
A S h a re d M em ory A lg o r ith m a n d P roo f

fo r th e A lte rna tive C o n s tru c t in C S P

Richard M. Fuji mo to
Hwa-chung Feng

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF UTAH

UUCS-87-021

A S h a r e d M e m o r y A lg o r i t h m a n d P r o o f

fo r t h e A l t e r n a t iv e C o n s t r u c t i n C S P

Richard M. Fujimoto1

Hwa-chung Feng

Department Of Computer Science

University Of Utah

Salt Lake City, UT 84112

August 25, 1987

•'This work was supported by ONR contract number N00014-87-K-0184.

Abstract

Communicating Sequential Processes (CSP) is a paradigm for communication and synchroniza­

tion among distributed processes. The alternative construct is a key feature of CSP that allows

nondeterministic selection of one among several possible communicants. Previous algorithms for

this construct assume a message passing architecture and axe not appropriate for multiprocessor

systems that feature shared memory. This paper describes a distributed algorithm for the al­

ternative construct that exploits the capabilities of a parallel computer with shared memory. The

algorithm assumes a generalized version of Hoare’s original alternative construct that allows output

commands to be included in guards. A correctness proof of the proposed algorithm is presented

to show that the algorithm conforms to some safety and liveness criteria. Extensions to allow

termination of processes and to ensure fairness in guard selection are also given.

Keywords: communicating sequential processes; alternative operation; shared memory multi­

processor; parallel processing.

1 I n t r o d u c t i o n

Communicating Sequential Processes (CSP) is a well known paradigm for communication and syn­

chronization of a parallel computation [11,10]. A CSP program consists of a collection of processes

Pi, P2, . . . , Pn that interact by exchanging messages. These message passing primitives, called

input and output commands, are synchronous — a process attempting to output (input) a message

to (from) another process must wait until the second process has executed the corresponding input

(output) primitive.

An important feature of CSP is the alternative construct which is based on Dijkstra’s guarded

command[6]. This construct enables a process to nondeterministically select one communicant

among many. Each alternative operation specifies a list of guards. Each guard has a set of actions

associated with it that cannot be executed until the value of the corresponding guard becomes

True. Each guard consists of a sequence of boolean expressions and an optional input command

(output guards were not allowed in the original specification of CSP). A guard is said to be enabled

if each of the boolean expressions preceding the input command evaluates to True. The value of

a guard is True if the guard is enabled and its input action has successfully completed.

Implementation of the alternative construct on a multiple processor computer has been the

subject of much research [1,2,3,4,5,12,15,22]. It has been argued that the exclusion of output

guards in the original definition of CSP is too restrictive and sometimes degrades performance

[3,15]. Algorithms that allow output guards in the alternative construct have been proposed[1,2,3,4].

Others suggest a paradigm similar to that which was originally proposed [9,12,22]. All of the

algorithms reported thus far assume a message-based computer architecture; no shared memory

is assumed. The principal contribution of this paper is to present an algorithm for implementing

the alternative construct on a shared memory multiprocessor and to prove its correctness. To the

authors’ knowledge, no such algorithm has previously been reported.

CSP does not assume shared memory between constituent processes, so one might ask why

implementation on a shared memory machine is an issue. Implementation of CSP on a shared

memory architecture is an important question for several reasons:

• CSP has clean semantics that simplify proving the correctness of programs. It is a worthwhile

programming paradigm in its own right, independent of the underlying machine architecture.

• The message passing paradigm is a natural means of expressing programs in many applications

areas that are well suitable for shared memory machines. For example, distributed discrete

event simulation algorithms are usually described in terms of message passing paradigms [13,

16], and implementations on shared memory architectures have been described [21]. Similarly,

1

• Shared memory machines are widely available. Multiprocessors such as the BBN Butterfly™

[23] and Sequent Balance™ are available from the commercial sector, and numerous shared

memory research machines such as IBM’s RP3 [18] and the University of Illinois’s Cedar [8]

have also been developed.

• Shared memory architectures provide fast interprocessor communications. A complete inter­

connection among processors is provided, avoiding costly store-and-forward communication

software in message-based architectures such as the Intel iPSC™ [20]. At present, paral­

lel processors using shared memory are more appropriate for applications requiring frequent

communication among the constituent processes.

Although one can clearly “retrofit” any message-based algorithm to a shared memory archi­

tecture by building a suitable interface, this will often lead to an inappropriate and awkward

implementation. Existing message-based algorithms for the alternative construct are not appropri­

ate for a shared memory machine because (1) they do not exploit the facilities afforded by shared

memory, leading to an inefficient implementation; and (2) they require additional “system” pro­

cesses to respond to incoming messages (e.g., requests for rendezvous) resulting in unnecessary

context switching overhead. We will describe an algorithm for the CSP alternative construct that

exploits the facilities afforded by shared memory and avoids the aforementioned system processes.

This algorithm implements the “generalized” alternative construct that allows output guards.

The proposed algorithm uses the notion of total ordering among processes [3] to prevent dead­

locks, but applies this principle dynamically on transactions (defined later) rather than statically

as originally proposed. The shared memory architecture simplifies the task of maintaining globally

unique IDs. The status of a remote process can be interrogated directly, in contrast to the message-

based algorithms where message handshake and context switching overheads reduce the efficiency

of the implementation. However, because processes in the proposed algorithm concurrently access

shared data, great care must be taken to avoid race conditions. Therefore, we provide a proof of

the correctness of the algorithm according to safety and liveness criteria [14]. Modifications are

also suggested to achieve fairness [7].

Finally, the algorithm does not contain any inherent hot spots [19]. The few global variables

that are shared by all processes are not accessed with sufficient frequency to constitute a hot spot.

With the exception of these global variables, the algorithm is fully distributed and does not rely

on any centralized controller.

The remainder of this paper is organized as follows. The semantics of the generalized alternative

message passing is used extensively in object-oriented programming.

2

construct are discussed first, followed by a description of the assumed machine architecture. The

proposed algorithm and a discussion of its operation is then presented. Other important issues

related to the algorithm are then discussed, and an extension to handle termination of processes is

described. We conclude the paper with a proof of the correctness of the algorithm followed by a

discussion of fairness issues.

2 T h e A l t e r n a t i v e C o n s t r u c t

A guard of the alternative construct can appear in one of two possible forms. The first, called the

pure boolean form, contains no I/O command. For example, in

(x = 1 and y > 5) —► z := z * 3;

the predicate to the left of the operator is a pure boolean guard. The second form, called the

I/O guard form, contains an I/O command as well as an (optional) boolean part. For example, in

Pi?x —► z := z + 1;

the input guard Pi?x requests input from process Pi. The received data is assigned to the variable

x. Guards such as this which do not contain a boolean part are referred to as pure I/O guards. In

effect, the boolean part is the constant True. An I/O guard is said to be enabled if the boolean

part is True, so a pure I/O guard is permanently enabled.

Consider the following alternative construct:

[G i(i€PB) s i □ G j(je/0) S A -

Where PB stands for the set of indices of all of the pure boolean guards and 10 the set of indices

of all of the I/O guards. Whenever this alternative construct is executed, exactly one guard is

selected and the corresponding action (5t- or Sj) is executed. The selection is made according to

the availability of the guards. For pure boolean guards, the guard is said to be available if it

is enabled, i.e., if the boolean part evaluates to True. For I/O guards, the guard is available

if it is enabled and the process associated with the guard is also ready to communicate using

the complementary I/O command. Because we assume I/O commands only appear in guards of

alternative operations, this implies the remote process is executing an alternative operation in which

the corresponding I/O operation is part of an enabled guard. If more than one guard is available,

one is chosen arbitrarily. The application program cannot control this selection.

Pure boolean guards can be resolved without any interaction with other processes. Therefore,

to simplify the discussion which follows, we will restrict attention to the resolution of I/O guards.

3 T h e M a c h in e A r c h i t e c t u r e

The machine is assumed to be a shared memory multiprocessor. The algorithm is well suited for

machines such as BBN’s Butterfly or Sequent’s Balance, among others. Several primitives are

used in the algorithm. None are unusual in a multiprocessor environment, and all can be easily

constructed using a test-and-set and standard scheduling primitives. .

The CSP program contains processes Pi, P2, . . . , P/v. Process P, is assigned the unique process

ID i to distinguish it from others.

We will assume the following:

• Communications are reliable. An error free communications mechanism exists so that two

distinct processes can communicate by exchanging a message. In particular, Send(M , R)

and Recv(R): Message provide the same semantics as CSP’s output and input commands,

respectively. M is the message which is transmitted and R is the ID of the remote process

with which communications is to take place. Recv returns the received message (of type

Message). In accordance with CSP semantics, we assume the process invoking the primitive

blocks until process P r executes the complementary I/O primitive.

• Read and write accesses to shared memory are atomic, as is normally the case with a shared

memory multiprocessor. A tom icAdd(X): IN T E G E R atomically increments the integer

variable X and returns the original value of X .

• WaitForSignal and Signal primitives are available to block and unblock the process, respec­

tively. A signal contains a single, user defined integer value. WaitForSignal(): IN T E G E R

causes the process invoking the primitive to block until a signal becomes available to it from

any other process and returns the integer value stored within the signal. S ignal(R , i) sends a

signal containing integer i to process Pr. The Signal primitive wakes up the signaled process

if it is blocked on WaitForSignal. Otherwise, the signal remains in effect until P r executes a

WaitForSignal primitive. If a second signal is sent to P r before the first is absorbed by a call

to WaitForSignal, the first signal is discarded.

• Lock and Unlock primitives provide exclusive access to shared data structures. Lock(L)

will block until the lock L becomes zero, at which time L is set to one. The “test-and-set”

operation must be atomic. Unlock(L) sets the lock L to zero. Further, we assume the

Lock primitive is fair, i.e., if a process is blocked while attempting to obtain a lock, it does

not remain blocked an unbounded amount of time unless the lock is not unlocked for an

unbounded amount of time.

4

• Sleep(T) causes the process invoking it to block for at least T time units. A process will

always eventually awake after calling Sleep.

• The amount of time between successive samples of a shared memory location by a busy wait

loop (which does nothing but sample and test the value stored in this location for inequality)

can be bounded, and is shorter than the time required to invoke either the Send or Recv

primitives defined above.

This final “timing” assumption is perhaps the most distasteful aspect of the proposed algorithm.

It is not necessary to ensure the safety of the algorithm, i.e., if it were relaxed, no “invalid”

rendezvous will result. The assumption is primarily a theoretical requirement that is necessary to

prove liveness and has only limited practical implications. If this assumption is relaxed, specific

scenarios requiring a prolonged, highly synchronous behavior between independent processes must

develop to violate liveness. Such scenarios are unlikely to occur in practice, as will be discussed in

detail after the algorithm has been described, and precautions can be take to reduce the likelihood

of such occurrences if the timing assumption cannot be guaranteed.

It is assumed that all input and output commands occur within guards of the alternative

construct. Simple CSP input and output primitives are special cases of the alternative construct.

We also assume that the variables used in the alternative algorithm are not modified by processes

except as indicated in the algorithm. Finally, it is assumed that processes do not terminate. The

algorithm can be extended to handle termination, as will be discussed later.

4 T h e A l t e r n a t i v e A l g o r i t h m

Each invocation of an alternative operation is referred to as a transaction. A transaction begins

when an alternative operation is initiated and ends when a successful communication has been

completed. A process will usually engage in many transactions during its lifetime. A total ordering

is imposed among all transactions entered by all processes of a given CSP program. A unique

sequence number, referred to here as a transaction ID, is associated with each transaction.

Two processes which each initiates an alternative operation that results in a communication

between them are said to rendezvous. More precise definitions of rendezvous and other terminology

introduced in this section will be presented later. Each rendezvous always involves exactly two

distinct processes. In a typical rendezvous, the first process to enter the alternative will block,

waiting for a signal from the second. When the second process enters the alternative, it will

commit to the first in order to obtain “permission” to rendezvous; the “committing” process will

then signal and exchange a message with the blocked process, and both will complete their respective

5

alternative operations.

A commit operation is, in effect, a request for rendezvous. It will be shown that a rendezvous

will occur only after a successful commit operation has taken place, and every successful commit

results in a rendezvous. A process will not attempt to commit until it has determined that the

process with which it is committing is a suitable candidate for rendezvous, i.e., each lists the other

in their respective guard lists, and the two processes are not both trying to execute the same I/O

operation (Send or Recv). The commit operation resolves conflicts when two different processes

attempt to simultaneously rendezvous with a third. The algorithm uses an “abort and retry”

mechanism to avoid race conditions when two potential communicants simultaneously enter the

alternative command.

4.1 Process States

Each process can be in one of the following states:

• W A IT IN G . The process is blocked on a WaitForSignal operation, waiting for another pro­

cess to rendezvous with it.

• ALT. The process has begun an alternative operation, and is scanning through its list of

guards to find a process with which it can rendezvous.

• SLEEP IN G . The process was forced to abort an alternative operation. After aborting, the

process goes to sleep for some predetermined period of time before retrying. While blocked

in this way, the process is in the Sleeping state. This state differs from the W aiting state

because a process may remain in the latter for an unbounded amount of time.

• R U N N IN G . The process is executing user or system code not related to the alternative

operation. The process is in the R unning state if it is not in any of the other states listed

above. Once the process initiates an alternative operation, it can only be in the W aiting ,

A lt, or Sleeping state until the alternative operation completes with a rendezvous.

It is possible to combine the R unning and Sleeping states into a single state. Two states are

used to simplify the description of the algorithm and its proof.

A state transition diagram for each process is shown in figure 1. Initially, a process is in the

R unning state. Once the process initiates an alternative operation, it enters the Alt state. If

the process is forced to abort the alternative it switches to the SLEEPING state, and returns to the

A lt state when it retries. If the process is able to commit and rendezvous with another process,

6

9

it returns to the R unning state. Otherwise, the process moves to the W aiting state until some

other process commits to it, at which time it rendezvous and returns to the R unning state.

The A lt and SLEEPING states should be viewed as “transitory” states through which a process

must pass while trying to commit or move into the WAITING state. It will be shown that a process

cannot remain in either the ALT or the SLEEPING state for an unbounded amount of time on a

single transaction.

4.2 Shared Variables .

Each process Pj maintains a number of variables that may be examined, and in some cases modified,

by other processes:

• A ltL istj lists the guards associated with the last alternative operation initiated by Pj that

caused Pj to enter the W aiting state.

• A ltLockj is a lock used to control access to AltListj. It is initialized to 0 (unlocked).

• Statej holds the current state of Pj. It may be set to W aiting , A lt , Sleeping, or Running,

and is initialized to Running.

• WakeUpj is initialized to 1 and is set to zero by Pj whenever it enters the W aiting state.

It is incremented (atomically) by processes trying to commit to Pj. This variable prevents

two processes from both successfully committing to a third on a single transaction.

There is also one system wide global variable used by the algorithm:

• NextTransID is initialized to zero and is incremented each time a process initiates an

alternative operation. This variable ensures a unique transaction ID can be generated for

each instance of an alternative operation.

One procedure merits special attention. CheckAndCom m it(A ltL istr , gi): IN T E G E R is

called by process P; (Z denotes the local process) to check that “valid” communications can take

place between Pi using guard gi and PT (r denotes the remote process), and if so, to attempt to

commit to Pr. If a commit was attempted and succeeded, then Check And Commit returns a positive

integer indicating the corresponding guard in the remote process Pr. Otherwise, CheckAndCommit

returns a non-positive integer, denoted by the constant Failed. This procedure is shown in figure 2.

CheckAndCommit uses a procedure CheckGuard(A ltL istr , gj): IN T E G E R that scans the

remote alternative list AltListT looking for a matching and compatible guard gj to the local guard

<7,. By matching we mean g3 contains an I/O operation with Pi. By compatible we mean g, and gj do

7

not both contain input (output) commands. CheckGuard returns j , the number of a matching and

compatible guard if one was found, and Failed otherwise. If such a guard is found, P/ attempts to

commit to Pr by testing if WakeUpT is zero, and if so, incrementing it. An ordinary addition is used

rather than the AtomicAddprimitive to increment WakeUpT because AltLockr guarantees atomicity

— every “test-and-set” operation performed on WakeUpT occurs while AltLockT is set. If Pi is the

first process to commit to Pr, i.e., if WakeUpT was previously zero, then Pi successfully commits,

CheckAndCommit returns the number of the corresponding guard, and rendezvous is imminent.

Otherwise, CheckAndCommit returns Failed. AltLockT ensures serial access to AltListr. As will

be demonstrated later, it is crucial that this lock is not released until after the commit operation

is attempted (if it is attempted) in order to avoid race conditions. This would be the case even if

an AtomicAdd operation were used to increment the Wake Up variable.

4.3 O the r N o ta tio n

For notational convenience, other variables and predefined functions are defined that are used in

the algorithm. These include:

• TransIDi is a variable that contains the ID of the current transaction in which process P/ is

engaged.

• Com m unicantlD (g i) is a function that returns the ID of the process listed in the I/O

command portion of guard <7;.

• Communicate(gi) executes the I/O command in guard <7,.

• T im eOut is a constant indicating the number of time units a process should sleep after an

aborted attempt. More will be said about this later.

4.4 D escrip tion O f The A lgo r ithm

The alternative algorithm is shown in figures 3 and 4. The Alternative procedure shown in figure 3

is a “front end” that is responsible for retrying aborted attempts. The heart of the algorithm lies

in the TryAltemative procedure shown in figure 4. The parameters passed to both procedures are

n enabled I/O guards fli, fl2> • • • > fln- Each guard contains either a single output or a single input

primitive. The Alternative procedure is only called after non I/O guards have been evaluated and

are found to be False. This procedure does not return until a rendezvous has been completed at

which time it returns an integer indicating the guard (51, <72* • • • > 9n) that was eventually satisfied.

8

The Alternative procedure obtains a unique transaction ID by performing an AtomicAdd opera­

tion on the global NextTransID variable. It then attempts to rendezvous by calling Try Alternative.

TryAltemative either returns the number of the guard on which a rendezvous occurred, or the

FAILED flag indicating the attempt must be retried. Each time TryAltemative fails, the process

enters the SLEEPING state for at least TimeOut time units before retrying. The same transaction

ID remains in use despite one of more failed attempts. It will be shown that TryAltemative cannot

fail an unbounded number of times within a single transaction.

The heart of the alternative algorithm is embodied in the TryAltemative procedure (figure 4).

In this procedure, I refers to the local process P/, and r refers to the remote process Pr associated

with the guard that is being scanned.

After setting the state of the process to A lt, P/ examines each guard listed in the alternative

operation one after the other. Some action is then performed depending on the state of Pr.

If Pr is in the R unning state, P/ simply advances to the next guard. In this case, Pr has not

yet entered a transaction and is not yet ready to rendezvous.

If Pr is in the Sleeping state, P/ again advances to the next guard. P/ advances because the

Alternative procedure guarantees that the Sleeping process (Pr) will eventually retry its alternative

operation. If Pi and Pr are destined to eventually rendezvous on this transaction, Pi will typically

proceed to the W aiting state, and Pr will later retry, commit, and rendezvous with P/.

If Pr is W aiting , then Pr has already reached the rendezvous point so P; attempts to ren­

dezvous. AltListr is examined to make sure a valid communication can take place, and if so,

Pi attempts to commit. If successful, Pi will awaken Pr (by sending a signal) and rendezvous.

Otherwise, Pi advances to the next guard.

Finally, if Pr is in the A lt state, some special precautions must be taken to avoid race condi­

tions. This situation could result, for example, when P/ and Pr initiate an alternative operation

at approximately the same time. The two processes may or may not be destined to rendezvous,

however. In fact, Pr’s alternative operation may not even contain a guard with P/ as a communicant.

If two processes see each other in the A lt state, one will be forced to abort and retry the alter­

native, while the other pauses within the current operation until the first aborts. The transaction

IDs of the two processes are used to determine the process that will abort and the process that will

proceed. A process with a smaller, i.e., older, transaction ID is given higher priority. This protocol

avoids deadlock situations in which two processes attempting to communicate with each other both

advance to the W aiting state.

If the process does not abort, it pauses in a busy wait loop until the remote process moves out of

the A lt state. The remote process will either abort, changing to the Sleeping state, or rendezvous,

9

changing to the RUNNING state. Later, it will be shown that one of these two possibilities must

eventually occur. Although the busy wait loop and abort retry scenario might initially appear to

cause wasted time that could be better spent pursuing other activities, it is anticipated that this

situation will arise infrequently in practice. Performance evaluations using empirical techniques are

currently in progress to verify that this is the case.

It is interesting to note that the state of Pr may change immediately after P/ examines Stater.

It will be proven that the algorithm operates correctly despite this potential inconsistency. In

fact, it will be shown that the only locking that must be performed in the entire algorithm is that

associated with AltLock.

If Pi goes through its entire guard list without rendezvousing with another process, P/ enters the

W aiting state and calls WaitForSignal to block until another process commits to it. Before calling

WaitForSignal, however, Pi also sets AltListi to contain the current guard list and “activates”

WakeUpi by setting it to zero. After some process later commits to P/, a signal is received,

a communication takes place, and TryAltemative returns the identity of the (local) guard that

rendezvoused. This information is sent to P/ in the signal that awakened it.

We should emphasize at this point that it is crucial that the operations listed in figures 2, 3,

and 4 be performed in exactly the order in which they appear. Seemingly minor changes such as

swapping the order of the statements

Wa k e U p i := 0;

St atei := WAITING;

introduces a race condition that invalidates the correctness proof.

We note that the Lock operation preceding the statement that modifies AltList must remain

even if modification can be done atomically. The locking protocol in this and the CheckAndCommit

procedure are carefully designed to avoid race conditions. Finally, it is noteworthy that the state­

ment that sets WakeUpj to zero need not be executed while AltLocki is locked. The correctness

proof only requires that two processes do not both read a zero value from WakeUpt during a single

transaction of P;. This is guaranteed by the locking protocol used in CheckAndCommit.

5 D is c u s s io n

Several aspects of the alternative algorithm presented above merit further discussion. These are

discussed next.

10

5.1 Transaction IDs

The algorithm uses dynamically assigned transaction IDs to determine the “winner” when a process

finds another in the A l t state. Dynamic IDs are used rather than static, process IDs to ensure

liveness. Intuitively, liveness means that two processes that “should” rendezvous eventually will,

while safety means that any rendezvous that occurs is valid. The proposed approach avoids scenarios

in which a process is repeatedly forced to abort and retry its alternative operation an unbounded

number of times; this is because the priority of a transaction automatically increases with time as

other transactions are allowed to complete and new ones, with higher IDs and correspondingly lower

priorities, are initiated. Dynamic transaction IDs guarantee this property while static IDs do not.

It is important that a new transaction ID is only allocated when an alternative is first initiated, as

is done in figure 3, and not when an existing operation is retried. The use of dynamic transaction

IDs is further justified by the fact that global variables are relatively inexpensive in shared memory

architectures, and the NextTransID variable is not referenced with sufficient frequency to become

a hot spot.

A second concern is overflow of the NextTransID variable. Overflow invalidates the liveness

property of the algorithm because a transaction’s priority does not necessarily increase with time.

Also, because transaction IDs cannot be guaranteed to be unique after overflow has occurred, the

arbitration protocol could fail (this could be circumvented by appending the process ID to the least

significant portion of the transaction ID, however). In any event, overflow can be easily avoided

by using a variable of large precision. For example, a 64 bit variable will not overflow with 1000

processes, each initiating a new alternative construct every microsecond, in over 500 years!

5.2 The T im ing A ssum ption

We earlier required the following assumption to ensure liveness:

The amount of time between successive samples of a shared memory location by a busy

wait loop (which does nothing but sample and test the value stored in this location for

inequality) can be bounded, and is shorter than the time required to invoke either the

Send or Recv primitives.

This assumption is necessary because the algorithm uses a polling loop to detect another process

leaving the A l t state. Suppose Pi is waiting for Pj to change to a new state. It is possible, albeit

unlikely, that Pj (1) modifies State j , (2) rendezvous and resumes execution of user code or goes

to sleep for TimeOut units of time, and (3) reenters Try Alternative and changes State j back to

A lt ; all of this must occur without Pi noticing Statej had been modified, so this activity must

11

occur between successive samples of Statej by P,’s polling loop. While it is true that this might

occasionally occur if P, is interrupted during its polling loop, it is necessary that this scenario be

repeated an unbounded number of times within a single execution of the polling loop to compromise

the liveness of the algorithm. We conjecture that it is highly improbable that such a scenario will

occur even a few times within a single transaction. Further, we emphasize that safety remains

guaranteed even if the above assumption is relaxed, so no ill effects, other than delays, will result

should this scenario occur some (finite) number of times.

As can be seen from figure 4, Pj must execute either the Sleep, Send, pr Recv primitive after the

state of Pj is changed (to SLEEPING or Running), i.e., during step (2) above. Therefore, as stated

in the above assumption, ensuring that the minimum execution time of each of these primitives

exceeds the time between successive samples of P,’s polling loop is sufficient to avoid the above

scenario (actually, the Sleep primitive is excluded because its minimum execution time is trivially

set). If the time between successive samples of the polling loop can be bounded, the minimum

amount of time required by the Send and Recv primitives can be easily modified to adhere to the

timing assumption through the introduction of a timed delay (e.g., by calling Sleep). However, one

would not expect introduction of such a delay to be necessary in most practical situations.

Assuming the time required by a remote memory reference is bounded, the time between suc­

cessive samples by the busy wait loop can be bounded by disabling interrupts during the polling

loop. If this is not a viable alternative, one can reduce the likelihood of entering the above scenario

by introducing randomness into the program’s temporal behavior. For example, a random sleeping

period may be selected (with some minimum value, as described below) when a process is forced to

abort. This will reduce the likelihood of excessive delays caused by synchronized behavior between

processes.

5.3 Se tting the Sleeping Period

The “sleep period” before a retry is attempted, i.e., TimeOut in figure 4, must be sufficiently long

to allow the “winning” process to observe that the sleeping process is indeed in the Sleeping state.

In particular, TimeOut cannot be shorter than the interval between successive samples in the busy

wait loop executed by the winner.

On the other hand, an excessively long sleeping period will lead to an inefficient implementation.

A reasonable TimeOut value is the time required for a few remote memory references.

12

5.4 C hanne l I / O

In many CSP implementations, interprocess communication is based on pre-allocated channels.

Each channel is a unilateral link between two communicating processes. The channel model fa­

cilitates modularity, reusability, and hierarchical construction of programs because a program can

be “constructed” by interconnecting a group of constituent processes. The algorithm presented

above can be adapted to the channel 1/O model by modifying the Send and Recv primitives and

translating port identifiers to process IDs. The CheckAndCommit procedure, for instance, must be

modified to check for matching channels rather than matching process IDs. These modifications

are a simple extension of the proposed algorithm.

5.5 T erm ina tion

Termination is another important issue facing real implementations. This was not treated in the

previous discussion because it introduces obscurities into the description. The termination se­

mantics play an important role in CSP because it is the basis of the termination of the repetitive

command [11]. If an alternative operation is embedded within a repetitive command and no guard

of the alternative can become true, e.g., because all processes associated with enabled guards have

terminated, the repetitive command terminates. If no such repetitive command surrounds the

alternative operation and it is found that no guards can become true, an error results.

In the context of the proposed algorithm, it is sufficient that the Alternative procedure determine

when no guards can become satisfied and return an appropriate flag denoting this situation. The

algorithm can be extended to handle termination by adding a shared variable called GuardCounti

to each process P, and a new process state called TERMINATED. GuardCounti indicates the number

of I/O guards on which Pi might potentially rendezvous for the current transaction and contains

a meaningful value whenever Pi is in the W aiting state. It is equivalent to the number of guards

in AltListi. The GuardCounti variable is used to detect situations in which Pi cannot rendezvous

because all of the processes in its guards have terminated. This is the only case in which the

Alternative procedure will return without rendezvous.

Whenever a process Pj terminates, it marks its state as Terminated and then examines the

state of each of its neighboring processes, i.e., those processes which might communicate with Pj.

If Pj finds another process P, in the A l t state, it executes a busy wait loop until Statei changes.

This is necessary because Pj cannot know if P, saw Pj had entered the Terminated state. If Pj

finds Pi in the WAITING state and AltListi contains a guard listing Pj as a communicant, then Pj

(atomically) decrements GuardCounti to indicate that one fewer guard is available for rendezvous.

No further action is required unless the decrement operation causes GuardCounti to become zero.

13

In this case, the terminating process must send P, a special signal to indicate Pi s alternative

operation can never rendezvous. Upon receiving this signal, the alternative operation in Pi will

return a special flag indicating the alternative operation completed without rendezvous.

When looking for a process with which to rendezvous, i.e., when scanning the status of neighbor­

ing processes in the TryAltemative procedure, an I/O guard corresponding to a terminated process

is skipped in the same way processes in the Running or Sleeping state are skipped. Such guards

are excluded from AltListi and GuardCounti should the process fail to rendezvous and move into

the W aiting state. If all I/O guards correspond to terminated processes, the alternative construct

again returns a flag indicating the operation completed without rendezvous.

Finally, some precautions must be taken to avoid race conditions. The mechanism described

above to notify a W aiting process that it cannot rendezvous on any of its guards bears some

resemblance to the protocol used to commit to a process — the WakeUp variable is analogous to

GuardCount and committing (by incrementing WakeUp) is analogous to decrementing GuardCount.

Therefore, it is not surprising that the precautions that are necessary to avoid race conditions are

similar. In particular, GuardCounti must be set before Pi sets Statei to W aiting but after Pi

modifies AltListi (see figure 4). Identical constraints apply regarding the moment at which WakeUp

to set to zero. Finally, when Pj wishes to decrement GuardCounti, the same protocol that was

used in the CheckAndCommit procedure (see figure 2) to lock AltLocki must be used to decrement

GuardCounti, i.e., AltLocki must not be released until after the decrement operation has completed.

6 P r o o f o f C o r r e c tn e s s

The correctness of the algorithm is established by proving that during the (potentially) infinite

execution sequence, all processes and the interplay between them maintain invariant properties

known as safety and liveness [14,17], As described above, safety means that any rendezvous which

occurs is correct. For example, it is not possible for two processes to rendezvous which do not each

list the other in some guard of their respective alternative lists. Liveness ensures that two processes

which should rendezvous eventually will, provided of course each does not first rendezvous with

some other process. These terms are defined more formally in theorems 2 and 3. Intuitively, the

safety property ensures that nothing “bad” will happen, while liveness ensures something “good”

will eventually happen. Together they guarantee correct operation of the algorithm.

Before beginning the proof, terminology that has been used informally until now will be defined

more precisely. These definitions are in terms of the alternative algorithm shown in figures 2, 3,

and 4. It is assumed throughout that the CSP program consists of a collection of processes, Pi,

14

P2, •••> Pn -

6.1 D efin itions

1. A process Pi is said to enter a transaction Tr when P, calls the Alternative function. It exits

transaction Tr when it returns from the function call. P,(Tr) denotes that fact that P, is in

Tr. Each transaction has a unique ED associated with it (r for transaction Tr) that is used to

form a total ordering among all transactions. A transaction need not terminate. For example,

the application program may deadlock. •

2. A process Pi in transaction Tr is said to commit to process Pj if P,(Tr) increments WakeUpj

from zero to one. The algorithm is such that every time WakeUpj is incremented, a commit

operation takes place.

3. A transaction Tr executed by process Pi is said to rendezvous with transaction T, for process

Pj if either (a) P, is in the W aiting state and receives a signal from Pj, or (b) Pi signals Pj

after committing to Pj. It will be shown that once a process rendezvous, it will exchange a

message, complete the current transaction and return to the Running state.

4. A signal sent by P, to Pj is said to be pending if (1) it was sent but has not yet been

received by Pj, or (2) it was received, but has not yet been absorbed by Pj through a call to

Wa itForSignal.

5. A communication between P, and Pj is compatible if one process wishes to send, and the

other wishes to receive. Otherwise, the communication is said to be incompatible.

6. VARi(Tr) denotes the value of state variable VAR of process P, during transaction Tr. For

example, AltListi(Tr) is the alternative list of P, during transaction Tr. If significant, the

point in time during the transaction that is referred to will be stated explicitly.

7. The function prev(Tr) returns the ED of the transaction executed by the process which

immediately preceded Tr. The existence of Tr implies the termination of prev(Tr). Also,

prev°(TT) refers to Tr itself and prevm(Tr) corresponds to the mth previous transaction

entered by Pj.

8. GuardL isti(T r) lists the guards that are passed as parameters to the alternative operation

executed by Pj on transaction Tr. We will take the liberty of giving GuardList a dual meaning

— it either refers to a list of guards or a list of processes that are designated in the I/O

commands of these guards. The particular meaning that is intended will be clear from the

context.

15

Lemmas 1 through 5 lead to theorem 1 which states that no race conditions arise that might cause

a process to mistakenly rendezvous with a second process that does not wish to rendezvous with

the first. Theorem 2 subsumes theorem 1 and ensures that the algorithm obeys the safety property.

Lemma 1 Pt(Tr) signals Pj iff Pi (TV) commits to Pj.

Proof: This follows immediately from examination of the algorithm. A process only

sends a signal after it commits, and always sends a signal after it commits. I

This lemma implies that WakeUpj must be set to 0 before a signal can be sent to Pr In

addition, at most one signal is sent to Pj each time WakeUpj is set to 0.

Lemma 2 At the beginning and at the end of each transaction entered by Pj, the following condi­

tions must hold:

(a) No signals sent to Pj are pending.

(b) WakeUpj is nonzero.

Proof: Use induction on m, the number of transactions entered by Pj.

Consider the first transaction (m = 1) executed by Pj. WakeUpj is initialized to 1.

Because WakeUpj can only be set to 0 by Pj during a transaction, WakeUpj must

remain nonzero up to at least the beginning of Pj'1 s first alternative operation. No

process can commit to Pj until WakeUpj becomes 0, so by lemma 1, no signals can be

sent to Pj before its first transaction, and therefore none can be pending. Thus, (a)

and (b) are both true at the beginning of P j’s first transaction.

During any transaction, and in particular the first, Pj will either reset WakeUpj to 0

exactly once (just before entering the W aiting state), or not at all. If Pj does not

reset WakeUpj, then obviously WakeUpj is still nonzero at the end of the alternative

operation. No signal can be sent to Pj because no process can commit, so none are

pending.

If Pj does reset WakeUpj to 0, then at most one process can commit (and send a signal)

to Pj during this transaction. This is because (1) WakeUpj is set to 0 at most one time

during this transaction; (2) each process must obtain the lock AltLockj before it can

examine WakeUpj (see the CheckAndCommit procedure); (3) as soon as one process

reads a zero in WakeUpj, it increments it before releasing AltLockj; so (4) two processes

cannot both read a zero value from WakeUp} during a single transaction in Pj. Because

6.2 The Safety Property

16

9

no two processes can see a zero value in WakeUp j during a single transaction, no two

processes can commit to Pj during this (or any) transaction. Therefore, according to

lemma 1, at most one signal will be sent to Pj during this transaction.

Pj always calls WaitForSignal after setting WakeUp j to zero. Therefore, the only signal

that could have been sent to Pj must have been absorbed by the WaitForSignal opera­

tion, so none can be pending when the transaction completes (if it completes) satisfying

condition (a). Condition (b) must also be satisfied at the end of the transaction because

a process must commit before sending a signal to Pj, so WakeUp j must be nonzero be­

fore the process can resume execution after calling WaitForSignal. Therefore, (a) and

(b) are again true at the end of the first alternative operation as well as at the beginning.

Inductive step: Assume lemma 2 is true on the mth transaction entered by Pj. We

will now show it is also true on the m + 1st transaction. According to the inductive

hypothesis, no signals are pending at the end of the mth operation, and WakeUp j is

nonzero. Therefore, these conditions will remain true until the beginning of the m + ls i

transaction because no process can commit to Pj until WakeUp j becomes 0. As noted

in the proof for m = 1, if (a) and (b) are true at the beginning of any transaction, they

will be true at the end of the transaction if it terminates. Therefore, (a) and (b) are

true at the end of the m + 1st transaction entered by Pj. I

Lemma 3 Two processes, Pi and Pj, cannot both commit to a third process P^ during a single

transaction Tt entered by Pk-

This lemma was actually proven as part of the proof of lemma 2, but we include it as a separate

lemma for future reference. The proof relies on the fact that WakeUpk is not zero at the beginning

of the alternative operation and can be set to zero at most one time during a single transaction. The

atomicity of the commit operation (i.e., two read-modify-write sequences cannot be inappropriately

interleaved) guarantees that only a single process can commit to P^ during Tt.

Lemma 4 I f Pi(Tr) commits to Pj, then Pj must have been in the W aiting state when Pi com­

mitted to Pj, and Pj must remain in the W aiting state until Pj receives the signal sent by Pi that

results from this commitment.

Proof: According to the algorithm, Pi checks that Pj is in the W aiting state before

trying to commit to Pj. Let us assume Pj is in transaction T3 when P, sees Pj in the

W aiting state. Therefore, it only remains to be shown that Pj is still in the W aiting

state when P, commits, as well as when the signal is received. This must be the case,

17

however, because once Pj enters the W aiting state, it cannot change state until it first

receives a signal. By lemma 2a, there were no signals pending when transaction Ts

began. By lemma 3 no process other than Pi will commit to Pj during this transaction,

so no signal other than Pj’s are sent to, or received by Pj during this transaction.

Therefore, Pj cannot unblock from the WaitForSignal operation and therefore cannot

change state until receiving the signal sent by Pj. I '

The preceding lemma shows that arbitrarily long delays may occur from the time Pi observes

that Pj is in the W aiting state until P,’s signal actually arrives at Pj. If the commit succeeded,

this lemma guarantees that nothing “interesting” will happen at Pj from the time P, found it to

be waiting until the signal was received.

Lemma 5 No signals are lost in the alternative algorithm.

Proof: By lemma 2a, no signals are pending at the beginning of each transaction. By

lemma 3, at most one process can commit during a transaction, so at most one signal

is sent (and therefore received) during a transaction. Thus, a signal can never arrive

during a transaction while another has already been received but is still pending, so no

signals are ever lost during a transaction.

No signals destined for a process Pj are lost between successive transactions of Pj be­

cause none can be sent to Pj while it is in the Running state. This is true because (1)

a signal is only sent to Pj following a commit operation (lemma 1), (2) P j must have

been in the W aiting state when the commit occurred (lemma 4), and (3) Pj must re­

main in the W aiting state until the signal is received and absorbed by a WaitForSignal

operation (lemma 4). I

Theorem 1 If Pi(Tr) signals (rendezvous) Pj, then Pj must be in some transaction Ts both when

the signal is sent and when it is received. Further, Pj(Ts) rendezvous Pi{Tr).

Proof: By lemma 4, Pj must be in a transaction when the signal is sent and when it is

received, and remain in the W aiting state during this period. By lemma 5, P,’s signal

cannot be lost. By lemmas 1, 2a and 3, this is the only signal received by Pj during

transaction Ts, eliminating the possibility of Pj accepting another signal instead of P,’s.

Because Pj always executes WaitForSignal when in the W aiting state, the signal from

Pi must be received, implying Pj rendezvous with P,. I

Theorem 2 (Safety) 7/P,(Tr) commits to P 3 (T 3) , then the following properties must be true:

18

1. (Mutual consent) Pi{Tr) rendezvous Pj(Ts) and Pj(Ts) rendezvous Pi(Tr). In other words,

the two communicating parties agree each is rendezvousing with the other.

2. Pj G GuardListi(Tr) and Pi £ GuardListj(Ts).

S. Communications between Pi{Tr) and Pj{Tt) are compatible.

4- Pi and Pj will eventually communicate, complete their transaction, and return to the Running

state.

5. There does not exist a third process Pk (k / i and k ^ j) such that Pk(Tt) rendezvous with

Pi(Tr) or Pk(Tt) rendezvous with Pj(Ts).

Proof:

1. P,(Tr) commits to Pj(Ts), implying P{(Tr) signals Pj(Ts) (lemma 1). This in turn

implies the mutual rendezvous according to theorem 1.

2. The first part, showing Pj G GuardListi(Tr), can be proved by contradiction.

Suppose Pj & GuardListi(Tr). Then Pt would not have committed to Pj be­

cause Pi only scans those processes in GuardListi(Tr) (see the F O R loop in the

TryAltemative procedure), contradicting our original assumption that Pt- commit­

ted to Pj.

It only remains to be proven that Pi G GuardListj(Ta). It is seen from the al­

gorithm that Pt checks AltListj just before committing to Pj, and AltListj is

set to hold GuardListj(Ts) just before Pj enters the W aiting state, and there­

fore before the commit. However, an arbitrarily long delay may elapse from the

time Pi checked AltListj to the time it committed. We therefore need to con­

firm that the value of AltListj that Pj checked is GuardListj(Ta) rather than

GuardListj(prevm(Ts)) for some m > 0.

This will be proven by contradiction. Suppose Pt checked GuardListj(prev(Ts)).

This would imply that the following sequence of events must have occurred:

(a) P{(Tt) checks GuardListj(prev(Tt)) (stored in A ltListj);

(b) Pj(Tt) modifies AltListj so that it becomes GuardListj(Ta);

(c) Pj(Ts) sets WakeUpj(Ts) to 0; and

(d) P,(Tr) commits to Pj(Ts).

Event (a) must take place by the aforementioned assumption, and event (d) must

take place by our original assumption that P,(Tr) commits Pj(Ts). Event (c) must

19

9

precede (d) because WakeUpj(Ts) must be reset to 0 before any commitment to

Pj(T,) can occur (see definition of commit). Event (b) must precede (c) according

to the order in which operations are performed in the algorithm. Event (b) must

follow (a) in order to satisfy our supposition that P, checked GuardListj(prev(Ta)).

However, this sequence of events is not possible because the locking protocol of

the procedure CheckAndCommit (used by P, when checking A ltListj) ensures that

AltListj is not modified after P, checks it (event (a) above), but before P, commits

(event (d)). Therefore, event (b) could not have occurred between (a) and (d), so

our assumption that P,(Tr) examined GuardListj(prev(Ts)) must be incorrect.

Similarly, it is not possible that P,(Tr) examined GuardListj{prevm(Ta)) for any

m > 0.

3. Compatibility is checked when P»(Tr) checks that it is in AltListj(Ts). Similarly,

this information is implicitly updated whenever AltListj is updated. Therefore,

this condition is satisfied using the same proof as was used in (2) to show P, is in

GuardListj(Ts).

4. Once rendezvous occurs between P,(Tr) and Pj(Ts), each process initiates a com­

munication with the other. Properties (2) and (3) above and the reliability assump­

tion regarding the communication mechanism guarantee that the communication

succeeds. Once this occurs, completion of the alternative operation immediately

follows.

5. Suppose Pjt(Tt) rendezvoused with either P,(Tr) or Pj(Ts). Recall a rendezvous

occurs by either sending or receiving a signal to or from another process (definition

of rendezvous), so there are four possibilities:

(a) Pk{Tt) received a signal from P,(Tr);

(b) Pk(Tt) received a signal from Pj{Ts);

(c) Pjt(Ti) sent a signal to P,(Tr); or

(d) Pjt(Tt) sent a signal to Pj(Ts).

We need not consider signals sent before Tr, Ts, or Tt but received during these

respective transactions because none can be pending when the transaction begins

(lemma 2a).

(a) Suppose Pjt(Tt) rendezvoused because it received a signal from P, during Tr

(signals generated by P, outside Tr are not relevant). This implies P,(Tr) sent

signals to two processes because our original assumption is that P,(Tr) committed

20

to (and therefore signaled according to lemma 1) Pj(Ta). It is clear from the algo­

rithm that a process can signal at most one other process on any given transaction

because any time a signal is generated, the transaction always completes without

calling the Signal procedure again (see figure 4). Therefore, Pfc(Tt) could not have

received a signal from P,(Tr).

(b) Suppose Pk(Tt) received a signal from Pj during Ts (signals generated by Pj

outside Ts are not relevant). This implies Pj(Ts) both sent a signal to P*. and

received a signal from Pj within a single transaction. If Pj(Ts). sent a signal, then,

according to the algorithm in figure 4, Pj must have rendezvoused and completed

the transaction without ever entering the W aiting state or setting WakeUpj{Ts)

to zero. This contradicts our original assumption that P,(Tr) committed to Pj(Ts).

(c) Suppose Pk{Tt) signaled Pj(Tr). This implies P,(Tr) both sent a signal to Pj

and received a signal from P* within a single transaction. This latter signal must

have been preceded by P*(Tt) committing to P, (lemma 1). This commit must

have occurred during or before Tr. But, P*.(T() could not have committed to Pj

during Tr because WakeUpj is never equal to zero during Tr. This is because, by

assumption, Pt(Tr) commits to Pj(Ts), so P,(Tr) never enters the W aiting state

(It is only then that the WakeUp variable is set to 0.) Also, Pk(Tt) could not have

committed to P, before Tr and signaled Pj during Tr because this would violate

lemma 4. Therefore P*(Tt) could not have sent a signal to Pj(Tr).

(d) Finally, Pk(Tt) could not have committed (and therefore could not have sig­

naled) Pj during Ts because this would imply both Pk and P, committed to Pj

within a single transaction, violating lemma 3. Pfc(T*) could not have committed to

Pj before T, and signaled Pj during T, because this would again violate lemma 4.

Thus, Pk(Tt) could not have signaled Pj{Ts) either. Therefore, P*.(Tt) could not

have rendezvoused with either P»(Tr) or Pj(T,), so the proof is complete. I

Note from the proof of (2) in the Safety theorem that it is crucial that accesses to AltList are

controlled by locks, and that the act of checking the AltList and committing is atomic to ensure

correct operation. Also note that the status of Pj may change immediately after P, checks it. The

algorithm operates correctly despite this inconsistency.

6.3 The Liveness P roperty

The liveness property guarantees that no deadlock or livelock situations can arise within the alterna­

tive algorithm. Such situations can only be caused by an erroneous application program. Lemmas 6

21

through 11 and theorem 3 prove that the liveness property is maintained by the proposed algorithm.

Lemma 6 A process Pi will never return to the RUNNING state after entering a transaction unless

a rendezvous occurred.

Proof: By inspection of the alternative algorithm, the process only returns to the

RUNNING state when either: (a) P,(Tr) signals Pj(Ta) or (b) after Pj(Tr) receives a

signal from Pj(Ta). In either case, P,(Tr) rendezvoused with Pj(Ts). I

Lemma 7 A process Pi cannot remain blocked on a Lock operation in the alternative algorithm

for an unbounded amount of time.

Proof: The only Lock operation performed by the algorithm is to serialize accesses to

AltList. However, once any process obtains a lock on any AltList, it must eventually

release that lock because no unbounded loop or blocking primitive is executed before

the corresponding Unlock is performed. Therefore, the lock cannot remain in place for

an unbounded amount of time. No process will remain blocked attempting to obtain a

lock for an unbounded amount of time because every lock will eventually be unlocked,

and the the Lock primitive is assumed to be fair. I

Lemma 8 Suppose Pi £ GuardListj(Ts) and Pj G GuardListi(Tr), and their respective I/O

guards are compatible. Pi and Pj cannot both enter the W aiting state during transactions Tr

and T„, respectively.

Proof: Proof by contradiction. Suppose both P, and Pj enter the W aiting state on

Tr and Ts, respectively. Because P, reached the W aiting state, it must be the case that

the last time P, scanned the state of Pj before P, entered the W aiting state, Statej was

either (1) Running, (2) Sleeping, or (3) W aiting but P, failed to commit to Pj (If P,

successfully committed, they would have rendezvoused and completed the transaction

according to theorem 2.) Consider the third case. We will now show that Pj must

have been in a transaction preceding Ts for this case to apply. WakeUpj(Ts) is set to

0 before State j is set to W aiting . Therefore, if P, saw Pj in the W aiting state while

Pj was in transaction Ts, and P, failed when it tried to commit, then it must be that

some third process must have committed to Pj during Ts (after WakeUpj(Ts) is set to

0 but before Pi attempted to commit). But this successful commit must have resulted

in a rendezvous, contradicting our original assumption that P3 blocked indefinitely in

the W aiting state while in Ts. Therefore, if case (3) applies, Pj must have been in a

transaction previous to Ts when P, observed it to be in the W aiting state.

22

Similarly, Pj also reached the W aiting state, so Pi must have been in the Running,

Sleeping, or W aiting state for a previous transaction the last time Pj scanned Pi

before Pj entered the W aiting state. P, and Pj could not have both scanned each

other at the same instant because each would have found each other in the A l t state.

Therefore, one scanned the other first. Without loss of generality, let us assume P,

scanned Pj first. Pi(Tr) was in the A l t state when it scanned P j, and because it did

not rendezvous or abort (the latter would require Pj to be scanned again, making this not

the last time P, scanned Pj), Pj must have remained in the A l t state until it changed to

the W aiting state and blocked indefinitely. Therefore, when Pj later scanned P, for the

last time, Pj must have seen Pi in either the A l t or the W aiting state for transaction

Tr. However, this contradicts the fact that Pj saw Pj in the Running, Sleeping, or

W aiting state for a previous transaction. Therefore, the original hypothesis that Pi

and Pj both entered the W aiting state must be false. I

Lemma 9 A process Pi cannot remain continuously in the A l t state during a single transaction

Tt for an unbounded amount of time.

Proof: A process remains in the A l t state while it is scanning the processes in its

GuardList trying to find one which is ready to rendezvous. If none is found, the process

proceeds to the W aiting state. Because GuardList is necessarily bounded in length,

we must show that a process does not spend an unlimited amount of time scanning a

particular guard.

Pi moves on to the next GuardList entry or eventually changes state when it finds the

process corresponding to the current guard is in either the Sleeping, Running, or

W aiting state. Therefore, we only need to consider scanning a process Pj which is also

in the A l t state. If TransIDj < TransID i, then Pt- aborts Try Alternative and changes

to the Sleeping state. Thus we need only examine the case TransIDi < TransIDj

(both cannot have the same ID). In this case, Pi enters a loop waiting for Statej to

change. In order for P, to remain in this loop an unbounded amount of time, P, must

continually sample Pj while Statej is A lt . There are three ways PCs samples can

indicate Pj remains in the A l t state for an unbounded amount of time: (1) Pj is

also locked into the A l t state for an unbounded amount of time; (2) Pj repeatedly

aborts TryAltemative, changes to the SLEEPING state, and then retries TryAlternative

(changing back to the A l t state) in perfect synchrony with P,’s samples of Statej',

or (3) Pj repeatedly rendezvous, changes to the Running state, and then initiates a

new alternative operation in perfect synchrony with P,’s samples of Statej. These are

23

exhaustive because a process can only return from Try Alternative after a rendezvous or

after an aborted attempt. Case (2) cannot occur, however, because the sleep period is

set to a time sufficiently large that successive samples by P, will detect that Pj is in

the SLEEPING state. Similarly, case (3) cannot occur because the minimum execution

time of the Send and Recv primitives are assumed to be larger than the time between

successive samples of the polling loop. Therefore, only case (1) remains.

The previous discussion shows that P, can only remain in the A l t state scanning Pj an

unbounded amount of time if the following conditions hold: (1) TrdnsIDi < TransIDj,

and (2) Pj remains continuously in the A l t state on the same transaction an unbounded

amount of time. By the same argument presented above, Pj will only remain in the A lt

state on a single transaction an unbounded amount of time if some other process Pjt is in

P j’s GuardList, TransIDj < TransID j, and P^ remains continuously in the A l t state

an unbounded amount of time. Continuing this logic, because the number of processes

is bounded, the original process P, will only remain in the A l t state for an unbounded

time if a cycle of processes exists such that each is waiting for the next process in

the cycle to leave the A l t state. This would require that TransIDi < TransID j <

T ransID j < ••■ < TransID i, which is clearly not possible. Therefore, no such cycle

can exist, so P, cannot remain continually in the A l t state for an unbounded amount

of time. I

Lemma 10 The TryAlternative procedure cannot return Failed an unbounded number of times

during a single transaction Tr in some process Pi.

Proof: TryAlternative returns Failed if and only if P, scans another process Pj and

finds Pj is also in the A l t state, and TransIDj < TransIDi. The number of guards

in GuardList is finite, so if TryAlternative fails an unbounded number of times, it must

be that for some process Pj, the conditions Statej = A l t and TransIDj < TransIDi

persist for an unbounded amount of time.

Pj cannot remain continually in the A l t state for an unbounded amount of time in a

single transaction (lemma 9). Therefore, it must be the case that either (1) P, finds

Pj in the A l t state for a different transaction an unbounded number of times; or (2)

within a single transaction, Pj repeatedly switches back and forth between the A l t and

SLEEPING states for an unbounded number of times, and it so happens that every time

P, retries TryAlternative and scans Pj, P, finds that Pj is in the A l t state. In case (2),

TryAlternative must fail an unbounded number of times in Pj as well as Pt.

■ 24

Case (1): This is not possible because each new transaction ID is larger than all previous

IDs. If Pi finds Pj in the A l t state for a new transaction an unbounded number of

times, this would imply there are an unbounded number of transaction IDs less than

TransIDi. This cannot be the case because transaction IDs are positive integers.

Case (2): An argument similar to that used in lemma 9 can be used here. Summarizing

the arguments presented thus far in this lemma, TryAlternative in P, will only fail an

unbounded number of times if it ako fails an unbounded number of times in some other

process Pj, where TransIDj < TransIDi. Similarly, Pj will only continue to fail if

some other process P* exists which also continues to fail, and TransIDk < TransIDj.

Because the number of processes is bounded, a cycle of processes must exist such that

TransIDi > TransID j > TransIDk > ••• > TransID i, which of course, cannot

occur. Therefore, a process cannot fail the TryAlternative procedure an unbounded

number of times. I

Lemma 11 For each alternative operation initiated by Pi, Pi eventually either rendezvous with

some other process Pj and returns to the RUNNING state, or moves to the WAITING state. In other

words, a process cannot remain in the A l t state in the same transaction for an unbounded amount

of time.

Proof: The only way a process can not reach the W aiting state or rendezvous is

to remain continually in the A l t state, or switch back and forth between A l t and

SLEEPING an unbounded number of times. The latter case implies TryAlternative fails

an unbounded number of times within a single transaction. Neither is possible according

to lemmas 9 and 10. I

Theorem 3 (Liveness) Suppose two processes Pi and Pj each initiate an alternative operation

and Pj € GuardListi(Tr) and Pi G GuardListj(T,) and their communication requests are compat­

ible. I f neither Pi nor Pj rendezvous with another process during their respective transactions, Pi

and Pj will eventually rendezvous with each other during Tr and T,, respectively.

Proof: According to lemma 11, Pi and Pj must each eventually either rendezvous

or enter the W aiting state. They both cannot enter the W aiting state according to

lemma 8. Therefore, at least one of the two processes, say Pj, must rendezvous. By

assumption, P, cannot rendezvous with any process other than Pj, so P, must rendezvous

with Pj. By theorem 2, Pj must also rendezvous with P,. Therefore, Pj and Pj must

eventually rendezvous with each other. I

25

7 F a ir n e s s

One issue regarding the alternative construct that has received considerable attention is fairness.

In particular, two types of fairness, weak and strong fairness, have been defined [7,24]. We call an

implementation of the alternative construct weakly fair if it can be guaranteed that during the in­

finitely repetitive execution of an alternative command, a guard that remains continuously available

(i.e., enabled and the neighboring process is ready to communicate) will eventually rendezvous. An

implementation is said to be strongly fair if the implementation guarantees that any guard which

is available infinitely often (though not necessarily continuously as is the case in weak fairness) will

eventually rendezvous.

The algorithm shown in figures 2, 3, and 4 is not fair in either the weak or strong sense.

However, weak fairness can be achieved by modifying the algorithm so that the order in which the

TryAlternative procedure scans guards, which implies a certain prioritization of the guards, varies

from one call to the next so that each guard is eventually scanned first. More precisely, we modify

the algorithm as follows:

• The Alternative and TryAlternative procedures each receive all guards specified in the alter­

native command as parameters. The original procedures assumed only enabled guards are

passed.

• A boolean flag is associated with each guard indicating whether or not it is enabled.

• Define a distinct integer variable for each alternative construct in a given CSP program. These

variables could be defined by the compiler. Associate with the mth alternative construct in

process Pi the variable Altiim• Initially set to 0, this variable is incremented each time this

particular alternative construct is executed. It therefore indicates the number of times P, has

invoked the corresponding alternative construct.

• The F O R loop in the TryAlternative procedure is modified so that it begins scanning guard

(A lti^ mod n) + 1 rather than the first guard, where n is the number of guards in the

alternative construct. The F O R loop is also modified to skip disabled guards. It executes

up to n iterations as before. The index variable of the F O R loop “wraps around” to 1 after

scanning the nth guard.

The modified algorithm is referred to as the Fair Algorithm, and is assumed in the discussion

which follows.

26

Theorem 4 (Fairness) Let Pi be blocked on an alternative operation (i.e., Pi is in the W aiting

state) in which some process Pj is listed in some enabled guard. Further, let us assume Pi does not

become unblocked through a rendezvous with any process other than Pj. Consider an alternative

construct A in Pj that has been executed m times and contains n guards, one of which (gv) contains

a compatible communication with Pi. If Pj now executes A at least n more times and gv is enabled

on each of these n invocations of A, then Pi and Pj will rendezvous before the (m + n)th execution

of A completes.

Proof: The theorem can be proved by contradiction. Assume Pj does not rendezvous

with Pj before the (m + n)th execution of A. For this to happen, Pj must continually

be rendezvousing with some other process(es) before it scans Pj, because the moment it

scans Pi, it will see that Pj is in the W aiting state and rendezvous with P,. However,

the Fair Algorithm guarantees that within n executions of A, gv will become the first

guard that is scanned. When gv is scanned first, no other process can rendezvous with

Pj before Pj scans Pj, so a rendezvous between P, and Pj must take place. I

The following corollary follows immediately from this theorem:

Corollary 1 In an infinitely repetitive execution of an alternative construct, a guard cannot remain

continually available for an unbounded amount of time without eventually rendezvousing.

This shows that the Fair Algorithm is weakly fair. It demonstrates, for instance, that a process

waiting to be served by another process cannot be continuously denied service for an unbounded

amount of time. The Fair Algorithm is not strongly fair, however. Modification of this algorithm

to one which is strongly fair is an open question. None of the alternative algorithms that have been

developed thus far (based on message-passing architectures) is strongly fair.

8 C o n c lu s io n s

We have presented an algorithm that implements the generalized alternative construct in CSP.

Unlike previous algorithms, this is based on a shared memory architecture. It has been shown that

the algorithm maintains the safety and liveness properties required by any correct implementation.

Extensions to the algorithm that allow processes to terminate and guarantee weak fairness were also

presented. An implementation, written in C, has been developed for a 16-processor BBN Butterfly

parallel processor. Empirical performance evaluation of this implementation is in progress.

27

R e fe re n c e s

[1] A. A. Aaby and K. T. Narayana. A Distributed Implementation Scheme For Communicating

Processes. Proceedings of the 1986 International Conference On Parallel Processing, 942-949,

August 1986.

[2] R. Bagrodia. A Distributed Algorithm To Implement The Generalized Alternative Command

In CSP. The 6th International Conference On Distributed Computing Systems, 422-427, May

1986. •

[3] A. J. Bernstein. Output Guards and Nondeterminism in ’Communicating Sequential Pro­

cesses’. ACM Transactions on Programming Language and Systems, 2(2):234-238, April 1980.

[4] G. N. Buckley and A. Silberschatz. An Efficient Implementation for the Generalized Input-

Output Construct of CSP. ACM TOPLAS, 5(2):223-235, April 1983.

[5] M. Collado, R. Morales, and J. J. Moreno. A Modula-2 Implementation of CSP. ACM

S1GPLAN Notices, 22(6):25-37, June 1987.

[6] E. W. Dijkstra. Guarded Command, Nondeterminism and Formal Derivation of Programs.

Communications of the ACM, 18(8):453-457, August 1975.

[7] N. Francez. Fairness. Springer-Verlag, New York, 1986.

[8] D. D. Gajski, D. H. Lawrie, D. J. Kuck, and A. H. Sameh. Cedar. COMPCON-84, IEEE

Computer Society Conference, 306-309, February 1984.

[9] J. E. Grass and R. H. Campbell. Mediators: A Synchronization Mechanism. The 6th Inter­

national Conference On Distributed Computing Systems, 468-477, May 1986.

[10] C. A. R. Hoare. Communicating Sequential Processes. Computer Science, Prentice Hall, 1985.

[11] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,

21(8):666-677, August 1978.

[12] OCCAM Programming Manual. Inmos Ltd., 1982.

[13] D. R. Jefferson. Virtual Time. ACM Transactions on Programming Languages and Systems,

7(3):404-425, July 1985.

[14] R. A. Karp. Proving Failure-Free Properties of Concurrent Systems Using Temporal Logic.

ACM Transactions on Programming Language and Systems, 6(2):239-253, April 1984.

28

[15] R. B. Kieburtz and A. Silberschatz. Comments on ’Communicating Sequential Processes’.

A CM Transactions on Programming Language and Systems, l(2):218-225, Oct. 1979.

[16] J. Misra. Distributed-Discrete Event Simulation. ACM Computing Surveys, 18(l):39-65,

March 1986.

[17] S. Owicki and L. Lamport. Proving Liveness Properties of Concurrent Programs. ACM

Transactions on Programming Language and Systems, 4(3):455-495, July 1982.

[18] G. F. Pfister et al. The IBM Research Parallel Processor Prototype (RP3): Introduction

and Architecture. Proceedings of the 1985 International Conference On Parallel Processing,

764-771, August 1985.

[19] G. F. Pfister and V. A. Norton. “Hot Spot” Contention and Combining in Multistage Inter­

connection Networks. IEEE Transactions on Computers, C-34(10):943-948, October 1985.

[20] D. A. Reed and R . M. Fujimoto. Multicomputer Networks: Message-Based Parallel Processing.

Computer Science, M IT Press, 1987.

[21] D. A. Reed, A. D. Malony, and B. D. McCredie. Parallel Discrete Event Simulation: A Shared

Memory Approach. Proceedings of the 1987 ACM SIGM ETRICS Conference on Measuring

and Modeling Computer Systems, 15(l):36-38, May 1987.

[22] Z. Sun and X. Li. CSM: A Distributed Programming Language. IEEE Transactions On

Software Engineering, SE-13(4):497-500, April 1987.

[23] B. Thomas et al. Butterfly Parallel Processor Overview. BBN Report No. 6148, BBN Labo­

ratories Incorporated, March 1986.

[24] D. Zobel. Transformations For Communication Fairness In CSP. Information Processing

Letters, 25:195-198, May 1987.

/* r is the remote process */
PRO C ED U RE CheckAndCommit(AltListr , </,): IN T EG ER ;
V AR

IN T EG ER GuardNumber; /* number of matching guard */
BEG IN

Lock(AltLockr) ;
/* check guard matches and is compatible */
GuardNumber := CheckGuard(AltListr , gi) ;
IF (GuardNumber = FAILED) THEN

Unlock(AltLockr) ;
R E T U R N (FAILED);

/* try to commit */
ELSEIF (WakeUpr = 0) THEN

WakeUpr = WakeUpr + 1;
Unlock(AltLockr) ;
RET U RN (GuardNumber) ;

ELSE
Unlock(AltLockr) ;
R E T U R N (FAILED);

E N D ;

E N D CheckAndCommit;

Figure 2: Procedure to check that a potential communication is valid and, if so, to commit. The

CheckGuard function returns the number of a matching (and compatible) remote guard or returns

FAILED if none was found.

P R O C E D U R E Altemative(gi.....gn): I N T E G E R ;
V A R

I N T E G E R RetumValue; /* indicates guard that rendezvoused */
B E G I N

/* 1 is the local process id */
TransIDi := AtomicAdd(NextTransID);
ReturnValue := FAILED;
W H I L E (ReturnValue = FAILED) D O

ReturnValue := TryAltemative (gi, gn);
IF (RetumValue = FAILED) T H E N Sleep(TimeOut); E N D ;
E N D ;

R E T U R N (RetumValue);
E N D Alternative;

/* gi are enabled I/O guards */

Figure 3: The “front end” procedure. Try Alternative returns the number of the guard

rendezvous took place or F a i l e d if it aborted.

PROCEDURE TryAlternative (g i........ gn): INTEGER;
VAR

BOOLEAN flag;
INTEGER GuardNumber; / * corresponding guard of Pr * /

INTEGER i , r;
B E G I N

Statei :* ALT;
/ * look for rendezvous with a waiting process. * /

FOR i:*1 TO n DO
r := CommunicantID(gi); *
flag := TRUE;
W HILE (flag) DO

CASE Stater DO / * The remote process state. * /

RUNNING; flag :« FALSE;
SLEEPING: flag :* FALSE; / * try next guard * /

WAITING: GuardNumber :* CheckAndCommit(AltListr , g i) ;
IF (GuardNumber = FAILED) THEN

flag := FALSE; / * try next guard */
ELSE / * Wake up Pr * /

Statei :* RUNNING;
Signal(r, GuardNumber);
Communicate(gi);
RETURN (i) ;
END;

ALT: IF (TransIDi < Trans I Dr) THEN
W HILE (S ta te r - ALT) DO END;

ELSE / * busy wait loop. */
Statei := SLEEPING;
RETURN (FAILED); / * abort...*/
END; /* if-then-else */

END; / * case statement */

END; / * while loop * /

END; / * for statement */
/ * couldn’t find guard to rendezvous */

Lock(AltLocki); A ltL is ti:*(g i........ gn); Unlock(AltLocki);
WakeUpi 0; / * f ir s t to commit gets rendezvous */
Statei :« WAITING;
i :■ WaitForSignalO; I * Blocks */

Statei RUNNING;
Communicate(gi)
RETURN (i) ;

END TryAlternative;

Figure 4: The TryAlternative procedure attempts to rendezvous with a process

guard, and does not return until rendezvous takes place.

