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ABSTRACT 

A novel approach to image compression using 
vector quantization of linear (one-step) 
prediction errors is presented in this paper. In 
order to minin,ize the image reconstruction error, 
we choose the optimum predictor coefficients (in 
a least-squares sense) that satisfy the 
additional constraint that the energy of the 
impulse response function of the inverse 
reconstruction filter is bounded by a small 
constant c. Further, the code vectors are 
selected such that the reconstruction error is 
minimized, rather than the quantization noise for 
the prediction error sequences. Examples 
demonstrating the excellent quality of the 
reconstructed images using our approach at bit 
rates below 0.65 bit/pixel are presented. 

I. INTRODUCTION 

Traditional methods of image compression 
have been built around scalar predictive and/or 
transform coding techniques [4, 7]. Vector 
quantization and related techniques are receiving 
increased attention because of their ability to 
achieve data rates that are fractions of a 
bit/sample without affecting the visual quality 
of the images drastically [1-3, 6, 9J. Our paper 
is concerned with a novel approach to image data 
compression using vector quantization of (one­
step) linear prediction error sequences. As the 
results show, this method performs better than 
other algorithms of similar complexity available 
in literature. 

The basic ideas involved in the 
l:redictive ~ector £luantization (SPVQ) 
may be briefly described as follows: 

The to be compressed is 
through a linear predictor 
resulting prediction error sequence is vector 
quantized. At the receiver, the vector quantized 
error sequence is passed through an appropriate 
reconstruction (inverse) filter to recreate a 
quantized version of the original image. 

Comparing our scheme (see Fig. 1) with 
traditional predictive quantization schemes we 
find that the major difference is the fact that 
our scheme does not guarantee that the input 
signal to the reconstruction filter is the same 

as the output signal of the predictor. Because 
of this, the reconstruction errors will be larger 
than the quantization errors. Depending on the 
nature of the predictor (and the corresponding 
inverse filter), this increase in error can be 
very large. In order to minimize the 
reconstruction errors our algorithm does the 
following: 

1. Instead of using a prediction filter 
designed to minimize the prediction error power, 
we will use 8 "constrained" predictor which is 
designed to minimize the prediction error power, 
subject to the constraint that the total energy 
of the inverse filter is bounded by a small 
constant c. This constraint will ensure that the 
increase in the reconstruction noise power is not 
very large. 

2. The prediction error sequence is 
quantized USing a distortion criterion for the 
reconstructed signals rather than the error 
sequence itself. 

II. PAST WORK AND THE SCALAR PREDICTIVE 
VECTOR QUANTIZATION ALGORITHM. 

We will briefly review three different 
approaches to data compression and then describe 
the Scalar Predictive Vector Quantization 
algorithm. One of these methods was proposed for 
images and the other two for speech signals. 
Extension of the concepts involved in the last 
two approaches to data compression of images is 
straightforward. 

Baker and Gray [1-3J proposed that before 
vector quantizing the images, the sample mean of 
the pixels belonging to each vector (block) ought 
to be removed. The mean residual vector 
quantization (MRVQ) and related methods proposed 
by them have product code books , one subset of the 
code book for the sample mean and the other subset 
for the residual vector. 

More recently, Cuperman and Gersho [5] 
proposed a vector predictive coding scheme for 
speech signals. The vector predictive scheme is 
exactly the same as traditional scalar predictive 
schemes if we consider all the signals as vector 
quantities. 

The th~rd method we conSider is that 
introduced by Schroeder and Atal [10] for 
speech signals and is known as the "Code 
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Excited Linear Predictor" (CELP). In their 
approach, they use residual codebooks which 
consist of a fairly large number of code vectors 
that are very long. Each residual code vector 
is passed through a synthesis filter H(z) and the 
output of the synthesis filter is compared with 
the input signal sequence. The residual code 
vector selected is the one that gives the minimum 
distortion. For each vector, both the index of 
the code vector and the parameters of the 
synthesis filter must be transmitted. Using the 
CELP scheme, Shroeder and Atal [10] were able to 
obtain "toll" quality speech at as low as 4.8 
kbits!s. transmission rate. 

The Scalar Predictive Vector Quantization 
(SPVQ) algorithm that we present next combines 
the good properties of all the above methods and 
also avoids many of the disadvantages associated 
with these methods. Conceptually, the SPVQ 
algorithm is closest to the CELP method. 
However, the SPVQ method can work with 
arbitrarily small vector sizes that also need 
smaller-size codebooks. This makes the approach 
computationally simpler than the CELP method. 

Scalar Predictive Vector Quantization Algorithm. 

Given an N x H image x(n,m), the SPVQ 
algorithm consists of the following steps: 

1. Partition x(n,m) into smaller, 
nonoverlapping blocks of K x L pixels each. 
Compute the local mean ~ associated with each 
block. To reduce "blockY" reconstruction, remove 
a smoothed version of the means. To do this, 
define a new sequence z~(n,m) by replacing all 
x(n,m) in each block by its local mean. Pass 
this sequence through a smoothing (low pass) 
filter to yield another sequence z(n,m), for 
which there is a smooth transition between 
blocks. Obtain the mean residual sequence y(n,m) 
by subtracting z(n,m) from x(n,m). 

2. Let {a(k, 2);(k, 2)E~} denote a set of 
predictor coefficients for the residual sequence 
in one block. Throughout this paper, we will 
work with causal predictors. The set of indices 
(k,2), denoted by ~ is a finite set of non­
negative integer pairs that does not include 
(0, 0). The transfer function of the predictor 
is then given by 

where 

The transfer function of the inverse 
(reconstruction) filter corresponding 
to H(zl' z2) in Eq. 1 is 

(1) 

(3) 

Let r(n,m) denote the impulse response function 
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of the reconstruction filter. r(n,m) is a causal 
sequence. The energy Er of r(n,m) is given by 

E 
r l: l: 

n=O m=O 

Select the optimum predictor 
coefficients {a*(k,2)} so that 

J l: l: 2 
e (n,m) 

:v- (n,m) in a 
given block 

is minimized, where 

(4) 

(5) 

e(n,m) y(n,m) + l: l: a(k,2) y(n-k, m-£), 
(k,2)E~ 

subject to the additional constraint that 

E <;; c 
r 

where c is a small positive constant. 

(6) 

(7) 

In all the examples and derivations 
presented in this paper, we worked with a simple, 
separable predictor with transfer function 

where I ai, lsi < 1 to ensure stability of the 
inverse filter. 

3. Given the coefficients of the 
predictor, the codebook and the image sequence in 
any given block, the sequence can be vector 
quantized. The vector sizes are usually much 
smaller than the block size K x L. In order to 
vector quantize the sequence, we will pass each 
code vector through the reconstruction filter and 
the code vector chosen is that which would 
produce the minimum distortion between the image 
sequence and the output of the reconstruction 
filter. 

Since we are using autoregressive predic­
tors for the SPVQ algorithm, the reconstruction 
filters will have an infinite impulse response 
(IIR) structure. As a result, the optimal 
encoding of the residual sequence is very 
complex. He will now propose a suboptimal 
encoding procedure, that is much simpler 
computationally. In this approach, image vectors 
are encoded sequentially so that when each vector 
is coded, we will assume that the optimal choice 
of code vectors for all the previous image 
vectors have been made. As a result, the 
encoding complexity will only be proportional to 
the size of the codebook. 

4. The indices of the code vectors and the 
predictor parameters along with the block means 
must be transmitted to the receiver. At the 
receiver, this information is enough to 
reconstruct the image by passing the code vectors 
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through the reconstruction filters and adding to 
the output the smoothed mean values (z(n,m»). 

Several remarks are in order here. 

1. Even though there is no explicit 
generation of the prediction error sequences, one 
can consider the SPVQ algorithm as a scheme where 
the prediction errors are first computed and then 
vector quantized. Vector quantization of the 
prediction errors introduces quantization noise 
in these Sequences which will in general be 
amplified during image reconstruction. This in 
turn implies that the variability of the 
quantization noise will be larger for the 
reconstructed images than for the prediction 
error sequences. Since we would like to use 
relatively small vector and codebook sizes, it is 
very important that the variability of the 
reconstruction noise is minimized as much as 
possible. The SPVQ algorithm achieves this by 
the following two means. 

a. The code vectors are chosen in such 
a way that the reconstruction error rather than 
the quantization error for the prediction error 
sequence is minimized. 

b. The design of the "constrained" 
predictor further guarantees that the variability 
of the reconstruction noise is small. If we 
assume that the quantization noise for the 
prediction error sequences is white, then the 
reconstruction noise power is at most c times 
that of the prediction error quantization noise 
power. Actually, the reconstruction noise will 
be smaller than this amount due to step a. 

2. The SPVQ algorithm has several 
conceivable advantages when compared with the 
three schemes we discussed earlier. As long as 
the autoregressive modeling is reasonably 
accurate, the prediction error sequence will have 
a smaller dynamic range than the mean residuals, 
resulting in smaller quantization errors than 
vector quantization of mean residuals as done by 
Baker and Gray. Also, the MRVQ and related 
algorithms require up to a third of the total 
number of bits transmitted to convey information 
about the block means. The amount of side 
information that must be transmitted for the 
predictor coefficients and block means in the 
SPVQ approach is negligible. 

The vector predictive quantization 
algorithm [5] of Cuperman and Gerhso has all the 
advantages of the scalar predictive coding 
algorithm and also tries to take advantage of the 
inherent superiority of vector quantization over 
scalar quantization. However, in this situation, 
one would be predicting the vector based on 
previous vector inputs (equivalently, the scalar 
entries of the vector are predicted by samples 
that are possibly as far from them as the size of 
a vector). In most practical situations 
involving images, correlation of samples (after 
the mean is extracted) is much smaller at large 
distances than when they are adjacent. Thus, one 
can expect to make a better prediction of the 

image sequence using scalar prediction rather 
than vector prediction. 

The code-excited linear predictor should 
perform very well with images. However, as 
pointed out earlier, the CELP is a very complex 
approach to data compression. To produce very 
good quality images, the CELP requires fairly 
large block sizes. For example, assuming a block 
size 32 x 32, the method will require a code book 
of approximately 220 code vectors to encode the 
residuals using only 1/50 bit per pixel. The 
spvq algorithm makes use of smaller-sized code 
vectors and code books and therefore is a much 
more simple approach to predictive vector 
quantization. 

3. In conventional vector quantization 
schemes, codebooks can be designed using the 
Linde-Buzo-Gray (LBG) algorithm [8] or one of its 
variations. Even though the LBG algorithm is 
conceptually and implementationally fairly 
simple, it cannot be used for designing optimal 
code books suitable for the SPVQ algorithm, due to 
the fact that the same image vector can be mapped 
into different code vectors depending on the 
nature of the adjoining image vectors. Even 
though suboptimal, we have used codebooks 
designed using the LBG algorithm in this paper. 
They are useful mainly for two reasons: 

a. If the codebook is dense enough, it 
is possible that encoding based on the minimum 
reconstruction distortion criterion will be 
different from the m1n1mum encoding distortion of 
the error sequence and the former will fare much 
better. 

b. One big advantage of the LBG 
algorithm is its conceptual simplicity. The fact 
that the training sequence can be partitioned 
into disjoint sets that map into a code vector is 
very useful. This fact enables the user to 
tailor the codebook to his needs. For example, 
it is possible to create codebooks with larger 
representation to edge pixels by merely having a 
training sequence with larger representation of 
edge pixels [9]. 

III. EXPERIMENTAL RESULTS 

The image used for our experiments is 
termed "woman" and is shown in Fig. 2a. The 
image consists of 512 x 512 pixels with 8 bits/ 
pixel resolution. The results of encoding the 
image using the SPVQ algorithm with 32 x 32 sub­
blocks, 4 x 4 vectors and 1024 code vectors is 
displayed in Fig. 2b. The bit rate for this 
example (including all the side information) is 
slightly less than 0.65 bits/pixel. We can see 
that the visual quality of the reconstructed 
image is good. The signal to quantization ratio 
(SQR) [7] was found to be 31.3 dB. Here the 
codebook was obtained using the LBG algorithm 
with a training sequence consisting of the resid­
uals of seven images other than the "woman" 
image. 
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IV. SUMMARY AND CONCLUSIONS 

In this paper we presented a novel approach 
to image compression using vector quantization of 
linear (one-step) prediction errors. Results 
presented in the paper demonstrate the ability of 
the SPVQ algorithm to produce good quality images 
at low bit rates. Even better results are 
anticipated by investigating the design of 
optimal codebooks for the SPVQ algorithm, the 
"constrained" predictor design for more complex 
struc"tures, improved coding of edge pixels, 
incorporation of visual models into the data 
compression algorithm and further simplifications 
and improvements in the SPVQ encoder structure. 
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ENCODER DECODER 

Predictive vector quantization algorithm presented in this paper. 
of the encoder, the prediction error sequences are not computed. 
quantizer are y(n,m) and the code vectors. 

(a) (b) 

In actual implementation 
The inputs to the vector 

Fig. 2. a. Original "woman" image. b. Quantized '\-lOman" (0.6484 bits/pixel.) 
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