
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000 573

In te rfac ing Synchronous and A synch ronous M o du le s

W ith in a H igh-Speed P ip e lin e

Allen E. Sjogren and Chris J. Myers, Member, IEEE

Abstract— This paper describes a new technique for integrating

asynchronous modules w ithin a high-speed synchronous pipeline.

O u r design eliminates potential metastability problems by using a

clock generated by a stoppable ring oscillator, which is capable of

driving the large clock load found in present day microprocessors.

Using the ATACS design tool, we designed highly optimized

transistor-level circuits to control the ring oscillator and generate

the clock and handshake signals w ith m in im al overhead. O ur

interface architecture requires no redesign of the synchronous

circuitry. Incorporating asynchronous modules in a high-speed

pipeline improves performance by exploiting data-dependent

delay variations. Since the speed of the synchronous circuitry

tracks the speed of the ring oscillator under different processes,

temperatures, and voltages, the entire chip operates at the speed

dictated by the current operating conditions, rather than being

governed by the worst case conditions. These two factors together

can lead to a significant improvement in average-case perfor­

mance. The interface design is simulated using the 0.(i-//m HP

CM OS14B process in H SP IC E .

Index Terms— Asynchronous design, asynchronous pipelines,

dynamic logic circuit, low control overhead, metastability, stop­

pable clocks.

I. INTRODUCTION

C IRCUIT designers are continually pushing the envelope in

the race to design faster, more powerful microprocessors.

Present-day synchronous microprocessors have clock speeds in

excess of 500 MHz. Distributing a clock signal to all areas of

a large chip at this speed with minimal clock skew is a task of

growing complexity. The circuit area, power consumption, and

design time needed to drive the clock signal to all parts of the

chip without significant clock skew are overwhelming [4], [1].

The clock period must also be long enough to accommodate the

worst case delay in every module in the worst process run under

the highest temperature and lowest supply voltage. Thus, any

speed gained from completing an operation early is lost waiting

for the clock, which runs at a rate dictated by the slowest com­

ponent running in the worst operating conditions.

Asynchronous circuits have attracted new interest as an alter­

native to synchronous circuits due to their potential to achieve

average-case performance while eliminating the global synchro­

nizing clock signal. In asynchronous circuits, an operation be-

Manuscript received December 31, 1998, revised October 1,1999. This work
was supported by Intel Corporation under a Grant and by the National Science
Foundation under CAREER Award MIP-9625014.

A. E. Sjogren is with Smurfit-Stone Container Corporation, Salt Lake City,
UT 84112 USA (e-mail: asjogren@smurfit.com).

C. J. Myers is with the Department of Electrical Engineering, University of
Utah, Salt Lake City, UT 84112 (e-mail: myers@ee.utah.edu).

Publisher Item Identifier S 1063-8210(00)09511-1.

gins when all the operations on which it depends have occurred,

rather than when the next clock signal arrives. This allows asyn­

chronous circuits to operate as fast as possible, taking advantage

of delay variations due to data dependencies and operating con­

ditions. Thus, well-designed asynchronous circuits can achieve

better average operating frequencies than synchronous circuits,

whose speed of operation is dictated by the worst case condi­

tions. One recent example is the Intel RAPPID design [8], a

fully asynchronous instruction length decoder for the x86 in­

struction set. This chip is three times faster while using only

half the power of the comparable 400-MHz synchronous part.

The advantages of synchronous circuits, though, cannot be

overlooked. Some of these advantages include: ease of imple­

menting sequential circuits, simplicity in dealing with hazards,

and mature design methods and tools. Also, asynchronous

circuits come with their own set of challenges. Since there is

no global clock to tell when outputs are stable, asynchronous

circuits must prevent any hazards, or glitches, on their outputs.

A false transition on an output from one circuit can cause the

next circuit to prematurely operate on meaningless results.

Additional circuitry is used to prevent hazards. This circuitry

can increase the area and delay of the asynchronous circuit. In

order to achieve average-case performance, asynchronous cir­

cuits require additional circuitry to start each computation and

detect the completion of operations. The additional circuitry

required for asynchronous design can, in some cases, make the

average-case delay of an asynchronous circuit become larger

than the worst case delay for the comparable synchronous

circuit.

The ideal system may use a combination of both synchronous

and asynchronous circuits. The most appropriate timing disci­

pline could then be applied to each module. Combining the two

technologies poses a great challenge. It is this challenge that pre­

vents the RAPPID chip from being used in production as the rest

of the microprocessor is still synchronous. The key difficulty is

found in trying to avoid synchronization failure. If a clock edge

from a synchronous circuit changes too close in time to data

arriving from an asynchronous circuit, the circuit may enter a

metastable state [2]. A metastable state is a stable state of the

circuit, which is at neither a logic 0 or logic 1 level, but rather

lies somewhere in- between. In this case, the data latched from

the asynchronous circuit may be at an indeterminate value. The

circuit can reside in this state for a nondeterministic amount of

time. If this metastable state persists until the next clock cycle,

the indeterminate data may be interpreted as either a logic 0

or a logic 1 by different subsequent logic stages. This can lead

the system into an illegal or incorrect state causing the system

to fail. Such a failure is traditionally called a synchronization

1063-8210/00310.00 © 2000 IEEE

mailto:asjogren@smurfit.com
mailto:myers@ee.utah.edu

574 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 1. A stoppable ring oscillator clock.

failure [9]. If care is not taken, the integration of more asyn­

chronous circuitry and communication into a system can lead

to an unacceptable probability of failure.

Many techniques have been devised to address the metasta­

bility problem and avoid synchronization failure when

interfacing between synchronous and asynchronous modules.

The simplest approach is to double-latch asynchronous signals

being sampled by a synchronous module. This increases the

time allowed for a metastable condition to resolve. The cost,

though, is an extra cycle delay when communicating data from

an asynchronous module to a synchronous module, even when

there is no metastability. This scheme only minimizes the prob­

ability and does not eliminate the possibility of synchronization

failure, as there is some chance that a metastable condition

could persist longer than two clock cycles. To address this

problem, pipeline synchronization can be used. Pipeline syn­

chronization extends the double-latching idea by inserting more

pipeline latches between the asynchronous and synchronous

module [10]. While each added latch reduces the probability

of failure, it increases the latency of communication. Also,

no matter how many latches are added, some probability of

failure always remains. Therefore, this scheme only works

when large communication latencies and some failures can

be tolerated. This is true of networks, but it is not true of

high-speed microprocessor pipelines.

To completely eliminate synchronization failures, it is neces­

sary to be able to force the synchronous system to wait an arbi­

trary amount of time for a metastable input to stabilize. In order

for the synchronous circuit to wait, it is necessary for the asyn­

chronous module to be able to cause the synchronous circuit’s

clock to stop when it is either not ready to communicate new

data or not ready to receive new data. Stoppable clocks date back

to the 1960s with work done by Seitz, which was used in early

display systems and other products of the Evans and Sutherland

company [11], [9]. A stoppable clock is typically constructed

from a gated ring oscillator, as shown in Fig. 1. The basic oper­

ation is that when the RUN signal is activated, the clock operates

at a nominal rate set by the number of inverters in the ring. To

stop the clock, the RUN signal must be deactivated between two

rising clock edges. The clock restarts as soon as the RUN signal

is reactivated. In other words, the clock can be stopped synchro­

nously and restarted asynchronously.

Numerous researchers have developed globally asynchronous

locally synchronous (GALS) architectures based on the idea of a

stoppable clock [9], [12], [3], [7], [5], [13]. In each of these ap­

proaches, communication between modules is done asynchro-

Fig. 2. Basic module of a GALS architecture.

nously using request/acknowledge protocols while computation

is done synchronously within the modules using a locally gen­

erated clock. The basic structure of such a module is shown in

Fig. 2. The module’s internal clock is stopped when it must

wait for data to arrive from, or to be accepted by, the other

modules. The schemes proposed in [12], [7], [5], [13] allow

an asynchronous module to request to communicate data to a

synchronous module at arbitrary times. A mutual exclusion el­

ement is used to guarantee that a synchronous module either re­

ceives data from an asynchronous unit or a pulse from the clock

generator, but never both at the same time. If the asynchronous

data arrive too close to the next clock pulse, both the data and

the clock pulse may be delayed waiting for the metastability to

resolve, before determining which is to be handled first. The

schemes proposed in [9] and [3] assume that the synchronous

unit determines when data are to be transferred to/from the asyn­

chronous modules. This assumption eliminates the need for a

mutual exclusion element, since the decision to wait on asyn­

chronous communication is synchronized to the internal clock.

This paper describes a new interface methodology for

globally synchronous locally asynchronous architectures. At

present, almost every microprocessor is synchronous and

pipelined. One viable approach to increasing a micropro­

cessor’s speed for a given process is to replace the slowest

pipeline stages with asynchronous modules that have a better

average-case performance. If the interfacing problem can be

addressed, this allows a performance gain without redesigning

the entire chip. While the entire system communicates

synchronously, one or more local modules may compute asyn­

chronously. In other words, the system is globally synchronous,

locally asynchronous.

Our interface methodology, while similar to the GALS

architectures described in [9] and [3], allows for stages in

high-speedpipelinestobeeithersynchronousorasynchronous,as

depicted inFig. 3. In this paper, we use true single-phase clocking

with Yuan/Svenson latches as in the Alpha [4], configured in

such a way that data are latched into the next stage on the rising

edge of the clock. The CLK signal is generated using a stoppable

ring oscillator. Besides being used to sequence data between

pipeline stages, the CLK signal is also used to generate the

handshake protocol that controls the asynchronous modules.

SJOGREN AND MYERS: INTERFACING SYNCHRONOUS AND ASYNCHRONOUS MODULES 575

Fig. 3. Proposed interface methodology.

The interface controller is composed of the stoppable clock

generator, one handshake control circuit for each asynchronous

module, and an and gate to collect the ACK signals to generate

the RUN signal.

The circuit behavior of the interface controller is as follows.

Shortly after the rising edge of the CLK signal, the RUN signal

is set low. The RUN signal is set high again only after all the

asynchronous modules have completed their computation.

Since data move in and out of each asynchronous module with

every cycle in the pipeline, no mutual exclusion elements are

necessary.

The handshaking protocol that has been added for each asyn­

chronous module adds additional delay overhead thath must be

minimized. Therefore, our interface controller uses new, highly

optimized transistor-level circuits designed using the ATACS

design tool [6] to control the ring oscillator and generate the

clock and handshake signals. By building the stoppable ring os­

cillator clock out of a clock buffer network, our clock is capable

of driving the large capacitive loads found in present day m i­

croprocessors. Our interface technique does not require any re­

design of the synchronous circuitry. Utilizing a ring oscillator

to generate the clock signal improves the performance of the

circuit by allowing the integration of faster asynchronous mod­

ules in the pipeline. Since the speed of the synchronous circuitry

tracks the speed of the ring oscillator under different processes,

temperature, and voltage, the entire chip operates at the speed

dictated by the current operating conditions, rather than being

governed by the worst case conditions. These two factors to­

gether can lead to a significant improvement in average-case

performance.

This paper is divided into six sections. Section II describes

the design of the basic circuits and operation of the interface

controller. Section III presents an analysis of a clock buffer net­

work similar to the one used in the 300-MHz DEC Alpha [1].

Section IV incorporates the clock buffer network into our in­

terface controller so that it can be used in modern high-speed

pipelines. Section V adds a pipeline latch and modifies the in­

terface protocol to reduce the control overhead. Section VI gives

our conclusions.

II. Basic Interface Controller

This section describes the basic circuitry and operation of our

asynchronous/synchronous interface controller. We designed

the interface circuits described here using ATACS [6], a tool

for the synthesis of timed circuits. Timed circuits are a class of

circuits in which specified timing information is utilized in the

design procedure to optimize the implementation. Not only is

the resulting circuit more efficient, but ATACS also allows us to

automatically check our timing assumptions. Since the circuits

in the interface controller are highly time dependent, they

cannot be designed using traditional untimed asynchronous

design methods.

The interface controller is composed of two separate sections:

the stoppable clock and the handshake controllers. Our stop­

pable clock, shown in Fig. 4, is somewhat different from the

traditional one [9]. Rather than using an AND gate to control

the starting and stopping of the clock, we use a state-holding

gate. Our state-holding gate sets CLK high when both RUN and

PRECLK are high, and it resets CLK when PRECLK is low.

When synthesizing this gate, we discovered a timing assumption

in the original design that requires the RUN signal to be active

until CLK goes low. In order to give more flexibility in setting

and resetting the RUN signal, we decided to remove this timing

assumption, resulting in the gate shown in Fig. 4. In our imple­

mentation, the RUN signal can be deactivated at any time after

CLK goes high until just before the next rising clock edge. A

similar observation is made in [11], in which a pair of cross-cou­

pled nand gates is added to latch the clock in one of the designs.

The overhead of the cross-coupled NAND gates is minimized in

our approach by implementing the circuit at the transistor level.

The rest of the stoppable clock is a ring oscillator composed of

576 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 4. Our basic stoppable ring oscillator clock.

REQ
To async

module

Fig. 5. Handshake control circuit.

inverters and one NAND gate, which is used to set CLK to low

during reset. The number of inverters is set such that the delay

through the ring oscillator is greater than the worst case path

through the slowest synchronous module.

The second part of the interface controller is the handshake

control circuit. There is one of these controllers for each

asynchronous module. The controller is used to translate the

CLK signal into a four-phase handshake with the asynchronous

module. In a typical four-phase handshake with an asyn­

chronous datapath element, the signal REQ is asserted high

when there are valid data on the inputs and computation is

started. The ACK signal goes high to indicate that computation

has completed, and there are valid data on the outputs. When

REQ is set low, the asynchronous module typically resets. One

very efficient way to implement an asynchronous datapath is to

use domino dual-rail logic, in which REQ low would precharge

the logic. When the precharge is completed, the ACK signal

would go low. This precharge stage eliminates the results of the

previous computation, so it should not be done until the data

have been latched into the next pipeline stage. Since data are

latched into the next stage on the rising edge of the clock, the

handshake control circuit should hold REQ high until CLK goes

high to keep the data from the previous calculation stable. After

CLK goes high, we set REQ low to begin the precharge stage.

When ACK has gone low, the precharge stage has completed,

and we can begin the computation by setting REQ high. The

handshake control circuit is shown in Fig. 5.

If we assume that the precharge stage has completed before

CLK goes low, we could simply use the CLK signal as the REQ

signal. This, however, incurs a performance penalty. Typically,

the precharge stage is only a couple of gate delays while the

computation stage takes significantly longer. By using ACK to

generate REQ’s rising, our circuit allows computation to start

immediately after precharge completes, which gives the com­

putation more time to complete. This is a significant improve­

ment over traditional synchronous domino-logic design, which

wastes half a clock cycle for precharge. Synchronous designers

have also noticed this, and they often do what is called “cycle

stealing” to improve performance.

One may also wonder why there is a second n-transistor gated

with the ACK signal in Fig. 5. As mentioned above, CLK may

not be low when ACK goes low since the precharge stage typi­

cally completes very quickly. This transistor cuts off the n-stack

when ACK goes low, so there is no fight, allowing REQ to go low

as early as possible. Note that since CLK cannot go high before

ACK goes high, the falling transition of REQ is always triggered

by the rising transition of CLK.

There is one other timing assumption, which requires the

CLK signal to go low before both the precharge and computa­

tion stages complete. Otherwise, it is possible that the precharge

stage would be reentered, destroying the results of the compu­

tation. We believe this to be a reasonable timing assumption. If

it does not hold, an additional gate can be added between the

ACK signal generated by the completion logic and the signal

SJOGREN AND MYERS: INTERFACING SYNCHRONOUS AND ASYNCHRONOUS MODULES 577

Fig. 6. Handshake control circuit with conditioned acknowledgment.

Fig. 7. Idealized waveform for the basic interface controller.

used by the interface control circuits. The handshake control cir­

cuit with the conditioned acknowledgment signal is depicted in

Fig. 6. The additional gate prevents the rising transition of ACK

from being seen before CLK goes low. If the timing assumption

holds, this gate should be omitted since it adds extra circuitry

and delay on the critical path. In the remainder of this paper,

we assume that the timing assumption holds, and the handshake

control circuit used is the one depicted in Fig. 5.

The basic operation of the interface controller is depicted as

an idealized waveform shown in Fig. 7. For simplicity, we as­

sume there is one asynchronous module, so ACK and RUN are

the same signal. Initially, R E S E T is asserted low, which sets

the CLK signal low and REQ signal high. With the REQ signal

high, the asynchronous datapath module eventually sets ACK

high during reset. Each cycle after R E S E T is deasserted and

the interface controller sets CLK high, which latches the data

for each pipeline stage and causes the asynchronous modules

to precharge by asserting the REQ signal low. When an asyn­

chronous module completes precharge, it sets its ACK signal

low. After ACK has gone low, the computation can be started

by asserting REQ high. When an asynchronous module com­

pletes computation, it asserts its ACK signal high. Note that the

computation can start anywhere in the clock cycle, but it must

not complete before CLK goes low. During precharge and com­

putation, the CLK signal goes low and prepares to go high. If

any of the asynchronous modules have not asserted their ACK

signal, the rising edge of the CLK is delayed until all the asyn­

chronous modules have completed their computation.

We simulated the basic interface controller in H S P I C E using

the 0.6-/MH HP CMOS14B process. This process is used for a

120-MHz HP PA-7200 RISC microprocessor. Therefore, we set

the ring oscillator clock to run at approximately 120-MHz worst

case by using 19 gates in the ring (1 NAND gate, 16 inverters, the

clock stopping gate, and its staticizer). We modeled the datapath

using a chain of domino buffers as shown in Fig. 8. This circuit

has the property that after REQ goes high, ACK goes high after

a delay through the entire buffer chain, while after REQ goes

low, ACK goes low after the delay of one domino buffer. Two

waveforms are shown in Fig. 9 under worst case process and

operating conditions. The first shows operation when the asyn­

chronous unit finishes early. In this case, the CLK signal runs at a

fixed rate. The second shows operation when the asynchronous

unit finishes late, which stops the clock until after ACK goes

high.

Table I shows the tabulated delay results under four different

process and operating conditions. The first column shows the

worst case conditions (high temperature, low voltage, worst case

n- and p-type transistors). The middle two columns show more

typical process and operating conditions running hot and cool,

respectively. The last column shows the best case conditions.

The first row shows the delay of the ring oscillator with RUN

(i.e., ACK) set high early. The frequency of the ring oscillator

clock varies from 122 to 285 MHz. Since the ring oscillator is

built on the same chip as the rest of the circuits, the variations

in delay of the other circuits track the variation in delay of the

ring oscillator. This translates directly into an improvement in

performance for not only the asynchronous circuitry but also the

synchronous circuitry. In other words, if the chip becomes hot,

both the ring oscillator and logic circuits slow down. If the chip

becomes cool, both the ring oscillator and logic circuits speed

up. The same effect would take place for voltage and process

variations. The next three rows show the delays in the interface

578 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 8. Domino buffer chain used to model the datapath.

Fig. 9. HSPICE results for the basic interface controller.

TABLE I
Basic Interface Controller

Temperature
Voltage
Process

90° C
3.0V

Worst

70° C
3.3V

Typ

25° C
3.3V

Typ

0°C
3.6V
Best

CLKt ->■ CLK t 8.22 ns 5.42 ns 4.02 ns 3.51 ns
C L K \ ->• R E Q 4. 0.99 ns 0.72 ns 0.58 ns 0.52 ns
ACK], -> R E Q f 0.38 ns 0.28 ns 0.22 ns 0.19 ns
ACK-\ -»• CLK t 0.75 ns 0.64 ns 0.57 ns 0.48 ns
Precharge &
computation 6.10 ns 3.77 ns 2.65 ns 2.32 ns

control gates. The last row shows the amount of time that is

available from the clock cycle for precharge and computation

without stopping the clock. This is calculated by subtracting

the control overhead from the minimum ring oscillator delay

under the given conditions. This shows that the control overhead

of using an asynchronous module is between 25-35% of the

cycle. This means that an asynchronous module needs to have

an average-case performance that is at least 35% less than the

worst case performance of the comparable synchronous module

in order to see a performance gain. It should be noted that in

these calculations, the added delay needed for clock skew and

latch setup time has been neglected. It assumed that these values

are comparable for both the pure synchronous and mixed syn­

chronous/asynchronous pipelines. If it is considered, it would

serve to reduce the usable clock cycle increasing the percentage

lost to handshake overhead.

III. Clock Buffer Tree Analysis

In order to stop the clock signal in a modern high-speed mi­

croprocessor, one must first understand how the clock signal is

buffered. Ideally, a clock signal is distributed to every point in

the chip at nearly the same time, in phase, with fast rise and fall

times. However, this is not an easy task. The capacitive load seen

by the clock can be astronomical. For example, the 300-MHz

DEC Alpha microprocessor has a clock load of 3.75 nF [1].

In order to drive such a substantial load, the clock is buffered

through ten stages fanning out to 96 branches. The clock buffer

tree is depicted in Fig. 10 [1]. The crystal clock from the I/O pin

is fed into the trunk of the network, and it is distributed to all

points through buffered branches. There are shorting bars be­

tween the outputs of each buffer stage, which smooth out any

asymmetry in the incoming wavefront. The result is that each

level of inverters in the clock tree is equivalent to a single par­

allel n-transistor and a single parallel p-transistor. The final CLK

driver inverter has an equivalent transistor width of 58 cm.

A concern with the buffer tree is the amount of delay through

it for one clock pulse. If the delay is long enough, multiple clock

pulses would be propagating through the tree. In this case, if the

clock needs to be stopped, the decision may need to be made one

or more clock cycles in advance. To measure the severity of this

problem, we measured the delay through a clock buffer network

similar to the 300-MHz DEC Alpha’s. Since all branches are

identical, we recreated one complete branch of the 96 branches

and simulated it using HSPICE. The part of the clock tree sim­

ulated is shown in Fig. 11. The nonterminated branches fan out

to make up the other 95 individual branches. These nontermi­

nated branches are used to simulate the capacitive loading on

each stage of the single branch. The buffer tree is terminated

with a 0.039-nF capacitor to model the portion of the load this

branch is responsible for driving. We ran the CLKin frequency

at 120 MHz, since as mentioned before this appears to be about

SJOGREN AND MYERS: INTERFACING SYNCHRONOUS AND ASYNCHRONOUS MODULES 579

Fig. 10. Clock buffer network for the 300-MHz DEC Alpha RISC microprocessor.

Fig. 11. Clock buffer tree model simulated in HSPICE.

DDD - - - • A A A A a-4 Jfo □ -B- BOD

:

a ed ■ —ea ODD A b □ □ E3 CK 1 . . A
:

buffertree

Fig. 12. Delay from CLKin to CLK modeled in HSPICE.

TABLE II
Delay Between CLKin and CLK Through Clock Buffer Tree

Temperature 90° C 70° C 25° C 0°C
Voltage 3.0V 3.3V 3.3V 3.6V
Process Worst Typ Typ Best

C L K in t C L K f 3.16 ns 2.35 ns 2.17 ns 1.72 ns
C L K in l C L K I 2.83 ns 2.05 ns 1.88 ns 1.41 ns

the maximum clock rate for a synchronous microprocessor in

the 0.6-/nm HP CMOS 14B process. Our simulation of this clock

buffer tree under worst case conditions is shown in Fig. 12. This

figure shows that a transition on the CLK signal at the I/O pin

is actually seen on the internal CLK signal up to nearly half a

cycle later. Delays through the clock buffer network are shown

for various conditions in Table II. Our results show that the delay

through the tree ranges from 1.41 to 3.16 ns. Thus, with a clock

period of 8.33 ns (i.e., a clock frequency of 120 MHz), there is

only one clock pulse in the tree at a time.

While our simulated results are encouraging, in that the de­

cision to stop the clock does not need to be made one or more

cycles ahead, the buffer tree makes it difficult to find the right

time and place in which to stop the clock. In the GALS ap­

proach, if the microprocessor is to be considered as the locally

synchronous component, these techniques would try to stop the

580 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 13. Stoppable ring oscillator clock with buffering.

Fig. 14. HSPICE results for the interface controller with buffering.

clock at the I/O pin. The result would be that the clock is stopped

nearly half a cycle too late. One of the major results of this paper

is that the interface methodologies described in the subsequent

sections are designed to work in an environment with such large

clock buffer networks.

IV. INTERFACE CONTROLLER WITH CLOCK BUFFERING

This section describes a modification of the basic interface

controller to allow it to work in systems with large clock buffer

networks. The basic idea is that the clock buffer network is used

as part of the ring oscillator to generate the clock, as depicted

in Fig. 13. The gate used to stop the clock is located at each

of the leaves of the clock tree and makes up the last two in­

verter stages of the clock buffer network. For simulation, we

use transistor sizes similar to those used in the 300-MHz DEC

Alpha as in the previous section. This means that the n-transis-

tors in the clock stopping gate are more than 300 /nm wide (the

p-transistor is more than 600 /nm), and more than 1 mm wide

in the output inverter. As in the clock buffer network discussed

in the previous section, there are shorting bars between the out­

puts of each buffer stage. This means there is a single global

clock wire distributed around the chip. Since the RUN signal is

generated from near-minimum size gates in the asynchronous

datapath logic, it must also be buffered in order to control such

a large gate. The buffer tree for the RUN signal is very sim­

ilar to the one for the CLK signal. This results in a substantial

delay from when ACK is asserted by the asynchronous modules

to when the RUN signal is actually asserted.

Fig. 14 shows an H S P I C E simulation of the interface control

circuit in Fig. 13 under the worst conditions. The top plot shows

the CLK and REQ signals, and the bottom plot shows the ACK

and RUN signals. The simulation assumes that there is only one

asynchronous module. If multiple asynchronous modules are

used, all of their ACK signals would have to be ANDed together

to produce the RUN signal. This additional AND operation would

not substantially change the overall delay from ACK to RUN,

as it is small in comparison to the buffer network, and it could

be made to serve as part of the buffer network. The simulation

shows that RUN falls over 2 ns after ACK falls. To prevent a

synchronization failure, RUN must fall before CLK is ready to

rise again. Assuming the precharge delay is short, RUN falls

well before CLK can rise. The falling delay of RUN is not on the

critical path, as computation is done in parallel with this delay.

The rising delay of RUN is on the critical path, as the next rising

CLK edge cannot come until after RUN goes high.

We simulated the interface controller with buffering in

HSPICE under several different conditions and tabulated the

results in Table III. The results show that when buffering is

taken into account, the control overhead is now from 54 to

57% of the clock cycle time. This means that in a high-speed

microprocessor, an asynchronous module needs to have an

average-case performance that is at least 54% faster than

the worst case performance of the comparable synchronous

SJOGREN AND MYERS: INTERFACING SYNCHRONOUS AND ASYNCHRONOUS MODULES 581

TABLE III
Interface Controller with Buffering

Temperature
Voltage
Process

90° C
3.0V
Worst

70° C
3.3V
Typ

25° C
3.3V
Typ

0°C
3.6V
Best

CLKt -+ CLK t 7.94 ns 5.58 ns 4.98 ns 3.66 ns
CLK\ -¥ REQ | 1.10 ns 0.82 ns 0.74 ns 0.57 ns
ACK\. REQ t 0.38 ns 0.28 ns 0.26 ns 0.19 ns
ACK\ -4 RUN t 2.32 ns 1.62 ns 1.47 ns 1.10 ns
RUNf -> CLK f 0.49 ns 0.34 ns 0.30 ns 0.23 ns
Precharge &
computation 3.66 ns 2.41 ns 2.19 ns 1.57 ns

module in order to see a performance gain. While the good

news is that an asynchronous module can be inserted into a

high-speed microprocessor with minimal design changes, the

bad news is that the applications where it results in a substantial

performance improvement may be severely limited.

V. Pipelined Interface Controller

As shown in Table III, the largest overhead in the interface

controller with buffering is the delay from ACK s rising through

the RUN signal's buffer network until RUN rises. This consti­

tutes about 30% of the clock cycle time. During this time, no

useful work is being done. Recall that the delay from ACK s

falling to RUN's falling is hidden behind the computation delay,

so it is not on the critical path. We would like to hide the rising

delay of the RUN signal behind the precharge delay, so useful

work can be done in parallel with this delay. The problem is,

however, that we cannot begin the precharge stage until CLK

rises, latching the results from the previous computation. To

solve this problem, we have added an additional pipeline reg­

ister after each asynchronous module. As depicted in Fig. 15,

this new register latches data on the rising edge of the ACK

signal. Therefore, as soon as the computation is completed, the

new data are latched, so that the precharge stage can start imme­

diately and run in parallel with the rising delay for RUN through

the buffer tree.

This new design requires anew interface protocol and several

changes to the interface control circuitry. The stoppable clock

circuit is basically the same as before with one small excep­

tion. We need to move the nand gate used for resetting the stop­

pable clock up into the buffer network to remove a race between

starting the clock and lowering the RUN signal after initializa­

tion. The handshake control circuit has to be redesigned, and the

new circuit is shown in Fig. 16. In the new interface protocol, the

precharge stage is completed in parallel with the RUN signal and

subsequent to the CLK signal’s being set high. Therefore, when

CLK goes high, we are ready to start a new computation imme­

diately by setting REQ high. When ACK goes high, the com­

putation is completed, and the results are latched into the new

pipeline latch. At this point, the precharge stage can be started by

resetting REQ . Note that there is an extra p-transistor gated on

CLK's being low before REQ goes high. This transistor is nec­

essary to guarantee that the REQ signal is not being pulled high

and low at the same time. If the computation delay is guaranteed

to be longer than half a clock cycle, then CLK is always low be­

fore ACK goes high. This timing assumption would allow this

p-transistor to be removed. In the following analysis, we left the

transistor in to allow more variance in the computation comple­

tion timing. If we can guarantee the timing assumption, it would

improve our results somewhat by speeding up the falling delay

of REQ .

Fig. 17 shows an H S P I C E simulation of the pipelined inter­

face control circuit under the worst case conditions. This figure

illustrates some of the timing assumptions needed to make this

design work. The first thing to notice is that RUN goes low in

response to ACKs going low in the previous cycle. If RUN falls

too soon, CLK cannot rise. Therefore, ACK cannot fall earlier

than the size of the ACK-to-RUN delay before CLK rises. Also,

since CLK sets REQ high to start the computation, ACK must

fall, signaling the end of the precharge stage, before CLK rises.

When the CLK is being stopped by an asynchronous module,

this timing assumption is easily met. At other times, this puts a

1-2 ns window (depending on conditions) on when ACK is al­

lowed to fall. If the computation can be fast enough to violate

this timing assumption, it can be easily fixed by adding a min­

imum bundled delay path to the violating asynchronous module.

This minimum delay path would cause the rising transition of

the ACK signal to be delayed in the fast cases. Note that this

does not affect performance because if an asynchronous module

is computing fast enough to avoid stopping the clock, its actual

speed does not affect the speed of the chip.

Simulation results for the pipelined interface controller are

given in Table IV for several different process and operating

conditions. In this design, the only control overhead is when

REQ is changing state. From the time that ACK goes high until

the time when CLK goes high, this circuit can reset REQ and

precharge. As mentioned above, the precharge stage must com­

plete before CLK goes high, but there is plenty of time available

under all conditions. Other than when REQ is being set high or

the CLK is being set high after the previous computation (i.e.,

after ACK goes high), the rest of the time is available for compu­

tation. This means that nearly 60% of the clock cycle is available

for computation, while useful work (precharge plus computa­

tion) can be done in nearly 75% of the clock cycle. Therefore,

for the pipelined interface controller, the asynchronous module

only needs to be around 25% faster on average than its compa­

rable synchronous module. This significantly improves the ap­

plicability of using mixed synchronous/asynchronous design.

VI. CONCLUSION

Mixing synchronous and asynchronous modules within

a high-speed pipeline shows a lot of promise to improve

processor performance. The challenge is to do so without

synchronization failure while minimizing communication

latency and control overhead. This is further complicated by

the large clock buffer tree networks in current high-speed

microprocessors. Our analysis of a typical clock tree shows that

while the delay in these networks is substantial, only one pulse

is in the network at a time. This makes it possible to construct

a stoppable clock-based interface control. Our initial stoppable

clock-based interface controller integrates the clock buffer

network into the ring oscillator, but it loses over half of the

clock cycle to control overhead. By adding additional registers,

582 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 15. Interface controller with pipeline latch.

Fig. 16. New handshake control circuit.

Fig. 17. HSPICE results for the pipelined interface controller design.

our pipelined interface controller can hide all of the control

overhead due to the clock buffer network, reducing the control

overhead to about 25%. While this limits the applicability of

these methods to cases where there is a substantial performance

gain due to data dependence, this shows that it is feasible, even

in a very adverse environment such as a modern high-speed

microprocessor. The performance gains are achieved with only

minimal design changes. In addition to performance gains due

to data dependence in asynchronous modules, a by-product

of using a ring oscillator clock is that even the synchronous

circuitry adapts to operating conditions. This can improve

performance by up to 100%, and the design will typically run

about 50% faster.

However, many challenges remain. First, no commercial m i­

croprocessor uses or is considering to use an on-chip ring oscil­

lator as a clock generator. The reason is that it would have in­

adequate jitter control and poor noise rejection, as well as other

problems. If an external clock is used, it would be impossible to

SJOGREN AND MYERS: INTERFACING SYNCHRONOUS AND ASYNCHRONOUS MODULES 583

TABLE IV
Pipelined Interface Controller

Temperature
Voltage
Process

90° C
3.0V
Worst

70° C
3.3V
Typ

25° C
3.3V
Typ

0°C
3.6V
Best

CLK'f CLK t 7.79 ns 5.44 ns 4.93 ns 3.64 ns
CLKt -y REQ f 0.54 ns 0.48 ns 0.45 ns 0.29 ns
ACK-\ -> REQ 4 1.47 ns 1.04 ns 0.94 ns 0.71 ns
ACKf -> RUNt 2.18 ns 1.52 ns 1.39 ns 1.03 ns
RUN-\ -»• CLK t 0.45 ns 0.34 ns 0.30 ns 0.23 ns
Precharge 1.16 ns 0.82 ns 0.75 ns 0.55 ns
Computation 4.61 ns 3.09 ns 2.80 ns 2.09 ns

stop it with zero chance of synchronization failure. Therefore, in

the future, either the problems with ring oscillator clock genera­

tors must be resolved or techniques to minimize the probability

of synchronization failure when using an external clock need to

be developed.

Another serious challenge is that as technology improves,

the amount of delay in the clock tree will increase to the point

where it exceeds a clock cycle. In this case, the determination

of whether the clock needs to be stopped may need to be done a

clock cycle early. This would require the ability to quickly ana­

lyze a future computation to determine conservatively whether

the clock will need to be stretched. Therefore, another inter­

esting area of future work would be the investigation of such

prediction structures for key pipeline components.

While in this paper we only presented the use of a single asyn­

chronous module, if multiple asynchronous modules are used,

our performance is dictated by the slowest module. In order to

mitigate this problem, we plan to investigate more complicated

pipeline structures. For example, if the architecture is decom­

posed into multiple clock domains connected by asynchronous

first-in first-out, each domain would be allowed to run at its own

rate. Finally, we would like to design a test chip using this in­

terface technology to control a pipelined processor.

Acknowledgment

The authors would like to thank Prof. A. Martin and his re­

search group at California Institute of Technology for their com­

ments on an earlier version of this work. In particular, they

would like to thank Dr. P. Hofstee of IBM for directing them

to consider the effects of large clock buffer trees. They would

also like to thank Prof. G. Gray, R. A. Thacker, L. Josephson,

W. Belluomini, E. Mercer, and B. Bachman of the University

of Utah for their helpful comments on this paper. Finally, they

thank Prof. S. Nowick of Columbia University for his insightful

comments.

REFERENCES

[1] B. Benschneider, A. Black, W. Bowhill, S. Britton, D. Dever, D.
Donchin, R. Dupcak, R. Fromm, M. Gowan, P. Gronowski, M.
Kantrowitz, M. Lamere, S. Mehta, J. Meyer, R. Mueller, A. Olesin,
R. Preston, D. Priore, S. Santhanam, M. Smith, and G. Wolrich, “A
300-MHz 64-b quad-issue cmos RISC microprocessor,” IEEE J.
Solid-State Circuits, vol. 30, pp. 1203-1211, Nov. 1995.

[2] T. J. Chaney and C. E. Molnar, “Anomalous behavior of synchronizer
and arbiter circuits,” IEEE Trans. Comput., vol. C-22, pp. 421-422, Apr.
1973.

[3] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,”
Ph.D. dissertation, Stanford University, Oct. 1984.

[4] D. W. Dobberpuhl, R. T. Witek, R. Allmon, R. Anglin, R. Bertucci, S.
Britton, L. Chao, R. A. Conrad, D. E. Dever, B. Gieseke, S. M. N. Has-
soun, and G. Hoeppner, “A 200 MHz 64 bit dual-issue cmos micropro­
cessor,” IEEEJ. Solid-State Circuits, vol. 27, pp. 1155-1167, Nov. 1992.

[5] G. Gopalakrisnan and L. Josephson, “Toward amalgamating the syn­
chronous and asynchronous styles,” in ACM Int. Workshop Timing Issues
in the Specification of and Synthesis of Digital Systems, 1993, Collec­
tion of papers.

[6] C. J. Myers, “Computer-aided synthesis and verification of gate-level
timed circuits,” Ph.D. dissertation, Dept. of Electrical Engineering, Stan­
ford University, Oct. 1995.

[7] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T.-P. Fang,
“Q-modules: Internally clocked delay-insensitive modules,” IEEE
Trans. Comput., vol. 37, pp. 1005-1018, Sept. 1988.

[8] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol,
C. Dike, M. Roncken, and B. Agapiev, “RAPPID: An asynchronous
instruction length decoder,” in Proc. Int. Symp. Advanced Research in
Asynchronous Circuits and Systems, Apr. 1999, pp. 60-70.

[9] C. L. Seitz, “System timing,” in Introduction to VLSI Systems, C. A.
Mead and L. A. Conway, Eds. Reading, MA: Addison-Wesley, 1980,
ch. 7.

[10] J. N. Seizovic, “Pipeline synchronization,” in Proc. Int. Symp. Advanced
Research in Asynchronous Circuits and Systems, Nov. 1994, pp. 87-96.

[11] R. F. Sproull and I. E. Sutherland, “Stoppable clock,” Sutherland,
Sproull, and Associates, Tech. Memo. 3438, Jan. 1985.

[12] M. J. Stucki and J. R. Cox Jr., “Synchronization strategies,” in Proc. 1st
Caltech Conf. Very Large Scale Integration, C. L. Seitz, Ed., 1979, pp.
375-393.

[13] K. Y. Yun and R. P. Donohue, “Pausible clocking: A first step toward
heterogeneous systems,” in Proc. Int. Conf. Computer Design (ICCD),
Oct. 1996.

Allen E. Sjogren received the B.S. degree in elec­
trical engineering from the University of Utah, Salt
Lake City, in 1999.

His current research interests are asynchronous cir­
cuit design. Since 1998, he has been an Electrical De­
sign Engineer at the Smurfit-Stone Container Corpo­
ration, Salt Lake City, in the bag packaging equip­
ment division.

Chris J. Myers (M’96) received the B.S. degree in
electrical engineering and Chinese history from the
California Institute of Technology, Pasadena, in 1991
and the M.S.E.E. and Ph.D. degrees from Stanford
University, Stanford, CA, in 1993 and 1995, respec­
tively.

Since 1995, he has been an Assistant Professor in
the Department of Electrical Engineering, University
of Utah, Salt Lake City, where he also serves as Di­
rector for the Center for Asynchronous Circuit and
System Design. His current research interests are in­

novative architectures for high performance and low power, algorithms for the
computer-aided analysis and design of real-time concurrent systems, formal ver­
ification, and asynchronous circuit design.

Dr. Myers received an NSF Fellowship in 1991, an NSF CAREER award in
1996, and a Best Paper Award at Async99.

