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ABSTRACT 

  
Exercise-induced fatigue is often evaluated during isometric tasks that involve a 

small muscle mass.  The purpose of this dissertation was to utilize dynamic exercise 

including a large muscle mass to provide additional insight into biomechanical, central, 

peripheral, and age-related aspects of fatigue.  Specifically, I used high-intensity 

submaximal cycling (SUBcyc time trial) to induce fatigue and quantify associated effects 

via pre- to postexercise changes in maximum cycling (MAXcyc) power including joint-

specific powers and power-rpm relationships.  In the first study, I evaluated the effects of 

fatigue on changes in SUBcyc and MAXcyc joint-specific powers.  Joint-specific powers 

were maintained during SUBcyc but were substantially compromised during subsequent 

MAXcyc.  Changes in MAXcyc power manifested with differential power loss at each joint 

with ankle plantar flexion (-43%) and knee flexion (-52%) exhibiting relatively greater 

fatigue than knee extension (-124%) and hip extension (-28 ± 6%).  These data 

demonstrate that exercise-induced fatigue can have distinct consequences for MAXcyc but 

not for SUBcyc joint-specific power production.  For the second study, I induced fatigue 

in one leg and examined whether fatigue “crossed-over” to the rested contralateral leg.  

Despite considerable power loss in the fatigued leg (-22%), MAXcyc power was 

maintained in the rested leg.  Thus, a cross-over of fatigue was either not present or not 

large enough to impair MAXcyc power in the rested leg.  These results along with the 

lack of changes in maximum isometric handgrip force indicate that impairments in 



 

voluntary neuromuscular function were specific to those muscles involved in the 

fatiguing task.  In my third study, I evaluated the effects of aging on the development of 

functional consequences of fatigue.  Even with > 30 yr difference in age (26 ± 4 vs. 57 ± 

5 yr), masters cyclists exhibited nearly identical levels of fatigue compared to young in 

the fatigued leg (-21 vs. -22%).  Similar to young, masters cyclists were able to overcome 

fatigue in this leg and produce the same baseline MAXcyc with the rested leg.  These 

results likely represent a best case scenario for healthy active aging.  Collectively, these 

results provide insight into changes in dynamic neuromuscular function associated with 

high-intensity endurance exercise. 
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1.  INTRODUCTION 
 

 
Fatigue is a complex process that has intrigued scientists for well over a century.  

Specifically, exercise-induced fatigue can be defined as a reversible reduction in the 

force- and power-generating capacity of the neuromuscular system (19).  Fatigue also 

encompasses sensations that relate to tasks being more difficult or requiring more effort 

than expected (84).  In healthy individuals, fatigue can impair performance during 

occupational related tasks (e.g., firefighting, laboring) and also limit participation in 

recreational activities and sports (63).  Further, in diseased patients, fatigue can restrict 

activities of daily living and impair quality of life (63).  Because of the wide range of 

activities that can elicit fatigue it is imperative to understand the functional outcomes 

associated with this process.  Such an understanding would be useful for clinical, basic, 

and applied scientists and have implications for improving exercise prescription and 

training.  

 Traditionally, investigators have used isometric tasks involving small muscle 

mass to induce fatigue and evaluate recovery of neuromuscular function.  For example, 

Gandevia and colleagues (46) induced fatigue via 3 min of sustained isometric elbow 

flexion and reported that maximum isometric force was reduced by 74%.  Single-joint 

isometric protocols facilitate excellent measurement of neuromuscular function before, 

during, and after fatiguing exercise.  They also allow for evaluation of central (45) and 

peripheral (4) components of fatigue.  Most locomotor tasks, however, are performed 
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with multijoint, multi-degree of freedom actions that involve the large muscle mass of the 

legs (e.g., walking, climbing stairs).  Using a dynamic large muscle mass model to induce 

fatigue and quantify changes in neuromuscular function may offer additional insight into 

the functional outcomes associated with fatigue and extend upon previous small muscle 

mass models.   

Over the past decade, there has been growing interest in the notion that older 

individuals may be more fatigue-resistant compared to young individuals.  Recently, 

Christie and colleagues (28) performed a systematic review and meta analysis of muscle 

fatigue and aging and concluded that older individuals do in fact develop less fatigue than 

younger individuals during isometric muscle contractions.  Their results also indicated 

that older individuals develop greater fatigue during dynamic muscle contractions.  These 

authors emphasized the need for additional studies to evaluate age-related differences in 

fatigue particularly during dynamic exercise as muscular power is important for 

maintaining physical function and independence with advanced age (14, 44). 

For this dissertation, I used a dynamic large muscle mass model to investigate 

biomechanical, central, peripheral, and age-related aspects of fatigue during dynamic 

multijoint exercise.  Specifically, I used high-intensity cycling (i.e., time trial) to induce 

fatigue and quantified fatigue via pre- to post exercise changes in maximum cycling 

power.  In the first study I investigated the effects of fatigue on submaximal and maximal 

joint-specific power production.  In the subsequent investigation, I examined the effects 

of voluntary muscle fatigue in one leg and determined whether fatigue “crossed-over” to 

the rested contralateral leg.  In the third investigation, I evaluated the effects of aging on 

the development of fatigue.  Collectively, the anticipated results from these studies may 
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have implications for researchers, clinicians, as well as coaches and athletes.  In the 

subsequent sections of this dissertation (Sections 2, 3, 4) I discuss each of these studies in 

detail and provide an overall summary, conclusion, and recommendations for future 

research in the final chapter (Sections 5).  
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2. INFLUENCE OF EXERCISE-INDUCED FATIGUE ON SUBMAXIMAL 
 

AND MAXIMAL JOINT-SPECIFIC POWER PRODUCTION 
 
 

Many activities, including training for endurance and power sports, work-related 

manual labor, and activities of daily living can induce fatigue.  Fatigue can be defined as 

a reversible reduction in the force- and power-generating ability of the neuromuscular 

system (19, 43).  Several previous authors (16, 26, 56, 77, 89) have used high-intensity 

submaximal cycling (e.g., 80% of peak power reached during VO2max) to induce fatigue 

and subsequently quantified fatigue via pre- to postexercise changes in maximum cycling 

power.  In these studies maximum cycling power was reduced up to 32% following high-

intensity submaximal cycling.  The effect of fatigue on cycling power is interesting, but 

equally important is the effect of fatigue on the power produced by ankle, knee, and hip 

joint actions (23, 38, 40, 86).  Thus, reductions in cycling power (measured at the pedals) 

following high-intensity cycling represents the net decrease for joint-specific power loss 

but does not indicate which joint actions (e.g., knee extension) were impaired.  

Depending on the strategies used to produce power during high-intensity submaximal 

cycling, subsequent maximal joint-specific power production could be equally reduced 

across the ankle, knee, and hip or may be more reduced predominately at one specific 

joint (59).  For example, a decrease in knee extension power during high-intensity 

cycling might predict pre- to postexercise changes in that joint action power.  However, 

measurements of joint-specific power production during high-intensity submaximal 
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cycling along with pre- to postexercise changes in maximal cycling joint-specific powers 

have not been reported.   

Recently, several authors (3, 25, 54, 57, 58) have debated possible mechanisms 

responsible for task failure during high-intensity endurance exercise.  Marcora and 

Staiano (56) reported that maximum cycling power measured immediately after task 

failure during with high-intensity constant power cycling was over three times as high as 

the power that elicited task failure (242 vs. 731 W).  These authors concluded that task 

failure was regulated primarily by rating of perceived exertion (RPE) rather than 

neuromuscular fatigue because participants had considerable reserve upon reaching task 

failure.  Subsequently, several authors (3, 25, 54) have challenged this conclusion as 

some of the observed differences in power could have primarily resulted from differences 

in pedaling rate between submaximal and maximal cycling (i.e., power-velocity 

relationships).  Using a similar pedaling rate (e.g., 90 rpm) for each cycling condition 

could eliminate differences due to pedaling rate and provide further insight into the 

mechanisms associated with sensory tolerance during high-intensity endurance exercise.   

Understanding the influence of exercise-induced fatigue on submaximal and 

maximal joint-specific power production may be useful for researchers as well coaches 

and athletes.  Specifically, researchers who use cycling as a fatigue model may need to 

know whether pre- to postexercise changes in knee extensor function (e.g., maximum 

voluntary isometric force) are similar to those changes in other muscle groups involved 

with the cycling task (e.g., hip extensors).  In addition to laboratory-based cycling 

protocols, competitive cycling is inherently a non-steady state activity (71) and insight 
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into how joint-specific powers change with fatigue may have practical applications for 

coaches and athletes when evaluating performance and implementing training programs.   

The purpose of this study was to evaluate joint-specific power production during 

high-intensity submaximal cycling and compare pre- to postexercise changes in maximal 

cycling joint-specific powers.  We recently reported that hip extension is the dominate 

power producing action during submaximal and maximal cycling (38).  Therefore, we 

hypothesized that hip extension would produce the most power during high-intensity 

submaximal cycling and that this joint action would exhibit the greatest reduction in 

power during subsequent maximal cycling. 

 
Methods 

Participants 

Ten male cyclists (age: 30 ± 7 yrs; mass: 74 ± 13 kg; height: 1.76 ± 0.06 m) 

volunteered to participate in this study.  Experimental procedures used in this 

investigation were reviewed by the University of Utah Institutional Review Board and all 

participants provided written informed consent prior to testing.  Participants reported to 

the laboratory prior to the experimental day in order to become familiar with the 

isokinetic ergometer and maximal cycling trials (described below).  Briefly, the 

ergometer seat height was adjusted to match each participant’s accustomed cycling 

position and participants wore cycling shoes that interfaced with Speedplay pedals 

(Speedplay Inc., San Diego, CA, USA).  Participants cycled for 5 min at a self-selected 

intensity (90 rpm) and then performed four maximal 3 s cycling trials (90 rpm) with 2 

min of rest in between trials.   
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Experimental protocol  

On the experimental day participants reported to the laboratory where body mass, 

height, thigh length (greater trochanter to lateral femoral condyle), shank length (lateral 

femoral condyle to lateral malleolus), foot length (heel to toe), and kinematic foot length 

(pedal spindle to lateral malleolus) were recorded.  Following a 5 min cycling warm-up 

(75-150 W at 90 rpm) participants performed a maximal cycling trial (3 s) on an 

isokinetic ergometer at 90 rpm.  After 2 min of recovery, participants performed a self-

paced maximal effort time trial (TT, 10 min) on an isokinetic ergometer at 90 rpm.  

Participants were instructed to cycle as “hard as you can go” for the 10 min period and 

were provided with strong verbal encouragement throughout the TT.  Mean cycling 

power was quantified using a power meter (Schoberer Rad Messtechnik, SRM, Jülich, 

Germany), a system that has previously been shown to accurately quantify power output 

(2, 47, 60).  During the final 30 s of the TT overall rating of perceived exertion 

(RPEoverall), leg perceived exertion (RPElegs), and heart rate (Polar CS300, Kempele, 

Finland) were assessed.  Within 15 s of the end of the TT, participants again performed a 

maximal cycling trial (3 s). Whole blood lactate (ARKRAY Lactate Pro LT-1710, Kyoto, 

Japan) was measured 1 min after the TT.  Note that participants were instructed to remain 

seated throughout each cycling protocol.  Exercised-induced fatigue was quantified as the 

pre- to post-TT change in maximal cycling power and joint-specific powers.   

 
Isokinetic ergometer 

A Monark (Vansbro, Sweden) cycle ergometer frame and flywheel was used to 

construct the isokinetic ergometer (38, 59).  The flywheel was driven by a 3.8 kW direct 

current motor (Baldor Electric Company model CDP3605, Fort Smith, AR, USA) via 



8 

pulleys and a belt.  The motor was controlled with a speed controller (Minarik RG550U, 

Glendale, CA, USA) augmented with feedback (Minarik DLC600) and a mechanical 

brake.  Addition of the mechanical brake (standard Monark ergometer pendulum 

augmented with additional mass) forced the motor to function in driving mode rather than 

braking mode throughout the cycling trial.  The right pedal was equipped with two 3-

component piezoelectric force transducers (Kistler 9251: Kistler USA, Amherst, NY, 

USA), and the right pedal and crank were equipped with digital position encoders (U.S. 

Digital model S5S-1024: Vancouver, Washington, USA).   

 
Kinematic and kinetic data 

Two-dimensional kinematic and kinetic cycling data were obtained using the 

methods described in recent papers from our laboratory (38, 59).  Briefly, pedal forces, 

pedal and crank positions, and the position of an instrumented spatial linkage system 

(ISL) were recorded at 240 Hz.  Normal and tangential pedal forces, pedal position, crank 

position, and ISL position data were filtered using a fourth-order zero-lag low-pass 

Butterworth filter with a cutoff frequency of 8 Hz.  Pedal power was calculated as the dot 

product of pedal force and linear pedal velocity.  Positions of the right greater trochanter 

and iliac crest were determined at rest with the ISL and the relative position were 

assumed to remain constant (67).  During the cycling trials iliac crest and pedal and crank 

position coordinates were recorded, which allowed sagittal plane limb segment positions 

to be determined geometrically.  Linear and angular velocities and accelerations of the 

limb segments were determined by finite differentiation of position data.  Segmental 

masses, moments of inertia, and location of centers of mass were estimated using the 

regression equations reported by de Leva (33).  Sagittal plane joint reaction forces and 



9 

net joint moments at the ankle, knee, and hip were determined using inverse dynamics 

(37).  Ankle, knee, and hip joint-specific powers were calculated as the product of net 

joint moments and joint angular velocities.  Power transferred across the hip joint was 

calculated as the dot product of the hip joint reaction force and linear velocity.   

 For maximal cycling trials, joint-specific powers were analyzed for 3 s.  During 

the TT joint-specific powers were analyzed for 30 s intervals: 1) early-TT: 30-60 s, 2) 

middle-TT: 270-300 s, and 3) late-TT: 570-600 s.  Joint-specific powers were averaged 

over all of the complete pedal cycles within each measurement interval.  Additionally, 

joint-specific powers were averaged over the extension and flexion phases, which were 

defined by joint-angular velocity directions (59).  Note that because most power is 

produced during the extension phase, power values averaged over the extension phase 

can be larger than those averaged over complete pedal cycles.  Finally, joint-specific 

power data from previous investigations (23, 38, 40, 59, 86) generally have indicated that 

ankle plantar flexion, knee extension, knee flexion, and hip extension are the four main 

power producing actions during submaximal and maximal cycling, and thus we were 

most interested in understanding fatigue associated with these joint actions.  

 
Data analysis 

Time trial (TT) variables (power, heart rate, lactate, RPEoverall, RPElegs) are 

reported for descriptive purposes.  A two-way repeated measures analysis of variance 

(ANOVA) was used to evaluate changes in joint-specific powers produced during the TT 

(early-TT, middle-TT, late-TT).  Pre- to post-TT changes in maximal cycling joint-

specific powers were also assessed with a two-way repeated measures ANOVA.  

Magnitudes of relative pre- to-post changes in maximal cycling joint-specific powers 
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(i.e., joint-specific fatigue indices) were assessed with a one-way ANOVA.  Differences 

in joint-specific powers produced during the final 3 s of the TT and post-TT maximal 

cycling trial were compared using a two-way repeated measures ANOVA.  If any of the 

ANOVA’s indicated significant main effects then subsequent post hoc analyses (Fisher 

least significant difference test) were performed to identify where differences occurred.  

Data were presented as mean ± standard error of the mean (SEM) and alpha was set to 

0.05. 

 
Results 

 Mean power produced during the 10 min TT was 288 ± 10 W.  Heart rate, 

RPEoverall, and RPElegs assessed during the final 30 s of the TT were 184 ± 3 b min-1, 19.0 

± 0.2 scale units, and 19.0 ± 0.3 scale units, respectively.  Whole blood lactate measured 

after the TT was 12.8 ± 0.6 mmol L-1.  During the TT hip extension power was greater 

than all other joint-specific powers (P < 0.001, Table 1, Figure 2.1).   Knee extension 

power was greater than all other joint powers except hip extension (P < 0.001, Table 2.1; 

Figure 2.1).  Ankle plantar flexion and knee flexion powers were similar during the TT (P 

= 0.75).  Pedal and joint-specific powers did not differ during the early, middle, and late 

stages of the TT (P = 0.16). 

Compared with pre-TT, pedal power produced during maximal cycling was 

reduced by 32 ± 3% (P < 0.001, Table 2.2 and Figure 2.2) post-TT.  Post-TT ankle 

plantar flexion power was reduced by 43 ± 5% (P < 0.001, Table 2.2, Figure 2.2).  Post-

TT knee extension and knee flexion powers were reduced by 12 ± 4% and 52 ± 5%, 

respectively, (P < 0.05, P < 0.001, respectively, Table 2.2, Figure 2.2).  Post-TT hip 

extension, was reduced by 28 ± 6% post-TT (P < 0.01, Table 2.2, Figure 2.2).  
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Magnitudes of relative pre- to post-TT changes in ankle plantar flexion (43 ± 5%) and 

knee flexion powers (52 ± 5%) were not different but were greater than those changes in 

relative knee extension (12 ± 4%) and hip extension powers (28 ± 6%) (P < 0.05, Table 

2.2, Figure 2.2).  Relative changes in knee extension power (12 ± 4%) and hip extension 

powers (28 ± 6%) did not differ but were approaching significance (P = 0.09, Table 2.2, 

Figure 2.2).  Post-TT maximal cycling pedal and joint-specific powers were greater than 

those powers produced during the final 3 s of the TT (P < 0.05, Figure 2.3).  

 
Discussion 

 
In this investigation, we used high-intensity submaximal cycling (i.e., self paced 

10 min TT) to induce fatigue and subsequently quantified fatigue via pre- to post-TT 

changes in maximal cycling joint-specific powers.  Participants were trained cyclists and 

highly motivated to give their best and therefore most fatiguing effort within the TT.  Our 

results indicated that joint-specific powers were maintained during the TT but were 

substantially compromised during subsequent maximal cycling.  That is, participants 

produced TT power with similar joint-specific contributions throughout the trial.  

Conversely, joint-specific power production during subsequent maximal cycling 

manifested with differential, rather than equal, power loss at each joint.  Specifically, 

ankle plantar flexion and knee flexion exhibited relatively greater fatigue than knee 

extension and hip extension.  Despite working near maximal effort at the end of the TT, 

participants were still able to produce much higher power immediately after the TT, 

suggesting that they had considerable neuromuscular reserve.  Taken together, these 

results demonstrate that exercise-induced fatigue can have distinct functional effects on 

submaximal and maximal joint-specific power production strategies. 
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Time trial joint-specific powers 

During the TT, cyclists tended to employ the characteristic “U” shaped pacing 

pattern (higher, lower, higher power) which is consistent with previous reports (7, 8).  

However, small fluctuations in pedal power were not associated with significant changes 

in joint-specific powers.  Based on recent work from our laboratory (38) we would expect 

that only large changes in pedal powers would signify changes in joint-specific powers.  

Therefore, our findings of differential joint-specific fatigue during maximal cycling were 

not presaged by changes in submaximal joint-specific power production.  That is, we did 

not observe a significant decrease in, for example, TT knee extension power that would 

predict pre- to post-TT changes in that joint action power.  To the best of our knowledge, 

we are the first group to evaluate changes in joint-specific power characteristics during a 

TT.  Previous authors (21, 75) have evaluated joint-specific changes during high-intensity 

constant power cycling but reported only measures of joint-specific torque, rather than 

power, which excludes the importance of velocity.  Thus, these data extend on previous 

work and document power production at individual joints during high-intensity 

submaximal cycling. 

 
Maximal cycling joint-specific powers 

After the TT, pedal power was reduced by 32% which supports previous findings 

(16, 56, 77, 89) of 25-32% reductions in maximum cycling power and also indicates that 

the TT was effective in altering neuromuscular function.  Reductions in pedal power were 

due to significant power loss at the ankle, knee, and hip and power transferred across the 

hip.  However, relative ankle plantar flexion and knee flexion exhibited more fatigue than 

knee extension and hip extension.  Thus, these results demonstrate that the self-paced 
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maximal effort 10 min TT induced differential, rather equal, fatigue at each joint.  These 

data are in general agreement with work by Martin and Brown (59) who reported 

differential joint-specific fatigue during 30 s maximal cycling with ankle plantar flexion 

exhibiting the most fatigue.  Although there is some agreement between our findings and 

those of Martin and Brown (59) there were also differences.  Specifically, in the current 

study knee extension was relatively fatigue resistant whereas Martin and Brown (59) 

reported that knee extension was quite fatigable (12% vs. 59% decrease in knee extension 

power, respectively).  Also, magnitudes of relative changes for other joint actions 

differed as well between the two studies.  Such differences could be related to total work 

and power produced during the fatiguing trial, pedaling rate (90 vs. 120 rpm), 

disturbances in the metabolic milieu within the muscle, peripheral fatigue, and/or central 

fatigue (34, 42).  These comparisons demonstrate that joint-specific fatigue is highly 

dependent on the duration and intensity of the exercise as well as the methods used to 

quantify fatigue.  

Although hip extension exhibited moderate fatigue when expressed in relative 

power terms, it exhibited the greatest reduction in absolute power.  In addition, hip 

extension was the dominate power producing action during the TT as well as during 

maximal cycling, which is consistent with recent work by Elmer and colleagues (38).  

Therefore, these absolute power data indicate that the joint action that produced the most 

power during the TT, exhibited the greatest reduction in absolute power during maximal 

cycling which supports our hypothesis.  Based on these results it was not surprising that 

relative reductions in hip extension power were quite similar to those reductions in pedal 
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power (28% vs. 32%).  Collectively, these results highlight the important role of hip 

extension actions during submaximal and maximal cycling. 

 
Influence of motor control strategies 

It is important to point out that joint-specific power loss and fatigue may have 

been influenced in part by changes in motor control strategies as cycling is a multijoint, 

multiple degree of freedom movement.  For example, hamstring bi-articular muscles 

cross the knee and the hip and in a fatigued state there may have been a tradeoff to 

maximize hip extension power at the expense of reducing knee flexion power.  Indeed, 

relative knee flexion power was reduced to a much greater extent than relative hip 

extension power (52% vs. 28%).  In support of this explanation, data from Decorte and 

colleagues (34) indicate that maximum voluntary isometric force of knee flexors was in 

fact maintained following high-intensity submaximal cycling.  Alterations in motor 

control strategies may have also contributed to the large reductions in relative ankle 

plantar flexion power.  Ankle plantar flexion actions are primarily responsible for 

transferring power produced at the knee and hip across the ankle to the pedal.  As 

suggested by Martin and Brown (59), reduced ankle plantar flexion power and range of 

motion with fatigue may represent a strategy to minimize power loss across the ankle 

joint to the pedal.  Indeed, knee extension and hip extension exhibited relatively less 

fatigue compared to ankle plantar flexion. 

Interestingly, relative reductions in knee extension power (12%) are similar to 

reductions in maximum voluntary isometric force of knee extensors (8-14%) (7, 8, 10, 

34) following high-intensity submaximal cycling.  This could suggest that reduced knee 

extension power in this investigation was mostly due to fatigue with changes in motor 
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control playing a lesser role.  The extent to which changes in motor control contributed to 

the reductions in hip extension is unclear as pre- to postexercise changes in hip extensor 

function following high intensity submaximal cycling have not been reported.  Within the 

scope of our present data, exact determination of the influence of motor control on joint-

specific fatigue remains speculative.  A next step would be to use forward dynamic 

simulations to quantify individual muscle forces and activation patterns (90) in order to 

elucidate the contributions of neuromuscular fatigue and motor control to multijoint 

fatigue.   

 
Neuromuscular reserve capacity 

Marcora and Staiano (56) recently reported that task failure during high-intensity 

constant power cycling was regulated by RPE rather than neuromuscular fatigue because 

participants had the ability to increase their power considerably after reaching task 

failure.  Subsequently, this conclusion has been debated by several researchers (3, 25, 54) 

as some of the observed differences in power could have resulted from differences in 

pedaling rate between constant power and maximum cycling protocols.  To address 

concerns raised by these authors, we designed this study so that pedaling rate (90 rpm) 

was the same for both the TT and maximal cycling trials.  Although participants in the 

current study were working close to maximal effort (RPE of 19) at the end of the TT, 

they were also able to produce considerably greater power during post-TT maximal 

cycling (compared to final 3 s of the TT).  As suggested by Amann (6), TT exercise 

intensity and power output are likely reduced once a critical rate of fatigue development 

and associated afferent feedback are reached.  Consequently, power at the end of the TT 

may not represent the muscles’ ultimate limit to produce power.  Indeed, subsequent 
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short-term increases in power produced during post-TT maximal cycling provide 

evidence that the central nervous system is able to briefly override inhibitory feedback 

from muscle afferents even in conditions of substantial fatigue.  Therefore, we interpret 

these results to indicate that participants had considerable neuromuscular reserve capacity 

for each joint action as well as the whole-leg action at the end of the TT.  Further, sensory 

tolerance during high-intensity cycling is likely limited by central (17, 34, 79), peripheral 

(6-10, 12, 17, 34, 79), and/or psychological factors (56) with biomechanical factors 

playing a minor role.  It is important to point out that power may have partially recovered 

within the short delay prior to the post-TT maximal cycling trial.  However, the 

occurrence of such quick recovery is unlikely given that previous authors have reported 

that central (17, 34, 79) and peripheral fatigue (7-10, 12, 17, 34, 79) can last for several 

minutes.   

 
Implications 

Our findings relating to joint-specific power production and fatigue may have 

implications for researchers, clinicians, and athletes.  Specifically, researchers who use 

cycling to induce fatigue, may consider evaluating pre- to postexercise changes in 

additional muscle groups to traditionally measured knee extensors.  For example, changes 

in ankle plantar flexor function (e.g., potentiated twitch force, maximum voluntary 

isometric force) may differ from those changes in knee extensor function and provide 

additional insight into the mechanisms of joint-specific fatigue as well as the influence of 

motor control.  Additionally, evaluation of changes in hip extensor function would be 

useful because hip extension is the dominate action during cycling (38) and thus heavily 

influences overall reductions in pedal power.  In clinical settings, submaximal cycling 
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may serve as an appropriate exercise for targeting and rehabilitating hip extensors while 

also eliciting cardiovascular benefits.  Finally, a practical application of our results is that 

competitive cyclists may benefit from training isolated muscle groups in order to possibly 

improve fatigue-resistance during cycling. 

 
Summary 

Joint-specific powers were maintained during high-intensity submaximal cycling 

but were compromised during subsequent maximal cycling.  Specifically, ankle plantar 

flexion and knee flexion exhibited relatively greater fatigue than knee extension and hip 

extension indicating differential joint-specific fatigue.  Although participants were 

working close to maximal effort at the end of the TT, they still had the ability to produce 

considerably more power after the TT.  This suggests that participants had considerable 

neuromuscular reserve and that biomechanical factors did not likely limit sensory 

tolerance during the TT.  These are the first data to document joint-specific power 

production during high-intensity submaximal cycling along with pre- to postexercise 

changes in maximal cycling joint-specific power characteristics and highlight the impact 

of exercise-induced fatigue on submaximal and maximal power production.  These 

results may serve as bases for future research to elucidate the contributions of 

neuromuscular fatigue and motor control to multijoint fatigue.     
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Table 2.1:  Submaximal joint-specific powers.  Pedal and joint-specific powers produced 
during the early, middle, and late stages of the 10 min TT (90 rpm).     

 
Values are reported as mean ± SEM. Note that power was measured at the right pedal and 
thus pedal and joint-specific powers represent the power produced by one leg.    
 
a Hip extension was the most powerful action 
 
b Knee extension was more powerful than ankle plantar flexion and knee flexion 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Pedal and Joint-Specific Powers (W) 

 Pedal 
 

 
Ankle 

Plantar 
Flexion 

 

Knee 
Extensionb 

Knee 
Flexion 

Hip 
Extensiona 

Early      144 ± 7 
 
      30 ± 4 
 

      68 ± 9       30 ± 6     149 ± 8 

Middle      139 ± 6       25 ± 3       80 ± 9       27 ± 7     134 ± 12 

Late 
 

     153 ± 7 
 
      25 ± 2 
 

      95 ± 12       30 ± 8     145 ± 16 
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Table 2.2: Maximal joint-specific powers.  Pre- to post-TT changes in pedal and joint-
specific powers produced during maximal cycling (90 rpm).     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Values are reported as mean ± SEM. Note that power was measured at the right pedal and 
thus pedal and joint-specific powers represent the power produced by one leg.    
 
a Different than pre-TT value (P < 0.05) 
 

b Ankle plantar flexion and knee flexion were relatively more fatigable than knee 
extension and hip extension 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 Pedal and Joint-Specific Powers (W) 

 Pedal 
 

 
Ankle 

Plantar 
Flexion 

 

Knee 
Extension 

Knee 
Flexion 

Hip 
Extension 

Pre    492 ± 18 
 
 143 ± 10 
 

  227 ± 16   193 ± 12   363 ± 21 

Post 
 

   331 ± 13a 
 
   82 ± 10a,b 
 

  202 ± 18a     91 ± 9a,b   254 ± 18a 
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Figure 2.1: Time trial joint-specific powers.  Instantaneous power (mean) produced at the 
pedal (A) and by ankle (B), knee (C), and hip (D) joint actions for all participants during 
the early, middle, and late stages of the TT (90 rpm).  Crank angles of 0° and 360° 
represent the top dead center of the pedal position and 180° represents the bottom dead 
center of the pedal position.  Note that power was measured at the right pedal and thus 
pedal and joint-specific powers represent the power produced by one leg.  Standard error 
bars were removed for clarity.   
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Figure 2.2: Maximal cycling joint-specific powers.  Pre- to post-TT changes in maximal 
cycling joint-specific powers.  Instantaneous power (Mean ± SEM) produced at the pedal 
(A) and by ankle (B), knee (C), and hip (D) joint actions for all participants during pre-
TT and post-TT maximal cycling (90 rpm).  Crank angles of 0° and 360° represent the 
top dead center of the pedal position and 180° represents the bottom dead center of the 
pedal position.  Note that power was measured at the right pedal and thus pedal and joint-
specific powers represent the power produced by one leg.   
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Figure 2.3: Estimate of neuromuscular reserve.  Power (mean ± SEM) produced at the 
pedal (A) and by ankle (B), knee (C), and hip (D) joint actions for all participants during 
the final 3 s of the TT and post-TT maximal cycling (90 rpm).  Note that power was 
measured at the right pedal and thus pedal and joint-specific powers represent the power 
produced by one leg. * different than final 3 s of the TT (P < 0.05). 
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3.  FATIGUE IN ONE LIMB DOES NOT IMPAIR MAXIMAL VOLUNTARY 
  

NEUROMUSCUALR FUNCTION IN THE RESTED CONTRALATERAL  
 

LEG FOLLOWING HIGH-INTENSITY SINGLE-LEG CYCLING 
 

 
Exercise-induced fatigue is defined as a reversible reduction in the force- and 

power-generating ability of the neuromuscular system (19, 43) and can manifest through 

central and/or peripheral mechanisms.  Specifically, central fatigue results in a failure of 

the central nervous system to excite and drive motor neurons (45) whereas peripheral 

fatigue results in a failure of the muscle to respond to neural excitation (4).  The 

development of central fatigue, as estimated via changes in voluntary muscle activation, 

is usually evaluated during a maximal isometric contraction of the exercising muscle.  

Similarly, exercise-induced peripheral muscle fatigue is usually quantified via the 

reduction in force output in response to direct electric / magnetic motor nerve stimulation 

shortly after, or during, muscle contractions.  Central and peripheral fatigue are usually 

assessed in the exercised muscle. 

Some previous authors (62, 72, 85), however, have induced fatigue in a single 

limb muscle and reported reductions in voluntary muscle activation in the rested 

contralateral homologous muscle.  For example, Martin and colleagues (62) reported that 

sustained maximal isometric knee extension exercise in one leg reduced voluntary muscle 

activation of rested contralateral knee extensors by 9%.  Because direct electrical 

stimulation of the contralateral knee-extensors revealed no peripheral muscle fatigue, 
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these results suggest a “cross-over” of central fatigue from a fatigued limb muscle to the 

rested contralateral homologous muscle.  Although this fairly small cross-over of central 

fatigue was associated with a significant reduction in maximum voluntary isometric force 

of the rested contralateral muscle (62), not all investigations confirm this functional 

consequence (72, 85).  This discrepancy could be explained by the fact that a small cross-

over of central fatigue and the associated small reduction in voluntary muscle activation 

might not be sufficient to measurably impair the functional capacity of the rested 

contralateral muscle when fatigue is induced via a maximal isometric contraction of a 

single muscle.  Furthermore, it is unknown if a cross-over of fatigue (central and/or 

peripheral in origin) also occurs when induced via high-intensity endurance exercise 

involving a substantial muscle mass.  In addition, it is unclear whether a potential cross-

over of fatigue would then have a more pronounced functional consequence for the 

previously rested contralateral muscles / muscle groups as compared to those observed 

following maximal isometric contraction of only a single muscle.   

During locomotor exercise, potential cross-over effects of fatigue could be 

delineated by using a single-leg cycling model.  That is, high-intensity single-leg cycling 

could be used to induce specific central and peripheral fatigue in the working leg.  

Subsequent evaluation of maximum cycling power in the rested contralateral leg and 

fatigued ipsilateral leg would offer a paradigm for examining the functional impact of 

exercised-induced fatigue as well as cross-over effects of fatigue.  For example, if 

maximum power was reduced in the rested contralateral leg, this would indicate a cross-

over effect of fatigue.  Conversely, if maximum power was maintained in the rested 
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contralateral leg, this would indicate that fatigue was specific to those exercised muscles 

of the fatigued ipsilateral leg.   

Therefore, the purpose of this study was to examine the effects of voluntary 

muscle fatigue in one leg on maximum power and determine whether fatigue crossed-

over to the rested contralateral leg.  Specifically, we induced fatigue via high intensity 

single-leg cycling and evaluated associated effects on maximum cycling power in the 

rested contralateral leg as well as the fatigued ipsilateral leg.  We hypothesized that 

exercise-induced fatigue would result in a cross-over effect, impairing maximum cycling 

power in the rested contralateral leg. 

 
Methods 

Participants 

Twelve endurance trained male cyclists (age: 26 ± 4 yr; body mass: 78 ± 9 kg; 

height: 1.83 ± 0.06 m; maximal oxygen consumption (VO2max): 61 ± 7 ml kg-1 min-1) 

volunteered to participate in this investigation.  Participants had regularly trained in 

cycling for 6 ± 3 yr.  At the time of study, participants were training 11 ± 3 h wk-1 and 

competing in local road cycling, triathlon, and/or mountain bike events.  Experimental 

procedures were reviewed by the University of Utah Institutional Review Board and all 

participants provided written informed consent prior to testing. 

 
Experimental protocol 

At preliminary visits to the laboratory, participants performed familiarization 

trials of maximal single-leg cycling and maximal isometric handgrip trials.  Participants 

also performed practice intervals of submaximal single-leg cycling and an incremental 
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cycling test (13) for determination of VO2max.  During the experimental week participants 

reported to the laboratory on two separate days to perform: 1) fatigued ipsilateral leg or 

2) rested contralateral leg cycling protocol, which are described below and also illustrated 

in Figure 3.1.  The fatigued ispilateral leg and rested contralateral leg cycling protocols 

were performed in a counter-balanced order.  Experimental visits were separated by a 

least 48 h and were completed at the same time of day.  Participants were instructed to 

avoid vigorous exercise 24 h before each experimental visit.  

For the fatigued ipsilateral leg cycling protocol participants performed a 5 min 

single-leg cycling warm-up with their right leg followed by a maximal single-leg cycling 

trial (4.5 s) with their right leg.  Subsequently, participants rested for 15 minutes and then 

again performed a maximal single-leg cycling trial with their right leg.  Participants then 

performed a 5 min single-leg cycling warm-up with their right leg followed by 10 min 

maximal effort single-leg cycling time trial (TT) with their right leg.  Within 30 s after 

the TT, participants performed a maximal single-leg cycling trial with their right leg.  

Maximal cycling trials were also performed at 3, 5, and 10 min post-TT with the right 

leg.  Immediately following each pre- and post-TT maximal cycling trial, participants 

performed a maximal isometric handgrip trial with their right arm.   

For the rested contralateral leg cycling protocol participants performed a 5 min 

single-leg cycling warm-up with their right leg followed by a maximal single-leg cycling 

trial (4.5 s) with their right leg.  Subsequently, participants rested for 15 minutes and then 

again performed a maximal single-leg cycling trial with their right leg.  Participants then 

performed a 5 min single-leg cycling warm-up with their left leg followed by 10 min 

maximal effort single-leg cycling TT with their left leg.  Within 30 s after the TT, 
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participants performed a maximal single-leg cycling trial with their right leg.  Maximal 

cycling trials were also performed at 3, 5, and 10 min post-TT with the right leg.  

Immediately following each pre- and post-TT maximal cycling trial, participants 

performed a maximal isometric handgrip trial with their right arm.   

 
Maximal single-leg cycling 

Participants performed maximal single-leg cycling trials (4.5 s) with their right 

leg on an inertial-load cycle ergometer (61).  Participants were instructed to remain 

seated throughout each trial and were given standardized verbal encouragement.  The 

ergometer was fitted with racing handlebars, cranks, and saddle, and fixed to the floor 

and participants wore cycling shoes that locked onto the pedal (Speedplay Inc., San 

Diego, CA, USA).  A 97 N counterweight was attached to the contralateral ergometer 

crank to facilitate smooth single-leg cycling and the foot of the non-exercising leg was 

secured to a stabilization platform.  Inertial-load method determines maximal power 

across a range of pedaling rates (e.g., 60-180 rpm) in a single brief trial.  These methods 

have been previously described by Martin and colleagues (61).  Briefly, participants 

began each trial from rest and accelerated maximally for eight pedal revolutions with 

resistance provided solely by the moment of inertia of the flywheel.  Angular position 

data were low pass filtered at 8 Hz using a 5th order spline (88) and angular velocity and 

acceleration were determined from the spline coefficients.  Torque averaged over each 

complete crank revolution was calculated as the rate of change in angular momentum.  

For each trial, torque-pedaling rate relationship was determined and linear extrapolation 

was performed to obtain values for maximum torque (i.e., isometric) and maximum 

pedaling rate.  Power averaged over each complete crank revolution was calculated as 
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rate of change in kinetic energy and maximum power was the highest value during each 

trial.  For each trial, the power-pedaling rate relationship was determined and the optimal 

pedaling rate that elicited maximum power was also identified. 

 
Single-leg cycling time trial  

Participants performed a 10 min maximal effort single-leg cycling TT with their 

right or left leg on a Monark friction-braked cycle ergometer (Vansbro, Sweden).  Before 

the TT, participants were instructed to cycle as “hard as you can go” in order to produce 

the greatest amount of power and were given standardized verbal encouragement 

throughout the TT.  Participants were also instructed to maintain the same pedaling rate 

for each TT (e.g., 90 rpm).  A high-powered industrial fan was placed near the 

participants in order to keep them cool.  The ergometer was fitted with racing handlebars, 

cranks, and saddle, and fixed to the floor and participants wore cycling shoes that locked 

onto the pedal (Speedplay Inc., San Diego, CA, USA).  As described above a 

counterweight was attached to the contralateral ergometer crank to facilitate smooth 

single-leg cycling.  Mean power produced during each TT was quantified using a power 

meter (Schoberer Rad Messtechnik, SRM, Jülich, Germany) that collected data at 2 Hz.  

Note that previous authors (2, 47, 60) have reported that the SRM powermeter provides 

accurate measurements of power during high-intensity cycling.  During the final 30 s of 

the TT overall rating of perceived exertion (RPEoverall) and specific leg perceived exertion 

(RPElegs) were assessed using a Borg 6-20 scale (22).  Heart rate (Polar CS300, Kempele, 

Finland) was also assessed during the final 30 s of the TT.  Whole blood lactate 

(ARKRAY Lactate Pro LT-1710, Kyoto, Japan) was measured 90 s post-TT. 
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Maximal isometric handgrip  

Participants performed a maximal isometric hand grip trial (3 s) with their right 

hand using a hydraulic handgrip dynamometer (Smith & Nephew Rehabilitation, 

Memphis, TN, USA).  Participants were instructed to squeeze the device with maximal 

effort while maintaining a 90° elbow angle.  Standardized verbal encouragement was 

provided during each trial. 

 
Quantification of fatigue  

To quantify exercise-induced fatigue, we compared pre- to post-TT changes in 

maximum cycling power of the fatigued ipsilateral leg.  To evaluate potential cross-over 

effects of fatigue, we compared pre- to post-TT changes in maximum cycling power of 

the rested contralateral leg.  It is important to note that the rested contralateral leg was 

passive during the TT and was likely not warmed-up prior to the post-TT maximal 

cycling trials.  Thus, potential reductions in maximum cycling power of the rested 

contralateral leg might be influenced by changes in muscle temperature (76).  Therefore, 

to account for possible temperature effects, we included a pre-TT maximal cycling trial 

that was preceded by a 5 min warm-up (pre-TTwarm) and an additional pre-TT maximal 

cycling trial that was preceded by 15 min of rest (i.e., no warm-up, pre-TTcold).  If 

maximum power was lower when performed without a warm-up, pre-TTcold trial was 

used for the pre- to post-TT comparison for the rested contralateral leg only.  Finally, we 

also evaluated pre- to post-TT changes in maximum isometric handgrip force to 

determine if exercised-induced fatigue altered neuromuscular function in rested muscles 

of the upper limbs.   
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Data analysis  

A two-way repeated measures analysis of variance (ANOVA) was performed to 

assess differences in maximum power between pre-TTwarm and pre-TTcold maximal 

cycling trials.  Separate student’s paired t-tests were used to assess differences in power, 

heart rate, lactate, RPEbody, and RPElegs between the right (fatigued ispilateral leg cycling 

protocol) and left (rested contralateral leg cycling protocol) leg TT’s.  Separate two-way 

repeated measures ANOVA procedures were used to compare pre- to post-TT changes in 

dependent variables (maximum power, maximum isometric torque, optimal pedaling rate, 

maximum pedaling rate, and maximum isometric handgrip force).  If any of the 

ANOVA’s were significant, then subsequent post hoc procedures (Fisher least significant 

differences) were performed to determine where those differences occurred.  Data were 

presented as mean ± standard error of the mean (SEM) and initial alpha was set to 0.05. 

 
Results 

Maximum cycling power produced during the pre-TTcold trial was reduced by 5 ± 

3% compared to pre-TTwarm (626 ± 34 vs. 597 ± 34 W, P < 0.01, Figure 3.2).  Thus, pre-

TTcold values were used for all subsequent pre- to post-TT comparisons for the rested 

contralateral leg only.  In contrast, pre-TTwarm values were used for the pre- to post-TT 

comparisons for fatigued ipsilateral.  Power, heart rate, blood lactate, and RPE assessed 

during the right (fatigued ispilateral leg cycling protocol) and left (rested contralateral leg 

cycling protocol) leg TT’s did not differ (Table 3.1).  Compared to pre-TT, maximum 

cycling power produced by the fatigued ipsilateral leg was reduced by 22 ± 3% at 30 s 

post-TT and remained reduced by 9 ± 2% at 5 min post-TT (both P < 0.05, Figure 3.3, 

Table 3.2).  Post-TT maximum cycling power produced by the rested contralateral leg did 
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not differ from pre-TT values (P = 0.90, Figure 3.3, Table 3.2).  Compared to pre-TT, 

maximum isometric torque generated by the fatigued ipsilateral leg was reduced by 20 ± 

2% at 30 s post-TT and remained reduced by 4 ± 2% at 10 min post-TT (both P < 0.05, 

Table 3.2).  There were no changes in maximum isometric torque produced by the rested 

contralateral leg (P = 0.14, Table 3.2).  Complete torque-pedaling rate and power-

pedaling rate relationships are illustrated in Figure 3.4.  The repeated measures ANOVA 

procedures indicated significant main effects of time for optimal pedaling rate and 

maximum pedaling rate as these variables were increased at 5 and 10 min post-TT (P < 

0.05, Table 3.2).  There were no alterations in maximum isometric handgrip force (P = 

0.10, pre-TT: 534 ± 22, post-TT 30 s: 540 ± 21, post-TT 3 min: 525 ± 19, post-TT 5 min: 

529 ± 20, post-TT 10 min: 547 ± 19 N).  

 
Discussion 

In this investigation, we used high intensity single-leg cycling (i.e., 10 min TT) to 

induce fatigue and subsequently evaluated maximum cycling power of the rested 

contralateral leg as well as the fatigued ipsilateral leg.  Our main finding was that 

maximum cycling power in the rested contralateral leg was maintained despite 

considerable power loss in the fatigued ipsilateral leg.  These results suggest that any 

potential cross-over of fatigue, if at all present, was not sufficient to measurably 

compromise maximum power of the rested contralateral leg when fatigue was induced 

via high-intensity endurance exercise involving a substantial muscle mass.  Additionally, 

maximum isometric handgrip force was also unaffected by fatigue.  Taken together, our 

results suggest that, following high intensity endurance exercise, compromises in 
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maximal voluntary neuromuscular function are limited to those muscles involved in the 

fatiguing locomotor task.   

 
Warm-up effects and quantification of fatigue  

An important part of our experimental design was that we included two different 

pre-TT maximal cycling trials in order to determine the effect of a brief warm-up on 

maximum cycling power.  This was necessary as the rested contralateral leg was passive 

during the TT and thus not likely warmed-up prior to the post-TT maximal cycling trial.  

As expected, pre-TT maximum cycling power was reduced in the absence of a warm-up.  

Based on this finding, we then used the pre-TT maximal cycling trial that was preceded 

by 15 min of rest (i.e., no warm-up, pre-TTcold) for the pre- to post-TT comparison for the 

rested contralateral leg.  Therefore, any potential changes in maximum cycling power of 

the rested contralateral leg would be due to a cross-over of fatigue rather than changes in 

muscle temperature (76).  This adjustment, however, was not made for the fatigued 

ipsilateral leg as this leg was active during the TT and likely sufficiently warmed-up at 

the time the post-TT maximal cycling trial was conducted.  Accordingly, the pre-TT that 

was preceded by a 5 min cycling warm-up (pre-TTwarm) was used for the pre- to post-TT 

comparison for the fatigued ipsilateral leg. 

 
Exercise-induced fatigue 

During the TT, participants were able to produce substantial power with one leg 

(~200 W) which resulted in heart rate, blood lactate, and RPE responses similar to those 

associated with high-intensity double-leg cycling (7, 8, 56).  Previous authors (1, 24) 

have demonstrated that high-intensity single-leg cycling permits higher individual leg 
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power outputs compared to double-leg cycling.  Thus, not only did our exercise modality 

place considerable stress on the whole-body but it also likely increased single-leg 

exercise intensity and the associated intramuscular metabolic milieu (51).  After the TT, 

maximum power in the fatigued ipsilateral leg was initially reduced by 22% and 

remained reduced at 5 min post-TT.  These results generally support previous reports (16, 

56, 77, 89) of 25-32% reductions in maximum double-leg cycling power and indicate that 

high-intensity single-leg cycling was effective for inducing fatigue in the ipsilateral leg.  

Finally, exercise-induced fatigue in the ipsilateral leg likely manifested through a 

combination of central and peripheral mechanisms as several investigators have 

documented the development of central (17, 34, 79) and peripheral fatigue (7-10, 12, 17, 

34, 79) during high-intensity cycling exercise.   

Interestingly, reductions in maximum cycling power in the fatigued ipsilateral leg 

were not associated with significant reductions in optimal or maximum pedaling rate.  

This could suggest that reductions in maximum power were largely due to reductions in 

torque-generating capacity.  Indeed, maximum isometric torque was reduced by a similar 

magnitude as maximum power (20%).  Together, these data might reflect that reductions 

in maximum power were possibly due to impairments in force production (i.e., cross-

bridge level) rather than reduced muscle shortening velocity (i.e., calcium handling).  Our 

results contrast those of Buttelli and colleagues (26) who reported reductions in 

maximum pedaling rate without changes in maximum isometric torque following high-

intensity constant power cycling.  At this time we do not fully understand these 

contrasting results but differences could be related to the limitations of the ergometer (78) 

used by Buttelli and colleagues (26).  Nonetheless, the results from the present study also 
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clearly demonstrate that power-pedaling rate relationships maintain their parabolic shape 

following high-intensity cycling, which has been a recent topic of debate (54, 55, 57, 58).   

 
Potential cross-over of fatigue  

In contrast to the reductions in maximum cycling power in the fatigued leg, 

maximum cycling power was unaffected in the rested contralateral leg.  In fact, pre- to 

post-TT torque-pedaling rate and power-pedaling rate relationships were nearly identical 

(Figure 3.4).  This is quite impressive given that participants were working close to 

maximal effort and producing substantial power with the ipsilateral leg during the TT.  

Thus, despite substantial fatigue in the ipsilateral leg, a cross-over of fatigue was either 

not present or not large enough to measurably impair maximum power of the rested 

contralateral leg when fatigue was induced via high-intensity endurance exercise 

involving substantial muscle mass.  These results insinuate that output from spinal motor 

neurons was sufficient to enable participants to generate the same baseline maximum 

cycling power in the rested contralateral leg.  With this in mind, central motor drive to the 

rested contralateral leg was likely unaffected by fatigue in the ipsilateral leg.   

In support of our results, previous authors (72, 85) have reported that fatigue 

induced via a maximal isometric contraction of a single limb muscle does not impair 

maximum isometric force in the rested contralateral muscle.  Conversely, other authors 

(62) have reported that sustained isometric knee extensor exercise reduced maximum 

isometric force in rested contralateral knee extensors by 13%.  Such differences could be 

related to the age and sex of the participants and / or type of task (39) to induce fatigue.  

Even though there is some variation in these findings, our results along with the majority 

of previous studies (72, 85) indicate that fatigue in a single limb muscle / muscle groups 
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does not impair maximum voluntary function in the previously rested homologous 

contralateral muscle / muscle groups.   

Our results relating to the absence of a cross-over of fatigue were unanticipated 

and three alternative explanations are worth mentioning.  First, as suggested by Amann 

and colleagues (7, 10-12), during the TT increased firing of group III and IV muscle 

afferents from the fatigued ipsilateral leg could have exerted inhibitory influences on 

central motor drive with the subsequent consequence of limited maximum cycling power 

in the rested contralateral leg.  However, for a brief period, participants may have been 

able to override this inhibitory feedback and produce the same baseline maximum cycling 

power in the rested leg.  To test this theory it might be very illuminating to also evaluate 

the extent to which exercise-induced fatigue in the ipsilateral leg impacts high-intensity 

endurance performance in the rested contralateral leg.  Second, it is salient to note that 

participants in this study were endurance trained cyclists and were tested in the middle of 

the racing season.  Competitive cycling is inherently a non-steady-state activity 

performed with intermittent high cycling powers (71).  Further, chronic endurance 

training and associated increased brain mitochondrial biogenesis could attenuate the 

development of central fatigue (81).  Therefore, cyclists in this study may have been 

uniquely prepared to perform high intensity single-leg cycling and overcome cross-over 

fatigue to produce maximum cycling power with the rested contralateral leg.  Finally, 

maximum cycling power in the rested contralateral leg may have been initially reduced 

but could have recovered prior to the post-TT assessment, as there was a short delay due 

to ergometer constraints.  However, the occurrence of such quick recovery is unlikely 
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given that previous authors have reported that central fatigue (17, 34, 79) can last for up 

to several minutes following high intensity cycling.   

 
Limb specificity of fatigue  

In this investigation, we also evaluated pre- to post-TT changes in maximum 

isometric handgrip force in an attempt to determine if a cross-over of fatigue manifested 

with a “global” impairment in maximum voluntary neuromuscular function.  Specifically, 

central fatigue (45) could be induced by changes in concentrations of circulating 

neurotransmitters in the brain (32), resulting in reduced neuromuscular function in rested 

muscles not associated with the fatiguing task.  Additionally, humoral factors associated 

with substantial peripheral fatigue in the ipsilateral leg could have lead to peripheral 

fatigue in the rested contralateral leg.  Although such factors were not directly assessed, 

the lack of changes in maximum isometric handgrip force as well as maximum power in 

the rested contralateral leg demonstrate that voluntary neuromuscular function was 

compromised only in exercised muscles of the fatigued ipsilateral leg.  These data also 

suggest that high intensity single-leg cycling in the ipsilateral leg did not affect 

participants’ motivation to perform subsequent maximal voluntary isometric and dynamic 

contractions in other previously rested limbs / muscles.  Finally, the lack of changes in 

maximum isometric handgrip force is consistent with previous reports that indicate that 

maximum isometric handgrip force is maintained after high-intensity cycling (34) and 

prolonged running (66, 69, 73, 74).   
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Summary  

This is the first investigation to evaluate a potential cross-over of fatigue when 

fatigue is induced via high-intensity endurance exercise involving a substantial muscle 

mass.  Following the single-leg cycling TT, maximum cycling power in the fatigued 

ipsilateral leg was substantially reduced and remained reduced for several minutes.  Even 

with substantial fatigue in the ipsilateral leg, participants were still able to produce the 

same baseline maximum cycling power with the rested contralateral leg.  Maximum 

isometric handgrip force was also unaffected by fatigue.  Taken together, these results 

suggest that fatigue induced via high-intensity endurance exercise in one limb does not 

impair maximal voluntary neuromuscular function in previously rested limbs / muscles.    
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Table 3.1:  Physiological responses to the single-leg cycling time trial. 

 

 

 

 

 

 

 
 

Values are reported as Mean ± SEM.  Note that the right leg time trial (TT) was part of 
the fatigued ipsilateral leg protocol and that the left leg TT was part of the rested 
contralateral leg protocol.   
 

a Averaged over 10 min 
 

b Assessed during final 30 s 
 
c Assessed within 90 s post-TT 

 

 

 

 

 Right Leg Left Leg 

Power (W) a             203 ± 8             199 ± 8 

HR (beats min-1) b             177 ± 3             175 ± 4 

RPEoverall 
b            18.3 ± 0.5            17.7 ± 0.6 

RPElegs 
b            19.6 ± 0.1            19.3 ± 0.2 

Lactate (mmol L-1) c            11.2 ± 0.6            11.5 ± 0.5 
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Figure 3.1:  Experimental protocol.  Schematic illustration of the fatigued ipsilateral (A) and rested contralateral (B) leg protocols.  
Protocols were administered in a counter balanced fashion.  Maximal cycling and isometric handgrip trials were performed at 30 s, 3 
min, 5 min, and 10 min post-TT.   
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Table 3.2:  Pre- to post-TT changes in maximal neuromuscular function.  

 
Values are reported as Mean ± SEM.  Pmax, maximum cycling power; Tmax, maximum isometric torque produced at the onset of 
maximal cycling; RPMopt, optimal pedaling rate that elicited maximum cycling power; RPMmax, maximum pedaling rate.  Note that 
rested contralateral leg pre-TT values tended to be lower than fatigued ipsilateral values due to the lack of a cycling warm-up.  
 

* P < 0.05 vs. pre-TT 
 

a main effect of time (P < 0.05)  

 Fatigued Leg  Rested Leg 

 Pre 30 s 3 min 5 min 10 min  Pre 30 s 3 min 5 min 10 min 

Pmax (W) 627 ± 31 489 ± 30* 561 ± 29* 570 ± 30* 602 ± 33  596 ± 35 597 ± 31 603 ± 32 597 ± 27 596 ± 31 

Tmax (Nm) 101 ± 5   79 ± 5*   89 ± 4*   90 ± 4*   96 ± 4*   99 ± 5   97 ± 4   97 ± 4   94 ± 4   95 ± 4 

RPMopt  a 113 ± 9 109 ± 4 114 ± 3 115 ± 3 114 ± 3  110 ± 2 111 ± 2 114 ± 2 114 ± 2 115 ± 2 

RPMmax 
a 227 ± 5 218 ± 7 227 ± 5 230 ± 7 231 ± 7  219 ± 4 223 ± 4 228 ± 4 230 ± 4 231 ± 4 

40 
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Figure 3.2:  Influence of a cycling warm-up.  Effect of a warm-up (A) on pre-TT 
maximum cycling power (mean ± SEM).  Pre-TTwarm represents the maximal cycling 
trial that was preceded by a 5 min cycling warm-up whereas pre-TTcold represents the 
maximal cycling trial that was preceded by 15 min of rest (i.e., no warm-up). * P < 0.01 
vs. pre-TTwarm.  Graphical illustration of quantification of fatigue (B). # indicates pre-
TT maximal cycling trial used for the pre- to post-TT comparison.  
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Figure 3.3:  Alterations in maximum cycling power.  Relative pre- to post-TT changes in 
maximum cycling power (mean ± SEM) for the fatigued ipsilateral and rested 
contralateral leg.  * P < 0.05 compared to pre-TT (dotted line). 
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Figure 3.4:  Torque- and power-pedaling rate relationships.  Maximal cycling torque-
pedaling rate (A, B) and power-pedaling rate (C, D) relationships for the fatigued 
ipsilateral (closed symbols) and rested contralateral leg (open symbols).  Maximum 
isometric torque and maximum power were reduced for the fatigued ipsilateral leg at 30 s 
post-TT, but did not change for the rested contralateral leg.  Data are presented as mean ± 
SEM. 
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4.  EFFECTS OF AGING ON THE DEVELOPMENT OF FUNCTIONAL 

CONSEQUENCES OF CENTRAL AND PERIPHERAL                                          

FATIGUE DURING SINGLE-LEG CYCLING  

 
The ability to produce muscular force / power and resist the development of 

fatigue is important when performing functional activities for prolonged periods of time.  

Recently, Christie and colleagues (28) performed a systematic review and meta analysis 

of muscle fatigue and aging and reported that older individuals develop less fatigue than 

younger individuals during isometric muscle contractions.  However, during dynamic 

muscle contractions older individuals exhibit greater fatigue (i.e., power loss) compared 

to younger individuals.  These authors also emphasized the need for additional research 

to evaluate age-related differences in fatigue particularly during dynamic exercise as 

production of muscular power is important for maintaining physical function and 

independence with advanced age (14, 44) .   

Exercise-induced fatigue, a reversible reduction in the force- and power-

generating ability of the neuromuscular system (19, 43), can manifest through central 

(45) and / or peripheral (4) mechanisms.  Traditionally, the development of central 

fatigue is evaluated during a maximal isometric contraction.  Similarly, exercise-induced 

peripheral muscle fatigue is often quantified via the reduction in force output in response 

to direct electric / magnetic motor nerve stimulation shortly after intense muscle 

contractions.  Insight into central and peripheral aspects of fatigue can help to explain 
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age-related differences in fatigue resistance (5, 15, 20, 27, 31, 36, 49, 80).  However, it 

can be challenging to separate the relative contributions of central and peripheral fatigue 

during dynamic muscle contractions as traditional techniques are difficult to utilize.  

Indeed, Kent-Braun and colleagues (50) emphasized that, “Currently, the relative 

importance of central and peripheral factors in fatigue during dynamic contractions in the 

elderly is not known.”   

The functional impact of central and peripheral fatigue on dynamic 

neuromuscular function could be approximated by using a single-leg cycling model.  

That is, high-intensity single-leg cycling could be used to induce peripheral fatigue in the 

working leg while possibly facilitating central fatigue.  Subsequent evaluation of 

maximum cycling power in the rested contralateral leg and fatigued ipsilateral leg offers 

a paradigm for examining the functional impact of central and peripheral fatigue during 

dynamic exercise that involves the large muscle mass of the legs.  For example, if 

maximum cycling power was reduced in the fatigued ipsilateral leg, this would likely 

represent a combination of central and peripheral fatigue as previous investigators have 

documented the development of central (17, 34, 79) and peripheral (7-10, 12, 17, 34, 79) 

fatigue during high-intensity double-leg cycling.  Additionally, if maximum cycling 

power was reduced in the rested contralateral leg, this fatigue would most likely be 

central in origin (62, 72, 85) with peripheral factors playing a lesser role (62).   

Age-related changes in functional capacity may be attributed in part to reduced 

physical activity and sedentary lifestyle.  Indeed, many of the so called aging effects 

occur to a lesser extent in middle-age to older adults who strive to maintain and even 

improve athletic performance (i.e., masters athletes) (29, 41, 53, 70).  Thus, masters 
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athletes offer a unique model of highly active aging (82, 83).  In the context of fatigue, 

masters athletes, particularly masters cyclists, may be an interesting group to study.  

Specifically, competitive cycling is inherently a non-steady state activity performed with 

intermittent high net cycling powers (71) and such lifelong training may help to preserve 

the ability of the neuromuscular system to resist the development of fatigue. 

Our purpose for conducting this investigation was to evaluate the effects of aging 

on the development of functional consequences of central and peripheral fatigue induced 

via dynamic exercise involving a large muscle mass.  Specifically, we determined the 

extent to which high-intensity single-leg cycling altered maximum cycling power of the: 

1) fatigued ipsilateral and 2) rested contralateral leg.  Previous results (15, 30, 64, 68) 

from dynamic tasks involving a small muscle mass suggest that older adults would 

exhibit greater fatigue compared to young adults.  However, lifelong endurance training 

in masters cyclists could potentially attenuate the development of fatigue associated with 

aging.  Therefore, we hypothesized that masters cyclists would exhibit similar levels of 

fatigue compared to young cyclists. 

 
Methods 

Participants 

Twelve endurance trained young cyclists (age: 18-30 yr) and 12 masters cyclists 

(age: 50-65 yr) volunteered for this study.  Cyclists were recruited from local cycling 

clubs in the community.  Participant demographics along with self-reported training data 

are presented in Table 1.  Experimental procedures were reviewed by the University of 

Utah Institutional Review Board and all participants provided written informed consent 

prior to testing. 
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Experimental protocol 

At preliminary visits to the laboratory, participants performed familiarization 

trials of maximal single-leg cycling and maximal isometric handgrip trials.  Participants 

also performed practice intervals of submaximal single-leg cycling and an incremental 

double-leg cycling test (13) for determination of VO2max.  During the experimental week 

participants reported to the laboratory on two separate days to perform: 1) fatigued 

ipsilateral leg or 2) rested contralateral leg cycling protocol which are described below 

and also illustrated in Figure 3.1.  The fatigued ispilateral leg and rested contralateral leg 

cycling protocols were performed in a counter-balanced order.  Experimental visits were 

separated by a least 48 h and were completed at the same time of day.  Participants were 

instructed to avoid vigorous exercise 24 h before each experimental visit.  

For the fatigued ipsilateral leg cycling protocol participants performed a 5 min 

single-leg cycling warm-up with their right leg followed by a maximal single-leg cycling 

trial (4.5 s) with their right leg.  Subsequently, participants rested for 15 minutes and then 

again performed a maximal single-leg cycling trial with their right leg.  Participants then 

performed a 5 min single-leg cycling warm-up with their right leg followed by 10 min 

maximal effort single-leg cycling time trial (TT) with their right leg.  Within 30 s after 

the TT, participants performed a maximal single-leg cycling trial with their right leg.  

Maximal cycling trials were also performed at 3, 5, and 10 min post-TT with the right 

leg.  Immediately following each pre- and post-TT maximal cycling trial, participants 

performed a maximal isometric handgrip trial with their right arm.   

For the rested contralateral leg cycling protocol participants performed a 5 min 

single-leg cycling warm-up with their right leg followed by a maximal single-leg cycling 
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trial (4.5 s) with their right leg.  Subsequently, participants rested for 15 minutes and then 

again performed a maximal single-leg cycling trial with their right leg.  Participants then 

performed a 5 min single-leg cycling warm-up with their left leg followed by 10 min 

maximal effort single-leg cycling TT with their left leg.  Within 30 s after the TT, 

participants performed a maximal single-leg cycling trial with their right leg.  Maximal 

cycling trials were also performed at 3, 5, and 10 min post-TT with the right leg.  

Immediately following each pre- and post-TT maximal cycling trial, participants 

performed a maximal isometric handgrip trial with their right arm.   

 
Maximal single-leg cycling 

Participants performed maximal single-leg cycling trials (4.5 s) with their right 

leg on an inertial-load cycle ergometer (61).  Participants were instructed to remain 

seated throughout each trial and given standardized verbal encouragement.  The 

ergometer was fitted with racing handlebars, cranks, and saddle, and fixed to the floor 

and participants wore cycling shoes that locked onto the pedal (Speedplay Inc., San 

Diego, CA, USA).  A 97 N counterweight was attached to the contralateral ergometer 

crank to facilitate smooth single-leg cycling and the foot of the non-exercising leg was 

secured to a stabilization platform.  Inertial-load method determines maximal power 

across a range of pedaling rates (e.g., 60-180 rpm) in a single brief trial.  These methods 

have been previously described by Martin and colleagues (61).  Briefly, participants 

began each trial from rest and accelerated maximally for eight pedal revolutions with 

resistance provided solely by the moment of inertia of the flywheel.  Angular position 

data were low pass filtered at 8 Hz using a 5th order spline (88) and angular velocity and 

acceleration were determined from the spline coefficients.  Power averaged over each 
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complete crank revolution was calculated as the rate of change in kinetic energy and 

maximum power was the highest value during each trial.  For each trial, the power-

pedaling rate relationship was determined and the optimal pedaling rate that elicited 

maximum power was also identified.  Note that optimal pedaling rate has been reported 

to be highly related to muscle fiber type (48) and thus may serve as a surrogate measure 

of muscle fiber type distribution. 

 
Single-leg cycling time trial 

Participants performed a 10 min maximal effort single-leg cycling TT with their 

right or left leg on a Monark friction-braked cycle ergometer (Vansbro, Sweden).  Before 

the TT, participants were instructed to cycle as “hard as you can go” in order to produce 

the greatest amount of power and were given standardized verbal encouragement 

throughout the TT.  Participants were also instructed to maintain the same pedaling rate 

for each TT (e.g., 90 rpm).  A high-powered industrial fan was placed near the 

participants in order to keep them cool.  The ergometer was fitted with racing handlebars, 

cranks, and saddle, and fixed to the floor and participants wore cycling shoes that locked 

onto the pedal (Speedplay Inc., San Diego, CA, USA).  As described above a 

counterweight was attached to the contralateral ergometer crank to facilitate smooth 

single-leg cycling.  Mean power produced during each TT was quantified using a power 

meter (Schoberer Rad Messtechnik, SRM, Jülich, Germany) that collected data at 2 Hz.  

Note that previous authors (2, 47, 60) have reported that the SRM power meter provides 

accurate measurements of power during high-intensity cycling.  During the final 30 s of 

the TT overall rating of perceived exertion (RPEoverall) and specific leg perceived exertion 

(RPElegs) were assessed using a Borg 6-20 scale (22).  Heart rate (Polar CS300, Kempele, 
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Finland) was also assessed during the final 30 s of the TT.  Whole blood lactate 

(ARKRAY Lactate Pro LT-1710, Kyoto, Japan) was measured 90 s post-TT. 

  
Maximal isometric handgrip 

Participants performed a maximal isometric hand grip trial (3 s) with their right 

hand using a hydraulic handgrip dynamometer (Smith & Nephew Rehabilitation, 

Memphis, TN, USA).  Participants were instructed to squeeze the device with maximal 

effort while maintaining a 90° elbow angle.  Standardized verbal encouragement was 

provided during each trial. 

 
Quantification of fatigue 

To quantify exercise-induced fatigue, we compared pre- to post-TT changes in 

maximum cycling power of the fatigued ipsilateral leg.  To evaluate potential effects of 

central fatigue, we compared pre- to post-TT changes in maximum cycling power of the 

rested contralateral leg.  It is important to note that the rested contralateral leg was 

passive during the TT and was not likely warmed-up prior to the post-TT maximal 

cycling trials.  Thus, potential reductions in maximum cycling power of the rested 

contralateral leg might be influenced by changes in muscle temperature (76).  To account 

for possible temperature effects, we included a pre-TT maximal cycling trial that was 

preceded by a 5 min warm-up (pre-TTwarm) and an additional pre-TT maximal cycling 

trial that was preceded by 15 min of rest (i.e., no warm-up, pre-TTcold).  If maximum 

power was reduced in the absence of a warm-up, then the pre-TTcold trial was used for the 

pre- to post-TT comparison for the rested contralateral leg only.  Finally, we also 

evaluated pre- to post-TT changes in maximum isometric handgrip force to determine if 
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exercised-induced fatigue altered neuromuscular function in rested muscles of the upper 

limbs.   

 
Data analysis 

Separate independent t-tests were used to compare differences in demographic 

and training data between the young and masters cyclists.  A two-way mixed repeated 

measures analysis of variance (ANOVA) was performed to assess differences in 

maximum power between pre-TTwarm and pre-TTcold maximal cycling trials.  Two-way 

mixed repeated measures ANOVA procedures were also used to assess differences in 

power, heart rate, lactate, RPEbody and RPElegs between the right (fatigued ispilateral leg 

cycling protocol) and left (rested contralateral leg cycling protocol) leg TT’s.  Pre- to 

post-TT changes in dependent variables (maximum cycling power and maximum 

isometric handgrip force) were compared using two-way repeated measures ANOVA 

procedures.  If any of the ANOVA procedures were significant, then subsequent post hoc 

procedures (Fisher least significant differences) were performed to determine where those 

differences occurred.  Data were presented as mean ± standard error of the mean (SEM) 

and initial alpha was set to 0.05. 

 
Results 

Demographic and training characteristics 

The older masters cyclists were less massive, had lower VO2max values, and had 

been training longer compared to young cyclists (P < 0.05, Table 4.1).  Young and 

masters cyclists were similar in height and weekly training hours (Table 4.1).   
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Warm-up effects 

During pre-TTwarm maximal single-leg cycling trials, masters cyclists were less 

powerful compared to young (523 ± 31 vs. 626 ± 34 W, age group effect, P < 0.01) but 

this difference was eliminated when power was normalized to body mass (7.2 ± 0.4 vs. 

8.1 ± 0.4 W kg-1, P = 0.13).  Optimal pedaling rate that elicited maximum cycling power 

during pre-TTwarm did not differ between the young and masters cyclists (113 ± 2 vs. 109 

± 2 rpm, P = 0.29).  Compared to pre-TTwarm, maximum cycling power produced during 

pre-TTcold trials was reduced by 5 ± 1% for young and masters cyclists (trial effect, P < 

0.001, Figure 4.1) with no interaction of age group (P = 0.75).  Thus, pre-TTcold values 

were used for all subsequent pre- to post-TT comparisons for the rested contralateral leg 

whereas pre-TTwarm values were used for pre- to post-TT comparisons for the fatigued 

ipsilateral leg whereas (Figure 4.1).   

 
Time trials 

Mean power produced during the 10 min right (fatigued ipsilateral leg protocol) 

and left (rested contralateral leg protocol) leg TT’s was lower for masters cyclists 

compared to young (age group effect, P = 0.05, Table 4.2).  However, this difference was 

eliminated when mean TT power was scaled to body mass (P = 0.47, Table 4.2).  Mean 

TT powers for the right and left leg TT did not differ (P = 0.75).  Mean pedaling rate was 

similar for young and masters cyclists (P = 0.34) and did not differ between the right and 

left leg TT’s (P = 0.08, Table 4.2).  Heart rate values were lower for masters cyclists 

compared to young (age group effect, P < 0.01, Table 4.2) but did not differ between the 

right and left leg TT’s (P = 0.46).  There was a significant leg x age group interaction for 

RPEoverall and RPElegs (P < 0.05, Table 4.2).  Whole blood lactate values for young and 
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masters cyclists were similar (P = 0.33) and did not differ between the right and left leg 

TT’s (P = 0.20, Table 4.2).   

 
Pre- to post-TT changes in neuromuscular function 

Compared to pre-TT, maximum cycling power produced by the fatigued 

ipsilateral leg was reduced for young and masters cyclists (time effect, P < 0.01) with no 

interaction of age group (P = 0.48).  In fact, young and masters cyclists exhibited nearly 

identical levels of fatigue as maximum cycling power in the fatigued ispilateral leg was 

initially reduced by 22 ± 3 and 21 ± 3% at 30 s post-TT, respectively (Figure 4.2).  At 10 

min post-TT, maximum cycling power was similar to pre-TT values for both young and 

masters cyclists (P = 0.06, Figure 4.2).  Post-TT maximum cycling power produced by 

the rested contralateral leg did not differ from pre-TT values for young and masters 

cyclists (P = 0.45, Figure 4.2).  Complete power-pedaling rate relationships for the 

fatigued ispilateral and rested contralateral leg are illustrated in Figure 4.3.  Maximum 

isometric handgrip force was lower for masters cyclists (P = 0.01) and increased for both 

groups at 10 min post-TT only (time effect, P < 0.05). 

 
Discussion 

In this investigation, we tested the hypothesis that older masters cyclists would 

exhibit similar levels of fatigue compared to young cyclists when matched for training 

volume.  Our results indicate that power loss and recovery in the fatigued ipsilateral leg 

were nearly identical for young and masters cyclists.  Despite considerable fatigue in the 

ipsilateral leg, both young and masters cyclists were able to maintain maximum cycling 

power in the rested contralateral leg.  Thus, a cross-over of fatigue (possibly central in 

origin) was either not present or not large enough to impair maximum cycling power in the 
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rested contralateral leg.  In addition, maximum isometric handgrip force was also 

unaffected by fatigue.  Together, these results indicate that fatigue induced via high-

intensity cycling has similar functional consequences for endurance trained young and 

masters cyclists.  These results also suggest that for both groups of cyclists, maximal 

voluntary neuromuscular function was compromised only in those muscles / muscle 

groups involved in the fatiguing task.  These data support our hypothesis and likely 

represent a best case scenario for highly active aging.   

 
Warm-up effects 

As expected pre-TT maximum cycling power was reduced in the absence of a 

warm-up for both young and masters cyclists.  Based on this finding we then used the 

pre-TT maximal cycling trial that was preceded by 15 min of rest (i.e., no warm-up, pre-

TTcold) for the pre- to post-TT comparison for the rested contralateral leg only.  

Therefore, any potential changes in maximum cycling power of the rested contralateral 

leg would be due to fatigue that was likely central in origin rather than changes in muscle 

temperature (76).  For the fatigued ipsilateral leg, pre-TT maximal cycling trial that was 

preceded by a 5 min cycling warm-up (pre-TTwarm) was used for the pre- to post-TT 

comparison as this leg was active during the TT and likely sufficiently warmed-up prior 

to the post-TT maximal cycling trials. 

 
Exercise-induced fatigue  

After the TT, young and masters cyclists exhibited virtually identical levels of 

fatigue as maximum cycling power in the fatigued ispilateral leg was initially reduced by 

22% and 21%, respectively, and remained reduced at 5 min post-TT.  Indeed, relative 
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pre- to post-TT power-pedaling rate relationships tended to converge onto a single curve 

(Figure 4.3).  These results indicate that high-intensity single-leg cycling was effective 

for inducing fatigue in the ipsilateral leg and are well supported as several authors (16, 

56, 77, 89) have reported similar reductions in maximum cycling power (25-32%) after 

high-intensity double-leg cycling.  Further, exercise-induced fatigue in the ipsilateral leg 

likely manifested through a combination of central and peripheral mechanisms as several 

investigators have documented the development of central (17, 34, 79) and peripheral 

fatigue (7-10, 12, 17, 34, 79) following short-duration high-intensity cycling.   

In contrast to the reductions in maximum cycling power in the fatigued leg, 

maximum cycling power was unaffected in the rested contralateral leg for both young 

and masters cyclists.  This is quite impressive given that participants were working close 

to maximal effort and producing substantial power with the ipsilateral leg during the TT.  

These results suggest that a cross-over of fatigue that was possibly central in origin (62) was 

either not present or not large enough to impair maximum cycling power in the rested leg.  In 

addition, these data provide evidence that output from spinal motor neurons was sufficient 

to enable both groups of cyclists to generate the same baseline maximum cycling power 

in the rested contralateral leg.  With this in mind, central motor drive to the rested 

contralateral leg was likely unaffected by fatigue in the isilateral leg.   

Collectively, these results indicate that young and masters cyclists developed 

similar levels of fatigue and recovery following high-intensity endurance exercise 

involving a substantial muscle mass.  Previous authors (15, 30, 64, 68) have reported that 

older individuals exhibit greater power loss and fatigue compared to younger individuals 

when fatigue is induced via dynamic exercise involving a small muscle mass.  On the 

other hand, others (52) have reported that older adults develop less fatigue compared to 
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their younger counterparts whereas others (27) have observed no age-related differences 

in fatigue.  Thus, previous findings relating to age-related differences in fatigue are 

widely varied.  These dissimilar findings could be related to the type of task to induce 

fatigue and muscle group evaluated.  Although it is difficult to directly compare the 

results from the present study to previous investigations, our results representing similar 

levels of fatigue come down squarely in the middle of these various reported responses.   

 
Central and peripheral factors 

To the best of our knowledge, we are one of the first groups to evaluate functional 

consequences of central and peripheral aspects of fatigue during dynamic exercise.  Our 

results of similar power loss in the fatigued ipsilateral leg along with the lack of changes 

in the rested contralateral legs suggest that central and peripheral fatigue likely had 

similar functional consequences for endurance trained young and masters cyclists when 

fatigue was induced via high-intensity cycling.  Using traditional methods, previous 

authors (20, 80) have reported greater reductions in voluntary muscle activation (65) 

during maximal isometric contractions in older individuals suggesting that central fatigue 

mechanisms contributed to age-related differences in fatigue resistance.  However, other 

authors (5, 15, 27, 31, 36, 49) have reported no differences in central activation 

suggesting that peripheral fatigue mechanisms likely contributed to age-related 

differences in fatigue resistance.  Once again previous findings are widely varied as 

fatigue can be task-specific and it is difficulty to compare our results to previous results 

obtained using isometric small muscle mass models.  Future research that combines 

traditional techniques with the model used in this study may help to unify mechanistic 

and functional fatigue measures.  
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Masters athlete model 

Age-related changes in neuromuscular function can lead to significant reductions 

in muscular strength and power and ultimately frailty (87).  Such changes, however, may 

be related partly to reduced physical activity and sedentary lifestyle.  To investigate the 

effects of age, without these confounding factors, we compared fatigue responses in 

young and masters cyclists who were matched for training volume.  Not only were these 

groups matched for training hours, but they had similar maximum cycling and TT cycling 

power values (adjusted for body mass) as well as optimal pedaling rates, which suggests 

they had similar muscle fiber type distributions.  Therefore, any differences in fatigue 

responses would most likely result from the > 30 yr difference in age.  Our results of 

similar fatigue responses between young and masters cyclists agree with previous reports 

that indicate that young and masters endurance athletes demonstrated similar levels of 

fatigue in knee extensor muscles following 30 min cycling time trial (41) and heavy 

resistance training (53).  Together, these results provide evidence that masters athletes 

maintain the ability to resist the development of fatigue.   

 
Limb specificity of fatigue 

To determine if a exercise-induced fatigue manifested with a “global” impairment 

in maximum voluntary neuromuscular function, we also evaluated pre- to post-TT 

changes in maximum isometric handgrip force in an attempt.  The lack of changes in 

maximum isometric handgrip force as well as maximum power in the rested contralateral 

leg demonstrate that voluntary neuromuscular function was compromised only in 

exercised muscles of the fatigued ipsilateral leg.  These results suggest that high intensity 

single-leg cycling in the ipsilateral leg did not affect participants’ motivation to perform 
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subsequent maximal voluntary isometric and dynamic contractions in other previously 

rested limbs / muscles.  Further, these results corroborate previous reports that indicate 

that maximum isometric handgrip force is maintained after high-intensity cycling (34) 

prolonged running (66, 69, 73, 74).    

 
Summary 

In this investigation, we evaluated the effects of aging on the development of 

fatigue in endurance trained young and masters cyclists.  Even with > 30 yr difference in 

age, masters cyclists exhibited almost identical levels of fatigue compared to young in the 

fatigued leg (-21 vs. -22%) and also exhibited similar recovery patterns.  In addition, both 

groups had the ability to overcome considerable fatigue in the ipsilateral leg and produce 

the same baseline maximum cycling power with the rested leg.  Likewise, maximal 

voluntary neuromuscular function was maintained in the upper limb as maximal 

isometric handgrip force was unaffected by fatigue.  Collectively, these results indicate 

that fatigue induced via high-intensity cycling has similar functional consequences for 

endurance trained young and masters cyclists and that impairments in maximal voluntary 

neuromuscular function were specific to those muscles of fatigued ipsilateral leg.  

Finally, these results likely provide an example of healthy successful aging and should 

not be extended to the general sedentary population.  
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Table 4.1:  Participant demographics and training profiles. 
 
 
 
 
 
 
 

Values are reported as Mean ± SD.   
 
* P < 0.05 vs. young 
 
 
 

Group (n = 12) Age (yr) Mass (kg) Height (m) 
VO2max  

(ml kg-1 min-1) 
Years of 
Training 

Weekly 
Hours 

Young        26 ± 4        78 ± 9    1.83 ± 0.06        61 ± 7        6 ± 3        11 ± 2 

Masters        57 ± 5*        73 ± 8*    1.75 ± 0.06        54 ± 6*      22 ± 11*        11 ± 3 

59 
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Table 4.2:  Time trial characteristics. 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Values are reported as Mean ± SEM.  Note that the right leg time trial (TT) was part of 
the fatigued ipsilateral leg protocol and that the left leg TT was part of the rested 
contralateral leg protocol.  Power and pedaling rate were averaged over 10 min.  Heart 
rate (HR), RPEoverall, and RPElegs were assessed during final 30 s. Lactate was assessed 
within 90 s of the end of the TT. 
 

a Main effect of age group (P < 0.05) 
 
b Leg x age group interaction (P < 0.05) 

 Right Leg Left Leg 

Power (W) a   

Young             203 ± 8             199 ± 8 

Masters             179 ± 8             181 ± 6 

Power (W/kg)    

Young              2.6 ± 0.1              2.6 ± 0.1 

Masters              2.5 ± 0.1              2.5 ± 0.1 

Pedaling Rate (rpm)   

Young               90 ± 1              89 ± 1 

Masters               88 ± 1              88 ± 1 

HR (beats min-1) a   

Young             177 ± 3             175 ± 4 

Masters             163 ± 3             163 ± 4 

RPEoverall 
b   

Young            18.3 ± 0.5            17.7 ± 0.6 

Masters            18.7 ± 0.4            19.0 ± 0.2 

RPElegs 
b   

Young            19.6 ± 0.1            19.3 ± 0.2 

Masters            19.3 ± 0.2            19.5 ± 0.2 

Lactate (mmol L-1)   

Young            11.2 ± 0.6            11.5 ± 0.5 

Masters            10.3 ± 0.6            11.0 ± 0.5 
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Figure 4.1:  Pre-TT maximal cycling and warm-up effects.  Effect of a warm-up (A) on 
pre-TT maximum cycling power.  Pre-TTwarm represents the maximal cycling trial that 
was preceded by a 5 min cycling warm-up whereas pre-TTcold represents the maximal 
cycling trial that was preceded by 15 min of rest (i.e., no warm-up).  Compared to pre-
TTwarm, maximum cycling power produced during pre-TTcold trials was reduced by 5 ± 
1% for young and masters cyclists (trial effect, * P < 0.001) with no interaction of age 
group.  Graphical illustration of quantification of fatigue (B). # indicates pre-TT maximal 
cycling trial used for the pre- to post-TT comparison for the fatigued ipsilateral and rested 
contralateral leg.  Data are pooled for young and masters cyclists and are presented as 
mean ± SEM. 
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Figure 4.2:  Changes in maximum cycling power.  Pre- to post-TT changes in maximum 
cycling power for the fatigued ipsilateral (A) and rested contralateral (B) leg.  Compared 
to pre-TT, maximum cycling power produced by the fatigued ipsilateral leg was reduced 
at 0.5, 3, and 5 min for young and masters cyclists (time effect, * P < 0.05) with no 
interaction of age group  There were no changes in maximum cycling power produced by 
the rested contralateral leg. Data are presented as mean ± SEM. 
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Figure 4.3:  Power-pedaling rate relationships.  Absolute (A, B, C, D) and relative (E, F) 
power-pedaling rate relationships for the fatigued ipsilateral (left panels) and rested 
contralateral (right panels) legs.  Power-pedaling rate relationships for young and masters 
cyclists were shifted downward at 30 s post-TT for the fatigued ipsilateral leg, but did not 
change for the rested contralateral leg.  Data are presented as mean ± SEM and are fitted 
with a quadratic equation. 
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5.  SUMMARY, CONCLUSION, AND RECOMMENDATIONS 
 

Summary 

In this series of studies, I used high-intensity cycling exercise (i.e., 10 min TT) to 

induce fatigue and quantified fatigue via pre-to post-TT changes in maximum cycling 

power.  The main finding of the first study was that exercise-induced changes in 

maximum cycling power manifested with differential power loss at each joint with ankle 

plantar flexion and knee flexion exhibiting relatively greater fatigue than knee extension 

and hip extension.  However, changes in maximal joint-specific powers were not 

presaged by changes in submaximal joint-specific powers.  These results suggest that 

exercise-induced fatigue can have distinct consequences for submaximal and maximal 

joint-specific power production.  The novel finding in the second study was that 

maximum cycling power in the rested contralateral leg was maintained despite 

considerable power loss in the fatigued ipsilateral leg.  This suggests that a cross-over of 

fatigue was not sufficient to measurably compromise maximum power of the rested 

contralateral leg when fatigue was induced via high-intensity endurance exercise 

involving a substantial muscle mass.  In the third study, results indicated that power loss 

and recovery were nearly identical for young and masters cyclists despite a > 30 yr age 

difference.  These results indirectly suggest that chronic endurance training may be 

beneficial for maintaining neuromuscular performance with advanced age.  Collectively, 
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these findings extend upon previous results obtained from small muscle mass models and 

highlight functional changes associated with exercise-induced fatigue.  

 
Conclusion 

High-intensity cycling exercise substantially impaired maximum cycling power 

production.  Further, reductions in maximum cycling power manifested with differential 

joint-specific power-loss across the ankle, knee, and hip.  Exercise-induced impairments 

in maximal voluntary neuromuscular function were limited to only those muscles 

involved in the fatiguing task.  Finally, fatigue induced via high intensity cycling has 

similar functional consequences for endurance trained young and masters cyclists.   

 
Future Recommendations 

Limitations to these investigations should be considered when interpreting these 

results but at the same time provide recommendations for future research.  A limitation in 

the first study was the use of inverse dynamic techniques to quantify joint-specific 

powers and describe the biomechanics of producing muscular power during cycling.  

Although these methods are widely used (18, 35, 40), they cannot quantify individual 

muscle forces and activation patterns (90).  A next step would be to use forward dynamic 

simulations to quantify individual muscle forces and activation patterns (90) in order to 

elucidate the contributions of neuromuscular fatigue and motor control to multijoint 

fatigue.  A limitation associated with the single-leg cycling model is that the development 

of central fatigue and peripheral fatigue were not directly measured.  Specifically, central 

fatigue is usually evaluated during a maximal isometric contraction of the exercising 

muscle.  Similarly, exercise-induced peripheral muscle fatigue is usually quantified via 
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the reduction in force output in response to direct electric / magnetic motor nerve 

stimulation shortly after, or during, muscle contractions.  I recommend that future 

investigators combine these two approaches in order to connect the underlying 

mechanisms of fatigue with the resulting functional outcomes.  It is important to note that 

in these investigations, maximum cycling power may have partially recovered prior to the 

post-TT maximal cycling trial.  The occurrence of such quick recovery is unlikely given 

that previous authors have reported that central (17, 34, 79) and peripheral fatigue (7-10, 

12, 17, 34, 79) can last for several minutes.  A methodological recommendation would be 

to have participants perform several maximal cycling trials at various time points during 

the TT to quantify the development of fatigue.  Finally, it may be important to consider 

the effect of exercise-induced fatigue on changes in submaximal neuromuscular function 

as many voluntary movements require submaximal force and power production for 

prolonged periods of time. 
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