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Abstract

Communicating Sequential Processes (CSP) is a paradigm for communication and synchroniza­

tion among distributed processes. The alternative construct is a key feature of CSP that allows 

nondeterministic selection of one among several possible communicants. Previous algorithms for 

this construct assume a message passing architecture and axe not appropriate for multiprocessor 

systems that feature shared memory. This paper describes a distributed algorithm for the al­

ternative construct that exploits the capabilities of a parallel computer with shared memory. The 

algorithm assumes a generalized version of Hoare’s original alternative construct that allows output 

commands to be included in guards. A correctness proof of the proposed algorithm is presented 

to show that the algorithm conforms to some safety and liveness criteria. Extensions to allow 

termination of processes and to ensure fairness in guard selection are also given.

Keywords: communicating sequential processes; alternative operation; shared memory multi­

processor; parallel processing.



1 I n t r o d u c t i o n

Communicating Sequential Processes (CSP) is a well known paradigm for communication and syn­

chronization of a parallel computation [11,10]. A CSP program consists of a collection of processes 

Pi, P2, . . . ,  Pn that interact by exchanging messages. These message passing primitives, called 

input and output commands, are synchronous — a process attempting to output (input) a message 

to (from) another process must wait until the second process has executed the corresponding input 

(output) primitive.

An important feature of CSP is the alternative construct which is based on Dijkstra’s guarded 

command[6]. This construct enables a process to nondeterministically select one communicant 

among many. Each alternative operation specifies a list of guards. Each guard has a set of actions 

associated with it that cannot be executed until the value of the corresponding guard becomes 

True. Each guard consists of a sequence of boolean expressions and an optional input command 

(output guards were not allowed in the original specification of CSP). A guard is said to be enabled 

if each of the boolean expressions preceding the input command evaluates to True. The value of 

a guard is True if the guard is enabled and its input action has successfully completed.

Implementation of the alternative construct on a multiple processor computer has been the 

subject of much research [1,2,3,4,5,12,15,22]. It has been argued that the exclusion of output 

guards in the original definition of CSP is too restrictive and sometimes degrades performance 

[3,15]. Algorithms that allow output guards in the alternative construct have been proposed[1,2,3,4]. 

Others suggest a paradigm similar to that which was originally proposed [9,12,22]. All of the 

algorithms reported thus far assume a message-based computer architecture; no shared memory 

is assumed. The principal contribution of this paper is to present an algorithm for implementing 

the alternative construct on a shared memory multiprocessor and to prove its correctness. To the 

authors’ knowledge, no such algorithm has previously been reported.

CSP does not assume shared memory between constituent processes, so one might ask why 

implementation on a shared memory machine is an issue. Implementation of CSP on a shared 

memory architecture is an important question for several reasons:

• CSP has clean semantics that simplify proving the correctness of programs. It is a worthwhile 

programming paradigm in its own right, independent of the underlying machine architecture.

• The message passing paradigm is a natural means of expressing programs in many applications 

areas that are well suitable for shared memory machines. For example, distributed discrete 

event simulation algorithms are usually described in terms of message passing paradigms [13, 

16], and implementations on shared memory architectures have been described [21]. Similarly,
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• Shared memory machines are widely available. Multiprocessors such as the BBN Butterfly™

[23] and Sequent Balance™ are available from the commercial sector, and numerous shared 

memory research machines such as IBM’s RP3 [18] and the University of Illinois’s Cedar [8] 

have also been developed.

• Shared memory architectures provide fast interprocessor communications. A complete inter­

connection among processors is provided, avoiding costly store-and-forward communication 

software in message-based architectures such as the Intel iPSC™ [20]. At present, paral­

lel processors using shared memory are more appropriate for applications requiring frequent 

communication among the constituent processes.

Although one can clearly “retrofit” any message-based algorithm to a shared memory archi­

tecture by building a suitable interface, this will often lead to an inappropriate and awkward 

implementation. Existing message-based algorithms for the alternative construct are not appropri­

ate for a shared memory machine because (1) they do not exploit the facilities afforded by shared 

memory, leading to an inefficient implementation; and (2) they require additional “system” pro­

cesses to respond to incoming messages (e.g., requests for rendezvous) resulting in unnecessary 

context switching overhead. We will describe an algorithm for the CSP alternative construct that 

exploits the facilities afforded by shared memory and avoids the aforementioned system processes. 

This algorithm implements the “generalized” alternative construct that allows output guards.

The proposed algorithm uses the notion of total ordering among processes [3] to prevent dead­

locks, but applies this principle dynamically on transactions (defined later) rather than statically 

as originally proposed. The shared memory architecture simplifies the task of maintaining globally 

unique IDs. The status of a remote process can be interrogated directly, in contrast to the message- 

based algorithms where message handshake and context switching overheads reduce the efficiency 

of the implementation. However, because processes in the proposed algorithm concurrently access 

shared data, great care must be taken to avoid race conditions. Therefore, we provide a proof of 

the correctness of the algorithm according to safety and liveness criteria [14]. Modifications are 

also suggested to achieve fairness [7].

Finally, the algorithm does not contain any inherent hot spots [19]. The few global variables 

that are shared by all processes are not accessed with sufficient frequency to constitute a hot spot. 

With the exception of these global variables, the algorithm is fully distributed and does not rely 

on any centralized controller.

The remainder of this paper is organized as follows. The semantics of the generalized alternative

message passing is used extensively in object-oriented programming.
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construct are discussed first, followed by a description of the assumed machine architecture. The 

proposed algorithm and a discussion of its operation is then presented. Other important issues 

related to the algorithm are then discussed, and an extension to handle termination of processes is 

described. We conclude the paper with a proof of the correctness of the algorithm followed by a 

discussion of fairness issues.

2 T h e  A l t e r n a t i v e  C o n s t r u c t

A guard of the alternative construct can appear in one of two possible forms. The first, called the 

pure boolean form, contains no I/O  command. For example, in

(x = 1 and y > 5) —► z := z * 3;

the predicate to the left of the operator is a pure boolean guard. The second form, called the 

I/O  guard form, contains an I/O  command as well as an (optional) boolean part. For example, in

Pi?x —► z := z + 1;

the input guard Pi?x requests input from process Pi. The received data is assigned to the variable 

x. Guards such as this which do not contain a boolean part are referred to as pure I/O  guards. In 

effect, the boolean part is the constant True. An I/O guard is said to be enabled if the boolean 

part is True, so a pure I/O  guard is permanently enabled.

Consider the following alternative construct:

[G i(i€PB) s i □ G j(je/0) S A -

Where PB stands for the set of indices of all of the pure boolean guards and 10 the set of indices 

of all of the I/O  guards. Whenever this alternative construct is executed, exactly one guard is 

selected and the corresponding action (5t- or Sj) is executed. The selection is made according to 

the availability of the guards. For pure boolean guards, the guard is said to be available if it 

is enabled, i.e., if the boolean part evaluates to True. For I/O  guards, the guard is available 

if it is enabled and the process associated with the guard is also ready to communicate using 

the complementary I/O  command. Because we assume I/O  commands only appear in guards of 

alternative operations, this implies the remote process is executing an alternative operation in which 

the corresponding I/O  operation is part of an enabled guard. If more than one guard is available, 

one is chosen arbitrarily. The application program cannot control this selection.

Pure boolean guards can be resolved without any interaction with other processes. Therefore, 

to simplify the discussion which follows, we will restrict attention to the resolution of I/O  guards.



3 T h e  M a c h in e  A r c h i t e c t u r e

The machine is assumed to be a shared memory multiprocessor. The algorithm is well suited for 

machines such as BBN’s Butterfly or Sequent’s Balance, among others. Several primitives are 

used in the algorithm. None are unusual in a multiprocessor environment, and all can be easily 

constructed using a test-and-set and standard scheduling primitives. .

The CSP program contains processes Pi, P2, . . . ,  P/v. Process P, is assigned the unique process 

ID i to distinguish it from others.

We will assume the following:

• Communications are reliable. An error free communications mechanism exists so that two 

distinct processes can communicate by exchanging a message. In particular, Send(M , R ) 

and Recv(R ): Message provide the same semantics as CSP’s output and input commands, 

respectively. M  is the message which is transmitted and R is the ID of the remote process 

with which communications is to take place. Recv returns the received message (of type 

Message). In accordance with CSP semantics, we assume the process invoking the primitive 

blocks until process P r  executes the complementary I/O  primitive.

• Read and write accesses to shared memory are atomic, as is normally the case with a shared 

memory multiprocessor. A tom icAdd(X ): IN T E G E R  atomically increments the integer 

variable X  and returns the original value of X .

• WaitForSignal and Signal primitives are available to block and unblock the process, respec­

tively. A signal contains a single, user defined integer value. WaitForSignal(): IN T E G E R  

causes the process invoking the primitive to block until a signal becomes available to it from 

any other process and returns the integer value stored within the signal. S ignal(R , i) sends a 

signal containing integer i to process Pr.  The Signal primitive wakes up the signaled process 

if it is blocked on WaitForSignal. Otherwise, the signal remains in effect until P r  executes a 

WaitForSignal primitive. If a second signal is sent to P r  before the first is absorbed by a call 

to WaitForSignal, the first signal is discarded.

• Lock and Unlock primitives provide exclusive access to shared data structures. Lock(L) 

will block until the lock L becomes zero, at which time L is set to one. The “test-and-set” 

operation must be atomic. Unlock(L) sets the lock L to zero. Further, we assume the 

Lock primitive is fair, i.e., if a process is blocked while attempting to obtain a lock, it does 

not remain blocked an unbounded amount of time unless the lock is not unlocked for an 

unbounded amount of time.
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• Sleep(T) causes the process invoking it to block for at least T time units. A process will 

always eventually awake after calling Sleep.

• The amount of time between successive samples of a shared memory location by a busy wait 

loop (which does nothing but sample and test the value stored in this location for inequality) 

can be bounded, and is shorter than the time required to invoke either the Send or Recv 

primitives defined above.

This final “timing” assumption is perhaps the most distasteful aspect of the proposed algorithm. 

It is not necessary to ensure the safety of the algorithm, i.e., if it were relaxed, no “invalid” 

rendezvous will result. The assumption is primarily a theoretical requirement that is necessary to 

prove liveness and has only limited practical implications. If this assumption is relaxed, specific 

scenarios requiring a prolonged, highly synchronous behavior between independent processes must 

develop to violate liveness. Such scenarios are unlikely to occur in practice, as will be discussed in 

detail after the algorithm has been described, and precautions can be take to reduce the likelihood 

of such occurrences if the timing assumption cannot be guaranteed.

It is assumed that all input and output commands occur within guards of the alternative 

construct. Simple CSP input and output primitives are special cases of the alternative construct. 

We also assume that the variables used in the alternative algorithm are not modified by processes 

except as indicated in the algorithm. Finally, it is assumed that processes do not terminate. The 

algorithm can be extended to handle termination, as will be discussed later.

4  T h e  A l t e r n a t i v e  A l g o r i t h m

Each invocation of an alternative operation is referred to as a transaction. A transaction begins 

when an alternative operation is initiated and ends when a successful communication has been 

completed. A process will usually engage in many transactions during its lifetime. A total ordering 

is imposed among all transactions entered by all processes of a given CSP program. A unique 

sequence number, referred to here as a transaction ID, is associated with each transaction.

Two processes which each initiates an alternative operation that results in a communication 

between them are said to rendezvous. More precise definitions of rendezvous and other terminology 

introduced in this section will be presented later. Each rendezvous always involves exactly two 

distinct processes. In a typical rendezvous, the first process to enter the alternative will block, 

waiting for a signal from the second. When the second process enters the alternative, it will 

commit to the first in order to obtain “permission” to rendezvous; the “committing” process will 

then signal and exchange a message with the blocked process, and both will complete their respective

5



alternative operations.

A commit operation is, in effect, a request for rendezvous. It will be shown that a rendezvous 

will occur only after a successful commit operation has taken place, and every successful commit 

results in a rendezvous. A process will not attempt to commit until it has determined that the 

process with which it is committing is a suitable candidate for rendezvous, i.e., each lists the other 

in their respective guard lists, and the two processes are not both trying to execute the same I/O 

operation (Send or Recv). The commit operation resolves conflicts when two different processes 

attempt to simultaneously rendezvous with a third. The algorithm uses an “abort and retry” 

mechanism to avoid race conditions when two potential communicants simultaneously enter the 

alternative command.

4.1 Process States

Each process can be in one of the following states:

• W A IT IN G . The process is blocked on a WaitForSignal operation, waiting for another pro­

cess to rendezvous with it.

• ALT. The process has begun an alternative operation, and is scanning through its list of 

guards to find a process with which it can rendezvous.

• SLEEP IN G . The process was forced to abort an alternative operation. After aborting, the 

process goes to sleep for some predetermined period of time before retrying. While blocked 

in this way, the process is in the Sleeping state. This state differs from the W aiting state 

because a process may remain in the latter for an unbounded amount of time.

• R U N N IN G . The process is executing user or system code not related to the alternative 

operation. The process is in the R unning state if it is not in any of the other states listed 

above. Once the process initiates an alternative operation, it can only be in the W aiting , 

A lt, or Sleeping state until the alternative operation completes with a rendezvous.

It is possible to combine the R unning and Sleeping states into a single state. Two states are 

used to simplify the description of the algorithm and its proof.

A state transition diagram for each process is shown in figure 1. Initially, a process is in the 

R unning state. Once the process initiates an alternative operation, it enters the Alt state. If 

the process is forced to abort the alternative it switches to the SLEEPING state, and returns to the 

A lt state when it retries. If the process is able to commit and rendezvous with another process,
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it returns to the R unning state. Otherwise, the process moves to the W aiting state until some 

other process commits to it, at which time it rendezvous and returns to the R unning state.

The A lt and SLEEPING states should be viewed as “transitory” states through which a process 

must pass while trying to commit or move into the WAITING state. It will be shown that a process 

cannot remain in either the ALT or the SLEEPING state for an unbounded amount of time on a 

single transaction.

4.2 Shared Variables .

Each process Pj maintains a number of variables that may be examined, and in some cases modified, 

by other processes:

• A ltL istj lists the guards associated with the last alternative operation initiated by Pj that 

caused Pj to enter the W aiting  state.

• A ltLockj is a lock used to control access to AltListj. It is initialized to 0 (unlocked).

• Statej holds the current state of Pj. It may be set to W aiting , A lt ,  Sleeping, or Running, 

and is initialized to Running.

• WakeUpj is initialized to 1 and is set to zero by Pj whenever it enters the W aiting  state. 

It is incremented (atomically) by processes trying to commit to Pj. This variable prevents 

two processes from both successfully committing to a third on a single transaction.

There is also one system wide global variable used by the algorithm:

• NextTransID is initialized to zero and is incremented each time a process initiates an 

alternative operation. This variable ensures a unique transaction ID can be generated for 

each instance of an alternative operation.

One procedure merits special attention. CheckAndCom m it(A ltL istr , gi): IN T E G E R  is 

called by process P; (Z denotes the local process) to check that “valid” communications can take 

place between Pi using guard gi and PT (r denotes the remote process), and if so, to attempt to 

commit to Pr. If a commit was attempted and succeeded, then Check And Commit returns a positive 

integer indicating the corresponding guard in the remote process Pr. Otherwise, CheckAndCommit 

returns a non-positive integer, denoted by the constant Failed. This procedure is shown in figure 2.

CheckAndCommit uses a procedure CheckGuard(A ltL istr , gj): IN T E G E R  that scans the 

remote alternative list AltListT looking for a matching and compatible guard gj to the local guard 

<7,. By matching we mean g3 contains an I/O  operation with Pi. By compatible we mean g, and gj do
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not both contain input (output) commands. CheckGuard returns j ,  the number of a matching and 

compatible guard if one was found, and Failed otherwise. If such a guard is found, P/ attempts to 

commit to Pr by testing if WakeUpT is zero, and if so, incrementing it. An ordinary addition is used 

rather than the AtomicAddprimitive to increment WakeUpT because AltLockr guarantees atomicity

— every “test-and-set” operation performed on WakeUpT occurs while AltLockT is set. If Pi is the 

first process to commit to Pr, i.e., if WakeUpT was previously zero, then Pi successfully commits, 

CheckAndCommit returns the number of the corresponding guard, and rendezvous is imminent. 

Otherwise, CheckAndCommit returns Failed. AltLockT ensures serial access to AltListr. As will 

be demonstrated later, it is crucial that this lock is not released until after the commit operation 

is attempted (if it is attempted) in order to avoid race conditions. This would be the case even if 

an AtomicAdd operation were used to increment the Wake Up variable.

4.3 O the r N o ta tio n

For notational convenience, other variables and predefined functions are defined that are used in 

the algorithm. These include:

• TransIDi is a variable that contains the ID of the current transaction in which process P/ is 

engaged.

• Com m unicantlD (g i) is a function that returns the ID of the process listed in the I/O 

command portion of guard <7;.

• Communicate(gi) executes the I/O  command in guard <7,.

• T im eOut is a constant indicating the number of time units a process should sleep after an 

aborted attempt. More will be said about this later.

4.4 D escrip tion  O f  The A lgo r ithm

The alternative algorithm is shown in figures 3 and 4. The Alternative procedure shown in figure 3 

is a “front end” that is responsible for retrying aborted attempts. The heart of the algorithm lies 

in the TryAltemative procedure shown in figure 4. The parameters passed to both procedures are 

n enabled I/O  guards fli, fl2> • • • > fln- Each guard contains either a single output or a single input 

primitive. The Alternative procedure is only called after non I/O  guards have been evaluated and 

are found to be False. This procedure does not return until a rendezvous has been completed at 

which time it returns an integer indicating the guard (51, <72* • • • > 9n) that was eventually satisfied.
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The Alternative procedure obtains a unique transaction ID by performing an AtomicAdd opera­

tion on the global NextTransID variable. It then attempts to rendezvous by calling Try Alternative. 

TryAltemative either returns the number of the guard on which a rendezvous occurred, or the 

FAILED flag indicating the attempt must be retried. Each time TryAltemative fails, the process 

enters the SLEEPING state for at least TimeOut time units before retrying. The same transaction 

ID remains in use despite one of more failed attempts. It will be shown that TryAltemative cannot 

fail an unbounded number of times within a single transaction.

The heart of the alternative algorithm is embodied in the TryAltemative procedure (figure 4). 

In this procedure, I refers to the local process P/, and r refers to the remote process Pr associated 

with the guard that is being scanned.

After setting the state of the process to A lt, P/ examines each guard listed in the alternative 

operation one after the other. Some action is then performed depending on the state of Pr.

If Pr is in the R unning state, P/ simply advances to the next guard. In this case, Pr has not 

yet entered a transaction and is not yet ready to rendezvous.

If Pr is in the Sleeping state, P/ again advances to the next guard. P/ advances because the 

Alternative procedure guarantees that the Sleeping process (Pr) will eventually retry its alternative 

operation. If Pi and Pr are destined to eventually rendezvous on this transaction, Pi will typically 

proceed to the W aiting  state, and Pr will later retry, commit, and rendezvous with P/.

If Pr is W aiting , then Pr has already reached the rendezvous point so P; attempts to ren­

dezvous. AltListr is examined to make sure a valid communication can take place, and if so, 

Pi attempts to commit. If successful, Pi will awaken Pr (by sending a signal) and rendezvous. 

Otherwise, Pi advances to the next guard.

Finally, if Pr is in the A lt state, some special precautions must be taken to avoid race condi­

tions. This situation could result, for example, when P/ and Pr initiate an alternative operation 

at approximately the same time. The two processes may or may not be destined to rendezvous, 

however. In fact, Pr’s alternative operation may not even contain a guard with P/ as a communicant.

If two processes see each other in the A lt state, one will be forced to abort and retry the alter­

native, while the other pauses within the current operation until the first aborts. The transaction 

IDs of the two processes are used to determine the process that will abort and the process that will 

proceed. A process with a smaller, i.e., older, transaction ID is given higher priority. This protocol 

avoids deadlock situations in which two processes attempting to communicate with each other both 

advance to the W aiting  state.

If the process does not abort, it pauses in a busy wait loop until the remote process moves out of 

the A lt state. The remote process will either abort, changing to the Sleeping state, or rendezvous,
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changing to the RUNNING state. Later, it will be shown that one of these two possibilities must 

eventually occur. Although the busy wait loop and abort retry scenario might initially appear to 

cause wasted time that could be better spent pursuing other activities, it is anticipated that this 

situation will arise infrequently in practice. Performance evaluations using empirical techniques are 

currently in progress to verify that this is the case.

It is interesting to note that the state of Pr may change immediately after P/ examines Stater. 

It will be proven that the algorithm operates correctly despite this potential inconsistency. In 

fact, it will be shown that the only locking that must be performed in the entire algorithm is that 

associated with AltLock.

If Pi goes through its entire guard list without rendezvousing with another process, P/ enters the 

W aiting  state and calls WaitForSignal to block until another process commits to it. Before calling 

WaitForSignal, however, Pi also sets AltListi to contain the current guard list and “activates” 

WakeUpi by setting it to zero. After some process later commits to P/, a signal is received, 

a communication takes place, and TryAltemative returns the identity of the (local) guard that 

rendezvoused. This information is sent to P/ in the signal that awakened it.

We should emphasize at this point that it is crucial that the operations listed in figures 2, 3, 

and 4 be performed in exactly the order in which they appear. Seemingly minor changes such as 

swapping the order of the statements

Wa k e U p i  := 0;

St atei := WAITING;

introduces a race condition that invalidates the correctness proof.

We note that the Lock operation preceding the statement that modifies AltList must remain 

even if modification can be done atomically. The locking protocol in this and the CheckAndCommit 

procedure are carefully designed to avoid race conditions. Finally, it is noteworthy that the state­

ment that sets WakeUpj to zero need not be executed while AltLocki is locked. The correctness 

proof only requires that two processes do not both read a zero value from WakeUpt during a single 

transaction of P;. This is guaranteed by the locking protocol used in CheckAndCommit.

5  D is c u s s io n

Several aspects of the alternative algorithm presented above merit further discussion. These are 

discussed next.
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5.1 Transaction IDs

The algorithm uses dynamically assigned transaction IDs to determine the “winner” when a process 

finds another in the A l t  state. Dynamic IDs are used rather than static, process IDs to ensure 

liveness. Intuitively, liveness means that two processes that “should” rendezvous eventually will, 

while safety means that any rendezvous that occurs is valid. The proposed approach avoids scenarios 

in which a process is repeatedly forced to abort and retry its alternative operation an unbounded 

number of times; this is because the priority of a transaction automatically increases with time as 

other transactions are allowed to complete and new ones, with higher IDs and correspondingly lower 

priorities, are initiated. Dynamic transaction IDs guarantee this property while static IDs do not. 

It is important that a new transaction ID is only allocated when an alternative is first initiated, as 

is done in figure 3, and not when an existing operation is retried. The use of dynamic transaction 

IDs is further justified by the fact that global variables are relatively inexpensive in shared memory 

architectures, and the NextTransID variable is not referenced with sufficient frequency to become 

a hot spot.

A second concern is overflow of the NextTransID variable. Overflow invalidates the liveness 

property of the algorithm because a transaction’s priority does not necessarily increase with time. 

Also, because transaction IDs cannot be guaranteed to be unique after overflow has occurred, the 

arbitration protocol could fail (this could be circumvented by appending the process ID to the least 

significant portion of the transaction ID, however). In any event, overflow can be easily avoided 

by using a variable of large precision. For example, a 64 bit variable will not overflow with 1000 

processes, each initiating a new alternative construct every microsecond, in over 500 years!

5.2 The T im ing  A ssum ption

We earlier required the following assumption to ensure liveness:

The amount of time between successive samples of a shared memory location by a busy 

wait loop (which does nothing but sample and test the value stored in this location for 

inequality) can be bounded, and is shorter than the time required to invoke either the 

Send or Recv primitives.

This assumption is necessary because the algorithm uses a polling loop to detect another process 

leaving the A l t  state. Suppose Pi is waiting for Pj to change to a new state. It is possible, albeit 

unlikely, that Pj (1) modifies State j , (2) rendezvous and resumes execution of user code or goes 

to sleep for TimeOut units of time, and (3) reenters Try Alternative and changes State j back to 

A lt ;  all of this must occur without Pi noticing Statej had been modified, so this activity must
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occur between successive samples of Statej by P,’s polling loop. While it is true that this might 

occasionally occur if P, is interrupted during its polling loop, it is necessary that this scenario be 

repeated an unbounded number of times within a single execution of the polling loop to compromise 

the liveness of the algorithm. We conjecture that it is highly improbable that such a scenario will 

occur even a few times within a single transaction. Further, we emphasize that safety remains 

guaranteed even if the above assumption is relaxed, so no ill effects, other than delays, will result 

should this scenario occur some (finite) number of times.

As can be seen from figure 4, Pj must execute either the Sleep, Send, pr Recv primitive after the 

state of Pj is changed (to SLEEPING or Running), i.e., during step (2) above. Therefore, as stated 

in the above assumption, ensuring that the minimum execution time of each of these primitives 

exceeds the time between successive samples of P,’s polling loop is sufficient to avoid the above 

scenario (actually, the Sleep primitive is excluded because its minimum execution time is trivially 

set). If the time between successive samples of the polling loop can be bounded, the minimum 

amount of time required by the Send and Recv primitives can be easily modified to adhere to the 

timing assumption through the introduction of a timed delay (e.g., by calling Sleep). However, one 

would not expect introduction of such a delay to be necessary in most practical situations.

Assuming the time required by a remote memory reference is bounded, the time between suc­

cessive samples by the busy wait loop can be bounded by disabling interrupts during the polling 

loop. If this is not a viable alternative, one can reduce the likelihood of entering the above scenario 

by introducing randomness into the program’s temporal behavior. For example, a random sleeping 

period may be selected (with some minimum value, as described below) when a process is forced to 

abort. This will reduce the likelihood of excessive delays caused by synchronized behavior between 

processes.

5.3 Se tting  the Sleeping Period

The “sleep period” before a retry is attempted, i.e., TimeOut in figure 4, must be sufficiently long 

to allow the “winning” process to observe that the sleeping process is indeed in the Sleeping state. 

In particular, TimeOut cannot be shorter than the interval between successive samples in the busy 

wait loop executed by the winner.

On the other hand, an excessively long sleeping period will lead to an inefficient implementation. 

A reasonable TimeOut value is the time required for a few remote memory references.
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5.4 C hanne l I / O

In many CSP implementations, interprocess communication is based on pre-allocated channels. 

Each channel is a unilateral link between two communicating processes. The channel model fa­

cilitates modularity, reusability, and hierarchical construction of programs because a program can 

be “constructed” by interconnecting a group of constituent processes. The algorithm presented 

above can be adapted to the channel 1/O model by modifying the Send and Recv primitives and 

translating port identifiers to process IDs. The CheckAndCommit procedure, for instance, must be 

modified to check for matching channels rather than matching process IDs. These modifications 

are a simple extension of the proposed algorithm.

5.5 T erm ina tion

Termination is another important issue facing real implementations. This was not treated in the 

previous discussion because it introduces obscurities into the description. The termination se­

mantics play an important role in CSP because it is the basis of the termination of the repetitive 

command [11]. If an alternative operation is embedded within a repetitive command and no guard 

of the alternative can become true, e.g., because all processes associated with enabled guards have 

terminated, the repetitive command terminates. If no such repetitive command surrounds the 

alternative operation and it is found that no guards can become true, an error results.

In the context of the proposed algorithm, it is sufficient that the Alternative procedure determine 

when no guards can become satisfied and return an appropriate flag denoting this situation. The 

algorithm can be extended to handle termination by adding a shared variable called GuardCounti 

to each process P, and a new process state called TERMINATED. GuardCounti indicates the number 

of I/O guards on which Pi might potentially rendezvous for the current transaction and contains 

a meaningful value whenever Pi is in the W aiting  state. It is equivalent to the number of guards 

in AltListi. The GuardCounti variable is used to detect situations in which Pi cannot rendezvous 

because all of the processes in its guards have terminated. This is the only case in which the 

Alternative procedure will return without rendezvous.

Whenever a process Pj terminates, it marks its state as Terminated and then examines the 

state of each of its neighboring processes, i.e., those processes which might communicate with Pj. 

If Pj finds another process P, in the A l t  state, it executes a busy wait loop until Statei changes. 

This is necessary because Pj cannot know if P, saw Pj had entered the Terminated state. If Pj 

finds Pi in the WAITING state and AltListi contains a guard listing Pj as a communicant, then Pj 

(atomically) decrements GuardCounti to indicate that one fewer guard is available for rendezvous. 

No further action is required unless the decrement operation causes GuardCounti to become zero.
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In this case, the terminating process must send P, a special signal to indicate Pi s alternative 

operation can never rendezvous. Upon receiving this signal, the alternative operation in Pi will 

return a special flag indicating the alternative operation completed without rendezvous.

When looking for a process with which to rendezvous, i.e., when scanning the status of neighbor­

ing processes in the TryAltemative procedure, an I/O  guard corresponding to a terminated process 

is skipped in the same way processes in the Running or Sleeping state are skipped. Such guards 

are excluded from AltListi and GuardCounti should the process fail to rendezvous and move into 

the W aiting  state. If all I/O  guards correspond to terminated processes, the alternative construct 

again returns a flag indicating the operation completed without rendezvous.

Finally, some precautions must be taken to avoid race conditions. The mechanism described 

above to notify a W aiting  process that it cannot rendezvous on any of its guards bears some 

resemblance to the protocol used to commit to a process — the WakeUp variable is analogous to 

GuardCount and committing (by incrementing WakeUp) is analogous to decrementing GuardCount. 

Therefore, it is not surprising that the precautions that are necessary to avoid race conditions are 

similar. In particular, GuardCounti must be set before Pi sets Statei to W aiting  but after Pi 

modifies AltListi (see figure 4). Identical constraints apply regarding the moment at which WakeUp 

to set to zero. Finally, when Pj wishes to decrement GuardCounti, the same protocol that was 

used in the CheckAndCommit procedure (see figure 2) to lock AltLocki must be used to decrement 

GuardCounti, i.e., AltLocki must not be released until after the decrement operation has completed.

6 P r o o f  o f  C o r r e c tn e s s

The correctness of the algorithm is established by proving that during the (potentially) infinite 

execution sequence, all processes and the interplay between them maintain invariant properties 

known as safety and liveness [14,17], As described above, safety means that any rendezvous which 

occurs is correct. For example, it is not possible for two processes to rendezvous which do not each 

list the other in some guard of their respective alternative lists. Liveness ensures that two processes 

which should rendezvous eventually will, provided of course each does not first rendezvous with 

some other process. These terms are defined more formally in theorems 2 and 3. Intuitively, the 

safety property ensures that nothing “bad” will happen, while liveness ensures something “good” 

will eventually happen. Together they guarantee correct operation of the algorithm.

Before beginning the proof, terminology that has been used informally until now will be defined 

more precisely. These definitions are in terms of the alternative algorithm shown in figures 2, 3, 

and 4. It is assumed throughout that the CSP program consists of a collection of processes, Pi,
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P2, •••> Pn -

6.1 D efin itions

1. A process Pi is said to enter a transaction Tr when P, calls the Alternative function. It exits 

transaction Tr when it returns from the function call. P,(Tr) denotes that fact that P, is in 

Tr. Each transaction has a unique ED associated with it (r for transaction Tr) that is used to 

form a total ordering among all transactions. A transaction need not terminate. For example, 

the application program may deadlock. •

2. A process Pi in transaction Tr is said to commit to process Pj if P,(Tr) increments WakeUpj 

from zero to one. The algorithm is such that every time WakeUpj is incremented, a commit 

operation takes place.

3. A transaction Tr executed by process Pi is said to rendezvous with transaction T, for process 

Pj if either (a) P, is in the W aiting  state and receives a signal from Pj, or (b) Pi signals Pj 

after committing to Pj. It will be shown that once a process rendezvous, it will exchange a 

message, complete the current transaction and return to the Running state.

4. A signal sent by P, to Pj is said to be pending if (1) it was sent but has not yet been 

received by Pj, or (2) it was received, but has not yet been absorbed by Pj through a call to 

Wa itForSignal.

5. A communication between P, and Pj is compatible if one process wishes to send, and the 

other wishes to receive. Otherwise, the communication is said to be incompatible.

6. VARi(Tr) denotes the value of state variable VAR of process P, during transaction Tr. For 

example, AltListi(Tr) is the alternative list of P, during transaction Tr. If significant, the 

point in time during the transaction that is referred to will be stated explicitly.

7. The function prev(Tr) returns the ED of the transaction executed by the process which 

immediately preceded Tr. The existence of Tr implies the termination of prev(Tr). Also, 

prev°(TT) refers to Tr itself and prevm(Tr) corresponds to the mth previous transaction 

entered by Pj.

8. GuardL isti(T r) lists the guards that are passed as parameters to the alternative operation 

executed by Pj on transaction Tr. We will take the liberty of giving GuardList a dual meaning

— it either refers to a list of guards or a list of processes that are designated in the I/O 

commands of these guards. The particular meaning that is intended will be clear from the 

context.
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Lemmas 1 through 5 lead to theorem 1 which states that no race conditions arise that might cause 

a process to mistakenly rendezvous with a second process that does not wish to rendezvous with 

the first. Theorem 2 subsumes theorem 1 and ensures that the algorithm obeys the safety property.

Lemma 1 Pt(Tr) signals Pj iff Pi (TV) commits to Pj.

Proof: This follows immediately from examination of the algorithm. A process only 

sends a signal after it commits, and always sends a signal after it commits. I

This lemma implies that WakeUpj must be set to 0 before a signal can be sent to Pr  In 

addition, at most one signal is sent to Pj each time WakeUpj is set to 0.

Lemma 2 At the beginning and at the end of each transaction entered by Pj, the following condi­

tions must hold:

(a) No signals sent to Pj are pending.

(b) WakeUpj is nonzero.

Proof: Use induction on m, the number of transactions entered by Pj.

Consider the first transaction (m = 1) executed by Pj. WakeUpj is initialized to 1. 

Because WakeUpj can only be set to 0 by Pj during a transaction, WakeUpj must 

remain nonzero up to at least the beginning of Pj'1 s first alternative operation. No 

process can commit to Pj until WakeUpj becomes 0, so by lemma 1, no signals can be 

sent to Pj before its first transaction, and therefore none can be pending. Thus, (a) 

and (b) are both true at the beginning of P j’s first transaction.

During any transaction, and in particular the first, Pj will either reset WakeUpj to 0 

exactly once (just before entering the W aiting  state), or not at all. If Pj does not 

reset WakeUpj, then obviously WakeUpj is still nonzero at the end of the alternative 

operation. No signal can be sent to Pj because no process can commit, so none are 

pending.

If Pj does reset WakeUpj to 0, then at most one process can commit (and send a signal) 

to Pj during this transaction. This is because (1) WakeUpj is set to 0 at most one time 

during this transaction; (2) each process must obtain the lock AltLockj before it can 

examine WakeUpj (see the CheckAndCommit procedure); (3) as soon as one process 

reads a zero in WakeUpj, it increments it before releasing AltLockj; so (4) two processes 

cannot both read a zero value from WakeUp} during a single transaction in Pj. Because

6.2 The Safety Property
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no two processes can see a zero value in WakeUp j during a single transaction, no two 

processes can commit to Pj during this (or any) transaction. Therefore, according to 

lemma 1, at most one signal will be sent to Pj during this transaction.

Pj always calls WaitForSignal after setting WakeUp j to zero. Therefore, the only signal 

that could have been sent to Pj must have been absorbed by the WaitForSignal opera­

tion, so none can be pending when the transaction completes (if it completes) satisfying 

condition (a). Condition (b) must also be satisfied at the end of the transaction because 

a process must commit before sending a signal to Pj, so WakeUp j must be nonzero be­

fore the process can resume execution after calling WaitForSignal. Therefore, (a) and

(b) are again true at the end of the first alternative operation as well as at the beginning.

Inductive step: Assume lemma 2 is true on the mth transaction entered by Pj. We 

will now show it is also true on the m + 1st transaction. According to the inductive 

hypothesis, no signals are pending at the end of the mth operation, and WakeUp j is 

nonzero. Therefore, these conditions will remain true until the beginning of the m + ls i 

transaction because no process can commit to Pj until WakeUp j becomes 0. As noted 

in the proof for m = 1, if (a) and (b) are true at the beginning of any transaction, they 

will be true at the end of the transaction if it terminates. Therefore, (a) and (b) are 

true at the end of the m + 1st transaction entered by Pj. I

Lemma 3 Two processes, Pi and Pj, cannot both commit to a third process P^ during a single 

transaction Tt entered by Pk-

This lemma was actually proven as part of the proof of lemma 2, but we include it as a separate 

lemma for future reference. The proof relies on the fact that WakeUpk is not zero at the beginning 

of the alternative operation and can be set to zero at most one time during a single transaction. The 

atomicity of the commit operation (i.e., two read-modify-write sequences cannot be inappropriately 

interleaved) guarantees that only a single process can commit to P^ during Tt.

Lemma 4 I f  Pi(Tr) commits to Pj, then Pj must have been in the W aiting  state when Pi com­

mitted to Pj, and Pj must remain in the W aiting  state until Pj receives the signal sent by Pi that 

results from this commitment.

Proof: According to the algorithm, Pi checks that Pj is in the W aiting  state before 

trying to commit to Pj. Let us assume Pj is in transaction T3 when P, sees Pj in the 

W aiting  state. Therefore, it only remains to be shown that Pj is still in the W aiting  

state when P, commits, as well as when the signal is received. This must be the case,
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however, because once Pj enters the W aiting  state, it cannot change state until it first 

receives a signal. By lemma 2a, there were no signals pending when transaction Ts 

began. By lemma 3 no process other than Pi will commit to Pj during this transaction, 

so no signal other than Pj’s are sent to, or received by Pj during this transaction. 

Therefore, Pj cannot unblock from the WaitForSignal operation and therefore cannot 

change state until receiving the signal sent by Pj. I '

The preceding lemma shows that arbitrarily long delays may occur from the time Pi observes 

that Pj is in the W aiting  state until P,’s signal actually arrives at Pj. If the commit succeeded, 

this lemma guarantees that nothing “interesting” will happen at Pj from the time P, found it to 

be waiting until the signal was received.

Lemma 5 No signals are lost in the alternative algorithm.

Proof: By lemma 2a, no signals are pending at the beginning of each transaction. By 

lemma 3, at most one process can commit during a transaction, so at most one signal 

is sent (and therefore received) during a transaction. Thus, a signal can never arrive 

during a transaction while another has already been received but is still pending, so no 

signals are ever lost during a transaction.

No signals destined for a process Pj are lost between successive transactions of Pj be­

cause none can be sent to Pj while it is in the Running state. This is true because (1) 

a signal is only sent to Pj following a commit operation (lemma 1), (2) P j must have 

been in the W aiting  state when the commit occurred (lemma 4), and (3) Pj must re­

main in the W aiting  state until the signal is received and absorbed by a WaitForSignal 

operation (lemma 4). I

Theorem 1 If Pi(Tr) signals (rendezvous) Pj, then Pj must be in some transaction Ts both when 

the signal is sent and when it is received. Further, Pj(Ts) rendezvous Pi{Tr).

Proof: By lemma 4, Pj must be in a transaction when the signal is sent and when it is 

received, and remain in the W aiting state during this period. By lemma 5, P,’s signal 

cannot be lost. By lemmas 1, 2a and 3, this is the only signal received by Pj during 

transaction Ts, eliminating the possibility of Pj accepting another signal instead of P,’s. 

Because Pj always executes WaitForSignal when in the W aiting  state, the signal from 

Pi must be received, implying Pj rendezvous with P,. I

Theorem 2 (Safety) 7/P,(Tr) commits to P 3 ( T 3 ) ,  then the following properties must be true:
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1. (Mutual consent) Pi{Tr) rendezvous Pj(Ts) and Pj(Ts) rendezvous Pi(Tr). In other words, 

the two communicating parties agree each is rendezvousing with the other.

2. Pj G GuardListi(Tr) and Pi £ GuardListj(Ts).

S. Communications between Pi{Tr) and Pj{Tt) are compatible.

4- Pi and Pj will eventually communicate, complete their transaction, and return to the Running 

state.

5. There does not exist a third process Pk (k /  i and k ^  j )  such that Pk(Tt) rendezvous with 

Pi(Tr) or Pk(Tt) rendezvous with Pj(Ts).

Proof:

1. P,(Tr) commits to Pj(Ts), implying P{(Tr) signals Pj(Ts) (lemma 1). This in turn 

implies the mutual rendezvous according to theorem 1.

2. The first part, showing Pj G GuardListi(Tr), can be proved by contradiction. 

Suppose Pj & GuardListi(Tr). Then Pt would not have committed to Pj be­

cause Pi only scans those processes in GuardListi(Tr) (see the F O R  loop in the 

TryAltemative procedure), contradicting our original assumption that Pt- commit­

ted to Pj.

It only remains to be proven that Pi G GuardListj(Ta). It is seen from the al­

gorithm that Pt checks AltListj just before committing to Pj, and AltListj is 

set to hold GuardListj(Ts) just before Pj enters the W aiting  state, and there­

fore before the commit. However, an arbitrarily long delay may elapse from the 

time Pi checked AltListj to the time it committed. We therefore need to con­

firm that the value of AltListj that Pj checked is GuardListj(Ta) rather than 

GuardListj(prevm(Ts)) for some m > 0.

This will be proven by contradiction. Suppose Pt checked GuardListj(prev(Ts)).

This would imply that the following sequence of events must have occurred:

(a) P{(Tt) checks GuardListj(prev(Tt)) (stored in A ltListj);

(b) Pj(Tt ) modifies AltListj so that it becomes GuardListj(Ta);

(c) Pj(Ts) sets WakeUpj(Ts) to 0; and

(d) P,(Tr) commits to Pj(Ts).

Event (a) must take place by the aforementioned assumption, and event (d) must 

take place by our original assumption that P,(Tr) commits Pj(Ts). Event (c) must
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precede (d) because WakeUpj(Ts) must be reset to 0 before any commitment to 

Pj(T,) can occur (see definition of commit). Event (b) must precede (c) according 

to the order in which operations are performed in the algorithm. Event (b) must 

follow (a) in order to satisfy our supposition that P, checked GuardListj(prev(Ta)). 

However, this sequence of events is not possible because the locking protocol of 

the procedure CheckAndCommit (used by P, when checking A ltListj) ensures that 

AltListj is not modified after P, checks it (event (a) above), but before P, commits 

(event (d)). Therefore, event (b) could not have occurred between (a) and (d), so 

our assumption that P,(Tr) examined GuardListj(prev(Ts)) must be incorrect. 

Similarly, it is not possible that P,(Tr) examined GuardListj{prevm(Ta)) for any 

m > 0.

3. Compatibility is checked when P»(Tr) checks that it is in AltListj(Ts). Similarly, 

this information is implicitly updated whenever AltListj is updated. Therefore, 

this condition is satisfied using the same proof as was used in (2) to show P, is in 

GuardListj(Ts).

4. Once rendezvous occurs between P,(Tr) and Pj(Ts), each process initiates a com­

munication with the other. Properties (2) and (3) above and the reliability assump­

tion regarding the communication mechanism guarantee that the communication 

succeeds. Once this occurs, completion of the alternative operation immediately 

follows.

5. Suppose Pjt(Tt) rendezvoused with either P,(Tr) or Pj(Ts). Recall a rendezvous 

occurs by either sending or receiving a signal to or from another process (definition 

of rendezvous), so there are four possibilities:

(a) Pk{Tt) received a signal from P,(Tr);

(b) Pk(Tt) received a signal from Pj{Ts);

(c) Pjt(Ti) sent a signal to P,(Tr); or

(d) Pjt(Tt) sent a signal to Pj(Ts).

We need not consider signals sent before Tr, Ts, or Tt but received during these 

respective transactions because none can be pending when the transaction begins 

(lemma 2a).

(a) Suppose Pjt(Tt) rendezvoused because it received a signal from P, during Tr 

(signals generated by P, outside Tr are not relevant). This implies P,(Tr) sent 

signals to two processes because our original assumption is that P,(Tr) committed
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to (and therefore signaled according to lemma 1) Pj(Ta). It is clear from the algo­

rithm that a process can signal at most one other process on any given transaction 

because any time a signal is generated, the transaction always completes without 

calling the Signal procedure again (see figure 4). Therefore, Pfc(Tt) could not have 

received a signal from P,(Tr).

(b) Suppose Pk(Tt) received a signal from Pj during Ts (signals generated by Pj 

outside Ts are not relevant). This implies Pj(Ts) both sent a signal to P*. and 

received a signal from Pj within a single transaction. If Pj(Ts). sent a signal, then, 

according to the algorithm in figure 4, Pj must have rendezvoused and completed 

the transaction without ever entering the W aiting state or setting WakeUpj{Ts) 

to zero. This contradicts our original assumption that P,(Tr) committed to Pj(Ts).

(c) Suppose Pk{Tt) signaled Pj(Tr). This implies P,(Tr) both sent a signal to Pj 

and received a signal from P* within a single transaction. This latter signal must 

have been preceded by P*(Tt) committing to P, (lemma 1). This commit must 

have occurred during or before Tr. But, P*.(T() could not have committed to Pj 

during Tr because WakeUpj is never equal to zero during Tr. This is because, by 

assumption, Pt(Tr) commits to Pj(Ts), so P,(Tr) never enters the W aiting  state 

(It is only then that the WakeUp variable is set to 0.) Also, Pk(Tt) could not have 

committed to P, before Tr and signaled Pj during Tr because this would violate 

lemma 4. Therefore P*(Tt) could not have sent a signal to Pj(Tr).

(d) Finally, Pk(Tt) could not have committed (and therefore could not have sig­

naled) Pj during Ts because this would imply both Pk and P, committed to Pj 

within a single transaction, violating lemma 3. Pfc(T*) could not have committed to 

Pj before T, and signaled Pj during T, because this would again violate lemma 4.

Thus, Pk(Tt) could not have signaled Pj{Ts) either. Therefore, P*.(Tt) could not 

have rendezvoused with either P»(Tr) or Pj(T,), so the proof is complete. I

Note from the proof of (2) in the Safety theorem that it is crucial that accesses to AltList are 

controlled by locks, and that the act of checking the AltList and committing is atomic to ensure 

correct operation. Also note that the status of Pj may change immediately after P, checks it. The 

algorithm operates correctly despite this inconsistency.

6.3 The Liveness P roperty

The liveness property guarantees that no deadlock or livelock situations can arise within the alterna­

tive algorithm. Such situations can only be caused by an erroneous application program. Lemmas 6
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through 11 and theorem 3 prove that the liveness property is maintained by the proposed algorithm.

Lemma 6 A process Pi will never return to the RUNNING state after entering a transaction unless 

a rendezvous occurred.

Proof: By inspection of the alternative algorithm, the process only returns to the 

RUNNING state when either: (a) P,(Tr) signals Pj(Ta) or (b) after Pj(Tr) receives a 

signal from Pj(Ta). In either case, P,(Tr) rendezvoused with Pj(Ts). I

Lemma 7 A process Pi cannot remain blocked on a Lock operation in the alternative algorithm 

for an unbounded amount of time.

Proof: The only Lock operation performed by the algorithm is to serialize accesses to 

AltList. However, once any process obtains a lock on any AltList, it must eventually 

release that lock because no unbounded loop or blocking primitive is executed before 

the corresponding Unlock is performed. Therefore, the lock cannot remain in place for 

an unbounded amount of time. No process will remain blocked attempting to obtain a 

lock for an unbounded amount of time because every lock will eventually be unlocked, 

and the the Lock primitive is assumed to be fair. I

Lemma 8 Suppose Pi £ GuardListj(Ts) and Pj G GuardListi(Tr), and their respective I/O  

guards are compatible. Pi and Pj cannot both enter the W aiting  state during transactions Tr 

and T„, respectively.

Proof: Proof by contradiction. Suppose both P, and Pj enter the W aiting  state on 

Tr and Ts, respectively. Because P, reached the W aiting state, it must be the case that 

the last time P, scanned the state of Pj before P, entered the W aiting state, Statej was 

either (1) Running, (2) Sleeping, or (3) W aiting but P, failed to commit to Pj (If P, 

successfully committed, they would have rendezvoused and completed the transaction 

according to theorem 2.) Consider the third case. We will now show that Pj must 

have been in a transaction preceding Ts for this case to apply. WakeUpj(Ts) is set to 

0 before State j is set to W aiting . Therefore, if P, saw Pj in the W aiting  state while 

Pj was in transaction Ts, and P, failed when it tried to commit, then it must be that 

some third process must have committed to Pj during Ts (after WakeUpj(Ts) is set to 

0 but before Pi attempted to commit). But this successful commit must have resulted 

in a rendezvous, contradicting our original assumption that P3 blocked indefinitely in 

the W aiting  state while in Ts. Therefore, if case (3) applies, Pj must have been in a 

transaction previous to Ts when P, observed it to be in the W aiting  state.
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Similarly, Pj also reached the W aiting  state, so Pi must have been in the Running, 

Sleeping, or W aiting  state for a previous transaction the last time Pj scanned Pi 

before Pj entered the W aiting  state. P, and Pj could not have both scanned each 

other at the same instant because each would have found each other in the A l t  state. 

Therefore, one scanned the other first. Without loss of generality, let us assume P, 

scanned Pj first. Pi(Tr) was in the A l t  state when it scanned P j, and because it did 

not rendezvous or abort (the latter would require Pj to be scanned again, making this not 

the last time P, scanned Pj), Pj must have remained in the A l t  state until it changed to 

the W aiting  state and blocked indefinitely. Therefore, when Pj later scanned P, for the 

last time, Pj must have seen Pi in either the A l t  or the W aiting  state for transaction 

Tr. However, this contradicts the fact that Pj saw Pj in the Running, Sleeping, or 

W aiting  state for a previous transaction. Therefore, the original hypothesis that Pi 

and Pj both entered the W aiting state must be false. I

Lemma 9 A process Pi cannot remain continuously in the A l t  state during a single transaction

Tt for an unbounded amount of time.

Proof: A process remains in the A l t  state while it is scanning the processes in its 

GuardList trying to find one which is ready to rendezvous. If none is found, the process 

proceeds to the W aiting  state. Because GuardList is necessarily bounded in length, 

we must show that a process does not spend an unlimited amount of time scanning a 

particular guard.

Pi moves on to the next GuardList entry or eventually changes state when it finds the 

process corresponding to the current guard is in either the Sleeping, Running, or 

W aiting  state. Therefore, we only need to consider scanning a process Pj which is also 

in the A l t  state. If TransIDj < TransID i, then Pt- aborts Try Alternative and changes 

to the Sleeping state. Thus we need only examine the case TransIDi < TransIDj 

(both cannot have the same ID). In this case, Pi enters a loop waiting for Statej to 

change. In order for P, to remain in this loop an unbounded amount of time, P, must 

continually sample Pj while Statej is A lt . There are three ways PCs samples can 

indicate Pj remains in the A l t  state for an unbounded amount of time: (1) Pj is 

also locked into the A l t  state for an unbounded amount of time; (2) Pj repeatedly 

aborts TryAltemative, changes to the SLEEPING state, and then retries TryAlternative 

(changing back to the A l t  state) in perfect synchrony with P,’s samples of Statej', 

or (3) Pj repeatedly rendezvous, changes to the Running state, and then initiates a 

new alternative operation in perfect synchrony with P,’s samples of Statej. These are
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exhaustive because a process can only return from Try Alternative after a rendezvous or 

after an aborted attempt. Case (2) cannot occur, however, because the sleep period is 

set to a time sufficiently large that successive samples by P, will detect that Pj is in 

the SLEEPING state. Similarly, case (3) cannot occur because the minimum execution 

time of the Send and Recv primitives are assumed to be larger than the time between 

successive samples of the polling loop. Therefore, only case (1) remains.

The previous discussion shows that P, can only remain in the A l t  state scanning Pj an 

unbounded amount of time if the following conditions hold: (1) TrdnsIDi < TransIDj, 

and (2) Pj remains continuously in the A l t  state on the same transaction an unbounded 

amount of time. By the same argument presented above, Pj will only remain in the A lt  

state on a single transaction an unbounded amount of time if some other process Pjt is in 

P j’s GuardList, TransIDj < TransID j, and P^ remains continuously in the A l t  state 

an unbounded amount of time. Continuing this logic, because the number of processes 

is bounded, the original process P, will only remain in the A l t  state for an unbounded 

time if a cycle of processes exists such that each is waiting for the next process in 

the cycle to leave the A l t  state. This would require that TransIDi < TransID j < 

T ransID j < ••■ < TransID i, which is clearly not possible. Therefore, no such cycle 

can exist, so P, cannot remain continually in the A l t  state for an unbounded amount 

of time. I

Lemma 10 The TryAlternative procedure cannot return Failed an unbounded number of times

during a single transaction Tr in some process Pi.

Proof: TryAlternative returns Failed if and only if P, scans another process Pj and 

finds Pj is also in the A l t  state, and TransIDj < TransIDi. The number of guards 

in GuardList is finite, so if TryAlternative fails an unbounded number of times, it must 

be that for some process Pj, the conditions Statej = A l t  and TransIDj < TransIDi 

persist for an unbounded amount of time.

Pj cannot remain continually in the A l t  state for an unbounded amount of time in a 

single transaction (lemma 9). Therefore, it must be the case that either (1) P, finds 

Pj in the A l t  state for a different transaction an unbounded number of times; or (2) 

within a single transaction, Pj repeatedly switches back and forth between the A l t  and 

SLEEPING states for an unbounded number of times, and it so happens that every time 

P, retries TryAlternative and scans Pj, P, finds that Pj is in the A l t  state. In case (2), 

TryAlternative must fail an unbounded number of times in Pj as well as Pt.

■ 24



Case (1): This is not possible because each new transaction ID is larger than all previous 

IDs. If Pi finds Pj in the A l t  state for a new transaction an unbounded number of 

times, this would imply there are an unbounded number of transaction IDs less than 

TransIDi. This cannot be the case because transaction IDs are positive integers.

Case (2): An argument similar to that used in lemma 9 can be used here. Summarizing 

the arguments presented thus far in this lemma, TryAlternative in P, will only fail an 

unbounded number of times if it ako fails an unbounded number of times in some other 

process Pj, where TransIDj < TransIDi. Similarly, Pj will only continue to fail if 

some other process P* exists which also continues to fail, and TransIDk < TransIDj. 

Because the number of processes is bounded, a cycle of processes must exist such that 

TransIDi > TransID j > TransIDk > ••• > TransID i, which of course, cannot 

occur. Therefore, a process cannot fail the TryAlternative procedure an unbounded 

number of times. I

Lemma 11 For each alternative operation initiated by Pi, Pi eventually either rendezvous with 

some other process Pj and returns to the RUNNING state, or moves to the WAITING state. In other 

words, a process cannot remain in the A l t  state in the same transaction for an unbounded amount 

of time.

Proof: The only way a process can not reach the W aiting  state or rendezvous is 

to remain continually in the A l t  state, or switch back and forth between A l t  and 

SLEEPING an unbounded number of times. The latter case implies TryAlternative fails 

an unbounded number of times within a single transaction. Neither is possible according 

to lemmas 9 and 10. I

Theorem 3 (Liveness) Suppose two processes Pi and Pj each initiate an alternative operation 

and Pj € GuardListi(Tr) and Pi G GuardListj(T,) and their communication requests are compat­

ible. I f  neither Pi nor Pj rendezvous with another process during their respective transactions, Pi 

and Pj will eventually rendezvous with each other during Tr and T,, respectively.

Proof: According to lemma 11, Pi and Pj must each eventually either rendezvous 

or enter the W aiting  state. They both cannot enter the W aiting  state according to 

lemma 8. Therefore, at least one of the two processes, say Pj, must rendezvous. By 

assumption, P, cannot rendezvous with any process other than Pj, so P, must rendezvous 

with Pj. By theorem 2, Pj must also rendezvous with P,. Therefore, Pj and Pj must 

eventually rendezvous with each other. I
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7 F a ir n e s s

One issue regarding the alternative construct that has received considerable attention is fairness. 

In particular, two types of fairness, weak and strong fairness, have been defined [7,24]. We call an 

implementation of the alternative construct weakly fair if it can be guaranteed that during the in­

finitely repetitive execution of an alternative command, a guard that remains continuously available 

(i.e., enabled and the neighboring process is ready to communicate) will eventually rendezvous. An 

implementation is said to be strongly fair if the implementation guarantees that any guard which 

is available infinitely often (though not necessarily continuously as is the case in weak fairness) will 

eventually rendezvous.

The algorithm shown in figures 2, 3, and 4 is not fair in either the weak or strong sense. 

However, weak fairness can be achieved by modifying the algorithm so that the order in which the 

TryAlternative procedure scans guards, which implies a certain prioritization of the guards, varies 

from one call to the next so that each guard is eventually scanned first. More precisely, we modify 

the algorithm as follows:

• The Alternative and TryAlternative procedures each receive all guards specified in the alter­

native command as parameters. The original procedures assumed only enabled guards are 

passed.

• A boolean flag is associated with each guard indicating whether or not it is enabled.

• Define a distinct integer variable for each alternative construct in a given CSP program. These 

variables could be defined by the compiler. Associate with the mth alternative construct in 

process Pi the variable Altiim• Initially set to 0, this variable is incremented each time this 

particular alternative construct is executed. It therefore indicates the number of times P, has 

invoked the corresponding alternative construct.

• The F O R  loop in the TryAlternative procedure is modified so that it begins scanning guard 

(A lti^  mod n) + 1 rather than the first guard, where n is the number of guards in the 

alternative construct. The F O R  loop is also modified to skip disabled guards. It executes 

up to n iterations as before. The index variable of the F O R  loop “wraps around” to 1 after 

scanning the nth guard.

The modified algorithm is referred to as the Fair Algorithm, and is assumed in the discussion 

which follows.
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Theorem 4 (Fairness) Let Pi be blocked on an alternative operation (i.e., Pi is in the W aiting 

state) in which some process Pj is listed in some enabled guard. Further, let us assume Pi does not 

become unblocked through a rendezvous with any process other than Pj. Consider an alternative 

construct A in Pj that has been executed m times and contains n guards, one of which (gv) contains 

a compatible communication with Pi. If  Pj now executes A at least n more times and gv is enabled 

on each of these n invocations of A, then Pi and Pj will rendezvous before the (m + n)th execution 

of A completes.

Proof: The theorem can be proved by contradiction. Assume Pj does not rendezvous 

with Pj before the (m + n)th execution of A. For this to happen, Pj must continually 

be rendezvousing with some other process(es) before it scans Pj, because the moment it 

scans Pi, it will see that Pj is in the W aiting  state and rendezvous with P,. However, 

the Fair Algorithm guarantees that within n executions of A, gv will become the first 

guard that is scanned. When gv is scanned first, no other process can rendezvous with 

Pj before Pj scans Pj, so a rendezvous between P, and Pj must take place. I

The following corollary follows immediately from this theorem:

Corollary 1 In an infinitely repetitive execution of an alternative construct, a guard cannot remain 

continually available for an unbounded amount of time without eventually rendezvousing.

This shows that the Fair Algorithm is weakly fair. It demonstrates, for instance, that a process 

waiting to be served by another process cannot be continuously denied service for an unbounded 

amount of time. The Fair Algorithm is not strongly fair, however. Modification of this algorithm 

to one which is strongly fair is an open question. None of the alternative algorithms that have been 

developed thus far (based on message-passing architectures) is strongly fair.

8  C o n c lu s io n s

We have presented an algorithm that implements the generalized alternative construct in CSP. 

Unlike previous algorithms, this is based on a shared memory architecture. It has been shown that 

the algorithm maintains the safety and liveness properties required by any correct implementation. 

Extensions to the algorithm that allow processes to terminate and guarantee weak fairness were also 

presented. An implementation, written in C, has been developed for a 16-processor BBN Butterfly 

parallel processor. Empirical performance evaluation of this implementation is in progress.
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/* r is  the remote process */
PRO C ED U RE  CheckAndCommit(AltListr , </,): IN T EG ER ; 
V AR

IN T EG ER  GuardNumber; /* number of matching guard */ 
BEG IN

Lock(AltLockr) ;
/* check guard matches and is compatible */
GuardNumber := CheckGuard(AltListr , gi) ;
IF  (GuardNumber = FAILED) THEN 

Unlock(AltLockr ) ;
R E T U R N  (FAILED);

/* try to commit */
ELSEIF (WakeUpr = 0) THEN 

WakeUpr = WakeUpr + 1;
Unlock(AltLockr ) ;
RET U RN  (GuardNumber) ;

ELSE
Unlock(AltLockr ) ;
R E T U R N  (FAILED);

E N D ;

E N D  CheckAndCommit;

Figure 2: Procedure to check that a potential communication is valid and, if so, to commit. The 

CheckGuard function returns the number of a matching (and compatible) remote guard or returns 

FAILED if none was found.



P R O C E D U R E  Altemative(gi.....gn): I N T E G E R ;
V A R

I N T E G E R  RetumValue; /* indicates guard that rendezvoused */ 
B E G I N

/* 1 is the local process id */
TransIDi := AtomicAdd(NextTransID);
ReturnValue := FAILED;
W H I L E  (ReturnValue = FAILED) D O

ReturnValue := TryAltemative (gi, gn);
IF (RetumValue = FAILED) T H E N  Sleep(TimeOut); E N D ;  
E N D ;

R E T U R N  (RetumValue);
E N D  Alternative;

/* gi are enabled I/O guards */

Figure 3: The “front end” procedure. Try Alternative returns the number of the guard 

rendezvous took place or F a i l e d  if it aborted.



PROCEDURE TryAlternative (g i........ gn): INTEGER;
VAR

BOOLEAN flag;
INTEGER GuardNumber; / *  corresponding guard of Pr * /  

INTEGER i ,  r;
B E G I N

Statei :* ALT;
/ *  look for rendezvous with a waiting process. * /

FOR i:*1 TO n DO
r := CommunicantID(gi); *
flag := TRUE;
W HILE (flag) DO

CASE Stater DO / *  The remote process state. * /  

RUNNING; flag :« FALSE;
SLEEPING: flag :* FALSE; / *  try next guard * /  

WAITING: GuardNumber :* CheckAndCommit(AltListr , g i) ; 
IF (GuardNumber = FAILED) THEN

flag := FALSE; / *  try next guard */
ELSE / *  Wake up Pr * /

Statei :* RUNNING;
Signal(r, GuardNumber);
Communicate(gi);
RETURN ( i) ;
END;

ALT: IF (TransIDi < Trans I Dr) THEN
W HILE (S ta te r  - ALT) DO END;

ELSE / *  busy wait loop. */
Statei := SLEEPING;
RETURN (FAILED); / *  abort...*/
END; /* if-then-else */

END; / *  case statement */

END; / *  while loop * /

END; / *  for statement */
/ *  couldn’t find guard to rendezvous */

Lock(AltLocki); A ltL is ti:*(g i........ gn); Unlock(AltLocki);
WakeUpi 0; / *  f ir s t to commit gets rendezvous */
Statei :« WAITING; 
i  :■ WaitForSignalO; I *  Blocks */

Statei RUNNING;
Communicate(gi)
RETURN ( i) ;

END TryAlternative;

Figure 4: The TryAlternative procedure attempts to rendezvous with a process 

guard, and does not return until rendezvous takes place.


