
LIGHTWEIGHT CAPABILITY DOMAINS: TOWARD

DECOMPOSING THE LINUX KERNEL

by

Charles Jacobsen

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

December 2016

Copyright c© Charles Jacobsen 2016

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of Charles Jacobsen

has been approved by the following supervisory committee members:

Anton Burtsev , Chair 06/13/2016
Date Approved

Zvonimir Rakamaric , Member 06/10/2016
Date Approved

Ryan Stutsman , Member 06/13/2016
Date Approved

and by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Many of the operating system kernels we use today are monolithic. They consist of

numerous file systems, device drivers, and other subsystems interacting with no isolation

and full trust. As a result, a vulnerability or bug in one part of a kernel can compromise

an entire machine. Our work is motivated by the following observations: (1) introducing

some form of isolation into the kernel can help confine the effects of faulty code, and (2)

modern hardware platforms are better suited for a decomposed kernel than platforms of the

past. Platforms today consist of numerous cores, large nonuniform memories, and processor

interconnects that resemble a miniature distributed system. We argue that kernels and

hypervisors must eventually evolve beyond their current symmetric mulitprocessing (SMP)

design toward a corresponding distributed design.

But the path to this goal is not easy. Building such a kernel from scratch that has the

same capabilities as an equivalent monolithic kernel could take years of effort. In this work,

we explored the feasibility of incrementally isolating subsystems in the Linux kernel as a

path toward a distributed kernel. We developed a design and techniques for moving kernel

modules into strongly isolated domains in a way that is transparent to existing code, and

we report on the feasibility of our approach.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . ix

CHAPTERS

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Our Approach . 2
1.3 Outline . 9

2. LCD MICROKERNEL . 10

2.1 Overview . 10
2.2 LCD Microkernel Objects . 11
2.3 Capability Access Control . 12
2.4 LCD Microkernel Interface . 17

3. THE LIBLCD INTERFACE, LIBLCD, AND KLIBLCD 21

3.1 Overview . 21
3.2 The LIBLCD Interface . 21
3.3 liblcd . 29
3.4 kliblcd . 31

4. DECOMPOSITION TECHNIQUES . 33

4.1 Overview . 33
4.2 Lightweight Interposition Layers . 33
4.3 Decomposing Linux Inside the Source Tree . 34
4.4 Decomposing Function Calls . 36
4.5 Handling Shared Objects . 41
4.6 Sharing Strings and Memory Buffers . 46
4.7 Related and Future Work . 47

5. CASE STUDY: ISOLATING PMFS . 48

5.1 Overview . 48
5.2 PMFS Initialization and Tear Down . 50
5.3 PMFS Mounting and Unmounting . 52
5.4 Conclusion . 54

6. RELATED WORK . 56

7. CONCLUSION . 59

REFERENCES . 61

v

LIST OF FIGURES

1.1 The ext3 filesystem and NVMe device driver are installed inside Intel VT-x
containers. These are managed by a microkernel that is installed in the Linux
kernel. User-level applications like the bash shell and SSH server operate as before. 3

1.2 The ext3 LCD is mapping a page of host RAM into its address space, using the
capability-mediated interface provided by the microkernel. 5

1.3 The ext3 LCD is sending a synchronous IPC message to the NVMe LCD. 5

1.4 The ext3 LCD is sending an asynchronous IPC message to the NVMe LCD.
Storing the message in a cacheline-aligned slot will trigger a set of cache coher-
ence protocol messages that effectively transfer the message from the ext3 LCD
core’s cache to the NVMe’s. 6

1.5 The NVMe LCD is servicing two outstanding I/O requests. There are two AC
“threads,” shown in red and blue. The red thread has blocked, waiting for I/O
to complete. The blue thread is currently executing and is sending a response for
a completed I/O request. Each thread is using a separate branch of the cactus
stack, but sharing the “trunk”. 7

1.6 The ext3 module is installed inside an LCD. When it invokes register fs, the glue
code intercepts the call and translates it into IPC to the nonisolated part of the
kernel. The glue in the nonisolated part receives the IPC message and invokes
the real register fs function. 8

2.1 The LCD microkernel is a type 2 hypervisor that is installed as a Linux kernel
module. LCDs run in nonroot operation and interact with the microkernel using
the VMCALL instruction. 11

2.2 A CSpace with a depth of 4 and table width of 8. In each table node in the tree,
the first four slots are for storing capabilities, and the second four slots are for
pointers to further tables in the CSpace. There are two capabilities shown: One
for a page of RAM, one for a synchronous IPC endpoint. The first slot in the
root is never occupied. The maximum number of capabilities one could store
in this CSpace is therefore 339 (some tables have not been instantiated in this
CSpace). 14

2.3 A Cptr is a 64-bit integer. The bit layout of a Cptr is determined by the CSpace
configuration, as shown, for a CSpace depth of k and node table size of t. Note
that this limits the possible configurations for CSpaces. All of the bits need to
fit into a 64-bit integer. 15

2.4 The figure shows three CSpaces for A, B, and C. A has granted B a capability,
so there is a parent-child relationship between A’s capability and B’s. B has also
granted a capability to the same object to C, so there is a further parent-child
relationship between those two. If A revokes access rights, it will revoke rights
to both B and C. 16

2.5 The User Thread Control Block (UTCB) has 8 scalar registers and 8 Cptr
registers for capabilities. The number of registers is configurable, and no attempt
has been made to map them to machine registers. 18

3.1 The LCD guest physical address space is split into regions dedicated for certain
memory types and objects. Only the low 512 GBs are occupied. This memory
area is mapped into the high 512 GBs in the LCD’s guest virtual address space. 23

3.2 The LCD has 4 memory objects mapped in its address space (shown in different
colors), in the corresponding memory regions for their type (shown in light
green). The address ranges where each memory object is mapped along with
the cptr for the memory object are stored in a resource tree (color coded). For
example, the blue memory object is mapped at address range [10, 19] and has a
corresponding node in the resource tree. 26

3.3 The metadata for an instance of the generalized buddy allocator is shown.
The memory region for which the allocator is being used is on the right. The
metadata consists of three parts: a structure, free lists, and an array of struct
lcd page blocks. Each struct lcd page block corresponds to a chunk of memory
of size 2min order pages. 28

4.1 Function calls to and from the VFS and ext3 module are transparently translated
into RPC. 38

4.2 The VFS glue code sets up a duplicate of a trampoline function along with hidden
arguments on the heap so that it can redirect the function pointer invocation to
the real target inside the ext3 module. 40

4.3 The VFS call to ext3’s foo function will trigger numerous domain crossings. Leaf
domain crossings are shown in green. 42

4.4 The objects used in the VFS interface are connected in a complex graph. The
figure shows a simplified example. The yellow squares are the generic objects
used in the VFS interface, while the blue squares are the filesystem-specific data
(ext3 in this case). A pointer to the file object in the figure may be passed as
an argument, for example, but the callee may access many of the other objects
in the graph during the function call. 44

4.5 The VFS and ext3 have their own private replica of the super block and inode
objects shown. Glue code on both sides maintains a CSpace that is used to
translate remote references (Cptrs) into local pointers. The objects themselves
are wrapped in container structs, in which the glue code can store per-object
metadata (shown in blue) like remote references. 45

vii

4.6 The VFS and ext3 filesystem share an inode object. The white blocks are
nonconcurrent code sections– they may be critical sections surrounded by a lock,
or frames in a call graph that criss crosses back and forth. The fields of the inode
that are accessed are shown. The field values are shipped in RPC messages at
the right time so that the code works properly. Note that the size field value
could have been sent in the earlier RPC, but the VFS doesn’t access this field
until later. 47

5.1 The figure shows how user-level applications access files and the components
involved. 49

5.2 There are three components in the system in which PMFS is isolated: the
PMFS LCD (far right), the VFS thread, and a setup module. There are three
communication channels: a synchronous channel that the VFS thread listens on
specifically for register filesytem invocations (green), and a pair of synchronous
and asynchronous channels PMFS and the VFS use to communicate with each
other (red). 51

5.3 PMFS initialization and tear down dependencies. 51

5.4 The criss cross call pattern in the call to PMFS’s mount function. 55

viii

ACKNOWLEDGMENTS

I would like to thank my advisor, Anton Burtsev, for the guidance and motivation he

provided me in this work. I would also like to thank the other students on our team who

contributed to this work: Weibin Sun, Muktesh Khole, Scott Bauer, Sarah Spall, Michael

Quigley, Jithu Joseph, and Abhiram Balasubramanian.

CHAPTER 1

INTRODUCTION

1.1 Motivation

Many of the operating systems we use today are monolithic [25, 24, 41, 21, 23]. They

consist of numerous components–file systems, device drivers, network stacks–all tightly in-

terconnected as a shared memory program. There are no boundaries that prevent malicious

or buggy code in one part of the operating system from interfering with another.

Since bugs and vulnerabilities in operating systems are common, this is a real problem.

For example, the Common Vulnerabilities and Exposures (CVE) database lists nearly 400

vulnerabilities for the Linux kernel over the past few years [30]. These vulnerabilities can

be exploited by an attacker to take down or control an entire machine. It is unlikely that

things will change on their own: These operating systems consist of millions of lines of

code that is constantly evolving as new file systems and device drivers are added and the

operating system as a whole adapts to changing hardware [31]. Yet, despite the risks, we

continue to use monolithic operating systems in the core infrastructure of clouds, mobile

devices, autonomous cars, desktops, routers and switches, and beyond [26, 21, 16, 41, 29].

We argue that it is time to reconsider a microkernel design that isolates kernel subsys-

tems. Hardware platforms today consist of numerous cores and large nonuniform memories,

all linked together by an interconnect. Such platforms have been called “distributed systems

in the small,” in which memory and device access latencies are nonuniform [27]. As

established in prior work, we think this presents an opportunity to design a kernel in

which device drivers or entire subsystems are pinned to specific resources, moving toward

a distributed kernel and away from monolithic kernels that use a symmetric multiprocessor

(SMP) design [2, 27].

This architecture presents interesting, new design possibilities. High throughput, low

latency applications that rely on bare metal access or kernel bypassing, such as the Mica

key-value store [22], can naturally fit into this architecture, as they can also be pinned to

a set of cores and become just one of many other components in the distributed system.

2

Properly designed kernel subsystems can remain on the data path, rather than being pushed

out into the control plane, as in Arrakis and IX [32, 4].

But building such a distributed kernel from scratch would take years, especially one that

was comparable to a mature monolithic kernel like Linux. Decades of effort have gone into

the monolithic kernels we use today. Hence, we should try to reuse existing code, isolating

an entire subsystem or kernel modules that contain a file system or device driver. However,

it would take a lot of effort to decompose an entire monolithic kernel, and the result would

quickly become obsolete. In this work, we explored the feasibility of incrementally isolating

kernel subsystems in Linux, as a path toward a distributed kernel.

Thesis Statement: It is feasible to isolate kernel code in a way that improves

security and performance, while making minimal changes to the source.

The decomposition is carried out inside the Linux source tree itself, so that isolated code

can evolve along with the rest of the kernel and stay up to date. The next sections review

the key design choices in our architecture.

1.2 Our Approach

1.2.1 Introducing Isolation

The first part of our design is to introduce a microkernel architecture inside the Linux

kernel in a noninvasive way. We chose to run isolated code inside of Intel VT-x containers

[17]. With VT-x, we can run isolated code in a separate virtual and physical address space,

restrict access to certain privileged registers, configure how the container should handle

interrupts, and more. It gives us the ability to selectively control the hardware and devices

a container should have bare metal access to. It is also relatively easier to program compared

to other virtualization techniques (e.g., binary translation, trap and emulate, deprivileging

for user-level, and so on). We call the Intel VT-x containers Lightweight Capability Domains,

or LCDs, for reasons that will become clear in this section. Nothing is shared with or among

LCDs by default.

LCDs are managed by a type 2 hypervisor (microkernel) installed in Linux. This implies

that the rest of the system, including the nonisolated part of the kernel, boots and runs

just as before. See Figure 1.1. The resulting system is asymmetric: the nonisolated code

and microkernel are fully trusted, while the isolated code inside LCDs is not trusted.

3

sshd bash ext3 NVMe

Intel VT-x Virtual Machines

Linux
Microkernel

Type 2 Hypervisor

User-level Applications

Figure 1.1. The ext3 filesystem and NVMe device driver are installed inside Intel VT-x
containers. These are managed by a microkernel that is installed in the Linux kernel.
User-level applications like the bash shell and SSH server operate as before.

1.2.2 Capability Access Control

The next part of our design is to use capability access control for the resources the

microkernel provides to LCDs. The microkernel exports a capability-mediated interface

that LCDs can use to allocate host RAM, create IPC channels, and so on. We chose to use

capability access control so that we can explicitly track the resources an LCD has access

to. This is the “capability” part in the LCD acronym.

We borrow from the L4 family of microkernels, seL4 in particular, in designing a

capability access control system in the LCD microkernel.1 For each LCD, the microkernel

maintains a capability space, or CSpace, that contains all of the objects the LCD has access

to, along with the access rights. The (object, access rights) pairs stored in an LCD’s

CSpace are termed capabilities. To invoke an operation on a microkernel object, an LCD

must provide a capability pointer, or Cptr, that identifies the corresponding capability in

the LCD’s CSpace. Before the microkernel carries out the operation, it will use the Cptr

to look up the object and check the access rights.

Cptrs are file-descriptor-like integer identifiers that the microkernel uses to index into

an LCD’s CSpace. If a Cptr is invalid, or refers to the wrong type of object, the LCD

microkernel will reject the operation. For example, the LCD in Figure 1.2 has a capability

to a page of RAM, and would like to map the RAM in its address space. The LCD invokes

the map function in the microkernel interface, providing the Cptr that identifies the RAM

1Note that our design is not as fine-grained as seL4: LCDs cannot construct CSpaces or VSpaces directly.

4

capability in its CSpace. The microkernel interface is implemented using the VMCALL

instruction that is part of Intel VT-x.

1.2.3 Secure, Synchronous IPC

Since code inside LCDs is isolated, it can no longer communicate with the rest of the

system using simple function calls or shared memory. We need to provide a way for LCDs to

communicate amongst themselves and with the nonisolated part of the system, so that they

can provide interfaces and gain access to facilities. These next two sections describe the two

ways LCDs communicate: synchronous IPC provided by the microkernel and asynchronous

IPC on top of restricted shared memory.

The synchronous IPC mechanism provided by the LCD microkernel is capability medi-

ated and is motivated by seL4. Two mutually distrusting LCDs can use it to communicate,

synchronize, and grant capabilities to one another. Figure 1.3 shows a simple exchange

between two LCDs. The ext3 LCD sends a message by first storing the message contents into

a buffer dedicated for synchronous IPC, called the User Thread Control Block (UTCB). It

then invokes a “send” operation on its synchronous IPC channel capability. Meanwhile, the

receiving NVMe LCD invokes a matching “receive” on the same channel. The microkernel

will then transfer the contents of the ext3 LCD’s message buffer to the NVMe LCDs.

1.2.4 Fast, Asynchronous IPC

Synchronous IPC should be avoided whenever possible because it is slow and centralized,

as it requires a hypercall out of the LCD and into the microkernel. Instead, LCDs should

use fast, asynchronous IPC, provided by a small library that runs inside of the LCD.

Our design is motivated by the Barrelfish multikernel project [2]. Two LCDs establish

a small region of shared memory between themselves using synchronous IPC or some other

means. (Remember that LCDs do not share any memory by default.) The LCDs then

instantiate an asynchronous IPC channel in this shared memory that consists of two ring

buffers–one for each transmission direction. Each element in a ring buffer is a cacheline-

aligned message. To send a message, an LCD stores the message data in a ring buffer

message slot, and sets a per-message status flag. The receiving LCD polls on a slot until

the status flag indicates the slot contains a message. Because the messages are cacheline-

aligned, the message transfer is effectively carried out by the cache coherence protocol. See

Figure 1.4 for a high-level sketch. The motivation of this design is to exploit the inherent

communication mechanism and topology available in the cache coherence protocol. No

microkernel intervention is necessary, so LCDs can communicate without exiting.

5

NVMe

Host Memory

Microkernel

ext3

map();

ext3 NVMe

Cptr

Capability

CSpace

Linux

Figure 1.2. The ext3 LCD is mapping a page of host RAM into its address space, using
the capability-mediated interface provided by the microkernel.

Microkernel

ext3

send();

ext3 NVMe

IPC Channel

NVMe

recv();

IPC Buffer

Linux

Figure 1.3. The ext3 LCD is sending a synchronous IPC message to the NVMe LCD.

1.2.5 Lightweight Threads

LCDs should be able to service multiple outstanding requests, so that they fully utilize

the cores they are pinned to and remain responsive in the face of blocking operations.

For example, an NVMe LCD should switch to servicing another request when it would

otherwise block waiting for I/O to complete. A natural first choice is to make LCDs

multicore, where each core services a request. However, this would require a lot of cores even

to handle a small number of outstanding requests. Furthermore, cores would remain idle

6

ext3 NVMe

Core Interconnect

Ring
Buffers

Figure 1.4. The ext3 LCD is sending an asynchronous IPC message to the NVMe LCD.
Storing the message in a cacheline-aligned slot will trigger a set of cache coherence protocol
messages that effectively transfer the message from the ext3 LCD core’s cache to the
NVMe’s.

while waiting for blocking operations to complete. Another solution is to use an event-based

system in which code sets up a callback that should be invoked when a blocking operation

completes. But event-based programming is complicated because it requires explicitly

saving the surrounding context while setting up a callback (“stack ripping”). In addition,

kernel code was not written for this execution model, so it would be impossible to reuse

existing code without modifying it.

Our solution is to use the AC lightweight thread language and runtime [14], extended

with primitives for asynchronous IPC. The AC language is realized in C using macros

and GCC extensions, like nested functions. Each AC “thread” is effectively an instruction

pointer and a branch of a “cactus stack.” I will briefly explain how this execution model

works through an example, shown in Figure 1.5. The figure shows an NVMe LCD handling

I/O requests. The NVMe LCD initializes in some kind of main routine, and then enters a

loop (recv), listening for requests on an asynchronous IPC channel (not shown). The stack

consists of just two frames, shown in gray.

When it receives the first request (shown in blue), it creates a new branch of the cactus

stack and begins handling the request on the new branch, and submits the I/O to the

device. Rather than block, waiting for the I/O to complete, the NVMe LCD returns back

7

NVMe

AC Thread

Cactus Stack

send
response

handle
request

handle
request

do
I/O

do
I/O

main

recv

Figure 1.5. The NVMe LCD is servicing two outstanding I/O requests. There are two
AC “threads,” shown in red and blue. The red thread has blocked, waiting for I/O to
complete. The blue thread is currently executing and is sending a response for a completed
I/O request. Each thread is using a separate branch of the cactus stack, but sharing the
“trunk”.

to the recv loop and listens for another request. When it receives a second request (shown

in red), the process is the same: it creates a new branch of the cactus stack and begins

handling the request. When the second request blocks, however, the runtime will switch to

the blue thread. If the blue thread detects that the I/O has completed, it can formulate

the response that should be sent for the original request. (If the blue thread’s I/O is still

not complete, control returns back to the recv loop.)

1.2.6 Transparent Isolation

Up to this point, our design choices cover most of our thesis. We described how code is

isolated, how security will be improved by running isolated code in separate address spaces

and using explicit access control, and how performance can be improved using asynchronous

IPC and lightweight threads. This section covers the final part of our thesis, that it is

possible to run unmodified kernel code in this new environment.

Our strategy is to introduce simple, lightweight interposition layers into the LCDs

alongside isolated code and into the nonisolated part of the kernel. The objective is to

avoid running an entire operating system inside the LCD. This is the “lightweight” part

of the LCD acronym. The interposition layers translate some shared memory interaction

patterns into message passing and resolve other dependencies internally. We developed

general decomposition techniques to handle common patterns found in the Linux kernel.

As Figure 1.6 shows, there are multiple components and interfaces that are used in

8

LIBLCD
Interface

Linux

VFS

VMCALL
Interface

Internal
Interface

int register_fs() {
 ...
}

ext3
register_fs()

Glue

liblcd

Linux
"Interface"

MicrokernelkliblcdGlueNot
Isolated

Figure 1.6. The ext3 module is installed inside an LCD. When it invokes register fs, the
glue code intercepts the call and translates it into IPC to the nonisolated part of the kernel.
The glue in the nonisolated part receives the IPC message and invokes the real register fs
function.

the interposition layers. Inside of an LCD, a small library kernel, liblcd, provides the

environment and implementation of some Linux functions, like kmalloc. It also provides

a higher-level C interface, the LIBLCD interface, on top of the lower level VMCALL

microkernel interface. Other Linux functions and facilities are provided by a “glue code”

layer. It intercepts function calls from the isolated code and translates them into IPC, and

it listens for remote procedure calls from other LCDs or the nonisolated kernel and invokes

the target function. The glue code uses the LIBLCD interface provided by liblcd.

Symmetrically, a small library, kliblcd provides an implementation of the LIBLCD

interface for nonisolated code. Rather than have nonisolated code directly access internal

LCD microkernel data structures in order to interact with an LCD (e.g., share memory with

an LCD by directly modifying its address space), we insist that nonisolated code should

use the same capability-mediated interface that isolated code uses. This makes interactions

between nonisolated code and LCDs explicit, and it also makes the interaction patterns

symmetric since both sides use the same capability-mediated interface. Of course, this is

voluntary : the LCD microkernel has no way of preventing nonisolated code from doing

whatever it wants. Moreover, even as the nonisolated code is interacting with an LCD, it

is free to interact with the rest of the host kernel in any way it wants.

By default, threads in the nonisolated system are incapable of using the LCD microkernel

interface. This is so that, by default, thread creation and scheduling do not incur any

9

overhead related to LCDs. Motivated by Capsicum [40], in order to use the interface, a

nonisolated thread invokes lcd_enter to notify the LCD microkernel that it would like to

create and interact with LCDs. The LCD microkernel then initializes the context required

for the nonisolated thread to interact with other LCDs. The context includes a per-thread

CSpace and a UTCB for synchronous IPC. Thereafter, the nonisolated thread can create

and communicate with LCDs and share resources. This process is called “entering LCD

mode.”

Finally, a layer of glue code is also installed in the nonisolated kernel that fulfills the

same role as the glue code inside the LCD. It listens for remote calls from the LCD, as

well as translating function calls from the nonisolated kernel into remote procedure calls.

kliblcd also uses an internal interface with the LCD microkernel to implement the LIBLCD

interface functions. In a sense, this internal interface fulfills the same role as the VMCALL

interface used by LCDs.

In Figure 1.6, when the ext3 module invokes register_fs, the call is intercepted by

glue code and translated into IPC. Meanwhile, a thread in the nonisolated kernel is listening

in a loop in the nonisolated glue. It will receive the IPC message, invoke the real function,

and pass back the response in a second IPC message.

1.3 Outline

This document is laid out as follows. Chapter 2 describes the LCD microkernel including

its internals and the interfaces it provides. Chapter 3 presents the liblcd library kernel,

the higher-level LIBLCD interface, and the implementations of that interface. Chapter

4 describes the set of techniques we developed for reusing existing code in the new LCD

environment. Chapter 5 summarizes our effort to isolate a filesystem as means to test our

hypothesis that it is feasible to isolate unmodified code. Chapter 6 discusses related work.

Chapter 7 presents our conclusions.

CHAPTER 2

LCD MICROKERNEL

2.1 Overview

This chapter describes the internals of the LCD microkernel and the interface it provides

to LCDs. The microkernel is a small Linux kernel module that runs in VT-x root operation

along with the rest of the nonisolated kernel, while LCDs run in VT-x nonroot operation.

The microkernel consists of the following two parts, as shown in Figure 2.1:

• Architecture independent part. About 4,500 LOC. Does the higher-level handling

of hypercalls, memory allocation, LCD setup, capability access control, synchronous

IPC, and so on.

• Architecture dependent part. About 3,000 LOC. Contains code for initializing and

running a VT-x container, and exports an interface used by the architecture indepen-

dent part. This part of the microkernel was derived from code from the Dune project

[3].

An LCD interacts with the microkernel using VMCALLs, a low-level VT-x instruction

that can be used to implement hypercalls. Similar to a system call, a VMCALL switches

execution contexts on the CPU from nonroot operation to root operation, exiting out of

the LCD and into the microkernel. The microkernel can then service the hypercall and

return control back to the LCD once it has finished. It is important to note that this

implies the LCD microkernel uses the same SMP, shared memory model that monolithic

operating systems use. The microkernel is “passive,” meaning that there are no dedicated

threads or CPUs that run the microkernel. We consider this a limitation of the current

implementation, and would like to explore using a horizontal hypercall mechanism in the

future.

The microkernel configures LCDs so that they execute in 64-bit mode in ring 0 upon

entry. In addition, LCDs cannot service interrupts: If an external interrupt arrives, it

11

Linux

ext3

hypercall

VMCALL
Interface

Microkernel

Arch
Dependent

Part

Arch
Independent

Part

Non-root
Operation

Root
Operation

LCD

Figure 2.1. The LCD microkernel is a type 2 hypervisor that is installed as a Linux
kernel module. LCDs run in nonroot operation and interact with the microkernel using the
VMCALL instruction.

triggers an exit out of the LCD and into the host, and the host handles the interrupt.

These are limitations of the current implementation, and could be improved in the future.

Although VT-x is easier than other sandboxing techniques, it still has some interesting

challenges. The VMCS that is used to configure a virtual machine is large and complicated,

and contains a large part of the architectural state of the processor. The programmer must

get every bit right, or the processor will reject the VMCS when it is loaded and provide

little debugging information. The Intel manual describes the checks the processor will use

when the VMCS is loaded, and in order to debug VMCS loading, I implemented many of

those checks in code.

2.2 LCD Microkernel Objects

The following is a brief overview of the objects that are used in the microkernel interface.

There are 8 types total. Notice that, unlike seL4, there is no “untyped memory” type.

This is because the LCD microkernel does not allow fine-grained control over initialization

and modification of CSpaces and LCD guest physical address spaces. Although we would

have liked to follow seL4 in this regard, we deemed it too difficult to implement inside the

multithreaded internals of the LCD microkernel. (The seL4 microkernel uses coarse-grained

cooperative scheduling.)

12

There are 5 different memory types:

• Contiguous RAM memory, allocated by the microkernel

• Discontiguous vmalloc memory, allocated by the microkernel

• Volunteered RAM memory

• Volunteered vmalloc memory

• Volunteered device memory (I/O memory)

The microkernel needs to use different types because it needs to handle certain operations

differently depending on whether the memory is contiguous, whether it was volunteered,

and so on. For information on volunteered memory, see 3.2.3.

These are the remaining object types:

• LCDs

• Synchronous IPC endpoints

• Nonisolated LCDs (kLCDs)

The last type may seem strange, and arises in the following scenario. Suppose a nonisolated

thread has entered LCD mode, and it would like to create an LCD but also spawn an

additional nonisolated thread that will interact with the LCD. It would like to provide

the nonisolated thread with some capabilities to synchronous IPC endpoints in order to

communicate with the LCD, and so on. Accordingly, the microkernel interface provides for

this scenario, but only nonisolated threads have access to this part of the interface.

2.3 Capability Access Control

As explained in the introduction (1.2.2), the LCD microkernel uses capabilities to track

the objects that LCDs and nonisolated threads (in “LCD mode”) have access to, and LCDs

refer to an object using a Cptr. We took the capability access control design from seL4 as

a starting point, but our implementation has a few key differences. As already mentioned,

one of the most significant differences is that there is no “untyped memory” type. There

are further differences that are noted in the following.

13

2.3.1 CSpaces and CNodes

The LCD microkernel maintains a CSpace for each LCD and nonisolated thread that

has entered LCD mode. CSpaces are implemented as sparse, radix trees. Each node in a

CSpace is a table that contains a fixed number of slots, called capability nodes, or CNodes.

The first half of the CNodes contain capabilities, and the second half contain pointers to

further nodes in the tree–unless the tree node is a leaf, in which case the CNodes in the

second half are empty. See Figure 2.2.

There are a few key differences between our CSpace implementation and seL4’s that are

worth noting:

• The LCD microkernel does not provide LCDs fine-grained control over the construc-

tion and modification of CSpaces; so, CSpaces always have a particular layout that

is determined statically (the maximum depth of the radix tree and the number of

CNodes per radix tree node).

• CSpaces never share radix tree nodes–they are completely disjoint.

• We do not try to pack object metadata into the CNodes; each CNode has a void

pointer that points to the object metadata. For example, for a page of RAM, we store

a pointer to the Linux struct page in the CNode.

These are only limitations of the implementation and not fundamental to the design.

2.3.2 Cptrs

In order to invoke an operation on an object, an LCD refers to a capability in its CSpace

using a Cptr. Like seL4, we implement Cptrs as integers, but with different semantics. To

identify a CNode in an LCD’s CSpace, we need to know which radix tree node the CNode

is in and in which slot. Because capabilities can be stored in interior nodes in the radix

tree, we cannot use the well-known radix tree indexing algorithm.

Instead, we pack the CNode location information into an integer, as bits, and the bit

layout of a Cptr is determined by the CSpace layout configuration. Figure 2.3 shows the

general bit layout for Cptrs. A Cptr can be constructed using the following simple algorithm:

• Determine the zero-indexed level in the radix tree that contains the CNode, and write

this value into the level bits of the Cptr.

• If the CNode is in level 0 of the tree, determine the slot index of the CNode in the

root tree node, write this value into the slot bits of the Cptr, and finish.

14

capability
slots

table pointer
slots

null slot
(always empty)

page
of RAM

capability

CSpace

sync IPC
endpoint

leaf
tree
node

Figure 2.2. A CSpace with a depth of 4 and table width of 8. In each table node in
the tree, the first four slots are for storing capabilities, and the second four slots are for
pointers to further tables in the CSpace. There are two capabilities shown: One for a page
of RAM, one for a synchronous IPC endpoint. The first slot in the root is never occupied.
The maximum number of capabilities one could store in this CSpace is therefore 339 (some
tables have not been instantiated in this CSpace).

• Otherwise, determine the slot indices of the pointers that should be followed to reach

the tree node that contains the CNode. Write the slot indices into the fanout bits of

the Cptr. Note that the first pointer slot is defined to have an index of 0.

• Write the slot index into the slot bits of the Cptr, and finish.

For example, to refer to the RAM capability in Figure 2.2, we determine the following:

• The level of the table that contains the slot is 1.

• To get to the table, we need to follow one table pointer, at index 1 in the root.

• The capability slot index in the table is 0.

We then pack these values as bits into a Cptr.

We define the zero Cptr to be a special “null” Cptr that is always invalid and never

refers to any CNode. In our current implementation, this implies that the first slot in the

root radix tree node is never occupied. (This is similar to a null memory address.)

2.3.3 Cptr Cache

This is not part of the LCD microkernel itself, but it is conceptually related. The

LCD microkernel tracks which CNodes are occupied, but for those hypercalls that require

providing an empty CNode, the LCD is required to provide a Cptr to an empty slot. For

example, if an LCD would like to create a new synchronous IPC endpoint, it must provide a

15

...

t/2 cap
slot bits

t/2 table
index bits to

level k - 1

log2k
level bits

t/2 table
index bits to

level 1

(ignored)

63 0

"fanout" bits
(some or all ignored,
depending on level)

Figure 2.3. A Cptr is a 64-bit integer. The bit layout of a Cptr is determined by the
CSpace configuration, as shown, for a CSpace depth of k and node table size of t. Note that
this limits the possible configurations for CSpaces. All of the bits need to fit into a 64-bit
integer.

Cptr that refers to an empty CNode slot in its CSpace. If the CNode is not actually empty,

the microkernel will reject the hypercall.

Because the bit layout of a Cptr is somewhat complex, it is useful to provide an additional

data structure for keeping track of the free CNodes, and the Cptr Cache fulfills this purpose.

The current implementation uses bitmaps and provides a simple interface for allocating and

freeing CNodes.

2.3.4 Capability Derivation Tree (CDT)

An LCD can grant a capability to another LCD, using synchronous IPC (2.4.1.1). When

the microkernel processes the grant, it records a parent-child relationship between the

CNode in the grantor’s CSpace and the CNode in the grantee’s CSpace. The grantee

can grant the capability to numerous LCDs, and so on, resulting in a tree of CNodes. This

is called the capability derivation tree, or CDT. See Figure 2.4. When an LCD would like

to recursively revoke all access to an object, the microkernel can use the tree to determine

which child capabilities to delete. (Note that this is called the “mapping database” in seL4.

The CDT in seL4 is used to described memory untype-retype derivations.)

2.3.5 CSpace Operations

There are four key operations the LCD microkernel invokes on CSpaces. Some of them

have been mentioned already, and we summarize them again here:

1. Insert. When the microkernel creates a new object (e.g., a synchronous IPC endpoint),

it inserts the object into the creating LCD’s CSpace. Recall that the creating LCD

provides the Cptr to the CNode slot where it would like the capability stored.

16

A's CSpace

B's CSpace

C's CSpace

CDT branch

Figure 2.4. The figure shows three CSpaces for A, B, and C. A has granted B a capability,
so there is a parent-child relationship between A’s capability and B’s. B has also granted a
capability to the same object to C, so there is a further parent-child relationship between
those two. If A revokes access rights, it will revoke rights to both B and C.

2. Grant. This is invoked when an LCD is granting access rights to another LCD. It

copies the grantor’s CNode contents to the grantee’s empty CNode, and sets up a

parent-child relationship between the two CNodes.

3. Delete. This is invoked when an LCD wants to delete a capability from its CSpace,

but not necessarily to delete any child capabilities. This is useful because a CSpace

is limited in size, and the LCD may want to use a CNode for some other purpose.

4. Revoke. This is invoked when an LCD wants to recursively delete all child capabilities

(but not its own). It is effectively a delete operation invoked on all child capabilities.

2.3.6 State Changes

The LCD microkernel must ensure that the state of the system correctly reflects the

access rights each LCD has, and it must update the state of the system as these access

rights change. When an LCD’s capability to an object is deleted, either because it was

revoked or because the LCD itself deleted it, the LCD microkernel must ensure the LCD

cannot access the object. For example, if the LCD had a page of RAM mapped in its

address space, and the capability to that page was deleted, the LCD microkernel should

ensure that page is no longer mapped in the LCD’s address space.

17

2.3.7 Reference Counting

Similar to seL4, the LCD microkernel treats capabilities as an implied reference count

on an object. When the last capability to an object is deleted, the object is destroyed.

(In seL4, the memory the object occupied is returned to the parent untyped memory. The

capability access control system in the LCD microkernel has no notion of untyped memory,

so there is no object to “absorb” the destroyed object into. It is just destroyed.)

2.3.8 The Source

The original source was developed by Muktesh Khole. I enhanced it and integrated it

into the LCD microkernel. It has since evolved into a separate library, libcap, that is under

active development and is being used in other projects.

2.4 LCD Microkernel Interface

We have seen the objects that are used in the microkernel interface, how the microkernel

tracks access to those objects, and how LCDs refer to those objects. All that remains is

to present the interface itself. The following sections describe the interesting parts of the

interface, broken down into groups of related functions.

LCDs invoke a function in the microkernel interface by storing a hypercall integer id

along with arguments into machine registers, and then invoking the VMCALL instruction.

This triggers an exit out of nonroot operation and into the microkernel. The microkernel

handles the hypercall, stores the return value in a register, and enters nonroot operation

back into the LCD, where the hypercall returns.

2.4.1 Synchronous IPC

The LCD microkernel provides hypercalls for creating synchronous IPC endpoints and

sending messages. Our implementation of synchronous IPC takes seL4 as a starting point.

There are 5 functions related to sending or receiving messages: send, receive, poll receive,

call, and reply. Each LCD is provided with a buffer of memory called a user thread control

block, or UTCB, that is mapped in its address space. The layout of a UTCB is shown

in Figure 2.5. It contains two collections of registers: general-purpose scalar registers and

capability registers; the capability registers will be explained in more detail in Section

2.4.1.1.

To send a message, an LCD writes values into the UTCB, invokes send on a synchronous

IPC endpoint capability, and blocks, waiting for a second LCD to receive the message.

Meanwhile, a second LCD receives the message by invoking receive on the same endpoint.

18

r0

r7

...

...

cr0

cr7

...

...

scalar
registers

capability
registers

Figure 2.5. The User Thread Control Block (UTCB) has 8 scalar registers and 8 Cptr
registers for capabilities. The number of registers is configurable, and no attempt has been
made to map them to machine registers.

The LCD microkernel matches the sender and receiver and copies the contents of the sender’s

UTCB into the receiver’s UTCB. (Note that the receiver would block if no matching sender

was waiting on the endpoint.)

In the common case, an LCD will send a request and expect a response. The LCD

microkernel provides call/reply mechanisms, similar to seL4, for this purpose. Instead of

invoking send, the LCD should invoke call. The semantics of call is the same as send

followed by receive on a dedicated endpoint for the LCD to receive responses. The receiver

of the call is granted a temporary, one-time use capability to the sender’s private response

endpoint, and can send the response using reply.

2.4.1.1 Granting Capabilities

LCDs use synchronous IPC endpoints to grant access rights to microkernel objects to

other LCDs. I will explain how it works through an example. Suppose an LCD that contains

a file system has a capability to RAM memory that contains a file, and it wants to grant

access to that memory to an LCD that contains a block device driver. Further, suppose

the two LCDs have a capability to a common synchronous IPC endpoint, and that the

file system LCD’s capability to the RAM memory is in slot X in its CSpace. Here is the

protocol:

1. The device driver LCD determines a free slot Y in its CSpace

2. The device driver LCD stores Y in the first capability register in its UTCB

3. The file system LCD stores X in the first capability register in its UTCB

4. The file system LCD invokes send on the synchronous IPC endpoint

5. The device driver LCD invokes receive on the same endpoint

19

The LCD microkernel will pair the two LCDs and will copy the file system LCD’s capability

to the device driver LCD’s CSpace in slot Y . It also records a parent-child relationship

between the file system LCD’s capability and the device driver LCD’s capability, in case

the file system wants to recursively revoke access to the RAM from the device driver and

to any LCDs the device driver may have granted the same capability to.

2.4.2 Memory Management

The LCD microkernel provides hypercalls for LCDs to allocate host memory and map

memory in their address spaces. There are 3 hypercalls for allocating host RAM: allocate

pages, allocate pages on a specific NUMA node, and vmalloc. The microkernel uses the

corresponding host memory allocator function to get free memory (e.g., alloc_pages for

allocating RAM). In each case, the LCD provides a Cptr to an empty slot in its CSpace

where the memory object capability should be stored. In addition, the LCD can specify the

allocation size. As a consequence, memory object capabilities can correspond to varying

sizes of host memory, and so there is some flexibility in how fine-grained the access control

is for memory. (In one of our prior designs, memory objects were always the size of a page,

and this lead to a lot of unnecessary overhead. For example, to allocate 1 megabyte, an

LCD needed to allocate one page at a time, and it needed 256 free slots in its CSpace for

the corresponding capabilities.)

There are 2 hypercalls for memory mapping (map and unmap). To map a memory

object, an LCD provides a Cptr to the memory object capability and the base physical

address where it would like the memory mapped. The microkernel tracks when an LCD

maps a memory object so that if the LCD’s access to that memory object is revoked, the

microkernel knows to automatically unmap it from the LCD’s physical address space. To

avoid arbitrary amounts of bookkeeping, the microkernel only allows an LCD to map a

memory object once.

2.4.3 Creating and Running LCDs

Finally, the LCD microkernel provides a handful of hypercalls for creating, configuring,

and running LCDs. When creating an LCD, the microkernel sets up a VT-x container

whose address space and CSpace are completely empty. The microkernel will also spawn a

dedicated kernel thread that will invoke the necessary instructions to enter into the LCD

when the LCD runs, and to also handle LCD exits.

There are a few related problems with our implementation that we needed to resolve.

First, because LCDs (and nonisolated threads) cannot directly set up and modify CSpaces,

20

the LCD microkernel must provide a way for an LCD to grant a capability to the LCD it

is creating. Our solution is that if an LCD has a capability to another LCD, it can grant a

capability to it directly via a hypercall, rather than via synchronous IPC.

Second, we would like to enforce the invariant that an LCD has memory mapped in its

address spaces only if it has a capability to that memory. Rather than rely on the creating

LCD to enforce this invariant, our solution is that the LCD microkernel only provides a

combined grant-and-map function in the interface. It atomically maps the memory in the

LCD’s address space while also carrying out a capability grant from the creating LCD to

the new LCD.

Third, the LCD microkernel relies on the UTCB of an LCD being valid as it carries out

a synchronous IPC transaction (i.e., the UTCB memory should not be return to the host

while the microkernel is using it). However, the UTCB needs to be mapped in the LCD’s

address space, so the invariant above would stipulate that the LCD should have a capability

to the UTCB memory. But rather than attempt to enforce the invariant, we leave it as an

exception.

CHAPTER 3

THE LIBLCD INTERFACE, LIBLCD, AND

KLIBLCD

3.1 Overview

This chapter describes the LIBLCD interface; liblcd, the library kernel that runs inside

an LCD alongside isolated code and provides an implementation of the LIBLCD interface;

and kliblcd, a small module of code that provides an implementation of the LIBLCD

interface to nonisolated threads. Each is described in turn in the sections below.

3.2 The LIBLCD Interface

The LCD microkernel interface is missing useful utilities that LCDs and nonisolated

code need. For example, we want to load kernel modules inside LCDs, but the microkernel

interface only provides low level functions for creating an LCD and setting up its address

space. As another example, the code inside the LCD needs to have memory management

facilities for tracking free regions in its physical address space, setting up slab allocators,

and so on.

To handle these needs, as well as others, we designed the LIBLCD interface, shown

in Figure 1.6. This interface is implemented by liblcd and kliblcd and provides code

with a common environment for interacting with the microkernel and carrying out typical

operations. It provides a more friendly, C-level interface on top of the lower level microkernel

interface. Rather than list the functions, I will describe the more interesting parts of the

interface and how they are implemented in liblcd and kliblcd. Some of the LIBLCD interface

functions are just simple wrappers on top of the lower level microkernel interface.

We attempted to make the semantics of each function in the LIBLCD interface the same,

regardless of whether the code is running inside an LCD or not, but for some functions this

was not possible. For example, the LIBLCD interface includes functions for spawning

nonisolated threads in LCD mode. Isolated code inside LCDs cannot spawn nonisolated

threads, so those functions are no-ops in the liblcd implementation.

22

3.2.1 Environment Initialization

Before using any functions provided by liblcd or kliblcd, code should execute lcd_enter.

This gives the environment a chance to initialize itself. This function was motivated by

CAP_ENTER from Capsicum [40]. When finished using liblcd or kliblcd, code should execute

lcd_exit. The semantics of lcd_exit differs between the two implementations: When

isolated code calls lcd_exit in liblcd, it never returns, similar to exit in user-level. When

nonisolated code calls lcd_exit in kliblcd, it does return. Further details are described in

the respective implementations.

3.2.2 Loading Kernel Modules into LCDs

The LIBLCD interface includes functions for loading a kernel module from disk into

an LCD. The caller provides the module name and the directory (on the host), and the

kernel module is loaded into a fresh LCD. Only kliblcd provides an implementation for

these functions, so only nonisolated threads have the ability to set up LCDs with kernel

modules.

The kliblcd implementation configures the LCD’s address spaces spaces as shown in

Figure 3.1. Recall from Section 2.1 that LCDs always begin running in 64-bit mode. Each

region is described below.

• Miscellaneous Region. The LCD’s UTCB for synchronous IPC, guest virtual page

tables, and bootstrap memory is mapped in a 1 GB region (a large part of this region

is empty on entry). The bootstrap memory is used to pass boot information to the

LCD that it can use as it initializes itself. For example, the creator of the LCD may

insert capabilities into the LCD’s CSpace for synchronous IPC endpoints, memory

objects, and so on, that the LCD needs, and the creator stores the corresponding

Cptrs where those capabilities are stored in the bootstrap memory.

• Stack Region. The kliblcd implementation allocates a handful of pages for an initial

stack and maps it in the stack region (so a large part of this region is empty on entry).

• Heap Region. This is used by the liblcd page allocator, described below. On LCD

entry, this region is empty.

• RAM Map Region. This is used by liblcd to map arbitrary RAM memory objects,

similar to the kmap facility in the Linux kernel. On LCD entry, this region is empty.

23

HOLE
(1 GB)

Miscellaneous Region
(1 GB)

HOLE
(1 GB)

Initial Stack Region
(1 GB)

HOLE
(1 GB)

Heap Region
(1 GB)

HOLE
(1 GB)

RAM Map Region
(1 GB)

HOLE
(1 GB)

Ioremap Region
(1 GB)

HOLE
(497 GB)

Kernel Module Region
(2 GB)

. . .

Unusable

Synchronous IPC
UTCB Buffer

(4 KB)

Bootstrap
Info Buffer

(4 KB)

Bootstrap Guest
Virtual Page Tables

(64 KB)

Free / Unmapped

Free / Unmapped

512 GB

0x0

0x0000 0080 0000 0000

Free / Unmapped

Free / Unmapped

. . .

0x0

0xFFFF FF80 0000 0000

Guest Physical
Address Space

Guest Virtual
Address Space

Figure 3.1. The LCD guest physical address space is split into regions dedicated for
certain memory types and objects. Only the low 512 GBs are occupied. This memory area
is mapped into the high 512 GBs in the LCD’s guest virtual address space.

• Ioremap Region. This is used by liblcd to map I/O memory objects, similar to the

ioremap facility in the Linux kernel. On LCD entry, this region is empty. kliblcd

configures the mappings for this region so that the memory is uncacheable.

• Kernel Module Region The last 2 GBs are reserved for mapping the kernel module

itself.

The kliblcd implementation also sets up an initial guest virtual address space for the

LCD that maps the low 512 GBs of the LCD’s guest physical address space to the high 512

GBs of the LCD’s virtual address space. Because the guest physical address space already

provides the isolation we need, in order to reduce overhead, we use huge pages in the guest

virtual address space mapping.

The kernel module is loaded from disk and into memory using the same module loading

24

process, but with some modifications to prevent the kernel module’s initialization routine

from being invoked (we want to run it inside the LCD, not in the nonisolated host). kliblcd

then duplicates the RAM memory that contains the kernel module image (the .ko), and

unloads the original kernel module from the host. The duplicate is what is loaded inside

the LCD. This is done for the following reason. The module loader uses some metadata

that is embedded in the module image (the struct module, symbol tables, and so on), and

it wouldn’t be safe for the host module loader and the LCD to have access to the same

memory (the LCD could corrupt the metadata and confuse the module loader–an integral

part of the host).

On the x86_64 platform, the kernel module is loaded and linked for a spot in the upper 2

GB region of the host virtual address space. In order to avoid relocating the kernel module

for a different address range, we have arranged for the kernel module to be mapped in the

LCD at the same address it was loaded in the host. The LCD begins execution at the

module’s initialization routine (module_init). This is why the upper 2 GBs of the guest

virtual address space are reserved for the kernel module mapping. (We considered patching

the host module loader so that the ELF relocations applied to the kernel module were for

a different base address, but it didn’t seem worth the hassle.)

3.2.3 Memory Management

There are five sets of functions in the LIBLCD interface related to memory management.

First, there are higher-level C functions that are simple wrappers around the lower level

microkernel page allocation functions, described in 2.4.2. These functions return a Cptr to

the allocated memory object. Second, there are more user-friendly functions for allocating

memory that return a pointer to mapped memory (the first set of functions just return a

capability to the memory, and the caller is responsible for mapping it somewhere, if they

wish). Third, there is a set of functions for mapping and unmapping RAM and device

memory. To map memory, the caller provides the Cptr and size of the memory object, and

these functions return the address where the memory object was mapped (each function

will find a free place in the caller’s address space to map the memory object).

Fourth, there are functions for translating memory addresses to memory object Cptrs.

The need for these functions arises in the following scenario. An LCD may have an arbitrary

pointer to some memory in its address space, and it may want to share the memory. Because

we enforce the invariant that an LCD must have a capability to all of the memory inside

its address space (except the UTCB), we know that the memory belongs to some larger

memory object that has been mapped there. These functions take an arbitrary memory

25

address and return three things: the Cptr to the memory object that contains the memory

address, the size of the memory object, and the offset of the address into the memory object.

Finally, there are functions for “volunteering” host memory into the microkernel’s ca-

pability system. They are motivated by the following problem. Nonisolated code can gain

access to host resources, like RAM and I/O memory, without involving the LCD microkernel.

For example, a nonisolated thread can allocate host memory via the nonisolated kernel’s

page allocator. However, the nonisolated code may want to share these host resources

with an LCD. Since we want nonisolated code to use the same explicit, capability grant

mechanism to share resources with LCDs, nonisolated code needs to be able to introduce

the host resource to the LCD microkernel and create a capability for it. We term this

process “volunteering” the host resource. (Internally, the LCD microkernel uses a sparse

tree to track what regions of host memory are currently tracked in the capability access

control system.)

3.2.4 Resource Trees

A resource tree is the data structure used by liblcd and kliblcd for translating memory

addresses to Cptrs (“address-to-Cptr translation”). While it is technically part of the

LIBLCD interface, it is unlikely code outside of liblcd and kliblcd will use it directly.

Resource trees are binary search trees, in which each node is a (start, last, cptr) triple,

where start is the start address of the memory object, last is the last address within the

memory object, and cptr points to the memory object capability in the owner’s CSpace.

Each triple in a resource tree is unique and memory address ranges are nonoverlapping.

(This is why we do not need to use a more general interval tree. The nodes can just be

sorted by starting address.) See Figure 3.2 for an example. Given an address, the lookup

algorithm uses the resource tree to identify the interval that contains it. The algorithm then

returns the corresponding cptr, the size of the memory object that contains the address,

and the offset of the address into the memory object.

In one of our prior implementations for liblcd, we used a giant array of Cptrs for address-

to-Cptr translation, in which the ith element of the array was nonzero if there was a page

mapped at offset 4096 × i (our prior implementation only allowed for single-page-sized

memory objects). This array was only maintained for the heap region, so address-to-Cptr

translation was only possible in this region. This clearly leads to a lot of overhead, and it is

even less realistic for address-to-Cptr translation in the nonisolated environment, in which

there is a huge amount of memory, but only a sparse amount is inside a thread’s CSpace.

26

ioremap
Region

[3, 7]

[10, 19] [94, 96]

[50, 70]

Resource Tree
LCD Guest Physical

Address Space

RAM Map
Region

Heap
Region

Kernel
Module

Cptr to memory
capability

Figure 3.2. The LCD has 4 memory objects mapped in its address space (shown in
different colors), in the corresponding memory regions for their type (shown in light green).
The address ranges where each memory object is mapped along with the cptr for the memory
object are stored in a resource tree (color coded). For example, the blue memory object is
mapped at address range [10, 19] and has a corresponding node in the resource tree.

3.2.5 Generalized Buddy Allocator

3.2.5.1 Overview

The generalized buddy allocator (GBA) is a data structure for tracking page alloca-

tions in a fixed-size address space region. Like resource trees, while technically a part of

the LIBLCD interface, the GBA is only used internally in liblcd. We originally used a

bitmap, first-fit algorithm in the liblcd memory management implementation, but this has

well-known inefficiencies we would like to avoid. The GBA is intended to be used in the

implementations of higher-level allocators (they are the “GBA user”/“GBA creator”), like

the heap and ioremap allocators (see 3.3).

We designed the generalized buddy allocator (GBA) with two goals in mind. First, it

should provide a way to do finer-grained allocations from large allocations obtained from

the microkernel. Second, the allocator metadata should be kept as small as possible, and

it shouldn’t be part of the kernel module image (e.g., in .bss or .data), in order to keep

the image small.

3.2.5.2 Design

The design follows the regular buddy allocator algorithm found in Linux, but with the

following differences. First, numerous instances of the GBA can be created, with different

configurations. Each configuration specifies

27

• The memory region order, in terms of pages (i.e., the memory region is 2x pages for

some x).

• The minimum and maximum allocation order, in terms of pages. For example, a

minimum order of 2 and maximum order of 5 means the minimum allocation size is 4

pages, and the maximum allocation size is 32 pages.

• How metadata is to be allocated, via callbacks, and whether it should be embedded

in the memory region itself.

• How backing memory should be sucked in, via callbacks (this part of the configuration

is optional).

Second, unlike Linux, the GBA minimum allocation size can be configured to be bigger

than a single page, and the amount of metadata is therefore reduced. Like Linux, the GBA

maintains a structure per minimum allocation unit, in a large array; in Linux, this structure

is struct page, and in the GBA, it is struct lcd_page_block. If the minimum allocation

units are larger, there are fewer elements in this array. But this comes with the cost of more

internal fragmentation, and so there is a trade-off between the amount of metadata and the

amount of internal fragmentation. The GBA user can make that choice. Note that the

GBA does not try to reduce internal fragmentation using migration techniques as in Linux.

Equivalently, there is only one migration type in the GBA: no migration.

Third, the creator of a GBA instance specifies how the metadata is allocated using a

callback. The GBA code computes the size of the metadata, given the other parameters,

and invokes the callback. The creator is then free to allocate the metadata in any way they

want. If desired, the metadata can be mapped in the beginning of the memory region itself

(the creator notifies the GBA code of their intent to do so, so that the GBA can properly

initialize itself and mark that part of the memory region as occupied). As described in

3.3, this is used in the liblcd heap so that there is no footprint outside of the heap region.

The GBA code ensures the memory region is big enough to accommodate the metadata.

Note that the metadata should not be embedded in an uncacheable region (like the ioremap

region). The layout of the metadata is shown in Figure 3.3.

Once a GBA instance has been created, it can be used to do allocations within the min-

imum and maximum allocation size. Like the page allocator interface in the Linux kernel, a

GBA allocation returns the struct lcd_page_block for the first minimum allocation unit

in the allocation. In addition, there are functions for translating a struct lcd_page_block

to an offset into the memory region, and back. Note that the GBA is not aware of the base

28

struct lcd_page_allocator {
 ...
 struct list_head *free_lists;
 ...
 ...
 struct lcd_page_block *pb_array;
 ...
}

PADDING

min_order free list

min_order + 1 free list

...

max_order free list

PADDING

struct lcd_page_block
(for first 2min_order pages)

struct lcd_page_block
(for next 2min_order pages)

...

struct lcd_page_block
(for last 2min_order pages)

first 2min_order pages

next 2min_order pages

last 2min_order pages

...

Metadata

Memory Region

Figure 3.3. The metadata for an instance of the generalized buddy allocator is shown.
The memory region for which the allocator is being used is on the right. The metadata
consists of three parts: a structure, free lists, and an array of struct lcd page blocks. Each
struct lcd page block corresponds to a chunk of memory of size 2min order pages.

address of the memory region it is tracking. The GBA user is responsible for translating

absolute addresses to offsets into the memory region the GBA is tracking, and back. Also,

the GBA creator is responsible for choosing a memory region base address so that it is

aligned for the maximum allocation unit.

3.2.5.3 Demand Paging

Finally, the GBA provides a means for demand paging on the maximum allocation unit

boundaries. To use this feature, the GBA creator provides nonnull callbacks that specify

how backing memory should be brought in. When the GBA allocates from a maximum

allocation unit (either the whole thing or some subset of it), it invokes the “allocate and

map” callback. The GBA creator should then back the memory region covered by the

maximum allocation unit with memory (e.g., RAM). On the other hand, when the GBA

has recovered a maximum allocation unit from coalescing free blocks, it invokes the “free

and unmap” callback. The GBA creator can then unmap and possibly free the memory

29

associated with this region (e.g., return the RAM to the microkernel).

It is worthwhile to consider how this compares with a balloon driver [39]. The fol-

lowing briefly describes how a balloon driver works. An administrator may configure a

virtual machine so that the maximum RAM it will ever be allotted is 8 GBs. But the

administrator may start the virtual machine with only 1 GBs. The guest operating system

inside the virtual machine boots, thinking that it has access to 8 GBs. At some point in

the boot process, a balloon driver inside the guest allocates the guest physical memory

that corresponds to the unbacked 7 GBs, preventing the page allocator from giving that

memory to some other code that expects real memory to be there. When the administrator

increases the amount of RAM allotted to the virtual machine, the balloon driver will return

the corresponding guest physical pages to the guest page allocator, so that the RAM can

now be used inside the guest.

Comparing the GBA and balloon drivers, the GBA is aware that the memory may

not be backed by real RAM (say), and notifies the GBA user via a callback. Except in

extreme cases, the GBA expects the GBA user to back the corresponding physical address

range. The balloon driver design, on the other hand, is more manual and is triggered by

an administrator, rather than the allocator. The administrator must increase the amount

of RAM allotted to a virtual machine, and the hypervisor notifies the balloon driver inside

the guest. The difference arises, in part, because LCDs are allowed to allocate an arbitrary

amount of memory, and LCDs do relatively finer-grained allocations of host memory. A

virtual machine may be allotted 1 TB of RAM before it even boots, while an LCD may

allocate in chunks of 4 MB at a time. The whole issue of demand paging may go away

if LCDs, like traditional virtual machines, are given a dedicated chunk of RAM from the

beginning (e.g., all of the RAM in a local NUMA node).

3.3 liblcd

3.3.1 Overview

This is a small library kernel that runs inside an LCD. It fulfills a couple of roles.

First, it implements the LIBLCD interface described in the prior section, which includes

a higher-level C interface on top of the lower level VMCALL interface for microkernel

hypercalls. Second, because our primary objective is to run unmodified kernel code inside

an LCD, liblcd also implements common library functions, like memcpy and kmalloc. liblcd

is built as a static library and linked with the kernel module that is to be installed inside

the LCD.

30

liblcd is nearly 13,000 LOC, most of which is code we borrowed from other sources,

including the Linux kernel. As explained further in 3.3.3, only about 2,000 LOC was code

we wrote ourselves. In addition, about 3,000 LOC is shared with kliblcd and the microkernel,

but is built twice–once for liblcd and once for kliblcd. Finally, liblcd includes libcap for

capabilities, libfipc for asynchronous IPC, and libasync, the AC runtime.

3.3.2 Memory Management

liblcd memory management has been designed for the kernel module address space

layout described in 3.2.2. It uses a GBA instance for the heap, RAM map region, and

ioremap region. The heap uses a single page as the minimum allocation unit so that we

can reimplement the Linux page allocator interface on top of the heap, as described in

the next section. RAM map and ioremap allocation units are bigger since more internal

fragmentation can be tolerated in those regions.

liblcd uses a single resource tree to track mapped memory objects and their correspond-

ing Cptrs. This tree is updated every time a memory object is mapped or unmapped from

the LCD’s guest physical address space. Only one tree is required because all memory

objects are contiguous in the LCD’s guest physical address space (this is not true for

nonisolated code).

3.3.3 Providing Linux Functions and Global Variables

As the next chapter describes, for each kernel module dependency–unresolved functions,

global variables, and so on–we must choose how to resolve it. In some cases, it makes sense

to resolve it by redefining the function or global variable inside liblcd. For example, since the

LCD is single threaded and does not handle interrupts, we can redefine locking operations

to be no-ops. Other functions like alloc_pages, part of the Linux kernel’s page allocator

interface, can be redefined using LIBLCD interface functions.

But other functions are impossible to handle with a trivial stub definition or to rewrite

from scratch. Instead, we make a copy of the Linux source code that contains them, and

make them a part of liblcd. This can introduce further dependencies, however, for which

the same kind of analysis must be applied to each. It is helpful to repeatedly use the nm

commandline tool to track outstanding dependencies while carrying out this analysis. For

example, rather than write our own slab allocator, we moved a duplicate of the Linux SLAB

allocator into liblcd. This was feasible because the SLAB allocator only has a handful of

dependencies on the buddy allocator that we could fulfill with liblcd’s page allocator (the

31

heap), and the remaining dependencies were easy to elide or quickly fix. This is also the

approach we used for various library functions like memcpy.

As a result of this work, we realized that liblcd is slowly turning into a library kernel, but

it is being built in an additive way. We are aware of other projects that make it possible to

build Linux as a library kernel, and we think these library kernels will be useful in running

LCDs [5].

3.4 kliblcd

3.4.1 Overview

This is the nonisolated implementation of the LIBLCD interface, and is therefore the

interface that nonisolated threads use to interact with the LCD microkernel. While kliblcd

is conceptually separate from the LCD microkernel, it is compiled as part of the same kernel

module, and it uses internal function calls (as opposed to the VMCALLs for LCDs) to call

into the microkernel. In addition, unlike liblcd, since nonisolated threads have access to

the functions in the host kernel, it is not necessary for kliblcd to provide implementations

of memcpy, kmalloc, and so on. kliblcd is nearly 5,000 LOC, though as mentioned above,

about 3,000 LOC is shared with liblcd. Like liblcd, kliblcd includes libcap, libfipc, and

libasync.

3.4.2 Memory Management

kliblcd memory management is less complicated than in liblcd because host physical

memory is directly accessible from the nonisolated environment (there is no separate physi-

cal address space to be managed). Wherever guest physical mapping was required in liblcd,

kliblcd can simply return host physical addresses directly. In addition, mapping RAM in a

nonisolated thread’s virtual address space is also easy: On the x86_64 platform, all RAM

is already mapped, and so kliblcd can return host virtual addresses directly. Note that

ioremap functions in the LIBLCD interface are not implemented in kliblcd.

Despite these simplifications, nonisolated code still uses these memory management-

related functions in the LIBLCD interface for a couple of reasons. First, nonisolated code

may be granted a capability to RAM, and it may only know the Cptr to its capability

and not the address of the RAM. By invoking the memory mapping functions in the

LIBLCD interface, the nonisolated code is able to obtain the address of the RAM (even

though no actual mapping is done). Second, the memory management functions provide

kliblcd a chance to update the resource trees required for address-to-Cptr translation in the

nonisolated environment.

32

Unlike the isolated environment, memory objects in the nonisolated environment may

not be physically contiguous. For example, memory obtained from vmalloc is contiguous

in the host’s virtual address space, but not necessarily in RAM. kliblcd therefore maintains

two resource trees: one for physically contiguous memory, and another for physically

noncontiguous memory (vmalloc memory). These trees are maintained per thread because

each nonisolated thread has its own CSpace, and the Cptrs returned from address-to-Cptr

translation need to be valid for that CSpace.

When a nonisolated thread invokes a memory mapping function in the LIBLCD inter-

face, kliblcd creates a new node in the appropriate tree for the memory object. At some point

later, the nonisolated thread can invoke the address-to-Cptr related functions, and kliblcd

will query the appropriate tree. For virtual addresses, kliblcd queries the noncontiguous

tree first. If a containing memory object is not found, kliblcd translates the virtual address

to the corresponding physical address, and uses the contiguous tree. kliblcd makes every

effort to be accurate, but it is possible for nonisolated code to use the LIBLCD interface

improperly and confuse the kliblcd internals. We do not guard against this possibility since

nonisolated code is trusted.

CHAPTER 4

DECOMPOSITION TECHNIQUES

4.1 Overview

The prior chapters described the microkernel and overall architecture, including some of

the key mechanisms and components for running and interacting with isolated code. This

chapter presents the techniques we used to systematically break code apart. Our objective

is to run unmodified Linux code that was written for a shared memory environment on top

of the shared nothing LCD architecture.

This is not an easy task. Linux kernel modules consist of thousands of lines of code

that interact with the core kernel in complicated patterns–function calls, passing shared

objects, synchronization, sharing global variables, and so on. But we noticed the same

interaction patterns appearing throughout the kernel, and this led us to believe it might

be feasible to classify patterns and develop general strategies for emulating them in the

LCD architecture. For example, kernel modules typically implement an object-oriented

interface to export their functionality to the core kernel (e.g., file systems implement the

VFS interface), and we investigated if such interfaces could be easily translated into a

message passing protocol.

Other kernel refactoring and decomposition work, like the Rump Kernels project, seemed

to provide further evidence that decomposing Linux would be feasible [18]. In the Rump

Kernels project, the NetBSD kernel was refactored into a base component and “orthogonal

factions”–dev, net, and vfs–that are independent of each other. While components in a

rump kernel still interact through shared memory interfaces, we found it compelling that a

monolithic kernel could be systematically refactored into components.

4.2 Lightweight Interposition Layers

As described in 1.2.6, we introduced interposition layers in two places: One layer is linked

with the isolated kernel module and runs inside the LCD, while the other layer is installed

in the nonisolated, core kernel. The interposition layer for an LCD consists of liblcd, built

34

as a static library, and glue code, built as a collection of object files; these are built using

the kernel’s build system and linked with the kernel module that is to be isolated. The

interposition layer for the nonisolated side is built and installed as a regular kernel module.

Together, the interposition layers resolve all dependencies so that the original code works

seamlessly in this new architecture.

It is worth comparing these interposition layers to other systems like the Network Filesys-

tem (NFS) protocol, the Filesystem in Userspace (FUSE) interface, Filesystem Virtual

Appliances (FSVA), and network block device protocols like iSCSI and NBD [35, 38, 1].

These are client-server systems (in FUSE, the client is the kernel, and the server is the

user-level FUSE file system). The client typically has a module installed in its kernel

that translates local operations into protocol messages transmitted to the server, while the

server runs a user-level application that receives and processes the protocol messages from

the client. These client and server components that transparently translate local operations

to remote ones can be seen as similar to the glue code in the LCD architecture. On the

other hand, making the comparison in the other direction, in the LCD architecture, the

nonisolated kernel could be considered the client, while the isolated LCD is the server (e.g.,

the LCD contains a filesystem and acts as a file server).

However, our approach in building the interposition layers and “protocol” is different

from these other systems. Rather than develop a new protocol from scratch, we system-

atically go through each shared memory interaction pattern that crosses an interface and

translate it to an equivalent pattern in the LCD architecture. We effectively translate the

implied protocol in a shared memory interface directly into a message passing protocol that

completely preserves the original semantics. As mentioned in the overview, our hypothesis

is that there are only a small number of shared memory interaction patterns, and we can

develop general techniques that make it easy to break the code apart. Further, we contend

that this is easier than designing a new protocol and writing ‘smarter’ glue code (like the

NFS client).

4.3 Decomposing Linux Inside the Source Tree

One of our objectives is to decompose Linux within the source tree, so that decomposed

code can evolve along with the rest of the kernel. While our current build system requires

duplicating the source files for the kernel module to be isolated, we did develop techniques

for building all code–nonisolated and isolated–at once and with the same headers.

All LCD-related source code and headers–the microkernel, liblcd library kernel, kliblcd,

and so on–reside in the lcd-domains directory in the Linux source tree, but are built as

35

external modules. This is for practical reasons only (it is easier to repeatedly rebuild a

set of external modules). Furthermore, we duplicate the source files for the kernel module

that is to be isolated into a separate directory inside lcd-domains, for practical reasons

as well. Alternatively, minimal modifications to the original kernel module source files and

build system files could easily be done so that the kernel module is built for the LCD

environment and linked with the interposition layer (liblcd and the glue code).

Rather than rewrite new headers for the same kernel functions and data structures that

the interposition layers provide, all code is compiled with the original Linux headers. For

example, liblcd provides an implementation of kmalloc; rather than duplicate or write our

own header that defines the interface for kmalloc, including all of the constants, we reuse

the slab-related headers. We made this choice because Linux headers are large and complex

with hundreds of build system macros and further includes, and it would be tedious and

error prone to duplicate these headers or rewrite them from scratch. In addition, kernel

modules that we intend to isolate are made up of source code that expects a lot of these

headers and build system macros to be available, and we would like to touch the source

code as little as possible.

But we cannot reuse the Linux headers directly. The nonisolated code build configura-

tion may not correspond exactly to the execution environment inside the LCD. For example,

LCDs are currently single-threaded (single core), and so we would like to eliminate a lot

of the SMP-related configuration options. In addition, even some parts of the nonisolated

code configuration may be LCD friendly, but may require bringing a lot of unwanted code

into the LCD to fulfill additional dependencies.

Our solution is to two fold. First, we created a special “prehook” header to be included

in all of the source files that are compiled for LCDs (kernel module, glue, and liblcd source

files). This header undefines unwanted configuration options before all of the remaining

headers and code in a source file are processed, effectively changing the build configuration

for that particular file. This is error prone and sensitive to the nonisolated kernel build

configuration, and it can introduce some very subtle, nasty bugs. We may explore an

alternative approach in the future.

Second, we created a special “posthook” header that redefines problematic C macros

and other constructs. This header is included after all other headers in a C source file that is

to be built for an LCD. For example, in the posthook header, we redefine Linux’s BUG macro

so that it does not trigger an undefined opcode exception. This header can also be used to

elide entire function calls, making the remaining decomposition techniques described below

36

unnecessary. Of course, the semantics must remain equivalent.

4.4 Decomposing Function Calls

4.4.1 Function Calls Become Remote Procedure Calls

For each function call dependency in the isolated kernel module, we must decide whether

to handle it internally in liblcd, or to write glue code that translates the function call into

a remote procedure call to another domain (or the nonisolated kernel). In addition, the

isolated kernel module will likely provide an interface to the rest of the kernel, and so the

LCD needs to listen for remote procedure calls from other domains. Section 3.3.3 describes

how function calls (and global variables) are resolved using liblcd. This section explains

how glue code is constructed and how remote procedure calls to and from the LCD are

handled.

Synchronous IPC must be avoided as the main communication medium for RPC, because

it is slow, centralized, and requires synchronizing threads for every RPC. However, some

RPC invocations will require transfer of capabilities to microkernel objects, and so in some

cases, synchronous IPC is unavoidable. But for the majority of RPC invocations, threads

can instead use asynchronous, ring buffer-based IPC over a region of shared memory. This

communication mechanism is fast because it no longer requires synchronizing threads or

expensive exits out of the LCD, and allows threads to batch numerous requests. It is also

decentralized since the microkernel is no longer involved.

Asynchronous IPC introduces a new problem, however. When the isolated kernel module

invokes a function call, it expects the function call to have completed when it returns (i.e., it

expects synchronous function call semantics). So, when the glue code translates a function

call invocation into RPC by enqueueing a ring buffer message, it cannot simply return

control back to the call site. Furthermore, the glue code should not block or poll as it waits

for the response, because the LCD can do meaningful work as it waits. This leads to our

rationale for using the AC language, as described in 1.2.5.

The glue code consists of two parts: a callee dispatch loop that listens for incoming

remote procedure calls, and static caller code that intercepts function calls from the isolated

kernel module and translates them into outgoing RPC. The caller code intercepts function

calls by providing a stub function with the same signature that carries out the RPC. The

callee dispatch loop runs as an AC thread. When an RPC is received, the dispatch loop

uses the AC language to spawn an AC thread that invokes the real function in the isolated

kernel module in order to handle the RPC.

37

In most cases, the isolated kernel module will make a function call that triggers an RPC

out of the LCD. In the process, the AC thread that was spawned above enters back into the

glue code. After enqueueing the IPC message, the glue code can context switch to another

AC thread (including the dispatch loop) instead of blocking while it waits for the RPC

response.

Figure 4.1 shows an example. Glue code is installed in the nonisolated kernel and the

ext3 LCD. When the VFS invokes ext3’s mount, the call is intercepted by glue code and

translated into RPC by enqueueing an asynchronous IPC message. Meanwhile, the ext3

LCD is handling an earlier read RPC. The callee loop in the ext3 glue code spawns a new

AC thread, which then invokes the original read function in the ext3 module. In servicing

the read, the ext3 module later invokes iget to obtain the in-memory inode for the file

that is being read, and this call is intercepted by the caller glue code inside the ext3 LCD.

The caller glue code will translate the iget call to RPC, and context switch to the callee

dispatch loop as it waits for the response.

As the glue code translates function calls into RPC, it does not need to do any stack

ripping or set up a callback; it simply invokes AC functions that will enqueue the IPC

message and do the context switch, and the AC thread’s stack will be preserved. Note

that the isolated kernel module was written for a multithreaded environment, so it should

tolerate numerous threads that are spawned by the glue code to handle incoming RPCs.

In some cases, the glue code needs to transfer capabilities to the target LCD as part of an

RPC. Since asynchronous IPC is “split phase,” the glue code can “sandwich” a synchronous

IPC transaction inside an asynchronous IPC transaction. The protocol works as follows.

The glue code first sends an asynchronous IPC message to the target LCD, followed by a

synchronous IPC message containing the capabilities to grant. The target LCD will receive

the asynchronous IPC message, know that it should expect a subsequent synchronous IPC

message, and will invoke a matching synchronous receive. Upon receipt of the synchronous

IPC message, the target LCD can then process the RPC, and send back an asynchronous

IPC response. This works because asynchronous messages are received in first in, first out

order, so the timing of the synchronous IPC send and receive will be correct.

4.4.2 Handling Function Pointers

4.4.2.1 Motivation

In a shared memory program, a caller A can pass a function pointer to the callee B,

either as a field inside a struct or as a “bare function pointer.” The function pointer

may point to a function in the caller or callee module. Moreover, it is possible for A to

38

AC
Threads

ext3

callee
loop

caller
code

Linux

callee
loopcaller

code

VFS

mount

libfipc
Async IPC

read

Glue

iget

Figure 4.1. Function calls to and from the VFS and ext3 module are transparently
translated into RPC.

receive multiple instances of the same function pointer. For example, file systems in the

Linux kernel register an object-oriented interface with the VFS by passing it a structure of

function pointers. Since more than one file system can register with the VFS, there can be

more than one instance of these function pointers.

In the LCD architecture, like regular function calls, when B later invokes the function

via the pointer, B’s glue code will intercept the call and translate it into RPC that targets

A. This is done for all function pointers that are passed from A to B, even those that point

to functions that are not implemented by A. In this case, A will receive the RPC for the

function pointer from B, and A’s callee glue code will invoke the original function pointer,

which, if not defined in A’s module, will be caught by the caller glue code and translated

into RPC to the domain that does implement the function.

At a minimum, when B’s glue code intercepts the function pointer call, it needs to know

who it should send the RPC to. However, other domains in addition to A may have passed

a function pointer that could be used in the same calling context, and so the target LCD

is not known statically as is the case for regular functions. If we follow the same approach

and use a single stub function to intercept the function pointer call (passing a pointer to the

stub function in lieu of the real pointer when A invokes a RPC to B), it will be impossible

for the glue to determine which LCD to send a RPC to.

There are a few natural approaches that first come to mind. First, like other systems

such as NFS, every isolated module could have a “proxy” installed in the nonisolated kernel

that implements the interface of function pointers. For example, the isolated ext3 module

would have a corresponding ext3 proxy module installed in the nonisolated kernel that

39

provides a stub implementation of the VFS interface. We chose not to use this approach

because it does not scale: It would require a “proxy module” to be installed in every target

LCD that a function pointer is passed to.

Another approach is to modify the signature of the function pointer, adding some kind

of target domain identifier argument, and modifying all call sites to pass the correct domain

identifier. But this would require extensive kernel code modifications. Finally, if the function

that is invoked via a function pointer takes an object as an argument, it might be possible to

pack the domain identifier into the object, so that when the stub in the glue code intercepts

the call, it can recover the domain identifier from inside the object. But some functions

have only scalar arguments or no arguments at all.

4.4.2.2 Solution

What we need is a way to associate “hidden arguments” with the function pointer

invocation. This is possible in higher-level languages that have closures and ways to partially

bind function arguments, but not in C. (GCC provides nested functions and limited closures,

but nested functions cannot be safely used beyond the scope in which they are defined, and

we need arbitrary function pointers to have a longer lifetime.)

I will explain how we handle function pointers through an example. The VFS provides a

function, mount_bdev, that has a function pointer, fill_super, as one of its arguments. A

file system like ext3 can invoke mount_bdev in order to have the VFS do most of the work in

mounting an ext3 file system instance. The VFS will, in the process, invoke the fill_super

function pointer provided by the ext3 module so that ext3 can parse the super block on disk

and populate the in-memory super block object (this is a file system-dependent process).

Using the terminology from before, ext3 is the caller, A, and the VFS is the callee, B,

receiving the function pointer.

As shown in Figure 4.2, the VFS glue code defines two functions–fill_super_trampoline

and fill_super_caller. fill_super_trampoline has the same signature as the fill_super

function pointer. When the glue code receives the RPC for mount_bdev from ext3, the glue

code allocates memory on the heap and stores the “hidden arguments” there, followed by

a duplicate of fill_super_trampoline. It then invokes the real mount_bdev function,

passing a pointer to fill_super_trampoline in lieu of the real function pointer.

Later, when the body of mount_bdev invokes the fill_super pointer, it will be inter-

cepted by the duplicate of fill_super_trampoline. fill_super_trampoline knows that

it will be invoked as a duplicate, and that the hidden arguments are tucked away right before

its prologue. It extracts the hidden arguments, and then invokes fill_super_caller,

40

ext3

VFS

ext3_fill_super

Linux

heap

.text

fill_super_trampoline

fill_super_caller

fill_super_trampoline

hidden args

callee
loop

mount_bdevfill_super

Original
trampoline code
(never called)

Duplicate
trampoline code

Figure 4.2. The VFS glue code sets up a duplicate of a trampoline function along with
hidden arguments on the heap so that it can redirect the function pointer invocation to the
real target inside the ext3 module.

passing the arguments that are part of the original fill_super signature along with the

hidden arguments. fill_super_caller then carries out the required RPC, using the hidden

arguments to determine the target LCD.

Our current implementation of this mechanism requires a combination of linker scripts

and assembly, primarily because, to our knowledge, the C compiler does not provide a way

to obtain the address of the first instruction in a function at runtime (function addresses

are treated like global variables). This is needed in order to extract the hidden arguments,

since they are stored right before the first instruction in the function. In addition, since

trampolines are allocated at runtime, some manual analysis is required to determine their

lifetime, so that they are initialized and later deallocated at the right time.

4.4.3 Analyzing Function Calls

Every unresolved function or function pointer needs to be handled while building the

interposition layers, and detailed analysis is required in order to fully preserve the original

semantics. The following sketch provides some guidelines. First, all of the unresolved

functions and function pointers that will result when the code is split apart should be

identified. These can be determined using the following steps:

1. A symbol table tool, like the nm commandline tool, can be used to determine all of the

undefined functions for a kernel module and other object files. These are functions

that are declared as globally accessible in the kernel. (Weak symbols can be manually

41

resolved to determine which definition should be used.) Label this group of functions

as F .

2. For each function that appears as an undefined symbol in F , check if any of its

arguments are function pointers, or a structure that contains function pointers. These

are functions that are passed across domains and may be called from another domain.

Label this group of functions F ′, and let F = F ∪ F ′. Except in extreme cases, the

functions that are passed as function pointers can be determined statically. Note

that these functions will not necessarily appear as undefined symbols, so this step is

necessary.

3. Repeat step 2 until F does not change (some functions passed as pointers may

themselves receive function pointers as arguments).

Next, for each function in F , determine if the domain crossing is necessary. The function

could possibly be redefined in liblcd or the glue code (even to a no-op) while maintaining the

desired level of correctness. If the objective is to only get certain high-level features working,

it may not even be necessary to resolve this dependency (the function is never called). For

complex code, a call graph can be used to determine which functions are required in order

to get a certain feature working (e.g., using the Doxygen documentation tool [7]).

Finally, for those functions in F that require a domain crossing, sketch a graph of the

call dependencies between them (this will likely be a directed acyclic graph). Start writing

glue code for “leaf domain crossings,” and work upward (writing the glue code will require

analyzing data flow, as described below). It is easier to start with leaf domain crossings

because no further domain crossings will happen, and it is easier to reason about. See

Figure 4.3 for an example.

4.5 Handling Shared Objects

4.5.1 Shared Objects are Replicated

By definition, in a shared memory program, two modules can share state between each

other. For example, one module may define a global variable with external linkage that is

directly accessible from the other module, or it may define the global variable with internal

linkage but pass a pointer to it as an argument in a function call to the second module.

Either module may allocate objects on the stack or in the heap and pass pointers to those

objects as function arguments.

In the LCD architecture, the two modules will no longer share a common address space,

but we want to provide the illusion that the code is still operating in a shared memory

42

ext3

Domain
Crossings

VFS

Linux

foo
"Leaf"

Domain
Crossings

Figure 4.3. The VFS call to ext3’s foo function will trigger numerous domain crossings.
Leaf domain crossings are shown in green.

environment. In some cases, one module maintains an internal set of objects, and references

to those objects are not permanently stored outside of the module. The objects may be

accessed by other modules, but only through an interface or when the objects are passed

in a function call. It may be possible in these cases to communicate object state purely

through RPC. For example, consider the case when a module passes an internal object in a

function call to external code, but the external code does not store a reference to the object

passed and only reads and writes certain fields during the function call. First, the glue

code on the caller side can marshal the object’s fields that the callee will read into the RPC

message. Next, the glue code on the callee side can create a temporary object to hold the

field values in the RPC message, and pass the temporary object to the original function.

Finally, the glue code on the callee side can marshal the object’s fields that were written

during the function call into the RPC response. (We must be careful though that this does

not change the semantics or introduce data races, as other threads may be accessing the

same object.)

However, in many cases, objects are shared across two or more modules, or, even if they

are not, the layout of the objects and the interactions involving them are too complex to

try to handle only with simple RPC marshaling. For example, even though kernel code

may pass a single pointer to an object, the object may contain pointers to other objects

that are accessed by the callee. The kernel code is effectively passing an entire hierarchy

or graph of objects in the function call. It would be too expensive to marshal an entire

hierarchy of objects and recreate the hierarchy on the receiving side, during every function

43

call. Figure 4.4 shows a simplified version of an object graph that appears in the VFS and

filesystem-related code. The figure also shows how kernel code uses specific object layouts

for implementing interfaces in C. A generic struct inode is stored right after a filesystem-

specific inode object, and the filesystem code uses pointer arithmetic to move between the

two.

Our conclusion from these observations is that modules need to share state–not through

shared memory, but by some other means. One approach is to maintain a single, global

copy of an object in a central location and provide secure access to it to certain domains.

But centralizing system state could introduce a lot of unnecessary access latency and the

central object repository would need to be trusted by all domains. In addition, domains

would still need to maintain their own private copies of the objects, “snapshots” of the

system state, that are passed to the original kernel code.

This leads to the solution we chose to follow. In our approach, objects that are involved

in stateful interactions are replicated. Each domain maintains its own replica of the system

state, and replicas are synchronized as necessary using RPC. From our experiences looking

at kernel code, we noticed that many objects that are passed across interfaces consist of

two disjoint sets of fields: the first set is primarily used by the file system or device driver

that implements the interface, and the second set is used by the core kernel that uses the

interface. For example, the struct super_block in the Linux VFS interface consists of

nearly 50 fields, but less than half of those fields are used by a file system, including more

complex file systems like XFS. This implies that there is less contention on the fields in such

objects, and consequently less synchronization will be required. In addition, prior work has

also shown that a replicated approach yields better performance in an operating system [2].

Initializing, synchronizing, and tearing down object replicas at the right time requires

some thought, and must be handled on a case-by-case basis. In the original shared memory

code, an object is allocated by a module either statically as a global variable or dynamically

on the stack or heap, and then shared with other modules. In the LCD environment, the

other modules need to be given a replica of the object in lieu of the original when it would

have been shared and accessed by them. Our general approach is to have the glue code

layers manage object replicas. When necessary, the glue code allocates and initializes an

object replica and “piggy backs” on RPC to synchronize the replica with other domains

throughout the replica’s lifetime. It may be necessary to introduce additional IPC exchanges

in order to synchronize replicas at the right time, though we did not encounter any examples.

Note that initializing the object itself may be somewhat complex and requires some manual

44

ext3
super
block

dentry

ext3
inode

Figure 4.4. The objects used in the VFS interface are connected in a complex graph. The
figure shows a simplified example. The yellow squares are the generic objects used in the
VFS interface, while the blue squares are the filesystem-specific data (ext3 in this case). A
pointer to the file object in the figure may be passed as an argument, for example, but the
callee may access many of the other objects in the graph during the function call.

analysis of the code (e.g., for per-CPU objects and data).

4.5.2 Secure Remote References

Domains need a way to securely reference the object replicas in other domains. For

example, when the VFS invokes an operation on an inode, it needs a way to refer to ext3’s

private replica of the inode object. Our solution is to reuse the same capability access

control design found in the LCD microkernel. A Cptr is now used as a remote reference to

an object in another, target domain. The target domain’s glue code maintains a CSpace

that it uses to resolve the Cptr to the private object replica. Capabilities could also be

used for higher-level objects like files, so that in a sense, domains become “microkernels”

for the objects they manage, decentralizing access control. Using capabilities provides a

secure mechanism for remote references because valid references are restricted to only those

objects in a CSpace, and the object lookup algorithm is type safe. Figure 4.5 shows an

example for a pair of replicated objects, a super block and inode. When the VFS glue code

translates an inode operation into RPC, it uses the inode Cptr to refer to ext3’s private

replica.

The figure also presents one of our other techniques. When a glue code stub intercepts a

function call that passes pointers to objects, it needs to translate local pointers into remote

references so that it can set up the RPC. Our solution is to wrap existing objects, or structs,

inside a container struct. The container struct provides fields for the glue code layer to store

45

Linux

VFS

super
block

inode
ext3

super
block

inode

ext3

VFS

CSpace

Cptr

Glue

Container
Struct

Figure 4.5. The VFS and ext3 have their own private replica of the super block and inode
objects shown. Glue code on both sides maintains a CSpace that is used to translate remote
references (Cptrs) into local pointers. The objects themselves are wrapped in container
structs, in which the glue code can store per-object metadata (shown in blue) like remote
references.

additional metadata, like remote references that refer to the object copies in other domains.

From our experience, embedding metadata around kernel objects has not introduced any

problems. Note that this does require altering some kernel code so that stateful objects are

allocated with a container around them.

4.5.3 Analyzing Shared Objects and Data Flow

All object replicas must be maintained so that the code still works at the desired level

of correctness. This requires careful, manual analysis of the kernel code involved and is not

trivial. Shared objects can percolate into different parts of a module and become accessible

to a wide variety of code, and it can be difficult to determine when the code accesses them.

The following sketch covers some data flow patterns when objects are passed as arguments.

1. Starting with the “leaf level” functions in F from 4.4.3, look for objects passed as

arguments.

2. For each object, determine whether the object should or already has been replicated.

If this is the first time the object is crossing the isolation boundary, object replicas and

remote references should be set up. It is also necessary to identify when the object

replicas should be torn down. Note that it may be necessary to set up object replicas

even when the original shared memory interaction does not appear stateful, because

the object is passed back and forth across the isolation boundary in a criss crossing

pattern, similar to the pattern shown in Figure 4.3.

46

3. Determine in what RPC messages object replicas should be synchronized, and which

fields. In general, this is difficult to determine and requires manually inspecting code

and deciding when to ship field values in RPC in order to ensure the desired level

of coherence and correctness is achieved. Some objects that are not related to the

function call may even require synchronization. (We are faced with the same issues

that arise in other coherence protocols, like the cache coherence protocol in hardware

and distributed shared memory.)

Figure 4.6 shows an example. As future work, we intend to use Data Structure Analysis

(DSA) to automate some of the analysis for determining which object fields are accessed

and when [20].

4.6 Sharing Strings and Memory Buffers

Strings and arbitrary memory buffers may also be shared through global variables or

pointers passed as arguments. While we could use the same approach as shared objects and

replicate strings and memory buffers (after all, an object is just a typed memory buffer),

buffers are usually a lot larger and it is harder to reason about reads and writes to them

since they are untyped. If buffers are large or shared frequently between two domains,

especially on the data path, it may be worthwhile to set up a region of shared memory

between them. Buffers from the caller can be copied into the shared memory and passed

to the callee, or the caller may be able to allocate memory from the shared region so that

the data transfer is zero-copy.

Buffers can also be shared temporarily for convenience instead of marshaling it into an

RPC message. This can be done to pass strings when performance does not matter. The

following protocol can be used.

1. The caller layer determines the memory object that contains the buffer, and the asso-

ciated capability it has to that object (using the address-to-cptr translation functions

in the LIBLCD interface described in 3.2.4).

2. The caller grants the callee a capability to the memory object, and also provides the

offset and length of the string inside the memory object.

3. The caller grants the callee a capability to the memory object, using synchronous

IPC.

4. The callee maps the memory object in its address space, and uses the offset and length

to recreate the pointer to the string.

47

ext3
RPC

VFS

write i->size
write i->status

read i->status
write i->status

write i->status
read i->size

read i->size

Non-Concurrent
Code Sections

inode inode

status

size

Figure 4.6. The VFS and ext3 filesystem share an inode object. The white blocks are
nonconcurrent code sections– they may be critical sections surrounded by a lock, or frames
in a call graph that criss crosses back and forth. The fields of the inode that are accessed
are shown. The field values are shipped in RPC messages at the right time so that the code
works properly. Note that the size field value could have been sent in the earlier RPC, but
the VFS doesn’t access this field until later.

Since this technique requires granting a capability, it uses synchronous IPC and is

therefore slow. It can also be too coarse grained if the memory object that contains the

buffer is large. For example, the buffer may only be 12 bytes, but the memory object may

be 4 MBs of RAM from the heap. This technique should be used sparingly.

4.7 Related and Future Work

Writing the glue code described in this section by hand is very tedious and error prone.

We explored using an IDL to describe the high-level shared memory interaction patterns,

and a compiler to translate the IDL into glue code. In addition, there are more shared

memory patterns that we did not develop general techniques for. For example, a caller and

callee may share a global variable and modify it under a lock. We leave such patterns for

future work.

CHAPTER 5

CASE STUDY: ISOLATING PMFS

5.1 Overview

We created small kernel modules in order to exercise individual pieces of the LCD

architecture and decomposition techniques; but in order to truly assess the feasibility of our

design choices, we needed to take an existing nontrivial kernel module and try to isolate it.

To this end, we decided to isolate the Persistent Memory File System (PMFS) developed by

Intel [8]. PMFS consists of a few patches to the core of the Linux kernel and a kernel module

that is approximately 6,000 LOC (our objective is to isolate the kernel module only). PMFS

is an “in memory” file system: All files and directories are stored in nonvolatile memory (or

RAM if persistence is unnecessary) that is directly accessible from the processor.

Like other file systems in Linux, PMFS sits below the Virtual File System (VFS) and

interacts with the VFS through an object-oriented interface with the same name, the VFS

interface. The VFS is the component in the core of the Linux kernel that sits between

applications and individual file systems. See Figure 5.1. The VFS concept and first

implementation was developed back in the 1980s at Sun Microsystems [35].

The VFS fulfills a few roles. First, it is responsible for receiving file system-related system

calls from user-level and carries out various file system-independent tasks, like traversing

directories, sanitizing system call arguments, and checking permissions. Second, it provides

the infrastructure for connecting numerous file systems under one directory tree. Third,

it provides additional generic functions and utilities that file systems can use to carry out

common tasks.

The VFS interface is used by the VFS to communicate with a specific file system for

file system-specific parts of a system call. For example, the VFS calls into a file system

to list entries in a directory since the storage format of directories on disk depends on the

file system. The objects in the VFS interface represent common file system structures, like

inodes, directory entries, and super blocks, and each object type has a set of associated

operations. The interactions between the VFS and a file system relies on having shared

49

httpd sshd

VFS

Syscall Interface

FS-Independent
Code

FS Utilities

pmfs

Linux

read

read

check_perms

VFS
Interface

(over 100
functions)

Linux
"Interface"

(about 100
functions for PMFS)

User

Kernel

Figure 5.1. The figure shows how user-level applications access files and the components
involved.

memory established between the two, so that objects and memory buffers can be passed

back and forth through pointers.

File systems register their implementation of “top level operations” for mounting and

unmounting a file system instance using register_filesystem. Other VFS objects and

their associated operations are instantiated later as file system instances are mounted, files

are opened, and so on. There are over 100 functions in the VFS interface that a file system

can implement (the VFS falls back to defaults if functions are not implemented). For

example, when a file system instance is mounted, the file system creates a VFS super block

object and stores file system-specific operations and data in pointer fields in the object.

Over time, the set of VFS objects evolves into a complex graph; see Figure 4.4 for an

example.

In order to improve access times, the VFS caches file system data and objects. Inodes

and directory entries each have their own dedicated caches so that the operating system

does not need to access the disk every time it updates file attributes or traverses a directory

tree. File objects that represent open files, though not cached themselves, indirectly cache

access control data. This is because the VFS checks permissions when a file is opened and

sets the “mode” of the file (read, write, execute, etc.). File accesses after that point only

check the file object’s mode. File data itself is also cached in the page cache. (It is possible

for a file system to implement file read and write operations so that they access files directly

50

every time, bypassing the page cache. This is what PMFS does.)

One of the important implications of caching for our task is that many of the objects

used in the VFS interface have interesting lifetimes, and the overall interface is stateful. For

example, when a file is opened, the VFS, in coordination with the file system that owns the

file, will initialize a small hierarchy of interconnected objects (a file object, inode object,

address space object, directory entry object, etc.) that persist while the file is opened (and

some even beyond that). Later, the VFS will invoke an operation on one of the objects,

like the read_page operation on the address space object.

Our objective was to get as close as possible to a fully functioning version of PMFS

running inside an LCD that interacts transparently with the nonisolated host (where the

VFS would be). To fulfill this objective, we needed to analyze the interactions between the

VFS and PMFS and follow the techniques described in the prior chapters. This includes

writing glue code for both the PMFS LCD and for the nonisolated environment to resolve

certain dependencies. Our overall approach was to get each high-level operation working,

one at a time, rather than all operations at once: PMFS initialization, then mounting, then

basic file I/O, and so on.

The task proved to be quite difficult. We built enough infrastructure so that PMFS could

register and unregister itself with the VFS, and multiple instances of the PMFS file system

could be created and mounted. The glue code for both environments is approximately 3,000

LOC, about half of the size of the file system itself. Due to time and the complexity of

the remaining dependencies, we did not get other key things like file read, file write, and

directory traversals working. In the process of conducting this study, we gathered valuable

insights on the feasibility of our approach.

5.2 PMFS Initialization and Tear Down

There are three components involved in the system we constructed: the PMFS LCD,

a nonisolated thread (“VFS thread”) and glue code that sits between the VFS and PMFS

LCD, and a small, nonisolated kernel module (“setup module”) that initializes the other

components. See Figure 5.2. Using the techniques described in the prior chapters, we first

analyzed the PMFS initialization code and built enough infrastructure so that PMFS could

register itself with the VFS. The dependencies are listed in Figure 5.3. Note that the VFS

does not invoke any PMFS functions (including function pointers) during the initialization

process. The slab cache dependencies (kmem_cache_create and kmem_cache_destroy) are

fulfilled by liblcd (see 3.3.3), while the remaining functions require glue code for interacting

51

pmfs

callee
loop caller

code

Linux

callee
loopcaller

code

register_filesystem
sync endpoint

Setup
Module

Microkernel

PMFS-specific
sync endpoint

PMFS-specific
async channel

VFS Thread

Setup during PMFS initialization

Figure 5.2. There are three components in the system in which PMFS is isolated:
the PMFS LCD (far right), the VFS thread, and a setup module. There are three
communication channels: a synchronous channel that the VFS thread listens on specifically
for register filesytem invocations (green), and a pair of synchronous and asynchronous
channels PMFS and the VFS use to communicate with each other (red).

kmem_cache_create

kmem_cache_destroy

register_filesystem

unregister_filesystem

bdi_init

bdi_destroy

Figure 5.3. PMFS initialization and tear down dependencies.

with the nonisolated kernel. We manually triggered the initialization and “tear down” code

inside PMFS at the right times in order to test it.

The register_filesystem dependency is fulfilled using synchronous IPC. After loading

the PMFS LCD and VFS glue code, the setup module creates a synchronous IPC endpoint

and grants access to it to the PMFS LCD and VFS thread. The VFS thread listens on

the synchronous IPC endpoint for a register_filesystem message. Glue code inside

the PMFS LCD will intercept the call to register_filesystem and translate it into a

register_filesystem synchronous IPC message, sent to the VFS.

52

During register_filesytem RPC, the glue code on both sides initializes the compo-

nents necessary for future communication between the VFS and PMFS, using the following

protocol:

1. The PMFS LCD initializes two channels: an additional PMFS-specific synchronous

channel for transferring capabilities to and from the VFS, and an asynchronous IPC

channel for RPC between PMFS and the VFS (shown in red in Figure 5.2).

2. The PMFS LCD does a register_filesystem remote procedure call on the syn-

chronous channel the VFS is listening on (shown in green), granting the VFS thread

access to the two new channels and passing data necessary for register_filesystem.

3. The VFS thread receives and processes the register_filesystem message and then

begins polling for messages on the asynchronous PMFS channel. The logic in this

part of the VFS glue code has been designed to anticipate the future scenario in

which numerous file systems try to register over the synchronous channel. The VFS

periodically polls on the synchronous channel for additional register requests.

The PMFS LCD and VFS thread also initialize CSpaces for remote references, as described

in 4.5.2 (not shown).

The remaining three dependencies are fulfilled using asynchronous IPC. After invoking

register_filesystem, the PMFS LCD invokes bdi_init; this is translated into asyn-

chronous IPC over the PMFS-specific channel.1 Similarly, when PMFS’s module unload

function is called, bdi_exit and unregister_filesystem are invoked and translated into

asynchronous IPC. After carrying out the unregister_filesystem remote procedure call,

the glue code on both sides tears down the PMFS-specific channels.

5.3 PMFS Mounting and Unmounting

Next, we built the infrastructure for creating, mounting, and unmounting a PMFS file

system instance. More specifically, the VFS thread can invoke the PMFS mount function and

later invoke the PMFS kill_sb function. (We did not build enough infrastructure to mount

and unmount PMFS from the commandline in user-level.) The decomposition process

became significantly more complex at this point. There are approximately 30 functions

that PMFS invokes and 7 functions the VFS invokes that must be resolved in order for

1Note that the bdi init function is conceptually not part of the VFS; but since the VFS thread is running in
the nonisolated kernel, for simplicity, we have it handle all remote procedure calls from PMFS. Alternatively,
we could set up a second thread and set of channels to handle other functions.

53

mount and kill_sb to work. We describe our strategies for handling them below. Even

with some simplifications, it took over a month of analysis and coding to get mount and

unmount working for PMFS.

We tried to avoid taking shortcuts as much as possible so that we fully exercise the

design choices described in prior sections. For example, we know that the PMFS mount

function simply calls mount_nodev, which leads to an immediate domain crossing back to

the VFS. As an optimization, VFS glue code could invoke mount_nodev directly, instead of

carrying out a MOUNT rpc. But the glue code would not work for other file systems that do

not use mount_nodev.

We determined that nearly two-thirds of the functions used by PMFS would not require

a domain crossing (exiting the PMFS LCD). First, PMFS uses ioremap to map the physical

memory where the file system will reside into its virtual address space. liblcd provides an

ioremap implementation, and it was simple to redefine Linux kernel functions to use that.

Second, PMFS uses a handful of simple library functions for parsing the mount options

string, and it was simple to replicate the source files for these functions and make them a

part of liblcd. Third, a few other functions, like get_random_bytes or get_seconds, were

redefined as simple functions that still preserve our desired level of correctness (e.g., just

return 0). We did not consider them interesting enough to warrant more effort. Finally,

some functions related to waitqueues and kernel threads were elided or redefined to no-ops

since some of the journaling tasks in PMFS are not required for mount and unmount to

function correctly (e.g., log cleanup).

We were left with 15 function calls that required a domain crossing: 8 function calls

originating from PMFS, and 7 from the VFS. All of the function calls from the VFS are

through function pointers, and hence required using the “trampoline pattern” described in

the prior chapter. A few of the functions require transferring capabilities to memory, and

the glue code uses the protocol described in the prior chapter that combines synchronous

and asynchronous IPC. For example, one of the arguments to mount is the mount options

string. The following protocol is used in the MOUNT rpc:

1. The VFS thread sends an asynchronous IPC MOUNT message to PMFS with some of

the arguments.

2. The VFS thread then does a synchronous IPC call on the PMFS-specific synchronous

channel in order to grant PMFS a capability to the memory that contains the mount

options string.

54

3. PMFS receives the asynchronous IPC MOUNT message, and unmarshals the arguments.

4. PMFS knows that, since it received a MOUNT message, it should expect to receive a

capability to the mount options string memory, and does a synchronous receive on

the synchronous channel.

5. The capability is transferred, along with some remaining data.

6. PMFS then replies to the asynchronous IPC MOUNT message with the results.

5.4 Conclusion

While working on the infrastructure for mount and unmount, we began to realize just

how complex the implied protocol of the VFS interface is. A single domain crossing for

RPC can trigger at least a handful of additional domain crossings, back and forth, before

the original domain crossing “returns” (so-called “criss crossing”). For example, a top-level

call to mount triggers approximately 5 domain hops, back and forth, before it returns.

See Figure 5.4. Compare this with another protocol, like NFS, in which an operation like

reading a file is just a single roundtrip to the server. This is due to the mutual dependence

of the components (PMFS invokes functions in the VFS, but the VFS can turn around and

invoke functions in PMFS using function pointers).

In addition, each high-level operation has a number of possible interaction patterns. Er-

rors can trigger unexpected function calls that are not encountered under normal conditions,

and file systems use a variety of implementations that will trigger different function calls.

For example, PMFS mount uses mount_nodev, but other file systems will use mount_bdev.

We also encountered an interesting shared memory pattern that is difficult to handle in

the LCD architecture with replicated objects. When a slab cache is created, an optional

“constructor” argument can be provided. When a new page is added to the slab cache, the

constructor is invoked on all of the objects in the page. The constructor initializes fields

that are “idempotent” across slab allocations. This means that when objects are allocated

from the slab cache, certain initialization steps can be skipped, since they were already done

by the constructor. To handle this pattern with replicated objects, we need to manually

invoke the constructor (or the equivalent) on each replicated object.

55

pmfsVFS

Linux

mount

mount_nodev
fill_super
iget_locked

alloc_inode
unlock_new_inode

d_make_root

Figure 5.4. The criss cross call pattern in the call to PMFS’s mount function.

CHAPTER 6

RELATED WORK

The LCD architecture is motivated in part by prior work in microkernels and distributed

kernels. Microkernels have been around for decades [33, 34, 15, 19, 10, 9, 36]. The

principle behind microkernels is to make the trusted computing base small and move

as much of the kernel into untrusted domains. For example, in the Mach microkernel

environment, file systems, device drivers, and memory “pagers” run in user-level processes

and communicate using secure, synchronous IPC. The Mach microkernel itself only provides

a minimal set of mechanisms for spawning threads, setting up communication channels,

and so on. The LCD microkernel was designed from the same philosophy and was kept

as small and simple as possible. Some microkernels use capability access control or some

variant for explicit tracking and secure sharing of all resources [19, 36, 9]. As mentioned

in the introduction (1.2.2), we borrowed significant parts of the seL4 design for the LCD

microkernel’s capability-mediated interface and the internals of the capability access control

system.

Like LCDs, distributed kernels were motivated by emerging distributed systems, either

across machines or within a single machine [33, 34, 2, 27, 13, 6]. In the Barrelfish multikernel

architecture and the operating system implementation, processor cores run dedicated kernels

and no or little state is shared between different kernels. Kernels communicate using

message passing, and system state is replicated amongst the kernels and kept synchronized

using message passing. The kernels themselves are fully trusted. Some key points of the

LCD design were motivated by Barrelfish, and as mentioned in 1.2.5, we borrowed the

AC language and runtime in our implementation. (AC is a subproject of Barrelfish.) The

LCD microkernel and nonisolated kernel could be viewed as the analogue of the trusted

‘CPU driver’ in the Barrelfish operating system. (Though in the LCD architecture, as with

monolithic kernels, there is only one CPU driver.)

While the trajectory of the LCD architecture is toward these other systems, the key

differentiating factor of LCDs is a design that allows for incrementally isolating kernel code.

57

The LCD microkernel runs as a type 2 hypervisor, the nonisolated kernel runs bare metal,

and isolated and nonisolated code can interact. In contrast, many of the related systems

require substantial rewrites or decomposing the entire Linux kernel for the new environment.

To our knowledge, this work is the first attempt to decompose a monolithic kernel for

a microkernel environment since the work done by Gefflaut, et al. [12] in the Sawmill

project in the early 2000s. Gefflaut, et al. attempted to decompose Linux for the L4

microkernel, and they successfully isolated the ext2 filesystem and the networking stack from

Linux. But the project was abandoned and the source code is unavailable. Furthermore,

the execution environment in the L4 architecture is much different than LCDs—domains

in L4 are user-level processes, scheduled by the L4 microkernel, that communicate using

synchronous IPC.

Others have decomposed monolithic kernels but for a different type of execution envi-

ronment or with different goals in mind. In Nooks [37], Swift isolated unmodified Linux

drivers and filesystems in separate address spaces. He introduced interposition layers that

keep replicated data structures synchronized and translate function calls into cross address

space IPC. The objectives in Nooks, however, were primarily fault isolation and reliability,

and isolated code was fully trusted.

In VirtuOS, Nikolaev and Back decomposed Linux for Xen in a way that put user-level

applications, the storage stack, and the networking stack in their own virtual machines (‘ver-

tical slicing’) [28]. User-level applications communicated with the storage and networking

stack through “exceptionless system calls” that use Xen’s ring buffer inter-VM IPC. The

isolated storage and networking stacks could not communicate with each other, however,

and the decomposition is more coarse-grained than LCDs.

Kantee refactored NetBSD in the rumpkernels project so that pieces of NetBSD could

be reused in various environments [18]. The kernel was refactored so that it could be split

into a core part and three “factors”— a networking factor, virtual filesystem factor, and

device factor—that can run on top of a lower-level abstraction layer. Device drivers and

filesystems could then be run in a new environment by linking them with the core part,

abstraction layer, and right factors. The emphasis in rumpkernels is to redesign a monolithic

kernel so that it can be arbitrarily decomposed and components can be installed and reused

in a variety of environments.1 The objective in LCDs is similar but device drivers and

filesystems are isolated from their “factors”, and hence the decomposition is a bit more

1The kernel community is considering redesigning parts of Linux so that they can be reused as libraries
in arbitrary environments. This has been termed “librarifying” Linux.

58

complex (e.g., a filesystem and the VFS run in separate domains). In addition, LCDs has

a specific target execution environment—a microkernel.

Other work has shown ways to move filesystems and device drivers into user-level pro-

cesses. User-level processes can be seen as an alternative way to isolate kernel code, instead

of using hardware virtual machines. The FUSE interface allows for running filesystems in

user-level processes that are accessible to other applications [38]. Applications operate on

files by invoking regular system calls. These are received by a FUSE component inside the

Linux kernel and forwarded to the correct filesystem that is sitting in user space. FUSE uses

a protocol developed from scratch, and it is not possible to run unmodified filesystems in the

FUSE framework. In Microdrivers, Ganapathy, et. al [11] split device drivers into kernel-

and user-level parts that interact using IPC. The result is an even finer decomposition than

in LCDs. Finally, Boyd-Wickizer and Zeldovich moved entire, unmodified device drivers

into user space that run on top of a version of User-Mode Linux.

CHAPTER 7

CONCLUSION

This work was motivated by two observations: First, the monolithic kernels we use today

are vulnerable, and second, they may not be the ideal design for commodity hardware

in coming years. We anticipate that future hardware will be more heterogeneous and

decentralized, with increasing numbers of cores, memory, and other resources. Together

with emerging security features like hardware capabilities and sandboxing, we think this

warrants reconsidering a microkernel design. But decades of effort has gone into monolithic

kernels, so we would like to reuse as much of them as we can as we move toward microkernels.

In this work, we explored the idea of embedding a microkernel environment inside Linux,

a monolithic kernel, and developing techniques for incrementally moving Linux components

into isolated domains. We tested the hypothesis that it is feasible to move nontrivial kernel

code into an isolated domain, in a way that improves security and performance, while also

being transparent to the original code. We concluded that, while it is theoretically possible

to isolate unmodified code, doing so in a way that preserves strong, byte level coherence leads

to too much performance overhead and engineering complexity. Components in a shared

memory program are interwoven with call patterns and data flows that are too complex to

break apart without modification. We also concluded that it is difficult for domains to be

lightweight. A lot of infrastructure is required inside LCDs for kernel code, unmodified or

not, to manage memory, handle interrupts, and interact with devices.

It is informative to compare the partially complete and implied protocol we developed in

the PMFS case study with other decoupled file system designs, like NFS, FUSE, and FSVA

[35, 38, 1]. Our conclusion in comparing our work to these others is that the protocols

developed in these other systems were developed from scratch. Our protocol attempts to

translate the implied protocol behind the shared memory interactions in the VFS interface

verbatim into a message-passing protocol. In the NFS protocol, one read operation is a

single roundtrip to the NFS server. But in our system, one read operation could trigger at

least a few criss crosses back and forth between the VFS and the file system. Moreover,

60

other systems like NFS only attempt to keep higher level objects coherent, or tolerate some

degree of weaker coherence. In contrast, we aimed toward full consistency, and in the

process, we wrote code that was trying to do the work of the cache coherence protocol but

in software, maintaining byte-level coherence of data structures. We also concluded that

even if it is easy to break the code apart, mimicking the implied shared memory protocol

may be inefficient.

Despite the result of this work, we think hardware trends will eventually lead the systems

community to reconsider commodity kernel design. We anticipate that kernels will resemble

distributed systems of independent components, as envisioned in the Barrelfish multikernel

architecture. The kernel community is working on ‘librarifying’ Linux [5], and we think this

will make it more feasible in the future to fully transition to the multikernel model while

also reusing existing code.

REFERENCES

[1] M. Abd-El-Malek, M. Wachs, J. Cipar, K. Sanghi, G. R. Ganger, G. A.
Gibson, and M. K. Reiter, File system virtual appliances: Portable file system
implementations, Tech. Rep. CMU-PDL-08-106, Parallel Data Laboratory, Carnegie
Mellon University, May 2009.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, The multikernel: A new OS
architecture for scalable multicore systems, in Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (SOSP), ACM, 2009, pp. 29–44.

[3] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, Dune: Safe user-level access to privileged CPU features, in Proceedings
of the 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2012, pp. 335–348.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, IX: A protected dataplane operating system for high throughput and low
latency, in Proceedings of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), USENIX Association, 2014, pp. 49–65.

[5] Z. Brown, Librarifying the kernel. http://www.linux-magazine.com/Issues/2015/
176/Kernel-News.

[6] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta,
Hive: Fault containment for shared-memory multiprocessors, in Proceedings of the
fifteenth ACM Symposium on Operating Systems Principles (SOSP), ACM, 1995,
pp. 12–25.

[7] Doxygen, Doxygen. http://www.doxygen.org.

[8] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, System software for persistent memory, in Pro-
ceedings of the Ninth European Conference on Computer Systems (EuroSys), ACM,
2014.

[9] D. R. Engler, M. F. Kaashoek, and J. O’Tool Jr., Exokernel: An operating
system architecture for application-level resource management, in Proceedings of the
fifteenth ACM Symposium on Operating Systems Principles (SOSP), ACM, 1995,
pp. 256–266.

[10] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson,
Microkernels meet recursive virtual machines, in Proceedings of the 2nd USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI), 1996, pp. 137–151.

62

[11] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and
S. Jha, The design and implementation of microdrivers, in ACM SIGARCH Computer
Architecture News, vol. 36, ACM, 2008, pp. 168–178.

[12] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig,
J. E. Tidswell, L. Deller, and L. Reuther, The SawMill multiserver approach, in
Proceedings of the 9th ACM SIGOPS European Workshop (EW), ACM, 2000, pp. 109–
114.

[13] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum, Cellular Disco: Resource
management using virtual clusters on shared-memory multiprocessors, in Proceedings
of the seventeenth ACM Symposium on Operating Systems Principles (SOSP), ACM,
1999, pp. 154–169.

[14] T. Harris, M. Abadi, R. Isaacs, and R. McIlroy, AC: Composable asynchronous
IO for native languages, in Proceedings of the 2011 ACM international conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA),
ACM, 2011, pp. 903–920.

[15] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, MINIX
3: A highly reliable, self-repairing operating system, ACM SIGOPS Operating Systems
Review, 40 (2006), pp. 80–89.

[16] R. Hirokawa, System for autonomous vehicle navigation with carrier phase DGPS
and laser-scanner augmentation. US Patent 7,502,688.

[17] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual,
2016.

[18] A. Kantee, Flexible Operating System Internals: The Design and Implementation of
the Anykernel and Rump Kernels, PhD thesis, Aalto University, 2012.

[19] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, seL4: Formal verification of an OS kernel, in Proceed-
ings of the 22nd ACM SIGOPS Symposium on Operating Systems Principles (SOSP),
ACM, 2009, pp. 207–220.

[20] C. Lattner and V. Adve, Data structure analysis: A fast and scalable context-
sensitive heap analysis, Tech. Rep. UIUCDCSR-2003-2340, University of Illinois at
Urbana-Champaign, 2003.

[21] J. Levin, Mac OS X and iOS Internals: To the Apple’s Core, Wrox, 2012.

[22] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, MICA: A holistic approach
to fast in-memory key-value storage, in Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), USENIX Association, 2014,
pp. 429–444.

[23] W. Mauerer, Professional Linux Kernel Architecture, Wrox, 2008.

[24] R. McDougall and J. Mauro, Solaris Internals: Solaris 10 and OpenSolaris Kernel
Architecture, Prentice Hall, 2006.

63

[25] M. K. McKusick, G. V. Neville-Neil, and R. N. Watson, The Design and
Implementation of the FreeBSD Operating System, Addison-Wesley Professional, 2014.

[26] D. Merkel, Docker: Lightweight Linux containers for consistent development and
deployment, Linux Journal, 2014 (2014).

[27] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt,
Helios: Heterogeneous multiprocessing with satellite kernels, in Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP), ACM, 2009,
pp. 221–234.

[28] R. Nikolaev and G. Back, VirtuOS: An operating system with kernel virtualization,
in Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP),
ACM, 2013, pp. 116–132.

[29] OpenWRT, OpenWRT. https://openwrt.org/.

[30] S. Özkan, Linux vulnerabilities. https://www.cvedetails.com/product/47/

Linux-Linux-Kernel.html?vendor_id=33.

[31] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller, Faults
in Linux: Ten years later, in Proceedings of the sixteenth international conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
ACM, 2011, pp. 305–318.

[32] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, Arrakis: The operating system is the control plane,
in Proceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), USENIX Association, 2014, pp. 1–16.

[33] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Julin, D. Orr,
and R. Sanzi, Mach: A foundation for open systems, in Proceedings of the Second
Workshop on Workstation Operating Systems, IEEE, 1989, pp. 109–113.

[34] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont,
F. Herrmann, C. Kaiser, S. Langlois, P. Léonard, and W. Neuhauser,
CHORUS distributed operating systems, Computing Systems, 1 (1988), pp. 305–370.

[35] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, Design
and implementation of the Sun network filesystem, in Proceedings of the 2nd Summer
USENIX Conference, 1985, pp. 119–130.

[36] J. S. Shapiro and N. Hardy, EROS: A principle-driven operating system from the
ground up, IEEE Software, 19 (2002), pp. 26–33.

[37] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers, Nooks: An architec-
ture for reliable device drivers, in Proceedings of the 10th ACM SIGOPS European
Workshop (EW), ACM, 2002, pp. 102–107.

[38] M. Szeredi, FUSE: Filesystem in Userspace. https://github.com/libfuse/

libfuse.

[39] C. A. Waldspurger, Memory resource management in VMware ESX server, in
Proceedings of the 5th USENIX symposium on Operating Systems Design and Im-
plementation (OSDI), USENIX Association, 2002.

64

[40] R. N. Watson, J. Anderson, B. Laurie, and K. Kennaway, Capsicum: Practical
capabilities for UNIX, in Proceedings of the 19th USENIX Security Symposium, 2010,
pp. 29–45.

[41] P. Yosifovich, M. E. Russinovich, D. A. Solomon, and A. Ionescu, Windows
Internals, Part 1: System architecture, processes, threads, memory management, and
more, Microsoft Press, 2016.

