effect, and that the rest of the imported network is unaltered. 51

4.14 Improper user constraints are resolved or if resolution is not possible, given
visual feedback. (a) Resolution of an intersection caused by a user moving
a constraint. (b) Resolution of an intersection caused by a user moving a
branching point. (c) A non-resolvable case where a user is just provided a
visual cue of a problem.. 53

xi

4.15 Given the inherent locality of the seam editing interactions, only a very small
subset of the adjacency mesh needs to be considered. (a) For operations on
an adjacency mesh face (i.e., branching point operations) only the images
and overlaps of the corresponding face and its one face neighborhood need
to be loaded and computed. (b) For edge operations (i.e., bending), we need
consider only the faces that share the edge... 54

4.16 When a user selects an area of a panorama to edit, the system must determine
which overlaps intersect with the selected area. This can be accomplished
with a (a) bounding hierarchy of the overlaps. During selection this hierarchy
is traversed to isolate the proper overlaps for the selection. This gives a
logarithmic lookup with respect to the number of adjacency mesh faces in
the panorama. Alternatively, (b) if a pixel-to-image labeling is provided, this
can be used to isolate a fixed neighborhood that needs to be tested for overlap
intersection. This labeling is commonly computed if the panorama is to be
fed into a color correction routine after seam computation.................................... 54

4.17 Fall Salt Lake City, 126,826 x 29,633, 3.27 gigapixel, 611 images. (a) An
example window computed with out-of-core Graph Cut technique introduced
in Kopf et al. [94]. This single window took 50 minutes for Graph Cuts
to converge, with the initial iteration requiring 10.2 minutes. Since the full
dataset contains 495 similar windows, using the windowed technique would
take days (85.15 hours) at best, and weeks (17.2 days) in the worst case. (b)
The full resolution Panorama Weaving solution was computed in 68.4 minutes
on a single core and 9.5 minutes on eight cores. Our single core implementation
required a peak memory footprint of only 290 megabytes while using eight
cores had peak memory of only 1.4 gigabytes.. 57

4.18 Lake Louise, 187,069 x 40.202, 7.52 gigapixel, 1512 images. The Panorama
Weaving results for the Lake Louise panorama. Our out-of-core seam compu­
tation produces this full resolution solution in as little as 37.7 minutes while
requiring at most only 2.0 gigabytes of memory. Panorama courtesy of City
Escapes Nature Photography ... 59

4.19 Panorama Weaving on a challenging data-set (Nation, 12848 x 3821, nine
images) with moving objects during acquisition, registration issues and varying
exposure. Our initial automatic solution (b) was computed in 4.6 seconds at
full resolution for a result with lower seam energy than Graph Cuts. Addi­
tionally, we present a system for the interactive user exploration of the seam
solution space (c), easily enabling: (d) the resolution of moving objects, (e) the
hiding of registration artifacts (split pole) in low contrast areas (scooter) or (f)
the fix of semantic notions for which automatic decisions can be unsatisfactory
(stoplight colors are inconsistent after the automatic solve). The user editing
session took only a few minutes. (a) The final, color-corrected panorama......... 59

4.20 Repairing non-ideal seams may give multiple valid seam configurations. (a)
The initial seam configuration for the Skating dataset (9400 x 4752, six images)
based on gradient energy. (b and c) Its two major problem areas. (d and e)
Using our technique a user can repair the panorama, but also has the choices
of two valid seam configurations. Panorama courtesy of City Escapes Nature
Photography.. 59

xii

4.21 A panorama taken by Neil Armstrong during the Apollo 11 moon landing
(Apollo-Armstrong: 6,913 x 1,014, eleven images). (a) Registration artifacts
exist on the horizon. (b) Our system can be used to hide these artifacts. (c)
The final color-corrected image. Panorama courtesy of NASA............................. 61

4.22 In this example (Graffiti: 10,899 x 3,355, ten images), (a) the user fixed a few
recoverable registration artifacts and tuned the seam location for improved
gradient-domain processing, yielding a colorful color-corrected graffiti. (b)
Our initial automatic solution (energy function based on pixel gradients). (c)
The user edited panorama. The editing session took 2 minutes. 61

4.23 The color-corrected, user edited examples from Figure 1.7. The artifacts
caused by the optimal seams can be repaired by a user. Images courtesy
of City Escapes Nature Photography.. 62

4.24 A lake vista panorama (Lake: 7,626 x 1,231, 22 images) with canoes which
move during acquisition. In all there are six independent areas of movement,
therefore there are 64 possible seam configurations of different canoe positions.
Here we illustrate two of these configurations with color-corrected versions of
the full panorama (a and c) and a zoomed in portion on each panorama (b and
d) showing the differing canoe positions. Panorama courtesy of City Escapes
Nature Photography... 62

4.25 Splitting a five valence branching point based on gradient energy of the Fall­
5way dataset (5211 x 5177, 5 images): as the user splits the pentagon, the
resulting seams mask/unmask the dynamic elements. Note that each branch­
ing point that has a valence higher than 3 can be further subdivided. 62

5.1 Our adaptive refinement scheme using simple difference averaging. (a) Global
progressive up-sampling of the edited image computed by a background pro­
cess. (b) View-dependent local refinement based on a 2k x 2k window. In both
cases we speedup the SOR solver with an initial solution obtained by smooth
refinement of the solution.. 68

5.2 Subsampled and tiled hierarchies. (a) A subsampled hierarchy. As expected,
subsampling has the tendency to produce high-frequency aliasing. Though
details such as the cars on the highway and in the parking lots are preserved.
(b) A tiled hierarchy. This produces a more visually pleasing image at all
resolutions but at the cost of potentially losing information. The cars are now
completely smoothed away. Data courtesy of the U.S. Geological Survey.......... 70

5.3 Our progressive framework using subsampled and tiled hierarchies. (a) A
composite satellite image of Atlanta, over 100 gigapixels at full resolution,
overlaid on Blue Marble background subsampled; (b) a tiled version of the
same satellite image; (c) the seamless cloning solution using subsampling; (d)
the same solution computed using a tiled hierarchy; (e) the solution offset
computed using subsampling; (f) the solution computed using tiles; (g) a full
resolution portion computed using subsampling; (h) the same portion using
tiling. Note that even though there is a slight difference in the computed
solution, both the tiled and the subsampled hierarchies produce a seamless
stitch with our framework. Data courtesy of the U.S. Geological Survey and
NASA’s Earth Observatory... 71

xiii

5.4 The Edinburgh Panorama 16,950 x 2, 956 pixels. (a) Our coarse solution
computed at a resolution of 0.7 megapixels; (b) the same panorama solved at
full resolution with our progressive global solver scaled to approximately 12
megapixel for publication; (c) a detail view of a particularly bad seam from the
original panorama; (d) the problem area previewed using our adaptive local
refinement; (e) the problem area solved at full resolution using our global
solver in 3.48 minutes... 74

5.5 The RMS error when compared to the ideal analytical solution as we increase
iterations for both methods. Streaming multigrid has better convergence and
less error for the Edinburgh example (a), though our method remains stable
for the larger Salt Lake City panorama (b). Notice that every plot has been
scaled independently to best illustrate the convergency trends of each method. 75

5.6 Panorama of Salt Lake City of 3.27 gigapixel, obtained by stitching 611 images.
(a) Mosaic of the original images. (b) Our solution computed at 0.9 megapixel
resolution. (c) The full solution provided by our global solver. (d) The
difference image between our preview and the full solution at the preview
resolution. Both (a) and (c) have been scaled for publication to approximately
12.9 megapixels.. 76

5.7 A comparison of our adaptive local preview on a portion of the Salt Lake
City panorama one half of the full resolution; (a) the original mosaic, (b)
our adaptive preview, (c) the full solution from our global solver, and (d) the
difference image between the adaptive preview and the full solution 76

5.8 A comparison of our system with the best known out of core method [Kazhdan
and Hoppe 2008] and a full analytical solution on a portion of the Salt Lake
City panorama, 21201 x 24001 pixels, 485 megapixel (a) the full analytical so­
lution; (b) our solution computed in 28.1 minutes; (c) solution from [Kazhdan
and Hoppe 2008] computed in 24.9 minutes; (d) the analytical solution where
the solver is allowed to harmonically fill the boundary; (e) our solution with
harmonic fill; (f) solution from [Kazhdan and Hoppe 2008] with harmonic fill;
(g) the map image used by all solvers to construct the panorama where the
red color indicates the image that provides the pixel color and white denotes
the panorama boundary... 77

5.9 Application of our method to HDR image compression: (a) Original synthetic
HDR image of an adaptively refined Sierpinki sponge generated with Povray.
(b) Tone mapped image with recovery of detailed information previously hid­
den in the shadows. (c) Belgium House image solved using our coarse-to-fine
method with an initial 16 x 12 coarse solution (a = 0.01, = 0.7, compression
coefficient=0.5). (d) The direct analytical solution. Image courtesy of Raanan
F attal.. 78

5.10 Satellite imagery collection with a background given by a 3.7 gigapixel image
from NASA’s Blue Marble Collection. The Progressive Poisson solver allows
the application of the seamless cloning method to two copies of the city of
Atlanta, each of 116 gigapixels. An artist can interactively place a copy of
Atlanta under shallow water and recreate the lost city of Atlantis. Data
courtesy of the U.S. Geological Survey and NASA’s Earth Observatory............. 79

xiv

5.11 Our tile-based approach: (a) An input image is divided into equally spaced
tiles. In the first phase, after a symbolic padding by a column and row in
all dimensions, a solver is run on a window denoted by a collection of four
labeled tiles. Data are sent and collected for the next phase to create new
data windows with a 50% overlap. (b) An example tile layout for the Fall
Panorama example. ... 81

5.12 Windows are distributed as evenly as possible across all nodes in the dis­
tributed system. Windows assigned to a specific node are denoted by color
above. Given the overlap scheme, data transfer only needs to occur one-way,
denoted by the red arrows and boundary above. To avoid starvation between
phases and to hide as much data transfer as possible, windows are processed in
inverse order (white arrows) and the tiles needed by other nodes are transferred
immediately... 83

5.13 Fall Panorama - 126,826 x 29, 633, 3.27 gigapixel. (a) The panorama before
seamless blending and (b) the result of the parallel Poisson solver run on 480
cores with 124 x 29 windows and computed in 5.88 minutes................................. 85

5.14 Winter Panorama - 92, 570 x 28,600, 2.65 gigapixel. (a) The result of the
parallel Poisson solver run on 480 cores with 91 x 28 windows and computed
in 6.02 minutes, (b) the panorama before seamless blending, and (c) the coarse
panorama solution... 85

5.15 The two phases of a MapReduce job. In the figure, three map tasks produce
key/values pairs that are hashed into two bins corresponding to the two reduce
tasks in the job. When the data are ready, the reducers grab their needed data
from the mapper’s local disk.. 90

5.16 A diagram of the job control and data flow for one Task Tracker in a Hadoop
job. The dotted, red arrows indicate data flow over the network; dashed arrows
represent communication; the blue arrow indicates a local data write and the
black arrows indicate an action taken by the node... 91

5.17 Although the result is a smooth image, without coarse upsampling the final
image will fail to account for large trends that span beyond a single overlap
and can lead to unwanted shifts in color. Notice the vertical banding denoted
by the red arrows... 92

5.18 The 512 x 512 tiles used in our Edinburgh (a), Redrock (b), and Salt Lake
City (c) examples.. 93

5.19 Our tile-based approach: An input image is divided into equally spaced tiles.
In the map phase after a symbolic padding by a column and row in all
dimensions, a solver is run on a collection of four tiles labeled by numbers
above. After the mapper finishes, it assigns a key such that each reducer runs
its solver a collection of four tiles that have a 50% overlap with the previous
solutions. ... 93

xv

5.20 The results of our cloud implementation, from top to bottom: Edinburgh, 25
images, 16, 950 x 2, 956, 50 megapixel and the solution to Edinburgh from our
cloud implementation; Redrock, nine images, 19, 588 x 4, 457; 87 megapixel
and the solution to Redrock from our cloud implementation; Salt Lake City,
611 images, 126,826 x 29,633, 3.27-gigapixel and the solution to Salt Lake
City from our cloud implementation.. 97

5.21 (a) The scalability plot for the Edinburgh (50 megapixel) panorama on our one
node 8-core test desktop; (b) the scalability plot for Redrock (87 megapixel)
panorama on the same machine .. 98

6.1 A typical example of interaction during panorama registration from the open-
source Hugin [77] software tool. Current interaction is limited to the manual
selection and deletion of feature points used during registration.......................... 100

xvi

LIST OF TABLES
4.1 Performance results comparing Panorama Weaving to Graph Cuts for our

test datasets that contain more than simple pairwise overlaps. Panorama
Weaving run serially (PW-S) computes solutions quickly. When run in par­
allel, runtimes are reduced to just a few seconds. The energy ratio (E. ratio)
between the final seam energy produced by Panorama Weaving and Graph
Cuts (PW Energy / GC Energy) is shown. For all but one dataset (Fall-5way),
Panorama Weaving produces a lower energy result. It is comparable otherwise.
Panorama image sizes are reported in megapixels (M P)... 56

4.2 Strong scaling results for the Fall Salt Lake City panorama, 126, 826 x 29,633,
3.27 gigapixel, 611 images. Our out-of-core Panorama Weaving technique
scales very well in terms of efficacy percentage compared to ideal scaling up
to the physical cores of our test system (eight cores). At eight cores our
technique loses a slight amount of efficiency due to our implementation having
a dedicated thread to handing the seam scheduling. Using the full eight cores
to process this panorama provides a full resolution seam solution in just 9.5
minutes. The system is extremely light on memory and uses at most 1.4
gigabytes. ... 57

4.3 Strong scaling results for the Lake Louise panorama, 187,069 x 40.202, 7.52
gigapixel, 1512 images. Like the smaller Fall Salt Lake city panorama, our
implementation shows very good efficiency up to the physical number of cores
on our test system. Using the full eight cores for the full resolution seam
solution for this panorama requires 37.7 minutes of compute time and at most
2.0 gigabytes of memory.. 58

5.1 The strong scaling results for the Fall Panorama run on the NVIDIA cluster
from 2-60 nodes up to a total of 480 cores. Overhead (O/H) due to MPI
communication and I/O is also provided along with its percentage of actual
running time. The Fall Panorama, due to its larger size begins to lose efficiency
at around 32 nodes when I/O overhead begins to dominate. Even with this
overhead, the efficiency (Eff.) remains acceptable.. 86

5.2 The strong scaling results for the Winter Panorama run on the NVIDIA cluster
from 2-60 nodes up to a total of 480 cores. Overhead (O/H) due to MPI
communication and I/O is also provided along with its percentage of actual
running time. For the Winter Panorama, the I/O overhead does not effect
performance up to 60 nodes and the implementation maintains efficiency (Eff.)
throughout all of our runs... 86

5.3 Weak scaling tests run on the NVIDIA cluster for the Fall Panorama dataset.
As the number of cores, increases so does the image resolution to be solved.
The image was expanded from the center of the full image. Iterations of the
solver for all windows were locked at 1000 for testing to ensure no variation is
due to slower converging image areas. As is shown, our implementation shows
good efficiency even when running on the maximum number of cores................. 87

5.4 To demonstrate the portability of our implementation, we have run strong
scalability testing for the Fall Panorama on the Longhorn cluster from 2-128
nodes up to a total of 1024 cores. As the numbers show, we maintain good
scalability and efficiency even when running on all available nodes and cores. . 87

5.5 Weak scaling tests run on the Longhorn cluster for the Fall Panorama dataset. 88
5.6 Our simulated heterogeneous system. This test example is a simulated mixed

system of 2 8-core nodes, 4 4-core nodes, and 8 2-core nodes. The weights for
our framework are the number of cores available in each node. The timings
and window distributions are for Fall Panorama dataset. As you can see, with
the proper weightings our framework can distribute windows proportionally
based on the performance of the system. The max runtime of 32.70 minutes
for this 48 core system is on par with timings for the 32 core (40.08 minutes)
and 64 core (20.83 minutes) runs from the strong scaling tes t.............................. 89

A.1 Massive panorama data acquired and used in this dissertation work...................101
A.2 Massive satellite data acquired and used in this dissertation work.......................101

xviii

ACKNOWLEDGEMENTS
This dissertation was made possible through the support of others who I’d like the thank:
First, I would like to thank my family whose endless support made this work possible.

Thank you Mom, Dad, Chris, Jason and Amira for your wholehearted support of my decision
to quit my job and move across the country to go back to school (in Utah of all places).
Most importantly, I would like to thank Delila, my partner in all of this, for taking this
adventure with me. You are the source of my inspiration in all things.

I would like to thank my advisor and mentor, Valerio Pascucci, for his continued guidance
and encouragement. We both took a very big chance in our first semester as student and
professor at Utah, which, I believe, reaped a very huge reward. Since the start of my work,
he has given me the support and confidence I needed to succeed and for this I am grateful.
I hope this dissertation is not the end, but the beginning of a long collaboration.

I would also like to thank the other members of my committee: Chris, Chuck, Paul and
Paolo for their feedback on this work. I would like to especially thank Krzysztof Sikorski
who was a member of my committee for most of my time at Utah. Despite his illness, he
was a constant source of guidance and encouragement, for which I am grateful.

Finally, I would like to thank the many collaborators I have had while here at Utah,
and I hope you forgive me for not writing the numerous list. This work was only possible
through these collaborations. I cannot express the perpetual astonishment on what we
were/are able to accomplish together.

CHAPTER 1
MOTIVATION AND CONTRIBUTIONS

Interactive editing and manipulation of digital media is a fundamental component in
digital content creation. One media in particular, digital imagery, has seen a recent increase
in popularity of its large or even massive image formats. Unfortunately, current systems
and techniques are rarely concerned with scalability or usability with these large images.
For example, the support for large imagery in the most prevalent interactive image editing
application, Adobe Photoshop™ , lacks true viability for today’s massive images. The
application’s large image format has a 90 gigapixel maximum image size, limited editing
functionality beyond 900 megapixel, and a tedious processing time during an interactive
session. Moreover, the creation and processing of large imagery is assumed to be an offline,
automatic process though many of the problems associated with these datasets require
human intervention for repair. The work outlined in this dissertation will show that this
expensive, offline assumption need not be true and that real-time interaction provides new
and powerful environments for the creation and editing of massive images. Specifically, this
work will detail how to design interactive image processing algorithms that scale.

There has always been an inherent human desire to document or replicate large vistas of
our natural world or to document historical events in detail. Panoramic paintings reached
the height of their popularity in the early 19th century due to improvements in perspective
drawing techniques. A few decades later, the advent of modern photography was closely
followed by the earliest work in the creation of panoramic images, see Figure 1.1. In the years
since, the popularity of panoramas has not waned, see Figure 1.2. These large, sweeping
images capture the feeling of being an observer, whether it is of a beautiful natural view,
a historic event such as a Presidential inauguration,1 or a reminder of the destruction of
war.2 Consequently, there exists a significant interest in creating and using large mosaics

1Barak Obam a Presidential Inauguration: h ttp ://g igapan .org /g igapans/15374/

2Hiroshima Panoram a Project: h ttp ://w w w .iw u.edu/ rw ilson/hiroshim a/

http://gigapan.org/gigapans/15374/
http://www.iwu.edu/

2

F ig u re 1.1: A 360 degree panorama taken of the city of Toronto, Ontario, Canada credited
to Armstrong, Beere and Hime in 1856.

F ig u re 1.2: Massive imagery is typically constructed as a mosaic of many smaller images.
(a) A panorama of Salt Lake City comprised of 624 individual images. The combined image
is over 3.2 gigapixels in size. (b) The panorama after being composited into a single seamless
image.

for personal, scientific, and/or commercial applications. Examples include medical imaging,
where electron microscopy data is composited into ultra-high resolution images [159] or
the study of phenology and genomics.3 Massive imagery is also common in geographic
information systems (GIS) in the form of aerial or satellite data and used for anything from
urban planning to global climate research.

While many-megapixel cameras do exist,4 they are overly expensive and unwieldy to use.
Therefore, massive imagery is typically constructed as a mosaic of many smaller images.

3GigaVision Project: http://w w w .gigavision.org/

4Seitz 6x17 Digital: h ttp://w w w .roundshot.ch/xm L 1/in ternet/de/application/d438/d925/f934.cfm

http://www.gigavision.org/
http://www.roundshot.ch/xmL1/internet/de/application/d438/d925/f934.cfm

3

At one time, images such as the one in Figure 1.1 were painstakingly constructed by hand.
Recent innovations in algorithms and available hardware have drastically simplified the
creation of small-scale panoramas. This process can be computed simply offline and can
now be embedded in commodity cameras (e.g., the Sony Cyber-shot 3D Sweep Panorama)
or mobile devices such as Apple’s iPhone. The panoramas for these algorithms are assumed
to be small and therefore, are not designed to scale. For example, the iPhone’s panorama
feature, released in September 2012, has a strict 28 megapixel upper limit on the panorama
size. This is small by today’s standards. An online search for the word “gigapixel”
powerfully demonstrates the increasing desire to create ever larger panoramas. To date,
the largest panorama contains roughly 272 gigapixel, yet if the current trend continues, this
record is bound to be broken within a few months. This trend is aided by the introduction
of new, high-resolution image sensors. For example, with current state-of-the-art 36.3
active megapixel CMOS sensors, it would take as little as 70 images to produce a gigapixel
panorama.

Creating panoramas at large scales has become exponentially more difficult than the
simple, small cases for which panorama techniques were originally designed. For example,
the 3.2 gigapixel panorama shown in Figure 1.2 took several hours to capture and an
order of magnitude more time to process on conventional hardware. Furthermore, this
timeline assumes a perfect capture and one-time processing. In practice, the process of
setting up an automated camera is complicated and error prone and often problems, such
as unanticipated occlusion or global misalignment occur. Unfortunately, many of these
issues are only subtly expressed in the individual images and become apparent only after
the creation of the final panorama. Additionally, today’s processing pipelines are less than
ideal and typically involve a large number of interdependent and unintuitive parameter
choices. A mistake or unlucky choice in the setup can easily cause unacceptable artifacts
in the image requiring a repeat of the process. Consequently, it may take several weeks
and significant computational resources to produce one large-scale panorama. This makes
it difficult for all but a select few to create such images and makes this imagery impractical
for many interesting applications. For example, acquiring imagery from unusual locations
such as national parks, or covering transient events like an aurora, becomes a significant
logistical and monetary challenge. Furthermore, in security applications waiting hours
or days for viable results defeats the primary purpose of acquiring the images. Finally, in
scientific applications, while typically less time constrained, the personal and computational

4

resources necessary to create a large-scale image of the night sky, for example, are beyond
the reach of all but the largest projects. Therefore, despite significant interest, creating
these massive images remains an esoteric hobby or a closely guarded research project.

Work must be done to close the gap between the desire to create large-scale panoramas
(and their potential applications) and the ability to capture, process, and utilize such
imagery. An ideal panorama system should allow a user to browse individual images
as they are acquired, to setup and preview the processing pipeline and results through
accurate, real-time approximations, and include a flexible and scalable offline component
to produce a final image. The system should be divided into two components: First,
a real-time framework to supervise and steer the acquisition process and to guide the
postprocessing; and second, a computational back-end based on a distributed or cloud
computing framework. The real-time system should be able to run on devices as small as
an iPad or netbook computer and be designed to be used in the field to detect any problems
as early as possible. The back-end fills the gap between commonly available but slow
commodity hardware and specialized distributed computing resources. By implementing a
flexible framework able to run on a wide variety of heterogeneous systems, the back-end
scales gracefully between a single multicore machine, or a small cluster, to more powerful
hardware. My dissertation research has been the creation of technologies to aid in the
creation of such a system.

1.1 The Panorama Creation Pipeline
Creating large-scale panoramas can be divided into three stages: acquisition, image

registration, and composition. See Figures 1.3 and 1.4. Each stage individually has been the
focus of a large amount of research but little effort has been spent on real-time performance
or their interdependence. Traditionally all three stages are treated as separate postprocesses,
making performance or pipelining a secondary consideration. However, as discussed above,
this approach is rapidly becoming unsustainable as long acquisition and processing times
lead to errors as well as an increased number of hardware and software failures. To this
end, my research goals are and have been to develop algorithms for each stage that produce
high quality approximations in real-time and provide a scalable infrastructure to create
full solutions exploiting all available hardware. Such new technologies would enable a wide
variety of applications currently infeasible. For example, the ability to quickly and cheaply
produce high resolution images of art galleries, historical events, or national parks would

5

Acquisition

F ig u re 1.3: The three stages of panorama (mosaic) creation. First, the individual images
must be acquired. Second, they are registered into a common coordinate system. Third,
they are composited (blended) into a single seamless image. My dissertation research has
been to provide technologies to enable interactivity for the final composition stage while a
high-performance back-end provides a final image.

Acquisition Registration Composition

F ig u re 1.4: An example of the three stages of a panorama’s creation. First, the individual
images are acquired, typically, from a handheld camera. Second, for registration, the
common coordinate system for the images is computed. Third, they are composited
(blended) into a single seamless image.

greatly benefit schools, universities and the public in general. Enabling the military to
combine footage from multiple security cameras, satellites, or flying drones into a seamless
overview would allow operators to more accurately spot changes in a secure area or direct
ground operations. While a full system is a long-term research goal, my dissertation work
has focused on the last phase of the mosaic creation pipeline, specifically the composition
stage.

After registration, image mosaics are combined in order to give the illusion of a seamless,
massive image. Images acquired with inexpensive robots and consumer cameras pose an
interesting challenge for image processing techniques. Often, panorama robots can take
seconds between each photograph, causing gigapixel-sized images to be taken over the
course of hours. Due to this delay, images can vary significantly in lighting conditions
and/or exposure, and when registered can form an unappealing patchwork. Dynamic objects
between images may also move during acquisition, ruining the illusion of a single, seamless
image. Images acquired by air or satellite also suffer from an extreme version of this problem,
where the time of acquisition can vary from hours to days for a single composite. Therefore,

6

minimizing the transition between images is the fundamental step in the composition stage,
see Figure 1.5. The simplest transition approach is an alpha-blend of the overlap areas.
Szeliski [155] provides an excellent introduction to this and other blending techniques. Such
an approach does not work well in the presence of dynamic elements which move between
captures, artifacts from poor registration, or varying exposures across images, see Figure 1.6.
Often, it is preferable to compute a “hard” boundary, or seam, between the images as a
final step, or as the preprocess for a technique such as gradient domain blending [133, 103].
Techniques exists to compute these seams based purely on distance [174, 132], but like
blending, these will perform poorly when the scene contains moving elements.

A more sophisticated approach is to compute the boundaries between images through
an energy function minimization to produce a nice transition between the mosaic images.
These boundaries often provide the illusion of a seamless composited image. If exposure
or lighting conditions vary among the images, a final color correction is necessary to
produce a smooth image. Techniques such as gradient domain blending [133, 103], mean
value coordinates [54], or bilateral upsampling [93] have been shown to provide adequately
smooth images. Gradient domain blending remains the most popular, but also the most
computationally expensive technique for color correction due to the quality of its final
results.

The techniques associated with panorama boundaries and blending are typically com­
putationally expensive and are considered an offline, postprocess for large (and even small)
panoramas. As the focus of my dissertation work, I provide novel algorithms and techniques
to bring these operations into an interactive setting for massive imagery.

F ig u re 1.5: A diagram to illustrate the main options available during the composition
stage of panorama creation. The most simple process is to merge the image directly from
the registration. The simplest approach is an alpha-blend of the overlap areas to achieve a
smooth transition between images.

7

F ig u re 1.6: A simple blending approach is usually not sufficient in mosaics with moving
elements. In these cases, the elements produce “ghosts” (circled here in red) in the final
blend.

1.2 Boundaries
In the past, panorama image collections were captured in one sweeping motion (i.e., with

image overlaps in only one dimension as in Figure 1.7). Today’s images are often collections
of multiple rows and columns or in more unstructured configurations. Consequently, more
sophisticated panorama processing techniques continue to be developed to account for their
more complex configurations.

After the initial registration, the panorama’s individual images are blended to give the
illusion of a single seamless image. As a usual first step, a boundary between images must be
computed as input for a color correction technique such as gradient domain blending [133,

F ig u re 1.7: (a, e) Two examples (Canoe: 6842 x 2853, 2 images and Lake Path: 4459 x
4816, 2 images) of undesirable, yet exactly optimal seams (unique pairwise overlaps) for the
pixel difference energy. (b, f) A zoom of visual artifacts caused by this optimal seam. (c, g)
The pixel labeling. (d, h) The result produced by Adobe Photoshop™ . Images courtesy
of City Escapes Nature Photography.

8

103]. These boundaries are often called seams. Using a global optimization technique, these
seams can be optimized to minimize visual artifacts due to transition between images. This
is typically a pixel-based energy function such as color or color-gradient variations across
the boundary.

Currently, the most used technique for global seam computation in a panorama is the
Graph Cuts algorithm [26, 24, 92]. This is a popular and robust computer vision technique
and has been adapted [101, 4] to compute the boundary between a collection of images.
While this technique has been used with good success for a variety of panoramic or similar
graphics applications [101, 4, 5, 3, 2, 94, 89, 44, 90], it can be problematic due to its high
computational cost and memory requirements. Moreover, Graph Cuts applied to digital
panoramas is a typical serial operation. Since computing the globally optimal boundaries
between images is known to be NP-hard when the panorama is composed of more than a
collection of unique pairwise overlaps [26], Graph Cuts aims to efficiently approximate the
optimal solution and can therefore fall into local minima of the solution space.

There has been a large body of work to reduce some of the costs associated with Graph
Cuts [25, 24, 142, 5, 107, 61, 124, 167, 138, 69, 106], but each of these works primarily
focuses on Graph Cuts’ typical image segmentation or de-noising applications. The success
of many of these algorithms has yet to be demonstrated for digital panoramas. Those which
have been used in a panorama context can suffer from limitations. For example, the popular
Hierarchical Graph Cuts technique [107, 5] has been shown to operate well on hierarchies
up to two to three levels in digital panoramas [5] and can be observed practice in panoramas
such as the one shown in Figure 1.8. Given the recent trend of the increasing resolution of
panoramas (many megapixels to gigapixels), one can see that this limited hierarchy would
not be sufficient to compute the seams of images of these sizes. As a second example, Graph
Cuts often needs an integer based energy function to guarantee convergence. This can prove
problematic for high dynamic range (HDR) panoramas.

To overcome these types of limitations, a new approach was designed based on the
following observations:

• A minimal energy seam does not necessarily give visually pleasing results. Figure 1.7
provides two examples of panoramas with an exact pairwise optimal energy boundary
based on pixel difference across the seam. This should be sensitive to dynamic, moving
objects which appear in the overlap. As you can see, neither seam would be considered
ideal by a user since they cut through moving objects in the scene. Additionally, to

9

Full Resolution Two Levels Three Levels Four Levels

F ig u re 1.8: Hierarchical Graph Cuts has only been shown to work well on hierarchies of
two to three levels. For this four picture panorama example, we can see that Hierarchical
Graph Cuts produces a solution that passes though a dynamic scene element when using
four levels of the hierarchy. A typical input value of a ten pixel dilation was used for this
example. While a larger dilation parameter could be used, this would require a larger
memory and computational cost which negates the benefits of the technique.

further argue the importance of this observation, the figure also shows very similar
seams computed by Adobe Photoshop™ , a widely used image editing application.

• There can be more than one valid seam solution. Even if the initial seam solution
is visually acceptable to the user, there may be a large number of additional, valid
solutions. Some of these alternative seams may be preferable and this determination
is completely subjective. For example, a user may have wished that the high energy
in a seam occurred in an area where it is less likely to be noticed such as the grassy
area or the water in the images in Figure 1.7. Given moving elements in a scene, such
elements may occur entirely within the area of an overlap. Therefore, there can be
acceptable seams where the element is included and ones where it is not. Figure 1.9
provides examples.

• An interactive technique is necessary and attainable. Given the subjective nature of
the image boundaries and the possibility of techniques falling into bad local minima,
a user must be interjected into the seam boundary problem. Currently, finding
panorama boundaries with Graph Cuts is an offline process with only one solution
presented to the user. The only existing alternative is the manual editing, pixel by
pixel, of the individual image boundaries. This is a time-consuming and tedious

10

F ig u re 1.9: Even when seams are visually acceptable, moving elements in the scene may
cause multiple visually valid seam configurations. On the top, this figure shows a four image
panorama (Crosswalk: 4705 x 3543, four images) with three valid configurations. On the
bottom, this figure shows a two image panorama (Apollo-Aldrin: 3432 x 2297, two images)
with two valid configurations. Images courtesy of NASA.

process where the user relies on perception alone to determine if the manual seam
is acceptable. Therefore, a guided interactive technique for image boundaries is
necessary for panorama processing. This technique should allow users to include
or remove dynamic elements, move an image seam out of possible local minima into
a lower error state, move the seam into a higher error state (but one with more
acceptable visual coherency) or hide errors in locations where they feel it is less
noticeable. During these edits, the user should be provided the optimal seams given
these new constraints.

• A solution based on pairwise boundaries can achieve good results for panoramas giving
a fast, highly parallel, and light system. Computing pairwise-only optimal boundaries
is both fast and exact (i.e., is guaranteed to find the global minimum). It is then
of no surprise that these boundaries have been used often in past work for pan-
or tilt-only panoramas [145, 46, 157, 165]. Although it has been thought not to
generalize beyond this case, there has been no technique to use pairwise boundaries
in panoramas with more complex structure, save for efforts to combine them via a
distance metric [69] or sequentially [53]. This dissertation work not only provides a
global solution based on pairwise boundaries, but also shows that this solution often

11

produces lower energy seams than Graph Cuts for panoramas. Given a technique to
combine pairwise boundaries into a coherent seam network, each disjointed seam can
be computed separately and trivially in parallel. Moreover, the solution produced for
each is typically independent and therefore, memory and resources for each can be
allocated and released as needed. In addition, the solution domain is only the overlap
between pairs of images in contrast to some previous applications of Graph Cuts for
panoramas [101, 4], which often consider the entire composite image as the solution
domain. All of these properties give the potential for a very fast and light system
even when operating on the full resolution imagery. Moreover, such a system should
have the ability to be extended to an out-of-core or distributed setting.

This dissertation describes a new image boundary technique called Panorama Weaving.
First, Panorama Weaving provides an automatic technique to create approximate optimal
boundaries that is fast, has low memory requirements, and is easy to parallelize. Second, it
provides the first interactive technique to enable the exploration of the seam solution space.
This gives the end-user a powerful editing system for panorama seams. In particular, the
contributions of this work on a technical level are:

• A novel technique to merge independently computed pairwise boundaries into a global,
consistent seam network that does not cascade to a global calculation.

• A panorama seam creation technique based purely on pairwise boundary solutions.
This technique is fast and highly parallel and shows significant speed-ups compared
to previous work, even when run sequentially. More importantly, it achieves all of this
even with full resolution imagery.

• Out-of-core and distributed seam creation algorithms which extend the creation tech­
nique to mosaics massive in size. These algorithms provide speed-ups compared to
the state-of-the-art.

• The first system that allows interactive editing of seams in panoramas. This system
guarantees minimal user input thanks to an efficient exploration of the solution space.

• An intuitive mesh specialization of a region adjacency graph that encodes seam
and image relations. This adjacency mesh provides a way to guarantee the global
consistency of the seam network of the interactions and also enables a robust editing
of the network’s topology.

12

1.3 Color Correction
Creating a single seamless image from a mosaic has been the subject of a large body of

work for which gradient-domain (Poisson) techniques currently provide the best solution.
Only one method exists to operate on the gradient-domain of massive images: the streaming
multigrid [89] technique. However, processing the three gigapixel image of Figure 1.2 using
this technique still takes well over an hour, which does not support an interactive trial-and-
error artistic process. An additional disadvantage of traditional out-of-core methods is their
tendency to achieve a low memory footprint at the cost of significantly proliferating the disk
storage requirements. For example, the multigrid method [89] requires auxiliary storage an
order of magnitude greater than the input size, almost half of which is due to gradient
computation. In contrast, our approach completely avoids such data proliferation, thereby
allowing the processing of data which already pushes the boundaries of available storage.
The multigrid method [89] is also limited by main memory usage since it is proportional to
the number of iterations of the solver. This can cause the method to not achieve acceptable
results for images that may require a large number of iterations, as shown in Section 4. This
work introduces a new method with memory usage independent of the number of iterations
of the Poisson solver and, therefore, would scale gracefully in these cases.

An option to reduce times is to design a similar scheme to run in a distributed environ­
ment. Consequently, there has been recent work to extend the multigrid solver [90] to a
parallel implementation, reducing the time to compute a gigapixel solution to mere minutes.
However, this approach is primarily a proof-of-concept since it does not supply the classic
tests of scalability (weak or strong) nor is it tested significantly. Like many out-of-core
methods, proliferation of disk storage requirements is a major drawback. For example,
testing was only possible with a full 16-node cluster for some of the streaming multigrid test
data due to excessive storage demands. Finally, the technique assumes that a small number
of predetermined iterations is sufficient to achieve a solution, which may not always be the
case. This implementation was optimized for a single distributed system and therefore, is
unlikely to port well to other environments. History has shown that levels of abstraction that
remove complexity from a code base can be instrumental in the advancement of technologies.
Abstraction that allows simple and portable code accelerates innovation and reduces time to
develop new ideas. The cloud should be explored as such abstraction, allowing a developer
to ignore much of the more tedious and complex elements in implementing a distributed
graphics algorithm. A general scheme cannot beat the performance of highly specialized and

13

optimized code. Often for organizations with resources, there may be cases where speed and
efficiency are more important than the cost to create and maintain a typical implementation.
Although with increased availability of cloud commodities, there is now the opportunity to
offer more members of our community the ability to develop new algorithms for a distributed
environment.

In particular, in the area of color correction this dissertation work introduces a simple
and light-weight framework that provides the user with the illusion of a full Poisson system
solve at interactive frame rates for image editing. This framework also allows for the
computation of a full solution on a single machine with a simple approach, rivaling the run
time of the current best out-of-core technique [89], while producing equal or higher quality
results on images that require a large number of iterations. The system is flexible enough to
handle different hierarchical image formats such as tiling for higher quality images or HZ-
order for greater input/output (I/O) speed. In particular, by exploiting a new implicit kd-
tree hierarchy for HZ-order, the framework needs only to access and solve visible pixels. This
allows an artist to interactively apply gradient-based techniques to images gigapixels in size.
This new framework is straightforward and requires neither complicated spatial indexing
nor advanced caching schemes. Additionally, this work introduces a framework for parallel
gradient-domain processing inspired by the out-of-core technique with a novel reformulation
to provide an efficient parallel distributed algorithm. This new framework has both a
straightforward implementation and shows both strong and weak parallel scalability. When
implemented in standard MPI (Message Passing Interface), the same code base ports well
to multiple distributed systems. Furthermore, this distributed algorithm can be wrapped
in a level of abstraction to be run on the cloud, allowing for a simple implementation, as
well as allowing it to be distributed to the community at large.

Specifically, the contributions of this work are:

• A coarse-to-fine progressive Poisson solver running at interactive frame rates, extended
to a wide variety of gradient domain tasks, with the ability to scale to gigapixel images.
This cascadic solver entirely avoids the coarsening stage of the V-cycle yet produces
high quality results.

• A method to locally refine solutions having time and space requirements that are
linearly dependent on the screen resolution rather than the resolution of the input
image.

14

• A full out-of-core solver that maintains strict control over system resources, rivals the
run-times for the best known method and consistently achieves quality results where
previous methods may not converge well in practice.

• A light-weight streaming framework that provides adaptive multiresolution access to
out-of-core images in a cache coherent manner, without using intricate indexing data
structures or precaching schemes.

• A distributed algorithm based on the out-of-core scheme, which has a straightforward
implementation and shows both strong and weak parallel scalability.

• The first distributed Poisson solver for imaging implemented in the cloud.

CHAPTER 2
RELATED WORK

This chapter will outline the previous work for the two major portions of the composition
step of the panorama creation pipeline: image boundaries, Section 2.1, and color correction,
Section 2.2. In particular, these sections will address the related work for the state-of-the-art
for image boundaries, minimal image seams, and color correction, gradient domain editing.

2.1 Image Boundaries: Seams
This section details the related previous work for computing image boundaries for an

image mosaic. In particular, this section focuses on the current state-of-the-art that is the
computation of minimal mosaic seams.

2.1.1 Pairw ise B oundaries
Some of the seminal works in digital panoramas assume that an image collection is

acquired in a single sweep (either pan, tilt or a combination of the two) of the scene. In such
panoramas, only pairwise overlaps of images need be considered [119, 120, 157, 145, 46, 165].
The pairwise boundaries which have globally minimal energy can be computed quickly
and exactly using a min-cut or min-path algorithm. There is an intuitive and proven
duality between min-cut and single-source/single-destination min-path [72]. These pairwise
techniques were thought to not be general enough to handle the many configurations possible
in modern panoramas. Recent work [69] has dealt with the combination of these seams for
more complex panoramas, although the seam combinations are still based on an image
distance metric. Other recent work [53], combined these separate seams for the purposes
of texture synthesis combining seams sequentially. For their work, this was sufficient to
provide good results for textures. The combination and intersection of these seams in a
digital panorama can be more complex and therefore, a more expressive combination is
necessary. In addition, interaction was not considered as a necessary functionality in these
works. This dissertation presents a novel technique to combine these disjoint seams into a

16

global panorama seam network and allow for manual user interaction.

2.1.2 G raph C uts
The Graph Cuts technique [26, 24], computes a k-labeling of a graph, typically an

image, to minimize an energy function on the domain. An algorithm that guarantees to
find the global minimum is considered to be NP-hard [26] and therefore Graph Cuts was
designed to efficiently compute a good approximation. Graph Cuts has been shown to give
good results for a variety of energy functions [92]. Thus, it is of no surprise given this
versatility that it has been shown to adapt to the image mosaic and panorama boundary
problem [101, 4]. However, Graph Cuts is both a computationally expensive and memory
intensive technique. Given these requirements, there has been work on accelerating the
Graph Cuts process by, for instance, adapting the technique to run on the GPU [167],
in parallel [106], or in parallel-distributed [48] environments. Building a hierarchy for the
Graph Cuts computation [107, 5] has shown to be popular due to its reduction of memory
and computation costs. For panoramas, this strategy has only been shown to provide good
results for a hierarchy of two to three levels [5]. There has also been work on bringing Graph
Cuts into an interactive setting [25, 142, 104, 61, 124] although these works have focused
only on user guided image segmentation. This dissertation provides the first technique to
allow interactive editing of panorama boundaries.

2.1.3 A lternative B oundary Techniques
While Graph Cuts still maintains its popularity as a solution to the minimal boundary

problem, there has been other ongoing work on alternative techniques. For example, there
has been work on techniques based on luminance voting [82]. There has also been recent
work using geodesics to interactively compute pairwise minimal boundaries [45].

2.1.4 O ut-of-C ore and D istributed C om putation
While there has been previous work to bring the Graph Cuts technique to massive grids,

the previous work has only dealt with extending the algorithm to a distributed and out-of­
core environment [48], No current technique decouples the two. The work of this dissertation
has the flexibility to operate in-core, out-of-core, or distributed depending on the application
or available resources. Moreover, the inherent parallelism of the new technique is likely to
outperform the previous work. Finally, there has been no work to allow interaction with
these seams at massive scales. Hierarchical Graph Cuts has been used on large images [2],

17

although given the documented limitation on the viable number of levels in the hierarchy [5]
this will not scale massively. Applying standard Graph Cuts as a sweeping window over
an image neighborhood [94] has been used to produce boundaries for gigapixel imagery.
Such a process has yet to be formulated in parallel and is potentially very computationally
expensive.

2.2 Color Correction: Gradient Domain Editing
This section details the related previous work in the most popular and sophisticated

color correction procedure for image mosaics called gradient domain image editing, or by
its alternative name, Poisson image editing.

2.2.1 Poisson Im age Processing
A variety of gradient-based methods provide a popular, but computationally expensive,

set of techniques for advanced image manipulation. Given a guiding gradient field con­
structed from one or multiple source images, these techniques attem pt to find a closest-fit
image using some predetermined distance metric. This basic concept has been adapted
for standard image editing [133], as well as more advanced matting operations [152] , and
high level drag-and-drop functionality [79]. Furthermore, gradient-based techniques can
tone map high dynamic range images to display favorably on standard monitors [55] or
hide the seams in panoramas [133, 103, 4, 89]. Other applications include detecting light­
ing [76] or shapes from images [173], removing shadows [57] or reflections [6], and gradient
domain painting [114]. Recently, an alternative approach using mean value coordinates
has smoothly interpolated the boundary offset between source images, thereby mimicking
Dirichlet boundary conditions [54]. This promising new line of research has yet to show
support of Poisson techniques such as tone-mapping, the ability to work well out-of-core,
or consistently acceptable results for methods that typically require Neumann boundary
conditions.

2.2.2 Poisson Solvers
The solution to a two-dimensional (2D) Poisson problem lies at the core of gradient based

image processing. Poisson equations have wide utility in many engineering and science
applications. Computing their solution efficiently has been the focus of a large body of
work and even a cursory review is beyond the scope of this dissertation. For small images,
methods exist to find the direct analytical solution using Fast Fourier transforms [75, 7, 8,

18

113]. Simchony [146] provides a survey of these methods for computer vision applications.
Often the problem is simplified by discretization into a large linear system whose dimension
is typically the number of pixels in an image. If this system is small enough to fit into
memory, methods exist to find the direct solution and we refer the reader to Dorr [51]
who provides an extensive review on direct methods. Typically, iterative Krylov subspace
methods, such as conjugate gradient, are used due to their fast convergence. For much
larger systems, memory consumption is the limiting factor and iterative solvers, such as
Successive Over-Relaxation (SOR) [13] become more attractive.

Depending on the application, different levels of accuracy may be required. Sometimes,
a coarse approximation is sufficient to achieve the desired result. Bilateral upsampling
methods [93] operating on a coarse solution produced good results for applications such
as tonemapping. Such methods have not yet been shown to handle applications such as
image stitching where the interpolated values are typically not smooth at the seams between
images.

When pure upsampling is insufficient, the system must be solved fully. Multigrid
methods are often employed to aid the convergence of an iterative solver. Such methods
have proven particularly effective by dealing with the large scale trends at coarse resolutions.
These techniques include preconditioners [66, 155] and multigrid solvers [27, 28]. There
exist different variants of multigrid algorithms using either adaptive [20, 88, 21, 2, 139] or
nonadaptive meshes [87, 89]. As a first step in a complete multigrid system, the mesh is
coarsened. The Poisson equation can then be solved in a coarse-to-fine manner. One full
iteration, from fine to coarse and back, is typically called a V-cycle. Most recently, a V-cycle
was implemented in a streaming fashion for large panoramas [89]. However, other systems
only implement parts of the V-cycle. Kopf et al. [94] implement only the second half in a
pure upsampling procedure, while Bolitho et al. [21] implement a purely coarse-to-fine solver
also called cascadic [22]. Lischinski et al. [105] applied this pure coarse-to-fine approach
for interactive tonal adjustment. The technique outlined in this diseration (for the first
time) shows that a cascadic approach has applications well beyond the adjustment of tonal
values and can be used for a wide variety of gradient based image processing techniques.
This work also extends such techniques to allow the interactive editing and processing of
gigapixel images. The solver propagates sufficient information from coarse-to-fine, allowing
us to achieve local solutions at interactive rates that are virtually indistinguishable from
the full-resolution solution.

19

2.2.3 O ut-of-C ore C om putation
Toledo [160] presents a survey of general out-of-core algorithms for linear systems. The

majority of algorithms surveyed assume that at least the solution vectors can be kept in
main memory, which is not the case for large images. For out-of-core processing of large
images, the streaming multigrid method of Kazhdan and Hoppe [89] has so far provided the
only solution. However, processing a three gigapixel image using this technique still takes
well over an hour which does not support an interactive trial-and-error artistic process.
Many algorithms such as tone mapping require careful parameter tuning to achieve good
results. Thus, waiting several hours to examine the effects of a single parameter change is
not feasible in this context.

An additional disadvantage of traditional out-of-core methods is their tendency to
achieve a low memory footprint at the cost of significantly proliferating the disk storage
requirements. For example, the multigrid method [89] requires auxiliary storage an order of
magnitude greater than the input size, almost half of which is due to gradient computation.
In contrast, in this dissertation, I with my collaborators, introduce an approach that
completely avoids such data proliferation, thereby allowing the processing of data, which
already pushes the boundaries of available storage.

The multigrid method [89] is also limited by main memory usage since it is proportional
to the number of iterations of the solver. This can cause the method to not achieve
acceptable results for images that may require a large number of iterations, as shown in
Section 4. This work provides a new method with memory usage independent of the number
of iterations and, therefore, scales gracefully in these cases.

2.2.4 D istrib u ted C om putation
Recently, the streaming multigrid method has been extended to a distributed environ­

ment [90] and has reduced the time to process gigapixel images from hours to minutes.
The distributed multigrid requires 16 bytes/pixel of disk space in temporary storage for
the solver as well as 24 bytes/pixel to store the solution and gradient constraints. For the
terapixel example of Kazhdan et al. [90], the method had a minimum requirement of 16
nodes in order to accommodate the needed disk space for fast local caching. In contrast,
the approach outlined in this work needs no temporary storage and is implemented in
standard MPI. Streaming multigrid also assumes a precomputed image gradient, which
would add substantial overhead in initialization to transfer the color float or double data.
Our new approach is initialized using original image data plus an extra byte for image

20

boundary information which equates to 1/3 less data transfer in initialization than the
previous method. Data transfers between this solver’s phases, while floating point, only
deal with the boundaries between compute nodes which is substantially smaller than the full
image and therefore are rarely required to be cached to disk. The multigrid method [89, 90]
may also be limited by main memory, since the number of iterations of the solver is directly
proportional to the memory footprint. For large images, this limits the solver to only a few
Gauss-Seidel iterations and therefore may not necessarily converge for challenging cases.
Our method’s memory usage is independent of the number of iterations and can therefore
solve images that have slow convergence.

Often large images are stored as tiles at the highest resolution; therefore, methods that
exploit this structure would be advantageous. Stookey et al. [148] use a tile-based approach
to compute an over-determined Laplacian PDE (partial differential equation). By using
tiles that overlap in all dimensions, the method solves the PDE on each tile separately and
then blends the solution via a weighted average. Unfortunately this method cannot account
for large scale trends beyond a single overlap and therefore can only be used on problems
which have no large (global) trends. Figure 2.1 illustrates why this would be a problem for
panorama processing. The coarse up-sampling of our approach fixes this issue.

2.2.5 Cloud C om puting - M apR educe and H adoop
MapReduce [47] was developed by Google as a simple framework to process massive data

on large distributed systems. It is an abstraction that owes its inspiration to functional
programming languages such as Lisp. At its core, the framework relies on two simple
operations:

• Map: Given input, create a key/value pair.

• Reduce: Process all values of a given key.

All the complexity of a typical distributed implementation due to data distribution, load
balancing, fault-recovery and communication are under this abstraction layer and therefore
can be ignored by a developer. This framework, when combined with a distributed file
system, can be a simple yet powerful tool for data processing.

Hadoop is an open source implementation of MapReduce maintained by the Apache
Software Foundation and can be optionally coupled with its own distributed file system
(HDFS). Pavlo et al. [131] found that Hadoop was easy to deploy and use, offered adequate

21

F ig u re 2.1: Although the result is a seamless, smooth image, without coarse upsampling
the final image will fail to account for large trends that span beyond a single overlap and
can lead to unwanted, unappealing shifts in color.

scalability, has very effective fault-tolerance, and, most importantly, was easy to adapt for
complex analytic tasks. Hadoop is also widely available as a commodity resource. For
example, Amazon Web Services, a service suite that has become nearly synonymous with
cloud computing in the media, provides Hadoop as a native capability [10]. Companies
have begun to use Hadoop as a simple alternative for data processing on large clusters [71].
For instance, The New York Times has used Hadoop for large scale image to PDF con­
version [68]. Google, IBM, and NSF have also partnered to provide a Hadoop cluster for
research [41].

2.2.6 O ut-of-C ore D ata A ccess
Given an image, it is well known that the standard row-major order exhibits good locality

in only one dimension and is therefore ill-suited for an unconstrained out-of-core storage
scheme [168]. Previous out-of-core Poisson methods [89] have been noted to be severely
limited by this constraint. Instead, indexing based on various space-filling curves [143] has
been proposed in different applications [126, 70, 17, 102] to exploit their inherent geometric
locality. Of particular interest is the Z-order (also called Lebesgue-order) [17, 128] since
it allows an especially simple conversion to and from standard row-major indices. While
Z-order exhibits good locality in all dimensions, it does so only at a fixed resolution and
does not support hierarchical access. Instead, this work will utilize the hierarchical variant,
called HZ-order, proposed by Pascucci and Frank [128].

CHAPTER 3
SCALABLE AND EFFICIENT DATA

ACCESS
At the core of any large data processing system is an efficient scheme for data access.

In this chapter, I will detail the technology used in the systems outlined in this work.
In Section 3.1, I will review the fundamentals of the hierarchical Z-order (HZ-order) for
two-dimensional arrays, our chosen format for large image processing. I will also provide
a new, simple algorithm in Section 3.2 for accessing data organized in HZ-order, while
avoiding the repeated index conversions used in [128]. Section 3.3 will provide a new
parallel write scheme for HZ-order data. Finally, in Section 3.4 I will give an outline of
the ViSUS software infrastructure, the core system behind much of the massive image
processing outlined in this dissertation. Conversion of large images into theViSUS format
requires no additional storage, compared to the typical 1/3 data increase common for typical
tiled image hierarchies. From our test data, we have found that there is only a 27% overhead
due to the conversion compared to just copying the raw data which makes this conversion
very light. The conversion requires no operations on the pixel data and will outperform
even the most simple tiled hierarchies, which require some manipulation of the pixel data.
Section 5.2.2 will show that this new I/O infrastructure reduces the overhead by 28%-40%
when compared to a standard tiled image hierarchy. These numbers reflect the theoretical
bound of 1/3 overhead, made worse by the inability to constrain real queries to perfect
alignment with the boundaries of a quadtree.

3.1 Z- and HZ-Order Background
The data access routine of our system achieves high performance on our image data

by utilizing a hierarchical variant of a standard Z-order (Lebesgue) space filling curve to
lay out our two-dimensional data in one-dimensional memory. In the two-dimensional case
the Z-order curve can be defined recursively by a Z shape whose vertices are replaced by
Z shapes half its size (see Figure 3.1 (a)). Given the binary row-major index of a pixel

23

(a)

(b)

Binary representation
Z-order i

0 0000 00 00
1 0001 01 00
2 0010 00 01
3 0011 01 01

Sam
ple

 i
nd

ex 4 0100 10 00
5 0101 11 00
6 0110 10 01
7 0111 11 01
8 1000 00 10
9 1001 01 10
10 1010 00 11
11 1011 01 11
12 1100 10 10
13 1101 11 10
14 1110 10 11
15 1 1 1 1 11 11

F ig u re 3.1: (a) The first four levels of the Z-order space filling curve; (b) 4x4 array indexed
using standard Z-order

(in • •• i1i0, j n • • • j 1j 0) the corresponding Z-order index I is computed by interleaving the
indices I = j nin . . . j 1i 1j 0i0 (see Figure 3.2 (a) step 1).

While Z-order exhibits good locality in all dimensions, it does so only at full resolution
and does not support hierarchical access. Instead, our system uses the hierarchical variant,
called HZ-order, proposed by Pascucci and Frank [128]. This new index changes the
standard Z-order of Figure 3.1 (b) to be organized by levels corresponding to a subsampling
binary tree, in which each level doubles the number of points in one dimension (see Figure 3.2
(b)). This pixel order is computed by adding a second step to the index conversion. To
compute an HZ-order index I, the binary representation of a given Z-order index I is shifted
to the right until the first 1-bit exits. During the first shift, a 1-bit is added to the left and
0-bits are added in all following shifts (see Figure 3.2 (a)). This conversion could have a
potentially very simple and efficient hardware implementation. The software C + + version
can be implemented as follows:

24

(a)

(b)

F ig u re 3.2: (a) Address transformation from row-major index (i , j) to Z-order index I
(Step 1) and then to hierarchical Z-order index (Step 2); (b) Levels of the hierarchical
Z-order for a 4x4 array. The samples on each level remain ordered by the standard Z-order.

in l in e adhocindex rem ap(register adhocindex i) {
i |= last_b it_m ask; / / s e t le ftm o st one
i /= i& -i; / / remove t r a i l in g zeros
return (i>>1); / / remove rightm ost one

}
We store the data in a way guaranteeing efficient access to any subregion without internal

caching and without opening a data block more than once. Furthermore, we allow for storage
of incomplete arrays. In our storage format, we first sort the data in HZ-order and group
consecutive samples in blocks of constant size. A sequence of consecutive blocks is grouped

25

into a record and records are clustered in groups, which are organized hierarchically. Each

record has a header specifying which of its blocks are actually present and if the data are

stored raw or compressed. Groups can miss entire records or subgroups, implying that all
their respective blocks and records are missing.

The file format is implemented via a header file describing the various parameters

(dimension, block size, record size, etc.) and one file per record. The hierarchy of groups
is implemented as a hierarchy of directories each containing a predetermined maximum

number of subdirectories. The leaves of each directory contain only records. To open a file,

one needs only to reconstruct the path of a record and defer its search to the file system.

In particular, the path of a record is constructed as follows: we take the HZ-address of the
first sample in the record, represent it as a string, and partition it into chunks of characters

naming directories, subdirectories, and the record file. Note that, since blocks, records and

groups can be missing, one is not restricted to arrays of data that cover the entire index

space. In fact, we can easily store even images with different regions sampled at different

resolutions.

3.2 Efficient Multiresolution Range Queries
One of the key components of our framework is the ability to quickly extract rectangular

subsets of the input image in a progressive manner. Computing the row-major indices of all
samples residing within a given query box is straightforward. However, efficiently calculating

their corresponding HZ-indices is not. Transforming each address individually results in a

large number of redundant computations by repeatedly converting similar indices. To avoid

this overhead, we introduce a recursive access scheme that traverses an image in HZ-order,
while concurrently computing the corresponding row-major indices. This traversal implicitly

follows a kd-tree style subdivision, allowing us to quickly skip large portions of the image.
To better illustrate the algorithm I will first describe how to recursively traverse an

array in plain Z-order using the 4x4 array of Figure 3.1 (b) as example. Subsequently, I will

discuss how to restrict the traversal to a given query rectangle and finally, how the scheme

is adapted to HZ-order.
We use a stack containing tuples of type (split-dimension, Lstart, mind, maxJ, m inj,

m axj, numelements). To start the process we push the tuple t0 =(1,0,0,3,0,3,16) onto

the stack. At each iteration we pop the top-most element t from the stack. If t contains

only a single element we output the current Lstart as HZ-index and fetch the correspond­

26

ing sample. Otherwise, we split the region represented by t into two pieces along the

axis given by split-dimension and create the corresponding tuples t1 = (0,0,0,3,0,1,8) and

t2 =(0,8,0,3,2,3,8). Note that all elements of t1 and t2 can be computed from t by simple
bit manipulation. In case of a square array, we simply flip the split dimension each time a

tuple is split. However, one can also store a specific split order to accommodate rectangular

arrays. Figure 3.3 shows the first eight iteration of the algorithm outputting the first four

elements in the array of Figure 3.1 (b).

To use this algorithm for fast range queries, each tuple is tested against the query box

as it comes off the stack and discarded if no overlap exists. Since the row-major indices

describing the bounding box of each tuple are computed concurrently, the intersection test is

straightforward. Furthermore, the scheme applies, virtually unchanged, to traverse samples
in Z-order that sub-sample an array uniformly along each axis, where the sub-sampling rate

along each axis could be different.

Finally, to adapt the algorithm to HZ-order (see Figure 3.2 (b)), one exploits the

following two important facts:

• One can directly compute the starting HZ-index for each level. For example, in a

squared array level 0 contains one sample and all other levels h contain 2h-1 samples.

Therefore the starting HZ-index of level h, lShtart, is 2m-h, where m is the number of

bits of the largest HZ-index.

• Within each level, samples are ordered according to plain Z-order and can be traversed

with the stack algorithm described above, using the appropriate subsampling rate.

Using these two facts one can iterate through an array in HZ-order by processing one level

at a time, adding lShtart to the Ista rt index of each tuple.

In practice, we avoid subdividing the stack tuples to the level of a single sample. Instead,

depending on the platform, we choose a parameter n and build a table, with the sequence
of Z-order indices for an array with 2n elements. When running the stack algorithm, each

time a tuple t with 2n elements appears, we loop through the table instead of splitting
t. By accessing only the necessary samples in strict HZ-order, the stack-based algorithm

guarantees that only the minimal number of disk blocks are touched and each block is

loaded exactly once.
For progressively refined zooms in a given area, we can apply this algorithm with a minor

variation. In particular, one would need to reduce the size of the bounding box represented

s s

G
J II O © o 1,4)

t1 =(0,0,0, 3,0, 1,8) t4 =(1, 4, 2, 3, 0, 1,4)
t =(1,0,0, 3,0, 3,16) t2 =(0, 8, 0, 3, 2, 3, 8) t2 =(0,8, 0,3, 2, 3,8)

t6.

3
X\Vi.

i"T
0

t2

FTt7 t8

t2 t2

• 1-3 (i,j)=(l,l)

t4 =(1, 4, 2, 3,0, 1,4)
t2 =(0, 8, 0, 3, 2, 3, 8)

Figure 3.3: Our fast-stack Z-order traversal of a 4x4 array with concurrent index computation

28

in a tuple each time it is pushed back into the stack. In this way, even for a progressively

refined zoom, one would access only the needed data blocks, each being accessed only once.

3.3 Parallel Write
The multiresolution data layout outlined above is a progressive, linear format and

therefore has a write routine that is inherently serial. When processing a large image on a

distributed system, or even on a single multicore system, it would be ideal for each node,

or process, to be able to write out its piece of the data directly in this layout. Therefore a

parallel write strategy must be employed. Figure 3.4 illustrates different possible parallel
strategies. As shown in Figure 3.4 (a), each process can naively write its own data directly

to the underlying binary file. This is inefficient due to the large number of small file accesses.

As data gets large, it becomes disadvantageous to store the entire dataset as a single, large
file and typically the entire dataset is partitioned into a series of smaller more manageable

files. This disjointness can be used by a parallel write routine. As each simulation process

produces simulation data, it can store its piece of the overall dataset locally and pass the

data on to an aggregator process. These aggregator processes can be used to gather the

individual pieces and composite the entire dataset. In Figure 3.4 (b), each process transmits
each contiguous data segment to an intermediate aggregator. Once the aggregator’s buffer

is complete, the data are written to disk using a single large I/O operation. Figure 3.4 (c),

illustrates a strategy where several noncontiguous memory accesses from each process are

bundled into into a single message. This approach reduces the number of small network

messages needed to transfer data to aggregators. This last strategy has been shown to

exhibit good throughput performance and weak scaling for S3D combustion simulation

applications when compared to standard Fortran I/O benchmark [98, 99].

3.4 ViSUS Software Framework
The ViSUS (Visual Streams for Ultimate Scalability) software framework6 has been

designed as an environment to allow the interactive exploration of massive datasets on a

variety of hardware, possibly over platforms distributed geographically. The system and

I/O infrastructure is designed to handle n-dimensional datasets but is typically used on

two-dimensional and three-dimensional image data. This two-dimensional portion of this

6h t t p : / /v is u s .c o or h t tp ://v is u s .u s

http://visus.co
http://visus.us

29

| Rank One || Rank Two 11Rank Three| | Rank One || Rank Two 11Rank Three|

\ \ \ i \ i j / / / / /

\w'\«> i"/ - •
Aggregator
Process

^ Rank Z e ro f

1 f f
s / •

^ Rank Zero f
Aggregator
Process

(a)

^ IDX Binary File

(b)

^ IDX Binary File

(c)

Forming indexed datatype MPI file writes ♦ -------------MPI puts
O MPI indexed datatype • Data chunks

Figure 3.4: (a) Naive parallel strategy where each process writes its piece of the overall
dataset into the underlying flle, (b) each process transmits each contiguous data segment to
an intermediate aggregator. Once the aggregator’s buffer is complete, the data are written
to disk, (c) several noncontiguous memory accesses are bundled into a single message to
decrease communication overhead.

system is the core application on which the massive applications outlined in this dissertation

are built.
The ViSUS software framework was designed with the primary philosophy that the

visualization and/or processing of massive data need not be tied to specialized hardware or

infrastructure. In other words, a visualization environment for large data can be designed

to be lightweight, highly scalable and run on a variety of platforms or hardware. Moreover,

if designed generally such an infrastructure can have a wide variety of applications, all from

the same code base. Figure 3.5 details example applications and the major components

of the ViSUS infrastructure. The components can be grouped into three major categories.
First, a lightweight and fast out-of-core data management framework using multiresolution

space filling curves, which I have outlined Sections 3.1, 3.2, and 3.3. This allows the
organization of information in an order that exploits the cache hierarchies of any modern

data storage architectures. Second, ViSUS contains a dataflow framework to allow data

to be processed during movement. Processing massive datasets in their entirety would be
a long and expensive operation which hinders interactive exploration. By designing new

algorithms to fit within this framework, data can be processed as it moves. The Progressive

Poisson technique outlined in Section 5.2 is one such new algorithm. Third, ViSUS provides
a portable visualization layer that was designed to scale from mobile devices to powerwall

displays with the same code base.

Figure 3.5 provides a diagram of the ViSUS software architecture. In this section I

External SQL Image Conversion Compression Networking
and other... (Freelmage) (zlib) (curl)

Threading (pthreads/
windows-native)

Rendering
(opengl)

Rendering
extensions (glew)

GUI library
(Juce)

ViSUS Apps
with GUI

Figure 3.5: The ViSUS software framework. Arrows denote external and internal dependences of the main software components.
Additionally this figure illustrates the relationship with several example applications that have been successfully developed with this
framework.

00o

31

will detail three of ViSUS’s major components and how they couple with the efficient data

access detailed in the previous sections to achieve a fast, scalable, and highly portable data
processing and visualization environment. Finally, I will illustrate an important additional
use of this infrastructure, real-time monitoring of scientific simulations.

3.4.1 LightStream Dataflow and Scene Graph
Even simple manipulations can be overly expensive when applied to each variable in

a large scale dataset. Instead, it would be ideal to process the data based on need by

pushing data through a processing pipeline as the user interacts with different portions of

the data. The ViSUS multiresolution data layout enables efficient access to different regions
of the data at varying resolutions. Therefore different compute modules can be implemented

using progressive algorithms to operate on these data stream. Operations such as binning,
clustering, or rescaling are trivial to implement on this hierarchy given some known statistics

on the data, such as the function value range, etc. These operators can be applied to the

data stream as-is, while the data are moving to the user, progressively refining the operation
as more data arrives. More complex operations can also be reformulated to work well using

the hierarchy. For instance, using the layout for image data produces a hierarchy which

is identical to a subsampled image pyramid on the data. Moreover, as data are requested
progressively, the transfer will traverse this pyramid in a coarse-to-fine manner. Techniques

such as gradient-domain image editing can be reformulated to use this progressive stream

and produce visually acceptable solutions which will be detailed in Section 5.2. These

adaptive, progressive solutions allow the user to explore a full resolution solution as if it

was fully available, without the expensive, full computation.
ViSUS LightStream facilitates this steam processing model by providing definable mod­

ules within a dataflow framework with a well understood API. Figure 3.6 gives an example
of a dataflow for the analysis and visualization of a scientific simulation. This particular

example is the dataflow for a Uintah combustion simulation used by the C-SAFE Center

for the Simulation of Accidental Fires and Explosions at the University of Utah. Each

LightStream module provides streaming capability through input and output data ports

that can be used in a variety of data transfer/sharing modes. In this way, groups of modules
can be chained to provide complex processing operations as the data are transferred from

the initial source to the final data analysis and visualization stages. This data flow is

typically driven by user demands and interactions. A variety of “standard” modules, such

32

(a) (b)

Figure 3.6: The LightStream Dataflow used for analysis and visualization of a three­
dimensional combustion simulation (Uintah code). (a) Several dataflow modules chained
together to provide a light and flexible stream processing capability. (b) One visualization
that is the result from this dataflow.

as data differencing (for change detection), content based image clustering (for feature

detection), or volume rendering with multiple, science-centric transfer functions, are part of

the base system. These can be used by new developers as templates for their own progressive
streaming data processing modules.

ViSUS also provides a scene graph hierarchy for both organizing objects in a particular
environment, as well as the sharing and inheriting of parameters. Each component in a
model is represented by a node in this scene graph and inherits the transformations and

environment parameters from its parents. Three-dimensional volume or two-dimensional
slice extractors are children of a data set node. As an example of inheritance, a scene graph

parameter for a transfer function can be applied to the scene graph node of a data set. If

the extractor on this data set does not provide its own transfer function, it will be inherited.

3.4.2 Portable Visualization Layer - ViSUS AppKit.

The visualization component of ViSUS was built with the philosophy that a single
code base can be designed to run on a variety of platforms and hardware ranging from

mobile devices to powerwall displays. To enable this portability, the basic draw routines

were designed to be OpenGL ES compatible. This is a limited subset of OpenGL used
primarily for mobile devices. More advanced draw routines can be enabled if a system’s

hardware can support it. In this way, the data visualization can scale in quality depending

on the available hardware. Beyond the display of the data, the underlying graphical user

interface (GUI) library can hinder portability to multiple devices. At this time ViSUS has

33

made use of the Juce 7 library which is lightweight and supports mobile platforms such as

iOS and Android in addition to major operating systems. ViSUS provides a demo viewer

that contains standard visualizations such as slicing, volume rendering and isosurfacing.
Similarly to the example LightStream modules, these routines can be expanded through a
well-defined application programming interface (API). Additionally, the base system can

display two-dimensional and three-dimensional time varying data. As mentioned above,

each of these visualizations can operate on the end result of a LightStream dataflow. The

system considers a two-dimensional dataset as a special case of a slice renderer and therefore

the same code base is used for two-dimensional and three-dimensional datasets. Combining

all of the above design decisions allows the same code base to be used on multiple platforms

seamlessly for data of arbitrary dimensions. Figure 3.7 shows the same application and
visualization running on an iPhone 3G mobile device and a powerwall display.

3.4.3 Web-Server and Plug-In

ViSUS has been extended to support a client-server model in addition to the tradi­
tional viewer. The ViSUS server can be used as a standalone application or a web server

plugin module. The ViSUS server uses HTTP (a stateless protocol) in order to support
many clients. A traditional client/server infrastructure, where the client established and

maintained a stable connection to the server, can only handle a limited number of clients

robustly. Using HTTP, the ViSUS server can scale to thousands of connections. The ViSUS

client keeps a number (normally 48) of connections alive in a pool using the “keep-alive”

option of HTTP. The use of lossy or lossless compression is configurable by the user. For

example, ViSUS supports JPEG and EXR for lossy compression of byte and floating point
data, respectively. The ViSUS server is an open client/server architecture, therefore it is

possible to port the plugin to any web server which supports a C + + module (i.e., Apache,

IIS). The ViSUS client can be enabled to cache data to local memory or to disk. In this way,
a client can minimize transfer time by referencing data already sent, as well as having the

ability to work offline if the server becomes unreachable. The ViSUS portable visualization

framework (Appkit) also has the ability to be compiled as a Google Chrome, Microsoft
Internet Explorer, or Mozilla Firefox web browser plugin. This allows a ViSUS framework

based viewer to be easily integrated into web visualization portals.

7http://www.rawmaterialsoftware.com

http://www.rawmaterialsoftware.com

34

(a) (b)

Figure 3.7: The same application and visualization of a Mars panorama running on an
iPhone 3G mobile device (a) and a powerwall display (b). Data courtesy of NASA.

3.4.4 Additional Application: Real-Time Monitoring

In addition to the ones provided in this dissertation, the ViSUS framework has an ad­
ditional ideal application in the real-time monitoring of large scientific simulations. Ideally,

for these simulations a user-scientist would like to view a simulation as it is computed,

in order to steer or correct the simulation as unforeseen events arise. Simulation data
are often very large. For instance, a single field of a time-step from the S3D combustion

simulation in Figure 3.8 (a) is approximately 128 gigabytes in size. In the time needed to
transfer this single time-step, the user-scientist would have lost any chance for significant

steering/correction of an ongoing simulation or at least the ability to save wasting further
resources by terminating a simulation early. By using the parallel ViSUS data format in

simulation checkpointing [98, 99], we can link this data directly with an Apache server using

a ViSUS plug-in running on a node of the cluster system. By doing this, user-scientists can

visualize simulation data as checkpoints are reached. ViSUS can handle missing or partial

data; therefore, the data can be visualized even as it is being written to disk by the system.

ViSUS’s support for a wide-variety of clients (a stand-alone application, a web-browser
plug-in, or an iOS application for the iPad or iPhone) allows the application scientist to

monitor a simulation as it is produced, on practically any system that is available without

any need to transfer the data off the computing cluster. As mentioned above, Figure 3.8 (a)
is an S3D large-scale, combustion simulation visualized remotely from an high performance

35

(a) (b)

Figure 3.8: Remote visualization and monitoring of simulations. (a) An S3D combustion
simulation visualized from a desktop in the Scientific Computing and Imaging (SCI)
Institute (Salt Lake City, Utah) during its execution on the HOPPER 2 high performance
computing platform in Lawrence Berkeley National Laboratory (Berkeley, California). (b)
Two ViSUS demonstrations of LLNL simulation codes (Miranda and Raptor) visualized in
real-time while executed on the BlueGene/L prototype installed at the IBM booth of the
Supercomputing exhibit.

computing platform8.

This work is the natural evolution of the ViSUS approach of targeting practical ap­

plications for out-of-core data analysis and visualization. This approach has been used
for direct streaming and real-time remote monitoring of the early large scale simulations

such as those executed on the IBM BG/L supercomputers at Lawrence Livermore National

Laboratory (LLNL) [130] shown in Figure 3.8 (b). This work continues its evolution towards
the deployment of high performance tools for in situ and postprocessing data management

and analysis for the software and hardware resources of the future including exascale DOE

platforms of the next decade9.

8Data are courtesy of Jackie Chen at Sandia National Laboratories, Combustion Research Facility
h ttp ://ascr.san d ia .gov /peop le /C h en .h tm

9 Center for Exascale Simulation of Combustion in Turbulence (ExaCT)
h ttp ://s c ie n ce .e n e rg y .g o v /a s c r /r e se a rch /s c id a c /c o -d e s ig n /

http://ascr.sandia.gov/people/Chen.htm
http://science.energy.gov/ascr/research/scidac/co-design/

CHAPTER 4

INTERACTIVE SEAM EDITING AT
SCALE

This chapter outlines the Panorama Weaving technique which brings the boundary

computation phase of panorama creation pipeline into an interactive environment. Sec­

tion 4.1 gives the relevant background and formulation for the computation of optimal

image boundaries. Section 4.2 discusses how to achieve interaction with pairwise boundaries.

Section 4.3 introduces the adjacency mesh data structure and how it can be used to bring
pairwise seams to a global seam solution. Section 4.4 details how to extend the Panorama

Weaving technique to an out-of-core environment, thereby scaling the technique to gigapixel

images. In Section 4.5, I will detail how to design an interactive system using this technique

and scale it to large images in Section 4.6. Finally, Section 4.7 provides results for the

technique and in Section 4.8 I discuss its limitations.

4.1 Optimal Image Boundaries
In this section, we discuss the technical background for boundary calculations of both

pairwise and many-image panoramas.

4.1.1 Optimal Boundaries

Given a collection of n panorama images I i , l 2 ..In and the panorama P , the image
boundary problem can be thought of as finding a discrete labeling L(p) e (1...n) for all

panorama pixels p e P , which minimizes the transition between each image. If L(p) = k,

this indicates that the pixel value for location p in the panorama comes from image Ik. This

transition can be defined by an energy on the piecewise smoothness Es(p, q) of the labeling

of neighboring elements p, q e N , where N is the set of all neighboring pixels. We would
like to minimize the sum of the energy of all neighbors, E . For the panorama boundary

problem, this energy is typically [4] defined as:

37

E(L) = ^ Es(jp,t
p,q&N

If minimizing the transition in pixel values:

Es(p ,q) = \\Il(j>)(P) - IL(q)(P) \ + ||1L(p)(q) - ^L(q)(9) y

or if minimizing the transition in the gradient:

Es(p ,q) = ||V /l (p)(p) - V/L(q)(p)| + |V/L(p)(q) - v 1 L(q)(9)|

where L(p) and L(q) are the labeling of the two pixels. Notice that L(p) = L(q) implies

Es(p, q) = 0. Minimizing the change in pixel value works well in the context of poor

registration or moving objects in the scene, while minimizing the gradient produces a nice
input for techniques such as gradient domain blending. In addition, techniques can use a

linear combination of the two energies.

4.1.2 Min-Cut and Min-Path
When computing the optimal boundary between two images, the binary labeling is

equivalent to computing a min-cut of a graph whose nodes are the pixels and arcs connect

a pixel to its neighbors. The arc weights are then the energy function being minimized, see

Figure 4.1 (a). If we consider a four-neighborhood and the dual-graph of the planar min-cut

graph, as we show in Figure 4.1 (b), we can see that there is an equivalent min-path to the
min-cut solution on the dual-graph. This has been shown to be true for all single source,

single destination paths on planar graphs [72]. The approaches are equivalent in the sense

(a)

E s (P , q)

D n -0 -D
O — Q —1 -0 — O — OQTaT-n-Tp
C H -0-r-0-K >— O

(b)
D r a t H -T Q

Figure 4.1: The four-neighborhood min-cut solution (a) with its dual min-path solution
(b). The min-cut labeling is colored in red/blue and the min-path solution is highlighted
in red.

38

that the final solution of a min-cut calculation defines the pixel labeling L(p) while the

min-path solution defines the path that separates pixels of different labeling.

4.1.3 Graph Cuts

This technique provides good solutions to pixel labeling problems for more than two

images. The intricacies of the algorithm [26, 24, 92] are beyond the scope of this dissertation,
but at a high level, Graph Cuts finds a labeling L which minimizes an energy function E'(L).

This function consists of term E s(p, q) augmented with energy associated with individual

pixel locations Ed(p).

E'(L) = £ Ed(p)+ £ Es(p,q)
p p,qeN

For the panorama boundary problem, this data energy Ed is typically [4] defined as being

0 if location p is a valid pixel of IL(P). Otherwise, it has infinite energy.

4.2 Pairwise Seams and Seam Trees
Figure 4.2 illustrates two example pairwise image seams. In the simplest and most

common case, Figure 4.2 (a), the boundary lines of the two images intersect at two points
u and v connected by the seam s. The other simple, but more general case in Figure 4.2 (b)

shows two overlapping images, where the intersection of their boundary lines results in an

even number of intersection points. A set of seams can be built by connecting pairs of points

with a consistent winding. The seams computed in this way define a complete partition

of the space between the two images. In nonsimple cases, i.e., with co-linear boundary

intervals, we can achieve the same result by choosing one representative point (possibly

optimized to minimize an energy). Notice that the case in Figure 4.2 (b) produces more

than a single set of valid seams, denoted by the purple and grey dashed lines. For clarity
in the discussion, we will focus on the case in Figure 4.2 (a) since we can treat each seam

of the case in Figure 4.2 (b) as independent.
Assuming the dual-path energy representation in Figure 4.1 (b), a seam is a path that

connects the intersection points (u,v). Computing the minimal path of a given energy

function will give an optimal seam s, which can be computed efficiently with Dijkstra’s

algorithm [50]. With minimal additional overhead, we can compute both min-path trees

Tu and Tv from u and v (single source all paths). These trees provide all minimal seams
which originate from either endpoint and define the dual seam tree of our technique. Given
a point in the image overlap, we can find its minimal paths to u and v with a linear walk

39

(a) (b)

Figure 4.2: (a) Given a simple overlap configuration a seam can be thought of as a path
s that connects pairs of boundary intersections u and v. (b) Even in a more complicated
case, a valid seam configuration is still computable by taking pairs of intersections with a
consistent winding about an image boundary. Note that there is an alternate configuration
denoted in gray.

up the trees Tu and Tv, as shown in Figure 4.3. If this point is a user constraint, the union

of the two minimal paths forms a new constrained optimal seam. Due to the simplicity

of the lookup, this path computation is fast enough to achieve interactive rates even for

large image overlaps. Note that two min-paths on the same energy function are guaranteed

not to cross. Although, since each dual-seam tree is computed independently, the minimal
paths from a constraint (to u and v) can cross. In particular, if the trees computed by

Dijkstra’s algorithm are dependent on the order in which the edges are calculated and there
are multiple paths in an overlap that share the same energy, the paths on each tree to a

user constraint can cross. To avoid this problem we enforce an ordering based on the edge

index and we are guaranteed to achieve noncrossing solutions.
Moving an endpoint is also a simple walk up its partner endpoint’s seam tree. Therefore

© □ G

Figure 4.3: Given two min-path trees associated with a seam’s endpoints (u,v), a new
seam that passes through any point in the overlap (yellow) is a simple linear walk up each
tree.

40

a user can change an endpoint location at-will, interactively. Although after the movement,

the shifted endpoint's seam tree is no longer valid since it was based on a previous location.

If future interactions are desired, the tree must be recomputed. This can be computed
as a background process after the users finish their initial interaction without any loss of

responsiveness to the system.

4.3 From Pairwise to Global Seams
To avoid incurring the cost associated with the solution of a global optimization, we build

the panorama as a proper collection of pairwise seams. This is based on the observation,
illustrated in Figure 4.4 (a), that the label assignment in a Graph Cut optimization mostly

forms a simple collection of regions partitioned by pairwise image seams (denoted in the

picture by the double-arrows).

Our technique is designed with this property in mind and independently computes each

seam constrained by the pairwise intersections called branching points. These are colored

in red in Figure 4.4 (b).

O---------------------Q.

Figure 4.4: (a) A solution to the panorama boundary problem can be considered as a
network of pairwise boundaries between images. (b) Our adjacency mesh representation
is designed with this property in mind. Nodes correspond to panorama images, edges
correspond to boundaries and branching points (intersections in red) correspond to faces of
the mesh. (c) Graph Cuts optimization can provide more complex pixel assignments where
“islands” of pixels assigned to one image can be completely bounded by another image.
Our approach simplifies the solution by removing such islands.

41

Note that the solution of a Graph Cuts optimization can provide more complex pixel

assignments, where “islands” of pixels assigned to one image can be completely bounded by

another image, as shown in Figure 4.4 (c). Obviously, our approach simplifies the solution
by removing such islands and makes each region simply connected. We have checked how

the energy optimized by our technique would change with this assumption (see Section 4.7).

In all cases we have noticed that the energy of the seams produced by our system remains

in the same order of magnitude as Graph Cuts, actually being reduced in all cases but one.

Limitations on this assumption are detailed in Section 4.8.

4.3.1 The Dual Adjacency Mesh

To construct a seam network, our computations are driven by an abstract structure

that we call the dual adjacency mesh. We draw the inspiration for our adjacency mesh

representation from the traditional region adjacency graph used in computer vision, as well

as the regions of difference (ROD) graphs of Uyttendaele et al [165]. In Figure 4.4 (b and

c), we have the adjacency graph for a global, Graph Cuts computation. This graph can
be considered the dual to the seam network: each node corresponds to an image in the

panorama, whereas each edge describes an overlap relation between images. Edges are then

orthogonal to the seam they represent. If we consider this graph as having the structure of a
mesh, the dual of the panorama branching points are the faces of this mesh representation.

In Figure 4.4 (b), the branching points are highlighted in red. Seams which exit this
mesh representation correspond to pairwise overlaps on the panorama boundary. These are

illustrated in Figure 4.4 (b) with a single yellow endpoint. Connecting the branching points
on adjacent faces in the mesh and/or the external endpoints gives a global seam network

of pairwise image boundaries.
In addition to the branching points in the seam network, the faces of the adjacency mesh

are also an intuitive representation for overlap clusters. Specifically, clusters are groups of

overlaps that share a common area that we call a multioverlap. These multioverlaps are areas

where branching points must occur. The simplest multioverlap beyond the pairwise case

consists of three overlaps and is represented by a triangle, see Figure 4.5 (a). A multioverlap

with four pairwise overlaps, can be represented by a quadrilateral, indicating that all four
pairwise seams branch at a mutual point. An important property of this representation is

that this quadrilateral can be split into two triangles, a classic subdivision, see Figure 4.5
(b). Any valid (no edge crossing) subdivision of a polygon in this mesh will result in

42

Figure 4.5: (a) A three overlap adjacency mesh representation. (b) A four overlap initial
quadrilateral adjacency mesh with its two valid mesh subdivisions. (c) A five overlap
pentagon adjacency mesh with an example subdivision.

a valid seam configuration. In this way, the representation can handle a wide range of

seam combinations, but keep the overall network valid. Figure 4.5 (c) shows an example
subdivision of a five-way intersection.

As a precomputation, we calculate the initial adjacency mesh consisting of simple

n-gon face representations for every n-way cluster. This precomputation stage enables
the conversion of the initial nonplanar full neighborhood graph into a planar mesh repre­

sentation, see Figure 4.6. Clusters (and their corresponding muti-overlaps) by definition
are nonoverlapping, maximal cliques of the full neighborhood graph. This computation is a

classic clique problem and is known to be NP-complete [43]. For most panoramas, we have

found the neighborhood graph is small enough that a brute-force search can be computed

quickly. Although, previous work has shown that given a graph with a polynomial bound

on the number of maximal cliques, they can be found in polynomial time [141]. This is

indeed the case for the neighborhood graph which has maximal boxicity [140] dimension of

two [36]. After the maximal cliques have been found, each n-gon face is extracted by finding
the fully spanning cycle of clique vertices on the boundary in relation to the centroids of

the images. The boundary edges of the n-gon face are marked as active, while the interior

(intersecting) edges are marked as inactive as shown in Figure 4.6.
This adjacency mesh is used to drive the computation and combination of the pairwise

boundaries as well as user manipulation. As we will illustrate in Section 4.5, it can be

completely hidden from a user of the interactive system with intuitive editing concepts.

4.3.2 Branching Points and Intersection Resolution
Given a collection of seam trees that correspond to active edges in the adjacency mesh,

we can now combine the seams into a global seam network. To do this, we need to compute

the branching points which correspond to each adjacency mesh face, adjust the seam given
a possible new endpoint, and resolve any invalid intersections that may arise (in order to
maintain consistency).

43

Figure 4.6: Considering the full neighborhood graph of a panorama (a), where an edge
exists if an overlap exists between a pair of images, an initial valid adjacency mesh (b)
can be computed by finding all nonoverlapping, maximal cliques in the full graph, then
activating and deactivating edges based on the boundary of each clique.

4.3.2.1 Branching points. Assuming for each pairwise seam there exists only two

endpoints, for each multioverlap one endpoint must be adapted into a branching point.

We refer to this endpoint as being inside in relation to the adjacency mesh face. The

other seam endpoint is considered to be outside in relation to the multioverlap. These

can be computed by finding the endpoints which are closest (euclidean distance) to the
multioverlap associated with the face. Figure 4.7 (a) displays these endpoints with the

color red and the multioverlap area with a blue shading. Although it is possible to create a

pathological overlap configuration where this distance metric fails, we have found that this

strategy works well in practice.

If we use the dual seam tree distances, i.e., the path distance values associated with

the outside endpoints, we can compute a branching point which is optimal with respect

to these paths, as illustrated in Figure 4.7 (b). This can be accomplished with a simple

lookup of the distance values in the trees. We have found that minimizing the sum of the
least squared error provides a nice low energy solution. The new path associated with a

moved endpoint is determined by a simple walk up the dual seam tree, see Figure 4.7 (c).

Additionally, each seam tree associated with the branching point is recalculated given its

location. As Figure 4.7 (d) illustrates, the branching point is always computed using the

distance field of the initial endpoint location even if this point had been previously adjusted
by an adjacent face. In practice, we have found the contribution of the root location is

minimal to the overall structure of the seam tree towards the leaves of the tree. Since using

the initial starting endpoints allows the branching points to be computed independently
and in a single parallel pass, we have adopted this into our technique.

The seams produced by this initial process in the four-overlap case are similar to the

44

Tree Lookup—a.
f

J J
•»-

I
ck 1— jJ \ K.

i
|M

>------

V-J r A

o-----
O —

r\ _

/'
— - jlr-v

' V X"
o — ----

(a) (b) (c) (d)

Figure 4.7: (a) Pairwise seam endpoints closest to a multioverlap (red) are considered a
branching point. (b) This can be determined by finding a minimum point in the multioverlap
with respect to min-path distance from the partner endpoints. (c) After the branching point
is found, the new seams are computed by a linear lookup up the partner endpoint’s seam
tree. (d) To enable parallel computation, each branching point is computed using the initial
endpoint location (green) even if it was moved via another branching point calculation (red).

sequential techniques introduced by Efros and Freeman [53] and Cohen et al. [42]. With

the additional adjacency mesh, our technique is much more expressive in the possible seam

configurations (especially allowing arbitrary valence branching points). In addition, as we
will illustrate next, for panoramas and especially in an interactive setting one cannot assume

that a seam’s path to a branching point respects the paths of other seams.
4.3.2.2 Rem oving invalid intersections. Since each seam is computed using a

separate energy function, seam-to-seam intersections beyond the branching points are pos­

sible. Small intersections of this type must be allowed to ensure solutions are computable
in a four-neighborhood configuration. For instance, there would be no nonintersecting

way to combine five seams into a single branching point. This allowance is defined by an

e-neighborhood around the branching point which can be set by the user. We have found

allowing an intersection neighborhood of one or two pixels gives good results with no visible
artifacts from the intersection. The intersections in this neighborhood are collapsed to be

co-linear to the shortest of the intersecting paths.

Intersections that occur outside of this e-neighborhood must be resolved due to the

inconsistent pixel labeling that they imply. Figure 4.8 (a, c) shows an example of in­

tersections in a four-way image overlap. The areas highlighted in gray have conflicting
image assignments. Enforcing no intersections at the time of the seam computation would

complicate parallelism and be overly expensive. This corresponds to a k-way planar escape

problem with multiple energies (where k is the number of seams incoming to the branching
point) for which variants have been shown to be NP-complete [179]. This could also lead to
possible unstable interactions since small movements may lead to extremely large changes

in the overall seam paths. The simplest solution is to choose one assignment per conflict

45

A B

" ~~ - ~ t" „ "

C D

(a)

C D

(b)

A

A \
\

B

o v o
A B

- I"

\

C D 0 — 0 - 1 -

C D

(c)

O V O

0-0

A
\

B

" - -

C D

(d)

Figure 4.8: (a) Pairwise seams may produce invalid intersections or crossings in a
multioverlap, which leads to an inconsistent labeling of the domain. The gray area on
the top can be given the labels A or B and on the bottom either C or D. (b) Choosing a
label is akin to collapsing one seam onto the other. This leads to new image boundaries,
which were based on energy functions that do not correlate to this new boundary. The top
collapse results in a B-C boundary using an A-B seam (C-D seam for the bottom). (c and
d) Our technique performs a better collapse where each intersection point is connected to
the branching point via a minimal path that corresponds to the proper boundary (B-C).
One can think of this as a virtual addition of a new adjacency mesh edge (B-C) at the time
of resolution to account for the new boundary.

A B

C D

area. This is equivalent to collapsing the area and making the two seams co-linear at points

where they “cross.” Each collapse introduces a new image boundary for which the wrong

energy function has been minimized, Figure 4.8 (a, b). In our technique, we perform a more

sophisticated collapse.

For a given pair of intersecting seams, multiple intersections can be resolved by taking
into account only the furthest intersection from the branching point in terms of distance

on the seam. Given that each seam divides the domain, this intersection can only occur

between seams that divide a common image. If presented with a seam-to-seam intersection,

we can easily compute the new boundary that is introduced during the collapse. This is
simply a resolution seam on an overlap between the images which is not common between the

intersection seams. The resolution seams connect the intersection points with the branching

points. Often, if multiple resolution seams share the same overlap, as in Figure 4.8, only one

min-path calculation from the branching point is needed to fill in all min-paths. The new
resolution seams are constrained by the other seams in the cluster in order to not introduce

new intersections with the new paths. The constraints are also given the ability to gradually

increase the allowed intersection neighborhood beyond the user defined e-neighborhood in

46

the chance that no solution path exists. The crossings and intersections are collapsed in this

neighborhood. Due to the rarity of this occurrence, the routine adds minimal overhead to the

overall technique in practice. Order matters in both finding the intersections and computing
the resolution seams and therefore must be consistent. We have found that ordering based on

the overlap size works well. Resolution seams and expanded e-neighborhood are considered

to be temporary states. Figure 4.8 (c, d) shows an example of an intersection resolution.

This technique robustly handles possible seam intersections at the branching points.
Most importantly, since we are only adjusting the seam from the intersection point on, we

can resolve each adjacency mesh face in parallel. In addition, since the seam is not changed

outside of the multioverlap within a cluster, the resolution is local and will not cascade to a

global resolution. However, it is possible for a user to introduce unresolvable intersections
through added constraints, as we will discuss in Section 4.5.

4.4 Out-of-Core Seam Processing
While designed to be light on resources, the technique outlined in the previous sections

assumes all images can be stored in-core. This assumption holds true for many panoramas,

but not images gigapixels in size. In this section, I will detail how the original technique
can be modified to handle large panoramas.

As illustrated in Figure 4.9, the initial seam solution for the Panorama Weaving tech­

nique can be thought to occur in three phases. First, for each adjacency mesh face, the

corresponding branching point must be computed. After the branching point is found, any

seams which occur on the panorama boundary can be computed. These correspond to edges

in our mesh that belong to only one face. See Figure 4.9 (a). As mentioned previously, the

branching point computations for each face given our simple pairwise seam assumption are

completely independent and can be computed in parallel. As a second phase, the seams for
the shared edges can be found by connecting the newly computed branching points. Each

shared edge can be processed independently in parallel. See Figure 4.9 (b). Finally, once all

edges for a face are computed the seam intersections for the given face can be resolved. This

resolution is also independent and parallel for each adjacency mesh face. See Figure 4.9 (c).
Note that each phase need not be entirely distinct since the can be interleaved.

If we bundle the branching point and shared seam calculation into a single operation, the

logic of our out-of-core computation would only deal with the adjacency mesh faces. This

can drastically reduce the system complexity even when working in a multicore environment.

47

0+<>K >+<>-vO 0 4 < > K > ^ 0 -rO

(a) (b) (c)

Figure 4.9: The phases of out-of-core seam computation. (a) First, branching points are
computed. The seams for all unshared edges can also be computed during this pass. (b)
Second, once the corresponding branching points are computed, all unshared edges can be
computed with a single min-path calculation. (c) Third, once all the seams for the edges for
a given face have been computed, the intersections can be resolved. Note, the three passes
do not necessarily need to be three separate phases since they can be interleaved when the
proper input data are ready.

By doing this, we also cast our problem into the simple problem of graph traversal for the

two remaining phases of our seam processing system. For our traversal strategy, we chose

a simple row-major traversal of the mesh faces.

4.4.1 Branching Point and Shared Edge Phase
The design goal for this phase is to keep the memory requirement low and predictable.

The reasoning for this approach is twofold. First, low memory requirements enable the

portability of our out-of-core system to a wide variety of systems. Such a technique has

the ability to run on systems from laptops to HPC computers. Second, when moving into
a multicore implementation being able to have a low, predictable memory requirement per

face would make the logic and scheduling of the many threads operating on the adjacency

mesh faces very simple. Given the resources of the system, we can predict how many faces
the system can compute in parallel. We achieve our low memory footprint by computing

the branching point for a given face in a “round-robin” fashion, as shown in Figure 4.10. For

each edge, the images that correspond to its endpoints are loaded and the overlap energy

is calculated. Next, the seam tree needed for the branching point is calculated. After this
calculation, the overlap energy is no longer needed and is therefore ejected from memory.

The calculation then moves onto the next edge that shares an image with the previous

computation. The rest of the branching point calculation proceeds in the same way until

all seam trees have been computed to compute the location of the new branching point.
As mentioned above, we couple the shared edge phase into this phase of calculation. This

48

(a) (b)

Figure 4.10: The low memory branching point calculation for our out-of-core seam creation
technique. (a) Given a face for which a branching point needs to be computed, (b) the
computation proceeds “round-robin” on the edges of the face to compute the needed seam
trees. The images that correspond to the edge endpoints and overlap energy are only needed
during the seam tree calculation for a given edge on the face. Therefore by loading and
unloading these data during the “round-robin” computation, the memory overhead for the
branching point computation is the cost of storing two images, one energy overlap buffer,
and one for the seam trees for the given face.

is done with a flag per face to indicate whether the branching point has been computed.

After the branching point has been computed for a face, the flag is set and the process

checks to see if the flag is also set for the other faces on a face's shared edges. If the face

calculation is the second to set this flag, it knows it can fill in the new seam for the shared

edge. For the multicore implementation, this check is made atomic with locks to ensure

there is always a clear first- and second-face calculation when setting flags for the endpoints
of a shared seam. Note that the memory overhead for this computation is equal to the

space required to store two images, one buffer for the overlap energy, and one for the seam

trees for the edges of the mesh face. As you can see, this overhead is quite low and given

an average image size and overlap percentage, very predictable. The geometry of the seams
are stored in-core for the final phase of the calculation.

4.4.2 Intersection Resolution Phase

When all seams for a face have been computed, the seam intersections that correspond

to the face can be resolved. The intersection test is computed on the seam geometry which
is already in memory. If an intersection occurs within a threshold distance on the seam from

the branching point it is considered small and collapsed. This is an equivalent operation

to the intersection collapse from the in-core Panorama Weaving technique. For larger

49

intersections, a resolution seam must be computed and the two images that correspond to

the overlap of the resolution seam need to be loaded before computation. See Figure 4.11

for an example.

4.5 Weaving Interactive System
In this section, we outline how to create a light and fast interactive system using the

Panorama Weaving technique. A simplified diagram of the operation of the system is given

in Figure 4.12. In Section 4.7, we provide examples of this application editing a variety of

panoramas.

4.5.1 System Specifics

In this subsection, I will detail specifics for the prototype system.

4.5.1.1 Input. The system inputs for our prototype are flat, registered raster images
with no geometry save the image offset. Any input can be converted into this format and

therefore it is the most general. The initial image intersection computation is computed

using the rasterized boundaries. Due to aliasing, there may be many intersections found. If

the intersections are contiguous, they are treated as the same intersection and a represen­

tative point is chosen. In practice, we have found this choice has little effect on the seam

outside a small neighborhood (less than 10 pixels from the intersection). Therefore, the
system picks the minimal point in this group in terms of the energy. Pairs of intersections

that are very close in terms of euclidean distance (less than 20 pixels) are considered to be
infinitesimally small seams and are ignored.

The user is also allowed to dictate the energy function for the entire panorama, image, or

overlap. This can be done as an initial input parameter or within the interactive program

\
\

" - i
r~

—

/

Figure 4.11: For intersections that require a resolution seam, the two images which
correspond to the overlap needed for the seam must be loaded. In the figure above, these
images are the ones that correspond to the endpoint of the diagonal, resolution adjacency
mesh edge.

50

Automatic Computation

Figure 4.12: Overview of Panorama Weaving. The initial computation is given by steps
one through four, after which the solution is ready and presented to the user. Interactions,
steps five and six, use the tree update in step four as a background process. Additionally,
step six updates the dual adjacency mesh.

itself. Specifically, our prototype allows the user to switch between pixel difference or
gradient difference energies.

4.5.1.2 Initial parallel com putation. Parallel computation is accomplished using

a thread pool equal to the number of available cores. The initial dual seam tree and
branching points computation can be run trivially in parallel. In the presence of two adjacent

faces in the adjacency mesh, a mutex flag must be used on their shared seam since both

faces may attempt to write this data simultaneously. As a final phase, each adjacency mesh

face resolves intersections in parallel. In order to compute these resolutions in parallel,

we split a seam’s data into three separate structures for the start, middle, and end of the

seam. The middle seam contains the original seam before intersection resolution and its

extent is maintained by pointers. The structure’s start and end are updated with the

intersection resolution seams by the faces associated with their respective branching points.
Either vector can be associated only with one face; therefore, we run no risk of multiple

threads writing to the same location.
Each seam tree is stored as two buffers: one for node distance and one which encodes the

tree itself. The tree buffer encodes the tree with each pixel referencing its parent. This can

be done in 2 bits (rounded to 1 byte for speed) for a four-pixel neighborhood. Therefore,

for float distances we need only 5 bytes per pixel to store a seam tree.
4.5.1.3 Seam network im port. It is possible to import a seam network computed

with an alternative technique (such as Graph Cuts, see Figure 4.13), and edit it with our

51

Figure 4.13: Importing a seam network from another algorithm. The user is allowed to
import the result generated by Graph Cuts (a) and adjust the seam between the green and
purple regions to unmask a moving person (b). Note that this edit has only a local effect,
and that the rest of the imported network is unaltered.

system. Our import procedure works as follows. Given a labeling of the pixels of the

panorama, the algorithm first extracts the boundaries of the regions. Then, branching

points (boundary intersections) are extracted. Next, each boundary segment (bounded

by two branching points) is identified as a seam and the connected components of the
resulting seam network are identified. To be compatible with our framework, only the seam

networks made of a single connected component can be imported. Thus, we only consider

the biggest connected component of the network and small islands are discarded. Finally,
our seam data-structures are fed with the seam network and the adjacency mesh is updated

if necessary. Since the editing operations do not cascade globally, a user can edit a problem
area locally and maintain much of the original solution if desired.

4.5.2 Interactions

In this subsection, I will detail some possible interactions that can be accomplished with

our system.

4.5.2.1 Seam bending. The adding of a constraint and its movement is called a
bending interaction in our system and operates as outlined in Section 4.2. A user is allowed

to add a constraint to a seam and is provided instantly the optimal seam which must

pass through it. The constraint can be moved interactively to explore the seam solution
space. Intersections in any adjacency mesh face containing the corresponding edge are

resolved, which can be done in parallel. Most importantly, given how the technique resolves

intersections, seams cannot change beyond the multioverlap area in these faces. Therefore,

the seam resolution does not cascade globally.

52

4.5.2.2 Seam splitting. Adding more than one constraint is akin to splitting the

seam into segments. After a bending interaction, the seam trees are split into four, where

there were previously two. Two of the trees (corresponding to the endpoints) are inherited
by the new seams. The two trees associated with the new constraint are identical, therefore
only one tree computation is necessary. Splitting occurs in our prototype when a user

releases the mouse after a bending interaction. Editing is locked for this seam until the

corresponding trees are resolved. This is a quick process and it is very rare for a user to be

fast enough to beat the computation.
4.5.2.3 Branching point movement. The user is given the ability to grab and

move the branching point associated with a selected face of the adjacency graph As I have

detailed in Section 4.2, a movement of an endpoint is a simple lookup on its partner’s dual
seam tree. As the user moves a branching point, intersections for both the selected face and

all adjacent faces are resolved. Given that the intersection resolution does not adjust seam
geometry beyond the multioverlap, we need only to look at this one-face neighborhood and

not globally. To enable further interaction, the seam trees associated with this endpoint

need to be recalculated after movement. When the user releases the mouse, the seam tree

data for all the endpoints associated with the active seams for the face are recomputed as

a background process in parallel. Like splitting, editing is locked for each seam until it

completes the seam tree update.
4.5.2.4 Branching point splitting and merging. The user can add and remove

additional panorama seams by splitting and merging branching points. Addition and

removal of seams is equivalent to subdividing and merging faces of the adjacency mesh.
Improper requests for a subdivision or merge correlate to a non-valid seam network and are

therefore restricted. If splitting is possible for a selected branching point, the user can iterate

and choose from all possible subdivisions of the corresponding face. To maintain consistent

seams, merging is only possible between branching points resulting from a previous split. In

other words, merging faces associated with different initial adjacency mesh faces would lead
to an invalid seam configuration since the corresponding images do not overlap. If a seam is

added, its dual seam tree is computed. In addition, the other active seams associated with
this face will need to be updated much like a branching point movement.

4.5.2.5 Im proper user interaction. Given the editing freedom allowed to users,

they may move a seam into a inconsistent configuration. Figure 4.14 illustrates some

examples. Rather than constrain the user, the prototype system either tries to resolve the

53

improper seams or if that is not possible give the user visual feedback indicating a problem
configuration. For example, if the user introduces a seam intersection, our intersection

routine is launched to resolve it, see Figure 4.14 (a). Crossing branching points, Figure 4.14
(b), can be resolved similarly. Figure 4.14 (c) illustrates a configuration with no resolution.

In this instance, the crossing edges are collapsed and the user is given a visual hint that
there is a problem.

Given the locality of the interactions in the Panorama Weaving technique, extending the
interactions to gigapixel sized images does not require a large change to the base interactions.
Our interaction scheme is based on a standard large image viewer and on-the-fly loading

and computation of the data needed for seam editing. As Figure 4.15 shows, due to

the technique's simple pairwise seam assumption, the data which needs to be loaded and

computed is local given an interaction. Our system works as follows: we leverage the large

image, out-of-core ViSUS system outlined in Chapter 3 to provide exploration of a flattened

gigapixel image created from the seams from our initial out-of-core seam computation. If
a user wishes have a seam or branching point interaction, she/he can initiate this edit my

selecting a seam area she/he wished to edit. The action is determined similarly to the

in-core seam system in that the overlap bounding boxes are tested against the user selected

area. If all the overlap bounding boxes for a given face are selected, then it is assumed

the user wishes to have a branching point manipulation. Otherwise, it is assumed the user
wishes a seam bending interaction and a single overlap from the selection is chosen. A user

can cycle through the single selection options if more than one is present for a given input.

A brute-force bounding box intersection test has the possibility of being overly expensive for

panoramas which contain thousands of images and overlaps, therefore, we have designed two

i i i i i , i■ i i i i * i *

Figure 4.14: Improper user constraints are resolved or if resolution is not possible, given
visual feedback. (a) Resolution of an intersection caused by a user moving a constraint.
(b) Resolution of an intersection caused by a user moving a branching point. (c) A non-
resolvable case where a user is just provided a visual cue of a problem.

4.6 Scalable Seam Interactions

(a) (b) (c)

54

Figure 4.15: Given the inherent locality of the seam editing interactions, only a very
small subset of the adjacency mesh needs to be considered. (a) For operations on an
adjacency mesh face (i.e., branching point operations) only the images and overlaps of the
corresponding face and its one face neighborhood need to be loaded and computed. (b) For
edge operations (i.e., bending), we need consider only the faces that share the edge.

more scalable options for the selection. As Figure 4.16 (a) illustrates, a bounding hierarchy

of overlaps can be built by merging the bounding boxes of pairs of neighboring adjacency
mesh faces. During a user selection, the hierarchy is traversed to determine which faces

need to be considered for selection. Once this is determined, the selected face’s overlaps
are testing for user selection. This provides a selection runtime that is logarithmic in the

number of faces in our panorama. Alternatively, as Figure 4.16 (b) shows, if there is a pixel
to image map this can be leveraged to determine the neighborhood of overlaps that need

to be tested for selection. This neighborhood consists of the edges of faces that share the
node that corresponds to the pixel-map image. After the user finishes their interaction, the

Figure 4.16: When a user selects an area of a panorama to edit, the system must determine
which overlaps intersect with the selected area. This can be accomplished with a (a)
bounding hierarchy of the overlaps. During selection this hierarchy is traversed to isolate
the proper overlaps for the selection. This gives a logarithmic lookup with respect to the
number of adjacency mesh faces in the panorama. Alternatively, (b) if a pixel-to-image
labeling is provided, this can be used to isolate a fixed neighborhood that needs to be
tested for overlap intersection. This labeling is commonly computed if the panorama is to
be fed into a color correction routine after seam computation.

55

seams are saved and the loaded images are masked and saved to the flattened image.

4.7 Results
In this section, we detail the results in both the creation and editing phases of our

system. In-core results were performed on a 3.07 GHz Intel i7 four-core processor (with
Hyperthreading) with 24 gigabytes of memory. The large system memory was required in
order to run the Graph Cuts implementation, as is, on all datasets. Panorama Weaving

performed well for all datasets on test systems including laptops with only 4 gigabytes of

memory. Out-of-core results were run on 2.67GHz Xeon X5550 (eight cores) system with
24 gigabytes of memory.

4.7.1 Panorama Creation
This subsection details the results for in-core and out-of-core initial seam creation.
4.7.1.1 In -core results. We compare the panorama creation phase of our system to

the implementation provided by the authors of the Graph Cuts technique [26, 24, 92], which
many consider the exemplary implementation. Both a expansion and swap algorithms were

run until convergence to guarantee minimal errors and the best time is reported. Since
this implementation has various ways of passing data and smoothness terms, we tested all

and report the fastest, which is precomputed arrays for the costs with a function pointer
acting as a lookup. Not having an equally well-established in-core parallel implementation

for Graph Cuts, we use a serial version of our algorithm for comparison. Timings for Graph

Cuts are based on the implementation's reported runtime. Due to the parallel option of

Panorama Weaving, its timings are based on wall-clock time. Datasets which contain more
than simple pairwise overlaps were run at full resolution and the running times and energy

comparisons are provided in Table 4.1. Our technique produces lower energy seams for all
but one example, Fall-5way, and even in this case the techniques have comparable energy.

In terms of performance, serial Panorama Weaving computes its solution faster than the

Graph Cuts for all datasets (at the same resolution). As the Graph Cuts results show, a
hierarchical approach would be necessary to achieve similar performance by trading quality

for speed. Parallel Panorama Weaving further reduces the runtime down to mere seconds

for all datasets at full resolution. On average, we see that the scaling performance between

Panorama Weaving’s serial and parallel implementations to be about a five times speedup.
This is in sync with the number of physical cores in the test system. Hyperthreading is

effective when data access is a main bottleneck. A speedup corresponding to the number

56

Table 4.1: Performance results comparing Panorama Weaving to Graph Cuts for our test
datasets that contain more than simple pairwise overlaps. Panorama Weaving run serially
(PW-S) computes solutions quickly. When run in parallel, runtimes are reduced to just
a few seconds. The energy ratio (E. ratio) between the final seam energy produced by
Panorama Weaving and Graph Cuts (PW Energy / GC Energy) is shown. For all but one
dataset (Fall-5way), Panorama Weaving produces a lower energy result. It is comparable
otherwise. Panorama image sizes are reported in megapixels (MP).

Dataset Megapixel Images PW Parallel PW Serial GC Serial E. Ratio
Crosswalk 16.7 4 1.3 7.2 369.6 0.995
Fall-5way 30.0 5 2.4 12.1 735.4 1.220
Skating 44.7 6 3.2 16.8 734.0 0.851

Lake 9.4 22 0.5 2.9 337.2 0.503
Graffiti 36.6 10 4.3 19.6 983.7 0.707
Nation 49.1 9 4.6 23.2 1168.7 0.800

of physical cores should be expected when an algorithm is compute-bound which is true for

Panorama Weaving. Therefore our implementation is scaling quite well on our test system.
4.7.1.2 O ut-of-core results. To test the performance for our out-of-core imple­

mentation, we computed the seams for two large panoramas on our eight core test system.

The Fall Salt Lake City panorama consist of 611 overlapping images and is 126,826 x 29,633,

3.27 gigapixel, when combined. The final image that is the result of our seam computation

is provided in Figure 4.17 (b). Additionally, in Table 4.2 we provide strong scaling test of

our implementation for this panorama as we vary the core count from one to eight. As this

table illustrates, our implementation shows very good efficiency up to the number of cores of

our test system. At eight cores, our efficiency takes a slight dip due to our implementation

using a dedicated thread to schedule the face computation for each phase of the out-of-core

Panorama Weaving technique. On a single core, our system can produce a seam solution

in only 68.5 minutes. As I have discussed in Section 2.1 Hierarchical Graph Cuts [2] does
not scale beyond two to three levels of the hierarchy. At three levels, the coarse version

of this panorama is still approximately 100 megapixel in size with 611 labels and could
not be run on our test system. Therefore, to provide context for our running times, we

compare our technique to the predicted runtime of a similar technique [94] which relies on

a moving window of a Graph Cuts solution. Figure 4.17 (a) provides an example of one

of these windows. In our tests, a Graph Cuts solution took 3003.86 seconds to converge.
Even more problematic is that the first iteration for this window still took a very long time

to compute: 612.99 seconds. Therefore, if this window is a good representation for this

57

Figure 4.17: Fall Salt Lake City, 126, 826 x 29, 633, 3.27 gigapixel, 611 images. (a) An
example window computed with out-of-core Graph Cut technique introduced in Kopf et
al. [94]. This single window took 50 minutes for Graph Cuts to converge, with the initial
iteration requiring 10.2 minutes. Since the full dataset contains 495 similar windows, using
the windowed technique would take days (85.15 hours) at best, and weeks (17.2 days) in
the worst case. (b) The full resolution Panorama Weaving solution was computed in 68.4
minutes on a single core and 9.5 minutes on eight cores. Our single core implementation
required a peak memory footprint of only 290 megabytes while using eight cores had peak
memory of only 1.4 gigabytes.

Table 4.2: Strong scaling results for the Fall Salt Lake City panorama, 126, 826 x 29, 633,
3.27 gigapixel, 611 images. Our out-of-core Panorama Weaving technique scales very well
in terms of efficacy percentage compared to ideal scaling up to the physical cores of our test
system (eight cores). At eight cores our technique loses a slight amount of efficiency due to
our implementation having a dedicated thread to handing the seam scheduling. Using the
full eight cores to process this panorama provides a full resolution seam solution in just 9.5
minutes. The system is extremely light on memory and uses at most 1.4 gigabytes.

Cores Time(s) Ideal(s) Efficiency Max Mem.
1 4109 NA NA 290 MB
2 2079 2054.5 98.8% 443 MB
3 1403 1369.7 97.6% 599 MB
4 1049 1027.3 97.9% 791 MB
5 840 821.8 97.8% 881 MB
6 706 684.8 97.0% 1.1 GB
7 601 587.0 97.7% 1.2 GB
8 573 513.6 89.6% 1.4 GB

panorama dataset (which our testing indicates that it is) computing all 495 windows in this

dataset would take days (85.15 hours) at best, and weeks (17.2 days) in the worst case.
Our implementation can compute a full resolution solution in a little over an hour for a

single core and only a few minutes when run on eight cores. Also of note is the small use
of memory inherent with our scheme. At any given time, we need only hold the cost of

computing the seams for a face per core. Therefore the per-core memory footprint is only

the cost of holding two images, an energy buffer, and the seam tress for a given face in
memory. Even with floating point precision and eight cores, for this dataset our technique

uses at most 1.4 gigabytes of memory. To further test the scalability of our system, our

58

implementation was run on even larger image. The Lake Louise panorama consists of 1512

images and is 187,069 x 40.202 (7.52 gigapixel) when combined. In Table 4.3 we provide a

strong scaling test for our implementation for this dataset. Like the previous example, our
implementation shows very good efficiency for one to eight cores on our test system. The

system is very light on memory resources and needs only 2.0 gigabytes of memory to operate
on all eight cores. When using all cores, our implementation can provide a seam solution

in only 37.7 minutes. The final image resulting from our seam calculation is provided in

Figure 4.18.

4.7.2 Panorama Editing

We provide additional results of the interactive portion of our technique editing a variety

of panoramas. Images which are color-corrected were processed using gradient domain

blending [133, 103].
4.7.2.1 Editing bad seams. In Figure 4.19, the Nation dataset is a highly dynamic

scene of a busy intersection with initial seams that pass through moving cars/people, see
Figure 4.19(d). In addition, there are various registration artifacts, see Figure 4.19(e).

Before our technique, a user would consider this panorama unsalvageable or be required to

manually edit the boundary masks pixel-by-pixel. In just a few minutes, using our system,

a user can produce an appealing panorama by adjusting seams to account for the moving

objects and pulling registration artifacts into areas which are less noticeable. Figure 4.20

(a, b and c) shows the initial seam configuration for the Skating dataset with two problem

areas. The initial seams pass through people who change position on the ice and produce

Table 4.3: Strong scaling results for the Lake Louise panorama, 187, 069 x 40.202, 7.52
gigapixel, 1512 images. Like the smaller Fall Salt Lake city panorama, our implementation
shows very good efficiency up to the physical number of cores on our test system. Using the
full eight cores for the full resolution seam solution for this panorama requires 37.7 minutes
of compute time and at most 2.0 gigabytes of memory.

Cores Time(s) Ideal(s) Efficiency Max Mem.
1 16279 NA NA 382 MB
2 8263 8139.5 98.51% 627 MB
3 5516 5426.3 98.37% 877 MB
4 4132 4069.8 98.49% 1.1 GB
5 3306 3255.8 98.48% 1.4 GB
6 2778 2713.2 97.67% 1.6 GB
7 2383 2325.6 97.59% 1.8 GB
8 2259 2034.9 90.08% 2.0 GB

59

Figure 4.18: Lake Louise, 187,069 x 40.202, 7.52 gigapixel, 1512 images. The Panorama
Weaving results for the Lake Louise panorama. Our out-of-core seam computation produces
this full resolution solution in as little as 37.7 minutes while requiring at most only 2.0
gigabytes of memory. Panorama courtesy of City Escapes Nature Photography

(d)

(e)

(f)

Figure 4.19: Panorama Weaving on a challenging data-set (Nation, 12848 x 3821, nine
images) with moving objects during acquisition, registration issues and varying exposure.
Our initial automatic solution (b) was computed in 4.6 seconds at full resolution for a
result with lower seam energy than Graph Cuts. Additionally, we present a system for
the interactive user exploration of the seam solution space (c), easily enabling: (d) the
resolution of moving objects, (e) the hiding of registration artifacts (split pole) in low
contrast areas (scooter) or (f) the fix of semantic notions for which automatic decisions can
be unsatisfactory (stoplight colors are inconsistent after the automatic solve). The user
editing session took only a few minutes. (a) The final, color-corrected panorama.

Figure 4.20: Repairing non-ideal seams may give multiple valid seam configurations. (a)
The initial seam configuration for the Skating dataset (9400 x 4752, six images) based on
gradient energy. (b and c) Its two major problem areas. (d and e) Using our technique a
user can repair the panorama, but also has the choices of two valid seam configurations.
Panorama courtesy of City Escapes Nature Photography.

60

either an amalgamation of two positions of a single person or a partial person. As shown

in the companion video, repairing these seams only takes a few seconds of interaction, see

Figure 4.20 (d and e) for edited results. Figure 4.21 illustrates how a user can correct
registration artifacts that appear on the moon’s horizon in the Apollo-Armstrong dataset.

4.7.2.2 M ultiple valid seams. Along with repairing unideal seams, Figure 4.19

and 4.20 (Nation and Skating) are also examples of a user choosing between multiple valid

seam configurations. In Figure 4.19 (f), the initial seam calculation for the Nation dataset
produces an intersection with four red stoplights, an inconsistent configuration. With our

system, a user can turn two stoplights green creating a more realistic setting. Figure 4.20

(bottom) shows 2 valid seam configurations the that user can choose while fixing the Skating

dataset. Each was repaired with a simple bend of the panorama seam. In Figure 4.22, we
provide an example of how a user can fix registration artifacts of the dataset (Graffiti) while
tuning the seam location for improved results in the final color-correction. For gradient-

domain blending, smooth, low-gradient areas provide the best results, therefore the user

placed the seams in the smooth wall locations, Figure 4.22 (c). This editing session required

just 2 minutes of interaction. Finally, in Figure 4.23 we show the color-corrected edits of the

originally optimal, but non-visually pleasing, seams of Figure 1.7 for the two datasets: Canoe

and Lake Path. Both interactions required only a few seconds of user input. Figure 4.24

is a Lake vista with multiple dynamic objects moving in the scene during acquisition. In
all, there are six independent areas in the panorama where a canoe, or groups of canoes,

change positions in overlap areas. Figure 4.24 shows two examples of alternative edits. A

user editing with our technique would have the choice of 64 valid seam combinations of

canoes. In Figure 4.25, we show a user iterating through valid splitting options of a five

valence branching point of the Fall-5way dataset. In this way, we allow users the freedom to

add and remove seams as they see fit. Finally, the images Crosswalk and Apollo-Aldrin in

Figure 1.9 were created and edited in our system to show how panoramas can have multiple

valid seam configurations.

4.8 Limitations and Future Work
Our technique is versatile and can robustly handle a multitude of panorama configura­

tions. However, there is currently a limitation on the configurations which we can handle.
The adjacency mesh data structure in its current form relies on the fact that the intersection

of pairwise overlaps yields an area of exactly one connected component (which is needed

61

Figure 4.21: A panorama taken by Neil Armstrong during the Apollo 11 moon landing
(Apollo-Armstrong: 6,913 x 1,014, eleven images). (a) Registration artifacts exist on the
horizon. (b) Our system can be used to hide these artifacts. (c) The final color-corrected
image. Panorama courtesy of NASA.

Figure 4.22: In this example (Graffiti: 10,899 x 3,355, ten images), (a) the user fixed a few
recoverable registration artifacts and tuned the seam location for improved gradient-domain
processing, yielding a colorful color-corrected graffiti. (b) Our initial automatic solution
(energy function based on pixel gradients). (c) The user edited panorama. The editing
session took 2 minutes.

62

Figure 4.23: The color-corrected, user edited examples from Figure 1.7. The artifacts
caused by the optimal seams can be repaired by a user. Images courtesy of City Escapes
Nature Photography.

Figure 4.24: A lake vista panorama (Lake: 7,626 x 1,231, 22 images) with canoes which
move during acquisition. In all there are six independent areas of movement, therefore
there are 64 possible seam configurations of different canoe positions. Here we illustrate
two of these configurations with color-corrected versions of the full panorama (a and c) and
a zoomed in portion on each panorama (b and d) showing the differing canoe positions.
Panorama courtesy of City Escapes Nature Photography.

Figure 4.25: Splitting a five valence branching point based on gradient energy of the
Fall-5way dataset (5211 x 5177, 5 images): as the user splits the pentagon, the resulting
seams mask/unmask the dynamic elements. Note that each branching point that has a
valence higher than 3 can be further subdivided.

63

to guarantee the manifold structure of the mesh). For example, less than one connected

component would arise in a situation where one overlap is completely incased inside another

and more than one can be caused by an overlap’s area passing through the middle of another
overlap. Both of these cases break the pairwise seam network assumption. In addition, an

image whose boundary is completely enclosed by another image’s boundary (100% overlap)

is currently considered invalid. These are pathological cases that we have yet to encounter

in practice. Overall, the authors feel that these limitations are only temporary and that

the data-structures and methods outlined in this work are general enough to support these

cases as a future extension.

The serial and parallel out-of-core implementations discussed above show good scale

seam processing to images gigapixels in size. The schemes show good scaling for our test
datasets even though there is some redundancy in the file I/O. Each image is loaded for

ever multioverlap which it is a member. In other words, an image is loaded (reloaded) an

equivalent number of times based on the valency of its adjacency mesh node. As future

work, my collaborators and I wish to explore caching strategies for images and overlaps, as

well as how these strategies interplay with different face traversal order.

CHAPTER 5

INTERACTIVE GRADIENT DOMAIN
EDITING AT SCALE

This chapter introduces the Progressive Poisson technique which brings the color-correction

phase of panorama creation pipeline into an interactive environment. This technique

provides gradient domain processing interactively which is the most sophisticated and

computationally expensive correction method. This operation is an inherently global and
therefore, before this work, there were no known techniques on applying it to massive images

interactively. Section 5.2 outlines the interactive technique and a full resolution out-of-core

Progressive Poisson solver. Section 5.3 extends the full solver to a parallel distributed

environment and Section 5.4 shows how it can be redesigned as a cloud based resource.

5.1 Gradient Domain Image Processing
Gradient domain image processing encompasses a family of techniques that manipulate

an image based on the value of a gradient field rather than operating directly on the pixel

values. Seamless cloning, panorama stitching, and high dynamic range tone mapping are all

techniques that belong to this class. Given a gradient field G (x,y), defined over a domain

Q C K2, we seek to find an image P (x,y) such that its gradient V P fits G(x,y).
In order to minimize ||VP — G || in a least squares sense, one has to solve the following

optimization problem:

m i n £ ||VP — G||2 (5.1)

It is well known that minimizing equation (5.1) is equivalent to solving the Poisson equation

A P = div G (x,y) where A denotes the Laplace operator A P = + dyr and div G (x,y)
denotes the divergence of G .

To adapt the equations shown above to discrete images, we apply a standard finite
difference approach which approximates the Laplacian as:

A P (x,y) = P (x + 1, y) + P (x — 1,y) +

65

P (x , y + 1) + P (x , y — 1) - 4P(x ,y) (5.2)

and the divergence of G(x,y) = (Gx (x , y) ,G y (x,y)) as:

div G(x,y) = Gx(x,y) — Gx(x — 1,y) +

Gy (x, y) — Gy (x,y — 1).

The differential form A P = div G(x, y) can therefore be discretized into the following

sparse linear system:
Lp = b. (5.3)

Each row of the matrix L stores the weights of the standard five point Laplacian stencil

given by (5.2), p is the vector of pixel colors, and b encodes the guiding gradient field, as

well as the boundary constraints. The choice of guiding gradient field G (x, y) and boundary

conditions for the system determines which image processing technique is applied. In the

case of seamless cloning, it is necessary to use Dirichlet boundary conditions, set to be the

color values of the background image at the boundaries, and the guiding gradient to be the
gradient of the source image (see [133] for a detailed description). For tone mapping and
image stitching, Neumann boundary condition are used. The guiding gradient field for image

stitching is the composited gradient field of the original images. The unwanted gradient

between images is commonly set to zero or averaged across the stitch. The guiding gradient

for tone mapping is adjusted from the original pixel values to compress the high dynamic

range (HDR) (see [55] for more detail). Methods such as gradient domain painting [114]

allow the guiding gradient to be user defined.

5.2 Progressive Poisson Solver
This section discusses a progressive framework for solving very large Poisson systems

in massive image editing. This technique allows for a simple implementation, yet is highly

scalable, and performs well even with limited storage and processing resources.

5.2.1 Progressive Framework
For an image P of n x n pixels, the Laplace system (5.3) has n2 independent variables,

one per pixel. Computing the entire solution is therefore expensive both in terms of space
and time. For large images, the space requirements easily exceed the main memory available
on most computers. Moreover, the long computation times make any interactive application

unfeasible.

66

Acceleration methods try to address either or both of these issues. The recent adaptive
formulation by Agarwala [2] has been particularly insightful. By exploiting the smoothness

of the solution, this method was the first to reduce both the cost of the computation
and its memory requirements. The approach by Kazhdan and Hoppe [89] demonstrates
how a streaming approach can achieve high performance by optimizing the memory access

patterns.

We extend these acceleration techniques and show how to achieve high quality local

solutions, without the need for solving the entire system. Moreover, we show that coarse

approximations are of acceptable visual quality without the cost of a typical coarsening stage

used in the V-cycle. These new features, coupled with a simple multiresolution framework,
enable a data-driven interactive environment that exploits the fact that interactive editing

sessions are always limited by screen resolution. At any given time, a user only sees either
a low resolution view of the entire image or a high resolution view of a small area. We take

advantage of this practical restriction and solve the Poisson equation only for the visible

pixels. This provides performance advantages for interactive sessions, as well as tight control

over the memory usage. For example, even the simple step of computing the gradient of the

full resolution image can be problematic due to its significant processing time and storage

requirement. In our approach, we avoid this problem by estimating gradients on-the-fly

using only the available pixels.
Overall, our interactive system is based on a simple two-tier approach:

• A global progressive solver provides a near instant coarse approximation of the full

solution. This approximation can be refined up to a desired solution by a lightweight
process, often running in the background and possibly out-of-core. Any time the user

changes input parameters, this process is restarted.

• A local progressive solver provides a quick solution for the visible pixels. This process

is driven by the interactive viewer and uses as a coarse approximation the best solution
available from the global solver.

These components can be coupled with different multiresolution hierarchies as discussed in

the next section.
5.2.1.1 Initial solution. At launch, the system computes a coarse image for the

initial view. A fast two-dimensional direct method using cosine and Fast Fourier transforms

by Agrawal [7, 8] is used for this initial solve for techniques that require Neumann boundaries

67

(stitching, HDR compression). For methods that require Dirichlet boundaries (seamless

cloning) we using an iterative method such as SOR. To provide the user with a meaningful

preview, we use an initial coarse resolution of one to two megapixel depending on the
physical display. We have found, in practice, that the Fast Fourier solver usually gives us

this approximation in under 2 seconds. This initial solution is at the core of the progressive
refinement defined in the next paragraph.

5.2.1.2 Progressive refinement. The goal of progressive refinement is to increase
the resolution of our solution either locally or globally. This requires injecting color trans­

port information from coarser to finer resolutions. In doing so, we exploit the fact that

the solution, away from the seams, tends to be smooth [2] and up-sampling the coarse

solution gives high quality results in large areas of the image. To improve the solution and
resolve the problems at the seams, we run an iterative method, estimating new gradients

from the original pixel data of the finer resolution and using the up-sampled values as
the initial solution estimate. The finer resolution gradient field allows the iterative solver

to reconstruct the detailed features of the original image. For the iterative method we
allow the use of either conjugate gradient (for faster convergence) or SOR (for minimal

memory overhead). The iterative solver is assumed to have converged when the L2 norm

of the residual between iterations is less than 1.0 x 10-3 . In practice there is no perceptible

difference between iterations after this condition is met.
Figure 5.1 shows the refinement process where we assume for simplicity that each

resolution doubles each dimension separately and our data is a subsampled hierarchy. In

this case, computing each finer resolution is equivalent to adding new rows (or columns)

to the coarse resolution. Therefore, we know that each new pixel added has two neighbors
from the coarse solution. We can take the average difference from these two neighbors and

apply it to the original Rgigabyte value of the pixel from the new resolution (see Figure 5.1

(a)). Since the image is subsampled, the average difference and application to the new pixel

is trivial.
In a tiled hierarchy one would need to double both dimensions at the same time, requiring

a simple adjustment to the interpolation. Each new resolution is treated as new data and

the offset is based on the solution from the previous resolution and the transform between

levels.
5.2.1.3 Local preview. Comegabyteining the coarse, global solve with a progres­

sively refined local preview is all that is necessary for our interactive system. For data

68

Pr = Ps — Pn
[~[Ps = solved pixel

□ Pn = new pixel from
original image

n x n

2n x n

2n x 2n

Pn(x, y) + Pr (x—1’y)+ Pr(x+1’y)

Pn(x, y) + Pr (x’y—1)+ Pr(x’y—1)

4n x 4n

(a)

k X k

2k x 2k

Global Solver

2k k

2k 2k
Local Adaptive

Solver

(b)
Figure 5.1: Our adaptive refinement scheme using simple difference averaging. (a) Global
progressive up-sampling of the edited image computed by a background process. (b) View-
dependent local refinement based on a 2k x 2k window. In both cases we speedup the SOR
solver with an initial solution obtained by smooth refinement of the solution.

requests at resolutions equal to or less than our coarse solution, we simply display the
available data. As the user zooms into an area, the image is progressively refined in a local

region. Since the resolution increase is directly coupled with the decrease in the extent of

the local view, the numegabyteer of pixels that must be processed remains constant (see
Figure 5.1 (b)). This results in a logarithmic run-time complexity and constant storage

requirement, which allows our system to gracefully scale to images orders of magnitude

larger than previously possible.

5.2.1.4 Progressive full solution. The progressive refinement can be applied glob­
ally to compute a full solution. Since the method requires a very small overhead, it can

easily be run as background process during the interactive preview. When a new resolution

has been solved, the interactive preview uses the solution as a new coarse approximation,

69

thereby saving computation during the local adaptive phase. Like other in-core methods,

this progressive global solver is limited by available system memory. To address this issue,

the global solver has the ability to switch modes to a moving-window out-of-core progressive

solver.

5.2.1.5 O u t-o f-co re solver. The out-of-core solver maintains strict control over

memory usage by sweeping the data with a sliding window. The window traverses the

finest desired resolution, which can be several levels in the hierarchy from the current

available solution. If the jum p in resolution is too high, the process can be repeated several

times. W ithin each window, the coarse solution is up-sampled and the new resolution

image is solved using the gradients from the desired resolution. Since the window lives at

the desired resolution, we never need to expand memory beyond the size of the window.

Furthermore, windows are arranged such tha t they overlap with the previously solved data

in both dimensions to produce a smooth solution. The overlap causes the solver to load

and compute some of the data multiple times. This overlap has an inherent overhead when

compared to an idealized in-core solver. For instance, given a 1/x overlap, the four corners,

each 1/x x 1/x in size, are executed four times. The four strips on the edge of the window,

not including the corners, each 1/x x (1 — 2/x) in size are executed two times. All other

pixels, size (1 — 2/x) x (1 — 2/x), are executed once. Therefore, the overhead computation

for this 1/x overlap is given by: 4/x(1 + 1/x). Moreover, the I/O overhead can be reduced

to 1/x, since we can retain pixel data from the previous window in the primary traversal

direction. In principle, a larger overlap between windows results in higher quality solutions,

though in practice we have found tha t for a 1024 x 1024 window a 1/32 overlap is sufficient

for good results. This overlap requires only a 12.8% compute overhead and a 3.1% I/O

overhead. A larger window can be used to reduce the percentage overlap while achieving

the same quality results. For instance, by doubling the window size in both dimensions, a

2048 x 2048 window can be computed with a 1/64 overlay, only incurring a 6.3% compute

overhead and a 1.5% I/O overhead. Compared to the exact analytical solution, our method

produces even higher quality results than the best known method [89] for equivalent run

times.

5.2.2 D a ta A ccess

Our progressive solver can operate well on multiple hierarchical schemes. Tiled hierar­

chies are often used to produce smoother, antialiased images, though high contrast areas

70

in the original image may be lost in the smoothing. As Figure 5.2 (b) shows, the tiled

image is visually pleasing, but details such as the cars on the highway are lost. This visual

smoothness can also come at the cost of significant preprocessing, reduced flexibility when

dealing with missing data, and increased I/O when traversing the data. The costs can be

especially significant for massive data if one has to process it with very limited resources.

The least costly image hierarchy can be computed by subsampling. Subsampling is simple

and lightweight, but is prone to high frequency aliasing. It does, though, retain higher

contrast at the coarse resolution. Figure 5.2 (a) shows how the subsampled hierarchy

has aliasing artifacts, but also retains enough contrast to see the cars on the highway.

This contrast may be beneficial for some applications, such as an analyst studying satellite

imagery.

To show the flexibility of our interactive system, we support both a filtered tiled hierarchy

and a subsampled hierarchy (see Figure 5.3). For a tiled scheme, we compute the image

F ig u re 5.2: Subsampled and tiled hierarchies. (a) A subsampled hierarchy. As expected,
subsampling has the tendency to produce high-frequency aliasing. Though details such as
the cars on the highway and in the parking lots are preserved. (b) A tiled hierarchy. This
produces a more visually pleasing image at all resolutions but at the cost of potentially
losing information. The cars are now completely smoothed away. D ata courtesy of the U.S.
Geological Survey.

71

F ig u re 5.3: Our progressive framework using subsampled and tiled hierarchies. (a) A
composite satellite image of Atlanta, over 100 gigapixels at full resolution, overlaid on Blue
Marble background subsampled; (b) a tiled version of the same satellite image; (c) the
seamless cloning solution using subsampling; (d) the same solution computed using a tiled
hierarchy; (e) the solution offset computed using subsampling; (f) the solution computed
using tiles; (g) a full resolution portion computed using subsampling; (h) the same portion
using tiling. Note tha t even though there is a slight difference in the computed solution,
both the tiled and the subsampled hierarchies produce a seamless stitch with our framework.
D ata courtesy of the U.S. Geological Survey and NASA’s Earth Observatory.

hierarchy using a Gaussian kernel to produce a smooth, antialiased image (Figure 5.3

right column). W ith a minor variation to the underlying I/O layer, our system also

supports a faster, subsampled Hierarchical Z-order as proposed by Pascucci and Frank

[2002] (Figure 5.3 left column). For an overview of the HZ data format, see Section 3.1.

To achieve the level of scalability necessary in the current system, we further simplify the

HZ data access scheme. We use a lightweight recursive algorithm that avoids repeated

index computations, provides progressive and adaptive access, guarantees cache coherency

and minimizes the numegabyteer of I/O operations without using any explicit caching

mechanisms. In particular, computing the HZ index with this new algorithm attains a thirty

times speedup compared to the previous work. For example, to compute the indices for a 0.8

gigapixel image the new algorithm requires 4.7 seconds where the previous method would

take 144.1 seconds. Moreover, since the traversal follows the HZ storage order exactly for

any query window, we guarantee tha t each file is accessed only once without need of holding

any block of data in cache. For details on our new recursive algorithm see Section 3.2. This

72

approach makes the system intrinsically cache friendly for any realistic caching architecture

and, therefore, very flexible in exploiting modern hardware. Conversion into HZ-order

requires no additional storage. On the other hand, for tiled hierarchies a 1/3 data increase

is common. Due to our new data access scheme, conversion to HZ-order is straightforward

and inexpensive. For our test data, we have found that there is only a 27% overhead due to

the conversion compared to just copying the raw data. In essence, the conversion is strictly

a reordering of the data and requires no operations on the pixel data. This conversion will

outperform even the most simple tiled hierarchies which require some manipulation of the

pixel data.

Each resolution in the HZ-hierarchy is in plain Z-order, which allows for fast, cache

coherent access of subregions of the image. HZ is not tied to a specific data traversal

order, such as the row-major imposed by traditional file formats, as previously observed

in [89]. In fact, HZ maintains a high degree of cache coherency even during adaptive local

traversals. The locality of our data access provides graceful performance degradation even

in extreme conditions. In particular, we demonstrate accessing a data set, of roughly a

terabyte in size, by simply mounting a remote file system over an encrypted VPN channel

via a wireless connection. Even in normal running conditions, we have found tha t the I/O

overhead caused by using a tiled hierarchy increased the running time by 39%-67%. These

numegabyteers reflect the theoretical bound of 1/3 overhead, made worse by the inability

to constrain real queries to perfect alignment with the boundaries of a quadtree. The

effect of this overhead is detrimental to the scalability of the system under more difficult

running conditions such as the one mentioned above. Moreover, HZ easily handles partially

converted data, as we show in one portion of the accompanying video for the editing of the

Salt Lake City panorama. In a tiled scheme, the entire hierarchy may need to be recomputed

as new data is added.

5.2 .3 In teractive P rev iew and O ut-of-C ore Solver R esu lts

We demonstrate the scalability and interactivity of our approach on several applications,

using a numegabyteer of images ranging from megapixels to hundreds of gigapixels in size.

To further illustrate the responsiveness of our system, the accompanying video shows screen

captures of live demonstrations. To highlight particular details and validate the approach,

the figures in this section show previews and close-ups of our interactive system, alongside

the results of our full out-of-core progressive solver. We also provide running times of our

73

full out-of-core solver compared with the best current method, streaming multigrid [89],

which we have verified to use the same gradient information. All timings and demos were

performed on a 64-bit 2.67 GHz Intel Quad Core desktop, with 8 gigabyte of memory. All

streaming multigrid timings were computed from code provided by the authors and include

the timing for the gradient preprocess along with the timing to produce a solution.

Our simple framework provides the illusion of a fully solved Poisson system at interactive

frame rates and under continuous parameter changes with only a simple GL texture for

display and no special hardware acceleration. Therefore, our code is platform independent.

Our simple progressive out-of-core solver produces robust solutions with run times that

rival [89]. Unlike the previous method, our out-of-core solver does not use hardware

acceleration and did not undergo high code optimization to achieve the following runtimes.

The solver is also sequential and uses no threading to accelerate the computation. If further

optimization of the run-times is desired, there is nothing in our system to prevent the

addition of these acceleration techniques.

Different from other out-of-core methods, we do not rely on large external memory

data structures and we do not need to pre-compute gradients for the entire image. For

the Salt Lake City panorama, for example, the streaming multigrid method [89] creates

75.2 gigabyte of auxiliary information for a 7.9 gigabyte input image. While disk space

is generally assumed to be plentiful, such an explosion in disk space is unsustainable for

images hundreds of gigapixel in size. The collection of satellite imagery we use in our video

is more than one terabyte in size and would, therefore, require more than 9.5 terabytes of

temporary storage.

The Edinburgh example is 25 images has resolution 16,950 x 2,956 (50 megapixel).

At launch, our system performs a seamless stitch Poisson solve of a global 0.7 megapixel

image in 1.26 seconds using our direct analytical solve, see Figure 5.4 (a). From this

point on, the system can pan and zoom interactively as if the full-solution were already

available. Our local adaptive refinement gives a solution that is visually equivalent to a

solution to the entire system, see Figure 5.4 (c, d, and e). In the accompanying video,

we demonstrate interactive editing and solving of the Poisson system, after the repeated

user-selected replacement of pixels of a particular color. We also perform a seamless clone of

a 2000 x 1600 airplane on Edinburgh’s cloudy sky. The plane is animated along a linear path

across the panorama. As evident in the video, our framework shows the entire sequence in

real-time.We also demonstrate similar interactive editing with the Redrock panorama (data

74

F ig u re 5.4: The Edinburgh Panorama 16, 950 x 2, 956 pixels. (a) Our coarse solution
computed at a resolution of 0.7 megapixels; (b) the same panorama solved at full resolution
with our progressive global solver scaled to approximately 12 megapixel for publication; (c)
a detail view of a particularly bad seam from the original panorama; (d) the problem area
previewed using our adaptive local refinement; (e) the problem area solved at full resolution
using our global solver in 3.48 minutes.

courtesy of Aseem Agarwala): nine images, 19, 588 x 4,457; 87 megapixels. Given this

initial coarse solution, our method can produce a full solution of Edinburg, see Figure 5.4

(b), in 3.48 minutes. The streaming multigrid method requires 3.52 minutes. Figure 5.5 (a)

shows the convergence and error for our method and streaming multigrid when compared

to the ideal direct solution.

The Salt Lake City example is 611 images with resolution of 126,826 x 29,633 (3.27

gigapixel). A significantly larger example is provided by a panorama captured with a

simple camera mounted on a GigaPan robot [63]. To maximize individual image quality

the pictures were taken with automatic exposure times, which inherently increases the

color differences between images tha t need to be corrected by the Poisson solver. An initial

coarse preview of 0.87 megapixel is computed by our direct analytical solver in 2.07 seconds.

Figure 5.6 shows the original set of images (a), the panorama tha t our systems stitches in

real time (b), the global solution provided by our out-of-core solver (c), and the difference

image between the interactive preview and the final solution at the coarse resolution (d).

There are slight deviations at some of the more challenging seams, but overall there is

negligible visible difference. Our local adaptive preview mimics well the global solution, as

shown in Figure 5.7. To test the accuracy of the methods, we have run a full analytical

Poisson solver on a 485 megapixel subset of the panorama on a HPC-computer. Figures 5.8

(a) and (b) show how close our out-of-core solution comes to the exact analytical solution.

Figure 5.8 (c) shows tha t the multigrid method has yet to converge to an acceptable solution

given an equivalent amount of running time. All solutions were computed using the map

(a)

(b)

OOôr

ooo
CM

Streaming Multigrid - SLC Portion

O ■

Time (s) RMS
Error

41.6219 41.6237 41.6257

Iterations

g Progressive Out-of-core - SLC Portion

00

cn

oo00

ooo

Time (s) RMS
Error

H5.85382 ■

■ %
M

3.11283 3.12682
Iterations

■ to

■

15 25 35 45 55 100 200 300

Figure 5.5: The RMS error when compared to the ideal analytical solution as we increase iterations for both methods. Streaming
multigrid has better convergence and less error for the Edinburgh example (a), though our method remains stable for the larger
Salt Lake City panorama (b). Notice tha t every plot has been scaled independently to best illustrate the convergency trends of each
method.

76

F ig u re 5.6: Panorama of Salt Lake City of 3.27 gigapixel, obtained by stitching 611
images. (a) Mosaic of the original images. (b) Our solution computed at 0.9 megapixel
resolution. (c) The full solution provided by our global solver. (d) The difference image
between our preview and the full solution at the preview resolution. Both (a) and (c) have
been scaled for publication to approximately 12.9 megapixels.

F ig u re 5.7: A comparison of our adaptive local preview on a portion of the Salt Lake
City panorama one half of the full resolution; (a) the original mosaic, (b) our adaptive
preview, (c) the full solution from our global solver, and (d) the difference image between
the adaptive preview and the full solution

77

F ig u re 5.8: A comparison of our system with the best known out of core method [Kazhdan
and Hoppe 2008] and a full analytical solution on a portion of the Salt Lake City panorama,
21201 x 24001 pixels, 485 megapixel (a) the full analytical solution; (b) our solution
computed in 28.1 minutes; (c) solution from [Kazhdan and Hoppe 2008] computed in
24.9 minutes; (d) the analytical solution where the solver is allowed to harmonically fill
the boundary; (e) our solution with harmonic fill; (f) solution from [Kazhdan and Hoppe
2008] with harmonic fill; (g) the map image used by all solvers to construct the panorama
where the red color indicates the image tha t provides the pixel color and white denotes the
panorama boundary.

increases the memory usage of the method.

Sierpinki Sponge example has resolution 128k x 128k (16 gigapixel). We have tested

the tone mapping application on a synthetic high dynamic range image generated with

MegaPOV [118]. In this image we use a partially refined model of a Sierpinki Sponge

to create high variations in level-of-detail. Such details can be completely hidden in the

dark areas under projected shadows. We follow the approach introduced by Fattal [55] to

reconstruct the information hidden in the dark regions. To validate the approach, we ran

a typical HDR test image, the Belgium House, progressively refined from a 16 x 12 coarse

solution. Even with such a coarse initial solution, we achieve results very close to the exact

solution (see Figure 5.9 (c) and (d)). Figure 5.9 shows the original sponge model (a) and

78

y J K I
r ! ? ■ I . 1 I I

^ I ■

F ig u re 5.9: Application of our method to HDR image compression: (a) Original synthetic
HDR image of an adaptively refined Sierpinki sponge generated with Povray. (b) Tone
mapped image with recovery of detailed information previously hidden in the shadows.
(c) Belgium House image solved using our coarse-to-fine method with an initial 16 x 12
coarse solution (a = 0.01, = 0.7, compression coefficient=0.5). (d) The direct analytical
solution. Image courtesy of Raanan Fattal.

the processed version (b), where all the details under the shadows have been recovered.

The satellite example contains a Blue Marble background image tha t is 3.7 gigapixel and

imagery of Atlanta and other cities which are well over 100 gigapixel. To demonstrate the

scalability of our system, we have run the seamless cloning algorithm for entire cities over a

variety of realistic backgrounds from NASA’s Blue Marble Collection [125] (see Figure 5.10).

We show how a user can take advantage of these capabilities to achieve artistic effects and

create virtual worlds from real data. We also create a dynamic environment by animating

79

F ig u re 5.10: Satellite imagery collection with a background given by a 3.7 gigapixel
image from NASA’s Blue Marble Collection. The Progressive Poisson solver allows the
application of the seamless cloning method to two copies of the city of Atlanta, each of
116 gigapixels. An artist can interactively place a copy of Atlanta under shallow water and
recreate the lost city of Atlantis. D ata courtesy of the U.S. Geological Survey and NASA’s
Earth Observatory.

the background world map over 12 months and concurrently use the Poisson solver to show

how the appearance of a city would change across the seasons.

5.3 Parallel Distributed Gradient Domain Editing
In the following, we provide details of our parallel Progressive Poisson algorithm and

MPI implementation. This new algorithm reduces the time to compute a full resolution

gradient domain solution from hours in the case of a single, out-of-core solution to minutes

when run on a distributed cluster.

80

5.3.1 Parallel Solver

Commonly, large images are stored as tiles, which gives one an underlying structure to di­

vide an image amongst the nodes/processors for a distributed solver. Tile-based distributed

solvers have been shown to work well when only local trends are present. Seamless stitching

commonly contains large scale trends where a naive tile-based approach will provide poor

results. The addition of the Progressive Poisson m ethod’s coarse upsampling, allows for a

simple, tile-based parallel solver tha t can account for large trends. Our algorithm works

in two phases: The first phase performs the progressive upsample of a precomputed coarse

solution for each tile. The second phase solves for a smooth image on tiles tha t significantly

overlap the solution tiles from the first phase. In this way, the second phase smooths any

seams not captured or even introduced by the first phase, producing a complete, seamless

image.

5.3.1.1 D a ta d is tr ib u tio n as tiles . Although a tile-based approach leverages a

common image storage format, it is not typically how methods are designed to handle

seamless stitching of large panoramas. For instance, methods like streaming multigrid [89,

90] often assume precomputed gradients for the whole image. Our system is designed to

take tiles directly as input and therefore must be able to handle the gradient computation

on-the-fly. An important and often undocumented component of panorama stitching is the

map or label image. Given an ordered set of images which compose the panorama, the

map image gives the correspondence of a pixel location in the overall panorama to the

smaller image tha t supplies the color. This map file is necessary to determine the difference

between actual gradients and those due to seams. This map also defines the boundaries of

the panorama, which are commonly irregular. This file along with each individual image

tha t composes the mosaic are needed for a traditional, out-of-core scheme [89, 149] for

gradient computation. If the gradient across the seams is assumed to be zero, which is a

common technique we adopt for this solver, each tile can be composited in advance and the

map file is only needed to denote image seams or boundary. As noted above, this composited

tile is often already provided if used in a traditional large image system. The map file can

then be encoded as an extra channel of color information, typically the alpha channel. For

mosaics of many hundreds of images, such as the examples provided in this dissertation,

we cannot encode an index for each image in a byte of data. Though in practice each tile

has very little probability of having more than 256 individual images, each image is given

a unique 0-255 number on a per tile basis.

81

We have chosen an overlap of 50% in both dimensions for the second phase windowing

scheme of the parallel solver for simplicity in implementation. Each window is composed

of a 2 x 2 collections of tiles. To avoid undefined windows in the second phase, we add

a symbolic padding of one row/column of tiles to all sides of the image which the solver

regards as pure boundary. Figure 5.11 gives an example of a tile layout. The overlapping

window size used for our testing was 1024 x 1024 pixels (assuming 512 x 512 tiles), which

we found to be a good compromise between a low memory footprint and image coverage.

Each node receives a partition of windows equivalent to a contiguous subimage with no

overlap necessary between nodes during the same phase. D ata can be distributed evenly

across all nodes in the case of a homogeneous distributed system or dependent on weights

due to available resources in the case of a heterogeneous hardware. We provide a test case

for a heterogeneous system in Section 5.

5.3.1.2 C oarse so lu tion . As a first step, the first phase of our solver will upsample

via bilinear interpolation a 1-2 megapixel coarse solution. Much like the Progressive Poisson

method [149], each node computes a solution in just a few seconds using a direct FFT solver

on a coarsely sampled version of our large image. In tiled hierarchies, this coarse image is

typically already present and can be encoded with the map information in much the same

way as the tiles.

5.3.1.3 F irs t phase: p rog ressive so lu tion . This phase computes a Progressive

Poisson solution for each window which are composed of tiles read off of a distributed

(a)
*

Image

2 2 3 3 4 4

2 2 3 3 4 4

5 5 6 6 7 7 8 8

5 5 6 6 7 7 8 8

9 9 10 10 11 11 12 12

9 9 10 10 11 11 12 12

*
6 6 7 7 8 8

6 6 7 7 8 8

10 10 11 11 12 12

10 10 11 11 12 12

(b)

F ig u re 5.11: Our tile-based approach: (a) An input image is divided into equally spaced
tiles. In the first phase, after a symbolic padding by a column and row in all dimensions,
a solver is run on a window denoted by a collection of four labeled tiles. D ata are sent
and collected for the next phase to create new data windows with a 50% overlap. (b) An
example tile layout for the Fall Panorama example.

82

file system. To progressively solve a window, an image hierarchy is necessary. For our

implementation a standard power-of-two image pyramid was used. As a first step, the

solver upsamples the solution to a finer resolution in the image pyramid using a coarse

solution image and the original pixel values. An iterative solver is then run for several

iterations to smooth this upsample using the original pixel gradients as the guiding field.

This process is repeating down the image hierarchy until the full resolution is reached. The

solver is considered to have converged at this resolution when the L2 norm falls below 10-3

which is based on the range of byte color data. From our testing, we have found tha t SOR

gives both good running times and low memory consumption and therefore is our default

solver. As noted above, this window is logically composed of four tiles, which are computed

and saved in memory for the next phase as floating point color data. This leads to 12

bytes/pixel (three floating point color data) to transfer between phases. Given the data

distribution, one node may process many windows. If this is the case, only the tiles which

border a node’s domain are prepared to be transferred to another node, thereby keeping

data communication between phases to a relatively small zone.

5.3.1.4 Second phase: overlap so lu tion . The second phase gathers the four tiles

(both solution and original) that make up the overlapping window. After the data are

gathered, the gradients are computed from the original pixel values and an iterative solver

(SOR) is run after being initialized with the solutions from the first phase. The iterative

solver is constrained to only work on interior pixels to prevent this phase from introducing

new seams at the window boundary. Technically, there may be errors at the pixels around

the midpoints of the boundary edges of these windows, though we have not encountered

this in practice. Again, this solver is run until convergence given by the L2 norm. Note that

even though the tile gradients are computed in the first phase, we have chosen to recompute

them on the fly in the second phase. Passing the gradients would cost at least an additional

12 bytes/pixel overhead. As nodes increase, data transfer and communication becomes a

significant bottleneck in most distributed schemes therefore, we chose to pay the cost of

increased computation and reading the less expensive byte image data from the distributed

file system instead of the costly transfer.

5.3.1.5 P a ra lle l im p le m e n ta tio n de ta ils . Each node has one master thread which

coordinates all processing and communication. The core component of this thread is a

priority queue of windows and tiles to be processed. At launch, this queue is initialized

by a separate seeding thread with the initial domain of windows to be solved in the first

83

phase. Because of the separation of the main thread from the seeding of the queue, the

main thread can begin processing windows immediately. Each window is given a first phase

id, which is the window’s row and column location in the subimage to be processed by a

node. Communication between nodes need only be one-way in our system, therefore we

have chosen for communication to be “upstream” between nodes, i.e., the nodes operating

on a subimage with horizontal or vertical location greater than the current node. In order

to avoid starvation in the second phase, the queue is loaded with windows in reverse order

in terms of the tile id. Figure 5.12 gives an example of the traversal and communication.

All initially seeded windows are given equal low priority in the queue. In essence the initial

queue operates much like a first-in-first-out (FIFO) queue. As windows are removed from the

queue, the main thread launches a progressive solver thread which is handed off to an intra­

node dynamic scheduler. Our implementation uses a HyperFlow [170] scheduler to execute

the solver on all available cores. HyperFlow has been shown to efficiently schedule execution

F ig u re 5.12: Windows are distributed as evenly as possible across all nodes in the
distributed system. Windows assigned to a specific node are denoted by color above. Given
the overlap scheme, data transfer only needs to occur one-way, denoted by the red arrows
and boundary above. To avoid starvation between phases and to hide as much data transfer
as possible, windows are processed in inverse order (white arrows) and the tiles needed by
other nodes are transferred immediately.

84

of workflows on multicore systems and therefore is the perfect solution for our intra-node

scheduling. In all there are two distinct sequential stages in each phase: (1) loading of

the tile data and the computation of the image gradient and (2) the progressive solution.

This flow information allows HyperFlow to exploit data, task, and pipeline parallelism to

maximize throughput.

After a solution is computed, the progressive solver thread partitions the window into

the tiles tha t comprise it. This allows the second phase to recombine the tiles needed for

the 50% overlap window. All four tiles are loaded into the queue with high priority. If

the main thread removes a tile (as opposed to a window) from the queue and the tile is

needed by another node, the main thread immediately sends the data asynchronously to

the proper node. Otherwise, if the node needs this tile for phase two, the second phase id

of the window which needs the tile is computed and hashed with a two-dimensional hash

function the same size as the window domain for the second phase. If all four tiles for a

given second phase window have been hashed, the main thread now knows a second phase

window is ready and immediately passes the window to a solver thread for processing. If

the main thread receives a solved tile from another node, this is also immediately hashed.

5.3.2 R esu lts

To demonstrate the scalability and adaptability of the approach, we have tested our

implementation using two panorama datasets, gigapixels in size. To illustrate the portability

of the system, we have also shown its running times and scalability on two distributed

systems. Our main system, the NVIDIA Center of Excellence cluster in the Scientific

Computing and Imaging Institute at the University of Utah, consists of 60 active nodes

with 2.67GHz Xeon X5550 Processors (8 cores), 24GB of RAM per node, and 750GB local

scratch disk space. The second system, the Longhorn visualization cluster in the Texas

Advanced Computer Center at the University of Texas at Austin, consists of 256 nodes (of

which 128 were available for our tests) with 2.5GHz Nehalem Processors (8 cores), 48GB

of RAM per node, and 73GB local scratch disk space. Weak and strong scalability tests

were performed on both systems. Given the proven scalability of Hyperflow on one node,

we have tested the scalability of the MPI implementation from 2-60 and 2-128 nodes for the

NVIDIA cluster and Longhorn cluster, respectively. Timings are taken as best over several

runs to discount external effects to the cluster from shared resources such as the distributed

file system. The datasets used for testing were:

85

• Fall Panorama. 126,826x29, 633, 3.27 gigapixel. When tiled, this dataset is composed

of 124 x 29 10242 sized windows. See Figure 5.13 for image results from a NVIDIA

cluster 480 core test run.

• W inter Panorama. 92, 570 x 28, 600, 2.65 gigapixel. When tiled, this dataset is

composed of 91 x 28 10242 sized windows. See Figure 5.14 for image results from

a NVIDIA cluster 480 core test run.

5.3.2.1 N V ID IA c lu ste r. To show the MPI scalability of our framework and im­

plementation, strong and weak scaling tests were performed for 2-60 nodes. As shown

in Tables 5.1 and 5.2, both datasets scale close to ideal and with high efficiency for strong

F ig u re 5.13: Fall Panorama - 126, 826 x 29, 633, 3.27 gigapixel. (a) The panorama before
seamless blending and (b) the result of the parallel Poisson solver run on 480 cores with
124 x 29 windows and computed in 5.88 minutes.

F ig u re 5.14: W inter Panorama - 92, 570 x 28, 600, 2.65 gigapixel. (a) The result of the
parallel Poisson solver run on 480 cores with 91 x 28 windows and computed in 6.02 minutes,
(b) the panorama before seamless blending, and (c) the coarse panorama solution.

86

T a b le 5.1: The strong scaling results for the Fall Panoram a run on the NVIDIA cluster
from 2-60 nodes up to a to ta l of 480 cores. Overhead (O /H) due to M PI comm unication and
I /O is also provided along with its percentage of actual running time. The Fall Panoram a,
due to its larger size begins to lose efficiency at around 32 nodes when I/O overhead begins
to dom inate. Even with this overhead, the efficiency (Eff.) remains acceptable.

Strong Scaling - Fall Panoram a - NVIDIA cluster
Nodes Cores Ideal (m) Actual (m) Eff. % O/H (m) % O/H

2 16 79.35 79.35 100.0 18.80 23.7
4 32 39.68 40.08 97.1 9.05 22.2
8 64 19.84 20.83 95.2 7.28 35.0

16 128 9.92 11.43 78.9 6.50 51.7
32 256 4.96 6.20 53.8 6.20 67.3
48 384 3.31 6.40 51.7 6.40 100.0
60 480 2.65 5.88 45.0 5.88 100.0

T a b le 5.2: The strong scaling results for the W inter Panoram a run on the NVIDIA cluster
from 2-60 nodes up to a to ta l of 480 cores. Overhead (O /H) due to M PI comm unication
and I/O is also provided along with its percentage of actual running tim e. For the
W inter Panoram a, the I /O overhead does not effect performance up to 60 nodes and the
im plem entation m aintains efficiency (Eff.) throughout all of our runs.

Strong Scaling - W inter Panoram a - NVIDIA cluster
Nodes Cores Ideal (m) Actual (m) Eff. % O/H (m) % O/H

2 16 128.87 128.87 100.0 8.63 6.7
4 32 64.43 77.68 82.9 4.70 6.1
8 64 32.22 40.63 79.3 4.28 10.5

16 128 16.11 21.17 76.1 4.17 19.7
32 256 8.05 10.88 74.0 4.08 37.5
48 384 5.37 6.98 76.9 4.10 58.7
60 480 4.30 6.02 71.4 4.00 66.5

scaling. The Fall Panoram a, due to its larger size begins to lose efficiency at around 32 nodes

when I/O overhead begins to dom inate. Even with this overhead, the efficiency remains

acceptable. For the W inter Panoram a, the I /O overhead does not effect performance up to

60 nodes and the im plem entation m aintains efficiency throughout the test. Weak scaling

tests were performed using a subimage of the Fall Panoram a dataset. See Table 5.3 for the

weak scaling results. As the num ber of cores increases so does the image resolution to be

solved. The subimage was expanded from the center of the full image and iterations of the

solver for all windows were locked at 1000 for testing to ensure no variation is due to slower

converging image areas. As the figure shows, our im plem entation shows good weak scaling

87

T a b le 5.3: Weak scaling tests run on the NVIDIA cluster for the Fall Panoram a dataset.
As the num ber of cores, increases so does the image resolution to be solved. The image was
expanded from the center of the full image. Iterations of the solver for all windows were
locked at 1000 for testing to ensure no variation is due to slower converging image areas. As
is shown, our im plem entation shows good efficiency even when running on the maximum
num ber of cores.

Weak Scaling - NVIDIA cluster
Nodes Cores Size (MP) Time (min.) Efficiency

2 16 100.66 5.55 100.00%
4 32 201.33 5.55 100.00%
8 64 402.65 5.53 100.30%

16 128 805.31 5.68 97.65%
32 256 1610.61 5.77 96.24%
60 480 3019.90 6.57 84.52%

efficiency even for 60 nodes w ith 480 cores. In all, we have produced a gradient domain

solution to a dataset which in previous work the best known m ethods [89, 149] took hours

to compute.

5.3.2.2 L ong h o rn c lu ste r. To show the portability and M PI scalability of our

framework and implem entation, strong and weak scaling tests were performed on the largest

dataset (Fall Panoram a) on a second cluster. The strong scaling tests were performed from

2-128 nodes and the weak scaling tests, lim ited by the size of the image, were performed

from 2-64 nodes. As shown in Table 5.4, our im plem entation m aintains very good efficiency

and tim ings for our strong scaling test up to the full 1024 cores available on the system.

Much like the NVIDIA cluster, weak scaling tests were performed on a portion of the Fall

T a b le 5.4: To dem onstrate the portability of our implem entation, we have run strong
scalability testing for the Fall Panoram a on the Longhorn cluster from 2-128 nodes up to a
to ta l of 1024 cores. As the numbers show, we m aintain good scalability and efficiency even
when running on all available nodes and cores.

Strong Scaling - Fall Panoram a - Longhorn
Nodes Cores Ideal(m) Actual(m) Efficiency

2 16 84.07 84.07 100%
4 32 42.03 43.18 97%
8 64 21.02 21.85 96%

16 128 10.51 12.08 87%
32 256 5.25 6.93 76%
64 512 2.63 3.89 68%

128 1024 1.31 2.73 48%

88

Panorama and iterations of the solver were locked at 1000. To ensure tha t each node

got a reasonably sized subimage to solve, the tests were limited to 64 nodes. Table 5.5

demonstrates our implementations ability to weak scale on this cluster, maintaining good

efficiency for up to 512 cores.

5.3.2.3 H e te ro g en eo u s c lu ste r. As a final test of portability and adaptability, we

presented our implementation with a simulated heterogeneous distributed system. Our

parallel framework provides the ability to give weights to nodes which is typically even and

therefore results in an even distribution of windows across all nodes. For this example, a

simple weighting scheme can easily load-balance this mixed network, giving the nodes with

more resources more windows to compute. Table 5.6 gives an example mixed system of two

8-core nodes, four 4-core nodes, and eight 2-core nodes. In all, this system has 48 available

cores. The weights for our framework are simply the number of cores available in each

node. This network was simulated using the NVIDIA cluster by overloading Hyperflow’s

knowledge of available resources with our desired properties. While this is not a perfect

simulation since the main thread handling MPI communication would not be limited to

reside on the desired cores, as shown in the strong scaling tests even with evenly distributed

data on 8-16 nodes the implementation is not yet I/O bound. Therefore, we should still have

a good approximation to a real, limited system. The figure details the window distribution

and timings for the Fall Panorama for all nodes in this test. As is shown, we maintain good

load balancing given proper node weighting when dealing with heterogenous systems. The

max runtime of 32.70 minutes for this 48 core system is on par with run time for the 32

core (40.08 minutes) and 64 core (20.83 minutes) strong scaling results.

T ab le 5.5: Weak scaling tests run on the Longhorn cluster for the Fall Panorama dataset.

Weak Scaling - Longhorn cluster
Nodes Cores Size (MP) Time (min.) Efficiency

2 16 75.5 5.50 100.00%
4 32 151 6.13 89.67%
8 64 302 6.15 89.43%

16 128 604 6.15 89.43%
32 256 1208 6.13 89.67%
64 512 2416 6.15 89.43%

89

T able 5.6: Our simulated heterogeneous system. This test example is a simulated mixed
system of 2 8-core nodes, 4 4-core nodes, and 8 2-core nodes. The weights for our framework
are the number of cores available in each node. The timings and window distributions are
for Fall Panorama dataset. As you can see, with the proper weightings our framework
can distribute windows proportionally based on the performance of the system. The max
runtime of 32.70 minutes for this 48 core system is on par with timings for the 32 core
(40.08 minutes) and 64 core (20.83 minutes) runs from the strong scaling test.

■ Total W indows Processed ■ Tim e (m)

Heterogeneous System - Fall Panorama
Cores 8 4 2

Time(m) 27.9 28.9 32.1 32.7 32 32.5 16.6 23.1 28.7 32.2 20 23.6 24.6 28.4
Windows 1239 1239 640 640 580 600 276 285 300 330 304 304 290 319

5.4 Gradient Domain Editing on the Cloud
The parallel algorithm outlined in the previous section provides a full resolution gradient

domain solution for massive images in only a few minutes of processing time. In this section,

we explore redesigning this technique as a cloud-based application. For this work, we

chose to target the MapReduce framework and its open source implementation, Hadoop.

MapReduce and Hadoop have emerged in recent years as popular and widely supported

cloud technologies. Therefore, they are the logical targets for this work.

5.4.1 M apR educe and H adoop

This subsection briefly reviews some of the fundamentals of the MapReduce framework

and how to design graphics algorithms to work well with Hadoop and Hadoop's Distributed

File System (HDFS). We provide a high level view to justify design decisions outlined in

the next section.

The map function operates on key/value pairs producing one or more key/value pairs

for the reduce phase. The reduce function is a per-key operation tha t works on the output

of the mapper (see Figure 5.15). Hadoop’s scheduler will interleave their execution as data

are available. Currently, Hadoop does not support job chaining. Therefore, any algorithm

tha t requires two passes will likely require two separate MapReduce jobs. While this will

likely change in the future, at this time minimizing the number of passes is an important

consideration since the overhead incurred by launching new jobs in Hadoop is significant.

90

F ig u re 5.15: The two phases of a MapReduce job. In the figure, three map tasks produce
key/values pairs tha t are hashed into two bins corresponding to the two reduce tasks in the
job. When the data are ready, the reducers grab their needed data from the mapper’s local
disk.

In Section 5.4.2 we detail our algorithm, which requires only one pass.

Hadoop has been optimized to handle large files and to process/transfer small chunks of

data. For many applications including the one outlined in the next section, understanding

Hadoop’s data flow is vital for an efficient implementation, much like random memory access

must be considered in a GPU.

5.4.1.1 In p u t. The Hadoop distributed file system stripes data across all available

nodes on a per block basis with replication to guarantee a certain level of locality for the

map phase and to be able to handle system faults. When a job is launched, Hadoop will

split the input data evenly for all map instances. For our example, allowing Hadoop to

arbitrarily split the input data could result in fragmented images. Therefore, the system

allows the developer to specialize the function reading the input which we use to constrain

the split to only occur at image boundaries.

5.4.1.2 M ap R ed u ce tra n s fe r . During execution, each mapper hashes the key of

each key/value pair into bins. The number of bins equal the number of reducers (see

Figure 5.15) and each bin is also sorted by key. The map first stores and sorts the data in

a buffer in memory but will spill to disk if this is exceeded (the default buffer size is 512

91

MB). This spill can lead to poor mapper performance and should be avoided if possible.

After a mapper completes execution, the intermediate data are stored to a node’s local

disk. Each mapper informs the control node tha t its data are finished and ready for the

reducers. Since Hadoop assumes tha t any mapper is equally likely to produce any key,

there is no assumed locality for the reducers. Each reducer must pull its data from multiple

mappers in the cluster (see Figure 5.15 and 5.16). If a reducer must grab key/value pairs

from many local disks on the cluster (possibly an N -to-N mapping), this phase can have

drastic effect on the performance.

Job coordination is handled with a master/slave model where the control node, called

the Job Tracker distributes and manages the map and reduce tasks. When a program is

launched the Job Tracker initiates Task Trackers on nodes in the cluster. The Job Tracker

then schedules tasks on the Task Tracker maintaining a communication link to handle

system faults (see Figure 5.16).

— I iiiP
NodeJob tracker

1
v Create

Communication Task tracker

DFS

I
I- /

Task tracker

Output from
other mappers

Node
Disk

Node
Disk

Node
Disk

F ig u re 5.16: A diagram of the job control and data flow for one Task Tracker in a Hadoop
job. The dotted, red arrows indicate data flow over the network; dashed arrows represent
communication; the blue arrow indicates a local data write and the black arrows indicate
an action taken by the node.

92

5.4.2 M apR educe for G radient D om ain

Commonly, large images are stored as tiles, which gives us the underlying structure for

our scheme. However, a tiled-based approach by itself would not account for large scale

trends common in panoramas (see Figure 5.17). Therefore, we add upsampling of a coarse

solution similar to the approach used in Summa et al. [149] to capture these trends. Our

algorithm works in two phases: The first phase performs the upsample of a precomputed

coarse solution and solves each tile to produce a smooth solution over the extent of the tile.

The second phase solves for a smooth image on tiles tha t significantly overlap the smoothed

tiles from the first phase. In this way, the second phase smooths any seams not captured

or even introduced by the first phase solvers. This algorithm can be simply implemented

in one MapReduce job in Hadoop.

5.4.2.1 T iles. We have chosen an overlap of 50% in both dimensions for the second

phase due to the simplicity of implementation, although Summa et al. [149] has shown that

a good solution can be found with much less. To easily accomplish this overlap, we divide

the data into tiles 1/4 of the proper size. Figure 5.18 shows the tile layout for our test

images. Each phase operates on four of these smaller tiles which are combined to construct

the larger tiles. To avoid undefined tiles in the second phase, we add a symbolic padding of

one row/column to all sides of the image. Figure 5.19 gives an example of a tile layout. An

important component of panorama stitching is a map file which gives the correspondence

from a pixel location in the overall panorama to the smaller image that supplies the color.

This map file is necessary to determine the difference between actual gradients and those

due to seams. This map also defines the boundaries of the panorama, which are commonly

irregular and do not usually follow the actual image boundary. The panorama boundary is

a seam we would like to preserve. We encode the map file into each individual tile as an

alpha channel. For images such as the Salt Lake City example, we cannot encode an index

F ig u re 5.17: Although the result is a smooth image, without coarse upsampling the final
image will fail to account for large trends tha t span beyond a single overlap and can lead
to unwanted shifts in color. Notice the vertical banding denoted by the red arrows.

93

F ig u re 5.18: The 512 x 512 tiles used in our Edinburgh (a), Redrock (b), and Salt Lake
City (c) examples.

1
-0 ,0 -

1
-0 ,1 -

1
-0 ,2 -

1
-0 ,3 -

-1 ,0 - -1,1 - -1 ,2 - -1 ,3 -

-2 ,0­
1

-2 ,1­
1

-2,2­
1

-2 ,3 ­
1

1,1 1,2- 1,3-

2,1 2,2 2,3-

Image Map Reduce

F ig u re 5.19: Our tile-based approach: An input image is divided into equally spaced tiles.
In the map phase after a symbolic padding by a column and row in all dimensions, a solver
is run on a collection of four tiles labeled by numbers above. After the mapper finishes, it
assigns a key such tha t each reducer runs its solver a collection of four tiles tha t have a 50%
overlap with the previous solutions.

for each image in a byte of data. However, the map is only used to denote if two pixels are

from the same source image or if a pixel is on the boundary. Therefore a byte is more than

enough to encode this correspondence. The symbolic padding is encoded as boundary and

images that are not evenly divisible by our tile size are also padded with boundary. The

overlapping window size used for our test was 1024 x 1024 pixels which we found was a

good compromise between a low memory footprint and image coverage.

94

5.4.2.2 C oarse so lu tion . As a first step, the first phase of our solver will upsample

via bilinear interpolation a 1-2 megapixel coarse solution. Much like the method from

Summa et al. [149], we precompute the coarse solution in just a few seconds using a direct

FFT solver on a coarsely sampled version of our large image. In tiled hierarchies, this coarse

image is typically already present. In Hadoop, this coarse solution is sent along with the

MapReduce job when launched. The Job Tracker stores this image on the distributed file

system for Task Trackers to pull and store locally.

5.4.2.3 F irs t (m ap) phase . After loading/combining the smaller tiles and perform­

ing the upsample, the first phase runs an iterative solver initialized with the upsampled pixel

colors. From our testing, we have found tha t SOR gives good running times and low memory

consumption and therefore is our default solver. The solver is considered to have converged

when the L 2 norm falls below 10-3 which is based on the range of byte data. After a smooth

image is computed, the solution is split back into its four smaller tiles and sent to the next

phase as byte data. Some precision is lost in the solution data by this truncation of bits

and can cause slower convergence in the next phase. However, in many distributed systems,

the bottleneck is data transfer; therefore it is preferable to use smaller data at the cost of

increased computation. For the Hadoop implementation, this first phase of our algorithm

fits well with Hadoop’s map phase. Each mapper emits a key/value pair, where the value

is the data from a small tile and the key is computed in such a way tha t we achieve the

desired 50% overlap in the next phase. The key is computed as a row/column pair in the

space of the larger tiles. This key is stored in 4 bytes before being emitted. The high word

contains the row and the low word contains the column. For a tile at location (x,y), the

key for sub-tile (i, j) is computed as:

keyjrow = x * 2 + i; (5.4)

key-col = y * 2 + j; (5.5)

Below we provide pseudocode for the map phase and Figure 5.19 provides an example.

5.4.2.4 Second (reduce) phase . The second phase now gathers the four smaller

tiles tha t make up the overlapping window. These tiles sit as intermediate data on the local

disks of the cluster. If the system accounts for locality, each instance would only need to

gather three tiles since the nodes could be placed such tha t one tile is always stored locally.

After the data are gathered, the gradients are computed from the original pixel values and

an iterative solver (SOR) is run after being initialized with the solutions from the first

95

proc Map(blockld, image) =
row := blockld >> 16;
col := blockld & 0xFFFF;
solver.compute-gradient (image);
solver.upsample_coarse(image, row, col);
solver.SOR(image);
for i := 0 to 1 do

for j := 0 to 1 do
keyRow := row * 2 + i;
keyCol := col * 2 + j ;
key := keyRow << 16 + keyCol;
emit(key, solver.tiles[i][j]);

phase. The iterative solver is constrained to only work on interior pixels to prevent this

phase from introducing new seams. Technically, there may be errors at the pixels around

the midpoints of the boundary edges of these tiles, though in practice we have not seen

this affect the solution. This second phase fits well with Hadoop’s reduce phase with some

considerations. Hadoop does not account for data locality for the reducers, therefore, we

must assume the worst case gather of four tiles. Also, the reducers do not have access to the

HDFS, nor can any task request specific data. The mappers in the first phase modify the

pixel values, but the reducer needs the original values to compute the gradient vector for

the iterative solver. Therefore, the mapper must also concatenate the original pixel values

to the solved data before it emits the key/value pair. This leads to a 6 bytes/pixel transfer

between phases. Below we provide pseudocode for the reduce phase.

proc Reduce(blockld, [(map1, o rg1),..., (map4, org4)]) =
mapper-output := merge(map1, map2, map3, map4);
originaLtile := merge(org1, org2, org3, org4);
solver.compute-gradient(original-tile);
solver.SOR(mapper-output);
emit(BlockId, solver.tiles);

5.4.2.5 S to rag e in th e H D F S . In Hadoop, saving the image in standard row major

order would lead to poor performance in the mappers since there is good locality in only

one dimension. Saving individual tiles would also not be efficient since Hadoop’s HDFS is

optimized for large files. Therefore, we save the data as the large tiles, comprised of the four

96

smaller tiles, which the mapper needs in the first phase. We concatenate the tiles together,

row-by-row, into a single large file.

5.4 .3 R esu lts
We demonstrate the quality of our approach on three test panoramas which range from

megapixels to gigapixels in size. We also demonstrate the generality of the abstraction by

running our code, without modification, on a single desktop and on a large cluster. Finally,

we test Hadoop’s scalability with two of our test panoramas.

The single node tests were performed on a 2 xQuad-Core Intel Xeon w5580 3.2GHz

desktop with 24GB of memory. For our large distributed tests, we ran our method on the

NSF CLuE [41] cluster, which consists of 275 nodes each with dual Intel Xeon 2.8GHz

processors with HyperThreading and 8GB of memory. While still a valuable resource for

research, as far as modern clusters are concerned, CLuE’s hardware is outdated being a

retired system based on a 6-year-old technology originally produced in 2004. Moreover,

CLuE is also a shared resource and all timings were certainly affected by other researchers

using the machines.

The Edinburgh panorama consists of 25 images with a full resolution of 16, 950 x

2, 956 pixels (50 megapixel) and was broken into 48 tiles. For our single node test, our

method produced a solution in 81 seconds with eight mappers and four reducers. The

Redrock panorama consists of nine images with a full resolution of 19, 588 x 4,457 pixels

(87 megapixel) and was partitioned into 96 tiles. Our method running on a single node

solved the panorama in 156 seconds with nine mappers and nine reducers. The solver

running on the cluster ran in 199 seconds with 96 mappers and 96 reducers. Due to the

small size of the panoramas, the extra parallelization given to us by the distributed system

did not increase performance. Quite the opposite was true, the runtimes were worse due

to overhead of Hadoop launching and coordinating many tasks. Also, because the cluster

was a shared resource, this increase in compute time could have easily come from external

influences. See Figure 5.20 for the original and solved panoramas.

The Salt Lake City panorama consists of 611 images with a full resolution of 126,826 x

29, 633 pixels (3.27 gigapixel) and was split into 3,444 tiles. Our method took 3 hours and

5 minutes to compute a solution on our one node test desktop. On the distributed cluster

with 492 mappers and 492 reducers the time to compute a solution dropped to 28 minutes

and 44 seconds of which 3 minutes and 24 seconds was due to Hadoop overhead and 15

minutes was due to I/O and data transfer between the map and reduce phases. Running

97

F ig u re 5.20: The results of our cloud implementation, from top to bottom: Edinburgh,
25 images, 16, 950 x 2, 956, 50 megapixel and the solution to Edinburgh from our cloud
implementation; Redrock, nine images, 19, 588 x 4,457; 87 megapixel and the solution to
Redrock from our cloud implementation; Salt Lake City, 611 images, 126, 826 x 29, 633,
3.27-gigapixel and the solution to Salt Lake City from our cloud implementation.

Salt Lake City with 246 mappers and 246 reducers produced a solution in 39 minutes and

49 seconds of which 2 minutes and 7 seconds was due to Hadoop overhead and 30 minutes

was due to I/O and data transfer. Note tha t these are all wall clock times and include

activity of other people on a shared system. Moreover, the configuration, which we could

not change, required running at least three processes on every node which have only two

cores. Therefore, we can only hope to have 2/3 compute efficiency out of this cluster. See

Figure 5.20 or the original and solved panorama. Based on our timing and the pricing

available online, running the 492 mapper/reducer job would have cost approximately $50

to run on Amazon’s Elastic Reduce [10]. This is orders of magnitude less expensive and

time comsuming than operating and maintaining a proprietary cluster and would allow any

researcher in the field to experiment with new ideas.

5.4.3.1 Scalability . Due to the shared nature of the CLuE cluster, we restricted

our scalability tests to only the single node test desktop. Figure 5.21 plots the runtime to

solve both the Edinburgh and Redrock panoramas as a function of number of reducers and

mappers. We varied the number of mappers and reducers from one to the number of cores.

The plot shows tha t as both the mappers and reduces increase so does our performance,

but as the total number of both mappers and reducers meets or exceeds the available cores

of our system, the performance gain flattens. This is an important observation and must be

remembered when choosing an optimal number of mappers and reducers especially when

purchasing time and cores as a commodity.

98

F ig u re 5.21: (a) The scalability plot for the Edinburgh (50 megapixel) panorama on our
one node 8-core test desktop; (b) the scalability plot for Redrock (87 megapixel) panorama
on the same machine

5.4.3.2 F au lt to le ran ce . Hadoop has been developed to robustly handle failures

in the cluster. Achieving a fault tolerant implementation is a major challenge on its own

and is not easily available in other distributed frameworks such as MPI. The tremendous

advantage of fault tolerance comes at the cost of high variability in running times, though

jobs are guaranteed to finish. In fact, all runs on the distributed cluster had some kind of

failure in the system at some time during the execution and still we were able to get results,

which would not be available with a traditional distributed implementation. In particular,

the running time stated above for the Salt Lake City example with 492 mappers/reducers

was based on the job with the minimum number of failures (95 failed tasks). In practice,

we have seen this example run as long as 49 minutes to account for the 133 failed tasked

tha t occurred during the job.

CHAPTER 6

FUTURE WORK

The work outlined in this dissertation provides both the justification for and the solutions

to bringing the composition stage of the panorama processing pipeline into an interactive set­

ting. The future of this work is to bring the entire pipeline into an interactive environment.

A system built with this guiding principle would allow the user to add and remove images,

fix registration problems, or adjust image boundaries all while having a preview of the final

color-corrected, composited panorama. This will give users an unprecedented amount of

control over the creation of new panoramas, increasing both the accessibility of panorama

creation and quality of the final results. Due to the work completed for this dissertation, the

logical next step to achieving my ultimate goal is to provide new and interactive solutions

for the registration phase of the panorama pipeline. Currently, interaction for registration is

typically non-existent. Even when it is provided by a system, the interaction is rudimentary

at best. For instance, the only interaction possible for a panorama processing system such

as Hugin [77] is the manual selection and deletion of image feature points between pairs of

images, see Figure 6.1.

This is a tedious process for small images, and completely unwieldy for larger image

collections. The scaling of registration algorithms will also need further study. Despite

significant previous work, many current methods have been shown to work with relatively

small collections of images. Although assumed to scale well, only recently has work shown an

extension of current techniques to work with extremely large collections of photographs [1].

Often such assumptions of scaling can be false; for instance some of the commercial and

open-source products, although advertised to handle an arbitrary number of images, have

failed when presented with panoramas with hundreds of images. General purpose algorithms

for automatic registration of extremely large image collections remain an open avenue of

investigation. In addition, state-of-the-art stitching software often needs a reduction of

complexity by strictly enforcing tha t the images are acquired in a regular pattern (columns

and rows) to reduce the search space for possible registrations. My collaborators and I have

100

1 4 *• - - - * ••

F ig u re 6.1: A typical example of interaction during panorama registration from the open-
source Hugin [77] software tool. Current interaction is limited to the manual selection and
deletion of feature points used during registration.

found that these programs will often fail when presented with large image collections with

no assumed structure.

The focus of my dissertation work was to bring the composition stage of the panorama

creation pipeline into an interactive setting, not only for small images, but for images

massive in size. The Progressive Poisson and Panorama Weaving algorithms elegantly

achieve this goal. Although panoramas were the primary focus of the work, the methods and

frameworks developed throughout my dissertation provide new paradigms for interacting

with high resolution imagery. For instance, the Progressive Poisson provides a working

proof-of-concept on how to reformulate global algorithms to work in an interactive setting

for large data by computing screen resolution previews in real-time and using out-of-core

computation for full resolution solutions. One can envision expanding the frameworks and

techniques outlined in this work with other data processing tools to allow comprehensive

editing of massive datasets on regular desktop computers.

APPENDIX

MASSIVE DATASETS

T able A.1: Massive panorama data acquired and used in this dissertation work.

Dataset Images Format Individual Image Size
Lake Louise Large 5794 RAW NEF 16-bit 4288 x 2848 (12 Megapixel)
Lake Louise Small 1 2805 RAW NEF 16-bit 4288 x 2848 (12 Megapixel)
Lake Louise Winter 1 1983 JPEG Fine 4288 x 2848 (12 Megapixel)
Lake Louise Winter 2 1876 JPEG Fine 4288 x 2848 (12 Megapixel)
Lake Louise Morning 1656 JPEG Fine 4288 x 2848 (12 Megapixel)
Lake Louise Small 2 1440 RAW NEF 16-bit 4288 x 2848 (12 Megapixel)
Salt Lake City Large 1311 JPEG Fine 3456 x 2592 (9 megapixels)
Lake Louise Evening 1220 JPEG Fine 4288 x 2848 (12 Megapixel)
Salt Lake City Winter 1219 JPEG Fine 3456 x 2592 (9 megapixels)
Salt Lake City Fall 624 JPEG Fine 3456 x 2592 (9 megapixels)
Mount Rushmore 300 JPEG Fine 4288 x 2848 (12 Megapixel)
Salt Lake City Small 132 JPEG Fine 3264 x 2448 (8 megapixels)

T able A.2: Massive satellite data acquired and used in this dissertation work.

Dataset Resolution Gigapixels
New York, NY 80000 x 80000 6.40
Chattanooga, TN 120000 x 100000 12.00
Washington, DC 131350 x 159375 20.93
Hamilton County, SC 240000 x 232000 55.68
Philadelphia, PA 250000 x 230000 57.50
Indianapolis, IN 260000 x 260000 67.60
San Diego, CA 200000 x 365000 73.00
San Francisco, CA 225000 x 330000 74.25
New Orleans, LA 330000 x 290000 95.70
Olympia, WA 501059 x 329220 164.96
San Antonio, TX 521640 x 492480 256.90
Atlanta, GA 524288 x 524288 274.88
Seattle, WA 411280 x 693528 285.23
Phoenix, AZ 720000 x 540000 388.80

REFERENCES

[1] A g a rw a l, S., S navely , N., S e itz , S., a n d S zelisk i, R. Bundle adjustment in the
large. E C C V ’10: Proceedings of the 11th European conference on Computer vision:
Part I I (Jan. 9), 29-42.

[2] A g a rw a la , A. Efficient gradient-domain compositing using quadtrees. AC M Trans.
Graph 26, 3 (2007), 94.

[3] A g a rw a la , A., A g ra w a la , M., C ohen, M. F ., S a le s in , D ., a n d S zelisk i, R.
Photographing long scenes with multi-viewpoint panoramas. ACM Trans. Graph 25,
3 (2006), 853-861.

[4] A g a rw a la , A., D o n tc h e v a , M., A g ra w a la , M., D ru c k e r , S. M., C o lb u rn ,
A., C u r le s s , B., S a le s in , D ., a n d C ohen, M. F . Interactive digital photomon­
tage. ACM Trans. Graph 23, 3 (2004), 294-302.

[5] A g a rw a la , A., Z heng, K. C., P a l , C., A g ra w a la , M., C ohen, M. F.,
C u r le s s , B., S a le s in , D., a n d S zelisk i, R. Panoramic video textures. ACM
Trans. Graph 24, 3 (2005), 821-827.

[6] A g ra w a l, A., R a s k a r , R ., N ay a r, S. K ., a n d Li, Y. Removing photography
artifacts using gradient projection and flash-exposure sampling. In SIG GRAPH ’05:
ACM SIG GRAPH 2005 Papers (New York, NY, USA, 2005), ACM, pp. 828-835.

[7] A g ra w a l, A. K ., C h e lla p p a , R ., a n d R a s k a r , R. An algebraic approach to
surface reconstruction from gradient fields. In IC C V (2005), pp. I: 174-181.

[8] A g ra w a l, A. K., R a s k a r , R ., a n d C h e lla p p a , R. W hat is the range of surface
reconstructions from a gradient field? In EC C V (2006), pp. I: 578-591.

[9] A g ra w a l, A. K., Xu, Y., a n d R a s k a r , R. Invertible motion blur in video. ACM
Trans. Graph 28, 3 (2009).

[10] A mazon. Elastic mapreduce, 2012. http://aws.amazon.com /elasticmapreduce.

[11] A n an d an , P ., B u r t , P . J ., D ana , K ., H ansen , M. W ., a n d van d e r W al,
G. S. Real-time scene stabilization and mosaic construction. In Image Understanding
Workshop (1994), pp. I:457-465.

[12] AutoPano . http://w w w .autopano.net.

[13] A x e lsso n , O. Iterative Solution Methods. Cambridge Universty Press, New York,
NY, 1994.

[14] B a d ra , F ., Qumsieh, A., a n d D udek , G. Rotation and zooming in image
mosaicing. In W ACV (1998), pp. 50-55.

http://aws.amazon.com/elasticmapreduce
http://www.autopano.net

103

[15] B ae, S., P a r is , S., a n d D u ra n d , F. Two-scale tone management for photographic
look. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers (New York, NY, USA,
2006), ACM, pp. 637-645.

[16] Bai, X., W ang, J ., Simons, D., a n d S ap iro , G. Video snapcut: Robust video
object cutout using localized classifiers. ACM Trans. Graph 28, 3 (2009).

[17] B a lm e lli , L., K ovacev ic , J ., an d V e t t e r l i , M. Quadtrees for embedded
surface visualization: Constraints and efficient data structures. In in Proc. o f IEEE
International Conference on Image Processing (1999), pp. 487-491.

[18] Bay, H., T u y te la a r s , T ., a n d G o o l, L. J. V. SURF: Speeded up robust features.
In EC C V (2006), pp. I: 404-417.

[19] B en -E z ra , M., a n d N ay a r, S. K. Motion-based motion deblurring. IEEE Trans.
Pattern Anal. Mach. Intell 26, 6 (2004), 689-698.

[20] B e rg e r , M. J ., a n d C o le l la , P . Local adaptive mesh refinement for shock
hydrodynamics. Journal Computational Physics 82 (1989), 64-84.

[21] B o li th o , M., K azh d an , M., B u rn s , R ., an d H oppe, H. Multilevel streaming for
out-of-core surface reconstruction. In SGP ’07: Proceedings of the fifth Eurographics
Symposium on Geometry Processing (Aire-la-Ville, Switzerland, Switzerland, 2007),
Eurographics Association, pp. 69-78.

[22] B orn em an n , F. A., a n d K ra u se , R. Classical and cascadic multigrid - a method­
ological comparison. In In Proceedings of the 9th International Conference on Domain
Decomposition Methods (1996), Domain Decomposition Press, pp. 64-71.

[23] B o u k e rc h e , A., an d Pazzi, R. W. N. Remote rendering and streaming of
progressive panoramas for mobile devices. In ACM Multimedia (2006), K. Nahrstedt,
M. Turk, Y. Rui, W. Klas, and K. Mayer-Patel, Eds., ACM, pp. 691-694.

[24] B oykov , Y., a n d K o lm o g o ro v , V. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach.
Intell 26, 9 (2004), 1124-1137.

[25] B oykov , Y. Y., an d J o l ly , M. P . Interactive graph cuts for optimal boundary
and region segmentation of objects in N-D images. In IC C V (2001), pp. I: 105-112.

[26] B oykov , Y. Y ., V e k s le r , O., an d Zabih, R. Fast approximate energy minimiza­
tion via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 11
(Nov. 2001), 1222-1239.

[27] B r a n d t , A. Multi-level adaptive solutions to boundary-value problems. Mathemat­
ics of Computation 31, 138 (1977), 333-390.

[28] B rig g s , W. L., H enson, V. E ., a n d M cC orm ick , S. F . A Multigrid Tutorial
(2nd Ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

[29] B ro w n , D. C. Close-range camera calibration. Photogrammetric Engineering 37, 8
(Aug. 1971), 855-866.

104

[30] B ro w n , M., a n d Low e, D. Automatic panoramic image stitching using invariant
features. International Journal of Computer Vision (Jan. 2007).

[31] B ro w n , M., a n d Low e, D. G. Recognising panoramas. In IC C V (2003), IEEE
Computer Society, pp. 1218-1227.

[32] B ro w n , M., S zelisk i, R. S., a n d W in d e r, S. A. J. Multi-image matching using
multi-scale oriented patches. In CVPR (2005), pp. I: 510-517.

[33] B u ch an a n , A., a n d F itz g ib b o n , A. W. Combining local and global motion models
for feature point tracking. In CVPR (2007), pp. 1-8.

[34] C ap e l, D., a n d Z isserm an, A. Automated mosaicing with super-resolution zoom.
Proc. CVPR (Jan. 1998).

[35] Cham, T. J ., an d C ip o lla , R. A statistical framework for long-range feature
matching in uncalibrated image mosaicing. In CVPR (1998), pp. 442-447.

[36] C h a n d ra n , L. S., a n d S ivadasan , N. Geometric representation of graphs in low
dimension. In Proceedings of the 12th Annual International Conference on Com­
puting and Combinatorics (Berlin, Heidelberg, 2006), COCOON’06, Springer-Verlag,
pp. 398-407.

[37] C h a r t r a n d , G., a n d H a ra ry , F. Planar permutation graphs. Ann. Inst. Henri
Poincare 3, 4 (1967), 433-438.

[38] C hen, S. E. Quicktime VR: An image-based approach to virtual environment
navigation. In SIG GRAPH (1995), pp. 29-38.

[39] C ho, S., a n d Lee, S. Fast motion deblurring. ACM Trans. Graph 28, 5 (2009).

[40] C how , E., F a lg o u t , R. D., Hu, J. J ., T u m in aro , R. S., an d Y ang, U. M. A
survey of parallelization techniques for multigrid solvers. In Parallel Processing for
Scientific Computing, M. A. Heroux, P. Raghavan, and H. D. Simon, Eds., vol. 20 of
Software, Environments, and Tools. SIAM, Philadelphia, PA, Nov. 2006, pp. 179-201.
ch. 10,.

[41] C luE. Clue program, 2008. http://www.nsf.gov/pubs/2008/nsf08560
/nsf08560.htm.

[42] C ohen, M. F ., S hade, J ., H i l l e r , S., a n d D eussen , O. Wang tiles for image
and texture generation. AC M Trans. Graph 22, 3 (2003), 287-294.

[43] C orm en, T. H., L e ise rso n , C. E., R iv e s t, R. L., a n d S te in , C. Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, Cambridge, MA, 2009.

[44] C o r r e a , C. D ., an d M a, K .-L. Dynamic video narratives. AC M Trans. Graph 29,
4 (2010).

[45] Crim inisi, A., S h a rp , T ., R o th e r , C., an d P E rez , P . Geodesic image and video
editing. ACM Trans. Graph 29, 5 (2010), 134.

[46] Davis, J. E. Mosaics of scenes with moving objects. In CVPR (1998), pp. 354-360.

http://www.nsf.gov/pubs/2008/nsf08560

105

[47] D ean , J ., an d G hem aw at, S. MapReduce: Simplified data processing on large
clusters. CACM 51, 1 (2008), 107-113.

[48] D e lo n g , A., a n d B oykov, Y. A scalable graph-cut algorithm for N-D grids. In
CVPR (2008), IEEE Computer Society.

[49] Dem m el, J. W. Applied Numerical Linear Algebra. SIAM, 1997.

[50] D i jk s t r a , E. W . A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959), 269-271.

[51] D o r r , F. W. The direct solution of the discrete poisson equation on a rectangle.
SIA M Review 12, 2 (April 1970), 248-263.

[52] E d e ls b ru n n e r , H., an d M ucke, E. P . Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. ACM Trans. Graphics 9, 1 (Jan.
1990), 67-104.

[53] E f ro s , A. A., a n d F reem a n , W. T. Image quilting for texture synthesis and
transfer. In SIG GRAPH (2001), pp. 341-346.

[54] F arbm an , Z., H o f f e r , G., Lipman, Y., C o h en -O r, D ., an d L ischinski, D.
Coordinates for instant image cloning. In SIG GRAPH ’09: Proceedings of the 36th
Annual Conference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 2009), ACM.

[55] F a t t a l , R ., L ischinski, D., an d W erm an , M. Gradient domain high dynamic
range compression. In SIG GRAPH ’02: Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY, USA, 2002), ACM,
pp. 249-256.

[56] F e rg u s , R ., S ingh, B., H e rtzm an n , A., Row eis, S. T ., an d F reem a n , W. T.
Removing camera shake from a single photograph. AC M Transactions on Graphics
25, 3 (July 2006), 787-794.

[57] F in la y so n , G. D., H o rd le y , S. D., a n d D rew , M. S. Removing shadows from
images. In EC C V ’02: Proceedings of the 7th European Conference on Computer
Vision-Part IV (London, UK, 2002), Springer-Verlag, pp. 823-836.

[58] F lu s s e r , J ., B o ld y s , J ., a n d ZitovA , B. Moment forms invariant to rotation and
blur in arbitrary number of dimensions. IEEE Trans. Pattern Anal. Mach. Intell 25,
2 (2003), 234-246.

[59] F lu s s e r , J ., a n d Suk, T. Degraded image analysis: An invariant approach. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20, 6 (1998), 590-603.

[60] F o rd , L. R ., a n d F u lk e r s o n , D. R. Maximal flow through a network. Canadian
Journal o f Mathematics 8 (1956), 399-404.

[61] F reed m a n , D., a n d Z hang , T. Interactive graph cut based segmentation with
shape priors. In CVPR (2005), pp. I: 755-762.

[62] G a l l , D. L. Mpeg: A video compression standard for multimedia applications.
Communications of the ACM (Jan 1991).

106

[63] G igaPan . http://w w w .gigapan.org/about.php.

[64] G o ldm an , D. B. Vignette and exposure calibration and compensation. IEEE Trans.
Pattern Anal. Mach. Intell 32, 12 (2010), 2276-2288.

[65] G oogle . Google Earth http://earth.google.com /.

[66] G o r t l e r , S., a n d C ohen, M. Variational modeling with wavelets. In Symposium
on Interactive 3D Graphics (1995), pp. 35-42.

[67] G o sh ta sb y , A. A. 2-D and 3-D Image Registration: For Medical, Remote Sensing,
and Industrial Applications. Wiley-Interscience, New York, NY, Mar. 2005.

[68] G o t t fr id , D. Self-service, prorated super computing fun!, 2007. http://open.blogs.
nytimes.com/2007/11/01/self-service-prorated-super-computing-fun.

[69] G ra c ia s , N. R. E., M a h o o r, M. H., N e g a h d a r ip o u r , S., a n d G le a so n , A.
C. R. Fast image blending using watersheds and graph cuts. Image and Vision
Computing 27, 5 (Apr. 2009), 597-607.

[70] G rie b e l , M., a n d Zum busch, G. Parallel multigrid in an adaptive pde solver based
on hashing and space-filling curves. Parallel Comput. 25, 7 (1999), 827-843.

[71] Ha d o o p . Applications and organizations using hadoop, 2012. http://w iki.apache.
org/hadoop/PoweredBy.

[72] H assin , R. Maximum flow in (s, t)-planar networks. Inform. Proc. Lett. 13 (1981),
107.

[73] H e a th , Ng, a n d P e y to n . Parallel algorithms for sparse linear systems. SIREV:
SIA M Review 33 (1991).

[74] H iR ISE . High Resolution Imaging Science Experiment http://hirise.lpl.arizona.edu/.

[75] H ock n ey , R. W. A fast direct solution of Poisson’s equation using Fourier analysis.
Journal o f the AC M 12, 1 (Jan. 1965), 95-113.

[76] H o rn , B. K. P . Determining lightness from an image. Comput. Graphics Image
Processing 3, 1 (Dec. 1974), 277-299.

[77] H ugin . http://hugin.sourceforge.net.

[78] Ik ed a , S., S a to , T ., a n d Y okoya, N. High-resolution panoramic movie gener­
ation from video streams acquired by an omnidirectional multi-camera system. In
Proceedings of IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems (Aug. 2003), p. 155.

[79] J ia , J ., Sun, J ., T ang , C .-K ., a n d Shum, H.-Y. Drag-and-drop pasting. In
SIG GRAPH ’06: ACM SIG GRAPH 2006 Papers (New York, NY, 2006), ACM,
pp. 631-637.

[80] J ia , J ., an d T ang , C.-K. Tensor voting for image correction by global and local
intensity alignment. IEEE Trans. Pattern Anal. Mach. Intell 27, 1 (2005), 36-50.

http://www.gigapan.org/about.php
http://earth.google.com/
http://open.blogs
http://wiki.apache
http://hirise.lpl.arizona.edu/
http://hugin.sourceforge.net

107

[81] J ia , J ., a n d T ang , C.-K. Image stitching using structure deformation. IEEE Trans.
Pattern Anal. Mach. Intell 30, 4 (2008), 617-631.

[82] J ia , J. Y., a n d T ang , C. K. Image registration with global and local luminance
alignment. In IC C V (2003), pp. 156-163.

[83] J ia , J. Y., a n d T ang , C. K. Eliminating structure and intensity misalignment in
image stitching. In IC C V (2005), pp. II: 1651-1658.

[84] Jo h n so n , D. B. Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM 24, 1 (Jan. 1977), 1-13.

[85] Josh i, N., K ang , S. B., Z itn ic k , C. L., a n d S zelisk i, R. Image deblurring using
inertial measurement sensors. ACM Trans. Graph 29, 4 (2010).

[86] Josh i, N., S zelisk i, R ., a n d K riegm an , D. J. PSF estimation using sharp edge
prediction. In CVPR (2008), pp. 1-8.

[87] K azh d an , M. Reconstruction of solid models from oriented point sets. In Euro­
graphics Symposium on Geometry Processing (2005), pp. 73-82.

[88] K azh d an , M., B o li th o , M., a n d H oppe, H. Poisson surface reconstruction. In
Eurographics Symposium on Geometry Processing (2006), pp. 61-70.

[89] K azh d an , M., a n d H oppe, H. Streaming multigrid for gradient-domain operations
on large images. AC M ToG. 27, 3 (2008).

[90] K azh d an , M., S u re n d ra n , D., a n d H oppe, H. Distributed gradient-domain
processing of planar and spherical images. Transactions on Graphics (TOG 29, 2
(Mar 2010).

[91] K azh d an , M. M., a n d H oppe, H. Streaming multigrid for gradient-domain
operations on large images. ACM Trans. Graph 27, 3 (2008).

[92] K o lm o g o ro v , V., a n d Zabih, R. W hat energy functions can be minimized via
graph cuts? IEEE Trans. Pattern Anal. Mach. Intell 26, 2 (2004), 147-159.

[93] K opf, J ., C ohen, M. F ., L ischinski, D., a n d U y t te n d a e le , M. Joint bilateral
upsampling. AC M Trans. Graph 26, 3 (2007), 96.

[94] K opf, J ., U y t te n d a e le , M., D eussen , O., an d C ohen, M. F. Capturing and
viewing gigapixel images. ACM Trans. Graph 26, 3 (2007), 93.

[95] K o u ro g i, M., K u ra ta , T ., H oshino , J ., a n d M u ra o k a , Y. Real-time image
mosaicing from a video sequence. In ICIP (4) (1999), pp. 133-137.

[96] K ru g e r , S., a n d C alw ay, A. Image registration using multiresolution frequency
domain correlation. Proc. British Machine Vision Conf (Jan 1998).

[97] K u g lin , C. D., a n d H ines, D. C. The phase correlation image alignment method.
Assorted Conferences and Workshops (Sept. 1975), 163-165.

108

[98] K um ar, S., P a scu cc i, V., V ish w an a th , V., C a rn s , P ., H e re ld , M., L a tham ,
R ., P e te r k a , T ., P ap k a , M., a n d Ross, R. Towards parallel access of multi­
dimensional, multi-resolution scientific data. In Petascale Data Storage Workshop
(PDSW), 2010 5th (Nov. 2010), pp. 1 -5.

[99] K um ar, S., V ish w an a th , V., C a rn s , p ., Summa, B., S c o rz e l l i , G., P ascu cc i,
V., R oss, R ., C hen, J ., K o l la , H., a n d G ro u t , R. Pidx: Efficient parallel i/o for
multi-resolution multi-dimensional scientific datasets. In Proceedings of IEEE Cluster
2011 (Sep. 2011).

[100] K u n d u r, D., a n d H a tz in a k o s , D. Blind image deconvolution. IEEE Signal
Processing Magazine 13, 3 (May 1996), 43-64.

[101] K w a tra , V., S c h o d l, A., E ssa, I., T u rk , G., a n d B obick , A. Graphcut
textures: Image and video synthesis using graph cuts. ACM Transactions on Graphics
22, 3 (July 2003), 277-286.

[102] L aw d er, J. K ., a n d K ing, P . J. H. Using space-filling curves for multi-dimensional
indexing. In LNCS (2000), Springer Verlag, pp. 20-35.

[103] Levin, A., Z om et, A., P e le g , S., an d W eiss, Y. Seamless image stitching in the
gradient domain. In EC C V (2004), pp. Vol IV: 377-389.

[104] Li, Y ., Sun, J ., T ang , C .-K ., a n d Shum, H.-Y. Lazy snapping. ACM Trans.
Graph 23, 3 (2004), 303-308.

[105] L ischinski, D., F arbm an , Z., U y t te n d a e le , M., a n d S zelisk i, R. Interactive
local adjustment of tonal values. ACM ToG 25, 3 (2006), 646-653.

[106] Liu, J ., a n d Sun, J. Parallel graph-cuts by adaptive bottom-up merging. In CVPR
(2010), IEEE, pp. 2181-2188.

[107] L o m b a e rt, H., Sun, Y. Y., G ra d y , L., an d Xu, C. Y. A multilevel banded
graph cuts method for fast image segmentation. In IC C V (2005), pp. I: 259-265.

[108] Low e, D. G. Object recognition from local scale-invariant features. In IC C V (1999),
p p .1150-1157.

[109] L ucas, B., a n d K an ad e , T. An iterative image registration technique with an
application to stereo vision. International Joint Conference on Artificial Intelligence
3 (1981), 674-679.

[110] M alin g , D. H. Coordinate Systems and Map Projections. Butterworth-Heinemann,
Woburn, MA, 1993.

[111] M ann, S., an d P ic a rd , R. W . Virtual bellows: Constructing high quality stills
from video. In ICIP (1) (1994), pp. 363-367.

[112] M a tu n g k a , R ., Z heng, Y ., an d E w ing, R. Image registration using adaptive
polar transform. Image Processing, IEEE Transactions on 18, 10 (2009), 2340 -
2354.

[113] M cC ann , J. Recalling the single-FFT direct poisson solve. In SIG GRAPH Posters
(2008), ACM, p. 71.

109

[114] M cC ann , J ., an d P o l l a r d , N. S. Real-time gradient-domain painting. In
SIG GRAPH ’08: ACM SIG GRAPH 2008 papers (New York, NY, USA, 2008), ACM,
pp. 1-7.

[115] M cG u ire , M. An image registration technique for recovering rotation, scale and
translation parameters. NEC Res. Inst. Tech. Rep., TR (1998), 98-018.

[116] M c L a u c h la n , P ., a n d Ja e n ic k e , A. Image mosaicing using sequential bundle
adjustment. Image and Vision Computing (Jan. 2002).

[117] M eehan , J. Panoramic Photography. Amphoto, Oct. 1990.

[118] M egaPO V . http://m egapov.inetart.net.

[119] M ilg ra m , D. L. Computer methods for creating photomosaics. IEEE Trans.
Computer 23 (1975), 1113-1119.

[120] M ilg ra m , D. L. Adaptive techniques for photomosaicking. IEEE Trans. Computer
26 (1977), 1175-1180.

[121] M ills , A., an d D udek , G. Image stitching with dynamic elements. Image and
Vision Computing 27, 10 (Sept. 2009), 1593-1602.

[122] M o rte n se n , E. N., an d B a r r e t t , W. A. Intelligent scissors for image composi­
tion. In SIG GRAPH (1995), pp. 191-198.

[123] M o rte n se n , E. N., an d B a r r e t t , W. A. Interactive segmentation with intelligent
scissors. Graphical models and image processing: GMIP 60, 5 (Sept. 1998), 349-384.

[124] N ag ah ash i, T ., F u jiy o sh i, H., an d K an ad e , T. Image segmentation using
iterated graph cuts based on multi-scale smoothing. In AC C V (2007), pp. II: 806-816.

[125] NASA. NASA Blue Marble http://earthobservatory.nasa.gov/
Features/BlueM arble/.

[126] N ied e rm eie r, R ., R e in h a rd t , K., a n d S a n d e rs , P . Towards optimal locality in
meshindexings. In Proc. Fundamentals of Computation Theory (1997), vol. 1279 of
LNCS, Spinger, pp. 364-375.

[127] O jansivu , V., a n d H e ik k ila , J. Image registration using blur-invariant phase
correlation. IEEE Signal Processing Letters 14, 7 (July 2007), 449-452.

[128] P ascu cc i, V., an d F ra n k , R. J. Hierarchical indexing for out-of-core access
to multi-resolution data. In Hierarchical and Geometrical Methods in Scientific
Visualization, Mathematics and Visualization. Springer, New York, NY.

[129] P ascu cc i, V., a n d F ra n k , R. J. Global static indexing for real-time exploration
of very large regular grids. In Supercomputing (SC ’01) (2001), p. 2.

[130] P ascu cc i, V., L aney , D. E ., F ra n k , R. J ., G ygi, F ., S c o rz e l l i , G., Linsen,
L., a n d H am ann, B. Real-time monitoring of large scientific simulations. In SAC
(2003), ACM, pp. 194-198.

http://megapov.inetart.net
http://earthobservatory.nasa.gov/

110

[131] P a v lo , A., P a u lso n , E., R asin , A., A badi, D. J ., D e W it t , D. J ., M adden ,
S. R ., an d S to n e b r a k e r , M. A comparison of approaches to large scale data
analysis. In SIGMOD (Providence, RI, USA, 2009).

[132] P e le g , S., R ousso , B., A cha, A. R ., a n d Z om et, A. Mosaicing on adaptive
manifolds. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 10 (Oct. 2000),
1144-1154.

[133] P E rez , P ., G a n g n e t, M., a n d B la k e , A. Poisson image editing. ACM Trans.
Graph. 22, 3 (2003), 313-318.

[134] P h ilip , S., Summa, B., B re m e r, P .-T ., a n d P ascu cc i, V. Parallel gradient
domain processing of massive images. In Eurographics Symposium on Parallel Graph­
ics and Visualization (Llandudno, Wales, UK, 2011), T. Kuhlen, R. Pajarola, and
K. Zhou, Eds., Eurographics Association, pp. 11-19.

[135] P h ilip , S., Summa, B., P ascu cc i, V., a n d B re m e r, P .-T . Hybrid cpu-gpu solver
for gradient domain processing of massive images. In ICPADS ’11: Proceedings of
the 2011 IEEE 17th International Conference on Parallel and Distributed Systems
(Washington, DC, USA, 2011), IEEE Computer Society, pp. 244-251.

[136] P r e t t o , A., M e n e g a t t i , E., B en n ew itz , M., B u rg a rd , W ., a n d P a g e l lo ,
E. A visual odometry framework robust to motion blur. In ICRA (2009), IEEE,
pp. 2250-2257.

[137] P T gui, 2012. http://ww w .ptgui.com .

[138] R a s to g i , A., an d K rish n a m u rth y , B. Localized hierarchical graph cuts. In
ICVGIP (2008), IEEE, pp. 163-170.

[139] R ic k e r , P . M . A direct multigrid poisson solver for oct-tree adaptive meshes. The
Astrophysical Journal Supplement Series 176 (2008), 293-300.

[140] R o b e r ts , F . On the boxicity and cubicity of a graph. Recent Progress in Combina­
torics, 1969.

[141] R osgen , B., a n d S te w a r t , L. Complexity results on graphs with few cliques.
Discrete Mathematics & Theoretical Computer Science 9, 1 (2007).

[142] R o th e r , C., K o lm o g o ro v , V., a n d B la k e , A. Grabcut: Interactive foreground
extraction using iterated graph cuts. ACM Trans. Graph 23, 3 (2004), 309-314.

[143] S ag an , H. Space-Filling Curves. Spinger-Verlag, New York, NY, 1994.

[144] Sand, P ., an d T e l l e r , S. Video matching. ToG 23, 3 (2004), 592-599.

[145] Shum, H. Y., a n d S zelisk i, R. S. Construction and refinement of panoramic
mosaics with global and local alignment. In IC C V (1998), pp. 953-956.

[146] Sim chony, T ., an d C h e lla p p a , R. Direct analytical methods for solving Poisson
equations in computer vision problems. IEEE Trans. Pattern Anal. Mach. Intell. 12
(1990), 435-446.

http://www.ptgui.com

111

[147] S navely , N., G a rg , R ., S e itz , S. M., a n d S zelisk i, R. Finding paths through
the world’s photos. In SIGGraph-08 (2008), pp. xx-yy.

[148] S to o k e y , j . , Xie, Z., C u t l e r , B., F r a n k l in , W. R ., T ra c y , D. M., a n d
A n d ra d e , M. V. A. Parallel ODETLAP for terrain compression and reconstruction.
In GIS (2008), W. G. Aref, M. F. Mokbel, and M. Schneider, Eds., ACM, p. 17.

[149] Summa, B., S c o rz e l l i , G., J ia n g , M., B rem er, P .-T ., a n d P ascu cc i, V.
Interactive editing of massive imagery made simple: Turning Atlanta into Atlantis.
ACM Trans. Graph. 30, 2 (Apr. 2011), 7:1-7:13.

[150] Summa, B., T ie rn y , J ., an d P ascu cc i, V. Panorama weaving: Fast and flexible
seam processing. ACM Trans. Graph. 31, 4 (July 2012), 83:1-83:11.

[151] Summa, B., Vo, H. T ., S ilva, C., a n d P ascu cc i, V. Massive image editing on the
cloud. In IASTED International Conference on Computational Photography (CPhoto
2011) (2011).

[152] Sun, J ., J ia , J ., T ang , C .-K ., a n d Shum, H.-Y. Poisson matting. ACM Trans.
Graph. 23, 3 (2004), 315-321.

[153] S zelisk i, R. Image mosaicing for tele-reality applications. In Proceedings of the
Second IEEE Workshop on Applications of Computer Vision (1994), pp. 44-53.

[154] S zelisk i, R. Video mosaics for virtual environments. Computer Graphics and
Applications, IEEE 16, 2 (1996), 22 - 30.

[155] S zelisk i, R. Image alignment and stitching: A tutorial. Foundations and Trends in
Computer Graphics and Vision 2, 1 (2006).

[156] S zelisk i, R ., a n d Shum, H.-Y. Creating full view panoramic image mosaics and
environment maps. SIG GRAPH ’97: Proceedings o f the 24th annual conference on
Computer graphics and interactive techniques (Aug 1997).

[157] S zelisk i, R. S. Video mosaics for virtual environments. IEEE Computer Graphics
and Applications 16, 2 (Mar. 1996), 22-30.

[158] Tai, Y. W ., Du, H., B row n , M. S., a n d Lin, S. Image/video deblurring using a
hybrid camera. In CVPR (2008), pp. 1-8.

[159] T asd izen , T ., K oshevoy , p ., Grimm, B. C., A n d e rso n , J. R ., Jo n es , B. W .,
W a t t , C. B., W h ita k e r , R. T ., a n d M a rc , R. E. Automatic mosaicking and
volume assembly for high-throughput serial-section transmission electron microscopy.
Journal o f Neuroscience Methods 193, 1 (2010), 132 - 144.

[160] T o le d o , S. A survey of out-of-core algorithms in numerical linear algebra. In
External memory algorithms, Dimacs Series In Discrete Mathematics And Theoretical
Computer Science. American Mathematical Society, Boston, MA, 1999, pp. 161-179.

[161] T r ig g s , B., M c L a u c h la n , P ., H a r t l e y , R. I., an d F itz g ib b o n , A. W. Bundle
adjustment: A modern synthesis. In Vision Algorithms Workshop: Theory and
Practice (1999), pp. 298-372.

112

[162] T u y te la a r s , T ., a n d M ik o la jc z y k , K. Local invariant feature detectors: A
survey. Foundations and Trends in Computer Graphics and Vision 3, 3 (2007), 177­
280.

[163] T z im ro p o u lo s , G., A rg y r io u , V., Z a fe ir io u , S., an d S ta th a k i , T. Robust
fft-based scale-invariant image registration with image gradients. Pattern Analysis
and Machine Intelligence, IEEE Transactions on DOI - 10.1109/34.55103 PP, 99
(2010), 1 - 1.

[164] USGS,. United States Geological Survey http://w w w .usgs.gov/.

[165] U y t te n d a e le , M. T ., E den , A., a n d S zelisk i, R. S. Eliminating ghosting and
exposure artifacts in image mosaics. In CVPR (2001), pp. II:509-516.

[166] V a lg re n , C., a n d L i l ie n th a l , A. J. SIFT, SURF & seasons: Appearance-based
long-term localization in outdoor environments. Robotics and Autonomous Systems
58, 2 (2010), 149-156.

[167] V in e e t, V., an d N a ra y a n a n , P . J. CUDA cuts: Fast graph cuts on the GPU. In
Computer Vision on GPU (2008), pp. 1-8.

[168] V i t t e r , J. S. External memory algorithms and data structures: Dealing with
massive data. AC M Comput. Surv. 33, 2 (2001), 209-271.

[169] Vo, H., B ro n so n , J ., Summa, B., Comba, J ., F r e i r e , J ., H ow e, B., P ascu cc i,
V., an d S ilva, C. Parallel visualization on large clusters using mapreduce. In Pro­
ceedings of the 2011 IEEE Symposium on Large-Scale Data Analysis and Visualization
(LDAV) (2011), p. (to appear).

[170] Vo, H. T ., O sm ari, D. K ., Summa, B., Com ba, J. L. D., P ascu cc i, V., a n d
S ilva, C. T. Streaming-enabled parallel dataflow architecture for multicore systems.
Comput. Graph. Forum 29, 3 (2010), 1073-1082.

[171] W ang, B., Summa, B., P ascu cc i, V., a n d V e jd em o -Jo h an sso n , M. Branching
and circular features in high dimensional data. Visualization and Computer Graphics,
IEEE Transactions on 17, 12 (dec. 2011), 1902-1911.

[172] W ard , G. Hiding seams in high dynamic range panoramas. In A P G V (2006), R. W.
Fleming and S. Kim, Eds., vol. 153 of ACM International Conference Proceeding
Series, ACM, p. 150.

[173] W eiss, Y. Deriving intrinsic images from image sequences. In International Confer­
ence on Computer Vision (2001), pp. 68-75.

[174] W ood, D. N., F in k e ls te in , A., H ughes, J. F ., T h a y e r , C. E ., a n d S a le sin , D.
Multiperspective panoramas for cel animation. In SIG GRAPH (1997), pp. 243-250.

[175] W u , C. SiftGPU: A GPU implementation of scale invariant feature transform (SIFT),
2007. h ttp ://cs.unc.edu/ ccwu/siftgpu.

[176] X iong, Y ., a n d P u l l i , K. Fast image labeling for creating high-resolution
panoramic images on mobile devices. In ISM (2009), IEEE Computer Society,
pp. 369-376.

http://www.usgs.gov/
http://cs.unc.edu/

113

[177] X iong, Y ., a n d P u l l i , K. Fast panorama stitching for high-quality panoramic
images on mobile phones. IEEE Transactions on Consumer Electronics (Jan 2010).

[178] X iong, Y ., W ang, X., T ico , M., an d L iang , C. Panoramic imaging system for
mobile devices. SIG G RAPH ’09: Posters (Jan 2009).

[179] Xu, D., C hen, Y ., X iong, Y., Q iao, C., a n d He, X. On the complexity of/and
algorithms for finding shortest path with a disjoint counterpart. IE E E /A C M Trans.
on Networking 14, 1 (2006), 147-158.

[180] Yahoo! Yahoo! expands its m45 cloud computing initiative, adding top universities
to supercomputing research cluster. h ttp ://re sea rch .y ah o o .c o m /n ew s/3 3 7 4 .

[181] Y oon , M .-S.-E ., a n d L in d stro m , M .-P. Mesh layouts for block-based caches.
IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1213-1220.

[182] Y oon , S .-E ., L in d stro m , P ., P a scu cc i, V., an d M an o ch a , D. Cache-oblivious
mesh layouts. ACM Trans. Graph. 24, 3 (2005), 886-893.

[183] Y uan , L., Sun, J ., Q uan, L., a n d Shum, H.-Y. Image deblurring with
blurred/noisy image pairs. ACM Trans. Graph 26, 3 (2007), 1.

[184] Z ito v a , B., a n d F lu s s e r , J. Image registration methods: A survey. Image and
Vision Computing 21, 11 (Oct. 2003), 977-1000.

[185] Z oghlam i, I., F a u g e ra s , O., a n d D e ric h e , R. Using geometric corners to build
a 2d mosaic from a set of images. Computer Vision and Pattern Recognition, 1997.
Proceedings., 1997 IEEE Computer Society Conference on (1997), 420 - 425.

http://research.yahoo.com/news/3374

