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In te rfac ing  Synchronous and  A synch ronous  M o du le s  

W ith in  a H igh-Speed P ip e lin e

Allen E. Sjogren and Chris J. Myers, Member, IEEE

Abstract— This paper describes a new technique for integrating 

asynchronous modules w ithin a high-speed synchronous pipeline. 

O u r  design eliminates potential metastability problems by using a 

clock generated by a stoppable ring oscillator, which is capable of 

driving the large clock load found in present day microprocessors. 

Using the ATACS design tool, we designed highly optimized 

transistor-level circuits to control the ring oscillator and generate 

the clock and handshake signals w ith m in im al overhead. O ur 

interface architecture requires no redesign of the synchronous 

circuitry. Incorporating asynchronous modules in  a high-speed 

pipeline improves performance by exploiting data-dependent 

delay variations. Since the speed of the synchronous circuitry 

tracks the speed of the ring oscillator under different processes, 

temperatures, and voltages, the entire chip operates at the speed 

dictated by the current operating conditions, rather than being 

governed by the worst case conditions. These two factors together 

can lead to a significant improvement in average-case perfor­

mance. The interface design is simulated using the 0.(i-//m HP 

CM OS14B process in H SP IC E .

Index Terms— Asynchronous design, asynchronous pipelines, 

dynamic logic circuit, low control overhead, metastability, stop­

pable clocks.

I. INTRODUCTION

C IRCUIT designers are continually pushing the envelope in 

the race to design faster, more powerful microprocessors. 

Present-day synchronous microprocessors have clock speeds in 

excess of 500 MHz. Distributing a clock signal to all areas of 

a large chip at this speed with minimal clock skew is a task of 

growing complexity. The circuit area, power consumption, and 

design time needed to drive the clock signal to all parts of the 

chip without significant clock skew are overwhelming [4], [1]. 

The clock period must also be long enough to accommodate the 

worst case delay in every module in the worst process run under 

the highest temperature and lowest supply voltage. Thus, any 

speed gained from completing an operation early is lost waiting 

for the clock, which runs at a rate dictated by the slowest com­

ponent running in the worst operating conditions.

Asynchronous circuits have attracted new interest as an alter­

native to synchronous circuits due to their potential to achieve 

average-case performance while eliminating the global synchro­

nizing clock signal. In asynchronous circuits, an operation be-
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gins when all the operations on which it depends have occurred, 

rather than when the next clock signal arrives. This allows asyn­

chronous circuits to operate as fast as possible, taking advantage 

of delay variations due to data dependencies and operating con­

ditions. Thus, well-designed asynchronous circuits can achieve 

better average operating frequencies than synchronous circuits, 

whose speed of operation is dictated by the worst case condi­

tions. One recent example is the Intel RAPPID design [8], a 

fully asynchronous instruction length decoder for the x86 in­

struction set. This chip is three times faster while using only 

half the power of the comparable 400-MHz synchronous part.

The advantages of synchronous circuits, though, cannot be 

overlooked. Some of these advantages include: ease of imple­

menting sequential circuits, simplicity in dealing with hazards, 

and mature design methods and tools. Also, asynchronous 

circuits come with their own set of challenges. Since there is 

no global clock to tell when outputs are stable, asynchronous 

circuits must prevent any hazards, or glitches, on their outputs. 

A false transition on an output from one circuit can cause the 

next circuit to prematurely operate on meaningless results. 

Additional circuitry is used to prevent hazards. This circuitry 

can increase the area and delay of the asynchronous circuit. In 

order to achieve average-case performance, asynchronous cir­

cuits require additional circuitry to start each computation and 

detect the completion of operations. The additional circuitry 

required for asynchronous design can, in some cases, make the 

average-case delay of an asynchronous circuit become larger 

than the worst case delay for the comparable synchronous 

circuit.

The ideal system may use a combination of both synchronous 

and asynchronous circuits. The most appropriate timing disci­

pline could then be applied to each module. Combining the two 

technologies poses a great challenge. It is this challenge that pre­

vents the RAPPID chip from being used in production as the rest 

of the microprocessor is still synchronous. The key difficulty is 

found in trying to avoid synchronization failure. If a clock edge 

from a synchronous circuit changes too close in time to data 

arriving from an asynchronous circuit, the circuit may enter a 

metastable state [2]. A metastable state is a stable state of the 

circuit, which is at neither a logic 0 or logic 1 level, but rather 

lies somewhere in- between. In this case, the data latched from 

the asynchronous circuit may be at an indeterminate value. The 

circuit can reside in this state for a nondeterministic amount of 

time. If this metastable state persists until the next clock cycle, 

the indeterminate data may be interpreted as either a logic 0 

or a logic 1 by different subsequent logic stages. This can lead 

the system into an illegal or incorrect state causing the system 

to fail. Such a failure is traditionally called a synchronization
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Fig. 1. A stoppable ring oscillator clock.

failure [9]. If care is not taken, the integration of more asyn­

chronous circuitry and communication into a system can lead 

to an unacceptable probability of failure.

Many techniques have been devised to address the metasta­

bility problem and avoid synchronization failure when 

interfacing between synchronous and asynchronous modules. 

The simplest approach is to double-latch asynchronous signals 

being sampled by a synchronous module. This increases the 

time allowed for a metastable condition to resolve. The cost, 

though, is an extra cycle delay when communicating data from 

an asynchronous module to a synchronous module, even when 

there is no metastability. This scheme only minimizes the prob­

ability and does not eliminate the possibility of synchronization 

failure, as there is some chance that a metastable condition 

could persist longer than two clock cycles. To address this 

problem, pipeline synchronization can be used. Pipeline syn­

chronization extends the double-latching idea by inserting more 

pipeline latches between the asynchronous and synchronous 

module [10]. While each added latch reduces the probability 

of failure, it increases the latency of communication. Also, 

no matter how many latches are added, some probability of 

failure always remains. Therefore, this scheme only works 

when large communication latencies and some failures can 

be tolerated. This is true of networks, but it is not true of 

high-speed microprocessor pipelines.

To completely eliminate synchronization failures, it is neces­

sary to be able to force the synchronous system to wait an arbi­

trary amount of time for a metastable input to stabilize. In order 

for the synchronous circuit to wait, it is necessary for the asyn­

chronous module to be able to cause the synchronous circuit’s 

clock to stop when it is either not ready to communicate new 

data or not ready to receive new data. Stoppable clocks date back 

to the 1960s with work done by Seitz, which was used in early 

display systems and other products of the Evans and Sutherland 

company [11], [9]. A stoppable clock is typically constructed 

from a gated ring oscillator, as shown in Fig. 1. The basic oper­

ation is that when the RUN signal is activated, the clock operates 

at a nominal rate set by the number of inverters in the ring. To 

stop the clock, the RUN signal must be deactivated between two 

rising clock edges. The clock restarts as soon as the RUN signal 

is reactivated. In other words, the clock can be stopped synchro­

nously and restarted asynchronously.

Numerous researchers have developed globally asynchronous 

locally synchronous (GALS) architectures based on the idea of a 

stoppable clock [9], [12], [3], [7], [5], [13]. In each of these ap­

proaches, communication between modules is done asynchro-

Fig. 2. Basic module of a GALS architecture.

nously using request/acknowledge protocols while computation 

is done synchronously within the modules using a locally gen­

erated clock. The basic structure of such a module is shown in 

Fig. 2. The module’s internal clock is stopped when it must 

wait for data to arrive from, or to be accepted by, the other 

modules. The schemes proposed in [12], [7], [5], [13] allow 

an asynchronous module to request to communicate data to a 

synchronous module at arbitrary times. A mutual exclusion el­

ement is used to guarantee that a synchronous module either re­

ceives data from an asynchronous unit or a pulse from the clock 

generator, but never both at the same time. If the asynchronous 

data arrive too close to the next clock pulse, both the data and 

the clock pulse may be delayed waiting for the metastability to 

resolve, before determining which is to be handled first. The 

schemes proposed in [9] and [3] assume that the synchronous 

unit determines when data are to be transferred to/from the asyn­

chronous modules. This assumption eliminates the need for a 

mutual exclusion element, since the decision to wait on asyn­

chronous communication is synchronized to the internal clock.

This paper describes a new interface methodology for 

globally synchronous locally asynchronous architectures. At 

present, almost every microprocessor is synchronous and 

pipelined. One viable approach to increasing a micropro­

cessor’s speed for a given process is to replace the slowest 

pipeline stages with asynchronous modules that have a better 

average-case performance. If the interfacing problem can be 

addressed, this allows a performance gain without redesigning 

the entire chip. While the entire system communicates 

synchronously, one or more local modules may compute asyn­

chronously. In other words, the system is globally synchronous, 

locally asynchronous.

Our interface methodology, while similar to the GALS 

architectures described in [9] and [3], allows for stages in 

high-speedpipelinestobeeithersynchronousorasynchronous,as 

depicted inFig. 3. In this paper, we use true single-phase clocking 

with Yuan/Svenson latches as in the Alpha [4], configured in 

such a way that data are latched into the next stage on the rising 

edge of the clock. The CLK signal is generated using a stoppable 

ring oscillator. Besides being used to sequence data between 

pipeline stages, the CLK signal is also used to generate the 

handshake protocol that controls the asynchronous modules.
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Fig. 3. Proposed interface methodology.

The interface controller is composed of the stoppable clock 

generator, one handshake control circuit for each asynchronous 

module, and an and gate to collect the ACK signals to generate 

the RUN signal.

The circuit behavior of the interface controller is as follows. 

Shortly after the rising edge of the CLK signal, the RUN signal 

is set low. The RUN signal is set high again only after all the 

asynchronous modules have completed their computation. 

Since data move in and out of each asynchronous module with 

every cycle in the pipeline, no mutual exclusion elements are 

necessary.

The handshaking protocol that has been added for each asyn­

chronous module adds additional delay overhead thath must be 

minimized. Therefore, our interface controller uses new, highly 

optimized transistor-level circuits designed using the ATACS 

design tool [6] to control the ring oscillator and generate the 

clock and handshake signals. By building the stoppable ring os­

cillator clock out of a clock buffer network, our clock is capable 

of driving the large capacitive loads found in present day m i­

croprocessors. Our interface technique does not require any re­

design of the synchronous circuitry. Utilizing a ring oscillator 

to generate the clock signal improves the performance of the 

circuit by allowing the integration of faster asynchronous mod­

ules in the pipeline. Since the speed of the synchronous circuitry 

tracks the speed of the ring oscillator under different processes, 

temperature, and voltage, the entire chip operates at the speed 

dictated by the current operating conditions, rather than being 

governed by the worst case conditions. These two factors to­

gether can lead to a significant improvement in average-case 

performance.

This paper is divided into six sections. Section II describes 

the design of the basic circuits and operation of the interface 

controller. Section III presents an analysis of a clock buffer net­

work similar to the one used in the 300-MHz DEC Alpha [1]. 

Section IV incorporates the clock buffer network into our in­

terface controller so that it can be used in modern high-speed

pipelines. Section V adds a pipeline latch and modifies the in­

terface protocol to reduce the control overhead. Section VI gives 

our conclusions.

II. Basic Interface Controller

This section describes the basic circuitry and operation of our 

asynchronous/synchronous interface controller. We designed 

the interface circuits described here using ATACS [6], a tool 

for the synthesis of timed circuits. Timed circuits are a class of 

circuits in which specified timing information is utilized in the 

design procedure to optimize the implementation. Not only is 

the resulting circuit more efficient, but ATACS also allows us to 

automatically check our timing assumptions. Since the circuits 

in the interface controller are highly time dependent, they 

cannot be designed using traditional untimed asynchronous 

design methods.

The interface controller is composed of two separate sections: 

the stoppable clock and the handshake controllers. Our stop­

pable clock, shown in Fig. 4, is somewhat different from the 

traditional one [9]. Rather than using an AND gate to control 

the starting and stopping of the clock, we use a state-holding 

gate. Our state-holding gate sets CLK high when both RUN and 

PRECLK are high, and it resets CLK when PRECLK is low. 

When synthesizing this gate, we discovered a timing assumption 

in the original design that requires the RUN signal to be active 

until CLK goes low. In order to give more flexibility in setting 

and resetting the RUN signal, we decided to remove this timing 

assumption, resulting in the gate shown in Fig. 4. In our imple­

mentation, the RUN signal can be deactivated at any time after 

CLK goes high until just before the next rising clock edge. A 

similar observation is made in [11], in which a pair of cross-cou­

pled nand gates is added to latch the clock in one of the designs. 

The overhead of the cross-coupled NAND gates is minimized in 

our approach by implementing the circuit at the transistor level. 

The rest of the stoppable clock is a ring oscillator composed of
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Fig. 4. Our basic stoppable ring oscillator clock.

REQ
To async 

module

Fig. 5. Handshake control circuit.

inverters and one NAND gate, which is used to set CLK to low 

during reset. The number of inverters is set such that the delay 

through the ring oscillator is greater than the worst case path 

through the slowest synchronous module.

The second part of the interface controller is the handshake 

control circuit. There is one of these controllers for each 

asynchronous module. The controller is used to translate the 

CLK signal into a four-phase handshake with the asynchronous 

module. In a typical four-phase handshake with an asyn­

chronous datapath element, the signal REQ is asserted high 

when there are valid data on the inputs and computation is 

started. The ACK signal goes high to indicate that computation 

has completed, and there are valid data on the outputs. When 

REQ is set low, the asynchronous module typically resets. One 

very efficient way to implement an asynchronous datapath is to 

use domino dual-rail logic, in which REQ low would precharge 

the logic. When the precharge is completed, the ACK signal 

would go low. This precharge stage eliminates the results of the 

previous computation, so it should not be done until the data 

have been latched into the next pipeline stage. Since data are 

latched into the next stage on the rising edge of the clock, the 

handshake control circuit should hold REQ high until CLK goes 

high to keep the data from the previous calculation stable. After 

CLK goes high, we set REQ low to begin the precharge stage. 

When ACK has gone low, the precharge stage has completed, 

and we can begin the computation by setting REQ high. The 

handshake control circuit is shown in Fig. 5.

If we assume that the precharge stage has completed before 

CLK goes low, we could simply use the CLK signal as the REQ 

signal. This, however, incurs a performance penalty. Typically, 

the precharge stage is only a couple of gate delays while the 

computation stage takes significantly longer. By using ACK to 

generate REQ’s rising, our circuit allows computation to start 

immediately after precharge completes, which gives the com­

putation more time to complete. This is a significant improve­

ment over traditional synchronous domino-logic design, which 

wastes half a clock cycle for precharge. Synchronous designers 

have also noticed this, and they often do what is called “cycle 

stealing” to improve performance.

One may also wonder why there is a second n-transistor gated 

with the ACK signal in Fig. 5. As mentioned above, CLK may 

not be low when ACK goes low since the precharge stage typi­

cally completes very quickly. This transistor cuts off the n-stack 

when ACK goes low, so there is no fight, allowing REQ to go low 

as early as possible. Note that since CLK cannot go high before 

ACK goes high, the falling transition of REQ is always triggered 

by the rising transition of CLK.

There is one other timing assumption, which requires the 

CLK signal to go low before both the precharge and computa­

tion stages complete. Otherwise, it is possible that the precharge 

stage would be reentered, destroying the results of the compu­

tation. We believe this to be a reasonable timing assumption. If 

it does not hold, an additional gate can be added between the 

ACK signal generated by the completion logic and the signal
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Fig. 6. Handshake control circuit with conditioned acknowledgment.

Fig. 7. Idealized waveform for the basic interface controller.

used by the interface control circuits. The handshake control cir­

cuit with the conditioned acknowledgment signal is depicted in 

Fig. 6. The additional gate prevents the rising transition of ACK 

from being seen before CLK goes low. If the timing assumption 

holds, this gate should be omitted since it adds extra circuitry 

and delay on the critical path. In the remainder of this paper, 

we assume that the timing assumption holds, and the handshake 

control circuit used is the one depicted in Fig. 5.

The basic operation of the interface controller is depicted as 

an idealized waveform shown in Fig. 7. For simplicity, we as­

sume there is one asynchronous module, so ACK and RUN are 

the same signal. Initially, R E S E T  is asserted low, which sets 

the CLK signal low and REQ signal high. With the REQ signal 

high, the asynchronous datapath module eventually sets ACK 

high during reset. Each cycle after R E S E T  is deasserted and 

the interface controller sets CLK high, which latches the data 

for each pipeline stage and causes the asynchronous modules 

to precharge by asserting the REQ signal low. When an asyn­

chronous module completes precharge, it sets its ACK signal 

low. After ACK has gone low, the computation can be started 

by asserting REQ high. When an asynchronous module com­

pletes computation, it asserts its ACK signal high. Note that the 

computation can start anywhere in the clock cycle, but it must 

not complete before CLK goes low. During precharge and com­

putation, the CLK signal goes low and prepares to go high. If 

any of the asynchronous modules have not asserted their ACK 

signal, the rising edge of the CLK is delayed until all the asyn­

chronous modules have completed their computation.

We simulated the basic interface controller in H S P I C E  using 

the 0.6-/MH HP CMOS14B process. This process is used for a 

120-MHz HP PA-7200 RISC microprocessor. Therefore, we set

the ring oscillator clock to run at approximately 120-MHz worst 

case by using 19 gates in the ring (1 NAND gate, 16 inverters, the 

clock stopping gate, and its staticizer). We modeled the datapath 

using a chain of domino buffers as shown in Fig. 8. This circuit 

has the property that after REQ goes high, ACK goes high after 

a delay through the entire buffer chain, while after REQ goes 

low, ACK goes low after the delay of one domino buffer. Two 

waveforms are shown in Fig. 9 under worst case process and 

operating conditions. The first shows operation when the asyn­

chronous unit finishes early. In this case, the CLK signal runs at a 

fixed rate. The second shows operation when the asynchronous 

unit finishes late, which stops the clock until after ACK goes 

high.

Table I shows the tabulated delay results under four different 

process and operating conditions. The first column shows the 

worst case conditions (high temperature, low voltage, worst case 

n- and p-type transistors). The middle two columns show more 

typical process and operating conditions running hot and cool, 

respectively. The last column shows the best case conditions. 

The first row shows the delay of the ring oscillator with RUN 

(i.e., ACK) set high early. The frequency of the ring oscillator 

clock varies from 122 to 285 MHz. Since the ring oscillator is 

built on the same chip as the rest of the circuits, the variations 

in delay of the other circuits track the variation in delay of the 

ring oscillator. This translates directly into an improvement in 

performance for not only the asynchronous circuitry but also the 

synchronous circuitry. In other words, if the chip becomes hot, 

both the ring oscillator and logic circuits slow down. If the chip 

becomes cool, both the ring oscillator and logic circuits speed 

up. The same effect would take place for voltage and process 

variations. The next three rows show the delays in the interface
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Fig. 8. Domino buffer chain used to model the datapath.

Fig. 9. HSPICE results for the basic interface controller.

TABLE I
Basic Interface Controller

Temperature
Voltage
Process

90° C 
3.0V 

Worst

70° C 
3.3V 

Typ

25° C 
3.3V 

Typ

0°C
3.6V
Best

CLKt ->■ CLK t 8.22 ns 5.42 ns 4.02 ns 3.51 ns
C L K \  ->• R E Q  4. 0.99 ns 0.72 ns 0.58 ns 0.52 ns
ACK], -> R E Q  f 0.38 ns 0.28 ns 0.22 ns 0.19 ns
ACK-\ -»• CLK t 0.75 ns 0.64 ns 0.57 ns 0.48 ns
Precharge & 
computation 6.10 ns 3.77 ns 2.65 ns 2.32 ns

control gates. The last row shows the amount of time that is 

available from the clock cycle for precharge and computation 

without stopping the clock. This is calculated by subtracting 

the control overhead from the minimum ring oscillator delay 

under the given conditions. This shows that the control overhead 

of using an asynchronous module is between 25-35% of the 

cycle. This means that an asynchronous module needs to have 

an average-case performance that is at least 35% less than the 

worst case performance of the comparable synchronous module 

in order to see a performance gain. It should be noted that in 

these calculations, the added delay needed for clock skew and 

latch setup time has been neglected. It assumed that these values 

are comparable for both the pure synchronous and mixed syn­

chronous/asynchronous pipelines. If it is considered, it would 

serve to reduce the usable clock cycle increasing the percentage 

lost to handshake overhead.

III. Clock Buffer Tree Analysis

In order to stop the clock signal in a modern high-speed mi­

croprocessor, one must first understand how the clock signal is

buffered. Ideally, a clock signal is distributed to every point in 

the chip at nearly the same time, in phase, with fast rise and fall 

times. However, this is not an easy task. The capacitive load seen 

by the clock can be astronomical. For example, the 300-MHz 

DEC Alpha microprocessor has a clock load of 3.75 nF [1]. 

In order to drive such a substantial load, the clock is buffered 

through ten stages fanning out to 96 branches. The clock buffer 

tree is depicted in Fig. 10 [1]. The crystal clock from the I/O pin 

is fed into the trunk of the network, and it is distributed to all 

points through buffered branches. There are shorting bars be­

tween the outputs of each buffer stage, which smooth out any 

asymmetry in the incoming wavefront. The result is that each 

level of inverters in the clock tree is equivalent to a single par­

allel n-transistor and a single parallel p-transistor. The final CLK 

driver inverter has an equivalent transistor width of 58 cm.

A concern with the buffer tree is the amount of delay through 

it for one clock pulse. If the delay is long enough, multiple clock 

pulses would be propagating through the tree. In this case, if the 

clock needs to be stopped, the decision may need to be made one 

or more clock cycles in advance. To measure the severity of this 

problem, we measured the delay through a clock buffer network 

similar to the 300-MHz DEC Alpha’s. Since all branches are 

identical, we recreated one complete branch of the 96 branches 

and simulated it using HSPICE. The part of the clock tree sim­

ulated is shown in Fig. 11. The nonterminated branches fan out 

to make up the other 95 individual branches. These nontermi­

nated branches are used to simulate the capacitive loading on 

each stage of the single branch. The buffer tree is terminated 

with a 0.039-nF capacitor to model the portion of the load this 

branch is responsible for driving. We ran the CLKin frequency 

at 120 MHz, since as mentioned before this appears to be about
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Fig. 10. Clock buffer network for the 300-MHz DEC Alpha RISC microprocessor.

Fig. 11. Clock buffer tree model simulated in HSPICE.

DDD - - - • A A A A a-4 Jfo □ -B- BOD

:

a ed ■ —ea ODD A b □ □ E3 CK 1 . . A
:

buffertree

Fig. 12. Delay from CLKin to CLK modeled in HSPICE.

TABLE II
Delay Between CLKin and CLK Through Clock Buffer Tree

Temperature 90° C 70° C 25° C 0°C
Voltage 3.0V 3.3V 3.3V 3.6V
Process Worst Typ Typ Best

C L K in t  C L K  f 3.16 ns 2.35 ns 2.17 ns 1.72 ns
C L K in l  C L K  I 2.83 ns 2.05 ns 1.88 ns 1.41 ns

the maximum clock rate for a synchronous microprocessor in 

the 0.6-/nm HP CMOS 14B process. Our simulation of this clock 

buffer tree under worst case conditions is shown in Fig. 12. This 

figure shows that a transition on the CLK signal at the I/O pin

is actually seen on the internal CLK signal up to nearly half a 

cycle later. Delays through the clock buffer network are shown 

for various conditions in Table II. Our results show that the delay 

through the tree ranges from 1.41 to 3.16 ns. Thus, with a clock 

period of 8.33 ns (i.e., a clock frequency of 120 MHz), there is 

only one clock pulse in the tree at a time.

While our simulated results are encouraging, in that the de­

cision to stop the clock does not need to be made one or more 

cycles ahead, the buffer tree makes it difficult to find the right 

time and place in which to stop the clock. In the GALS ap­

proach, if the microprocessor is to be considered as the locally 

synchronous component, these techniques would try to stop the
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Fig. 13. Stoppable ring oscillator clock with buffering.

Fig. 14. HSPICE results for the interface controller with buffering.

clock at the I/O pin. The result would be that the clock is stopped 

nearly half a cycle too late. One of the major results of this paper 

is that the interface methodologies described in the subsequent 

sections are designed to work in an environment with such large 

clock buffer networks.

IV. INTERFACE CONTROLLER WITH CLOCK BUFFERING

This section describes a modification of the basic interface 

controller to allow it to work in systems with large clock buffer 

networks. The basic idea is that the clock buffer network is used 

as part of the ring oscillator to generate the clock, as depicted 

in Fig. 13. The gate used to stop the clock is located at each 

of the leaves of the clock tree and makes up the last two in­

verter stages of the clock buffer network. For simulation, we 

use transistor sizes similar to those used in the 300-MHz DEC 

Alpha as in the previous section. This means that the n-transis- 

tors in the clock stopping gate are more than 300 /nm wide (the 

p-transistor is more than 600 /nm), and more than 1 mm wide 

in the output inverter. As in the clock buffer network discussed 

in the previous section, there are shorting bars between the out­

puts of each buffer stage. This means there is a single global 

clock wire distributed around the chip. Since the RUN signal is 

generated from near-minimum size gates in the asynchronous 

datapath logic, it must also be buffered in order to control such 

a large gate. The buffer tree for the RUN signal is very sim­

ilar to the one for the CLK signal. This results in a substantial

delay from when ACK is asserted by the asynchronous modules 

to when the RUN signal is actually asserted.

Fig. 14 shows an H S P I C E  simulation of the interface control 

circuit in Fig. 13 under the worst conditions. The top plot shows 

the CLK and REQ signals, and the bottom plot shows the ACK 

and RUN signals. The simulation assumes that there is only one 

asynchronous module. If multiple asynchronous modules are 

used, all of their ACK signals would have to be ANDed together 

to produce the RUN signal. This additional AND operation would 

not substantially change the overall delay from ACK to RUN, 

as it is small in comparison to the buffer network, and it could 

be made to serve as part of the buffer network. The simulation 

shows that RUN falls over 2 ns after ACK falls. To prevent a 

synchronization failure, RUN must fall before CLK is ready to 

rise again. Assuming the precharge delay is short, RUN falls 

well before CLK can rise. The falling delay of RUN is not on the 

critical path, as computation is done in parallel with this delay. 

The rising delay of RUN is on the critical path, as the next rising 

CLK edge cannot come until after RUN goes high.

We simulated the interface controller with buffering in 

HSPICE under several different conditions and tabulated the 

results in Table III. The results show that when buffering is 

taken into account, the control overhead is now from 54 to 

57% of the clock cycle time. This means that in a high-speed 

microprocessor, an asynchronous module needs to have an 

average-case performance that is at least 54% faster than 

the worst case performance of the comparable synchronous
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TABLE III 
Interface Controller with Buffering

Temperature
Voltage
Process

90° C 
3.0V 
Worst

70° C 
3.3V 
Typ

25° C 
3.3V 
Typ

0°C
3.6V
Best

CLKt -+ CLK t 7.94 ns 5.58 ns 4.98 ns 3.66 ns
CLK\ -¥ REQ | 1.10 ns 0.82 ns 0.74 ns 0.57 ns
ACK\. REQ t 0.38 ns 0.28 ns 0.26 ns 0.19 ns
ACK\ -4  RUN t 2.32 ns 1.62 ns 1.47 ns 1.10 ns
RUNf -> CLK f 0.49 ns 0.34 ns 0.30 ns 0.23 ns
Precharge & 
computation 3.66 ns 2.41 ns 2.19 ns 1.57 ns

module in order to see a performance gain. While the good 

news is that an asynchronous module can be inserted into a 

high-speed microprocessor with minimal design changes, the 

bad news is that the applications where it results in a substantial 

performance improvement may be severely limited.

V. Pipelined Interface Controller

As shown in Table III, the largest overhead in the interface 

controller with buffering is the delay from ACK  s rising through 

the RUN signal's buffer network until RUN rises. This consti­

tutes about 30% of the clock cycle time. During this time, no 

useful work is being done. Recall that the delay from ACK  s 

falling to RUN's falling is hidden behind the computation delay, 

so it is not on the critical path. We would like to hide the rising 

delay of the RUN signal behind the precharge delay, so useful 

work can be done in parallel with this delay. The problem is, 

however, that we cannot begin the precharge stage until CLK 

rises, latching the results from the previous computation. To 

solve this problem, we have added an additional pipeline reg­

ister after each asynchronous module. As depicted in Fig. 15, 

this new register latches data on the rising edge of the ACK 

signal. Therefore, as soon as the computation is completed, the 

new data are latched, so that the precharge stage can start imme­

diately and run in parallel with the rising delay for RUN through 

the buffer tree.

This new design requires anew interface protocol and several 

changes to the interface control circuitry. The stoppable clock 

circuit is basically the same as before with one small excep­

tion. We need to move the nand gate used for resetting the stop­

pable clock up into the buffer network to remove a race between 

starting the clock and lowering the RUN signal after initializa­

tion. The handshake control circuit has to be redesigned, and the 

new circuit is shown in Fig. 16. In the new interface protocol, the 

precharge stage is completed in parallel with the RUN signal and 

subsequent to the CLK signal’s being set high. Therefore, when 

CLK goes high, we are ready to start a new computation imme­

diately by setting REQ high. When ACK goes high, the com­

putation is completed, and the results are latched into the new 

pipeline latch. At this point, the precharge stage can be started by 

resetting REQ . Note that there is an extra p-transistor gated on 

CLK's being low before REQ goes high. This transistor is nec­

essary to guarantee that the REQ signal is not being pulled high 

and low at the same time. If the computation delay is guaranteed 

to be longer than half a clock cycle, then CLK is always low be­

fore ACK goes high. This timing assumption would allow this

p-transistor to be removed. In the following analysis, we left the 

transistor in to allow more variance in the computation comple­

tion timing. If we can guarantee the timing assumption, it would 

improve our results somewhat by speeding up the falling delay 

of REQ .

Fig. 17 shows an H S P I C E  simulation of the pipelined inter­

face control circuit under the worst case conditions. This figure 

illustrates some of the timing assumptions needed to make this 

design work. The first thing to notice is that RUN goes low in 

response to ACKs going low in the previous cycle. If RUN falls 

too soon, CLK cannot rise. Therefore, ACK cannot fall earlier 

than the size of the ACK-to-RUN delay before CLK rises. Also, 

since CLK sets REQ high to start the computation, ACK must 

fall, signaling the end of the precharge stage, before CLK rises. 

When the CLK is being stopped by an asynchronous module, 

this timing assumption is easily met. At other times, this puts a 

1-2 ns window (depending on conditions) on when ACK is al­

lowed to fall. If the computation can be fast enough to violate 

this timing assumption, it can be easily fixed by adding a min­

imum bundled delay path to the violating asynchronous module. 

This minimum delay path would cause the rising transition of 

the ACK signal to be delayed in the fast cases. Note that this 

does not affect performance because if an asynchronous module 

is computing fast enough to avoid stopping the clock, its actual 

speed does not affect the speed of the chip.

Simulation results for the pipelined interface controller are 

given in Table IV for several different process and operating 

conditions. In this design, the only control overhead is when 

REQ is changing state. From the time that ACK goes high until 

the time when CLK goes high, this circuit can reset REQ and 

precharge. As mentioned above, the precharge stage must com­

plete before CLK goes high, but there is plenty of time available 

under all conditions. Other than when REQ is being set high or 

the CLK is being set high after the previous computation (i.e., 

after ACK goes high), the rest of the time is available for compu­

tation. This means that nearly 60% of the clock cycle is available 

for computation, while useful work (precharge plus computa­

tion) can be done in nearly 75% of the clock cycle. Therefore, 

for the pipelined interface controller, the asynchronous module 

only needs to be around 25% faster on average than its compa­

rable synchronous module. This significantly improves the ap­

plicability of using mixed synchronous/asynchronous design.

VI. CONCLUSION

Mixing synchronous and asynchronous modules within 

a high-speed pipeline shows a lot of promise to improve 

processor performance. The challenge is to do so without 

synchronization failure while minimizing communication 

latency and control overhead. This is further complicated by 

the large clock buffer tree networks in current high-speed 

microprocessors. Our analysis of a typical clock tree shows that 

while the delay in these networks is substantial, only one pulse 

is in the network at a time. This makes it possible to construct 

a stoppable clock-based interface control. Our initial stoppable 

clock-based interface controller integrates the clock buffer 

network into the ring oscillator, but it loses over half of the 

clock cycle to control overhead. By adding additional registers,
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Fig. 15. Interface controller with pipeline latch.

Fig. 16. New handshake control circuit.

Fig. 17. HSPICE results for the pipelined interface controller design.

our pipelined interface controller can hide all of the control 

overhead due to the clock buffer network, reducing the control 

overhead to about 25%. While this limits the applicability of 

these methods to cases where there is a substantial performance 

gain due to data dependence, this shows that it is feasible, even 

in a very adverse environment such as a modern high-speed 

microprocessor. The performance gains are achieved with only 

minimal design changes. In addition to performance gains due 

to data dependence in asynchronous modules, a by-product

of using a ring oscillator clock is that even the synchronous 

circuitry adapts to operating conditions. This can improve 

performance by up to 100%, and the design will typically run 

about 50% faster.

However, many challenges remain. First, no commercial m i­

croprocessor uses or is considering to use an on-chip ring oscil­

lator as a clock generator. The reason is that it would have in­

adequate jitter control and poor noise rejection, as well as other 

problems. If an external clock is used, it would be impossible to
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TABLE IV
Pipelined Interface Controller

Temperature
Voltage
Process

90° C 
3.0V 
Worst

70° C 
3.3V 
Typ

25° C 
3.3V 
Typ

0°C
3.6V
Best

CLK'f CLK t 7.79 ns 5.44 ns 4.93 ns 3.64 ns
CLKt -y REQ f 0.54 ns 0.48 ns 0.45 ns 0.29 ns
ACK-\ -> REQ 4 1.47 ns 1.04 ns 0.94 ns 0.71 ns
ACKf -> RUNt 2.18 ns 1.52 ns 1.39 ns 1.03 ns
RUN-\ -»• CLK t 0.45 ns 0.34 ns 0.30 ns 0.23 ns
Precharge 1.16 ns 0.82 ns 0.75 ns 0.55 ns
Computation 4.61 ns 3.09 ns 2.80 ns 2.09 ns

stop it with zero chance of synchronization failure. Therefore, in 

the future, either the problems with ring oscillator clock genera­

tors must be resolved or techniques to minimize the probability 

of synchronization failure when using an external clock need to 

be developed.

Another serious challenge is that as technology improves, 

the amount of delay in the clock tree will increase to the point 

where it exceeds a clock cycle. In this case, the determination 

of whether the clock needs to be stopped may need to be done a 

clock cycle early. This would require the ability to quickly ana­

lyze a future computation to determine conservatively whether 

the clock will need to be stretched. Therefore, another inter­

esting area of future work would be the investigation of such 

prediction structures for key pipeline components.

While in this paper we only presented the use of a single asyn­

chronous module, if multiple asynchronous modules are used, 

our performance is dictated by the slowest module. In order to 

mitigate this problem, we plan to investigate more complicated 

pipeline structures. For example, if the architecture is decom­

posed into multiple clock domains connected by asynchronous 

first-in first-out, each domain would be allowed to run at its own 

rate. Finally, we would like to design a test chip using this in­

terface technology to control a pipelined processor.
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