
A Comparison of Self-Timed Design using FPGA, CMOS, and GaAs
Technologies

E. Brunvand* N. Michell K. Smith

Dept. of Computer Science, University of Utah
Salt Lake City, UT, 84112

Abstract

Asynchronous or self-timed systems that do not rely on a
global clock to keep system components synchronized can
offer significant advantages over traditional clocked cir­
cuits in a variety of applications. One advantage is that
because of the separation of timing from functionality in
these systems, the same circuit may be implemented in a
variety of technologies without modification to the circuit.
In this paper we explore one approach to se(f-timed de­
sign and describe implementations of an example circuit in
three different technologies. The simple routing chip used
as the example has been described by writing a program
in OCCAM, translated into a circuit consisting of a small
set of basic modules, and implemented using Acte! FPGA,
CMOS, and GaAs technologies.

1 Introduction

As VLSI technology improves, the systems that can
be built become larger, faster, and more complex. Along
with these improvements, however, come many problems
directly associated with the speed and scale of the new sys­
tems. Asynchronous design is currently attracting renewed
interest as a method for coping with some of the problems
associated with improved VLSI technology.

In this paper we present an example of a simple self­
timed routing chip implemented in three different integrated
circuit technologies. This demonstrates our ability to de­
sign functioning self-timed modules in three very ditferent
technologies and gives evidence that self-timed design is
useful across technologies with very different performance
characteristics.

The example chip is described as an OCCAM program
and translated automatically into a self-timed circuit [6].
This circuit is described in terms of a small set of modules

·TItis work is supported in part by DARPA award .I.FBI.89.102, and
in part by NSF award Mlp·9115372

1063-6404/92 $3.00 <I:> 1992 IEEE
76

designed to facilitate this style of self-timed design [3, 11].
If these modules are available in different technologies then
the same circuit can be easily implemented in whichever
form best suits the application. The self-timed nature of the
module library assures that the same circuit will continue to
function correct! y regardless of the timing characteristics of
the implementation technology. In fact, parts of the system
may be upgraded into different technologies and substituted
into the complete system incrementally. Because the parts
are self-timed, the entire system will continue to function
despite the different speeds of the component parts.

The self-timed modules used in this example system are
currently instantiated as a set of macros for Actel field pro­
grammable gate arrays (FPGAs) [1, 4], as a set of CMOS
cells using the MOSIS SCMOS technology [6], and as
Gallium Arsenide (GaAs) cells used with the PPL design
environment [8]. We describe implementations of the au­
tomatically generated router circuit in each different tech­
nology.

2 Circuit Modules

Although self-timed circuits can be designed in a variety
of ways, the circuits considered here predominantly use
two-phase transition signalling for control and a bundled
protocol for data paths. Two-phase transition signalling
uses transitions on signal wires to communicate. Only the
transitions are meaningful; a transition from low to high is
the same as a transition from high to low and the particular
voltage on each wire is not important. The communication
protocol uses two wires: A wire called Req to request
service, and a wire called Ack to acknowledge completion
of that service.

A bundled data path is a compromise to complete self­
timing that uses transition control wires and a set, or bun­
dle of conventional data wires. The bundling constraint
requires that the data bundle and the control wires be con­
structed such that the value on the data bundle is stable at the
receiver before a signal appears on the control wire. This

condition is similar to, but weaker than, the equipotential
constraint [10]

The circuit modules used in all three technologies are
based on those described in more detail elsewhere [6,3,11].
They include the following circuits:

Merge The "OR" function for transitions, implemented by
an XORgate.

Join The "AND" function for transitions, implemented by
a C-element.

Call A module that acts as a hardware subroutine call al­
lowing multiple access to a shared resource. The Call
module routes the Req signal from a client to the sub­
routine, and after the subroutine acknowledges, routes
the Ack back to the appropriate client. The requests
must be mutually exclusive.

Select A module that steers an input transition to one of two
outputs based on the value of a Boolean select signal.
The select signal is a bundled signal with respect to
the input transition.

Q-select A module like a select, except the select signal
is not bundled and may be changing even when the
Q-select is looking at it. Thus, it requires some way
of sampling the select signal reliably.

Latch A module that latches bundled data signals upon
receipt of transition control signals.

Carry Completion Adder A form of adder that reports
when the addition is complete by sensing when the
carry chain is complete.

3 Example: A Simple Routing Chip

The example circuit, whose block diagram is shown in
Figure 1, is a switch for cut-through packet routing in a mul­
tiprocessor interconnection network similar to the Torus
Routing Chip described by Dally and Seitz [7].

This routing circuit was designed by writing a program
in a version of OCCAM [9, 6], a concurrent programming
language useful for describing collections of small con­
current processes that cooperate through communication.
This program description, shown in Figure 2, was translated
automatically to a circuit description using a technique de­
scribed elsewhere [6]. This translation process results in a
netlist of circuit modules from the set of modules described
earlier.

This version of the router uses four-bit wide data paths
on all channels extended with a single tag bit to indicate
the end of a packet. Address information is contained in

77

Figure 1: Routing Circuit Block Diagram

the first two words of a packet. Packets are routed first
in X and then in Y. The first word is used as the current
address and decremented as the mesh-element reads it. If
the result is non-zero, the packet is forwarded in the same
direction it came from; if the result is zero, the word is
dropped and the packet changes direction. When the Y
address is decremented to zero, the packet has arrived at its
destination and is routed to the attached processor.

An abstract schematic for the control part of a single
router macro is shown in Figure 3. Note that it takes two
router macros to make a single mesh-element macro as
shown in Figure 1, so the full mesh-element control requires
two copies of the schematic.

The control path of the router uses a pair of Q-select
macros connected in a ring to check, in round-robin fash­
ion, whether data are available on either of the two input
channels. When the channel indicates that there are data
available, the router begins accepting a packet from that
channel. The router will consume an entire packet from
that channel and then check for further packets beginning
with the other input channel.

The data path of the router includes a carry completion
decrement unit to decrement the address ofincoming pack­
ets. When the address reaches zero the packet switches
directions in the router. InCOming words from the packet
are buffered in a transition latch.

3.1 Actel FPGA Implementation

The self-timed modules described earlier have been im­
plemented as a library of macro cells for use with Actel field
programmable gate arrays. The library is integrated with
the Workview suite of schematic capture tools offered by
View Logic. These modules are all implemented in terms
of the basic cell library provided by Actel [1], and have
been implemented and tested for functionality.

Control modules all use two-phase transition signalling
and are implemented in a small number of Actel basic logic
modules ranging from a single logic module for a C-element

'>----.. Top

Figure 3: Control Path for a Router Macro

or XOR, to five logic modules for a Call module, and up to
eight logic modules for a Q-select module.

For example, consider a C-element. The two-input ver­
sion of this gate will force its output low when both inputs
are low. The output will stay low until both of the inputs are
high at which time the output also goes high. If the inputs
are in opposite states, the output holds its last value. The
library implementation of this circuit is shown in Figure 4
using the MXT multiplexer macro from the~ctel macro
library. This version of the C-element has a clr signal that
forces the output and internal state of the C-element low.
The Actel module on the left of the figure implements the
function of the C-element, and the module o~he right
forces the output and internal state low on a clr signal.
If the clearing signal is not required, the C-element may
be implemented using a single Actel macro. Other control
modules are similarly assembled using the basic cell library
provided by Acte!.

Data path modules are also implemented using the Actel
basic cell library. A transition latch, for example, is imple­
mented in a single Actel logic module. A carry-completion
adder bit, on the other hand, requires five Actellogic mod­
ules.

The small size ofthe Actel basic macro makes it an ideal
choice for implementing nove! circuit structures. The self­
timed modules are each implemented in a small number of
Actel basic modules and have been tested for functionality.
More detailed descriptions of the implementations of these
modules can be found in other documents [4, 5].

The Actel version of the routing chip has been imple­
mented using an Actel IOWA FPGA. This FPGA contains
295 Actel logic modules which, according to Actel, are
equivalent to 1200 gate array gates, or 3000 PLDILCA

7X

gates [1]. The automatically generated netlist was con­
nected manually using the ViewDraw schematic capture
system and the placement and routing information for the
Actel part was generated using Actel's ALS software [1].
This example version uses 39 I/O pins and 294 Actellogic
modules and corresponds to 99% utilization of the logic
modules available on the Actel 101 OA FPGA. The chip has
been programmed and tested for functionality, and correctly
implements the function of the mesh-element.

3.2 CMOS Cell Set Implementation

The CMOS version of the self-timed module library has
been implemented using the MOSIS SCMOS design rules.
This allows the designs to be fabricated using a variety of
scaling factors through the MOSIS Chip brokerage service.

The implementation of a C-element as a CMOS module
is shown in Figure 5. The stack of transistors at the left
of the figure implement a dynamic inverting C-element.
When both inputs are low, the output of that stack is pulled
high. When both inputs are high, and CLR is not asserted,
the output is pulled low. The transistor network on the
right inverts the output of the stack to become the output
of the C-element, and provides the feedback to hold the
C-element output at its current value when the inputs are in
different states.

The other control and data modules are also imple­
mented as small collections of CMOS transistors. These
modules range in size from twelve transistors for an XOR
module, to around a hundred transistors for the more com­
plex modules. The CMOS implementations are described
in more detail in other documents [6].

The mesh-element router example contains ',::;:f,7,500 tran-

;; Start with some definitions
(Defvar *width* 5) ;Define the data path width
(Define "eop· '(subseq data (1- *width*) (1- *width*))) ;Alias for tag bit
(Add-Gate "notzero· '(*width* 1)) ;Gate to sense non-zero address
(Add-Gate "deer" '(*width* *width*)) ;A decrement-by-one gate
;; Send data from in to out while data are not tagged
(Process send-data ((Chan in out))

(While (not eop) ;while data are not tagged
(! out data) ;send data out
(? in data)) ;and get the next byte

(! out data)) ;send last byte
;; Switch data from input to one of two outputs depending on 1 st byte.
(Process switch-data ((Chan in Aout Bout))

(If ((notzero data) ;if data are non-zero
(send-data in Aout)) ;send it out on Aout

(True ;otherwise
(? in data) ;drop it, get new byte
(send-data in Bout)))) ;and send out on Bout

;; Take data from whichever input channel is ready and route it to
;; either of the two output channels.
(Process router ((Chall Ain Bin Aout Bout))

(Block ((Var data(*width*))) ;define a local variable
(While True ;do forever

(Fair-alt ;choose fairly
((True (? Ain data)) ;data on the A input

(Set data (decr data)) ;decrement address
(switch-data Ain Aout Bout)) ;send out data

((True (? Bin data)) ;data on the B input
(Set data (deer data)) ;decrement address
(switch-data Bin Aout Bout)))))) ;send it on out

;; The router element. Route data streams first in the X and then
;; in the Y direction based on information in header bytes
(Process mesh-element ((Chall Xin Yin Pin Xout Yout Pout))

(Block ((Chan mid(*width*)))
(Par

(router Pin Xin Xout mid) ;route in X direction
(router mid Yin Yout Pout)))) ;route in Y direction

Figure 2: A Simple Routing Process

sistors using the current version of the CMOS cell library.
These cells were designed conservatively with extra tran­
sistors used to buffer inputs and outputs of the individual
modules. The resulting layout using a 21l CMOS pro­
cess with placement and routing by the MOSIS Fusion
service [2] measured 4164 by 2104 microns and fit into a
MOSIS standard 40-pin 4600 by 6800 micron pad frame.
The chip was then fabricated through MOSIS and tested.

3.3 GaAs PPL Implementation

The module library has also been implemented in GaAs
as a set of cells for use with the PPL tools developed at the
University or Utah [8]. The modules are designed using
direct-coupled FET logic (OCFL) circuits and fabricated
by Vitesse through the MOSIS chip brokerage service.

The OCFL style of GaAs circuits encourages the use
of NOR gates as circuit building blocks. For example,

79

Figure 4: Actel Implementation of a C-Element with Clear

A

B

~----~I I I
Dynamlc Statlc Feedback =-"- El emen. t"

Figure 5: A Static CMOS C-element

the OCFL version of a C-element is built from a two­
level network of NOR gates which implement the function
A . B + A . Out + B . Out. Other self-timed control and data
modules are similarly implemented using predominantly
NOR-style circuits.

To gain experience with GaAs technology we have built
several PPL GaAs test chips and the results have been very
positive. One test chip contains ring oscillators, a self­
timed 8-bit counter and pieces of the control section of
the self-timed router. All parts of this test Chip have been
found to function correctly. Ring oscillator delays as low
as 60ps unloaded, and 128ps loaded have been measured.
Test results show that the self-timed counter built using
Toggle modules and XOR gates counts at an average rate
of 300MHz. The fastest chip counted at 400MHz. The
pieces the router include the Q-select loop in the control
path that implements the OCCAM ALT statement, and, as a
separate piece, the remainder of the control path for a single
two by two router. A single transition takes 7ns to com­
plete one circuit of the Q-select loop used to choose which
input channel to accept an incoming packet from. A single
transition also takes 7ns to traverse the loop constructed
from the remaining pieces of the control path.

The GaAs version contains only a single router element
rather than the full two-router mesh element. The chip is
implemented using Vitesse's 1.2fJ GaAs DCFL technology

Table 1: Comparison of Three Versions of the Example
Router

Input One Router Two Router
Technology Time Latency Latency

ActelFPGA I32ns I80ns 333ns
I.2p. CMOS

SCMOS Cells 59ns 73ns 132ns
2p. CMOS
GaAs PPL 4ns 9ns NA

I.21t DCFL GaAs

and measures 2670Jl x 2230Jl with 1860Jl x 1308/1 available
for active circuitry in the form of PPL tiles. For this circuit,
these tiles contain ~4,OOO GaAs transistors.

3.4 Performance Measurements

Performance data for the three different implementations
is shown in Table 1. The performance numbers presented
for the implementations will be in terms of the elapsed time
between the issuing of a request signal to the Chip and the
assertion of an acknowledge signal by the chip. The first
number is how quickly an implementation can accept new
words at an input channel. The second and third numbers
measure the latency of a single word through the mesh­
element. Recall that the mesh-element is made up of two
copies of a two by two router circuit. Depending on the
address in the header, data must pass through one or both of
those routers. The performance of the parts is the measured
time between an input request, and the output request at the
appropriate output channel. The times reported for the
three implementations are for the data words and not the
address word. The first word of a packet, being an address,
incurs an extra delay through the decrement module that is
not required for subsequent data words of a packet.

4 Conclusions

Many of the advantages of self-timed circuits over more
traditional synchronous circuits stem from the separation
of timing from functionality found in self-timed designs.
This allows a single self-timed circuit to be implemented
in a variety of technologies each displaying very different
performance characteristics. To demonstrate this flexibil­
ity, we have implemented an example self-timed circuit in
three different technologies and compared the results.

The example routing circuit was compiled automatically
from an OCCAM program description. The result of this
compilation is a netlist of circuit modules from a small set
of self-timed primitives. These primitives are currently im­
plemented in three technologies: macros for use on Actel

-----,----

80

FPGAs, a set of CMOS cells, and a set ofOCfL GaAs cells.
These technologies represent a wide range of price and per­
formance characteristics. They also suggest an interesting
development path for experimenting with self-timed design
styles. Novel designs may be prototyped quickly using the
FPGA version of the module library. As the system be­
comes more stable, parts of the system may be recast in a
faster or denser technology to incrementally improve sys­
tem performance. The self-timed nature of the circuits
allows this incremental replacement and mixing of parts
that operate at different speeds with no change to the cir­
cuit or retiming of the system. All that is required is to
implement that circuit part using a different technology.

References

[1] Actel Corporation. ACT Family Field Programmable
Gate Array Databook, March 1991.

[2] Ronald F. Ayres. FUSION: A new MOSIS service.
Technical Report ISIfIM-87-194, Information Sci­
ences Institute, 1987.

[3] Erik Brunvand. Parts-R-Us: A Chip aparts ... Techni­
cal Report CMU-CS-87-119, Carnegie Mellon Uni­
versity, 1987.

[4] Erik Brunvand. A cell set for self-timed design us­
ing actel FPGAs. Technical Report UUCS-91-013,
University of Utah, 1991.

[5] Erik Brunvand. Implementing self-timed systems
with FPGAs. In W. R. Moore and W. Luk, editors, FP­
GAs, chapter 6.2, pages 312-323. Abingdon EE&CS
Books, 1991.

[6] Erik Brunvand. Translating Concurrent Communi­
cating Programs into Asynchronous Circuits. PhD
thesis, Carnegie Mellon University, 1991. Available
as Technical Report CMU-CS-91-198.

[7] William l. Dally and Charles L. Seitz. The torus rout­
ing chip. Distributed Computing, 1: 187-196,1986.

[8] lun Gu and Kent F. Smith. A structured approach for
VLSI circuit design. Computer, November 1989.

[9] Inmos. Occam Programming Manual, 1983.

[10] c. L. Seitz. System timing. In Mead and Conway,
Introduction to VLSI Systems, chapter 7. Addison­
Wesley, 1980.

[11] Ivan Sutherland. Micropipelines. CACM, 32(6),
1989.

