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ABSTRACT
Interactive editing and manipulation of digital media is a fundamental component in 

digital content creation. One media in particular, digital imagery, has seen a recent increase 
in popularity of its large or even massive image formats. Unfortunately, current systems 
and techniques are rarely concerned with scalability or usability with these large images. 
Moreover, processing massive (or even large) imagery is assumed to be an off-line, automatic 
process, although many problems associated with these datasets require human intervention 
for high quality results. This dissertation details how to design interactive image techniques 
that scale. In particular, massive imagery is typically constructed as a seamless mosaic 
of many smaller images. The focus of this work is the creation of new technologies to 
enable user interaction in the formation of these large mosaics. While an interactive system 
for all stages of the mosaic creation pipeline is a long-term research goal, this dissertation 
concentrates on the last phase of the mosaic creation pipeline -  the composition of registered 
images into a seamless composite. The work detailed in this dissertation provides the 
technologies to fully realize interactive editing in mosaic composition on image collections 
ranging from the very small to massive in scale.
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CHAPTER 1
MOTIVATION AND CONTRIBUTIONS

Interactive editing and manipulation of digital media is a fundamental component in 
digital content creation. One media in particular, digital imagery, has seen a recent increase 
in popularity of its large or even massive image formats. Unfortunately, current systems 
and techniques are rarely concerned with scalability or usability with these large images. 
For example, the support for large imagery in the most prevalent interactive image editing 
application, Adobe Photoshop™ , lacks true viability for today’s massive images. The 
application’s large image format has a 90 gigapixel maximum image size, limited editing 
functionality beyond 900 megapixel, and a tedious processing time during an interactive 
session. Moreover, the creation and processing of large imagery is assumed to be an offline, 
automatic process though many of the problems associated with these datasets require 
human intervention for repair. The work outlined in this dissertation will show that this 
expensive, offline assumption need not be true and that real-time interaction provides new 
and powerful environments for the creation and editing of massive images. Specifically, this 
work will detail how to design interactive image processing algorithms that scale.

There has always been an inherent human desire to document or replicate large vistas of 
our natural world or to document historical events in detail. Panoramic paintings reached 
the height of their popularity in the early 19th century due to improvements in perspective 
drawing techniques. A few decades later, the advent of modern photography was closely 
followed by the earliest work in the creation of panoramic images, see Figure 1.1. In the years 
since, the popularity of panoramas has not waned, see Figure 1.2. These large, sweeping 
images capture the feeling of being an observer, whether it is of a beautiful natural view, 
a historic event such as a Presidential inauguration,1 or a reminder of the destruction of 
war.2 Consequently, there exists a significant interest in creating and using large mosaics

1Barak Obam a Presidential Inauguration: h ttp ://g igapan .org /g igapans/15374/

2Hiroshima Panoram a Project: h ttp ://w w w .iw u.edu/ rw ilson/hiroshim a/

http://gigapan.org/gigapans/15374/
http://www.iwu.edu/
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F ig u re  1.1: A 360 degree panorama taken of the city of Toronto, Ontario, Canada credited 
to Armstrong, Beere and Hime in 1856.

F ig u re  1.2: Massive imagery is typically constructed as a mosaic of many smaller images. 
(a) A panorama of Salt Lake City comprised of 624 individual images. The combined image 
is over 3.2 gigapixels in size. (b) The panorama after being composited into a single seamless 
image.

for personal, scientific, and/or commercial applications. Examples include medical imaging, 
where electron microscopy data is composited into ultra-high resolution images [159] or 
the study of phenology and genomics.3 Massive imagery is also common in geographic 
information systems (GIS) in the form of aerial or satellite data and used for anything from 
urban planning to global climate research.

While many-megapixel cameras do exist,4 they are overly expensive and unwieldy to use. 
Therefore, massive imagery is typically constructed as a mosaic of many smaller images.

3GigaVision Project: http://w w w .gigavision.org/

4Seitz 6x17 Digital: h ttp://w w w .roundshot.ch/xm L 1/in ternet/de/application/d438/d925/f934.cfm

http://www.gigavision.org/
http://www.roundshot.ch/xmL1/internet/de/application/d438/d925/f934.cfm
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At one time, images such as the one in Figure 1.1 were painstakingly constructed by hand. 
Recent innovations in algorithms and available hardware have drastically simplified the 
creation of small-scale panoramas. This process can be computed simply offline and can 
now be embedded in commodity cameras (e.g., the Sony Cyber-shot 3D Sweep Panorama) 
or mobile devices such as Apple’s iPhone. The panoramas for these algorithms are assumed 
to be small and therefore, are not designed to scale. For example, the iPhone’s panorama 
feature, released in September 2012, has a strict 28 megapixel upper limit on the panorama 
size. This is small by today’s standards. An online search for the word “gigapixel” 
powerfully demonstrates the increasing desire to create ever larger panoramas. To date, 
the largest panorama contains roughly 272 gigapixel, yet if the current trend continues, this 
record is bound to be broken within a few months. This trend is aided by the introduction 
of new, high-resolution image sensors. For example, with current state-of-the-art 36.3 
active megapixel CMOS sensors, it would take as little as 70 images to produce a gigapixel 
panorama.

Creating panoramas at large scales has become exponentially more difficult than the 
simple, small cases for which panorama techniques were originally designed. For example, 
the 3.2 gigapixel panorama shown in Figure 1.2 took several hours to capture and an 
order of magnitude more time to process on conventional hardware. Furthermore, this 
timeline assumes a perfect capture and one-time processing. In practice, the process of 
setting up an automated camera is complicated and error prone and often problems, such 
as unanticipated occlusion or global misalignment occur. Unfortunately, many of these 
issues are only subtly expressed in the individual images and become apparent only after 
the creation of the final panorama. Additionally, today’s processing pipelines are less than 
ideal and typically involve a large number of interdependent and unintuitive parameter 
choices. A mistake or unlucky choice in the setup can easily cause unacceptable artifacts 
in the image requiring a repeat of the process. Consequently, it may take several weeks 
and significant computational resources to produce one large-scale panorama. This makes 
it difficult for all but a select few to create such images and makes this imagery impractical 
for many interesting applications. For example, acquiring imagery from unusual locations 
such as national parks, or covering transient events like an aurora, becomes a significant 
logistical and monetary challenge. Furthermore, in security applications waiting hours 
or days for viable results defeats the primary purpose of acquiring the images. Finally, in 
scientific applications, while typically less time constrained, the personal and computational
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resources necessary to create a large-scale image of the night sky, for example, are beyond 
the reach of all but the largest projects. Therefore, despite significant interest, creating 
these massive images remains an esoteric hobby or a closely guarded research project.

Work must be done to close the gap between the desire to create large-scale panoramas 
(and their potential applications) and the ability to capture, process, and utilize such 
imagery. An ideal panorama system should allow a user to browse individual images 
as they are acquired, to setup and preview the processing pipeline and results through 
accurate, real-time approximations, and include a flexible and scalable offline component 
to produce a final image. The system should be divided into two components: First, 
a real-time framework to supervise and steer the acquisition process and to guide the 
postprocessing; and second, a computational back-end based on a distributed or cloud 
computing framework. The real-time system should be able to run on devices as small as 
an iPad or netbook computer and be designed to be used in the field to detect any problems 
as early as possible. The back-end fills the gap between commonly available but slow 
commodity hardware and specialized distributed computing resources. By implementing a 
flexible framework able to run on a wide variety of heterogeneous systems, the back-end 
scales gracefully between a single multicore machine, or a small cluster, to more powerful 
hardware. My dissertation research has been the creation of technologies to aid in the 
creation of such a system.

1.1 The Panorama Creation Pipeline
Creating large-scale panoramas can be divided into three stages: acquisition, image 

registration, and composition. See Figures 1.3 and 1.4. Each stage individually has been the 
focus of a large amount of research but little effort has been spent on real-time performance 
or their interdependence. Traditionally all three stages are treated as separate postprocesses, 
making performance or pipelining a secondary consideration. However, as discussed above, 
this approach is rapidly becoming unsustainable as long acquisition and processing times 
lead to errors as well as an increased number of hardware and software failures. To this 
end, my research goals are and have been to develop algorithms for each stage that produce 
high quality approximations in real-time and provide a scalable infrastructure to create 
full solutions exploiting all available hardware. Such new technologies would enable a wide 
variety of applications currently infeasible. For example, the ability to quickly and cheaply 
produce high resolution images of art galleries, historical events, or national parks would



5

Acquisition

F ig u re  1.3: The three stages of panorama (mosaic) creation. First, the individual images 
must be acquired. Second, they are registered into a common coordinate system. Third, 
they are composited (blended) into a single seamless image. My dissertation research has 
been to provide technologies to enable interactivity for the final composition stage while a 
high-performance back-end provides a final image.

Acquisition Registration Composition

F ig u re  1.4: An example of the three stages of a panorama’s creation. First, the individual 
images are acquired, typically, from a handheld camera. Second, for registration, the 
common coordinate system for the images is computed. Third, they are composited 
(blended) into a single seamless image.

greatly benefit schools, universities and the public in general. Enabling the military to 
combine footage from multiple security cameras, satellites, or flying drones into a seamless 
overview would allow operators to more accurately spot changes in a secure area or direct 
ground operations. While a full system is a long-term research goal, my dissertation work 
has focused on the last phase of the mosaic creation pipeline, specifically the composition 
stage.

After registration, image mosaics are combined in order to give the illusion of a seamless, 
massive image. Images acquired with inexpensive robots and consumer cameras pose an 
interesting challenge for image processing techniques. Often, panorama robots can take 
seconds between each photograph, causing gigapixel-sized images to be taken over the 
course of hours. Due to this delay, images can vary significantly in lighting conditions 
and/or exposure, and when registered can form an unappealing patchwork. Dynamic objects 
between images may also move during acquisition, ruining the illusion of a single, seamless 
image. Images acquired by air or satellite also suffer from an extreme version of this problem, 
where the time of acquisition can vary from hours to days for a single composite. Therefore,
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minimizing the transition between images is the fundamental step in the composition stage, 
see Figure 1.5. The simplest transition approach is an alpha-blend of the overlap areas. 
Szeliski [155] provides an excellent introduction to this and other blending techniques. Such 
an approach does not work well in the presence of dynamic elements which move between 
captures, artifacts from poor registration, or varying exposures across images, see Figure 1.6. 
Often, it is preferable to compute a “hard” boundary, or seam, between the images as a 
final step, or as the preprocess for a technique such as gradient domain blending [133, 103]. 
Techniques exists to compute these seams based purely on distance [174, 132], but like 
blending, these will perform poorly when the scene contains moving elements.

A more sophisticated approach is to compute the boundaries between images through 
an energy function minimization to produce a nice transition between the mosaic images. 
These boundaries often provide the illusion of a seamless composited image. If exposure 
or lighting conditions vary among the images, a final color correction is necessary to 
produce a smooth image. Techniques such as gradient domain blending [133, 103], mean 
value coordinates [54], or bilateral upsampling [93] have been shown to provide adequately 
smooth images. Gradient domain blending remains the most popular, but also the most 
computationally expensive technique for color correction due to the quality of its final 
results.

The techniques associated with panorama boundaries and blending are typically com­
putationally expensive and are considered an offline, postprocess for large (and even small) 
panoramas. As the focus of my dissertation work, I provide novel algorithms and techniques 
to bring these operations into an interactive setting for massive imagery.

F ig u re  1.5: A diagram to illustrate the main options available during the composition 
stage of panorama creation. The most simple process is to merge the image directly from 
the registration. The simplest approach is an alpha-blend of the overlap areas to achieve a 
smooth transition between images.
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F ig u re  1.6: A simple blending approach is usually not sufficient in mosaics with moving 
elements. In these cases, the elements produce “ghosts” (circled here in red) in the final 
blend.

1.2 Boundaries
In the past, panorama image collections were captured in one sweeping motion (i.e., with 

image overlaps in only one dimension as in Figure 1.7). Today’s images are often collections 
of multiple rows and columns or in more unstructured configurations. Consequently, more 
sophisticated panorama processing techniques continue to be developed to account for their 
more complex configurations.

After the initial registration, the panorama’s individual images are blended to give the 
illusion of a single seamless image. As a usual first step, a boundary between images must be 
computed as input for a color correction technique such as gradient domain blending [133,

F ig u re  1.7: (a, e) Two examples (Canoe: 6842 x 2853, 2 images and Lake Path: 4459 x 
4816, 2 images) of undesirable, yet exactly optimal seams (unique pairwise overlaps) for the 
pixel difference energy. (b, f) A zoom of visual artifacts caused by this optimal seam. (c, g) 
The pixel labeling. (d, h) The result produced by Adobe Photoshop™ . Images courtesy 
of City Escapes Nature Photography.
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103]. These boundaries are often called seams. Using a global optimization technique, these 
seams can be optimized to minimize visual artifacts due to transition between images. This 
is typically a pixel-based energy function such as color or color-gradient variations across 
the boundary.

Currently, the most used technique for global seam computation in a panorama is the 
Graph Cuts algorithm [26, 24, 92]. This is a popular and robust computer vision technique 
and has been adapted [101, 4] to compute the boundary between a collection of images. 
While this technique has been used with good success for a variety of panoramic or similar 
graphics applications [101, 4, 5, 3, 2, 94, 89, 44, 90], it can be problematic due to its high 
computational cost and memory requirements. Moreover, Graph Cuts applied to digital 
panoramas is a typical serial operation. Since computing the globally optimal boundaries 
between images is known to be NP-hard when the panorama is composed of more than a 
collection of unique pairwise overlaps [26], Graph Cuts aims to efficiently approximate the 
optimal solution and can therefore fall into local minima of the solution space.

There has been a large body of work to reduce some of the costs associated with Graph 
Cuts [25, 24, 142, 5, 107, 61, 124, 167, 138, 69, 106], but each of these works primarily 
focuses on Graph Cuts’ typical image segmentation or de-noising applications. The success 
of many of these algorithms has yet to be demonstrated for digital panoramas. Those which 
have been used in a panorama context can suffer from limitations. For example, the popular 
Hierarchical Graph Cuts technique [107, 5] has been shown to operate well on hierarchies 
up to two to three levels in digital panoramas [5] and can be observed practice in panoramas 
such as the one shown in Figure 1.8. Given the recent trend of the increasing resolution of 
panoramas (many megapixels to gigapixels), one can see that this limited hierarchy would 
not be sufficient to compute the seams of images of these sizes. As a second example, Graph 
Cuts often needs an integer based energy function to guarantee convergence. This can prove 
problematic for high dynamic range (HDR) panoramas.

To overcome these types of limitations, a new approach was designed based on the 
following observations:

• A minimal energy seam does not necessarily give visually pleasing results. Figure 1.7 
provides two examples of panoramas with an exact pairwise optimal energy boundary 
based on pixel difference across the seam. This should be sensitive to dynamic, moving 
objects which appear in the overlap. As you can see, neither seam would be considered 
ideal by a user since they cut through moving objects in the scene. Additionally, to
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Full Resolution Two Levels Three Levels Four Levels

F ig u re  1.8: Hierarchical Graph Cuts has only been shown to work well on hierarchies of 
two to three levels. For this four picture panorama example, we can see that Hierarchical 
Graph Cuts produces a solution that passes though a dynamic scene element when using 
four levels of the hierarchy. A typical input value of a ten pixel dilation was used for this 
example. While a larger dilation parameter could be used, this would require a larger 
memory and computational cost which negates the benefits of the technique.

further argue the importance of this observation, the figure also shows very similar 
seams computed by Adobe Photoshop™ , a widely used image editing application.

• There can be more than one valid seam solution. Even if the initial seam solution 
is visually acceptable to the user, there may be a large number of additional, valid 
solutions. Some of these alternative seams may be preferable and this determination 
is completely subjective. For example, a user may have wished that the high energy 
in a seam occurred in an area where it is less likely to be noticed such as the grassy 
area or the water in the images in Figure 1.7. Given moving elements in a scene, such 
elements may occur entirely within the area of an overlap. Therefore, there can be 
acceptable seams where the element is included and ones where it is not. Figure 1.9 
provides examples.

• An interactive technique is necessary and attainable. Given the subjective nature of 
the image boundaries and the possibility of techniques falling into bad local minima, 
a user must be interjected into the seam boundary problem. Currently, finding 
panorama boundaries with Graph Cuts is an offline process with only one solution 
presented to the user. The only existing alternative is the manual editing, pixel by 
pixel, of the individual image boundaries. This is a time-consuming and tedious



10

F ig u re  1.9: Even when seams are visually acceptable, moving elements in the scene may 
cause multiple visually valid seam configurations. On the top, this figure shows a four image 
panorama (Crosswalk: 4705 x 3543, four images) with three valid configurations. On the 
bottom, this figure shows a two image panorama (Apollo-Aldrin: 3432 x 2297, two images) 
with two valid configurations. Images courtesy of NASA.

process where the user relies on perception alone to determine if the manual seam 
is acceptable. Therefore, a guided interactive technique for image boundaries is 
necessary for panorama processing. This technique should allow users to include 
or remove dynamic elements, move an image seam out of possible local minima into 
a lower error state, move the seam into a higher error state (but one with more 
acceptable visual coherency) or hide errors in locations where they feel it is less 
noticeable. During these edits, the user should be provided the optimal seams given 
these new constraints.

• A solution based on pairwise boundaries can achieve good results for panoramas giving 
a fast, highly parallel, and light system. Computing pairwise-only optimal boundaries 
is both fast and exact (i.e., is guaranteed to find the global minimum). It is then 
of no surprise that these boundaries have been used often in past work for pan- 
or tilt-only panoramas [145, 46, 157, 165]. Although it has been thought not to 
generalize beyond this case, there has been no technique to use pairwise boundaries 
in panoramas with more complex structure, save for efforts to combine them via a 
distance metric [69] or sequentially [53]. This dissertation work not only provides a 
global solution based on pairwise boundaries, but also shows that this solution often
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produces lower energy seams than Graph Cuts for panoramas. Given a technique to 
combine pairwise boundaries into a coherent seam network, each disjointed seam can 
be computed separately and trivially in parallel. Moreover, the solution produced for 
each is typically independent and therefore, memory and resources for each can be 
allocated and released as needed. In addition, the solution domain is only the overlap 
between pairs of images in contrast to some previous applications of Graph Cuts for 
panoramas [101, 4], which often consider the entire composite image as the solution 
domain. All of these properties give the potential for a very fast and light system 
even when operating on the full resolution imagery. Moreover, such a system should 
have the ability to be extended to an out-of-core or distributed setting.

This dissertation describes a new image boundary technique called Panorama Weaving. 
First, Panorama Weaving provides an automatic technique to create approximate optimal 
boundaries that is fast, has low memory requirements, and is easy to parallelize. Second, it 
provides the first interactive technique to enable the exploration of the seam solution space. 
This gives the end-user a powerful editing system for panorama seams. In particular, the 
contributions of this work on a technical level are:

• A novel technique to merge independently computed pairwise boundaries into a global, 
consistent seam network that does not cascade to a global calculation.

• A panorama seam creation technique based purely on pairwise boundary solutions. 
This technique is fast and highly parallel and shows significant speed-ups compared 
to previous work, even when run sequentially. More importantly, it achieves all of this 
even with full resolution imagery.

• Out-of-core and distributed seam creation algorithms which extend the creation tech­
nique to mosaics massive in size. These algorithms provide speed-ups compared to 
the state-of-the-art.

• The first system that allows interactive editing of seams in panoramas. This system 
guarantees minimal user input thanks to an efficient exploration of the solution space.

• An intuitive mesh specialization of a region adjacency graph that encodes seam 
and image relations. This adjacency mesh provides a way to guarantee the global 
consistency of the seam network of the interactions and also enables a robust editing 
of the network’s topology.
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1.3 Color Correction
Creating a single seamless image from a mosaic has been the subject of a large body of 

work for which gradient-domain (Poisson) techniques currently provide the best solution. 
Only one method exists to operate on the gradient-domain of massive images: the streaming 
multigrid [89] technique. However, processing the three gigapixel image of Figure 1.2 using 
this technique still takes well over an hour, which does not support an interactive trial-and- 
error artistic process. An additional disadvantage of traditional out-of-core methods is their 
tendency to achieve a low memory footprint at the cost of significantly proliferating the disk 
storage requirements. For example, the multigrid method [89] requires auxiliary storage an 
order of magnitude greater than the input size, almost half of which is due to gradient 
computation. In contrast, our approach completely avoids such data proliferation, thereby 
allowing the processing of data which already pushes the boundaries of available storage. 
The multigrid method [89] is also limited by main memory usage since it is proportional to 
the number of iterations of the solver. This can cause the method to not achieve acceptable 
results for images that may require a large number of iterations, as shown in Section 4. This 
work introduces a new method with memory usage independent of the number of iterations 
of the Poisson solver and, therefore, would scale gracefully in these cases.

An option to reduce times is to design a similar scheme to run in a distributed environ­
ment. Consequently, there has been recent work to extend the multigrid solver [90] to a 
parallel implementation, reducing the time to compute a gigapixel solution to mere minutes. 
However, this approach is primarily a proof-of-concept since it does not supply the classic 
tests of scalability (weak or strong) nor is it tested significantly. Like many out-of-core 
methods, proliferation of disk storage requirements is a major drawback. For example, 
testing was only possible with a full 16-node cluster for some of the streaming multigrid test 
data due to excessive storage demands. Finally, the technique assumes that a small number 
of predetermined iterations is sufficient to achieve a solution, which may not always be the 
case. This implementation was optimized for a single distributed system and therefore, is 
unlikely to port well to other environments. History has shown that levels of abstraction that 
remove complexity from a code base can be instrumental in the advancement of technologies. 
Abstraction that allows simple and portable code accelerates innovation and reduces time to 
develop new ideas. The cloud should be explored as such abstraction, allowing a developer 
to ignore much of the more tedious and complex elements in implementing a distributed 
graphics algorithm. A general scheme cannot beat the performance of highly specialized and
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optimized code. Often for organizations with resources, there may be cases where speed and 
efficiency are more important than the cost to create and maintain a typical implementation. 
Although with increased availability of cloud commodities, there is now the opportunity to 
offer more members of our community the ability to develop new algorithms for a distributed 
environment.

In particular, in the area of color correction this dissertation work introduces a simple 
and light-weight framework that provides the user with the illusion of a full Poisson system 
solve at interactive frame rates for image editing. This framework also allows for the 
computation of a full solution on a single machine with a simple approach, rivaling the run 
time of the current best out-of-core technique [89], while producing equal or higher quality 
results on images that require a large number of iterations. The system is flexible enough to 
handle different hierarchical image formats such as tiling for higher quality images or HZ- 
order for greater input/output (I/O) speed. In particular, by exploiting a new implicit kd- 
tree hierarchy for HZ-order, the framework needs only to access and solve visible pixels. This 
allows an artist to interactively apply gradient-based techniques to images gigapixels in size. 
This new framework is straightforward and requires neither complicated spatial indexing 
nor advanced caching schemes. Additionally, this work introduces a framework for parallel 
gradient-domain processing inspired by the out-of-core technique with a novel reformulation 
to provide an efficient parallel distributed algorithm. This new framework has both a 
straightforward implementation and shows both strong and weak parallel scalability. When 
implemented in standard MPI (Message Passing Interface), the same code base ports well 
to multiple distributed systems. Furthermore, this distributed algorithm can be wrapped 
in a level of abstraction to be run on the cloud, allowing for a simple implementation, as 
well as allowing it to be distributed to the community at large.

Specifically, the contributions of this work are:

• A coarse-to-fine progressive Poisson solver running at interactive frame rates, extended 
to a wide variety of gradient domain tasks, with the ability to scale to gigapixel images. 
This cascadic solver entirely avoids the coarsening stage of the V-cycle yet produces 
high quality results.

• A method to locally refine solutions having time and space requirements that are 
linearly dependent on the screen resolution rather than the resolution of the input 
image.



14

•  A full out-of-core solver that maintains strict control over system resources, rivals the 
run-times for the best known method and consistently achieves quality results where 
previous methods may not converge well in practice.

• A light-weight streaming framework that provides adaptive multiresolution access to 
out-of-core images in a cache coherent manner, without using intricate indexing data 
structures or precaching schemes.

• A distributed algorithm based on the out-of-core scheme, which has a straightforward 
implementation and shows both strong and weak parallel scalability.

• The first distributed Poisson solver for imaging implemented in the cloud.



CHAPTER 2
RELATED WORK

This chapter will outline the previous work for the two major portions of the composition 
step of the panorama creation pipeline: image boundaries, Section 2.1, and color correction, 
Section 2.2. In particular, these sections will address the related work for the state-of-the-art 
for image boundaries, minimal image seams, and color correction, gradient domain editing.

2.1 Image Boundaries: Seams
This section details the related previous work for computing image boundaries for an 

image mosaic. In particular, this section focuses on the current state-of-the-art that is the 
computation of minimal mosaic seams.

2.1.1 Pairw ise B oundaries
Some of the seminal works in digital panoramas assume that an image collection is 

acquired in a single sweep (either pan, tilt or a combination of the two) of the scene. In such 
panoramas, only pairwise overlaps of images need be considered [119, 120, 157, 145, 46, 165]. 
The pairwise boundaries which have globally minimal energy can be computed quickly 
and exactly using a min-cut or min-path algorithm. There is an intuitive and proven 
duality between min-cut and single-source/single-destination min-path [72]. These pairwise 
techniques were thought to not be general enough to handle the many configurations possible 
in modern panoramas. Recent work [69] has dealt with the combination of these seams for 
more complex panoramas, although the seam combinations are still based on an image 
distance metric. Other recent work [53], combined these separate seams for the purposes 
of texture synthesis combining seams sequentially. For their work, this was sufficient to 
provide good results for textures. The combination and intersection of these seams in a 
digital panorama can be more complex and therefore, a more expressive combination is 
necessary. In addition, interaction was not considered as a necessary functionality in these 
works. This dissertation presents a novel technique to combine these disjoint seams into a
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global panorama seam network and allow for manual user interaction.

2.1.2 G raph C uts
The Graph Cuts technique [26, 24], computes a k-labeling of a graph, typically an 

image, to minimize an energy function on the domain. An algorithm that guarantees to 
find the global minimum is considered to be NP-hard [26] and therefore Graph Cuts was 
designed to efficiently compute a good approximation. Graph Cuts has been shown to give 
good results for a variety of energy functions [92]. Thus, it is of no surprise given this 
versatility that it has been shown to adapt to the image mosaic and panorama boundary 
problem [101, 4]. However, Graph Cuts is both a computationally expensive and memory 
intensive technique. Given these requirements, there has been work on accelerating the 
Graph Cuts process by, for instance, adapting the technique to run on the GPU [167], 
in parallel [106], or in parallel-distributed [48] environments. Building a hierarchy for the 
Graph Cuts computation [107, 5] has shown to be popular due to its reduction of memory 
and computation costs. For panoramas, this strategy has only been shown to provide good 
results for a hierarchy of two to three levels [5]. There has also been work on bringing Graph 
Cuts into an interactive setting [25, 142, 104, 61, 124] although these works have focused 
only on user guided image segmentation. This dissertation provides the first technique to 
allow interactive editing of panorama boundaries.

2.1.3 A lternative B oundary Techniques
While Graph Cuts still maintains its popularity as a solution to the minimal boundary 

problem, there has been other ongoing work on alternative techniques. For example, there 
has been work on techniques based on luminance voting [82]. There has also been recent 
work using geodesics to interactively compute pairwise minimal boundaries [45].

2.1.4 O ut-of-C ore and D istributed  C om putation
While there has been previous work to bring the Graph Cuts technique to massive grids, 

the previous work has only dealt with extending the algorithm to a distributed and out-of­
core environment [48], No current technique decouples the two. The work of this dissertation 
has the flexibility to operate in-core, out-of-core, or distributed depending on the application 
or available resources. Moreover, the inherent parallelism of the new technique is likely to 
outperform the previous work. Finally, there has been no work to allow interaction with 
these seams at massive scales. Hierarchical Graph Cuts has been used on large images [2],
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although given the documented limitation on the viable number of levels in the hierarchy [5] 
this will not scale massively. Applying standard Graph Cuts as a sweeping window over 
an image neighborhood [94] has been used to produce boundaries for gigapixel imagery. 
Such a process has yet to be formulated in parallel and is potentially very computationally 
expensive.

2.2 Color Correction: Gradient Domain Editing
This section details the related previous work in the most popular and sophisticated 

color correction procedure for image mosaics called gradient domain image editing, or by 
its alternative name, Poisson image editing.

2.2.1 Poisson Im age Processing
A variety of gradient-based methods provide a popular, but computationally expensive, 

set of techniques for advanced image manipulation. Given a guiding gradient field con­
structed from one or multiple source images, these techniques attem pt to find a closest-fit 
image using some predetermined distance metric. This basic concept has been adapted 
for standard image editing [133], as well as more advanced matting operations [152] , and 
high level drag-and-drop functionality [79]. Furthermore, gradient-based techniques can 
tone map high dynamic range images to display favorably on standard monitors [55] or 
hide the seams in panoramas [133, 103, 4, 89]. Other applications include detecting light­
ing [76] or shapes from images [173], removing shadows [57] or reflections [6], and gradient 
domain painting [114]. Recently, an alternative approach using mean value coordinates 
has smoothly interpolated the boundary offset between source images, thereby mimicking 
Dirichlet boundary conditions [54]. This promising new line of research has yet to show 
support of Poisson techniques such as tone-mapping, the ability to work well out-of-core, 
or consistently acceptable results for methods that typically require Neumann boundary 
conditions.

2.2.2 Poisson Solvers
The solution to a two-dimensional (2D) Poisson problem lies at the core of gradient based 

image processing. Poisson equations have wide utility in many engineering and science 
applications. Computing their solution efficiently has been the focus of a large body of 
work and even a cursory review is beyond the scope of this dissertation. For small images, 
methods exist to find the direct analytical solution using Fast Fourier transforms [75, 7, 8,
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113]. Simchony [146] provides a survey of these methods for computer vision applications. 
Often the problem is simplified by discretization into a large linear system whose dimension 
is typically the number of pixels in an image. If this system is small enough to fit into 
memory, methods exist to find the direct solution and we refer the reader to Dorr [51] 
who provides an extensive review on direct methods. Typically, iterative Krylov subspace 
methods, such as conjugate gradient, are used due to their fast convergence. For much 
larger systems, memory consumption is the limiting factor and iterative solvers, such as 
Successive Over-Relaxation (SOR) [13] become more attractive.

Depending on the application, different levels of accuracy may be required. Sometimes, 
a coarse approximation is sufficient to achieve the desired result. Bilateral upsampling 
methods [93] operating on a coarse solution produced good results for applications such 
as tonemapping. Such methods have not yet been shown to handle applications such as 
image stitching where the interpolated values are typically not smooth at the seams between 
images.

When pure upsampling is insufficient, the system must be solved fully. Multigrid 
methods are often employed to aid the convergence of an iterative solver. Such methods 
have proven particularly effective by dealing with the large scale trends at coarse resolutions. 
These techniques include preconditioners [66, 155] and multigrid solvers [27, 28]. There 
exist different variants of multigrid algorithms using either adaptive [20, 88, 21, 2, 139] or 
nonadaptive meshes [87, 89]. As a first step in a complete multigrid system, the mesh is 
coarsened. The Poisson equation can then be solved in a coarse-to-fine manner. One full 
iteration, from fine to coarse and back, is typically called a V-cycle. Most recently, a V-cycle 
was implemented in a streaming fashion for large panoramas [89]. However, other systems 
only implement parts of the V-cycle. Kopf et al. [94] implement only the second half in a 
pure upsampling procedure, while Bolitho et al. [21] implement a purely coarse-to-fine solver 
also called cascadic [22]. Lischinski et al. [105] applied this pure coarse-to-fine approach 
for interactive tonal adjustment. The technique outlined in this diseration (for the first 
time) shows that a cascadic approach has applications well beyond the adjustment of tonal 
values and can be used for a wide variety of gradient based image processing techniques. 
This work also extends such techniques to allow the interactive editing and processing of 
gigapixel images. The solver propagates sufficient information from coarse-to-fine, allowing 
us to achieve local solutions at interactive rates that are virtually indistinguishable from 
the full-resolution solution.
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2.2.3 O ut-of-C ore C om putation
Toledo [160] presents a survey of general out-of-core algorithms for linear systems. The 

majority of algorithms surveyed assume that at least the solution vectors can be kept in 
main memory, which is not the case for large images. For out-of-core processing of large 
images, the streaming multigrid method of Kazhdan and Hoppe [89] has so far provided the 
only solution. However, processing a three gigapixel image using this technique still takes 
well over an hour which does not support an interactive trial-and-error artistic process. 
Many algorithms such as tone mapping require careful parameter tuning to achieve good 
results. Thus, waiting several hours to examine the effects of a single parameter change is 
not feasible in this context.

An additional disadvantage of traditional out-of-core methods is their tendency to 
achieve a low memory footprint at the cost of significantly proliferating the disk storage 
requirements. For example, the multigrid method [89] requires auxiliary storage an order of 
magnitude greater than the input size, almost half of which is due to gradient computation. 
In contrast, in this dissertation, I with my collaborators, introduce an approach that 
completely avoids such data proliferation, thereby allowing the processing of data, which 
already pushes the boundaries of available storage.

The multigrid method [89] is also limited by main memory usage since it is proportional 
to the number of iterations of the solver. This can cause the method to not achieve 
acceptable results for images that may require a large number of iterations, as shown in 
Section 4. This work provides a new method with memory usage independent of the number 
of iterations and, therefore, scales gracefully in these cases.

2.2.4 D istrib u ted  C om putation
Recently, the streaming multigrid method has been extended to a distributed environ­

ment [90] and has reduced the time to process gigapixel images from hours to minutes. 
The distributed multigrid requires 16 bytes/pixel of disk space in temporary storage for 
the solver as well as 24 bytes/pixel to store the solution and gradient constraints. For the 
terapixel example of Kazhdan et al. [90], the method had a minimum requirement of 16 
nodes in order to accommodate the needed disk space for fast local caching. In contrast, 
the approach outlined in this work needs no temporary storage and is implemented in 
standard MPI. Streaming multigrid also assumes a precomputed image gradient, which 
would add substantial overhead in initialization to transfer the color float or double data. 
Our new approach is initialized using original image data plus an extra byte for image
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boundary information which equates to 1/3 less data transfer in initialization than the 
previous method. Data transfers between this solver’s phases, while floating point, only 
deal with the boundaries between compute nodes which is substantially smaller than the full 
image and therefore are rarely required to be cached to disk. The multigrid method [89, 90] 
may also be limited by main memory, since the number of iterations of the solver is directly 
proportional to the memory footprint. For large images, this limits the solver to only a few 
Gauss-Seidel iterations and therefore may not necessarily converge for challenging cases. 
Our method’s memory usage is independent of the number of iterations and can therefore 
solve images that have slow convergence.

Often large images are stored as tiles at the highest resolution; therefore, methods that 
exploit this structure would be advantageous. Stookey et al. [148] use a tile-based approach 
to compute an over-determined Laplacian PDE (partial differential equation). By using 
tiles that overlap in all dimensions, the method solves the PDE on each tile separately and 
then blends the solution via a weighted average. Unfortunately this method cannot account 
for large scale trends beyond a single overlap and therefore can only be used on problems 
which have no large (global) trends. Figure 2.1 illustrates why this would be a problem for 
panorama processing. The coarse up-sampling of our approach fixes this issue.

2.2.5 Cloud C om puting - M apR educe and H adoop
MapReduce [47] was developed by Google as a simple framework to process massive data 

on large distributed systems. It is an abstraction that owes its inspiration to functional 
programming languages such as Lisp. At its core, the framework relies on two simple 
operations:

• Map: Given input, create a key/value pair.

• Reduce: Process all values of a given key.

All the complexity of a typical distributed implementation due to data distribution, load 
balancing, fault-recovery and communication are under this abstraction layer and therefore 
can be ignored by a developer. This framework, when combined with a distributed file 
system, can be a simple yet powerful tool for data processing.

Hadoop is an open source implementation of MapReduce maintained by the Apache 
Software Foundation and can be optionally coupled with its own distributed file system 
(HDFS). Pavlo et al. [131] found that Hadoop was easy to deploy and use, offered adequate
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F ig u re  2.1: Although the result is a seamless, smooth image, without coarse upsampling 
the final image will fail to account for large trends that span beyond a single overlap and 
can lead to unwanted, unappealing shifts in color.

scalability, has very effective fault-tolerance, and, most importantly, was easy to adapt for 
complex analytic tasks. Hadoop is also widely available as a commodity resource. For 
example, Amazon Web Services, a service suite that has become nearly synonymous with 
cloud computing in the media, provides Hadoop as a native capability [10]. Companies 
have begun to use Hadoop as a simple alternative for data processing on large clusters [71]. 
For instance, The New York Times has used Hadoop for large scale image to PDF con­
version [68]. Google, IBM, and NSF have also partnered to provide a Hadoop cluster for 
research [41].

2.2.6 O ut-of-C ore D ata  A ccess
Given an image, it is well known that the standard row-major order exhibits good locality 

in only one dimension and is therefore ill-suited for an unconstrained out-of-core storage 
scheme [168]. Previous out-of-core Poisson methods [89] have been noted to be severely 
limited by this constraint. Instead, indexing based on various space-filling curves [143] has 
been proposed in different applications [126, 70, 17, 102] to exploit their inherent geometric 
locality. Of particular interest is the Z-order (also called Lebesgue-order) [17, 128] since 
it allows an especially simple conversion to and from standard row-major indices. While 
Z-order exhibits good locality in all dimensions, it does so only at a fixed resolution and 
does not support hierarchical access. Instead, this work will utilize the hierarchical variant, 
called HZ-order, proposed by Pascucci and Frank [128].



CHAPTER 3
SCALABLE AND EFFICIENT DATA 

ACCESS
At the core of any large data processing system is an efficient scheme for data access. 

In this chapter, I will detail the technology used in the systems outlined in this work. 
In Section 3.1, I will review the fundamentals of the hierarchical Z-order (HZ-order) for 
two-dimensional arrays, our chosen format for large image processing. I will also provide 
a new, simple algorithm in Section 3.2 for accessing data organized in HZ-order, while 
avoiding the repeated index conversions used in [128]. Section 3.3 will provide a new 
parallel write scheme for HZ-order data. Finally, in Section 3.4 I will give an outline of 
the ViSUS software infrastructure, the core system behind much of the massive image 
processing outlined in this dissertation. Conversion of large images into theViSUS format 
requires no additional storage, compared to the typical 1/3 data increase common for typical 
tiled image hierarchies. From our test data, we have found that there is only a 27% overhead 
due to the conversion compared to just copying the raw data which makes this conversion 
very light. The conversion requires no operations on the pixel data and will outperform 
even the most simple tiled hierarchies, which require some manipulation of the pixel data. 
Section 5.2.2 will show that this new I/O  infrastructure reduces the overhead by 28%-40% 
when compared to a standard tiled image hierarchy. These numbers reflect the theoretical 
bound of 1/3 overhead, made worse by the inability to constrain real queries to perfect 
alignment with the boundaries of a quadtree.

3.1 Z- and HZ-Order Background
The data access routine of our system achieves high performance on our image data 

by utilizing a hierarchical variant of a standard Z-order (Lebesgue) space filling curve to 
lay out our two-dimensional data in one-dimensional memory. In the two-dimensional case 
the Z-order curve can be defined recursively by a Z shape whose vertices are replaced by 
Z shapes half its size (see Figure 3.1 (a)). Given the binary row-major index of a pixel
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(a)

(b)

Binary representation
Z-order i

0 0000 00 00
1 0001 01 00
2 0010 00 01
3 0011 01 01

Sam
ple

 i
nd

ex 4 0100 10 00
5 0101 11 00
6 0110 10 01
7 0111 11 01
8 1000 00 10
9 1001 01 10
10 1010 00 11
11 1011 01 11
12 1100 10 10
13 1101 11 10
14 1110 10 11
15 1 1 1 1 11 11

F ig u re  3.1: (a) The first four levels of the Z-order space filling curve; (b) 4x4 array indexed 
using standard Z-order

(in • •• i1i0, j n • • • j 1j 0) the corresponding Z-order index I  is computed by interleaving the 
indices I  =  j nin . . .  j 1i 1j 0i0 (see Figure 3.2 (a) step 1).

While Z-order exhibits good locality in all dimensions, it does so only at full resolution 
and does not support hierarchical access. Instead, our system uses the hierarchical variant, 
called HZ-order, proposed by Pascucci and Frank [128]. This new index changes the 
standard Z-order of Figure 3.1 (b) to be organized by levels corresponding to a subsampling 
binary tree, in which each level doubles the number of points in one dimension (see Figure 3.2
(b)). This pixel order is computed by adding a second step to the index conversion. To 
compute an HZ-order index I, the binary representation of a given Z-order index I  is shifted 
to the right until the first 1-bit exits. During the first shift, a 1-bit is added to the left and 
0-bits are added in all following shifts (see Figure 3.2 (a)). This conversion could have a 
potentially very simple and efficient hardware implementation. The software C + +  version 
can be implemented as follows:



24

(a)

(b)

F ig u re  3.2: (a) Address transformation from row-major index ( i , j ) to Z-order index I  
(Step 1) and then to hierarchical Z-order index (Step 2); (b) Levels of the hierarchical 
Z-order for a 4x4 array. The samples on each level remain ordered by the standard Z-order.

in l in e  adhocindex rem ap(register adhocindex i ) {  
i  |= last_b it_m ask; / /  s e t  le ftm o st one 
i  /=  i& -i; / /  remove t r a i l in g  zeros
return  (i>>1); / /  remove rightm ost one

}
We store the data in a way guaranteeing efficient access to any subregion without internal 

caching and without opening a data block more than once. Furthermore, we allow for storage 
of incomplete arrays. In our storage format, we first sort the data in HZ-order and group 
consecutive samples in blocks of constant size. A sequence of consecutive blocks is grouped
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into a record and records are clustered in groups, which are organized hierarchically. Each 

record has a header specifying which of its blocks are actually present and if the data are 

stored raw or compressed. Groups can miss entire records or subgroups, implying that all 
their respective blocks and records are missing.

The file format is implemented via a header file describing the various parameters 

(dimension, block size, record size, etc.) and one file per record. The hierarchy of groups 
is implemented as a hierarchy of directories each containing a predetermined maximum 

number of subdirectories. The leaves of each directory contain only records. To open a file, 

one needs only to reconstruct the path of a record and defer its search to the file system. 

In particular, the path of a record is constructed as follows: we take the HZ-address of the 
first sample in the record, represent it as a string, and partition it into chunks of characters 

naming directories, subdirectories, and the record file. Note that, since blocks, records and 

groups can be missing, one is not restricted to arrays of data that cover the entire index 

space. In fact, we can easily store even images with different regions sampled at different 

resolutions.

3.2 Efficient Multiresolution Range Queries
One of the key components of our framework is the ability to quickly extract rectangular 

subsets of the input image in a progressive manner. Computing the row-major indices of all 
samples residing within a given query box is straightforward. However, efficiently calculating 

their corresponding HZ-indices is not. Transforming each address individually results in a 

large number of redundant computations by repeatedly converting similar indices. To avoid 

this overhead, we introduce a recursive access scheme that traverses an image in HZ-order, 
while concurrently computing the corresponding row-major indices. This traversal implicitly 

follows a kd-tree style subdivision, allowing us to quickly skip large portions of the image.
To better illustrate the algorithm I will first describe how to recursively traverse an 

array in plain Z-order using the 4x4 array of Figure 3.1 (b) as example. Subsequently, I will 

discuss how to restrict the traversal to a given query rectangle and finally, how the scheme 

is adapted to HZ-order.
We use a stack containing tuples of type (split-dimension, Lstart, mind, maxJ, m inj, 

m axj, numelements). To start the process we push the tuple t0 =(1,0,0,3,0,3,16) onto 

the stack. At each iteration we pop the top-most element t from the stack. If t contains 

only a single element we output the current Lstart as HZ-index and fetch the correspond­
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ing sample. Otherwise, we split the region represented by t into two pieces along the 

axis given by split-dimension and create the corresponding tuples t1 =  (0,0,0,3,0,1,8) and 

t2 =(0,8,0,3,2,3,8). Note that all elements of t1 and t2 can be computed from t by simple 
bit manipulation. In case of a square array, we simply flip the split dimension each time a 

tuple is split. However, one can also store a specific split order to accommodate rectangular 

arrays. Figure 3.3 shows the first eight iteration of the algorithm outputting the first four 

elements in the array of Figure 3.1 (b).

To use this algorithm for fast range queries, each tuple is tested against the query box 

as it comes off the stack and discarded if no overlap exists. Since the row-major indices 

describing the bounding box of each tuple are computed concurrently, the intersection test is 

straightforward. Furthermore, the scheme applies, virtually unchanged, to traverse samples 
in Z-order that sub-sample an array uniformly along each axis, where the sub-sampling rate 

along each axis could be different.

Finally, to adapt the algorithm to HZ-order (see Figure 3.2 (b)), one exploits the 

following two important facts:

• One can directly compute the starting HZ-index for each level. For example, in a 

squared array level 0 contains one sample and all other levels h contain 2h-1 samples. 

Therefore the starting HZ-index of level h, lShtart, is 2m-h, where m is the number of 

bits of the largest HZ-index.

• Within each level, samples are ordered according to plain Z-order and can be traversed 

with the stack algorithm described above, using the appropriate subsampling rate.

Using these two facts one can iterate through an array in HZ-order by processing one level 

at a time, adding lShtart to the Ista rt  index of each tuple.

In practice, we avoid subdividing the stack tuples to the level of a single sample. Instead, 

depending on the platform, we choose a parameter n and build a table, with the sequence 
of Z-order indices for an array with 2n elements. When running the stack algorithm, each 

time a tuple t with 2n elements appears, we loop through the table instead of splitting 
t. By accessing only the necessary samples in strict HZ-order, the stack-based algorithm 

guarantees that only the minimal number of disk blocks are touched and each block is 

loaded exactly once.
For progressively refined zooms in a given area, we can apply this algorithm with a minor 

variation. In particular, one would need to reduce the size of the bounding box represented



s s

G
J II O © o 1,4)

t1 =(0,0,0,  3,0, 1,8) t4 =(1, 4, 2, 3, 0, 1,4)
t =(1,0,0,  3,0, 3,16) t2 =(0, 8, 0, 3, 2, 3, 8) t2 =(0,8, 0,3,  2, 3,8)

t6.

3
X\Vi.

i"T
0

t2

FTt7 t8

t2 t2

• 1-3 (i,j)=(l,l)

t4 =(1, 4, 2, 3,0, 1,4)
t2 =(0, 8, 0, 3, 2, 3, 8)

Figure 3.3: Our fast-stack Z-order traversal of a 4x4 array with concurrent index computation
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in a tuple each time it is pushed back into the stack. In this way, even for a progressively 

refined zoom, one would access only the needed data blocks, each being accessed only once.

3.3 Parallel Write
The multiresolution data layout outlined above is a progressive, linear format and 

therefore has a write routine that is inherently serial. When processing a large image on a 

distributed system, or even on a single multicore system, it would be ideal for each node, 

or process, to be able to write out its piece of the data directly in this layout. Therefore a 

parallel write strategy must be employed. Figure 3.4 illustrates different possible parallel 
strategies. As shown in Figure 3.4 (a), each process can naively write its own data directly 

to the underlying binary file. This is inefficient due to the large number of small file accesses. 

As data gets large, it becomes disadvantageous to store the entire dataset as a single, large 
file and typically the entire dataset is partitioned into a series of smaller more manageable 

files. This disjointness can be used by a parallel write routine. As each simulation process 

produces simulation data, it can store its piece of the overall dataset locally and pass the 

data on to an aggregator process. These aggregator processes can be used to gather the 

individual pieces and composite the entire dataset. In Figure 3.4 (b), each process transmits 
each contiguous data segment to an intermediate aggregator. Once the aggregator’s buffer 

is complete, the data are written to disk using a single large I/O  operation. Figure 3.4 (c), 

illustrates a strategy where several noncontiguous memory accesses from each process are 

bundled into into a single message. This approach reduces the number of small network 

messages needed to transfer data to aggregators. This last strategy has been shown to 

exhibit good throughput performance and weak scaling for S3D combustion simulation 

applications when compared to standard Fortran I/O  benchmark [98, 99].

3.4 ViSUS Software Framework
The ViSUS (Visual Streams for Ultimate Scalability) software framework6 has been 

designed as an environment to allow the interactive exploration of massive datasets on a 

variety of hardware, possibly over platforms distributed geographically. The system and 

I/O  infrastructure is designed to handle n-dimensional datasets but is typically used on 

two-dimensional and three-dimensional image data. This two-dimensional portion of this

6h t t p : / /v is u s .c o  or h t tp ://v is u s .u s

http://visus.co
http://visus.us
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Figure 3.4: (a) Naive parallel strategy where each process writes its piece of the overall 
dataset into the underlying flle, (b) each process transmits each contiguous data segment to 
an intermediate aggregator. Once the aggregator’s buffer is complete, the data are written 
to disk, (c) several noncontiguous memory accesses are bundled into a single message to 
decrease communication overhead.

system is the core application on which the massive applications outlined in this dissertation 

are built.
The ViSUS software framework was designed with the primary philosophy that the 

visualization and/or processing of massive data need not be tied to specialized hardware or 

infrastructure. In other words, a visualization environment for large data can be designed 

to be lightweight, highly scalable and run on a variety of platforms or hardware. Moreover, 

if designed generally such an infrastructure can have a wide variety of applications, all from 

the same code base. Figure 3.5 details example applications and the major components 

of the ViSUS infrastructure. The components can be grouped into three major categories. 
First, a lightweight and fast out-of-core data management framework using multiresolution 

space filling curves, which I have outlined Sections 3.1, 3.2, and 3.3. This allows the 
organization of information in an order that exploits the cache hierarchies of any modern 

data storage architectures. Second, ViSUS contains a dataflow framework to allow data 

to be processed during movement. Processing massive datasets in their entirety would be 
a long and expensive operation which hinders interactive exploration. By designing new 

algorithms to fit within this framework, data can be processed as it moves. The Progressive 

Poisson technique outlined in Section 5.2 is one such new algorithm. Third, ViSUS provides 
a portable visualization layer that was designed to scale from mobile devices to powerwall 

displays with the same code base.

Figure 3.5 provides a diagram of the ViSUS software architecture. In this section I



External SQL Image Conversion Compression Networking
and other... (Freelmage) (zlib) (curl)

Threading (pthreads/ 
windows-native)

Rendering
(opengl)

Rendering 
extensions (glew)

GUI library 
(Juce)

ViSUS Apps 
with GUI

Figure 3.5: The ViSUS software framework. Arrows denote external and internal dependences of the main software components. 
Additionally this figure illustrates the relationship with several example applications that have been successfully developed with this 
framework.

00o



31

will detail three of ViSUS’s major components and how they couple with the efficient data 

access detailed in the previous sections to achieve a fast, scalable, and highly portable data 
processing and visualization environment. Finally, I will illustrate an important additional 
use of this infrastructure, real-time monitoring of scientific simulations.

3.4.1 LightStream Dataflow and Scene Graph
Even simple manipulations can be overly expensive when applied to each variable in 

a large scale dataset. Instead, it would be ideal to process the data based on need by 

pushing data through a processing pipeline as the user interacts with different portions of 

the data. The ViSUS multiresolution data layout enables efficient access to different regions 
of the data at varying resolutions. Therefore different compute modules can be implemented 

using progressive algorithms to operate on these data stream. Operations such as binning, 
clustering, or rescaling are trivial to implement on this hierarchy given some known statistics 

on the data, such as the function value range, etc. These operators can be applied to the 

data stream as-is, while the data are moving to the user, progressively refining the operation 
as more data arrives. More complex operations can also be reformulated to work well using 

the hierarchy. For instance, using the layout for image data produces a hierarchy which 

is identical to a subsampled image pyramid on the data. Moreover, as data are requested 
progressively, the transfer will traverse this pyramid in a coarse-to-fine manner. Techniques 

such as gradient-domain image editing can be reformulated to use this progressive stream 

and produce visually acceptable solutions which will be detailed in Section 5.2. These 

adaptive, progressive solutions allow the user to explore a full resolution solution as if it 

was fully available, without the expensive, full computation.
ViSUS LightStream facilitates this steam processing model by providing definable mod­

ules within a dataflow framework with a well understood API. Figure 3.6 gives an example 
of a dataflow for the analysis and visualization of a scientific simulation. This particular 

example is the dataflow for a Uintah combustion simulation used by the C-SAFE Center 

for the Simulation of Accidental Fires and Explosions at the University of Utah. Each 

LightStream module provides streaming capability through input and output data ports 

that can be used in a variety of data transfer/sharing modes. In this way, groups of modules 
can be chained to provide complex processing operations as the data are transferred from 

the initial source to the final data analysis and visualization stages. This data flow is 

typically driven by user demands and interactions. A variety of “standard” modules, such
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(a) (b)

Figure 3.6: The LightStream Dataflow used for analysis and visualization of a three­
dimensional combustion simulation (Uintah code). (a) Several dataflow modules chained 
together to provide a light and flexible stream processing capability. (b) One visualization 
that is the result from this dataflow.

as data differencing (for change detection), content based image clustering (for feature 

detection), or volume rendering with multiple, science-centric transfer functions, are part of 

the base system. These can be used by new developers as templates for their own progressive 
streaming data processing modules.

ViSUS also provides a scene graph hierarchy for both organizing objects in a particular 
environment, as well as the sharing and inheriting of parameters. Each component in a 
model is represented by a node in this scene graph and inherits the transformations and 

environment parameters from its parents. Three-dimensional volume or two-dimensional 
slice extractors are children of a data set node. As an example of inheritance, a scene graph 

parameter for a transfer function can be applied to the scene graph node of a data set. If 

the extractor on this data set does not provide its own transfer function, it will be inherited.

3.4.2 Portable Visualization Layer - ViSUS AppKit.

The visualization component of ViSUS was built with the philosophy that a single 
code base can be designed to run on a variety of platforms and hardware ranging from 

mobile devices to powerwall displays. To enable this portability, the basic draw routines 

were designed to be OpenGL ES compatible. This is a limited subset of OpenGL used 
primarily for mobile devices. More advanced draw routines can be enabled if a system’s 

hardware can support it. In this way, the data visualization can scale in quality depending 

on the available hardware. Beyond the display of the data, the underlying graphical user 

interface (GUI) library can hinder portability to multiple devices. At this time ViSUS has
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made use of the Juce 7 library which is lightweight and supports mobile platforms such as 

iOS and Android in addition to major operating systems. ViSUS provides a demo viewer 

that contains standard visualizations such as slicing, volume rendering and isosurfacing. 
Similarly to the example LightStream modules, these routines can be expanded through a 
well-defined application programming interface (API). Additionally, the base system can 

display two-dimensional and three-dimensional time varying data. As mentioned above, 

each of these visualizations can operate on the end result of a LightStream dataflow. The 

system considers a two-dimensional dataset as a special case of a slice renderer and therefore 

the same code base is used for two-dimensional and three-dimensional datasets. Combining 

all of the above design decisions allows the same code base to be used on multiple platforms 

seamlessly for data of arbitrary dimensions. Figure 3.7 shows the same application and 
visualization running on an iPhone 3G mobile device and a powerwall display.

3.4.3 Web-Server and Plug-In

ViSUS has been extended to support a client-server model in addition to the tradi­
tional viewer. The ViSUS server can be used as a standalone application or a web server 

plugin module. The ViSUS server uses HTTP (a stateless protocol) in order to support 
many clients. A traditional client/server infrastructure, where the client established and 

maintained a stable connection to the server, can only handle a limited number of clients 

robustly. Using HTTP, the ViSUS server can scale to thousands of connections. The ViSUS 

client keeps a number (normally 48) of connections alive in a pool using the “keep-alive” 

option of HTTP. The use of lossy or lossless compression is configurable by the user. For 

example, ViSUS supports JPEG and EXR for lossy compression of byte and floating point 
data, respectively. The ViSUS server is an open client/server architecture, therefore it is 

possible to port the plugin to any web server which supports a C + +  module (i.e., Apache, 

IIS). The ViSUS client can be enabled to cache data to local memory or to disk. In this way, 
a client can minimize transfer time by referencing data already sent, as well as having the 

ability to work offline if the server becomes unreachable. The ViSUS portable visualization 

framework (Appkit) also has the ability to be compiled as a Google Chrome, Microsoft 
Internet Explorer, or Mozilla Firefox web browser plugin. This allows a ViSUS framework 

based viewer to be easily integrated into web visualization portals.

7http://www.rawmaterialsoftware.com

http://www.rawmaterialsoftware.com
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(a) (b)

Figure 3.7: The same application and visualization of a Mars panorama running on an 
iPhone 3G mobile device (a) and a powerwall display (b). Data courtesy of NASA.

3.4.4 Additional Application: Real-Time Monitoring

In addition to the ones provided in this dissertation, the ViSUS framework has an ad­
ditional ideal application in the real-time monitoring of large scientific simulations. Ideally, 

for these simulations a user-scientist would like to view a simulation as it is computed, 

in order to steer or correct the simulation as unforeseen events arise. Simulation data 
are often very large. For instance, a single field of a time-step from the S3D combustion 

simulation in Figure 3.8 (a) is approximately 128 gigabytes in size. In the time needed to 
transfer this single time-step, the user-scientist would have lost any chance for significant 

steering/correction of an ongoing simulation or at least the ability to save wasting further 
resources by terminating a simulation early. By using the parallel ViSUS data format in 

simulation checkpointing [98, 99], we can link this data directly with an Apache server using 

a ViSUS plug-in running on a node of the cluster system. By doing this, user-scientists can 

visualize simulation data as checkpoints are reached. ViSUS can handle missing or partial 

data; therefore, the data can be visualized even as it is being written to disk by the system.

ViSUS’s support for a wide-variety of clients (a stand-alone application, a web-browser 
plug-in, or an iOS application for the iPad or iPhone) allows the application scientist to 

monitor a simulation as it is produced, on practically any system that is available without 

any need to transfer the data off the computing cluster. As mentioned above, Figure 3.8 (a) 
is an S3D large-scale, combustion simulation visualized remotely from an high performance
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(a) (b)

Figure 3.8: Remote visualization and monitoring of simulations. (a) An S3D combustion 
simulation visualized from a desktop in the Scientific Computing and Imaging (SCI) 
Institute (Salt Lake City, Utah) during its execution on the HOPPER 2 high performance 
computing platform in Lawrence Berkeley National Laboratory (Berkeley, California). (b) 
Two ViSUS demonstrations of LLNL simulation codes (Miranda and Raptor) visualized in 
real-time while executed on the BlueGene/L prototype installed at the IBM booth of the 
Supercomputing exhibit.

computing platform8.

This work is the natural evolution of the ViSUS approach of targeting practical ap­

plications for out-of-core data analysis and visualization. This approach has been used 
for direct streaming and real-time remote monitoring of the early large scale simulations 

such as those executed on the IBM BG/L supercomputers at Lawrence Livermore National 

Laboratory (LLNL) [130] shown in Figure 3.8 (b). This work continues its evolution towards 
the deployment of high performance tools for in situ and postprocessing data management 

and analysis for the software and hardware resources of the future including exascale DOE 

platforms of the next decade9.

8Data are courtesy of Jackie Chen at Sandia National Laboratories, Combustion Research Facility 
h ttp ://ascr.san d ia .gov /peop le /C h en .h tm

9 Center for Exascale Simulation of Combustion in Turbulence (ExaCT) 
h ttp ://s c ie n ce .e n e rg y .g o v /a s c r /r e se a rch /s c id a c /c o -d e s ig n /

http://ascr.sandia.gov/people/Chen.htm
http://science.energy.gov/ascr/research/scidac/co-design/


CHAPTER 4

INTERACTIVE SEAM EDITING AT 
SCALE

This chapter outlines the Panorama Weaving technique which brings the boundary 

computation phase of panorama creation pipeline into an interactive environment. Sec­

tion 4.1 gives the relevant background and formulation for the computation of optimal 

image boundaries. Section 4.2 discusses how to achieve interaction with pairwise boundaries. 

Section 4.3 introduces the adjacency mesh data structure and how it can be used to bring 
pairwise seams to a global seam solution. Section 4.4 details how to extend the Panorama 

Weaving technique to an out-of-core environment, thereby scaling the technique to gigapixel 

images. In Section 4.5, I will detail how to design an interactive system using this technique 

and scale it to large images in Section 4.6. Finally, Section 4.7 provides results for the 

technique and in Section 4.8 I discuss its limitations.

4.1 Optimal Image Boundaries
In this section, we discuss the technical background for boundary calculations of both 

pairwise and many-image panoramas.

4.1.1 Optimal Boundaries

Given a collection of n panorama images I i , l 2 ..In and the panorama P , the image 
boundary problem can be thought of as finding a discrete labeling L(p) e (1...n) for all 

panorama pixels p e  P , which minimizes the transition between each image. If L(p) =  k, 

this indicates that the pixel value for location p in the panorama comes from image Ik. This 

transition can be defined by an energy on the piecewise smoothness Es(p, q) of the labeling 

of neighboring elements p, q e N , where N  is the set of all neighboring pixels. We would 
like to minimize the sum of the energy of all neighbors, E . For the panorama boundary 

problem, this energy is typically [4] defined as:
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E(L) =  ^  Es(jp,t 
p,q&N

If minimizing the transition in pixel values:

Es(p ,q ) =  \\Il(j>)(P) -  IL(q)(P) \ +  ||1L(p)(q) -  ^L(q)(9) y 

or if minimizing the transition in the gradient:

Es(p ,q ) =  ||V /l (p)(p) - V/L(q)(p)| +  |V/L(p)(q) -  v 1 L(q)(9)|

where L(p) and L(q) are the labeling of the two pixels. Notice that L(p) =  L(q) implies 

Es(p, q) =  0. Minimizing the change in pixel value works well in the context of poor 

registration or moving objects in the scene, while minimizing the gradient produces a nice 
input for techniques such as gradient domain blending. In addition, techniques can use a 

linear combination of the two energies.

4.1.2 Min-Cut and Min-Path
When computing the optimal boundary between two images, the binary labeling is 

equivalent to computing a min-cut of a graph whose nodes are the pixels and arcs connect 

a pixel to its neighbors. The arc weights are then the energy function being minimized, see 

Figure 4.1 (a). If we consider a four-neighborhood and the dual-graph of the planar min-cut 

graph, as we show in Figure 4.1 (b), we can see that there is an equivalent min-path to the 
min-cut solution on the dual-graph. This has been shown to be true for all single source, 

single destination paths on planar graphs [72]. The approaches are equivalent in the sense

(a)

E s  ( P , q )

D n -0 -D
O — Q —1 -0 — O — OQTaT-n-Tp
C H -0-r-0-K >— O

(b)
D r a t H -T Q

Figure 4.1: The four-neighborhood min-cut solution (a) with its dual min-path solution 
(b). The min-cut labeling is colored in red/blue and the min-path solution is highlighted 
in red.
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that the final solution of a min-cut calculation defines the pixel labeling L(p) while the 

min-path solution defines the path that separates pixels of different labeling.

4.1.3 Graph Cuts

This technique provides good solutions to pixel labeling problems for more than two 

images. The intricacies of the algorithm [26, 24, 92] are beyond the scope of this dissertation, 
but at a high level, Graph Cuts finds a labeling L which minimizes an energy function E'(L). 

This function consists of term E s(p, q) augmented with energy associated with individual 

pixel locations Ed(p).

E'(L) =  £  Ed(p)+ £  Es(p,q) 
p p,qeN

For the panorama boundary problem, this data energy Ed is typically [4] defined as being 

0 if location p is a valid pixel of IL(P). Otherwise, it has infinite energy.

4.2 Pairwise Seams and Seam Trees
Figure 4.2 illustrates two example pairwise image seams. In the simplest and most 

common case, Figure 4.2 (a), the boundary lines of the two images intersect at two points 
u and v connected by the seam s. The other simple, but more general case in Figure 4.2 (b) 

shows two overlapping images, where the intersection of their boundary lines results in an 

even number of intersection points. A set of seams can be built by connecting pairs of points 

with a consistent winding. The seams computed in this way define a complete partition 

of the space between the two images. In nonsimple cases, i.e., with co-linear boundary 

intervals, we can achieve the same result by choosing one representative point (possibly 

optimized to minimize an energy). Notice that the case in Figure 4.2 (b) produces more 

than a single set of valid seams, denoted by the purple and grey dashed lines. For clarity 
in the discussion, we will focus on the case in Figure 4.2 (a) since we can treat each seam 

of the case in Figure 4.2 (b) as independent.
Assuming the dual-path energy representation in Figure 4.1 (b), a seam is a path that 

connects the intersection points (u,v). Computing the minimal path of a given energy 

function will give an optimal seam s, which can be computed efficiently with Dijkstra’s 

algorithm [50]. With minimal additional overhead, we can compute both min-path trees 

Tu and Tv from u and v (single source all paths). These trees provide all minimal seams 
which originate from either endpoint and define the dual seam tree of our technique. Given 
a point in the image overlap, we can find its minimal paths to u and v with a linear walk
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(a) (b)

Figure 4.2: (a) Given a simple overlap configuration a seam can be thought of as a path 
s that connects pairs of boundary intersections u and v. (b) Even in a more complicated 
case, a valid seam configuration is still computable by taking pairs of intersections with a 
consistent winding about an image boundary. Note that there is an alternate configuration 
denoted in gray.

up the trees Tu and Tv, as shown in Figure 4.3. If this point is a user constraint, the union 

of the two minimal paths forms a new constrained optimal seam. Due to the simplicity 

of the lookup, this path computation is fast enough to achieve interactive rates even for 

large image overlaps. Note that two min-paths on the same energy function are guaranteed 

not to cross. Although, since each dual-seam tree is computed independently, the minimal 
paths from a constraint (to u and v) can cross. In particular, if the trees computed by 

Dijkstra’s algorithm are dependent on the order in which the edges are calculated and there 
are multiple paths in an overlap that share the same energy, the paths on each tree to a 

user constraint can cross. To avoid this problem we enforce an ordering based on the edge 

index and we are guaranteed to achieve noncrossing solutions.
Moving an endpoint is also a simple walk up its partner endpoint’s seam tree. Therefore

© □ G

Figure 4.3: Given two min-path trees associated with a seam’s endpoints (u,v), a new 
seam that passes through any point in the overlap (yellow) is a simple linear walk up each 
tree.
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a user can change an endpoint location at-will, interactively. Although after the movement, 

the shifted endpoint's seam tree is no longer valid since it was based on a previous location. 

If future interactions are desired, the tree must be recomputed. This can be computed 
as a background process after the users finish their initial interaction without any loss of 

responsiveness to the system.

4.3 From Pairwise to Global Seams
To avoid incurring the cost associated with the solution of a global optimization, we build 

the panorama as a proper collection of pairwise seams. This is based on the observation, 
illustrated in Figure 4.4 (a), that the label assignment in a Graph Cut optimization mostly 

forms a simple collection of regions partitioned by pairwise image seams (denoted in the 

picture by the double-arrows).

Our technique is designed with this property in mind and independently computes each 

seam constrained by the pairwise intersections called branching points. These are colored 

in red in Figure 4.4 (b).

O---------------------Q.

Figure 4.4: (a) A solution to the panorama boundary problem can be considered as a 
network of pairwise boundaries between images. (b) Our adjacency mesh representation 
is designed with this property in mind. Nodes correspond to panorama images, edges 
correspond to boundaries and branching points (intersections in red) correspond to faces of 
the mesh. (c) Graph Cuts optimization can provide more complex pixel assignments where 
“islands” of pixels assigned to one image can be completely bounded by another image. 
Our approach simplifies the solution by removing such islands.
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Note that the solution of a Graph Cuts optimization can provide more complex pixel 

assignments, where “islands” of pixels assigned to one image can be completely bounded by 

another image, as shown in Figure 4.4 (c). Obviously, our approach simplifies the solution 
by removing such islands and makes each region simply connected. We have checked how 

the energy optimized by our technique would change with this assumption (see Section 4.7). 

In all cases we have noticed that the energy of the seams produced by our system remains 

in the same order of magnitude as Graph Cuts, actually being reduced in all cases but one. 

Limitations on this assumption are detailed in Section 4.8.

4.3.1 The Dual Adjacency Mesh

To construct a seam network, our computations are driven by an abstract structure 

that we call the dual adjacency mesh. We draw the inspiration for our adjacency mesh 

representation from the traditional region adjacency graph used in computer vision, as well 

as the regions of difference (ROD) graphs of Uyttendaele et al [165]. In Figure 4.4 (b and

c), we have the adjacency graph for a global, Graph Cuts computation. This graph can 
be considered the dual to the seam network: each node corresponds to an image in the 

panorama, whereas each edge describes an overlap relation between images. Edges are then 

orthogonal to the seam they represent. If we consider this graph as having the structure of a 
mesh, the dual of the panorama branching points are the faces of this mesh representation. 

In Figure 4.4 (b), the branching points are highlighted in red. Seams which exit this 
mesh representation correspond to pairwise overlaps on the panorama boundary. These are 

illustrated in Figure 4.4 (b) with a single yellow endpoint. Connecting the branching points 
on adjacent faces in the mesh and/or the external endpoints gives a global seam network 

of pairwise image boundaries.
In addition to the branching points in the seam network, the faces of the adjacency mesh 

are also an intuitive representation for overlap clusters. Specifically, clusters are groups of 

overlaps that share a common area that we call a multioverlap. These multioverlaps are areas 

where branching points must occur. The simplest multioverlap beyond the pairwise case 

consists of three overlaps and is represented by a triangle, see Figure 4.5 (a). A multioverlap 

with four pairwise overlaps, can be represented by a quadrilateral, indicating that all four 
pairwise seams branch at a mutual point. An important property of this representation is 

that this quadrilateral can be split into two triangles, a classic subdivision, see Figure 4.5 
(b). Any valid (no edge crossing) subdivision of a polygon in this mesh will result in
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Figure 4.5: (a) A three overlap adjacency mesh representation. (b) A four overlap initial 
quadrilateral adjacency mesh with its two valid mesh subdivisions. (c) A five overlap 
pentagon adjacency mesh with an example subdivision.

a valid seam configuration. In this way, the representation can handle a wide range of 

seam combinations, but keep the overall network valid. Figure 4.5 (c) shows an example 
subdivision of a five-way intersection.

As a precomputation, we calculate the initial adjacency mesh consisting of simple 

n-gon face representations for every n-way cluster. This precomputation stage enables 
the conversion of the initial nonplanar full neighborhood graph into a planar mesh repre­

sentation, see Figure 4.6. Clusters (and their corresponding muti-overlaps) by definition 
are nonoverlapping, maximal cliques of the full neighborhood graph. This computation is a 

classic clique problem and is known to be NP-complete [43]. For most panoramas, we have 

found the neighborhood graph is small enough that a brute-force search can be computed 

quickly. Although, previous work has shown that given a graph with a polynomial bound 

on the number of maximal cliques, they can be found in polynomial time [141]. This is 

indeed the case for the neighborhood graph which has maximal boxicity [140] dimension of 

two [36]. After the maximal cliques have been found, each n-gon face is extracted by finding 
the fully spanning cycle of clique vertices on the boundary in relation to the centroids of 

the images. The boundary edges of the n-gon face are marked as active, while the interior 

(intersecting) edges are marked as inactive as shown in Figure 4.6.
This adjacency mesh is used to drive the computation and combination of the pairwise 

boundaries as well as user manipulation. As we will illustrate in Section 4.5, it can be 

completely hidden from a user of the interactive system with intuitive editing concepts.

4.3.2 Branching Points and Intersection Resolution
Given a collection of seam trees that correspond to active edges in the adjacency mesh, 

we can now combine the seams into a global seam network. To do this, we need to compute 

the branching points which correspond to each adjacency mesh face, adjust the seam given 
a possible new endpoint, and resolve any invalid intersections that may arise (in order to 
maintain consistency).
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Figure 4.6: Considering the full neighborhood graph of a panorama (a), where an edge 
exists if an overlap exists between a pair of images, an initial valid adjacency mesh (b) 
can be computed by finding all nonoverlapping, maximal cliques in the full graph, then 
activating and deactivating edges based on the boundary of each clique.

4.3.2.1 Branching points. Assuming for each pairwise seam there exists only two 

endpoints, for each multioverlap one endpoint must be adapted into a branching point. 

We refer to this endpoint as being inside in relation to the adjacency mesh face. The 

other seam endpoint is considered to be outside in relation to the multioverlap. These 

can be computed by finding the endpoints which are closest (euclidean distance) to the 
multioverlap associated with the face. Figure 4.7 (a) displays these endpoints with the 

color red and the multioverlap area with a blue shading. Although it is possible to create a 

pathological overlap configuration where this distance metric fails, we have found that this 

strategy works well in practice.

If we use the dual seam tree distances, i.e., the path distance values associated with 

the outside endpoints, we can compute a branching point which is optimal with respect 

to these paths, as illustrated in Figure 4.7 (b). This can be accomplished with a simple 

lookup of the distance values in the trees. We have found that minimizing the sum of the 
least squared error provides a nice low energy solution. The new path associated with a 

moved endpoint is determined by a simple walk up the dual seam tree, see Figure 4.7 (c). 

Additionally, each seam tree associated with the branching point is recalculated given its 

location. As Figure 4.7 (d) illustrates, the branching point is always computed using the 

distance field of the initial endpoint location even if this point had been previously adjusted 
by an adjacent face. In practice, we have found the contribution of the root location is 

minimal to the overall structure of the seam tree towards the leaves of the tree. Since using 

the initial starting endpoints allows the branching points to be computed independently 
and in a single parallel pass, we have adopted this into our technique.

The seams produced by this initial process in the four-overlap case are similar to the
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Figure 4.7: (a) Pairwise seam endpoints closest to a multioverlap (red) are considered a 
branching point. (b) This can be determined by finding a minimum point in the multioverlap 
with respect to min-path distance from the partner endpoints. (c) After the branching point 
is found, the new seams are computed by a linear lookup up the partner endpoint’s seam 
tree. (d) To enable parallel computation, each branching point is computed using the initial 
endpoint location (green) even if it was moved via another branching point calculation (red).

sequential techniques introduced by Efros and Freeman [53] and Cohen et al. [42]. With 

the additional adjacency mesh, our technique is much more expressive in the possible seam 

configurations (especially allowing arbitrary valence branching points). In addition, as we 
will illustrate next, for panoramas and especially in an interactive setting one cannot assume 

that a seam’s path to a branching point respects the paths of other seams.
4.3.2.2 Rem oving invalid intersections. Since each seam is computed using a 

separate energy function, seam-to-seam intersections beyond the branching points are pos­

sible. Small intersections of this type must be allowed to ensure solutions are computable 
in a four-neighborhood configuration. For instance, there would be no nonintersecting 

way to combine five seams into a single branching point. This allowance is defined by an 

e-neighborhood around the branching point which can be set by the user. We have found 

allowing an intersection neighborhood of one or two pixels gives good results with no visible 
artifacts from the intersection. The intersections in this neighborhood are collapsed to be 

co-linear to the shortest of the intersecting paths.

Intersections that occur outside of this e-neighborhood must be resolved due to the 

inconsistent pixel labeling that they imply. Figure 4.8 (a, c) shows an example of in­

tersections in a four-way image overlap. The areas highlighted in gray have conflicting 
image assignments. Enforcing no intersections at the time of the seam computation would 

complicate parallelism and be overly expensive. This corresponds to a k-way planar escape 

problem with multiple energies (where k is the number of seams incoming to the branching 
point) for which variants have been shown to be NP-complete [179]. This could also lead to 
possible unstable interactions since small movements may lead to extremely large changes 

in the overall seam paths. The simplest solution is to choose one assignment per conflict
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Figure 4.8: (a) Pairwise seams may produce invalid intersections or crossings in a 
multioverlap, which leads to an inconsistent labeling of the domain. The gray area on 
the top can be given the labels A or B and on the bottom either C or D. (b) Choosing a 
label is akin to collapsing one seam onto the other. This leads to new image boundaries, 
which were based on energy functions that do not correlate to this new boundary. The top 
collapse results in a B-C boundary using an A-B seam (C-D seam for the bottom). (c and
d) Our technique performs a better collapse where each intersection point is connected to 
the branching point via a minimal path that corresponds to the proper boundary (B-C). 
One can think of this as a virtual addition of a new adjacency mesh edge (B-C) at the time 
of resolution to account for the new boundary.

A B

C D

area. This is equivalent to collapsing the area and making the two seams co-linear at points 

where they “cross.” Each collapse introduces a new image boundary for which the wrong 

energy function has been minimized, Figure 4.8 (a, b). In our technique, we perform a more 

sophisticated collapse.

For a given pair of intersecting seams, multiple intersections can be resolved by taking 
into account only the furthest intersection from the branching point in terms of distance 

on the seam. Given that each seam divides the domain, this intersection can only occur 

between seams that divide a common image. If presented with a seam-to-seam intersection, 

we can easily compute the new boundary that is introduced during the collapse. This is 
simply a resolution seam on an overlap between the images which is not common between the 

intersection seams. The resolution seams connect the intersection points with the branching 

points. Often, if multiple resolution seams share the same overlap, as in Figure 4.8, only one 

min-path calculation from the branching point is needed to fill in all min-paths. The new 
resolution seams are constrained by the other seams in the cluster in order to not introduce 

new intersections with the new paths. The constraints are also given the ability to gradually 

increase the allowed intersection neighborhood beyond the user defined e-neighborhood in
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the chance that no solution path exists. The crossings and intersections are collapsed in this 

neighborhood. Due to the rarity of this occurrence, the routine adds minimal overhead to the 

overall technique in practice. Order matters in both finding the intersections and computing 
the resolution seams and therefore must be consistent. We have found that ordering based on 

the overlap size works well. Resolution seams and expanded e-neighborhood are considered 

to be temporary states. Figure 4.8 (c, d) shows an example of an intersection resolution.

This technique robustly handles possible seam intersections at the branching points. 
Most importantly, since we are only adjusting the seam from the intersection point on, we 

can resolve each adjacency mesh face in parallel. In addition, since the seam is not changed 

outside of the multioverlap within a cluster, the resolution is local and will not cascade to a 

global resolution. However, it is possible for a user to introduce unresolvable intersections 
through added constraints, as we will discuss in Section 4.5.

4.4 Out-of-Core Seam Processing
While designed to be light on resources, the technique outlined in the previous sections 

assumes all images can be stored in-core. This assumption holds true for many panoramas, 

but not images gigapixels in size. In this section, I will detail how the original technique 
can be modified to handle large panoramas.

As illustrated in Figure 4.9, the initial seam solution for the Panorama Weaving tech­

nique can be thought to occur in three phases. First, for each adjacency mesh face, the 

corresponding branching point must be computed. After the branching point is found, any 

seams which occur on the panorama boundary can be computed. These correspond to edges 

in our mesh that belong to only one face. See Figure 4.9 (a). As mentioned previously, the 

branching point computations for each face given our simple pairwise seam assumption are 

completely independent and can be computed in parallel. As a second phase, the seams for 
the shared edges can be found by connecting the newly computed branching points. Each 

shared edge can be processed independently in parallel. See Figure 4.9 (b). Finally, once all 

edges for a face are computed the seam intersections for the given face can be resolved. This 

resolution is also independent and parallel for each adjacency mesh face. See Figure 4.9 (c). 
Note that each phase need not be entirely distinct since the can be interleaved.

If we bundle the branching point and shared seam calculation into a single operation, the 

logic of our out-of-core computation would only deal with the adjacency mesh faces. This 

can drastically reduce the system complexity even when working in a multicore environment.
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Figure 4.9: The phases of out-of-core seam computation. (a) First, branching points are 
computed. The seams for all unshared edges can also be computed during this pass. (b) 
Second, once the corresponding branching points are computed, all unshared edges can be 
computed with a single min-path calculation. (c) Third, once all the seams for the edges for 
a given face have been computed, the intersections can be resolved. Note, the three passes 
do not necessarily need to be three separate phases since they can be interleaved when the 
proper input data are ready.

By doing this, we also cast our problem into the simple problem of graph traversal for the 

two remaining phases of our seam processing system. For our traversal strategy, we chose 

a simple row-major traversal of the mesh faces.

4.4.1 Branching Point and Shared Edge Phase
The design goal for this phase is to keep the memory requirement low and predictable. 

The reasoning for this approach is twofold. First, low memory requirements enable the 

portability of our out-of-core system to a wide variety of systems. Such a technique has 

the ability to run on systems from laptops to HPC computers. Second, when moving into 
a multicore implementation being able to have a low, predictable memory requirement per 

face would make the logic and scheduling of the many threads operating on the adjacency 

mesh faces very simple. Given the resources of the system, we can predict how many faces 
the system can compute in parallel. We achieve our low memory footprint by computing 

the branching point for a given face in a “round-robin” fashion, as shown in Figure 4.10. For 

each edge, the images that correspond to its endpoints are loaded and the overlap energy 

is calculated. Next, the seam tree needed for the branching point is calculated. After this 
calculation, the overlap energy is no longer needed and is therefore ejected from memory. 

The calculation then moves onto the next edge that shares an image with the previous 

computation. The rest of the branching point calculation proceeds in the same way until 

all seam trees have been computed to compute the location of the new branching point.
As mentioned above, we couple the shared edge phase into this phase of calculation. This
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(a) (b)

Figure 4.10: The low memory branching point calculation for our out-of-core seam creation 
technique. (a) Given a face for which a branching point needs to be computed, (b) the 
computation proceeds “round-robin” on the edges of the face to compute the needed seam 
trees. The images that correspond to the edge endpoints and overlap energy are only needed 
during the seam tree calculation for a given edge on the face. Therefore by loading and 
unloading these data during the “round-robin” computation, the memory overhead for the 
branching point computation is the cost of storing two images, one energy overlap buffer, 
and one for the seam trees for the given face.

is done with a flag per face to indicate whether the branching point has been computed. 

After the branching point has been computed for a face, the flag is set and the process 

checks to see if the flag is also set for the other faces on a face's shared edges. If the face 

calculation is the second to set this flag, it knows it can fill in the new seam for the shared 

edge. For the multicore implementation, this check is made atomic with locks to ensure 

there is always a clear first- and second-face calculation when setting flags for the endpoints 
of a shared seam. Note that the memory overhead for this computation is equal to the 

space required to store two images, one buffer for the overlap energy, and one for the seam 

trees for the edges of the mesh face. As you can see, this overhead is quite low and given 

an average image size and overlap percentage, very predictable. The geometry of the seams 
are stored in-core for the final phase of the calculation.

4.4.2 Intersection Resolution Phase

When all seams for a face have been computed, the seam intersections that correspond 

to the face can be resolved. The intersection test is computed on the seam geometry which 
is already in memory. If an intersection occurs within a threshold distance on the seam from 

the branching point it is considered small and collapsed. This is an equivalent operation 

to the intersection collapse from the in-core Panorama Weaving technique. For larger



49

intersections, a resolution seam must be computed and the two images that correspond to 

the overlap of the resolution seam need to be loaded before computation. See Figure 4.11 

for an example.

4.5 Weaving Interactive System
In this section, we outline how to create a light and fast interactive system using the 

Panorama Weaving technique. A simplified diagram of the operation of the system is given 

in Figure 4.12. In Section 4.7, we provide examples of this application editing a variety of 

panoramas.

4.5.1 System Specifics

In this subsection, I will detail specifics for the prototype system.

4.5.1.1 Input. The system inputs for our prototype are flat, registered raster images 
with no geometry save the image offset. Any input can be converted into this format and 

therefore it is the most general. The initial image intersection computation is computed 

using the rasterized boundaries. Due to aliasing, there may be many intersections found. If 

the intersections are contiguous, they are treated as the same intersection and a represen­

tative point is chosen. In practice, we have found this choice has little effect on the seam 

outside a small neighborhood (less than 10 pixels from the intersection). Therefore, the 
system picks the minimal point in this group in terms of the energy. Pairs of intersections 

that are very close in terms of euclidean distance (less than 20 pixels) are considered to be 
infinitesimally small seams and are ignored.

The user is also allowed to dictate the energy function for the entire panorama, image, or 

overlap. This can be done as an initial input parameter or within the interactive program
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Figure 4.11: For intersections that require a resolution seam, the two images which 
correspond to the overlap needed for the seam must be loaded. In the figure above, these 
images are the ones that correspond to the endpoint of the diagonal, resolution adjacency 
mesh edge.
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Automatic Computation

Figure 4.12: Overview of Panorama Weaving. The initial computation is given by steps 
one through four, after which the solution is ready and presented to the user. Interactions, 
steps five and six, use the tree update in step four as a background process. Additionally, 
step six updates the dual adjacency mesh.

itself. Specifically, our prototype allows the user to switch between pixel difference or 
gradient difference energies.

4.5.1.2 Initial parallel com putation. Parallel computation is accomplished using 

a thread pool equal to the number of available cores. The initial dual seam tree and 
branching points computation can be run trivially in parallel. In the presence of two adjacent 

faces in the adjacency mesh, a mutex flag must be used on their shared seam since both 

faces may attempt to write this data simultaneously. As a final phase, each adjacency mesh 

face resolves intersections in parallel. In order to compute these resolutions in parallel, 

we split a seam’s data into three separate structures for the start, middle, and end of the 

seam. The middle seam contains the original seam before intersection resolution and its 

extent is maintained by pointers. The structure’s start and end are updated with the 

intersection resolution seams by the faces associated with their respective branching points. 
Either vector can be associated only with one face; therefore, we run no risk of multiple 

threads writing to the same location.
Each seam tree is stored as two buffers: one for node distance and one which encodes the 

tree itself. The tree buffer encodes the tree with each pixel referencing its parent. This can 

be done in 2 bits (rounded to 1 byte for speed) for a four-pixel neighborhood. Therefore, 

for float distances we need only 5 bytes per pixel to store a seam tree.
4.5.1.3 Seam network im port. It is possible to import a seam network computed 

with an alternative technique (such as Graph Cuts, see Figure 4.13), and edit it with our
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Figure 4.13: Importing a seam network from another algorithm. The user is allowed to 
import the result generated by Graph Cuts (a) and adjust the seam between the green and 
purple regions to unmask a moving person (b). Note that this edit has only a local effect, 
and that the rest of the imported network is unaltered.

system. Our import procedure works as follows. Given a labeling of the pixels of the 

panorama, the algorithm first extracts the boundaries of the regions. Then, branching 

points (boundary intersections) are extracted. Next, each boundary segment (bounded 

by two branching points) is identified as a seam and the connected components of the 
resulting seam network are identified. To be compatible with our framework, only the seam 

networks made of a single connected component can be imported. Thus, we only consider 

the biggest connected component of the network and small islands are discarded. Finally, 
our seam data-structures are fed with the seam network and the adjacency mesh is updated 

if necessary. Since the editing operations do not cascade globally, a user can edit a problem 
area locally and maintain much of the original solution if desired.

4.5.2 Interactions

In this subsection, I will detail some possible interactions that can be accomplished with 

our system.

4.5.2.1 Seam bending. The adding of a constraint and its movement is called a 
bending interaction in our system and operates as outlined in Section 4.2. A user is allowed 

to add a constraint to a seam and is provided instantly the optimal seam which must 

pass through it. The constraint can be moved interactively to explore the seam solution 
space. Intersections in any adjacency mesh face containing the corresponding edge are 

resolved, which can be done in parallel. Most importantly, given how the technique resolves 

intersections, seams cannot change beyond the multioverlap area in these faces. Therefore, 

the seam resolution does not cascade globally.
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4.5.2.2 Seam splitting. Adding more than one constraint is akin to splitting the 

seam into segments. After a bending interaction, the seam trees are split into four, where 

there were previously two. Two of the trees (corresponding to the endpoints) are inherited 
by the new seams. The two trees associated with the new constraint are identical, therefore 
only one tree computation is necessary. Splitting occurs in our prototype when a user 

releases the mouse after a bending interaction. Editing is locked for this seam until the 

corresponding trees are resolved. This is a quick process and it is very rare for a user to be 

fast enough to beat the computation.
4.5.2.3 Branching point movement. The user is given the ability to grab and 

move the branching point associated with a selected face of the adjacency graph As I have 

detailed in Section 4.2, a movement of an endpoint is a simple lookup on its partner’s dual 
seam tree. As the user moves a branching point, intersections for both the selected face and 

all adjacent faces are resolved. Given that the intersection resolution does not adjust seam 
geometry beyond the multioverlap, we need only to look at this one-face neighborhood and 

not globally. To enable further interaction, the seam trees associated with this endpoint 

need to be recalculated after movement. When the user releases the mouse, the seam tree 

data for all the endpoints associated with the active seams for the face are recomputed as 

a background process in parallel. Like splitting, editing is locked for each seam until it 

completes the seam tree update.
4.5.2.4 Branching point splitting and merging. The user can add and remove 

additional panorama seams by splitting and merging branching points. Addition and 

removal of seams is equivalent to subdividing and merging faces of the adjacency mesh. 
Improper requests for a subdivision or merge correlate to a non-valid seam network and are 

therefore restricted. If splitting is possible for a selected branching point, the user can iterate 

and choose from all possible subdivisions of the corresponding face. To maintain consistent 

seams, merging is only possible between branching points resulting from a previous split. In 

other words, merging faces associated with different initial adjacency mesh faces would lead 
to an invalid seam configuration since the corresponding images do not overlap. If a seam is 

added, its dual seam tree is computed. In addition, the other active seams associated with 
this face will need to be updated much like a branching point movement.

4.5.2.5 Im proper user interaction. Given the editing freedom allowed to users, 

they may move a seam into a inconsistent configuration. Figure 4.14 illustrates some 

examples. Rather than constrain the user, the prototype system either tries to resolve the
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improper seams or if that is not possible give the user visual feedback indicating a problem 
configuration. For example, if the user introduces a seam intersection, our intersection 

routine is launched to resolve it, see Figure 4.14 (a). Crossing branching points, Figure 4.14 
(b), can be resolved similarly. Figure 4.14 (c) illustrates a configuration with no resolution. 

In this instance, the crossing edges are collapsed and the user is given a visual hint that 
there is a problem.

Given the locality of the interactions in the Panorama Weaving technique, extending the 
interactions to gigapixel sized images does not require a large change to the base interactions. 
Our interaction scheme is based on a standard large image viewer and on-the-fly loading 

and computation of the data needed for seam editing. As Figure 4.15 shows, due to 

the technique's simple pairwise seam assumption, the data which needs to be loaded and 

computed is local given an interaction. Our system works as follows: we leverage the large 

image, out-of-core ViSUS system outlined in Chapter 3 to provide exploration of a flattened 

gigapixel image created from the seams from our initial out-of-core seam computation. If 
a user wishes have a seam or branching point interaction, she/he can initiate this edit my 

selecting a seam area she/he wished to edit. The action is determined similarly to the 

in-core seam system in that the overlap bounding boxes are tested against the user selected 

area. If all the overlap bounding boxes for a given face are selected, then it is assumed 

the user wishes to have a branching point manipulation. Otherwise, it is assumed the user 
wishes a seam bending interaction and a single overlap from the selection is chosen. A user 

can cycle through the single selection options if more than one is present for a given input. 

A brute-force bounding box intersection test has the possibility of being overly expensive for 

panoramas which contain thousands of images and overlaps, therefore, we have designed two

i i  i i i , i■ i i i i * i *

Figure 4.14: Improper user constraints are resolved or if resolution is not possible, given 
visual feedback. (a) Resolution of an intersection caused by a user moving a constraint. 
(b) Resolution of an intersection caused by a user moving a branching point. (c) A non- 
resolvable case where a user is just provided a visual cue of a problem.

4.6 Scalable Seam Interactions

(a) (b) (c)
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Figure 4.15: Given the inherent locality of the seam editing interactions, only a very 
small subset of the adjacency mesh needs to be considered. (a) For operations on an 
adjacency mesh face (i.e., branching point operations) only the images and overlaps of the 
corresponding face and its one face neighborhood need to be loaded and computed. (b) For 
edge operations (i.e., bending), we need consider only the faces that share the edge.

more scalable options for the selection. As Figure 4.16 (a) illustrates, a bounding hierarchy 

of overlaps can be built by merging the bounding boxes of pairs of neighboring adjacency 
mesh faces. During a user selection, the hierarchy is traversed to determine which faces 

need to be considered for selection. Once this is determined, the selected face’s overlaps 
are testing for user selection. This provides a selection runtime that is logarithmic in the 

number of faces in our panorama. Alternatively, as Figure 4.16 (b) shows, if there is a pixel 
to image map this can be leveraged to determine the neighborhood of overlaps that need 

to be tested for selection. This neighborhood consists of the edges of faces that share the 
node that corresponds to the pixel-map image. After the user finishes their interaction, the

Figure 4.16: When a user selects an area of a panorama to edit, the system must determine 
which overlaps intersect with the selected area. This can be accomplished with a (a) 
bounding hierarchy of the overlaps. During selection this hierarchy is traversed to isolate 
the proper overlaps for the selection. This gives a logarithmic lookup with respect to the 
number of adjacency mesh faces in the panorama. Alternatively, (b) if a pixel-to-image 
labeling is provided, this can be used to isolate a fixed neighborhood that needs to be 
tested for overlap intersection. This labeling is commonly computed if the panorama is to 
be fed into a color correction routine after seam computation.
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seams are saved and the loaded images are masked and saved to the flattened image.

4.7 Results
In this section, we detail the results in both the creation and editing phases of our 

system. In-core results were performed on a 3.07 GHz Intel i7 four-core processor (with 
Hyperthreading) with 24 gigabytes of memory. The large system memory was required in 
order to run the Graph Cuts implementation, as is, on all datasets. Panorama Weaving 

performed well for all datasets on test systems including laptops with only 4 gigabytes of 

memory. Out-of-core results were run on 2.67GHz Xeon X5550 (eight cores) system with 
24 gigabytes of memory.

4.7.1 Panorama Creation
This subsection details the results for in-core and out-of-core initial seam creation.
4.7.1.1 In -core results. We compare the panorama creation phase of our system to 

the implementation provided by the authors of the Graph Cuts technique [26, 24, 92], which 
many consider the exemplary implementation. Both a  expansion and swap algorithms were 

run until convergence to guarantee minimal errors and the best time is reported. Since 
this implementation has various ways of passing data and smoothness terms, we tested all 

and report the fastest, which is precomputed arrays for the costs with a function pointer 
acting as a lookup. Not having an equally well-established in-core parallel implementation 

for Graph Cuts, we use a serial version of our algorithm for comparison. Timings for Graph 

Cuts are based on the implementation's reported runtime. Due to the parallel option of 

Panorama Weaving, its timings are based on wall-clock time. Datasets which contain more 
than simple pairwise overlaps were run at full resolution and the running times and energy 

comparisons are provided in Table 4.1. Our technique produces lower energy seams for all 
but one example, Fall-5way, and even in this case the techniques have comparable energy. 

In terms of performance, serial Panorama Weaving computes its solution faster than the 

Graph Cuts for all datasets (at the same resolution). As the Graph Cuts results show, a 
hierarchical approach would be necessary to achieve similar performance by trading quality 

for speed. Parallel Panorama Weaving further reduces the runtime down to mere seconds 

for all datasets at full resolution. On average, we see that the scaling performance between 

Panorama Weaving’s serial and parallel implementations to be about a five times speedup. 
This is in sync with the number of physical cores in the test system. Hyperthreading is 

effective when data access is a main bottleneck. A speedup corresponding to the number
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Table 4.1: Performance results comparing Panorama Weaving to Graph Cuts for our test 
datasets that contain more than simple pairwise overlaps. Panorama Weaving run serially 
(PW-S) computes solutions quickly. When run in parallel, runtimes are reduced to just 
a few seconds. The energy ratio (E. ratio) between the final seam energy produced by 
Panorama Weaving and Graph Cuts (PW Energy /  GC Energy) is shown. For all but one 
dataset (Fall-5way), Panorama Weaving produces a lower energy result. It is comparable 
otherwise. Panorama image sizes are reported in megapixels (MP).

Dataset Megapixel Images PW Parallel PW Serial GC Serial E. Ratio
Crosswalk 16.7 4 1.3 7.2 369.6 0.995
Fall-5way 30.0 5 2.4 12.1 735.4 1.220
Skating 44.7 6 3.2 16.8 734.0 0.851

Lake 9.4 22 0.5 2.9 337.2 0.503
Graffiti 36.6 10 4.3 19.6 983.7 0.707
Nation 49.1 9 4.6 23.2 1168.7 0.800

of physical cores should be expected when an algorithm is compute-bound which is true for 

Panorama Weaving. Therefore our implementation is scaling quite well on our test system.
4.7.1.2 O ut-of-core results. To test the performance for our out-of-core imple­

mentation, we computed the seams for two large panoramas on our eight core test system. 

The Fall Salt Lake City panorama consist of 611 overlapping images and is 126,826 x 29,633, 

3.27 gigapixel, when combined. The final image that is the result of our seam computation 

is provided in Figure 4.17 (b). Additionally, in Table 4.2 we provide strong scaling test of 

our implementation for this panorama as we vary the core count from one to eight. As this 

table illustrates, our implementation shows very good efficiency up to the number of cores of 

our test system. At eight cores, our efficiency takes a slight dip due to our implementation 

using a dedicated thread to schedule the face computation for each phase of the out-of-core 

Panorama Weaving technique. On a single core, our system can produce a seam solution 

in only 68.5 minutes. As I have discussed in Section 2.1 Hierarchical Graph Cuts [2] does 
not scale beyond two to three levels of the hierarchy. At three levels, the coarse version 

of this panorama is still approximately 100 megapixel in size with 611 labels and could 
not be run on our test system. Therefore, to provide context for our running times, we 

compare our technique to the predicted runtime of a similar technique [94] which relies on 

a moving window of a Graph Cuts solution. Figure 4.17 (a) provides an example of one 

of these windows. In our tests, a Graph Cuts solution took 3003.86 seconds to converge. 
Even more problematic is that the first iteration for this window still took a very long time 

to compute: 612.99 seconds. Therefore, if this window is a good representation for this
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Figure 4.17: Fall Salt Lake City, 126, 826 x 29, 633, 3.27 gigapixel, 611 images. (a) An 
example window computed with out-of-core Graph Cut technique introduced in Kopf et 
al. [94]. This single window took 50 minutes for Graph Cuts to converge, with the initial 
iteration requiring 10.2 minutes. Since the full dataset contains 495 similar windows, using 
the windowed technique would take days (85.15 hours) at best, and weeks (17.2 days) in 
the worst case. (b) The full resolution Panorama Weaving solution was computed in 68.4 
minutes on a single core and 9.5 minutes on eight cores. Our single core implementation 
required a peak memory footprint of only 290 megabytes while using eight cores had peak 
memory of only 1.4 gigabytes.

Table 4.2: Strong scaling results for the Fall Salt Lake City panorama, 126, 826 x 29, 633, 
3.27 gigapixel, 611 images. Our out-of-core Panorama Weaving technique scales very well 
in terms of efficacy percentage compared to ideal scaling up to the physical cores of our test 
system (eight cores). At eight cores our technique loses a slight amount of efficiency due to 
our implementation having a dedicated thread to handing the seam scheduling. Using the 
full eight cores to process this panorama provides a full resolution seam solution in just 9.5 
minutes. The system is extremely light on memory and uses at most 1.4 gigabytes.

Cores Time(s) Ideal(s) Efficiency Max Mem.
1 4109 NA NA 290 MB
2 2079 2054.5 98.8% 443 MB
3 1403 1369.7 97.6% 599 MB
4 1049 1027.3 97.9% 791 MB
5 840 821.8 97.8% 881 MB
6 706 684.8 97.0% 1.1 GB
7 601 587.0 97.7% 1.2 GB
8 573 513.6 89.6% 1.4 GB

panorama dataset (which our testing indicates that it is) computing all 495 windows in this 

dataset would take days (85.15 hours) at best, and weeks (17.2 days) in the worst case. 
Our implementation can compute a full resolution solution in a little over an hour for a 

single core and only a few minutes when run on eight cores. Also of note is the small use 
of memory inherent with our scheme. At any given time, we need only hold the cost of 

computing the seams for a face per core. Therefore the per-core memory footprint is only 

the cost of holding two images, an energy buffer, and the seam tress for a given face in 
memory. Even with floating point precision and eight cores, for this dataset our technique 

uses at most 1.4 gigabytes of memory. To further test the scalability of our system, our
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implementation was run on even larger image. The Lake Louise panorama consists of 1512 

images and is 187,069 x 40.202 (7.52 gigapixel) when combined. In Table 4.3 we provide a 

strong scaling test for our implementation for this dataset. Like the previous example, our 
implementation shows very good efficiency for one to eight cores on our test system. The 

system is very light on memory resources and needs only 2.0 gigabytes of memory to operate 
on all eight cores. When using all cores, our implementation can provide a seam solution 

in only 37.7 minutes. The final image resulting from our seam calculation is provided in 

Figure 4.18.

4.7.2 Panorama Editing

We provide additional results of the interactive portion of our technique editing a variety 

of panoramas. Images which are color-corrected were processed using gradient domain 

blending [133, 103].
4.7.2.1 Editing bad seams. In Figure 4.19, the Nation dataset is a highly dynamic 

scene of a busy intersection with initial seams that pass through moving cars/people, see 
Figure 4.19(d). In addition, there are various registration artifacts, see Figure 4.19(e). 

Before our technique, a user would consider this panorama unsalvageable or be required to 

manually edit the boundary masks pixel-by-pixel. In just a few minutes, using our system, 

a user can produce an appealing panorama by adjusting seams to account for the moving 

objects and pulling registration artifacts into areas which are less noticeable. Figure 4.20 

(a, b and c) shows the initial seam configuration for the Skating dataset with two problem 

areas. The initial seams pass through people who change position on the ice and produce

Table 4.3: Strong scaling results for the Lake Louise panorama, 187, 069 x 40.202, 7.52 
gigapixel, 1512 images. Like the smaller Fall Salt Lake city panorama, our implementation 
shows very good efficiency up to the physical number of cores on our test system. Using the 
full eight cores for the full resolution seam solution for this panorama requires 37.7 minutes 
of compute time and at most 2.0 gigabytes of memory.

Cores Time(s) Ideal(s) Efficiency Max Mem.
1 16279 NA NA 382 MB
2 8263 8139.5 98.51% 627 MB
3 5516 5426.3 98.37% 877 MB
4 4132 4069.8 98.49% 1.1 GB
5 3306 3255.8 98.48% 1.4 GB
6 2778 2713.2 97.67% 1.6 GB
7 2383 2325.6 97.59% 1.8 GB
8 2259 2034.9 90.08% 2.0 GB
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Figure 4.18: Lake Louise, 187,069 x 40.202, 7.52 gigapixel, 1512 images. The Panorama 
Weaving results for the Lake Louise panorama. Our out-of-core seam computation produces 
this full resolution solution in as little as 37.7 minutes while requiring at most only 2.0 
gigabytes of memory. Panorama courtesy of City Escapes Nature Photography

(d)

(e)

(f)

Figure 4.19: Panorama Weaving on a challenging data-set (Nation, 12848 x 3821, nine 
images) with moving objects during acquisition, registration issues and varying exposure. 
Our initial automatic solution (b) was computed in 4.6 seconds at full resolution for a 
result with lower seam energy than Graph Cuts. Additionally, we present a system for 
the interactive user exploration of the seam solution space (c), easily enabling: (d) the 
resolution of moving objects, (e) the hiding of registration artifacts (split pole) in low 
contrast areas (scooter) or (f) the fix of semantic notions for which automatic decisions can 
be unsatisfactory (stoplight colors are inconsistent after the automatic solve). The user 
editing session took only a few minutes. (a) The final, color-corrected panorama.

Figure 4.20: Repairing non-ideal seams may give multiple valid seam configurations. (a) 
The initial seam configuration for the Skating dataset (9400 x 4752, six images) based on 
gradient energy. (b and c) Its two major problem areas. (d and e) Using our technique a 
user can repair the panorama, but also has the choices of two valid seam configurations. 
Panorama courtesy of City Escapes Nature Photography.
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either an amalgamation of two positions of a single person or a partial person. As shown 

in the companion video, repairing these seams only takes a few seconds of interaction, see 

Figure 4.20 (d and e) for edited results. Figure 4.21 illustrates how a user can correct 
registration artifacts that appear on the moon’s horizon in the Apollo-Armstrong dataset.

4.7.2.2 M ultiple valid seams. Along with repairing unideal seams, Figure 4.19 

and 4.20 (Nation and Skating) are also examples of a user choosing between multiple valid 

seam configurations. In Figure 4.19 (f), the initial seam calculation for the Nation dataset 
produces an intersection with four red stoplights, an inconsistent configuration. With our 

system, a user can turn two stoplights green creating a more realistic setting. Figure 4.20 

(bottom) shows 2 valid seam configurations the that user can choose while fixing the Skating 

dataset. Each was repaired with a simple bend of the panorama seam. In Figure 4.22, we 
provide an example of how a user can fix registration artifacts of the dataset (Graffiti) while 
tuning the seam location for improved results in the final color-correction. For gradient- 

domain blending, smooth, low-gradient areas provide the best results, therefore the user 

placed the seams in the smooth wall locations, Figure 4.22 (c). This editing session required 

just 2 minutes of interaction. Finally, in Figure 4.23 we show the color-corrected edits of the 

originally optimal, but non-visually pleasing, seams of Figure 1.7 for the two datasets: Canoe 

and Lake Path. Both interactions required only a few seconds of user input. Figure 4.24 

is a Lake vista with multiple dynamic objects moving in the scene during acquisition. In 
all, there are six independent areas in the panorama where a canoe, or groups of canoes, 

change positions in overlap areas. Figure 4.24 shows two examples of alternative edits. A 

user editing with our technique would have the choice of 64 valid seam combinations of 

canoes. In Figure 4.25, we show a user iterating through valid splitting options of a five 

valence branching point of the Fall-5way dataset. In this way, we allow users the freedom to 

add and remove seams as they see fit. Finally, the images Crosswalk and Apollo-Aldrin in 

Figure 1.9 were created and edited in our system to show how panoramas can have multiple 

valid seam configurations.

4.8 Limitations and Future Work
Our technique is versatile and can robustly handle a multitude of panorama configura­

tions. However, there is currently a limitation on the configurations which we can handle. 
The adjacency mesh data structure in its current form relies on the fact that the intersection 

of pairwise overlaps yields an area of exactly one connected component (which is needed



61

Figure 4.21: A panorama taken by Neil Armstrong during the Apollo 11 moon landing 
(Apollo-Armstrong: 6,913 x 1,014, eleven images). (a) Registration artifacts exist on the 
horizon. (b) Our system can be used to hide these artifacts. (c) The final color-corrected 
image. Panorama courtesy of NASA.

Figure 4.22: In this example (Graffiti: 10,899 x 3,355, ten images), (a) the user fixed a few 
recoverable registration artifacts and tuned the seam location for improved gradient-domain 
processing, yielding a colorful color-corrected graffiti. (b) Our initial automatic solution 
(energy function based on pixel gradients). (c) The user edited panorama. The editing 
session took 2 minutes.
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Figure 4.23: The color-corrected, user edited examples from Figure 1.7. The artifacts 
caused by the optimal seams can be repaired by a user. Images courtesy of City Escapes 
Nature Photography.

Figure 4.24: A lake vista panorama (Lake: 7,626 x 1,231, 22 images) with canoes which 
move during acquisition. In all there are six independent areas of movement, therefore 
there are 64 possible seam configurations of different canoe positions. Here we illustrate 
two of these configurations with color-corrected versions of the full panorama (a and c) and 
a zoomed in portion on each panorama (b and d) showing the differing canoe positions. 
Panorama courtesy of City Escapes Nature Photography.

Figure 4.25: Splitting a five valence branching point based on gradient energy of the 
Fall-5way dataset (5211 x 5177, 5 images): as the user splits the pentagon, the resulting 
seams mask/unmask the dynamic elements. Note that each branching point that has a 
valence higher than 3 can be further subdivided.
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to guarantee the manifold structure of the mesh). For example, less than one connected 

component would arise in a situation where one overlap is completely incased inside another 

and more than one can be caused by an overlap’s area passing through the middle of another 
overlap. Both of these cases break the pairwise seam network assumption. In addition, an 

image whose boundary is completely enclosed by another image’s boundary (100% overlap) 

is currently considered invalid. These are pathological cases that we have yet to encounter 

in practice. Overall, the authors feel that these limitations are only temporary and that 

the data-structures and methods outlined in this work are general enough to support these 

cases as a future extension.

The serial and parallel out-of-core implementations discussed above show good scale 

seam processing to images gigapixels in size. The schemes show good scaling for our test 
datasets even though there is some redundancy in the file I/O. Each image is loaded for 

ever multioverlap which it is a member. In other words, an image is loaded (reloaded) an 

equivalent number of times based on the valency of its adjacency mesh node. As future 

work, my collaborators and I wish to explore caching strategies for images and overlaps, as 

well as how these strategies interplay with different face traversal order.



CHAPTER 5

INTERACTIVE GRADIENT DOMAIN 
EDITING AT SCALE

This chapter introduces the Progressive Poisson technique which brings the color-correction 

phase of panorama creation pipeline into an interactive environment. This technique 

provides gradient domain processing interactively which is the most sophisticated and 

computationally expensive correction method. This operation is an inherently global and 
therefore, before this work, there were no known techniques on applying it to massive images 

interactively. Section 5.2 outlines the interactive technique and a full resolution out-of-core 

Progressive Poisson solver. Section 5.3 extends the full solver to a parallel distributed 

environment and Section 5.4 shows how it can be redesigned as a cloud based resource.

5.1 Gradient Domain Image Processing
Gradient domain image processing encompasses a family of techniques that manipulate 

an image based on the value of a gradient field rather than operating directly on the pixel 

values. Seamless cloning, panorama stitching, and high dynamic range tone mapping are all 

techniques that belong to this class. Given a gradient field G (x,y), defined over a domain 

Q C K2, we seek to find an image P (x,y) such that its gradient V P  fits G(x,y).
In order to minimize ||VP — G || in a least squares sense, one has to solve the following 

optimization problem:

m i n £  ||VP — G||2 (5.1)

It is well known that minimizing equation (5.1) is equivalent to solving the Poisson equation 

A P  =  div G (x,y) where A denotes the Laplace operator A P  =  +  dyr and div G (x,y) 
denotes the divergence of G .

To adapt the equations shown above to discrete images, we apply a standard finite 
difference approach which approximates the Laplacian as:

A P  (x,y) =  P  (x +  1, y) +  P  (x — 1,y) +
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P ( x , y  +  1) +  P ( x , y  — 1) -  4P(x ,y )  (5.2)

and the divergence of G(x,y) =  (Gx (x , y ) ,G y (x,y)) as:

div G(x,y) =  Gx(x,y) — Gx(x — 1,y) +

Gy (x, y) — Gy (x,y — 1).

The differential form A P  =  div G(x, y) can therefore be discretized into the following 

sparse linear system:
Lp =  b. (5.3)

Each row of the matrix L stores the weights of the standard five point Laplacian stencil 

given by (5.2), p is the vector of pixel colors, and b encodes the guiding gradient field, as 

well as the boundary constraints. The choice of guiding gradient field G (x, y) and boundary 

conditions for the system determines which image processing technique is applied. In the 

case of seamless cloning, it is necessary to use Dirichlet boundary conditions, set to be the 

color values of the background image at the boundaries, and the guiding gradient to be the 
gradient of the source image (see [133] for a detailed description). For tone mapping and 
image stitching, Neumann boundary condition are used. The guiding gradient field for image 

stitching is the composited gradient field of the original images. The unwanted gradient 

between images is commonly set to zero or averaged across the stitch. The guiding gradient 

for tone mapping is adjusted from the original pixel values to compress the high dynamic 

range (HDR) (see [55] for more detail). Methods such as gradient domain painting [114] 

allow the guiding gradient to be user defined.

5.2 Progressive Poisson Solver
This section discusses a progressive framework for solving very large Poisson systems 

in massive image editing. This technique allows for a simple implementation, yet is highly 

scalable, and performs well even with limited storage and processing resources.

5.2.1 Progressive Framework
For an image P  of n x n pixels, the Laplace system (5.3) has n2 independent variables, 

one per pixel. Computing the entire solution is therefore expensive both in terms of space 
and time. For large images, the space requirements easily exceed the main memory available 
on most computers. Moreover, the long computation times make any interactive application 

unfeasible.
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Acceleration methods try to address either or both of these issues. The recent adaptive 
formulation by Agarwala [2] has been particularly insightful. By exploiting the smoothness 

of the solution, this method was the first to reduce both the cost of the computation 
and its memory requirements. The approach by Kazhdan and Hoppe [89] demonstrates 
how a streaming approach can achieve high performance by optimizing the memory access 

patterns.

We extend these acceleration techniques and show how to achieve high quality local 

solutions, without the need for solving the entire system. Moreover, we show that coarse 

approximations are of acceptable visual quality without the cost of a typical coarsening stage 

used in the V-cycle. These new features, coupled with a simple multiresolution framework, 
enable a data-driven interactive environment that exploits the fact that interactive editing 

sessions are always limited by screen resolution. At any given time, a user only sees either 
a low resolution view of the entire image or a high resolution view of a small area. We take 

advantage of this practical restriction and solve the Poisson equation only for the visible 

pixels. This provides performance advantages for interactive sessions, as well as tight control 

over the memory usage. For example, even the simple step of computing the gradient of the 

full resolution image can be problematic due to its significant processing time and storage 

requirement. In our approach, we avoid this problem by estimating gradients on-the-fly 

using only the available pixels.
Overall, our interactive system is based on a simple two-tier approach:

• A global progressive solver provides a near instant coarse approximation of the full 

solution. This approximation can be refined up to a desired solution by a lightweight 
process, often running in the background and possibly out-of-core. Any time the user 

changes input parameters, this process is restarted.

• A local progressive solver provides a quick solution for the visible pixels. This process 

is driven by the interactive viewer and uses as a coarse approximation the best solution 
available from the global solver.

These components can be coupled with different multiresolution hierarchies as discussed in 

the next section.
5.2.1.1 Initial solution. At launch, the system computes a coarse image for the 

initial view. A fast two-dimensional direct method using cosine and Fast Fourier transforms 

by Agrawal [7, 8] is used for this initial solve for techniques that require Neumann boundaries
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(stitching, HDR compression). For methods that require Dirichlet boundaries (seamless 

cloning) we using an iterative method such as SOR. To provide the user with a meaningful 

preview, we use an initial coarse resolution of one to two megapixel depending on the 
physical display. We have found, in practice, that the Fast Fourier solver usually gives us 

this approximation in under 2 seconds. This initial solution is at the core of the progressive 
refinement defined in the next paragraph.

5.2.1.2 Progressive refinement. The goal of progressive refinement is to increase 
the resolution of our solution either locally or globally. This requires injecting color trans­

port information from coarser to finer resolutions. In doing so, we exploit the fact that 

the solution, away from the seams, tends to be smooth [2] and up-sampling the coarse 

solution gives high quality results in large areas of the image. To improve the solution and 
resolve the problems at the seams, we run an iterative method, estimating new gradients 

from the original pixel data of the finer resolution and using the up-sampled values as 
the initial solution estimate. The finer resolution gradient field allows the iterative solver 

to reconstruct the detailed features of the original image. For the iterative method we 
allow the use of either conjugate gradient (for faster convergence) or SOR (for minimal 

memory overhead). The iterative solver is assumed to have converged when the L2 norm 

of the residual between iterations is less than 1.0 x 10-3 . In practice there is no perceptible 

difference between iterations after this condition is met.
Figure 5.1 shows the refinement process where we assume for simplicity that each 

resolution doubles each dimension separately and our data is a subsampled hierarchy. In 

this case, computing each finer resolution is equivalent to adding new rows (or columns) 

to the coarse resolution. Therefore, we know that each new pixel added has two neighbors 
from the coarse solution. We can take the average difference from these two neighbors and 

apply it to the original Rgigabyte value of the pixel from the new resolution (see Figure 5.1 

(a)). Since the image is subsampled, the average difference and application to the new pixel 

is trivial.
In a tiled hierarchy one would need to double both dimensions at the same time, requiring 

a simple adjustment to the interpolation. Each new resolution is treated as new data and 

the offset is based on the solution from the previous resolution and the transform between 

levels.
5.2.1.3 Local preview. Comegabyteining the coarse, global solve with a progres­

sively refined local preview is all that is necessary for our interactive system. For data
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Pr =  Ps — Pn
[~[ Ps =  solved pixel

□  Pn = new pixel from 
original image
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(b)
Figure 5.1: Our adaptive refinement scheme using simple difference averaging. (a) Global 
progressive up-sampling of the edited image computed by a background process. (b) View- 
dependent local refinement based on a 2k x 2k window. In both cases we speedup the SOR 
solver with an initial solution obtained by smooth refinement of the solution.

requests at resolutions equal to or less than our coarse solution, we simply display the 
available data. As the user zooms into an area, the image is progressively refined in a local 

region. Since the resolution increase is directly coupled with the decrease in the extent of 

the local view, the numegabyteer of pixels that must be processed remains constant (see 
Figure 5.1 (b)). This results in a logarithmic run-time complexity and constant storage 

requirement, which allows our system to gracefully scale to images orders of magnitude 

larger than previously possible.

5.2.1.4 Progressive full solution. The progressive refinement can be applied glob­
ally to compute a full solution. Since the method requires a very small overhead, it can 

easily be run as background process during the interactive preview. When a new resolution 

has been solved, the interactive preview uses the solution as a new coarse approximation,
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thereby saving computation during the local adaptive phase. Like other in-core methods, 

this progressive global solver is limited by available system memory. To address this issue, 

the global solver has the ability to switch modes to a moving-window out-of-core progressive 

solver.

5.2.1.5 O u t-o f-co re  solver. The out-of-core solver maintains strict control over 

memory usage by sweeping the data with a sliding window. The window traverses the 

finest desired resolution, which can be several levels in the hierarchy from the current 

available solution. If the jum p in resolution is too high, the process can be repeated several 

times. W ithin each window, the coarse solution is up-sampled and the new resolution 

image is solved using the gradients from the desired resolution. Since the window lives at 

the desired resolution, we never need to expand memory beyond the size of the window. 

Furthermore, windows are arranged such tha t they overlap with the previously solved data 

in both dimensions to produce a smooth solution. The overlap causes the solver to load 

and compute some of the data multiple times. This overlap has an inherent overhead when 

compared to an idealized in-core solver. For instance, given a 1/x overlap, the four corners, 

each 1/x x 1/x in size, are executed four times. The four strips on the edge of the window, 

not including the corners, each 1/x x (1 — 2/x) in size are executed two times. All other 

pixels, size (1 — 2/x) x (1 — 2/x), are executed once. Therefore, the overhead computation 

for this 1/x overlap is given by: 4/x(1 +  1/x). Moreover, the I/O  overhead can be reduced 

to 1/x, since we can retain pixel data from the previous window in the primary traversal 

direction. In principle, a larger overlap between windows results in higher quality solutions, 

though in practice we have found tha t for a 1024 x 1024 window a 1/32 overlap is sufficient 

for good results. This overlap requires only a 12.8% compute overhead and a 3.1% I/O  

overhead. A larger window can be used to reduce the percentage overlap while achieving 

the same quality results. For instance, by doubling the window size in both dimensions, a 

2048 x 2048 window can be computed with a 1/64 overlay, only incurring a 6.3% compute 

overhead and a 1.5% I/O  overhead. Compared to the exact analytical solution, our method 

produces even higher quality results than the best known method [89] for equivalent run 

times.

5.2.2 D a ta  A ccess

Our progressive solver can operate well on multiple hierarchical schemes. Tiled hierar­

chies are often used to produce smoother, antialiased images, though high contrast areas
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in the original image may be lost in the smoothing. As Figure 5.2 (b) shows, the tiled 

image is visually pleasing, but details such as the cars on the highway are lost. This visual 

smoothness can also come at the cost of significant preprocessing, reduced flexibility when 

dealing with missing data, and increased I/O  when traversing the data. The costs can be 

especially significant for massive data if one has to process it with very limited resources. 

The least costly image hierarchy can be computed by subsampling. Subsampling is simple 

and lightweight, but is prone to high frequency aliasing. It does, though, retain higher 

contrast at the coarse resolution. Figure 5.2 (a) shows how the subsampled hierarchy 

has aliasing artifacts, but also retains enough contrast to see the cars on the highway. 

This contrast may be beneficial for some applications, such as an analyst studying satellite 

imagery.

To show the flexibility of our interactive system, we support both a filtered tiled hierarchy 

and a subsampled hierarchy (see Figure 5.3). For a tiled scheme, we compute the image

F ig u re  5.2: Subsampled and tiled hierarchies. (a) A subsampled hierarchy. As expected, 
subsampling has the tendency to produce high-frequency aliasing. Though details such as 
the cars on the highway and in the parking lots are preserved. (b) A tiled hierarchy. This 
produces a more visually pleasing image at all resolutions but at the cost of potentially 
losing information. The cars are now completely smoothed away. D ata courtesy of the U.S. 
Geological Survey.
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F ig u re  5.3: Our progressive framework using subsampled and tiled hierarchies. (a) A 
composite satellite image of Atlanta, over 100 gigapixels at full resolution, overlaid on Blue 
Marble background subsampled; (b) a tiled version of the same satellite image; (c) the 
seamless cloning solution using subsampling; (d) the same solution computed using a tiled 
hierarchy; (e) the solution offset computed using subsampling; (f) the solution computed 
using tiles; (g) a full resolution portion computed using subsampling; (h) the same portion 
using tiling. Note tha t even though there is a slight difference in the computed solution, 
both the tiled and the subsampled hierarchies produce a seamless stitch with our framework. 
D ata courtesy of the U.S. Geological Survey and NASA’s Earth Observatory.

hierarchy using a Gaussian kernel to produce a smooth, antialiased image (Figure 5.3 

right column). W ith a minor variation to the underlying I/O  layer, our system also 

supports a faster, subsampled Hierarchical Z-order as proposed by Pascucci and Frank

[2002] (Figure 5.3 left column). For an overview of the HZ data format, see Section 3.1. 

To achieve the level of scalability necessary in the current system, we further simplify the 

HZ data access scheme. We use a lightweight recursive algorithm that avoids repeated 

index computations, provides progressive and adaptive access, guarantees cache coherency 

and minimizes the numegabyteer of I/O  operations without using any explicit caching 

mechanisms. In particular, computing the HZ index with this new algorithm attains a thirty 

times speedup compared to the previous work. For example, to compute the indices for a 0.8 

gigapixel image the new algorithm requires 4.7 seconds where the previous method would 

take 144.1 seconds. Moreover, since the traversal follows the HZ storage order exactly for 

any query window, we guarantee tha t each file is accessed only once without need of holding 

any block of data in cache. For details on our new recursive algorithm see Section 3.2. This
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approach makes the system intrinsically cache friendly for any realistic caching architecture 

and, therefore, very flexible in exploiting modern hardware. Conversion into HZ-order 

requires no additional storage. On the other hand, for tiled hierarchies a 1/3 data increase 

is common. Due to our new data access scheme, conversion to HZ-order is straightforward 

and inexpensive. For our test data, we have found that there is only a 27% overhead due to 

the conversion compared to just copying the raw data. In essence, the conversion is strictly 

a reordering of the data and requires no operations on the pixel data. This conversion will 

outperform even the most simple tiled hierarchies which require some manipulation of the 

pixel data.

Each resolution in the HZ-hierarchy is in plain Z-order, which allows for fast, cache 

coherent access of subregions of the image. HZ is not tied to a specific data traversal 

order, such as the row-major imposed by traditional file formats, as previously observed 

in [89]. In fact, HZ maintains a high degree of cache coherency even during adaptive local 

traversals. The locality of our data access provides graceful performance degradation even 

in extreme conditions. In particular, we demonstrate accessing a data set, of roughly a 

terabyte in size, by simply mounting a remote file system over an encrypted VPN channel 

via a wireless connection. Even in normal running conditions, we have found tha t the I/O  

overhead caused by using a tiled hierarchy increased the running time by 39%-67%. These 

numegabyteers reflect the theoretical bound of 1/3 overhead, made worse by the inability 

to constrain real queries to perfect alignment with the boundaries of a quadtree. The 

effect of this overhead is detrimental to the scalability of the system under more difficult 

running conditions such as the one mentioned above. Moreover, HZ easily handles partially 

converted data, as we show in one portion of the accompanying video for the editing of the 

Salt Lake City panorama. In a tiled scheme, the entire hierarchy may need to be recomputed 

as new data is added.

5.2 .3  In teractive P rev iew  and O ut-of-C ore Solver R esu lts

We demonstrate the scalability and interactivity of our approach on several applications, 

using a numegabyteer of images ranging from megapixels to hundreds of gigapixels in size. 

To further illustrate the responsiveness of our system, the accompanying video shows screen 

captures of live demonstrations. To highlight particular details and validate the approach, 

the figures in this section show previews and close-ups of our interactive system, alongside 

the results of our full out-of-core progressive solver. We also provide running times of our
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full out-of-core solver compared with the best current method, streaming multigrid [89], 

which we have verified to use the same gradient information. All timings and demos were 

performed on a 64-bit 2.67 GHz Intel Quad Core desktop, with 8 gigabyte of memory. All 

streaming multigrid timings were computed from code provided by the authors and include 

the timing for the gradient preprocess along with the timing to produce a solution.

Our simple framework provides the illusion of a fully solved Poisson system at interactive 

frame rates and under continuous parameter changes with only a simple GL texture for 

display and no special hardware acceleration. Therefore, our code is platform independent. 

Our simple progressive out-of-core solver produces robust solutions with run times that 

rival [89]. Unlike the previous method, our out-of-core solver does not use hardware 

acceleration and did not undergo high code optimization to achieve the following runtimes. 

The solver is also sequential and uses no threading to accelerate the computation. If further 

optimization of the run-times is desired, there is nothing in our system to prevent the 

addition of these acceleration techniques.

Different from other out-of-core methods, we do not rely on large external memory 

data structures and we do not need to pre-compute gradients for the entire image. For 

the Salt Lake City panorama, for example, the streaming multigrid method [89] creates

75.2 gigabyte of auxiliary information for a 7.9 gigabyte input image. While disk space 

is generally assumed to be plentiful, such an explosion in disk space is unsustainable for 

images hundreds of gigapixel in size. The collection of satellite imagery we use in our video 

is more than one terabyte in size and would, therefore, require more than 9.5 terabytes of 

temporary storage.

The Edinburgh example is 25 images has resolution 16,950 x 2,956 (50 megapixel). 

At launch, our system performs a seamless stitch Poisson solve of a global 0.7 megapixel 

image in 1.26 seconds using our direct analytical solve, see Figure 5.4 (a). From this 

point on, the system can pan and zoom interactively as if the full-solution were already 

available. Our local adaptive refinement gives a solution that is visually equivalent to a 

solution to the entire system, see Figure 5.4 (c, d, and e). In the accompanying video, 

we demonstrate interactive editing and solving of the Poisson system, after the repeated 

user-selected replacement of pixels of a particular color. We also perform a seamless clone of 

a 2000 x 1600 airplane on Edinburgh’s cloudy sky. The plane is animated along a linear path 

across the panorama. As evident in the video, our framework shows the entire sequence in 

real-time.We also demonstrate similar interactive editing with the Redrock panorama (data
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F ig u re  5.4: The Edinburgh Panorama 16, 950 x 2, 956 pixels. (a) Our coarse solution 
computed at a resolution of 0.7 megapixels; (b) the same panorama solved at full resolution 
with our progressive global solver scaled to approximately 12 megapixel for publication; (c) 
a detail view of a particularly bad seam from the original panorama; (d) the problem area 
previewed using our adaptive local refinement; (e) the problem area solved at full resolution 
using our global solver in 3.48 minutes.

courtesy of Aseem Agarwala): nine images, 19, 588 x 4,457; 87 megapixels. Given this 

initial coarse solution, our method can produce a full solution of Edinburg, see Figure 5.4

(b), in 3.48 minutes. The streaming multigrid method requires 3.52 minutes. Figure 5.5 (a) 

shows the convergence and error for our method and streaming multigrid when compared 

to the ideal direct solution.

The Salt Lake City example is 611 images with resolution of 126,826 x 29,633 (3.27 

gigapixel). A significantly larger example is provided by a panorama captured with a 

simple camera mounted on a GigaPan robot [63]. To maximize individual image quality 

the pictures were taken with automatic exposure times, which inherently increases the 

color differences between images tha t need to be corrected by the Poisson solver. An initial 

coarse preview of 0.87 megapixel is computed by our direct analytical solver in 2.07 seconds. 

Figure 5.6 shows the original set of images (a), the panorama tha t our systems stitches in 

real time (b), the global solution provided by our out-of-core solver (c), and the difference 

image between the interactive preview and the final solution at the coarse resolution (d). 

There are slight deviations at some of the more challenging seams, but overall there is 

negligible visible difference. Our local adaptive preview mimics well the global solution, as 

shown in Figure 5.7. To test the accuracy of the methods, we have run a full analytical 

Poisson solver on a 485 megapixel subset of the panorama on a HPC-computer. Figures 5.8

(a) and (b) show how close our out-of-core solution comes to the exact analytical solution. 

Figure 5.8 (c) shows tha t the multigrid method has yet to converge to an acceptable solution 

given an equivalent amount of running time. All solutions were computed using the map
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Figure 5.5: The RMS error when compared to the ideal analytical solution as we increase iterations for both methods. Streaming 
multigrid has better convergence and less error for the Edinburgh example (a), though our method remains stable for the larger 
Salt Lake City panorama (b). Notice tha t every plot has been scaled independently to best illustrate the convergency trends of each 
method.
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F ig u re  5.6: Panorama of Salt Lake City of 3.27 gigapixel, obtained by stitching 611 
images. (a) Mosaic of the original images. (b) Our solution computed at 0.9 megapixel 
resolution. (c) The full solution provided by our global solver. (d) The difference image 
between our preview and the full solution at the preview resolution. Both (a) and (c) have 
been scaled for publication to approximately 12.9 megapixels.

F ig u re  5.7: A comparison of our adaptive local preview on a portion of the Salt Lake 
City panorama one half of the full resolution; (a) the original mosaic, (b) our adaptive 
preview, (c) the full solution from our global solver, and (d) the difference image between 
the adaptive preview and the full solution
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F ig u re  5.8: A comparison of our system with the best known out of core method [Kazhdan 
and Hoppe 2008] and a full analytical solution on a portion of the Salt Lake City panorama, 
21201 x 24001 pixels, 485 megapixel (a) the full analytical solution; (b) our solution 
computed in 28.1 minutes; (c) solution from [Kazhdan and Hoppe 2008] computed in 
24.9 minutes; (d) the analytical solution where the solver is allowed to harmonically fill 
the boundary; (e) our solution with harmonic fill; (f) solution from [Kazhdan and Hoppe 
2008] with harmonic fill; (g) the map image used by all solvers to construct the panorama 
where the red color indicates the image tha t provides the pixel color and white denotes the 
panorama boundary.

increases the memory usage of the method.

Sierpinki Sponge example has resolution 128k x 128k (16 gigapixel). We have tested 

the tone mapping application on a synthetic high dynamic range image generated with 

MegaPOV [118]. In this image we use a partially refined model of a Sierpinki Sponge 

to create high variations in level-of-detail. Such details can be completely hidden in the 

dark areas under projected shadows. We follow the approach introduced by Fattal [55] to 

reconstruct the information hidden in the dark regions. To validate the approach, we ran 

a typical HDR test image, the Belgium House, progressively refined from a 16 x 12 coarse 

solution. Even with such a coarse initial solution, we achieve results very close to the exact 

solution (see Figure 5.9 (c) and (d)). Figure 5.9 shows the original sponge model (a) and
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F ig u re  5.9: Application of our method to HDR image compression: (a) Original synthetic 
HDR image of an adaptively refined Sierpinki sponge generated with Povray. (b) Tone 
mapped image with recovery of detailed information previously hidden in the shadows.
(c) Belgium House image solved using our coarse-to-fine method with an initial 16 x 12 
coarse solution (a  =  0.01, =  0.7, compression coefficient=0.5). (d) The direct analytical 
solution. Image courtesy of Raanan Fattal.

the processed version (b), where all the details under the shadows have been recovered.

The satellite example contains a Blue Marble background image tha t is 3.7 gigapixel and 

imagery of Atlanta and other cities which are well over 100 gigapixel. To demonstrate the 

scalability of our system, we have run the seamless cloning algorithm for entire cities over a 

variety of realistic backgrounds from NASA’s Blue Marble Collection [125] (see Figure 5.10). 

We show how a user can take advantage of these capabilities to achieve artistic effects and 

create virtual worlds from real data. We also create a dynamic environment by animating
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F ig u re  5.10: Satellite imagery collection with a background given by a 3.7 gigapixel 
image from NASA’s Blue Marble Collection. The Progressive Poisson solver allows the 
application of the seamless cloning method to two copies of the city of Atlanta, each of 
116 gigapixels. An artist can interactively place a copy of Atlanta under shallow water and 
recreate the lost city of Atlantis. D ata courtesy of the U.S. Geological Survey and NASA’s 
Earth Observatory.

the background world map over 12 months and concurrently use the Poisson solver to show 

how the appearance of a city would change across the seasons.

5.3 Parallel Distributed Gradient Domain Editing
In the following, we provide details of our parallel Progressive Poisson algorithm and 

MPI implementation. This new algorithm reduces the time to compute a full resolution 

gradient domain solution from hours in the case of a single, out-of-core solution to minutes 

when run on a distributed cluster.
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5.3.1 Parallel Solver

Commonly, large images are stored as tiles, which gives one an underlying structure to di­

vide an image amongst the nodes/processors for a distributed solver. Tile-based distributed 

solvers have been shown to work well when only local trends are present. Seamless stitching 

commonly contains large scale trends where a naive tile-based approach will provide poor 

results. The addition of the Progressive Poisson m ethod’s coarse upsampling, allows for a 

simple, tile-based parallel solver tha t can account for large trends. Our algorithm works 

in two phases: The first phase performs the progressive upsample of a precomputed coarse 

solution for each tile. The second phase solves for a smooth image on tiles tha t significantly 

overlap the solution tiles from the first phase. In this way, the second phase smooths any 

seams not captured or even introduced by the first phase, producing a complete, seamless 

image.

5.3.1.1 D a ta  d is tr ib u tio n  as tiles . Although a tile-based approach leverages a 

common image storage format, it is not typically how methods are designed to handle 

seamless stitching of large panoramas. For instance, methods like streaming multigrid [89, 

90] often assume precomputed gradients for the whole image. Our system is designed to 

take tiles directly as input and therefore must be able to handle the gradient computation 

on-the-fly. An important and often undocumented component of panorama stitching is the 

map or label image. Given an ordered set of images which compose the panorama, the 

map image gives the correspondence of a pixel location in the overall panorama to the 

smaller image tha t supplies the color. This map file is necessary to determine the difference 

between actual gradients and those due to seams. This map also defines the boundaries of 

the panorama, which are commonly irregular. This file along with each individual image 

tha t composes the mosaic are needed for a traditional, out-of-core scheme [89, 149] for 

gradient computation. If the gradient across the seams is assumed to be zero, which is a 

common technique we adopt for this solver, each tile can be composited in advance and the 

map file is only needed to denote image seams or boundary. As noted above, this composited 

tile is often already provided if used in a traditional large image system. The map file can 

then be encoded as an extra channel of color information, typically the alpha channel. For 

mosaics of many hundreds of images, such as the examples provided in this dissertation, 

we cannot encode an index for each image in a byte of data. Though in practice each tile 

has very little probability of having more than 256 individual images, each image is given 

a unique 0-255 number on a per tile basis.
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We have chosen an overlap of 50% in both dimensions for the second phase windowing 

scheme of the parallel solver for simplicity in implementation. Each window is composed 

of a 2 x 2 collections of tiles. To avoid undefined windows in the second phase, we add 

a symbolic padding of one row/column of tiles to all sides of the image which the solver 

regards as pure boundary. Figure 5.11 gives an example of a tile layout. The overlapping 

window size used for our testing was 1024 x 1024 pixels (assuming 512 x 512 tiles), which 

we found to be a good compromise between a low memory footprint and image coverage. 

Each node receives a partition of windows equivalent to a contiguous subimage with no 

overlap necessary between nodes during the same phase. D ata can be distributed evenly 

across all nodes in the case of a homogeneous distributed system or dependent on weights 

due to available resources in the case of a heterogeneous hardware. We provide a test case 

for a heterogeneous system in Section 5.

5.3.1.2 C oarse  so lu tion . As a first step, the first phase of our solver will upsample 

via bilinear interpolation a 1-2 megapixel coarse solution. Much like the Progressive Poisson 

method [149], each node computes a solution in just a few seconds using a direct FFT  solver 

on a coarsely sampled version of our large image. In tiled hierarchies, this coarse image is 

typically already present and can be encoded with the map information in much the same 

way as the tiles.

5.3.1.3 F irs t phase: p rog ressive  so lu tion . This phase computes a Progressive 

Poisson solution for each window which are composed of tiles read off of a distributed
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F ig u re  5.11: Our tile-based approach: (a) An input image is divided into equally spaced 
tiles. In the first phase, after a symbolic padding by a column and row in all dimensions, 
a solver is run on a window denoted by a collection of four labeled tiles. D ata are sent 
and collected for the next phase to create new data windows with a 50% overlap. (b) An 
example tile layout for the Fall Panorama example.
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file system. To progressively solve a window, an image hierarchy is necessary. For our 

implementation a standard power-of-two image pyramid was used. As a first step, the 

solver upsamples the solution to a finer resolution in the image pyramid using a coarse 

solution image and the original pixel values. An iterative solver is then run for several 

iterations to smooth this upsample using the original pixel gradients as the guiding field. 

This process is repeating down the image hierarchy until the full resolution is reached. The 

solver is considered to have converged at this resolution when the L2 norm falls below 10-3 

which is based on the range of byte color data. From our testing, we have found tha t SOR 

gives both good running times and low memory consumption and therefore is our default 

solver. As noted above, this window is logically composed of four tiles, which are computed 

and saved in memory for the next phase as floating point color data. This leads to 12 

bytes/pixel (three floating point color data) to transfer between phases. Given the data 

distribution, one node may process many windows. If this is the case, only the tiles which 

border a node’s domain are prepared to be transferred to another node, thereby keeping 

data communication between phases to a relatively small zone.

5.3.1.4 Second phase: overlap  so lu tion . The second phase gathers the four tiles 

(both solution and original) that make up the overlapping window. After the data are 

gathered, the gradients are computed from the original pixel values and an iterative solver 

(SOR) is run after being initialized with the solutions from the first phase. The iterative 

solver is constrained to only work on interior pixels to prevent this phase from introducing 

new seams at the window boundary. Technically, there may be errors at the pixels around 

the midpoints of the boundary edges of these windows, though we have not encountered 

this in practice. Again, this solver is run until convergence given by the L2 norm. Note that 

even though the tile gradients are computed in the first phase, we have chosen to recompute 

them on the fly in the second phase. Passing the gradients would cost at least an additional 

12 bytes/pixel overhead. As nodes increase, data transfer and communication becomes a 

significant bottleneck in most distributed schemes therefore, we chose to pay the cost of 

increased computation and reading the less expensive byte image data from the distributed 

file system instead of the costly transfer.

5.3.1.5 P a ra lle l im p le m e n ta tio n  de ta ils . Each node has one master thread which 

coordinates all processing and communication. The core component of this thread is a 

priority queue of windows and tiles to be processed. At launch, this queue is initialized 

by a separate seeding thread with the initial domain of windows to be solved in the first
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phase. Because of the separation of the main thread from the seeding of the queue, the 

main thread can begin processing windows immediately. Each window is given a first phase 

id, which is the window’s row and column location in the subimage to be processed by a 

node. Communication between nodes need only be one-way in our system, therefore we 

have chosen for communication to be “upstream” between nodes, i.e., the nodes operating 

on a subimage with horizontal or vertical location greater than the current node. In order 

to avoid starvation in the second phase, the queue is loaded with windows in reverse order 

in terms of the tile id. Figure 5.12 gives an example of the traversal and communication. 

All initially seeded windows are given equal low priority in the queue. In essence the initial 

queue operates much like a first-in-first-out (FIFO) queue. As windows are removed from the 

queue, the main thread launches a progressive solver thread which is handed off to an intra­

node dynamic scheduler. Our implementation uses a HyperFlow [170] scheduler to execute 

the solver on all available cores. HyperFlow has been shown to efficiently schedule execution

F ig u re  5.12: Windows are distributed as evenly as possible across all nodes in the 
distributed system. Windows assigned to a specific node are denoted by color above. Given 
the overlap scheme, data transfer only needs to occur one-way, denoted by the red arrows 
and boundary above. To avoid starvation between phases and to hide as much data transfer 
as possible, windows are processed in inverse order (white arrows) and the tiles needed by 
other nodes are transferred immediately.
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of workflows on multicore systems and therefore is the perfect solution for our intra-node 

scheduling. In all there are two distinct sequential stages in each phase: (1) loading of 

the tile data and the computation of the image gradient and (2) the progressive solution. 

This flow information allows HyperFlow to exploit data, task, and pipeline parallelism to 

maximize throughput.

After a solution is computed, the progressive solver thread partitions the window into 

the tiles tha t comprise it. This allows the second phase to recombine the tiles needed for 

the 50% overlap window. All four tiles are loaded into the queue with high priority. If 

the main thread removes a tile (as opposed to a window) from the queue and the tile is 

needed by another node, the main thread immediately sends the data asynchronously to 

the proper node. Otherwise, if the node needs this tile for phase two, the second phase id 

of the window which needs the tile is computed and hashed with a two-dimensional hash 

function the same size as the window domain for the second phase. If all four tiles for a 

given second phase window have been hashed, the main thread now knows a second phase 

window is ready and immediately passes the window to a solver thread for processing. If 

the main thread receives a solved tile from another node, this is also immediately hashed.

5.3.2 R esu lts

To demonstrate the scalability and adaptability of the approach, we have tested our 

implementation using two panorama datasets, gigapixels in size. To illustrate the portability 

of the system, we have also shown its running times and scalability on two distributed 

systems. Our main system, the NVIDIA Center of Excellence cluster in the Scientific 

Computing and Imaging Institute at the University of Utah, consists of 60 active nodes 

with 2.67GHz Xeon X5550 Processors (8 cores), 24GB of RAM per node, and 750GB local 

scratch disk space. The second system, the Longhorn visualization cluster in the Texas 

Advanced Computer Center at the University of Texas at Austin, consists of 256 nodes (of 

which 128 were available for our tests) with 2.5GHz Nehalem Processors (8 cores), 48GB 

of RAM per node, and 73GB local scratch disk space. Weak and strong scalability tests 

were performed on both systems. Given the proven scalability of Hyperflow on one node, 

we have tested the scalability of the MPI implementation from 2-60 and 2-128 nodes for the 

NVIDIA cluster and Longhorn cluster, respectively. Timings are taken as best over several 

runs to discount external effects to the cluster from shared resources such as the distributed 

file system. The datasets used for testing were:
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• Fall Panorama. 126,826x29, 633, 3.27 gigapixel. When tiled, this dataset is composed 

of 124 x 29 10242 sized windows. See Figure 5.13 for image results from a NVIDIA 

cluster 480 core test run.

• W inter Panorama. 92, 570 x 28, 600, 2.65 gigapixel. When tiled, this dataset is 

composed of 91 x 28 10242 sized windows. See Figure 5.14 for image results from 

a NVIDIA cluster 480 core test run.

5.3.2.1 N V ID IA  c lu ste r. To show the MPI scalability of our framework and im­

plementation, strong and weak scaling tests were performed for 2-60 nodes. As shown 

in Tables 5.1 and 5.2, both datasets scale close to ideal and with high efficiency for strong

F ig u re  5.13: Fall Panorama - 126, 826 x 29, 633, 3.27 gigapixel. (a) The panorama before 
seamless blending and (b) the result of the parallel Poisson solver run on 480 cores with 
124 x 29 windows and computed in 5.88 minutes.

F ig u re  5.14: W inter Panorama - 92, 570 x 28, 600, 2.65 gigapixel. (a) The result of the 
parallel Poisson solver run on 480 cores with 91 x 28 windows and computed in 6.02 minutes, 
(b) the panorama before seamless blending, and (c) the coarse panorama solution.
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T a b le  5.1: The strong scaling results for the Fall Panoram a run on the NVIDIA cluster 
from 2-60 nodes up to  a to ta l of 480 cores. Overhead (O /H ) due to  M PI comm unication and 
I /O  is also provided along with its percentage of actual running time. The Fall Panoram a, 
due to  its larger size begins to  lose efficiency at around 32 nodes when I/O  overhead begins 
to  dom inate. Even with this overhead, the efficiency (Eff.) remains acceptable.

Strong Scaling - Fall Panoram a - NVIDIA cluster
Nodes Cores Ideal (m) Actual (m) Eff. % O/H (m) % O/H

2 16 79.35 79.35 100.0 18.80 23.7
4 32 39.68 40.08 97.1 9.05 22.2
8 64 19.84 20.83 95.2 7.28 35.0

16 128 9.92 11.43 78.9 6.50 51.7
32 256 4.96 6.20 53.8 6.20 67.3
48 384 3.31 6.40 51.7 6.40 100.0
60 480 2.65 5.88 45.0 5.88 100.0

T a b le  5.2: The strong scaling results for the W inter Panoram a run on the NVIDIA cluster 
from 2-60 nodes up to  a to ta l of 480 cores. Overhead (O /H ) due to  M PI comm unication 
and I/O  is also provided along with its percentage of actual running tim e. For the 
W inter Panoram a, the I /O  overhead does not effect performance up to  60 nodes and the 
im plem entation m aintains efficiency (Eff.) throughout all of our runs.

Strong Scaling - W inter Panoram a - NVIDIA cluster
Nodes Cores Ideal (m) Actual (m) Eff. % O/H (m) % O/H

2 16 128.87 128.87 100.0 8.63 6.7
4 32 64.43 77.68 82.9 4.70 6.1
8 64 32.22 40.63 79.3 4.28 10.5

16 128 16.11 21.17 76.1 4.17 19.7
32 256 8.05 10.88 74.0 4.08 37.5
48 384 5.37 6.98 76.9 4.10 58.7
60 480 4.30 6.02 71.4 4.00 66.5

scaling. The Fall Panoram a, due to  its larger size begins to  lose efficiency at around 32 nodes 

when I/O  overhead begins to  dom inate. Even with this overhead, the efficiency remains 

acceptable. For the W inter Panoram a, the I /O  overhead does not effect performance up to 

60 nodes and the im plem entation m aintains efficiency throughout the test. Weak scaling 

tests were performed using a subimage of the Fall Panoram a dataset. See Table 5.3 for the 

weak scaling results. As the num ber of cores increases so does the image resolution to  be 

solved. The subimage was expanded from the center of the full image and iterations of the 

solver for all windows were locked at 1000 for testing to  ensure no variation is due to  slower 

converging image areas. As the figure shows, our im plem entation shows good weak scaling
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T a b le  5.3: Weak scaling tests run on the NVIDIA cluster for the Fall Panoram a dataset. 
As the num ber of cores, increases so does the image resolution to  be solved. The image was 
expanded from the center of the full image. Iterations of the solver for all windows were 
locked at 1000 for testing to  ensure no variation is due to  slower converging image areas. As 
is shown, our im plem entation shows good efficiency even when running on the maximum 
num ber of cores.

Weak Scaling - NVIDIA cluster
Nodes Cores Size (MP) Time (min.) Efficiency

2 16 100.66 5.55 100.00%
4 32 201.33 5.55 100.00%
8 64 402.65 5.53 100.30%

16 128 805.31 5.68 97.65%
32 256 1610.61 5.77 96.24%
60 480 3019.90 6.57 84.52%

efficiency even for 60 nodes w ith 480 cores. In all, we have produced a gradient domain 

solution to  a dataset which in previous work the best known m ethods [89, 149] took hours 

to  compute.

5.3.2.2 L ong h o rn  c lu ste r. To show the portability  and M PI scalability of our 

framework and implem entation, strong and weak scaling tests were performed on the largest 

dataset (Fall Panoram a) on a second cluster. The strong scaling tests were performed from 

2-128 nodes and the weak scaling tests, lim ited by the size of the image, were performed 

from 2-64 nodes. As shown in Table 5.4, our im plem entation m aintains very good efficiency 

and tim ings for our strong scaling test up to  the full 1024 cores available on the system. 

Much like the NVIDIA cluster, weak scaling tests were performed on a portion of the Fall

T a b le  5.4: To dem onstrate the portability  of our implem entation, we have run strong 
scalability testing for the Fall Panoram a on the Longhorn cluster from 2-128 nodes up to  a 
to ta l of 1024 cores. As the numbers show, we m aintain good scalability and efficiency even 
when running on all available nodes and cores.

Strong Scaling - Fall Panoram a - Longhorn
Nodes Cores Ideal(m) Actual(m) Efficiency

2 16 84.07 84.07 100%
4 32 42.03 43.18 97%
8 64 21.02 21.85 96%

16 128 10.51 12.08 87%
32 256 5.25 6.93 76%
64 512 2.63 3.89 68%

128 1024 1.31 2.73 48%
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Panorama and iterations of the solver were locked at 1000. To ensure tha t each node 

got a reasonably sized subimage to solve, the tests were limited to 64 nodes. Table 5.5 

demonstrates our implementations ability to weak scale on this cluster, maintaining good 

efficiency for up to 512 cores.

5.3.2.3 H e te ro g en eo u s  c lu ste r. As a final test of portability and adaptability, we 

presented our implementation with a simulated heterogeneous distributed system. Our 

parallel framework provides the ability to give weights to nodes which is typically even and 

therefore results in an even distribution of windows across all nodes. For this example, a 

simple weighting scheme can easily load-balance this mixed network, giving the nodes with 

more resources more windows to compute. Table 5.6 gives an example mixed system of two 

8-core nodes, four 4-core nodes, and eight 2-core nodes. In all, this system has 48 available 

cores. The weights for our framework are simply the number of cores available in each 

node. This network was simulated using the NVIDIA cluster by overloading Hyperflow’s 

knowledge of available resources with our desired properties. While this is not a perfect 

simulation since the main thread handling MPI communication would not be limited to 

reside on the desired cores, as shown in the strong scaling tests even with evenly distributed 

data on 8-16 nodes the implementation is not yet I/O  bound. Therefore, we should still have 

a good approximation to a real, limited system. The figure details the window distribution 

and timings for the Fall Panorama for all nodes in this test. As is shown, we maintain good 

load balancing given proper node weighting when dealing with heterogenous systems. The 

max runtime of 32.70 minutes for this 48 core system is on par with run time for the 32 

core (40.08 minutes) and 64 core (20.83 minutes) strong scaling results.

T ab le 5.5: Weak scaling tests run on the Longhorn cluster for the Fall Panorama dataset.

Weak Scaling - Longhorn cluster
Nodes Cores Size (MP) Time (min.) Efficiency

2 16 75.5 5.50 100.00%
4 32 151 6.13 89.67%
8 64 302 6.15 89.43%

16 128 604 6.15 89.43%
32 256 1208 6.13 89.67%
64 512 2416 6.15 89.43%
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T able 5.6: Our simulated heterogeneous system. This test example is a simulated mixed 
system of 2 8-core nodes, 4 4-core nodes, and 8 2-core nodes. The weights for our framework 
are the number of cores available in each node. The timings and window distributions are 
for Fall Panorama dataset. As you can see, with the proper weightings our framework 
can distribute windows proportionally based on the performance of the system. The max 
runtime of 32.70 minutes for this 48 core system is on par with timings for the 32 core 
(40.08 minutes) and 64 core (20.83 minutes) runs from the strong scaling test.

■ Total W indows Processed ■  Tim e (m )

Heterogeneous System - Fall Panorama
Cores 8 4 2

Time(m) 27.9 28.9 32.1 32.7 32 32.5 16.6 23.1 28.7 32.2 20 23.6 24.6 28.4
Windows 1239 1239 640 640 580 600 276 285 300 330 304 304 290 319

5.4 Gradient Domain Editing on the Cloud
The parallel algorithm outlined in the previous section provides a full resolution gradient 

domain solution for massive images in only a few minutes of processing time. In this section, 

we explore redesigning this technique as a cloud-based application. For this work, we 

chose to target the MapReduce framework and its open source implementation, Hadoop. 

MapReduce and Hadoop have emerged in recent years as popular and widely supported 

cloud technologies. Therefore, they are the logical targets for this work.

5.4.1 M apR educe and H adoop

This subsection briefly reviews some of the fundamentals of the MapReduce framework 

and how to design graphics algorithms to work well with Hadoop and Hadoop's Distributed 

File System (HDFS). We provide a high level view to justify design decisions outlined in 

the next section.

The map function operates on key/value pairs producing one or more key/value pairs 

for the reduce phase. The reduce function is a per-key operation tha t works on the output 

of the mapper (see Figure 5.15). Hadoop’s scheduler will interleave their execution as data 

are available. Currently, Hadoop does not support job chaining. Therefore, any algorithm 

tha t requires two passes will likely require two separate MapReduce jobs. While this will 

likely change in the future, at this time minimizing the number of passes is an important 

consideration since the overhead incurred by launching new jobs in Hadoop is significant.
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F ig u re  5.15: The two phases of a MapReduce job. In the figure, three map tasks produce 
key/values pairs tha t are hashed into two bins corresponding to the two reduce tasks in the 
job. When the data are ready, the reducers grab their needed data from the mapper’s local 
disk.

In Section 5.4.2 we detail our algorithm, which requires only one pass.

Hadoop has been optimized to handle large files and to process/transfer small chunks of 

data. For many applications including the one outlined in the next section, understanding 

Hadoop’s data flow is vital for an efficient implementation, much like random memory access 

must be considered in a GPU.

5.4.1.1 In p u t. The Hadoop distributed file system stripes data across all available 

nodes on a per block basis with replication to guarantee a certain level of locality for the 

map phase and to be able to handle system faults. When a job is launched, Hadoop will 

split the input data evenly for all map instances. For our example, allowing Hadoop to 

arbitrarily split the input data could result in fragmented images. Therefore, the system 

allows the developer to specialize the function reading the input which we use to constrain 

the split to only occur at image boundaries.

5.4.1.2 M ap R ed u ce  tra n s fe r . During execution, each mapper hashes the key of 

each key/value pair into bins. The number of bins equal the number of reducers (see 

Figure 5.15) and each bin is also sorted by key. The map first stores and sorts the data in 

a buffer in memory but will spill to disk if this is exceeded (the default buffer size is 512
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MB). This spill can lead to poor mapper performance and should be avoided if possible.

After a mapper completes execution, the intermediate data are stored to a node’s local 

disk. Each mapper informs the control node tha t its data are finished and ready for the 

reducers. Since Hadoop assumes tha t any mapper is equally likely to produce any key, 

there is no assumed locality for the reducers. Each reducer must pull its data from multiple 

mappers in the cluster (see Figure 5.15 and 5.16). If a reducer must grab key/value pairs 

from many local disks on the cluster (possibly an N -to-N  mapping), this phase can have 

drastic effect on the performance.

Job coordination is handled with a master/slave model where the control node, called 

the Job Tracker distributes and manages the map and reduce tasks. When a program is 

launched the Job Tracker initiates Task Trackers on nodes in the cluster. The Job Tracker 

then schedules tasks on the Task Tracker maintaining a communication link to handle 

system faults (see Figure 5.16).

— I iiiP
NodeJob tracker

1
v  Create

Communication Task tracker

DFS

I
I- /

Task tracker

Output from 
other mappers

Node
Disk

Node
Disk

Node
Disk

F ig u re  5.16: A diagram of the job control and data flow for one Task Tracker in a Hadoop 
job. The dotted, red arrows indicate data flow over the network; dashed arrows represent 
communication; the blue arrow indicates a local data write and the black arrows indicate 
an action taken by the node.
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5.4.2 M apR educe for G radient D om ain

Commonly, large images are stored as tiles, which gives us the underlying structure for 

our scheme. However, a tiled-based approach by itself would not account for large scale 

trends common in panoramas (see Figure 5.17). Therefore, we add upsampling of a coarse 

solution similar to the approach used in Summa et al. [149] to capture these trends. Our 

algorithm works in two phases: The first phase performs the upsample of a precomputed 

coarse solution and solves each tile to produce a smooth solution over the extent of the tile. 

The second phase solves for a smooth image on tiles tha t significantly overlap the smoothed 

tiles from the first phase. In this way, the second phase smooths any seams not captured 

or even introduced by the first phase solvers. This algorithm can be simply implemented 

in one MapReduce job in Hadoop.

5.4.2.1 T iles. We have chosen an overlap of 50% in both dimensions for the second 

phase due to the simplicity of implementation, although Summa et al. [149] has shown that 

a good solution can be found with much less. To easily accomplish this overlap, we divide 

the data into tiles 1/4 of the proper size. Figure 5.18 shows the tile layout for our test 

images. Each phase operates on four of these smaller tiles which are combined to construct 

the larger tiles. To avoid undefined tiles in the second phase, we add a symbolic padding of 

one row/column to all sides of the image. Figure 5.19 gives an example of a tile layout. An 

important component of panorama stitching is a map file which gives the correspondence 

from a pixel location in the overall panorama to the smaller image that supplies the color. 

This map file is necessary to determine the difference between actual gradients and those 

due to seams. This map also defines the boundaries of the panorama, which are commonly 

irregular and do not usually follow the actual image boundary. The panorama boundary is 

a seam we would like to preserve. We encode the map file into each individual tile as an 

alpha channel. For images such as the Salt Lake City example, we cannot encode an index

F ig u re  5.17: Although the result is a smooth image, without coarse upsampling the final 
image will fail to account for large trends tha t span beyond a single overlap and can lead 
to unwanted shifts in color. Notice the vertical banding denoted by the red arrows.
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F ig u re  5.18: The 512 x 512 tiles used in our Edinburgh (a), Redrock (b), and Salt Lake 
City (c) examples.
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Image Map Reduce

F ig u re  5.19: Our tile-based approach: An input image is divided into equally spaced tiles. 
In the map phase after a symbolic padding by a column and row in all dimensions, a solver 
is run on a collection of four tiles labeled by numbers above. After the mapper finishes, it 
assigns a key such tha t each reducer runs its solver a collection of four tiles tha t have a 50% 
overlap with the previous solutions.

for each image in a byte of data. However, the map is only used to denote if two pixels are 

from the same source image or if a pixel is on the boundary. Therefore a byte is more than 

enough to encode this correspondence. The symbolic padding is encoded as boundary and 

images that are not evenly divisible by our tile size are also padded with boundary. The 

overlapping window size used for our test was 1024 x 1024 pixels which we found was a 

good compromise between a low memory footprint and image coverage.
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5.4.2.2 C oarse  so lu tion . As a first step, the first phase of our solver will upsample 

via bilinear interpolation a 1-2 megapixel coarse solution. Much like the method from 

Summa et al. [149], we precompute the coarse solution in just a few seconds using a direct 

FFT  solver on a coarsely sampled version of our large image. In tiled hierarchies, this coarse 

image is typically already present. In Hadoop, this coarse solution is sent along with the 

MapReduce job when launched. The Job Tracker stores this image on the distributed file 

system for Task Trackers to pull and store locally.

5.4.2.3 F irs t (m ap) phase . After loading/combining the smaller tiles and perform­

ing the upsample, the first phase runs an iterative solver initialized with the upsampled pixel 

colors. From our testing, we have found tha t SOR gives good running times and low memory 

consumption and therefore is our default solver. The solver is considered to have converged 

when the L 2 norm falls below 10-3 which is based on the range of byte data. After a smooth 

image is computed, the solution is split back into its four smaller tiles and sent to the next 

phase as byte data. Some precision is lost in the solution data by this truncation of bits 

and can cause slower convergence in the next phase. However, in many distributed systems, 

the bottleneck is data transfer; therefore it is preferable to use smaller data at the cost of 

increased computation. For the Hadoop implementation, this first phase of our algorithm 

fits well with Hadoop’s map phase. Each mapper emits a key/value pair, where the value 

is the data from a small tile and the key is computed in such a way tha t we achieve the 

desired 50% overlap in the next phase. The key is computed as a row/column pair in the 

space of the larger tiles. This key is stored in 4 bytes before being emitted. The high word 

contains the row and the low word contains the column. For a tile at location (x,y), the 

key for sub-tile (i, j)  is computed as:

keyjrow  =  x * 2 +  i; (5.4)

key-col =  y * 2 +  j; (5.5)

Below we provide pseudocode for the map phase and Figure 5.19 provides an example.

5.4.2.4 Second (reduce) phase . The second phase now gathers the four smaller 

tiles tha t make up the overlapping window. These tiles sit as intermediate data on the local 

disks of the cluster. If the system accounts for locality, each instance would only need to 

gather three tiles since the nodes could be placed such tha t one tile is always stored locally. 

After the data are gathered, the gradients are computed from the original pixel values and 

an iterative solver (SOR) is run after being initialized with the solutions from the first
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proc Map(blockld, image) = 
row := blockld >> 16; 
col := blockld & 0xFFFF; 
solver.compute-gradient (image); 
solver.upsample_coarse(image, row, col); 
solver.SOR(image); 
for i := 0 to 1 do 

for j  := 0 to 1 do
keyRow  := row * 2 +  i; 
keyCol := col * 2 +  j ; 
key := keyRow << 16 +  keyCol; 
emit(key, solver.tiles[i][j ]);

phase. The iterative solver is constrained to only work on interior pixels to prevent this 

phase from introducing new seams. Technically, there may be errors at the pixels around 

the midpoints of the boundary edges of these tiles, though in practice we have not seen 

this affect the solution. This second phase fits well with Hadoop’s reduce phase with some 

considerations. Hadoop does not account for data locality for the reducers, therefore, we 

must assume the worst case gather of four tiles. Also, the reducers do not have access to the 

HDFS, nor can any task request specific data. The mappers in the first phase modify the 

pixel values, but the reducer needs the original values to compute the gradient vector for 

the iterative solver. Therefore, the mapper must also concatenate the original pixel values 

to the solved data before it emits the key/value pair. This leads to a 6 bytes/pixel transfer 

between phases. Below we provide pseudocode for the reduce phase.

proc Reduce(blockld, [(map1, o rg1),..., (map4, org4)]) =  
mapper-output := merge(map1, map2, map3, map4); 
originaLtile  := merge(org1, org2, org3, org4); 
solver.compute-gradient(original-tile); 
solver.SOR(mapper-output); 
emit(BlockId, solver.tiles);

5.4.2.5 S to rag e  in  th e  H D F S . In Hadoop, saving the image in standard row major 

order would lead to poor performance in the mappers since there is good locality in only 

one dimension. Saving individual tiles would also not be efficient since Hadoop’s HDFS is 

optimized for large files. Therefore, we save the data as the large tiles, comprised of the four
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smaller tiles, which the mapper needs in the first phase. We concatenate the tiles together, 

row-by-row, into a single large file.

5.4 .3  R esu lts
We demonstrate the quality of our approach on three test panoramas which range from 

megapixels to gigapixels in size. We also demonstrate the generality of the abstraction by 

running our code, without modification, on a single desktop and on a large cluster. Finally, 

we test Hadoop’s scalability with two of our test panoramas.

The single node tests were performed on a 2 xQuad-Core Intel Xeon w5580 3.2GHz 

desktop with 24GB of memory. For our large distributed tests, we ran our method on the 

NSF CLuE [41] cluster, which consists of 275 nodes each with dual Intel Xeon 2.8GHz 

processors with HyperThreading and 8GB of memory. While still a valuable resource for 

research, as far as modern clusters are concerned, CLuE’s hardware is outdated being a 

retired system based on a 6-year-old technology originally produced in 2004. Moreover, 

CLuE is also a shared resource and all timings were certainly affected by other researchers 

using the machines.

The Edinburgh panorama consists of 25 images with a full resolution of 16, 950 x 

2, 956 pixels (50 megapixel) and was broken into 48 tiles. For our single node test, our 

method produced a solution in 81 seconds with eight mappers and four reducers. The 

Redrock panorama consists of nine images with a full resolution of 19, 588 x 4,457 pixels 

(87 megapixel) and was partitioned into 96 tiles. Our method running on a single node 

solved the panorama in 156 seconds with nine mappers and nine reducers. The solver 

running on the cluster ran in 199 seconds with 96 mappers and 96 reducers. Due to the 

small size of the panoramas, the extra parallelization given to us by the distributed system 

did not increase performance. Quite the opposite was true, the runtimes were worse due 

to overhead of Hadoop launching and coordinating many tasks. Also, because the cluster 

was a shared resource, this increase in compute time could have easily come from external 

influences. See Figure 5.20 for the original and solved panoramas.

The Salt Lake City panorama consists of 611 images with a full resolution of 126,826 x 

29, 633 pixels (3.27 gigapixel) and was split into 3,444 tiles. Our method took 3 hours and 

5 minutes to compute a solution on our one node test desktop. On the distributed cluster 

with 492 mappers and 492 reducers the time to compute a solution dropped to 28 minutes 

and 44 seconds of which 3 minutes and 24 seconds was due to Hadoop overhead and 15 

minutes was due to I/O  and data transfer between the map and reduce phases. Running
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F ig u re  5.20: The results of our cloud implementation, from top to bottom: Edinburgh, 
25 images, 16, 950 x 2, 956, 50 megapixel and the solution to Edinburgh from our cloud 
implementation; Redrock, nine images, 19, 588 x 4,457; 87 megapixel and the solution to 
Redrock from our cloud implementation; Salt Lake City, 611 images, 126, 826 x 29, 633, 
3.27-gigapixel and the solution to Salt Lake City from our cloud implementation.

Salt Lake City with 246 mappers and 246 reducers produced a solution in 39 minutes and 

49 seconds of which 2 minutes and 7 seconds was due to Hadoop overhead and 30 minutes 

was due to I/O  and data transfer. Note tha t these are all wall clock times and include 

activity of other people on a shared system. Moreover, the configuration, which we could 

not change, required running at least three processes on every node which have only two 

cores. Therefore, we can only hope to have 2/3 compute efficiency out of this cluster. See 

Figure 5.20 or the original and solved panorama. Based on our timing and the pricing 

available online, running the 492 mapper/reducer job would have cost approximately $50 

to run on Amazon’s Elastic Reduce [10]. This is orders of magnitude less expensive and 

time comsuming than operating and maintaining a proprietary cluster and would allow any 

researcher in the field to experiment with new ideas.

5.4.3.1 Scalability . Due to the shared nature of the CLuE cluster, we restricted 

our scalability tests to only the single node test desktop. Figure 5.21 plots the runtime to 

solve both the Edinburgh and Redrock panoramas as a function of number of reducers and 

mappers. We varied the number of mappers and reducers from one to the number of cores. 

The plot shows tha t as both the mappers and reduces increase so does our performance, 

but as the total number of both mappers and reducers meets or exceeds the available cores 

of our system, the performance gain flattens. This is an important observation and must be 

remembered when choosing an optimal number of mappers and reducers especially when 

purchasing time and cores as a commodity.
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F ig u re  5.21: (a) The scalability plot for the Edinburgh (50 megapixel) panorama on our 
one node 8-core test desktop; (b) the scalability plot for Redrock (87 megapixel) panorama 
on the same machine

5.4.3.2 F au lt to le ran ce . Hadoop has been developed to robustly handle failures 

in the cluster. Achieving a fault tolerant implementation is a major challenge on its own 

and is not easily available in other distributed frameworks such as MPI. The tremendous 

advantage of fault tolerance comes at the cost of high variability in running times, though 

jobs are guaranteed to finish. In fact, all runs on the distributed cluster had some kind of 

failure in the system at some time during the execution and still we were able to get results, 

which would not be available with a traditional distributed implementation. In particular, 

the running time stated above for the Salt Lake City example with 492 mappers/reducers 

was based on the job with the minimum number of failures (95 failed tasks). In practice, 

we have seen this example run as long as 49 minutes to account for the 133 failed tasked 

tha t occurred during the job.



CHAPTER 6

FUTURE WORK

The work outlined in this dissertation provides both the justification for and the solutions 

to bringing the composition stage of the panorama processing pipeline into an interactive set­

ting. The future of this work is to bring the entire pipeline into an interactive environment. 

A system built with this guiding principle would allow the user to add and remove images, 

fix registration problems, or adjust image boundaries all while having a preview of the final 

color-corrected, composited panorama. This will give users an unprecedented amount of 

control over the creation of new panoramas, increasing both the accessibility of panorama 

creation and quality of the final results. Due to the work completed for this dissertation, the 

logical next step to achieving my ultimate goal is to provide new and interactive solutions 

for the registration phase of the panorama pipeline. Currently, interaction for registration is 

typically non-existent. Even when it is provided by a system, the interaction is rudimentary 

at best. For instance, the only interaction possible for a panorama processing system such 

as Hugin [77] is the manual selection and deletion of image feature points between pairs of 

images, see Figure 6.1.

This is a tedious process for small images, and completely unwieldy for larger image 

collections. The scaling of registration algorithms will also need further study. Despite 

significant previous work, many current methods have been shown to work with relatively 

small collections of images. Although assumed to scale well, only recently has work shown an 

extension of current techniques to work with extremely large collections of photographs [1]. 

Often such assumptions of scaling can be false; for instance some of the commercial and 

open-source products, although advertised to handle an arbitrary number of images, have 

failed when presented with panoramas with hundreds of images. General purpose algorithms 

for automatic registration of extremely large image collections remain an open avenue of 

investigation. In addition, state-of-the-art stitching software often needs a reduction of 

complexity by strictly enforcing tha t the images are acquired in a regular pattern (columns 

and rows) to reduce the search space for possible registrations. My collaborators and I have
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F ig u re  6.1: A typical example of interaction during panorama registration from the open- 
source Hugin [77] software tool. Current interaction is limited to the manual selection and 
deletion of feature points used during registration.

found that these programs will often fail when presented with large image collections with 

no assumed structure.

The focus of my dissertation work was to bring the composition stage of the panorama 

creation pipeline into an interactive setting, not only for small images, but for images 

massive in size. The Progressive Poisson and Panorama Weaving algorithms elegantly 

achieve this goal. Although panoramas were the primary focus of the work, the methods and 

frameworks developed throughout my dissertation provide new paradigms for interacting 

with high resolution imagery. For instance, the Progressive Poisson provides a working 

proof-of-concept on how to reformulate global algorithms to work in an interactive setting 

for large data by computing screen resolution previews in real-time and using out-of-core 

computation for full resolution solutions. One can envision expanding the frameworks and 

techniques outlined in this work with other data processing tools to allow comprehensive 

editing of massive datasets on regular desktop computers.



APPENDIX  

MASSIVE DATASETS

T able A.1: Massive panorama data acquired and used in this dissertation work.

Dataset Images Format Individual Image Size
Lake Louise Large 5794 RAW NEF 16-bit 4288 x 2848 (12 Megapixel)
Lake Louise Small 1 2805 RAW NEF 16-bit 4288 x 2848 (12 Megapixel)
Lake Louise Winter 1 1983 JPEG Fine 4288 x 2848 (12 Megapixel)
Lake Louise Winter 2 1876 JPEG Fine 4288 x 2848 (12 Megapixel)
Lake Louise Morning 1656 JPEG Fine 4288 x 2848 (12 Megapixel)
Lake Louise Small 2 1440 RAW NEF 16-bit 4288 x 2848 (12 Megapixel)
Salt Lake City Large 1311 JPEG Fine 3456 x 2592 (9 megapixels)
Lake Louise Evening 1220 JPEG Fine 4288 x 2848 (12 Megapixel)
Salt Lake City Winter 1219 JPEG Fine 3456 x 2592 (9 megapixels)
Salt Lake City Fall 624 JPEG Fine 3456 x 2592 (9 megapixels)
Mount Rushmore 300 JPEG Fine 4288 x 2848 (12 Megapixel)
Salt Lake City Small 132 JPEG Fine 3264 x 2448 (8 megapixels)

T able A.2: Massive satellite data acquired and used in this dissertation work.

Dataset Resolution Gigapixels
New York, NY 80000 x 80000 6.40
Chattanooga, TN 120000 x 100000 12.00
Washington, DC 131350 x 159375 20.93
Hamilton County, SC 240000 x 232000 55.68
Philadelphia, PA 250000 x 230000 57.50
Indianapolis, IN 260000 x 260000 67.60
San Diego, CA 200000 x 365000 73.00
San Francisco, CA 225000 x 330000 74.25
New Orleans, LA 330000 x 290000 95.70
Olympia, WA 501059 x 329220 164.96
San Antonio, TX 521640 x 492480 256.90
Atlanta, GA 524288 x 524288 274.88
Seattle, WA 411280 x 693528 285.23
Phoenix, AZ 720000 x 540000 388.80
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