
MATRIX AND TENSOR COMPARISONS OF

GENOMIC PROFILES TO PREDICT

CANCER SURVIVAL AND

DRUG TARGETS

by

Preethi Sankaranarayanan

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Bioengineering

The University of Utah

May 2015



Copyright c� Preethi Sankaranarayanan 2015

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l  
 
 
 

STATEMENT OF DISSERTATION APPROVAL 
 
 
 

The dissertation of Preethi Sankaranarayanan 

has been approved by the following supervisory committee members: 

 

Orly Alter , Chair 08-29-2014 

 
Date Approved 

Robert S. MacLeod , Member 08-29-2014 

 
Date Approved 

Karen Eilbeck , Member 08-29-2014 

 
Date Approved 

Andrea Bild , Member 08-29-2014 

 
Date Approved 

Tolga Tasdizen , Member 08-29-2014 

 
Date Approved 

 

and by Patrick A. Tresco , Chair/Dean of  

the Department of Bioengineering 
 

and by David B. Kieda, Dean of The Graduate School. 
 
 



ABSTRACT

Despite recent large-scale profiling e↵orts, the best predictor of a glioblastoma (GBM)

brain cancer patient’s survival remains the patient’s age at diagnosis. The best predictor of

an ovarian serous cystadenocarcinoma (OV) patient’s survival remains the tumor’s stage, an

assessment – numbering I to IV – of the spread of the cancer. To identify DNA copy-number

alterations (CNAs) that might predict GBM or OV patients’ survival, we comparatively

modeled matched genomic profiles from The Cancer Genome Atlas (TCGA).

Generalized singular value decomposition (GSVD) of patient-matched but probe-

independent GBM and normal profiles uncovered a previously unknown global pattern of

tumor-exclusive co-occurring CNAs that is correlated, and possibly causally related to,

GBM patients’ survival and response to chemotherapy. This suggests that the GBM survival

phenotype is an outcome of its global genotype. The GSVD, formulated as a framework

for comparatively modeling two composite datasets, removes from the pattern variations

that occur in the normal human genome (e.g., female-specific X chromosome amplification)

and experimental variations, without a-priori knowledge of these variations. The pattern is

independent of age, and combined with age, makes a better predictor than age alone. The

pattern suggests previously unrecognized targets for personalized GBM drug therapy, the

kinase TLK2 and the methyltransferase METTL2A.

A novel tensor GSVD of patient- and platform-matched OV and normal genomic profiles

revealed multiple chromosome arm-wide patterns of CNAs that are correlated with OV

patients’ survival. These indicate several, previously unrecognized, subtypes of OV. The

tensor GSVD is an exact simultaneous decomposition of two high-dimensional datasets

arranged in higher-order tensors. The tensor GSVD generalizes the GSVD, which is limited

to two second-order tensors, i.e., matrices. The chromosome arm-wide patterns of CNAs

are independent of the OV tumor stage. Combined with stage, each of the patterns makes

a better predictor than stage alone.

We conclude that the GSVD and the novel tensor GSVD can uncover the relations,

and possibly causal coordinations, between di↵erent recorded aspects of the same medical

phenomenon. GSVD and tensor GSVD comparisons can be used to determine one patient’s



medical status in relation to other patients in a set, and inform the patient’s prognosis, and

possibly also treatment.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Biological sciences have been transformed over the past two decades by the develop-

ment of technologies capable of performing large-scale measurements of cellular states. In

particular, DNA sequencing instruments and microarrays have undergone an extraordinary

increase in e�ciency that has reduced the time and cost of experiments by several orders

of magnitude. This breakthrough in high-throughput genomic data measurement is revo-

lutionizing personalized medicine. It has resulted in tremendous growth in the number of

large-scale multidimensional datasets recording di↵erent aspects (such as DNA copy number

changes, mutations, gene expression, etc.) of a single disease such as cancer [1]. Often,

these data take the structure or form as shown in Figure 1.1 with one or more common

axes. However, along with the exponential growth of these large-scale datasets, the need

for mathematical frameworks that can identify disease-specific changes by simultaneously

comparing and contrasting the data, while still retaining their original structure, is also

growing. A coherent model of these data that simultaneously finds the similarities and

dissimilarities can enhance biological understanding of the disease such as cancer and inform

a patient’s diagnosis, prognosis and treatment.

This comparison is especially important to understand the spatiotemporal interactions

among di↵erent cellular components such as genes, proteins, microRNAs and metabo-

lites that are present only in the disease state but not in the normal disease-free state.

For example, gene perturbation experiments (e.g., knockouts or RNA interference) re-

veal relationships between genes that may imply direct physical interactions or indirect

logical interactions. In contrast, chromatin immunoprecipitation chip data can reveal

direct protein-DNA interactions or cofactor associations with bound transcription factors.

Combined, these technologies can provide a much more detailed view of a transcriptional

regulatory network than either alone.
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Figure 1.1: Structure of large-scale datasets recording di↵erent aspects of a single phe-
nomenon with one or more common axes. Such high-dimensional datasets arise in many
fields ranging from finance to biology.
(a) For example, in astronomy, we have the core temperature measurements of di↵erent
stars (rows) in two galaxies measured over the same time period (columns).
(b) In finance, we have datasets recording stock prices (rows) in di↵erent markets over the
same time period (columns).
(c) In biology, the tumor and normal genomic profiles (rows) measured on two platforms
(y-columns) for the same set of patients (x-columns) can be represented as the two tensors
A and B.
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1.1.1 Personalized Cancer Prognosis and Therapy

The complete genetic material of an organism makes up its genome. Genomics is the

study of the structure and function of genomes. In cancer cells, some structural and

functional changes associated with the genome result in the uncontrolled growth of cells.

Cancer genomics is a field of genomics that focuses on acquiring a comprehensive overview

of the cancer’s formation, growth and development and thereby lays the foundation for the

early detection, therapy and prevention of cancer.

The field of cancer genomics continues to advance at an extraordinarily rapid pace with

the declining cost of next-generation sequencing and major international e↵orts, including

the International Cancer Genome Consortium [2] and The Cancer Genome Atlas (TCGA).

TCGA is a comprehensive and coordinated e↵ort to accelerate our understanding of the

molecular basis of cancer through the application of genome analysis technologies, including

large-scale genome sequencing and microarrays. The cancers chosen by TCGA are often

characterized by poor prognosis and have a high overall public health impact. This initiative

aims to develop a comprehensive catalog of the genomic changes that occur in tumors and

obtain an in-depth understanding about the relation of these changes to the biological

processes in cancer. The end goal is to be able to diagnose, treat and prevent cancer.

Despite extensive studies with the latest tools, the best prognostic predictor of glioblas-

toma multiforme (GBM), the most common brain tumor, is the patient’s age at diagnosis.

The best prognostic predictor of the ovarian cystadenocarcinoma (OV), the most lethal

gynecologic malignancy, remains the tumor’s stage, an assessment – numbering I to IV – of

the spread of the cancer. In this dissertation, we describe a global pattern of tumor-exclusive

co-occurring copy-number alterations (CNAs) that is correlated and possibly coordinated

with GBM patients’ survival and response to chemotherapy [3]. The pattern is independent

of age, and combined with age, makes a better predictor than age alone. We also describe

chromosome arm-wide patterns of tumor-exclusive and platform-consistent DNA CNAs

that correlate with OV patients’ survival [4]. The patterns, across 6p+12p, 7p and Xq, are

independent of the tumor’s stage, the best predictor of OV survival to date, and include

known as well as previously unreported, yet frequent, CNAs.

1.1.2 Discover Mechanisms of Cancer

The tumor-exclusive pattern of CNAs that we find in GBM data includes most known

GBM-associated changes in chromosome numbers and focal CNAs, as well as several pre-

viously unreported CNAs in >3% of patients. These CNAs include the biochemically

putative drug target, cell cycle-regulated serine/threonine kinase-encoding TLK2, the cy-
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clin E1-encoding CCNE1 and the Rb-binding histone demethylase-encoding KDM5A. The

CNAs previously unrecognized in OV include a deletion of the p38-encoding MAPK14 and

p21-encoding CDKN1A; an amplification of RAD51AP1, which are drug-targeted in other

cancers; a deletion of TNF, RPA3 and PABPC5 ; and focal amplifications of ASUN, ITPR2,

POLD2, BCAP31 and the 5’ ends of isoforms a and e and exons 5 and 6 of SOX5. These

CNAs identified in GBM and OV genomic profiles act as a new link between the tumor’s

genome and a patient’s prognosis, o↵ering insights into the cancer’s formation and growth

and suggest promising drug targets.

1.2 Existing Methods
The existing standards for presenting and exchanging microarray data involve tabulation

of the biological data in rows and columns where, for example, the rows denote the m genes

and the columns denote the n arrays [5], thus taking the structure of a matrix of dimensions

m ⇥ n. Microarray data are high-dimensional and noisy. Therefore, analysis of such data

requires mathematical tools that are adaptable to the large quantities of data, while reducing

the complexity of the data to make them comprehensible. Some of the commonly used

methods for this purpose are clustering methods [6–8] and matrix decomposition methods

such as singular value decomposition (SVD) [9–11], nonnegative matrix factorization [12]

and partial least squares [13].

1.2.1 Principal Component Analysis and Singular Value Decomposition

Principal Component Analysis (PCA) [14] is a method of statistical analysis for high-

dimensional data. PCA is used to reduce the dimensionality of a dataset by decomposing

it in a set of successive orthogonal components in such a way that the first principal

component has the largest variance (i.e, accounts for the maximum variabiility in the

data), and each succeeding component in turn has the highest variance possible under the

constraint that it is orthogonal to (i.e., uncorrelated with) the preceding components [15].

PCA can equivalently be formulated as an eigenvalue problem. In particular, the principal

components are essentially the same as the eigenvectors of the covariance matrix [16]. SVD

is a method of matrix decomposition, which is commonly used to compute the principal

components by solving this eigenvalue problem. SVD decomposes the matrix, D, such that,

D = U⌃V T (1.1)

where the D is the m ⇥ n data matrix; U is an m ⇥ n matrix with orthonormal columns

that are called left singular vectors; ⌃ is a diagonal matrix containing the singular values
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and V T is an n ⇥ n matrix with orthonormal rows also known as right singular vectors.

From Equation (1.1), it can be shown that,

DTD = V ⌃2V T

Therefore, when the columns of D are treated as n samples of the m-dimensional data

tabulated in matrix D, and D is column-centered, the right singular vectors are the same

as the principal components of its covariance matrix, DTD. The right singular vectors are

also said to span the column space of D. If instead, the rows are treated as a m samples

of the n-dimensional data represented by the matrix D, and the matrix is row centered,

the left singular vectors are the principal components of the covariance matrix DDT . From

Equation (1.1), the left singular vectors are given by,

DDT = U⌃2UT

The left singular vectors thus span the row space of D.

Although the principal components are the same as the left and right singular vectors

when the datasets are appropriately preprocessed, there are a few di↵erences between PCA

and SVD. PCA requires a specific standardization of the data matrix, i.e., centering of

the columns (or the rows) whereas SVD has no such limitation. PCA usually reduces and

classifies the data based upon the two or three patterns (components) of greatest weights,

while the SVD retains the full data and the full set of patterns. The two methods also di↵er

in their applications. PCA is commonly used for dimensionality reduction, whereas in our

lab, SVD and its generalizations are used primarily to find patterns in the data. Since the

most significant patterns or components often represent experimental rather than biological

variation, PCA often leads to classification based upon, e.g., date of hybridization or other

batch e↵ects rather than the true biological di↵erence, e.g., tumor subtype.

In the context of DNA microarray gene expression analysis, Alter et al. [11] showed that

SVD is a linear transformation of the expression data D from the genes ⇥ arrays space

to the reduced “eigengenes” ⇥ “eigenarrays” space where the eigengenes (or eigenarrays)

are unique orthonormal superpositions of the genes (or arrays). The “eigengenes” obtained

in this analysis can be interpreted as the principal components in the traditional PCA

of the covariance matrix DDT whereas the “eigenarrays” can be viewed as the principal

components of the covariance matrix DTD if D is row and column centered, respectively.

The “eigengenes” uncovered by SVD correlate with independent processes, biological or

experimental, such as observed genome-wide e↵ects of known regulators or transcription

factors. The corresponding “eigenarrays” correlate with the corresponding cellular states,
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such as measured samples in which these regulators or transcription factors are overactive

or underactive [10].

SVD has a variety of applications in mathematics, biology and medicine. SVD can be

used to filter out noise or remove experimental artifacts from the data to enable meaningful

comparison of the expression of di↵erent genes across di↵erent arrays in di↵erent experi-

ments [11]. Bertagnolli et al. [9] used SVD to identify the length distribution functions of

sets and subsets of eukaryotic mRNA transcripts from DNA microarray data and reveal

global relations among transcript length, cellular metabolism and tumor development. The

global relations suggest a previously unrecognized physical mode for tumor and normal

cells to di↵erentially regulate metabolism in a transcript length-dependent manner. The

identified distribution functions support a previous hypothesis from mathematical modeling

of evolutionary forces that act upon transcript length in the manner of the restoring force

of the harmonic oscillator. Alter et al. [17] showed that SVD of yeast genome-scale mRNA

lengths distribution reveals asymmetry in RNA gel electrophoresis band broadening. SVD

was used to uncover a global correlation, and predict causal coordination between eukaryotic

DNA replication and mRNA transcription during the cell cycle in yeast [18, 19].

SVD provides a useful mathematical framework for processing and modeling genome-

wide expression data, in which both the mathematical variables and operations may be

assigned biological meaning [10,17,20].

1.2.2 Limitations

It is common in biology to compare two matrices of dimensions m1 ⇥ n and m2 ⇥ n

simultaneously. For example, it is often necessary to compare the messenger RNA expres-

sion across arrays in two organisms at the same time points or to compare tumor and

normal genomic profiles of the same set of patients. In both cases, the comparisons are

row-independent, i.e., di↵erent organisms have a di↵erent number of genes and the tumor

and normal genomic profiles measure di↵erent regions of DNA. Also, there is a one-to-one

correspondence between the columns, i.e., the same time points or the same set of patients.

One major limitation in all the above methods is that when comparing two or more matrices,

these methods unfold or flatten the individual matrices to form a single matrix.

When comparing two (or more) matrices, the structure of the datasets is of an order

higher than that of a single matrix. Unfolded into a single matrix, some of the degrees of free-

dom are lost and much of the information in the datasets might also be lost. Additionally,

these methods are not capable of directly addressing the fundamental question of what is

similar and dissimilar between the datasets of interest in a single comparison. For example,
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PCA, the most commonly used method, cannot simultaneously compare two datasets of

tumor and normal genomic profiles and identify the common biological phenomena shared

between tumor and normal tissues (such as the X chromosome amplification in females that

is evident in both tumor and normal tissues) and biological changes specific to tumor tissues

alone. When the data are in the form of a flattened matrix, the biologically common and

tumor-specific information gets mixed up, resulting in added biological “noise.”

1.2.3 Generalized Singular Value Decomposition (GSVD)

The only two decompositions to date that can simultaneously compare and contrast

two or more row-independent and column-matched matrices preserving all the information

are the GSVD [21, 22] and higher-order GSVD (HO GSVD) [23]. The decompositions

discussed in this dissertation (GSVD, HO GSVD and tensor GSVD) are exact, meaning no

information is lost due to the process of decomposition itself.

Alter et al. [22, 24] showed that GSVD (Figure 1.2) provides a comparative mathe-

matical framework for genome-scale expression datasets from two organisms tabulated as

two matrices with di↵erent row dimensions but the same column dimension where the

mathematical variables and operations represent the underlying biological reality. They also

showed that mathematical similarity and dissimilarity between the two matrices correspond

to the biological similarity and dissimilarity. This study inspired a new method to compute

the GSVD [25] and also paved the way for several new applications of the GSVD in

biology [26–29]. It also led to integrating large-scale biomedical data using pseudo-inverse

projection [30] and tensor decompositions such as the higher-order SVD [19, 31–33]. The

success of the GSVD is the main motivation behind this dissertation.

However, the GSVD framework is limited to the comparison of only two second-order

tensors, i.e., matrices. In order to compare two higher-order tensors, there is a need for a new

mathematical framework to be defined that enables the comparison of two row-independent

but column matched higher-order (greater than two) tensors.

1.3 Dissertation Contributions
While the applications presented in this dissertation are in the field of biology, the

methods and theory should be widely applicable to many fields, including finance, astronomy

and medical imaging. For example, in astronomy, core temperature measurements of

di↵erent stars in two galaxies measured in the same time period (Figure 1.1a) comprise

a dataset of two matrices with matched columns (the time points). In finance, we have

datasets recording stock prices in di↵erent markets over the same time period (Figure 1.1b).
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Comparative analyses of such datasets will simultaneously distinguish the similar from the

dissimilar. The frameworks discussed in this dissertation can be used in understanding the

common factors as well as the specific factors, for example, the common factors a↵ecting

the price of a stock worldwide and the factors specific to a particular stock market.

This dissertation describes the following contributions in tensor decompositions and

genomic signal processing:

1. We show that the GSVD of patient-matched but probe-independent genomic profiles

can be used to uncover a previously unknown global pattern of DNA aberrations that

is correlated with, and possibly causally related to, brain cancer survival.

2. We also discover several previously unreported focal CNAs and most known GBM

associated changes. Yet, we find that GBM survival phenotype is an outcome of its

global genotype.

3. We define a novel mathematical framework called tensor GSVD (tGSVD) and prove

that it extends the matrix GSVD. This simultaneous decomposition is by definition

exact. We also mathematically derive several important properties of this decompo-

sition.

4. We illustrate the tGSVD with comparisons of patient- and platform-matched but

probe-independent genomic profiles of ovarian serous cystadenocarcinoma (OV) tumor

and normal DNA copy-number profiles measured on two platforms. The tGSVD

reveals chromosome arm-wide patterns of tumor-exclusive and platform-consistent

CNAs, across 6p and 12p taken together, 7p and Xq, that are correlated with, and

possibly causally related to, OV patients’ survival.

5. We perform additional analyses using mRNA, microRNA and protein expression data

between the tGSVD classes and find that these di↵erential expressions consistently

map to the DNA CNAs.

1.4 Overview of Chapters
The remainder of this dissertation is arranged in the following fashion:

Chapter 2 illustrates the GSVD with a comparison of genomic profiles from tumor and

normal samples of the same set of GBM patients from TCGA and discusses the known and

novel co-occurring CNAs predicting patient prognosis and potential drug targets.

Chapter 3 defines the tGSVD framework for the comparison of two column-matched but

row-independent higher-order (greater than two) tensors and investigates its mathematical
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properties and specific cases. It demonstrates the tGSVD in comparisons of patient- and

platform-matched but probe-independent genomic profiles of OV tumor and normal samples

to discover tumor-specific CNAs that correlate with patients’ survival. It also shows that

the respective di↵erential microRNA, mRNA and protein expressions between the tGSVD

classes are consistent with the DNA CNAs revealed by tGSVD.

Chapter 4 concludes with a discussion of contributions of this dissertation and possible

future research on open questions.



CHAPTER 2

GSVD COMPARISON OF HUMAN BRAIN

TUMOR AND NORMAL GENOMIC

PROFILES

2.1 Glioblastoma Multiforme (GBM)
Glioblastoma multiforme (GBM), the most common brain tumor in adults, is charac-

terized by poor prognosis [34]. GBM tumors exhibit a range of copy-number alterations

(CNAs), many of which play roles in the cancer’s pathogenesis [35–37]. Recent large-scale

gene expression [38–40] and DNAmethylation [41] profiling e↵orts identified GBMmolecular

subtypes, distinguished by small numbers of biomarkers. However, despite these e↵orts,

GBM’s best prognostic predictor remains the patient’s age at diagnosis [42, 43].

To identify CNAs that might predict GBM patients’ survival, we comparatively model

patient-matched GBM and normal array CGH (aCGH) profiles from The Cancer Genome

Atlas (TCGA) by using the generalized singular value decomposition (GSVD) [25].

We also find that, in probe-independent comparison of aCGH data from patient-matched

tumor and normal samples, the mathematical variables of the GSVD, i.e., shared tumor and

normal patterns of copy-number variation across the patients and the corresponding tumor-

and normal-specific patterns of copy-number variation across the tumor and normal probes,

represent experimental or biological reality. Patterns that are mathematically significant in

both datasets represent copy-number variations (CNVs) in the normal human genome that

are conserved in the tumor genome (e.g., female-specific X chromosome amplification).

Patterns that are mathematically significant in the normal but not the tumor dataset

represent experimental variations that exclusively a↵ect the normal dataset. Similarly, some

patterns that are mathematically significant in the tumor but not in the normal dataset

represent experimental variations that exclusively a↵ect the tumor dataset.

One pattern that is mathematically significant in the tumor, but not in the normal

dataset, represents tumor-exclusive co-occurring CNAs, including most known GBM-

associated changes in chromosome numbers and focal CNAs, as well as several previously
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unreported CNAs in >3% of the patients [44]. This pattern is correlated, possibly coor-

dinated with GBM patients’ survival and response to therapy. We find that the pattern

provides a prognostic predictor that is better than the chromosome numbers or any one

focal CNA that it identifies, suggesting that the GBM survival phenotype is an outcome of

its global genotype. The pattern is independent of age, and combined with age, makes a

better predictor than age alone.

We confirm our results with GSVD comparison of matched profiles of a larger set of

TCGA patients, inclusive of the initial set. We validate the prognostic contribution of the

pattern with GSVD classification of the GBM profiles of a set of patients that is independent

of both the initial set and the inclusive confirmation set [45].

2.1.1 Tumor and Normal Datasets

To compare TCGA patient-matched GBM and normal (mostly blood) aCGH profiles

(Dataset S1 and Mathematica Notebooks S1 and S2), Agilent Human aCGH 244A-measured

365 tumor and 360 normal profiles were selected, corresponding to the sameN=251 patients.

Each profile lists log2 of the TCGA level 1 background-subtracted intensity in the sample

relative to the Promega DNA reference, with signal to background >2.5 for both the sample

and reference in more than 90% of the 223,603 autosomal probes on the microarray. The

profiles are organized in one tumor and one normal dataset, ofM1=212,696 andM2=211,227

autosomal and X chromosome probes, each probe with valid data in at least 99% of either the

tumor or normal arrays, respectively. Each profile is centered at its autosomal median copy

number. The <0.2% missing data entries in the tumor and normal datasets are estimated

by using singular value decomposition (SVD) as described [22, 46]. Within each set, the

medians of profiles of samples from the same patient are taken.

2.2 Generalized Singular Value Decomposition (GSVD)
Previously, we formulated the GSVD as a framework for comparatively modeling two

composite datasets [22] (see also [23]), and illustrated its application in sequence-independent

comparison of DNA microarray data from two organisms, where, as we showed, the mathe-

matical variables and operations of the GSVD represent experimental or biological reality.

The variables, subspaces of significant patterns that are uncovered in the simultaneous

decomposition of the two datasets and are mathematically significant in either both (i.e.,

common to both) datasets or only one (i.e., exclusive to one) of the datasets, correlate with

cellular programs that are either conserved in both or unique to only one of the organisms,

respectively. The operation of reconstruction in the subspaces that are mathematically
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common to both datasets outlines the biological similarity in the regulation of the cellular

programs that are conserved across the species. Reconstruction in the common and exclusive

subspaces of either dataset outlines the di↵erential regulation of the conserved relative to

the unique programs in the corresponding organism.

2.2.1 Construction of the GSVD

The structure of the patient-matched but probe-independent tumor and normal datasets

D1 and D2, of N patients, i.e., N -arrays ⇥ M1-tumor and M2-normal probes, is of an order

higher than that of a single matrix. The patients, the tumor and normal probes as well as

the tissue types, each represent a degree of freedom. Unfolded into a single matrix, some of

the degrees of freedom are lost and much of the information in the datasets might also be

lost.

To compare the tumor and normal datasets, therefore, we use the GSVD, formulated to

simultaneously separate the paired datasets into paired weighted sums of N outer products

of two patterns each: One pattern of copy-number variation across the patients, i.e., a

“probelet” vT
n

, which is identical for both the tumor and normal datasets, combined with

either the corresponding tumor-specific pattern of copy-number variation across the tumor

probes, i.e., the “tumor arraylet” u1,n, or the corresponding normal-specific pattern across

the normal probes, i.e., the “normal arraylet” u2,n (Figure 2.1),

D1 = U1⌃1V
T =

NX

n=1

�1,nu1,n ⌦ vT
n

,

D2 = U2⌃2V
T =

NX

n=1

�2,nu2,n ⌦ vT
n

. (2.1)

The probelets are, in general, non-orthonormal, but are normalized, such that vT
n

v
n

= 1.

The tumor and normal arraylets are orthonormal, such that UT

1 U1 = UT

2 U2 = I.

The significance of the probelet vT
n

in either the tumor or normal dataset, in terms of the

overall information that it captures in this dataset, is proportional to either of the weights

�1,n or �2,n, respectively (Figure 2.2),

p1,n = �2
1,n/

NX

n=1

�2
1,n,

p2,n = �2
2,n/

NX

n=1

�2
2,n. (2.2)

The “generalized normalized Shannon entropy” of each dataset,
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Figure 2.1: Generalized singular value decomposition (GSVD) of the TCGA patient-
matched tumor and normal aCGH profiles.
The GSVD simultaneously separates the paired tumor and normal datasets into paired
weighted sums of N outer products of two patterns each: One pattern of copy-number
variation across the patients, i.e., a “probelet” vT

n

, which is identical for both the tumor
and normal datasets, combined with either the corresponding tumor-specific pattern of
copy-number variation across the tumor probes, i.e., the “tumor arraylet” u1,n, or the
corresponding normal-specific pattern across the normal probes, i.e., the “normal arraylet”
u2,n (Equation (2.1)). This is depicted in a raster display, with relative copy-number gain
(red), no change (black) and loss (green), explicitly showing only the first though the
10th and the 242nd through the 251st probelets and corresponding tumor and normal
arraylets, which capture ⇠52% and 71% of the information in the tumor and normal
dataset, respectively. The significance of the probelet vT

n

in the tumor dataset relative
to its significance in the normal dataset is defined in terms of an “angular distance” that is
proportional to the ratio of these weights (Equation (2.4)). This is depicted in a bar chart
display, showing that the first and second probelets are almost exclusive to the tumor dataset
with angular distances >2⇡/9, the 247th to 251st probelets are approximately exclusive to
the normal dataset with angular distances . �⇡/6, and the 246th probelet is relatively
common to the normal and tumor datasets with an angular distance > �⇡/6.
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Figure 2.2: Most significant probelets in the tumor and normal datasets.
(a) Bar chart of the ten most significant probelets in the tumor dataset in terms of
the generalized fraction that each probelet captures in this dataset (Equation (2.2)),
showing that the two most tumor-exclusive probelets, i.e., the first probelet and the
second probelet (Figure 2.3a–c), with angular distances >2⇡/9, are also the two most
significant probelets in the tumor dataset, with ⇠11% and 22% of the information in
this dataset, respectively. The “generalized normalized Shannon entropy” (Equation (2.3))
of the tumor dataset is d1=0.73. (b) Bar chart of the generalized fractions of the ten most
significant probelets in the normal dataset, showing that the five most normal-exclusive
probelets, the 247th to 251st probelets, with angular distances .�⇡/6, are among the
seven most significant probelets in the normal dataset, capturing together ⇠56% of the
information in this dataset. The 246th probelet (Figure 2.1d–f ), which is relatively common
to the normal and tumor datasets with an angular distance >�⇡/6, is the second most
significant probelet in the normal dataset with ⇠8% of the information. The generalized
entropy of the normal dataset, d2=0.59, is smaller than that of the tumor dataset. This
means that the normal dataset is more redundant and less complex than the tumor dataset.

0  d1 = (logN)�1
NX

n=1

p1,n log p1,n  1,

0  d2 = (logN)�1
NX

n=1

p2,n log p2,n  1, (2.3)

measures the complexity of the data from the distribution of the overall information among

the di↵erent probelets and corresponding arraylets. An entropy of zero corresponds to an

ordered and redundant dataset in which all the information is captured by a single probelet

and its corresponding arraylet. An entropy of one corresponds to a disordered and random

dataset in which all probelets and arraylets are of equal significance.
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2.2.2 Mathematical Exclusivity and Significance

The significance of the probelet vT
n

in the tumor dataset relative to its significance in

the normal dataset is defined in terms of an “angular distance” ✓
n

that is proportional to

the ratio of these weights,

� ⇡/4  ✓
n

= arctan(�1,n/�2,n)� ⇡/4  ⇡/4. (2.4)

An angular distance of ±⇡/4 indicates a probelet that is exclusive to either the tumor or

normal dataset, respectively, whereas an angular distance of zero indicates a probelet that is

common to both the tumor and normal datasets. The probelets are arranged in decreasing

order of their angular distances, i.e., their significance in the tumor dataset relative to the

normal dataset.

We find that the two most tumor-exclusive mathematical patterns of copy-number

variation across the patients, i.e., the first probelet and the second probelet (Figure 2.3

a–c), with angular distances > 2⇡/9, are also the two most significant probelets in the tumor

dataset, with ⇠11% and 22% of the information in this dataset, respectively. Similarly, the

five most normal-exclusive probelets, the 247th to 251st probelets, with angular distances

. �⇡/6, are among the seven most significant probelets in the normal dataset, capturing

together ⇠56% of the information in this dataset. The 246th probelet (Figure 2.3 d–f ),

which is the second most significant probelet in the normal dataset with ⇠8% of the

information, is relatively common to the normal and tumor datasets with an angular

distance > �⇡/6.

2.2.3 Biological Interpretation of the Mathematical Patterns

To biologically or experimentally interpret these significant probelets, we correlate or

anticorrelate each probelet with relative copy-number gain or loss across a group of patients

according to the TCGA annotations of the group of n patients with largest or smallest

relative copy numbers in this probelet among all N patients, respectively. The P -value of

a given association is calculated assuming hypergeometric probability distribution of the

K annotations among the N patients, and of the subset of k ✓ K annotations among the

subset of n patients, as described [8], P (k;n,N,K) =
�
N

n

��1P
n

i=k

�
K

i

��
N�K

n�i

�
. We visualize

the copy-number distribution between the annotations that are associated with largest or

smallest relative copy numbers in each probelet by using boxplots, and by calculating the

corresponding Mann-Whitney-Wilcoxon P -value (please refer to Appendix C.2 for more

information). To interpret the corresponding tumor and normal arraylets, we map the

tumor and normal probes onto the National Center for Biotechnology Information (NCBI)
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Figure 2.3: Significant probelets and corresponding tumor and normal arraylets uncovered
by GSVD of the patient-matched GBM and normal aCGH profiles.
(a) Plot of the second tumor arraylet describes a global pattern of tumor-exclusive
co-occurring CNAs across the tumor probes. The probes are ordered, and their copy
numbers are colored, according to each probe’s chromosomal location. Segments (black
lines) identified by circular binary segmentation (CBS) include most known GBM-associated
focal CNAs (black) and previously unrecognized CNAs (red). (b) Plot of the second most
tumor-exclusive probelet, which is also the most significant probelet in the tumor dataset,
describes the corresponding variation across the patients. The patients are ordered and
classified according to each patient’s relative copy number in this probelet. There are
227 patients (blue) with high (>0.02) and 23 patients (red) with low, approximately zero,
numbers in the second probelet. One patient (gray) remains unclassified with a large
negative (<-0.02) number. (c) Raster display of the tumor dataset, with relative gain
(red), no change (black) and loss (green) of DNA copy numbers, shows the correspondence
between the GBM profiles and the second probelet and tumor arraylet. (d) Plot of the
246th normal arraylet describes an X chromosome-exclusive amplification across the normal
probes. (e) Plot of the 246th probelet, which is approximately common to both the normal
and tumor datasets, and is the second most significant in the normal dataset, describes the
corresponding copy-number amplification in the female (red) relative to the male (blue)
patients. (f ) Raster display of the normal dataset shows the correspondence between the
normal profiles and the 246th probelet and normal arraylet.
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human genome sequence build 36, by using the Agilent Technologies probe annotations

posted at the University of California at Santa Cruz (UCSC) human genome browser [47,48].

We segment each arraylet and assign each segment a P -value by using the circular binary

segmentation (CBS) algorithm as described [49, 50]. We find that the significant probelets

and corresponding tumor and normal arraylets, as well as their interpretations, are robust

to variations in the preprocessing of the data, e.g., in the data selection cuto↵s.

2.3 Results: GSVD of GBM and Normal Genomic Profiles

2.3.1 GSVD Removes Batch E↵ects

We find that, first, the GSVD identifies significant experimental variations that ex-

clusively a↵ect either the tumor or the normal dataset, as well as CNVs that occur in

the normal human genome and are common to both datasets, without a-priori knowledge

of these variations (Table 2.1). The mathematically most tumor-exclusive probelet, i.e.,

the first probelet, correlates with tumor-exclusive experimental variation in the genomic

center where the GBM samples were hybridized, with the P -values < 10�5 (Table 2.1 and

Figure 2.4a).

Similarly, the five most normal-exclusive probelets, i.e., the 247th to 251st probelets

(Appendix A and Figure 2.6), correlate with experimental variations among the normal

samples in genomic center, DNA microarray hybridization or scan date as well as the tissue

batch and hybridization scanner, with P -values < 10�3. Consistently, the corresponding

arraylets, i.e., the first tumor arraylet (Figure 2.5a) and the 247th to 251st normal arraylets

(Appendix A), describe copy-number distributions which are approximately centered at zero

with relatively large, chromosome-invariant widths.

The 246th probelet (Figure 2.3e), which is mathematically approximately common to

both the normal and tumor datasets, describes copy-number amplification in the female

relative to the male patients that is biologically common to both the normal and tumor

datasets. Consistently, both the 246th normal arraylet (Figure 2.3d) and 246th tumor

arraylet describe an X chromosome-exclusive amplification. The P -values are < 10�38

(Table 2.1 and Figure 2.7). To assign the patients gender, we calculate for each patient the

standard deviation of the mean X chromosome number from the autosomal genomic mean

in the patient’s normal profile (Figure 2.3f ).

Patients with X chromosome amplification greater than twice the standard deviation are

assigned the female gender. For three of the patients, this copy-number gender assignment

conflicts with the TCGA gender annotation. For three additional patients, the TCGA
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Figure 2.4: Di↵erences in copy numbers among the TCGA annotations associated with
the significant probelets.
Boxplot visualization of the distribution of copy numbers of the (a) first, most tumor-
exclusive probelet among the associated genomic centers where the GBM samples were
hybridized at (Table 2.1); (b) 247th, normal-exclusive probelet among the dates of hybridiza-
tion of the normal samples; (c) 248th, normal-exclusive probelet between the associated
tissue batches/hybridization scanners of the normal samples; (d) 249th, normal-exclusive
probelet between the associated tissue batches/hybridization scanners of the normal sam-
ples; (e) 250th, normal-exclusive probelet among the dates of hybridization of the normal
samples; (f ) 251st, most normal-exclusive probelet among the associated genomic centers
where the normal samples were hybridized. The Mann-Whitney-Wilcoxon P -values cor-
respond to the two annotations that are associated with largest or smallest relative copy
numbers in each probelet.
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Figure 2.5: The first most tumor-exclusive probelet and corresponding tumor arraylet
uncovered by GSVD of the patient-matched GBM and normal aCGH profiles.
(a) Plot of the first tumor arraylet describes unsegmented chromosomes (black lines), each
with copy-number distributions which are approximately centered at zero with relatively
large, chromosome-invariant widths. The probes are ordered, and their copy numbers
are colored, according to each probe’s chromosomal location. (b) Plot of the first most
tumor-exclusive probelet, which is also the second most significant probelet in the tumor
dataset (Figure 2.2a), describes the corresponding variation across the patients. The
patients are ordered according to each patient’s relative copy number in this probelet.
These copy numbers significantly correlate with the genomic center where the GBM
samples were hybridized, HMS (red), MSKCC (blue) or multiple locations (gray), with
the P -values <10�5 (Table 2.1 and Figure 2.4a). (c) Raster display of the tumor dataset,
with relative gain (red), no change (black) and loss (green) of DNA copy numbers, shows
the correspondence between the GBM profiles and the first probelet and tumor arraylet.
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Figure 2.6: The first most normal-exclusive, i.e., 251st probelet and corresponding normal
arraylet uncovered by GSVD.
(a) Plot of the 251st normal arraylet describes unsegmented [20,21] chromosomes (black
lines), each with copy-number distributions which are approximately centered at zero with
relatively large, chromosome-invariant widths. (b) Plot of the first most normal-exclusive
probelet, which is also the most significant probelet in the normal dataset (Figure 2.2b),
describes the corresponding variation across the patients. Copy numbers in this probelet
significantly correlate with the genomic center where the normal samples were hybridized,
HMS (red), MSKCC (blue) or multiple locations (gray), with the P -values<10�13 (Table 2.1
and Figure 2.4f ). (c) Raster display of the normal dataset shows the correspondence
between the normal profiles and the 251st probelet and normal arraylet.
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Figure 2.7: Copy-number distributions of the 246th probelet and the corresponding 246th
normal arraylet and 246th tumor arraylet.
Boxplot visualization and Mann-Whitney-Wilcoxon P -values of the distribution of copy
numbers of the (a) 246th probelet, which is approximately common to both the normal and
tumor datasets, and is the second most significant in the normal dataset (Figure 2.2b), be-
tween the gender annotations (Table 2.1); (b) 246th normal arraylet between the autosomal
and X chromosome normal probes; (c) 246th tumor arraylet between the autosomal and X
chromosome tumor probes.

gender annotation is missing. In all these cases, the classification of the patients by the

246th probelet agrees with the copy-number assignment.

2.3.2 Discover Copy Number Changes Associated with GBM

Second, we find that the GSVD identifies a global pattern of tumor-exclusive co-occurring

CNAs that includes most known GBM-associated changes in chromosome numbers and focal

CNAs. This global pattern is described by the second tumor arraylet (Figure 2.3a and

Dataset S3). The second most tumor-exclusive probelet (Figure 2.3b), which describes the

corresponding copy-number variation across the patients, is the most significant probelet

in the tumor dataset. Dominant in the global pattern, and frequently observed in GBM

samples [35], is a co-occurrence of a gain of chromosome 7 and losses of chromosome 10 and

the short arm of chromosome 9 (9p). To assign a chromosome gain or loss, we calculate

for each tumor profile the standard deviation of the mean chromosome number from the

autosomal genomic mean, excluding the outlying chromosomes 7, 9p and 10. The gain of

chromosome 7 and the losses of chromosomes 10 and 9p are greater than twice the standard

deviation in the global pattern as well as the tumor profiles of ⇠20%, 41% and 12% of the

patients, respectively.

Focal CNAs that are known to play roles in the origination and development of GBM

and are described by the global pattern include amplifications of segments containing the
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genes MDM4 (1q32.1), AKT3 (1q44), EGFR (7p11.2), MET (7q31.2), CDK4 (12q14.1)

and MDM2 (12q15), and deletions of segments containing the genes CDKN2A/B (9p21.3)

and PTEN (10q23.31), that occur in >3% of the patients. To assign a CNA in a segment,

we calculate for each tumor profile the mean segment copy number. Profiles with segment

amplification or deletion greater than twice the standard deviation from the autosomal

genomic mean, excluding the outlying chromosomes 7, 9p and 10, or greater than one

standard deviation from the chromosomal mean, when this deviation is consistent with the

deviation from the genomic mean, are assigned a segment gain or loss, respectively. The

frequencies of amplification or deletion we observe for these segments are similar to the

reported frequencies of the corresponding focal CNAs [37].

Novel CNAs, previously unrecognized in GBM, are also revealed by the global pattern

[44]. These include an amplification of a segment that contains TLK2 (17q23.2) in ⇠22%

of the patients, with the corresponding CBS P -value< 10�140. Copy-number amplification

of TLK2 has been correlated with overexpression in several other cancers [51, 52]. The

human gene TLK2, with homologs in the plant Arabidopsis thaliana but not in the yeast

Saccharomyces cerevisiae, encodes for a multicellular organisms-specific serine/threonine

protein kinase, a biochemically putative drug target [53], which activity is directly dependent

on ongoing DNA replication [54]. On the same segment with TLK2, we also find the gene

METTL2A. Another amplified segment (CBS P -value< 10�13) contains the homologous

gene METTL2B (7q32.1). Overexpression of METTL2A/B was linked with prostate cancer

metastasis [55], cAMP response element-binding (CREB) regulation in myeloid leukemia

[56] and breast cancer patients’ response to chemotherapy [57].

An amplification of a segment (CBS P -value< 10�145) encompassing the cyclin E1-

encoding CCNE1 (19q12) is revealed in ⇠4% of the patients. Cyclin E1 regulates entry into

the DNA synthesis phase of the cell division cycle. Copy number increases of CCNE1 have

been linked with multiple cancers [58, 59], but not GBM. Amplicon-dependent expression

of CCNE1, together with the genes POP4, PLEKHF1, C19orf12 and C19orf2 that flank

CCNE1 on this segment, was linked with primary treatment failure in ovarian cancer,

possibly due to rapid repopulation of the tumor after chemotherapy [60].

Another rare amplification in ⇠4% of the patients, of a segment (CBS P -value< 10�28)

that overlaps with the 5’ end of KDM5A (12p13.33), is also revealed. The protein en-

coded by KDM5A, a retinoblastoma tumor suppressor (Rb)-binding lysine-specific histone

demethylase [61], has been recently implicated in cancer drug tolerance [62]. The same

amplified segment includes the solute carrier (SLC) sodium-neurotransmitter symporters
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SLC6A12/13, biochemically putative carriers of drugs that might overcome the blood-brain

barrier [63]. On the same segment, we also find IQSEC3, a mature neuron-specific guanine

nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF) ARF1, a key

regulator of intracellular membrane tra�c [64].

Note that although the tumor samples exhibit female-specific X chromosome amplifi-

cation (Figure 2.3c), the second tumor arraylet exhibits an unsegmented X chromosome

copy-number distribution, that is approximately centered at zero with a relatively small

width. This illustrates the mathematical separation of the global pattern of tumor-exclusive

co-occurring CNAs, that is described by the second tumor arraylet, from all other biological

and experimental variations that compose either the tumor or the normal dataset, such as

the gender variation that is common to both datasets, and is described by the 246th probelet

and the corresponding 246th tumor and 246th normal arraylets.

2.3.3 Patient Prognosis and Drug Target Prediction

Third, we find that the GSVD classifies the patients into two groups of significantly

di↵erent prognoses. The classification is according to the copy numbers listed in the second

probelet, which correspond to the weights of the second tumor arraylet in the GBM aCGH

profiles of the patients. A group of 227 patients, 224 of which with TCGA annotations,

displays high (>0.02) relative copy numbers in the second probelet, and a Kaplan-Meier

(KM) [65] (please refer to Appendix C.4 for more information) median survival time of

⇠13 months (Figure 2.8a). A group of 23 patients, i.e., ⇠10% of the patients, displays low,

approximately zero, relative copy numbers in the second probelet, and a KMmedian survival

time of ⇠29 months, which is more than twice longer than that of the previous group. The

corresponding log-rank test (please refer to Appendix C.5 for more information) P -value is

< 10�3. The univariate Cox [66] proportional hazard ratio (please refer to Appendix C.6

for more information) is 2.3, with a P -value < 10�2 (Table 2.2), meaning that high relative

copy numbers in the second probelet confer more than twice the hazard of low numbers.

Note that the cuto↵ of ±0.02 was selected to enable classification of as many of the

patients as possible. Only one of the 251 patients has a negative copy number in the

second probelet <-0.02, and remains unclassified. This patient is also missing the TCGA

annotations. Survival analysis of only the chemotherapy patients classified by GSVD gives

similar results (Table 2.3 and Appendix A). The P -values are calculated without adjusting

for multiple comparisons [67]. We observe, therefore, that a negligible weight of the global

pattern in a patient’s GBM aCGH profile is indicative of a significantly longer survival time,

as well as an improved response to treatment among chemotherapy patients.
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Figure 2.8: Survival analyses of the three sets of patients classified by GSVD, age at
diagnosis or both.
(a) Kaplan-Meier (KM) curves for the 247 patients with TCGA annotations in the initial
set of 251 patients, classified by copy numbers in the second probelet, which is computed
by GSVD for the 251 patients. (b) Survival analyses of the 247 patients classified by age,
i.e., >50 or <50 years old at diagnosis. (c) Survival analyses of the 247 patients classified
by both GSVD and age. (d) Survival analyses of the 334 patients with TCGA annotations
and a GSVD classification in the inclusive confirmation set of 344 patients, classified by
copy numbers in the second probelet, which is computed by GSVD for the 344 patients.
(e) Survival analyses of the 334 patients classified by age. (f ) Survival analyses of the
334 patients classified by both GSVD and age. (g) Survival analyses of the 183 patients
with a GSVD classification in the independent validation set of 184 patients, classified
by correlations of each patient’s GBM profile with the second tumor arraylet, which is
computed by GSVD for the 251 patients. (h) Survival analyses of the 183 patients classified
by age. (i) Survival analyses of the 183 patients classified by both GSVD and age.
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Table 2.2: Cox proportional hazard models of the three sets of patients classified by GSVD,
age at diagnosis or both.
In each set of patients, the multivariate Cox proportional hazard ratios [66] for GSVD and
age are similar and do not di↵er significantly from the corresponding univariate hazard
ratios. This means that GSVD and age are independent prognostic predictors.

Cox Proportional Initial Set Inclusive Confirmation Set Independent Validation Set
Hazard Model Predictor Hazard Ratio P -value Hazard Ratio P -value Hazard Ratio P -value

Univariate GSVD 2.3 1.3⇥10�3 2.4 6.5⇥10�4 2.9 3.6⇥10�4

Age 2.0 7.9⇥10�5 2.0 4.3⇥10�6 2.7 1.7⇥10�6

Multivariate GSVD 1.8 2.2⇥10�2 1.9 1.2⇥10�2 2.0 2.2⇥10�2

Age 1.7 2.0⇥10�3 1.8 1.0⇥10�4 2.2 2.0⇥10�4

Table 2.3: Cox proportional hazard models of the three sets of patients classified by GSVD,
chemotherapy or both.
In each set of patients, the multivariate Cox proportional hazard ratios for GSVD and
chemotherapy are similar and do not di↵er significantly from the corresponding univariate
hazard ratios. This means that GSVD and chemotherapy are independent prognostic
predictors. The P -values are calculated without adjusting for multiple comparisons [67].

Cox Proportional Initial Set Inclusive Confirmation Set Independent Validation Set
Hazard Model Predictor Hazard Ratio P -value Hazard Ratio P -value Hazard Ratio P -value

Univariate GSVD 2.4 1.2⇥10�3 2.4 6.4⇥10�4 2.8 1.3⇥10�3

Chemotherapy 2.6 1.5⇥10�8 2.7 6.3⇥10�11 2.2 7.3⇥10�4

Multivariate GSVD 3.0 5.2⇥10�5 3.1 2.5⇥10�5 3.3 2.3⇥10�4

Chemotherapy 3.1 7.9⇥10�11 3.2 1.9⇥10�13 2.7 3.0⇥10�5

A mutation in the gene IDH1 was recently linked with improved GBM prognosis [34,39]

and associated with a CpG island methylator phenotype [41]. We find, however, only seven

patients (six chmeotherapy patients), i.e., <3%, with IDH1 mutation. This is less than a

third of the 23 patients in the long-term survival group defined by the global pattern. The

corresponding survival analyses are, therefore, statistically insignificant (Appendix A).

Chromosome 10 loss, chromosome 7 gain and even loss of 9p, which are dominant in

the global pattern, have been suggested as indicators of poorer GBM prognoses for over

two decades [35, 36]. However, the KM survival curves for the groups of patients with

either one of these chromosome number changes almost overlap the curves for the patients

with no changes (Appendix A). The log-rank test P -values for all three classifications are

& 10�1, with the median survival time di↵erences .3 months. Similarly, in the KM survival

analyses of the groups of patients with either a CNA or no CNA in either one of the 130

segments identified by the global pattern (Appendix A), log-rank test P -values < 5⇥ 10�2

are calculated for only 12 of the classifications. Of these, only six correspond to a KM
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median survival time di↵erence that is &5 months, approximately a third of the ⇠16 months

di↵erence observed for the GSVD classification.

One of these segments contains the genes TLK2 and METTL2A and another segment

contains the homologous gene METTL2B (Figure 2.9), previously unrecognized in GBM.

The KM median survival times we calculate for the 56 patients with TLK2/METTL2A

amplification and, separately, for the 19 patients with METTL2B amplifications are ⇠5

and 8 months longer than that for the remaining patients in each case.

Similarly, the KM median survival times we calculate for the 43 chemotherapy patients

with TLK2/METTL2A amplification and, separately, for the 15 chemotherapy patients

with METTL2B amplification are both ⇠7 months longer than that for the remaining

chemotherapy patients in each case (Appendix A). This suggests that drug-targeting the

kinase that TLK2 encodes and/or the methyltransferase-like proteins that METTL2A/B

encode may a↵ect not only the pathogenesis but also the prognosis of GBM as well as the

patient’s response to chemotherapy.

Taken together, we find that the global pattern provides a better prognostic predictor

than the chromosome numbers or any one focal CNA that it identifies. This suggests that

the GBM survival phenotype is an outcome of its global genotype.

Figure 2.9: Kaplan-Meier (KM) survival analyses of the initial set of 251 patients classified
by copy number changes in segments containing biochemically putative drug targets in
GBM.
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Despite the recent genome-scale molecular profiling e↵orts, age at diagnosis remains the

best prognostic predictor for GBM in clinical use. The KM median survival time di↵erence

between the patients >50 or <50 years old at diagnosis is ⇠11 months, approximately two

thirds of the ⇠16 months di↵erence observed for the global pattern, with the log-rank test

P -value < 10�4 (Figure 2.8b). The univariate Cox proportional hazard ratio we calculate

for age is 2, i.e., similar to that for the global pattern. Taken together, the prognostic

contribution of the global pattern is comparable to that of age. Similarly, we find that

the prognostic contribution of the global pattern is comparable to that of chemotherapy

(Appendix A).

To examine whether the weight of the global pattern in a patient’s GBM aCGH profile is

correlated with the patient’s age at diagnosis, we classify the patients into four groups, with

prognosis of longer-term survival according to both, only one or neither of the classifications

(Figure 2.8c). The KM curves for these four groups are significantly di↵erent, with the

log-rank test P -value < 10�4. Within each age group, the subgroup of patients with low

relative copy numbers in the second probelet consistently exhibits longer survival than the

remaining patients. The median survival time of the 16 patients <50 years old at diagnosis

with low copy numbers in the second probelet is ⇠34 months, almost three times longer

than the ⇠12 months median survival time of the patients >50 years old at diagnosis with

high numbers in the second probelet. The multivariate Cox proportional hazard ratios for

the global pattern and age are 1.8 and 1.7, respectively, with both corresponding P -values

< 3⇥10�2. These ratios are similar, meaning that both a high weight of the global pattern in

a patient’s GBM aCGH profile and an age >50 years old at diagnosis confer similar relative

hazard. These ratios also do not di↵er significantly from the univariate ratios of 2.3 and

2 for the global pattern and age, respectively. Taken together, the prognostic contribution

of the global pattern is not only comparable to that of age, but is also independent of age.

Combined with age, the global pattern makes a better predictor than age alone. Similarly,

we find that the global pattern is independent of chemotherapy (Appendix A).

To confirm the global pattern, we use GSVD to compare matched profiles of a larger,

more recent, set of 344 TCGA patients, that is inclusive of the initial set of 251 patients [45].

Agilent Human aCGH 244A-measured 458 tumor and 459 normal profiles were selected,

corresponding to the inclusive confirmation set of N=344 patients (Dataset S4). The

profiles, centered at their autosomal median copy numbers, are organized in one tumor and

one normal dataset, of M1=200,139 and M2=198,342 probes, respectively. Within each set,

the medians of profiles of samples from the same patient are taken after estimating missing
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data by using SVD. We find that the significant probelets and corresponding tumor and

normal arraylets, as well as their interpretations, are robust to the increase from 251 patients

in the initial set to 344 patients in the inclusive confirmation set, and the accompanying

decreases in tumor and normal probes, respectively.

The second tumor arraylet computed by GSVD for the 344 patients of the inclusive

confirmation set correlates with that of the initial set, with the correlation ⇠0.99. To

classify the patients according to the copy numbers listed in the corresponding second

probelet of the inclusive confirmation set, the classification cuto↵ ±0.02 of the initial set of

251 patients is scaled by the norm of the copy numbers listed for these patients, resulting

in the cuto↵ ±0.017. Only four of the 251 patients in the initial set, i.e., ⇠1.5%, with copy

numbers that are near the classification cuto↵s of both sets, change classification. Of the

344 patients, we find that 315 patients, 309 with TCGA annotations, display high (>0.017)

and 27, i.e., ⇠8%, display low, approximately zero, relative copy numbers in the second

probelet. Only two patients, one missing TCGA annotations, remain unclassified with large

negative (<-0.017) copy numbers in the second probelet. Survival analyses of the inclusive

confirmation set of 344 patients give qualitatively the same results as these of the initial set

of 251 patients. These analyses confirm that a negligible weight of the global pattern, which

is described by the second tumor arraylet, i.e., a low copy number in the second probelet, is

indicative of a significantly longer survival time (Figure 2.8d). Survival analysis of only the

chemotherapy patients in the inclusive confirmation set classified by GSVD gives similar

results (Appendix A). These analyses confirm that the prognostic contribution of the global

pattern is comparable to that of age (Figure 2.8e) and is independent of age (Figure 2.8f ).

Similarly, we confirm that the global pattern is independent of chemotherapy (Appendix A).

To validate the prognostic contribution of the global pattern, we classify GBM profiles

of an independent set of 184 TCGA patients, that is mutually exclusive of the initial set

of 251 patients. Agilent Human aCGH 244A-measured 280 tumor profiles were selected,

corresponding to the independent validation set of 184 patients with available TCGA status

annotations (Dataset S5). Each profile lists relative copy numbers in more than 97.5% of

the 206,820 autosomal probes among the M1=212,696 probes that define the second tumor

arraylet computed by GSVD for the 251 patients of the initial set. Medians of profiles of

samples from the same patient are taken. To classify the 184 patients according to the

correlations of their GBM profiles with the second tumor arraylet of the initial set, the

classification cuto↵ of the initial set of 251 patients is scaled by the norm of the correlations

calculated for these patients, resulting in the cuto↵ ±0.15. For the profiles of 162 patients,
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we calculate high (>0.15) and for 21, i.e., ⇠11%, low, approximately zero, correlation with

the second tumor arraylet. One patient remains unclassified with a large negative (<-0.15)

correlation.

We find that survival analyses of the independent validation set of 184 patients give

qualitatively the same results as these of the initial set of 251 patients and the inclusive

confirmation set of 344 patients (Figures 2.3g–i and Appendix A). These analyses validate

the prognostic contribution of the global pattern, which is computed by GSVD of patient-

matched tumor and normal aCGH profiles, also for patients with measured GBM aCGH

profiles in the absence of matched normal profiles.



CHAPTER 3

TENSOR GSVD (tGSVD) COMPARISONS

OF MATCHED GENOMIC PROFILES

3.1 Ovarian Serous Cystadenocarcinoma (OV)
Ovarian serous cystadenocarcinoma (OV) accounts for about 90% of all ovarian cancers.

Despite recent large-scale profiling e↵orts [68], very few DNA copy-number alterations

(CNAs) that frequently occur in OV have been identified so far. The best predictor of

OV survival to date has remained the tumor’s stage at diagnosis, a pathological assessment

of the spread of the cancer numbering I to IV [69]. To identify CNAs that might predict

OV patients’ survival, we comparatively model patient- and platform-matched but probe-

independent genomic profiles of ovarian serous cystadenocarcinoma (OV) tumor and normal

samples from the Cancer Genome Atlas (TCGA) using a novel tensor GSVD (tGSVD).

The tGSVD reveals chromosome arm-wide patterns of tumor-exclusive and platform-

consistent CNAs, across 6p+12p, 7p and Xq, that are correlated with, and possibly causally

related to, OV patients’ survival. We find that, first, the patterns are independent of the

tumor’s stage. Therefore, combined with stage, each pattern makes a better predictor

than stage alone. Second, the amplified and deleted segments identified by the patterns

[47,49] include most known OV-associated CNAs [70], and several previously unreported yet

frequent CNAs [71–74]. Third, di↵erential mRNA expression between the tGSVD classes is

enriched in ontologies that include genes, which consistently map to the DNA CNAs [75,76].

Di↵erential microRNA and protein expression also consistently map to the CNAs [77].

A coherent picture emerges for each of the tGSVD patterns, across 6p+12p, 7p and Xq,

suggesting roles for the DNA CNAs in OV pathogenesis as well as personalized therapy.

The 6p+12p pattern describes previously unrecognized co-occurring alterations, including

loss of the p21-encoding CDKN1A and the p38-encoding MAPK14 on 6p, and gain of

KRAS on 12p, which together, but not separately, can lead to transformation of human

normal to tumor cells [78,79]. These alterations, together with deletion of TNF on 6p, and

amplification of RAD51AP1 and ITPR2 on 12p, which are also included in the 6p+12p
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pattern, correlate with a suppression of cell cycle arrest, senescence and apoptosis in the

OV tumor cell, and an OV patient’s shorter survival time [80–91]. Since drugs interacting

with CDKN1A, MAPK14, RAD51AP1 and KRAS exist [91], the 6p+12p tGSVD may

prove useful in OV personalized therapy. In 7p, RPA3 deletion and POLD2 amplification

correlate with DNA double-strand break (DSB) repair via homologous recombination (HR)

during replication, reduced genomic instability and a longer survival time [92, 93]. In Xq,

PABPC5 deletion and BCAP31 amplification correlate with an active cellular immune

response and a longer survival time [94].

3.1.1 Tumor and Normal Datasets

To identify links between an OV tumor’s genome and a patient’s prognosis, which might

o↵er insights into the cancer’s pathogenesis and suggest targets for drug therapy, we modeled

patient- and platform-matched OV and normal genomic, i.e., array CGH (aCGH) profiles

from TCGA by using a novel tGSVD. We selected a discovery set of 249 TCGA patients

with both primary OV and normal aCGH profiles, each measured by two DNA microarray

platforms, and a validation set of 148 patients, mutually exclusive of the discovery set,

with primary OV aCGH profiles measured by either one of the two platforms or both [68]

(Datasets S1 and S2).

Each profile in the discovery datasets lists log2 of the TCGA level 1 background-

subtracted intensity in the sample relative to the male Promega DNA reference, with signal

to background �2.5 for both the sample and reference in �90% of the 391,190 autosomal

probes and �65% of the 10,911 X chromosome probes that match between the two Agilent

Human aCGH DNA microarray platforms, G4447A and G4124A. Tumor and normal probes

were selected with valid data in �99% of the tumor or normal arrays of each platform,

respectively. For each chromosome arm or combination of two chromosome arms, and

for each platform, the <0.5% missing data entries in the tumor and normal profiles were

estimated by using the SVD, as previously described [22]. Each profile was then centered

at its copy-number median and normalized by its copy-number sMAD.

For the validation dataset, we selected 131 and 41 stage III-IV OV aCGH profiles mea-

sured by the Agilent Human aCGH G4447A and G4124A microarray platforms, respectively.

Each profile lists log2 of the TCGA level 1 background-subtracted intensity in the sample

relative to the male Promega DNA reference, with signal to background �2.5 for both the

sample and reference in �99.5% of the 391,190 autosomal probes and �96.5% of the 10,911

X chromosome probes that match between the platforms. Medians of the profiles of samples

from the same patient were then taken.
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For each chromosome arm or combination of two chromosome arms, the structure of the

patient- and platform-matched but probe-independent tumor and normal discovery datasets

D1 and D2, of K1-tumor and K2-normal probes ⇥ L-patients, i.e., arrays ⇥ M -platforms, is

that of two third-order tensors with a one-to-one mapping between the column dimensions

but di↵erent row dimensions, where K1,K2 � LM .

3.2 Tensor Generalized Singular Value Decomposition
(tGSVD)

3.2.1 Introduction

We define a novel tGSVD, an exact simultaneous decomposition of two such datasets, ar-

ranged in two higher-than-second-order tensors of the same column dimensions but di↵erent

row dimensions. We prove that the tGSVD extends the matrix GSVD [3, 21, 22, 25, 95–98]

and the tensor higher-order singular value decomposition (HOSVD) [31, 32, 99] from two

matrices and one tensor, respectively, to two tensors [100]. The tGSVD identifies patterns

of varying mathematical significance in one dataset relative to the other. We show that

the mathematical properties of the tGSVD allow interpreting the patterns in terms of the

biomedical similarities and dissimilarities between the two datasets. We demonstrate the

tGSVD in comparisons of patient- and platform-matched but probe-independent genomic

profiles of ovarian serous cystadenocarcinoma (OV) tumor and normal samples.

3.2.2 tGSVD : Formulation and Construction

To compare the OV tumor and normal datasets described above, that are each of the

form of a third-order tensor, we define a novel tGSVD that simultaneously separates the

paired datasets into weighted sums of LM paired “subtensors,” i.e., combinations or outer

products of three patterns each: either one tumor-specific pattern of copy-number variation

across the tumor probes, i.e., a “tumor arraylet” u1,a, or the corresponding normal-specific

pattern across the normal probes, i.e., the “normal arraylet” u2,a, combined with one pattern

of copy-number variation across the patients, i.e., an “x -probelet” vT
x,b

and one pattern

across the platforms, i.e., a “y-probelet” vT
y,c

, which are identical for both the tumor and

normal datasets (Figures 3.1, 3.2 and 3.3),
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Figure 3.1. Tensor generalized singular value decomposition (tGSVD) of the patient-

and platform-matched DNA copy-number profiles of the Xq chromosome arm. For each

chromosome arm or combination of two chromosome arms, the structure of the tumor

and normal discovery datasets (D1 and D2) is that of two third-order tensors with a

one-to-one mapping between the column dimensions but di↵erent row dimensions. The

patients, platforms, tissue types and probes, each represents a degree of freedom. Unfolded

into a single matrix, some of the degrees of freedom are lost and much of the information

in the datasets might also be lost. We define a tGSVD that simultaneously separates

the paired datasets into weighted sums of paired subtensors, i.e., combinations or outer

products of three patterns each: either one tumor-specific pattern of copy-number variation

across the tumor probes, i.e., a tumor arraylet (a column basis vector of U1), or the

corresponding normal-specific arraylet (a column basis vector of U2), combined with one

pattern of variation across the patients, i.e., an x -probelet (a row basis vector of V T

x

),

and one pattern across the platforms, i.e., a y-probelet (a row basis vector of V T

y

), which

are identical for both the tumor and normal datasets (Equation (3.1)). The tGSVD is

depicted in a raster display, with relative copy-number gain (red), no change (black) and

loss (green), explicitly showing the first through the 5th, and the 245th through the 249th

Xq x -probelets, both Xq y-probelets, and the first through the 10th, and the 489th through

the 498th Xq tumor and normal arraylets. We prove that the significance of a subtensor

in the tumor dataset relative to that of the corresponding subtensor in the normal dataset,

i.e., the tGSVD angular distance, equals the row mode GSVD angular distance, i.e., the

significance of the corresponding tumor arraylet in the tumor dataset relative to that of the

normal arraylet in the normal dataset. The tGSVD angular distances for the 498 pairs of Xq

arraylets are depicted in a bar chart display, where the angular distance corresponding to the

first pair of arraylets is ⇠⇡/4. For the Xq chromosome arm, we find that the most significant

subtensor in the tumor dataset (which corresponds to the coe�cient of largest magnitude

in R1) is a combination of (i) the first y-probelet, which is approximately invariant across

the platforms, (ii) the first x -probelet, which classifies the discovery set of patients into

two groups of high and low coe�cients, of significantly and robustly di↵erent prognoses,

and (iii) the first, most tumor-exclusive tumor arraylet, which classifies the validation set

of patients into two groups of high and low correlations of significantly di↵erent prognoses

consistent with the x -probelet’s classification of the discovery set.
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Figure 3.2. The tGSVD is depicted in a raster display, with relative copy-number gain

(red), no change (black) and loss (green), explicitly showing the first through the 5th, and

the 245th through the 249th 6p+12p x -probelets, both 6p+12p y-probelets, and the first

through the 10th, and the 489th through the 498th 6p+12p tumor and normal arraylets.

We prove that the significance of a subtensor in the tumor dataset relative to that of the

corresponding subtensor in the normal dataset, i.e., the tGSVD angular distance, equals

the row mode GSVD angular distance, i.e., the significance of the corresponding tumor

arraylet in the tumor dataset relative to that of the normal arraylet in the normal dataset.

The tGSVD angular distances for the 498 pairs of 6p+12p arraylets are depicted in a bar

chart display, where the angular distance corresponding to the first pair of arraylets is

⇠⇡/4. For the 6p+12p chromosome arm combination, we find that the most significant

subtensor in the tumor dataset (which corresponds to the coe�cient of largest magnitude

in R1) is a combination of (i) the first y-probelet, which is approximately invariant across

the platforms; (ii) the first x -probelet, which classifies the discovery set of patients into

two groups of high and low coe�cients, of significantly and robustly di↵erent prognoses;

and (iii) the first, most tumor-exclusive tumor arraylet, which classifies the validation set

of patients into two groups of high and low correlations of significantly di↵erent prognoses

consistent with the x -probelet’s classification of the discovery set.
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Figure 3.3. The tGSVD is depicted in a raster display, with relative copy-number gain

(red), no change (black) and loss (green), explicitly showing the first through the 5th, and

the 245th through the 249th 7p x -probelets, both 7p y-probelets, and the first through the

10th, and the 489th through the 498th 7p tumor and normal arraylets. The tGSVD angular

distances for the 498 pairs of 7p arraylets are depicted in a bar chart display, where the

angular distance corresponding to the first pair of arraylets is ⇠⇡/4.
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D
i

= R
i

⇥
a

U
i

⇥
b

V
x

⇥
c

V
y

=
LMX

a=1

LX

b=1

MX

c=1

R
i,abc

S
i

(a, b, c),

S
i

(a, b, c) = u
i,a

⌦ vT
x,b

⌦ vT
y,c

, i = 1, 2, (3.1)

where ⇥
a

U
i

, ⇥
b

V
x

and ⇥
c

V
y

denote contractions of the LM -arraylet, L-x -probelet and

M -y-probelet dimensions of the “core tensor” R
i

with those of U
i

, V
x

and V
y

, respectively,

and where ⌦ denotes an outer product.

Suppose that unfolding both tensors D
i

into matrices, each preserving the K
i

-row

dimension, e.g., by appending the LM columns D
i,:lm of the corresponding tensor, gives

two full column-rank matrices D
i

2 Ki⇥LM . We obtain the column bases vectors U
i

from

the GSVD of D
i

[21, 22, 25,95–98], i.e., the “row mode GSVD”

D
i

= (. . . ,D
i,:lm, . . .) = U

i

⌃
i

V T , i = 1, 2. (3.2)

Suppose, similarly, that unfolding both tensors D
i

into matrices, each preserving the L-x -

(or M -y-) column dimension, e.g., by appending the K
i

M rows DT

i,Ki:M
(or the K

i

L rows

DT

i,KiL:
) of the corresponding tensor, gives two full column-rank matrices D

ix

2 KiM⇥L

(or D
iy

2 KiL⇥M ). We obtain the x - (or y-) row basis vectors V T

x

(or V T

y

), from the

GSVD of D
ix

(or D
iy

), i.e., the x - (or y-) column mode GSVD,

D
ix

= (. . . ,DT

i,k:m, . . .) = U
ix

⌃
ix

V T

x

,

D
iy

= (. . . ,DT

i,kl:, . . .) = U
iy

⌃
iy

V T

y

, i = 1, 2. (3.3)

Note that the x - and y-row bases vectors are, in general, nonorthogonal but normalized, and

V
x

and V
y

are invertible. The column bases vectors are orthonormal, such that UT

i

U
i

= I.

The generalized singular values are arranged in ⌃
i

, ⌃
ix

and ⌃
iy

in decreasing orders of

the corresponding “GSVD angular distances,” i.e., decreasing orders of the ratios �1,a/�2,a,

�1x,b/�2x,b and �1y,c/�2y,c, respectively. We then compute the core tensorsR
i

by contracting

the row-, x - and y-column dimensions of the tensors D
i

with those of the matrices U
i

, V �1
x

and V �1
y

, respectively. For real tensors, the “tensor generalized singular values” R
i,abc

tabulated in the core tensors are real but not necessarily nonnegative.

Our tGSVD construction generalizes the GSVD to higher orders in analogy with the

generalization of the singular value decomposition (SVD) by HOSVD [31, 32, 99], and is

di↵erent from other approaches to the decomposition of two tensors [100].
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3.2.3 Existence, Uniqueness and Special Cases

We prove that our tGSVD exists for two tensors of any order because it is constructed

from the GSVDs of the tensors unfolded into full column-rank matrices (Lemma 3.1). The

tGSVD has the same uniqueness properties as the GSVD, where the column bases vectors

u
i,a

and the row bases vectors vT
x,b

and vT
y,c

are unique, except in degenerate subspaces,

defined by subsets of equal generalized singular values �
i

, �
ix

and �
iy

, respectively, and

up to phase factors of ±1, such that each vector captures both parallel and antiparallel

patterns (Lemma 3.2). The tGSVD of two second-order tensors reduces to the GSVD of

the corresponding matrices (Corollary 3.1). The tGSVD of the tensor D1 2 LM⇥L⇥M ,

which row mode unfolding gives the identity matrix D1 = I 2 LM⇥LM , and a tensor D2

of the same column dimensions reduces to the HOSVD of D2 (Theorem 3.1).

Lemma 3.1 The tGSVD exists for any two, e.g., third-order tensors D
i

2 Ki⇥L⇥M of the

same column dimensions L and M but di↵erent row dimensions K
i

, where K
i

� LM for

i = 1, 2, if the tensors unfold into full column-rank matrices, D
i

2 Ki⇥LM , D
ix

2 KiM⇥L

and D
iy

2 KiL⇥M , each preserving either the K
i

-row dimension, L-x-, or M-y- column

dimension, respectively.

Proof: The tGSVD of Equation (3.1), of the pair of third-order tensors D
i

, is constructed

from the GSVDs of Equations (3.2) and (3.3), of the pairs of full column-rank matrices

D
i

, D
ix

and D
iy

, where i = 1, 2. From the existence of the GSVDs of Equations (3.2) and

(3.3) [21, 25, 95–98], the orthonormal column bases vectors of U
i

, as well as the normalized

x - and y-row bases vectors of the invertible V T

x

or V T

y

, exist, and, therefore, the tGSVD of

Equation (3.1) also exists. Note that the proof holds for tensors of higher-than-third order.

⇤

Lemma 3.2 The tGSVD has the same uniqueness properties as the GSVD.

Proof: From the uniqueness properties of the GSVDs of Equations (3.2) and (3.3), the

orthonormal column bases vectors u
i,a

, and the normalized row bases vectors vT
x,b

, and vT
y,c

of the tGSVD of Equation (3.1) are unique, except in degenerate subspaces, defined by

subsets of equal generalized singular values �
i

, �
ix

and �
iy

, respectively, and up to phase

factors of ±1. The tGSVD, therefore, has the same uniqueness properties as the GSVD.

Note that the proof holds for tensors of higher-than-third order.

⇤
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Corollary 3.1 For two second-order tensors, the tGSVD reduces to the GSVD of the

corresponding matrices.

Proof: For two second-order tensors, e.g., the matrices D
i

2 Ki⇥L, the tGSVD of

Equation (3.1) is

D
i

= R
i

⇥
a

U
i

⇥
b

V
x

= U
i

R
i

V T

x

, i = 1, 2. (3.4)

The row- and x -column mode GSVDs of Equations (3.2) and (3.3) are identical, because

unfolding each matrix D
i

while preserving either its K
i

-row dimension, or L-x -column

dimension results in D
i

, up to permutations of either its rows or columns, respectively,

D
i

= U
i

⌃
i

V T

x

= D
ix

, i = 1, 2. (3.5)

From the uniqueness properties of the tGSVD of Equation (3.4), and the GSVDs of Equa-

tion (3.5) it follows that R
i

= ⌃
i

, and that for two second-order tensors, i.e., matrices, the

tGSVD is equivalent to the GSVD.

⇤

Theorem 3.1 The tGSVD of the tensor D1 2 LM⇥L⇥M , which row mode unfolding gives

the identity matrix D1 = I 2 LM⇥LM , and a tensor D2 of the same column dimensions

reduces to the HOSVD of D2.

Proof: Consider the GSVD of Equation (3.2), of the matrices D1 = I and D2, as computed

by using the QR decomposition of the appended D1 and D2, and the SVD of the block of the

resulting column-wise orthonormal Q that corresponds to D2, i.e., Q2 = U
Q2⌃Q2V

T

Q2
[25],


D1

D2

�
=


I
D2

�
= QR =


Q1

Q2

�
R

=


R�1

U
Q2⌃Q2V

T

Q2

�
R
, (3.6)

where R is upper triangular and, therefore, invertible. Since Q is column-wise orthonormal,

V T

Q2
is orthonormal and ⌃

Q2 is positive diagonal, it follows that

I = QT

1 Q1 +QT

2 Q2

= R�TR�1 + V
Q2⌃

2
Q2

V T

Q2

= (V T

Q2
R)�T (V T

Q2
R)�1 + ⌃2

Q2
,

(I � ⌃2
Q2

)�1 = (V T

Q2
R)(V T

Q2
R)T , (3.7)
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and that (I �⌃2
Q2

)
1
2V T

Q2
R is orthonormal. The GSVD of Equation (3.2) factors the matrix

D2 into a column-wise orthonormal U
Q2 , a positive diagonal ⌃

Q2(I � ⌃2
Q2

)�
1
2 and an

orthonormal (I � ⌃2
Q2

)
1
2V T

Q2
R, and is, therefore, reduced to the SVD of D2.

Note that this proof holds for the GSVDs of Equation (3.3). This is because the x - and

y-column unfoldings of the tensor D1 2 LM⇥L⇥M , which row mode unfolding gives the

identity matrix D1 = I 2 LM⇥LM , give

D1x =

2

666666664

I
...
I
0
...
0

3

777777775

9
=

;M

9
=

;M(M � 1)

,

D1y =

2

666666664

I
...
I
0
...
0

3

777777775

9
=

;L

9
=

;L(L� 1)

. (3.8)

The GSVDs of Equations (3.2) and (3.3), of either one of the matrices D1, D1x or D1y with

the corresponding full column-rank matrices D2, D2x or D2y, are, therefore, reduced to the

SVDs of D2, D2x or D2y, respectively.

The tGSVD of Equation (3.1), where the orthonormal column bases vectors u2,a, and

the normalized row bases vectors vT
x,b

, and vT
y,c

in the factorization of the tensor D2 are

computed via the SVDs of the unfolded tensor is, therefore, reduced to the HOSVD of

D2 [31, 32, 99]. Note that the proof holds for tensors of higher-than-third order.

⇤

3.2.4 Interpretation

The significance of the subtensor S
i

(a, b, c) in the tensor D
i

is proportional to the

magnitude of the corresponding R
i,abc

(Figure 3.4),

P
i,abc

= R2
i,abc

/
LMX

a=1

LX

b=1

MX

c=1

R2
i,abc

, i = 1, 2. (3.9)
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Figure 3.4: Most significant subtensors in the tumor and normal discovery datasets.
Bar charts of the ten subtensors S

i

(a, b, c) of Equation (3.1) that are most significant in the
6p+12p (a) tumor, and (b) normal, 7p (c) tumor, and (d) normal, and Xq (e) tumor, and
(f ) normal datasets, in terms of the fractions P

i,abc

of Equation (3.9), i.e., the subtensors
which correspond to the coe�cients R

i,abc

of largest magnitudes. The most significant
subtensor in each of the tumor datasets, e.g., is S1(1, 1, 1), which is a combination or
outer product of the first, most tumor-exclusive arraylet, and the first x - and y-probelets.
The most significant subtensor in each of the normal datasets is S2(498, 249, 1), which
is a combination or outer product of the 498th, most normal-exclusive arraylet, the
249th x -probelet and the first y-probelet. The tensor generalized Shannon entropy d

i

of
Equation (3.12) of each dataset is also noted.
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The significance of S1(a, b, c) in D1 relative to that of S2(a, b, c) in D2 is defined by

the “tGSVD angular distance” ⇥
abc

, in analogy with, e.g., the row mode GSVD angular

distance ✓
a

, which defines the significance of the column basis vector u1,a in the matrix D1

of Equation (3.2) relative to that of u2,a in D2

⇥
abc

= arctan(R1,abc/R2,abc)� ⇡/4,

✓
a

= arctan(�1,a/�2,a)� ⇡/4. (3.10)

Note that |⇥
abc

|  ⇡/4, where ⇥
abc

= ±⇡/4 indicates a subtensor exclusive to either D1 or

D2, respectively, and ⇥
abc

= 0 indicates a subtensor common to both.

Theorem 3.2 The tGSVD angular distance equals the row mode GSVD angular distance,

i.e., ⇥
abc

= ✓
a

.

Proof: The unfolding of D
i

of Equation (3.1) into D
i

of Equation (3.2) unfolds the core

tensors R
i

of Equation (3.1) into matrices R
i

, which preserve the row dimensions, i.e., the

LM -column bases dimensions of R
i

, and gives

D
i

= U
i

R
i

(V T

x

⌦ V T

y

),

R
i

= ⌃
i

V T (V �T

x

⌦ V �T

y

), i = 1, 2, (3.11)

where ⌦ denotes a Kronecker product. Because ⌃
i

are positive diagonal matrices, it follows

that R1,abc/R2,abc = R1,a/R2,a = �1,a/�2,a. Substituting this in Equation (3.10) gives

⇥
abc

= ✓
a

. Note that the proof holds for tensors of higher-than-third order.

Also, the “tensor generalized Shannon entropy” of each dataset,

0  d
i

= �(2 logLM)�1
LMX

a=1

LX

b=1

MX

c=1

P
i,abc

logP
i,abc

 1,

i = 1, 2, (3.12)

measures the complexity of each dataset from the distribution of the overall information

among the di↵erent subtensors. An entropy of zero corresponds to an ordered and redundant

dataset in which all the information is captured by a single subtensor. An entropy of

one corresponds to a disordered and random dataset in which all subtensors are of equal

significance (Figure 3.4).

3.2.5 Discovery and Validation of CNAs Predicting OV Survival

We computed the tGSVD for the discovery datasets of each chromosome arm or combi-

nation of two chromosome arms (Mathematica Notebook S1 in Appendix B), and selected
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those for which the most significant subtensor in the tumor dataset is a combination of

(i) a y-probelet of consistent, i.e., approximately equal copy numbers in both platforms,

(ii) an x -probelet that classifies the discovery set of patients into two groups of high

(>0.5 standardized median absolute deviation, i.e., sMAD, from the median) and low

coe�cients, of significantly (log-rank test P -value <0.05; please refer to Appendix C.5

for more information on log-rank test) and robustly (throughout the range of ±0.1 sMAD

around the cuto↵) di↵erent prognoses (please refer to Appendix C.4 for more information

on survival analysis), and (iii) the most tumor-exclusive tumor arraylet, if that arraylet

classifies the validation set of patients into two groups of high and low Spearman’s rank

correlation coe�cients of significantly di↵erent prognoses consistent with the x -probelet’s

classification of the discovery set.The arraylet correlation cuto↵ is the x -probelet coe�cient

cuto↵ scaled by the norm/
p
2 of the Spearman’s rank correlation coe�cients of the 498

tumor profiles of the discovery set of patients, as previously described [3].

3.3 Biological Results

3.3.1 Independent Chromosome Arm-Wide Predictors of OV Survival

To date, the best predictor of OV survival has remained the tumor’s stage at diagnosis

[69]. Additional indicators, such as the residual disease after surgery, the outcome of

subsequent therapy and the neoplasm status, which is the last known status of the disease,

are determined during treatment (Figures 3.5 and 3.6).

The tGSVD revealed patterns of tumor-exclusive and platform-consistent CNAs across

the chromosome arms 6p+12p, 7p, and Xq that correlate with survival in the discovery

and, separately, validation sets (Figure 3.7).

To interpret the 6p+12p, 7p and Xq tumor arraylets, we mapped the tumor probes

onto the National Center for Biotechnology Information (NCBI) human genome sequence

build 37, by using the Agilent Technologies probe annotations posted at the University of

California at Santa Cruz (UCSC) human genome browser [47]. We segmented each of the

arraylets and assigned each segment a P -value by using the circular binary segmentation

(CBS) algorithm as described [49]. To assign a CNA in a segment, we calculated the

segment’s median copy number, and sMAD from the median in the corresponding arraylet.

If the segment’s median is at least one sMAD greater (or lesser) than the arraylet’s median,

then the arraylet is assigned a gain (or a loss) in the segment. Similarly, we calculated the

segment’s median copy number, and sMAD from the median in each tumor profile. If the

segment’s median is at least one sMAD greater (or lesser) than the profile’s median, then
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the patient is assigned a gain (or a loss) in the segment.

We find that each of the patterns is independent of each of the standard indicators

(Tables 3.1 and 3.2). Survival analyses of the discovery set classified, e.g., by the 6p+12p

tGSVD into high and low x -probelet coe�cients, and by pathology at diagnosis into tumor

stages I-II and III-IV, give the bivariate Cox hazard ratios (please refer to Appendix C.6 for

more information) of 1.7 and 4.4, which are similar to the corresponding univariate ratios

1.7 and 3.7, respectively. Therefore, combined with either one of the standard indicators,

each of the three tGSVD patterns makes a better predictor than the standard indicator

alone (Figures 3.8 and 3.9). The Kaplan-Meier (KM) median survival time di↵erence of 61

months among the discovery set groups classified, e.g., by both the 6p+12p tGSVD and

stage, is more than 50% and almost two years greater than the 39 month di↵erence between

the patient groups classified by stage alone.
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Figure 3.5: Survival analyses of the discovery set of patients classified by the standard
OV indicators.
KM curves for the discovery set of 249 patients classified by (a) tumor stage at diagnosis,
the best predictor of OV survival to date, (b) residual disease after surgery, (c) outcome of
subsequent therapy, and (d) neoplasm status, which is the last known status of the disease.
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Figure 3.6: Survival analyses of the validation set of patients classified by the standard
OV indicators.
KM curves for the validation set of 148 stage III-IV patients classified by (a) residual disease
after surgery, (b) outcome of subsequent therapy, and (c) neoplasm status.
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Figure 3.7: Survival analyses of the discovery and validation sets of patients classified by

tGSVD, or tGSVD and tumor stage at diagnosis. (a) Kaplan-Meier (KM) curves for the

discovery set of 249 patients classified by the 6p+12p x -probelet coe�cient, show a median

survival time di↵erence of 11 months, with the corresponding log-rank test P -value < 10�2.

The univariate Cox proportional hazard ratio is 1.7, with a P -value < 10�2. (b) Survival

analyses of the 249 patients classified by the 7p x -probelet coe�cient. (c) The 249 patients

classified by the Xq x -probelet coe�cient. (d) The 249 patients classified by both the

6p+12p tGSVD and tumor stage at diagnosis, show the bivariate Cox hazard ratios of 1.5

and 4, which do not di↵er significantly from the corresponding univariate hazard ratios, of

1.7 and 4.4, respectively. This means that the 6p+12p tGSVD is independent of stage, the

best predictor of OV survival to date. The 61 months KM median survival time di↵erence

is more than 50% and almost two years greater than the 39 month di↵erence of the 249

patients classified by stage alone. This means that tGSVD and stage combined make a

better predictor than stage alone. (e) The 249 patients classified by both the 7p tGSVD

and stage. (f ) The 249 patients classified by both the Xq tGSVD and stage. (g) KM

curves for the validation set of 148 stage III-IV patients classified by the 6p+12p arraylet

correlation, show a median survival time di↵erence of 22 months, with the corresponding

log-rank test P -value < 10�2, and the univariate Cox proportional hazard ratio 1.9. This

validates the survival analyses of the discovery set of 249 patients. (h) Survival analyses of

the 148 patients classified by the 7p arraylet correlation. (i) The 148 patients classified by

the Xq arraylet correlation.
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Table 3.1: Cox bivariate proportional hazard models of the patients in the discovery and
validation sets classified by both tGSVD and the standard OV indicators.

Chromosome Discovery and Validation Sets
Arm Predictor Hazard Ratio P -value

6p+12p tGSVD 1.7 4.4⇥10�4

Tumor Stage 3.7 3.9⇥10�3

tGSVD 1.6 2.5⇥10�3

Residual Disease 2.2 1.2⇥10�4

tGSVD 1.7 1.2⇥10�3

Therapy Outcome 3.7 1.9⇥10�15

tGSVD 1.6 1.2⇥10�3

Neoplasm Status 13.0 3.9⇥10�7

7p tGSVD 1.7 4.2⇥10�4

Tumor Stage 3.9 2.4⇥10�3

tGSVD 1.6 1.3⇥10�3

Residual Disease 2.2 1.1⇥10�4

tGSVD 1.5 1.6⇥10�2

Therapy Outcome 3.5 2.4⇥10�14

tGSVD 1.7 6.0⇥10�4

Neoplasm Status 13.3 3.0⇥10�7

Xq tGSVD 1.6 1.7⇥10�3

Tumor Stage 3.8 3.2⇥10�3

tGSVD 1.9 1.1⇥10�4

Residual Disease 2.2 9.3⇥10�5

tGSVD 1.8 8.5⇥10�4

Therapy Outcome 3.8 1.1⇥10�16

tGSVD 1.7 6.7⇥10�4

Neoplasm Status 14.5 1.3⇥10�7

3.3.2 Novel Frequent Focal CNAs Indicating Survival

OV tumors exhibit significant CNA variation among them, much more so than, e.g.,

glioblastoma brain tumors [3]. Very few frequently occurring OV CNAs have been identified

to date. We find that the three tGSVD patterns include most known OV-associated CNAs

that map to the corresponding chromosome arms [47], and several previously unreported

yet frequent CNAs in >23% of the patients (Figure 3.10).

The 6p+12p arraylet, for example, includes two segments [49] corresponding to the only

known OV focal CNAs that map to 6p+12p, 7p or Xq. One, a deletion (6p11.2), overlaps

the 3’ end unique to isoform a of the DNA primase polypeptide 2-encoding PRIM2 [68].
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Table 3.2: Cox univariate proportional hazard models of the discovery and validation sets
of patients classified by either tGSVD or the standard OV indicators.

Discovery and Validation Sets
Predictor Hazard Ratio P -value

tGSVD 6p+12p 1.8 1.0⇥10�4

7p 1.7 1.7⇥10�4

Xq 1.7 4.8⇥10�4

Tumor Stage 4.1 1.8⇥10�3

Residual Disease 2.3 8.4⇥10�5

Therapy Outcome 3.8 8.3⇥10�17

Neoplasm Status 14.0 1.8⇥10�7
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Figure 3.8: Survival analyses of the discovery set of patients classified by tGSVD and
standard OV indicators.
KM curves for the discovery set of 249 patients classified by both the (a) 6p+12p, (b) 7p
or (c) Xq tGSVD, and residual disease after surgery, the (d) 6p+12p, (e) 7p or (f ) Xq
tGSVD, and outcome of subsequent therapy, and (g) 6p+12p, (h) 7p or (i) Xq tGSVD,
and neoplasm status.
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Figure 3.9: Survival analyses of the validation set of patients classified by tGSVD and
standard OV indicators.
KM curves for the validation set of 148 stage III-IV patients classified by both the
(a) 6p+12p, (b) 7p or (c) Xq tGSVD, and residual disease after surgery, the (d) 6p+12p,
(e) 7p or (f ) Xq tGSVD, and outcome of subsequent therapy, and (g) 6p+12p, (h) 7p or
(i) Xq tGSVD, and neoplasm status.
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Figure 3.10: Tumor-exclusive and platform-consistent DNA copy-number alterations (CNAs)

correlate with ovarian serous cystadenocarcinoma (OV) patients’ survival. (a) Plot of the

first 6p+12p tumor arraylet describes a pattern of tumor-exclusive and platform-consistent

co-occurring CNAs across the chromosome arm combination of 6p+12p. The probes are

ordered, and their copy numbers are colored according to each probe’s chromosomal band

location. Segments (black lines) amplified and deleted include most known OV-associated

CNAs that map to 6p+12p (black), including an amplification of KRAS and a deletion of

PRIM2. CNAs previously unrecognized in OV (red) include a deletion of the p38-encoding

MAPK14, and p21-encoding CDKN1A, and an amplification of RAD51AP1, which are

drug-targeted in other cancers, a deletion of TNF, and focal amplifications of ASUN, ITPR2,

and the 5’ ends of isoforms a and e, and exons 5 and 6 of SOX5. A high 6p+12p arraylet

correlation significantly correlates with a patient’s shorter survival time. (b) Plot of the

first x -probelet describes the classification of the discovery set of patients into two groups

of high (blue) and low (red) coe�cients. A high 6p+12p x -probelet coe�cient significantly

and robustly correlates with a patient’s shorter survival time. (c) Raster display of the

6p+12p tumor profiles, where medians of the profiles of the same patient measured by the

two platforms were taken, with relative gain (red), no change (black) and loss (green) of

DNA copy numbers. (d) Plot of the first 7p tumor arraylet describes a pattern of CNAs

across the chromosome arm 7p. CNAs previously unrecognized in OV (red) include a

focal deletion of RPA3 and an amplification of POLD2. A high 7p arraylet correlation

significantly correlates with a patient’s longer survival time. (e) Plot of the first x -probelet

describes the classification of the discovery set of patients into two groups of high (red) and

low (blue) coe�cients. A high 7p x -probelet coe�cient significantly and robustly correlates

with a patient’s longer survival time. (f ) Raster display of the 7p tumor profiles. (g) Plot

of the first Xq tumor arraylet. CNAs previously unrecognized in OV (red) include a focal

deletion of PABPC5 and an amplification of BCAP31. A high Xq arraylet correlation

significantly correlates with a patient’s longer survival time. (h) Plot of the first x -probelet

describes the classification of the discovery set of patients into two groups of high (red) and

low (blue) coe�cients. A high Xq x -probelet coe�cient significantly and robustly correlates

with a patient’s longer survival time. (i) Raster display of the Xq tumor profiles.
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The other, an amplification (12p12.1-p11.23), contains several genes, including the Kirsten

rat sarcoma viral oncogene homolog KRAS, one of three human Ras genes and the 5’ ends

of isoforms b and d of the SRY (sex determining region Y)-box 5-encoding SOX5 [70], and

is significantly (log-rank test P -value <0.05, and KM median survival time di↵erence �12

months) correlated with OV survival (Dataset S3 in Appendix B).

Novel frequent focal CNAs (segments <125 probes) include four amplifications and two

deletions that are significantly correlated with OV survival (Figure 3.11). The amplifications
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Figure 3.11: Survival analyses of the discovery and validation sets of patients classified by
the novel frequent focal CNAs included in the tGSVD arraylets.
Six novel frequent focal CNAs that are included in the tGSVD arraylets are significantly
correlated with OV survival. Two amplified consecutive segments (12p12.1) contain (a) the
5’ ends of isoforms a and e of SOX5, and (b) exons 5 and 6, the first exons that are common
to isoforms a, b, d and e of SOX5. Two other amplified consecutive segments (12p11.23)
contain (c) ITPR2 and (d) ASUN. One deletion (7p22.1-p21.3) contains (e) RPA3. Another
deletion (Xq21.31) contains (f ) PABPC5, and the sequence tag site DXS241 adjacent to
translocation breakpoints observed in premature ovarian failure.
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flank the segment that contains KRAS. Two consecutive segments (12p12.1) contain the 5’

ends of isoforms a and e of SOX5, and exons 5 and 6, the first exons that are common to

isoforms a, b, d and e of SOX5 [71]. Two other consecutive segments (12p11.23) contain the

inositol 1,4,5-trisphosphate receptor type 2-encoding ITPR2, and the asunder spermatoge-

nesis regulator-encoding ASUN. ASUN was discovered in a screen of expressed sequence

tags on 12p11-p12, which DNA amplification correlated with mRNA overexpression in

four human testicular seminomas and one ovarian papillary serous adenocarcinoma cell

line, exemplifying human germ cell tumors [72]. ASUN and its homologs are essential for

nuclear division after DNA replication in the HeLa human cervical cancer cell line, the frog

and the fly [73]. One deletion (7p22.1-p21.3) contains the replication protein A3-encoding

RPA3. The other (Xq21.31) contains the cytoplasmic poly(A)-binding protein 5-encoding

PABPC5, and the sequence tag site DXS241 adjacent to translocation breakpoints observed

in premature ovarian failure [74].

3.3.3 Possible Roles in OV Pathogenesis and Personalized Therapy

To compare the variation in DNA copy numbers with that in gene expression, we used

mRNA expression profiles that were available for 394 of the 397 TCGA patients in the

discovery and validation sets. Each profile lists the TCGA level 3 mRNA expression for

11,457 autosomal and X chromosome genes on the A↵ymetrix Human Genome U133A

Array platform with UCSC coordinates [47] and GO annotations [75]. Medians of the

profiles of samples from the same patient were taken. To examine the possible relations

between a tGSVD class and the OV pathogenesis, we assessed the enrichment of the subsets

of genes that are di↵erentially expressed between the tGSVD classes in any one of the

multiple GO annotations [76]. The P -value of a given enrichment was calculated assuming

hypergeometric probability distribution of the annotations among the genes in the global

set, and of the subset of annotations among the subset of genes, as previously described [3].

We find that di↵erential mRNA expression between the tGSVD classes is enriched in

ontologies that include genes, which consistently map to the CNAs [75,76] (Figure 3.12 and

Dataset S4 in Appendix B).

To compare with the variation in microRNA expression, we used microRNA expression

profiles that were available for 395 of the 397 patients. Each profile lists the TCGA level

3 microRNA expression for 639 autosomal and X chromosome microRNAs on the Agilent

Human microRNA Array 8x15K platform with UCSC coordinates. Medians of the profiles

of samples from the same patient were taken. To compare with the variation in protein

expression, we used protein expression profiles that were available for 282 of the 397 patients.
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Figure 3.12: Di↵erential mRNA expression between the tGSVD classes is consistent with
the CNAs.
(a) TNF, (b) MAPK14 and (c) CDKN1A, which are deleted in the 6p+12p arraylet, are
significantly (Mann-Whitney P -value <0.05) underexpressed in the tGSVD class of a high
6p+12p x -probelet coe�cient, or arraylet correlation relative to the tGSVD class of a low
6p+12p x -probelet coe�cient, or arraylet correlation. (d) RAD51AP1, (e) ITPR2 and
(f ) ASUN, which are amplified in the 6p+12p arraylet, are significantly underexpressed in
the tGSVD class of a high 6p+12p x -probelet coe�cient, or arraylet correlation. (g) RPA3
and (h) POLD2, which are deleted, and amplified in the 7p arraylet, are significantly
underexpressed and overexpressed, respectively, in the tGSVD class of a high 7p x -probelet
coe�cient, or arraylet correlation. (i) BCAP31, which is amplified in the Xq arraylet,
is significantly overexpressed in the tGSVD class of a high Xq x -probelet coe�cient, or
arraylet correlation.
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Each profile lists the TCGA level 3 protein expression for the 165 antibodies on the MD

Anderson Reverse Phase Protein Array (RPPA), which probe for 136 proteins encoded by

autosomal and X chromosome genes.

We find that the CNAs are consistent with di↵erential mRNA, microRNA and protein

expression between the tGSVD classes (Figures 3.12, 3.13 and 3.14).

The mRNA and protein encoded by, for example, MAPK14, which is deleted in the

6p+12p arraylet, are both significantly (Mann-Whitney P -values <10�5; please refer to

Appendix C.2 for more information) underexpressed in the tGSVD class of a high 6p+12p

x -probelet coe�cient, or arraylet correlation relative to the tGSVD class of a low 6p+12p x -

probelet coe�cient, or arraylet correlation. The microRNA mir-877* that maps to the same

deletion as MAPK14 is also significantly (Mann-Whitney P -value <0.05) underexpressed.

A coherent picture emerges for each chromosome arm or combination of two chromosome

arms that suggests roles for the DNA CNAs in OV pathogenesis and personalized therapy.

3.3.3.1 6p+12p

The genes, which are significantly (Mann-Whitney P -values <0.05) di↵erentially ex-

pressed in the patient group of high 6p+12p x -probelet coe�cient or arraylet correlation,

relative to the group of low coe�cient or correlation, are enriched (hypergeometric P -values

<10�3) in the ontologies of cellular response to ionizing radiation (GO:0071479), and major

histocompatibility (MHC) protein complex (GO:0042611). Most of the GO:0071479 genes

are underexpressed, including the p21 cyclin-dependent kinase inhibitor-encoding CDKN1A,

and the p38 mitogen-activated protein kinase-encoding MAPK14, which map to a deletion

>45 Mbp on the telomeric part of 6p (6p25.3-p21.1). Also underexpressed is p38, the protein

encoded by MAPK14. All GO:0042611 genes, including the tumor necrosis factor-encoding

TNF, are underexpressed, and map to the same deletion. The one microRNA that is

significantly di↵erentially expressed in the 6p+12p tGSVD classes, and maps to the same

deletion, is the splicing-dependent microRNA miR-877*, which is encoded by the 13th

intron of the ATP-binding cassette subfamily F member 1-encoding gene ABCF1 [77].

Both miR-877* and ABCF1 are consistently underexpressed.

One of only two GO:0071479 overexpressed genes is the RAD51-associated protein

1-encoding RAD51AP1, which maps to an amplification >9 Mbp on the telomeric part of

12p (12p13.33-p13.31) that is significantly correlated with OV survival. All four microRNAs

that are di↵erentially expressed in the 6p+12p tGSVD classes, and map to the same

amplification, miR-200c, miR-200c*, miR-141 and miR-141*, are consistently overexpressed.

The second protein that is significantly di↵erentially expressed in the 6p+12p tGSVD
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Figure 3.13: Di↵erential microRNA expression between the tGSVD classes is consistent
with the CNAs.
(a) mir-877*, which is deleted, and (b) mir-200c, (c) mir-200c*, (d) mir-141 and (e) mir-
141*, which are amplified in the 6p+12p arraylet, are significantly (Mann-Whitney P -value
<0.05) overexpressed and underexpressed, respectively, in the tGSVD class of a high 6p+12p
x -probelet coe�cient, or arraylet correlation relative to the tGSVD class of a low 6p+12p
x -probelet coe�cient, or arraylet correlation. (f ) mir-888, (g) mir-224 and (h) mir-452,
which are amplified in the Xq arraylet, are significantly overexpressed in the tGSVD class
of a high Xq x -probelet coe�cient, or arraylet correlation.
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Figure 3.14: Di↵erential protein expression between the tGSVD classes is consistent with
the CNAs.
(a)MAPK14, which is deleted, and (b) CDKN1B, which is amplified in the 6p+12p arraylet,
are significantly (Mann-Whitney P -value <0.05) overexpressed and underexpressed, respec-
tively, in the tGSVD class of a high 6p+12p x -probelet coe�cient, or arraylet correlation
relative to the tGSVD class of a low 6p+12p x -probelet coe�cient, or arraylet correlation.
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classes is p27. Consistently, the cyclin-dependent kinase inhibitor CDKN1B, which encodes

p27, maps to a 4.5 Mbp amplification (12p13.2-p12.3) that is significantly correlated with

OV survival, and its mRNA is overexpressed. The mRNA encoded by KRAS is also

overexpressed.

Note that while the tGSVD 6p+12p pattern of CNAs correlates with survival in the

discovery and, separately, validation sets, neither the 6p nor the 12p pattern alone cor-

relates with survival. Indeed, experiments studying the conditions for the transformation

of human normal to tumor cells indicate that cells, where both p21 and p38 are inactive,

are susceptible to Ras-mediated transformation [78, 79]. However, the activation of Ras

alone induces tumor-suppressing cellular senescence via the activities of either p21 or p38.

The 6p+12p pattern, therefore, which includes the co-occurring loss of the p21-encoding

CDKN1A and the p38-encoding MAPK14 on 6p, and gain of KRAS on 12p, encodes for

cellular conditions that together, but not separately, can lead to transformation.

In addition, p21 and p38 are necessary for p53-mediated cell cycle arrest [80] and

apoptosis [81], respectively, in response to DNA damage. Overexpression of the p21-

encoding CDKN1A is correlated with a low malignant potential of an ovarian tumor [82].

RAD51AP1 overexpression disrupts cell cycle arrest and apoptosis, can lead to cellular

resistance to DNA-damaging cancer therapies and may increase genomic instability [83].

TNF -induced apoptosis is correlated with downregulation of ITPR2 [84]. Overexpression

of miR-200c, and miR-141, both of which putatively target the BRCA1 associated protein-1

oncosuppressor-encoding BAP1, correlates with OV tumor growth, dedi↵erentiation and

invasiveness [85, 86]. Overexpression of the CDKN1B -encoded p27, which can promote

cellular migration [87] and even proliferation [88], was found to correlate with poorer OV

patients’ prognosis [89, 90].

Overall, the 6p+12p pattern encodes for cellular conditions that together, but not

separately, can induce the transformation of human normal to tumor cells, i.e., deletion of

CDKN1A and MAPK14 on 6p, and amplification of KRAS on 12p, together with deletion

of TNF on 6p, and amplification of RAD51AP1 and ITPR2 on 12p. These previously

unrecognized co-occurring CNAs correlate with a suppression of cell cycle arrest, senescence,

and apoptosis in the OV tumor cell, and an OV patient’s shorter survival time. Since

drugs interacting with CDKN1A, MAPK14, RAD51AP1 and KRAS exist [91], the 6p+12p

tGSVD may prove useful in OV personalized therapy.
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3.3.3.2 7p

The significantly di↵erentially expressed genes in the 7p tGSVD classes are enriched

(hypergeometric P -value <10�10) in the ontology of DNA strand elongation involved in

DNA replication (GO:0006271). Most of these genes are overexpressed, including the DNA

polymerase delta subunit 2-encoding POLD2 that is essential for DNA replication and

repair, which maps to an amplification >17 Mbp on the centromeric part of 7p (7p14.1-

p11.2). Only two genes are underexpressed: RPA3 on 7p and the DNA ligase IV-encoding

LIG4 on 13q. The interaction of p53 with the RPA3 -encoded protein mediates suppression

of HR, the preferred cellular mechanism for DNA DSB repair during replication [92]. LIG4

is essential for DSB repair via the more error-prone nonhomologous end joining pathway [93].

HR defects are thought to facilitate the genomic disarray among OV tumors [68].

Taken together, previously unrecognized co-occurring deletion and underexpression of

RPA3, and amplification and overexpression of POLD2 on 7p correlate with DNA DSB

repair via HR during replication, reduced genomic instability and a longer survival time.

3.3.3.3 Xq

The di↵erentially expressed genes in the Xq tGSVD classes are enriched (hypergeo-

metric P -value <10�6) in the ontology of antigen processing and presentation of peptide

antigen (GO:0048002). Most of these genes are overexpressed, including the B-cell receptor-

associated protein 31-encoding BCAP31, which maps to an amplification >11 Mbp on the

telomeric part of Xq (Xq27.3-q28). All three microRNAs that are di↵erentially expressed

in the Xq tGSVD classes, and map to the same amplification, miR-888, miR-224 and

miR-452, together with the gamma-aminobutyric acid (GABA) A receptor epsilon-encoding

GABRE, which hosts mir-224 and mir-452 in its introns, are consistently overexpressed.

Underexpression of miR-224 was implicated in OV pathogenesis [85]. PABPC5, which

maps to a focal deletion on Xq, is suppressed upon viral infection [94].

Taken together, previously unrecognized co-occurring deletion of PABPC5, and ampli-

fication and overexpression of BCAP31 on Xq correlate with increased cellular immune

activity, and longer survival.

Our tGSVD comparisons of patient- and platform-matched OV and normal genomic

profiles revealed previously unrecognized links between a tumor’s genome and a patient’s

prognosis, which o↵er insights into ovarian cancer formation and growth, and suggest targets

for personalized drug therapy. Previously, the best prognostic indicator of OV was the

tumor’s stage at diagnosis.



CHAPTER 4

DISCUSSION

4.1 Summary

4.1.1 The GSVD Comparison of GBM and Normal Genomic Profiles

Previously, Alter et al. [22, 24] showed that the GSVD provides a mathematical frame-

work for sequence-independent comparative modeling of DNA microarray data from two

organisms, where the mathematical variables and operations represent experimental or

biological reality. The variables, subspaces of significant patterns that are common to both

or exclusive to either of the datasets, correlate with cellular programs that are conserved in

both or unique to either of the organisms. The operation of reconstruction in the subspaces

common to both datasets outlines the biological similarity in the regulation of the cellular

programs that are conserved across the species. Reconstruction in the common and exclusive

subspaces of either dataset outlines the di↵erential regulation of the conserved relative to

the unique programs in the corresponding organism. Recent experimental results [32] verify

a computationally predicted genome-wide mode of regulation [19, 31], and demonstrate

that GSVD modeling of DNA microarray data can be used to correctly predict previously

unknown cellular mechanisms.

Recently, Ponnapalli et al. [23] mathematically defined a higher-order GSVD (HOGSVD)

for more than two large-scale matrices with di↵erent row dimensions and the same column

dimensions. They proved that this novel HO GSVD extends almost all the mathematical

properties of the GSVD to higher orders. They showed, comparing global mRNA expression

from the three disparate organisms, S. pombe, S. cerevisiae and human, that the HO

GSVD provides a sequence-independent comparative framework for more than two genomic

datasets, where the variables and operations represent experimental or biological reality.

The approximately common HO GSVD subspace represents biological similarity among the

organisms. Simultaneous reconstruction in the common subspace removes the experimental

artifacts, which are dissimilar, from the datasets.
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We now also show that in a probe-independent comparison of aCGH data from patient-

matched tumor and normal samples, the mathematical variables of the GSVD, i.e., shared

probelets and the corresponding tumor- and normal-specific arraylets, represent experi-

mental or biological reality. Probelets that are mathematically significant in both datasets

correspond to normal arraylets representing copy-number variations (CNVs) in the normal

human genome that are conserved in the tumor genome (e.g., female-specific X chromosome

amplification) and are represented by the corresponding tumor arraylets. Probelets that

are mathematically significant in the normal but not in the tumor dataset represent ex-

perimental variations that exclusively a↵ect the normal dataset. Similarly, some probelets

that are mathematically significant in the tumor but not in the normal dataset represent

experimental variations that exclusively a↵ect the tumor dataset.

We find that the mathematically second most tumor-exclusive probelet, which is also the

mathematically most significant probelet in the tumor dataset, is statistically correlated,

possibly biologically coordinated with GBM patients’ survival and response to chemother-

apy. The corresponding tumor arraylet describes a global pattern of tumor-exclusive co-

occurring CNAs, including most known GBM-associated changes in chromosome numbers

and focal CNAs, as well as several previously unreported CNAs, including the biochemically

putative drug target-encoding TLK2 [44]. We find that a negligible weight of the second

tumor arraylet in a patient’s GBM aCGH profile, mathematically defined by either the

corresponding copy number in the second probelet, or by the correlation of the GBM

profile with the second arraylet, is indicative of a significantly longer GBM survival time.

This GSVD comparative modeling of aCGH data from patient-matched tumor and normal

samples, therefore, draws a mathematical analogy between the prediction of cellular modes

of regulation and the prognosis of cancers.

We confirm our results with GSVD comparison of matched profiles of a larger set of

TCGA patients, inclusive of the initial set. We validate the prognostic contribution of the

pattern with GSVD classification of the GBM profiles of a set of patients that is independent

of both the initial set and the inclusive confirmation set [45].

4.1.2 The Tensor GSVD Comparisons of Matched OV Genomic Profiles

In personalized medicine, the growing numbers of large-scale multidimensional datasets

recording di↵erent aspects of a single disease, e.g., in TCGA [68], promise to enhance basic

biological understanding of the disease, lead to the development of new therapies and inform

a patient’s diagnosis, prognosis and treatment. This rapid growth in biomedical datasets

is accompanied by a fundamental need for mathematical frameworks that can create one
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coherent model from multiple datasets arranged in multiple tensors of matched columns,

e.g., patients, platforms and tissues, but independent rows, e.g., probes. The recent HO

GSVD is the only simultaneous decomposition to date of more than two such datasets that

is by definition exact, and which mathematical properties allow interpreting its variables

and operations in terms of, e.g., biomedical reality [23, 101]. This decomposition, however,

is limited to datasets arranged in second-order tensors, i.e., matrices.

We define a novel tensor GSVD (tGSVD), an exact simultaneous decomposition of

two such datasets, arranged in two higher-than-second-order tensors of the same column

dimensions but di↵erent row dimensions. We prove that the tGSVD extends the ma-

trix GSVD [3, 21, 22, 25, 95–98] and the tensor higher-order singular value decomposition

(HOSVD) [31,32,99] from two matrices and one tensor, respectively, to two tensors [100].We

show that the tGSVD can simultaneously find the similarities and dissimilarities, i.e.,

patterns of varying relative significance, in one dataset relative to the other. The mathe-

matical properties of the tGSVD allow interpreting the patterns in terms of the biomedical

similarities and dissimilarities between the two datasets.

We demonstrate the tGSVD in comparisons of patient- and platform-matched but

probe-independent genomic profiles of ovarian serous cystadenocarcinoma (OV) tumor and

normal samples from TCGA. The tGSVD reveals chromosome arm-wide patterns of tumor-

exclusive and platform-consistent DNA copy-number alterations (CNAs) that correlate with

OV patients’ survival. The patterns, across 6p+12p, 7p and Xq, are independent of the

tumor’s stage, the best predictor of OV survival to date, and include known as well as

previously unreported, yet frequent CNAs. Di↵erential mRNA expression between the

tGSVD classes is enriched in ontologies that include genes, that consistently map to the

DNA CNAs [75, 76]. Di↵erential microRNA and protein expression also consistently map

to the CNAs [77]. Taken together, these patterns revealed by tGSVD suggest roles for the

CNAs in OV pathogenesis and therapy.

Unlike previous analyses, notably by TCGA Research Network [37,68], our tGSVD and

GSVD analyses were not limited to the 22 human autosomal chromosomes and included

the X chromosome because the tGSVD or the matrix GSVD does not make any apriori

assumptions about the data. Our analyses, therefore, can be used to create a single coherent

mathematical model that simultaneously finds the similarities and dissimilarities between

any two datasets arranged in (i) two higher-than-second-order tensors (tGSVD) or (ii) two

second-order tensors or matrices (GSVD) of the same column dimensions but di↵erent row

dimensions.
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4.2 Future Directions

4.2.1 Additional Applications in Personalized Medicine

Our mathematical frameworks, GSVD and tGSVD, are capable of identifying the simi-

larities as well as the dissimilarities between datasets, which is very important in personal-

ized medicine because such identification allows us the flexibility to address di↵erent types of

biological questions. For example, when comparing tumor and normal genomic profiles using

GSVD, one might be interested in what is exclusive to tumor and contributing to patient

prognosis. However, when one is comparing tumor genomic profiles from two di↵erent

measuring platforms using GSVD, the same mathematical framework as mentioned in the

previous example, the question will change to what is common between the two profiling

platforms that is attributed to “true biological signal” and contributing to patient prognosis.

Additional possible applications of the GSVD, HO GSVD and tGSVD in personalized

medicine include comparisons of multiple patient-matched datasets (for GSVD and HO

GSVD comparisons) or two patient- and platform-matched datasets (for tGSVD compar-

isons), each corresponding to (i) a set of large-scale molecular biological profiles (such as

DNA copy numbers) acquired by a high-throughput technology, e.g., DNA microarrays from

the same tissue type (such as tumor or normal); (ii) a set of biomedical images or signals; or

(iii) a set of anatomical or clinical pathology test results or phenotypical observations (such

as age or tumor stage). For example, tGSVD comparisons of tumor and normal profiles of

patient- and platform-matched Single Nucleotide Polymorphism (SNP) data measured using

microarray technology and DNA sequencing technology from the same set of TCGA breast

invasive carcinoma patients can reveal the biological phenomena common and exclusive to

tumor and normal datasets.

GSVD and tGSVD comparisons can uncover the relations and possibly even causal

coordinations among these di↵erent recorded aspects of the same medical phenomenon.

GSVD and tGSVD comparisons can be used to determine a single patient’s medical status

in relation to all other patients in the set and inform the patient’s diagnosis, prognosis and

treatment.
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A.1 Figures
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Figure A.1: The 247th, normal-exclusive probelet and corresponding normal arraylet
uncovered by GSVD.
(a) Plot of the 247th normal arraylet describes copy-number distributions which are
approximately centered at zero with relatively large, chromosome-invariant widths. The
normal probes are ordered, and their copy numbers are colored, according to each probe’s
chromosomal location. (b) Plot of the 247th probelet describes the corresponding variation
across the patients. Copy numbers in this probelet correlate with the date of hybridization
of the normal samples, 7.22.2009 (red), 10.8.2009 (blue) or other (gray), with the P -values
<10�3 (Table 2.1 and Figure 2.4b). (c) Raster display of the normal dataset shows the
correspondence between the normal profiles and the 247th probelet and normal arraylet.
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Figure A.2: The 248th, normal-exclusive probelet and corresponding normal arraylet
uncovered by GSVD.
(a) Plot of the 248th normal arraylet describes copy-number distributions which are ap-
proximately centered at zero with relatively large, chromosome-invariant widths. (b) Plot of
the 248th probelet describes the corresponding variation across the patients. Copy numbers
in this probelet significantly correlate with the tissue batch/hybridization scanner of the
normal samples, HMS 8/2331 (red) and other (gray), with the P -values <10�12 (Table 2.1
and Figure 2.4c). (c) Raster display of the normal dataset shows the correspondence
between the normal profiles and the 248th probelet and normal arraylet.
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Figure A.3: The 249th, normal-exclusive probelet and corresponding normal arraylet
uncovered by GSVD.
(a) Plot of the 249th normal arraylet describes copy-number distributions which are ap-
proximately centered at zero with relatively large, chromosome-invariant widths. (b) Plot of
the 249th probelet describes the corresponding variation across the patients. Copy numbers
in this probelet significantly correlate with the tissue batch/hybridization scanner of the
normal samples, HMS 8/2331 (red) and other (gray), with the P -values <10�12 (Table 2.1
and Figure 2.4d). (c) Raster display of the normal dataset shows the correspondence
between the normal profiles and the 249th probelet and normal arraylet.
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Figure A.4: The 250th, normal-exclusive probelet and corresponding normal arraylet
uncovered by GSVD.
(a) Plot of the 250th normal arraylet describes copy-number distributions which are
approximately centered at zero with relatively large, chromosome-invariant widths. (b)
Plot of the 250th probelet describes the corresponding variation across the patients. Copy
numbers in this probelet correlate with the date of hybridization of the normal samples,
4.18.2007 (red), 7.22.2009 (blue) or other (gray), with the P -values <10�3 (Table 2.1 and
Figure 2.4e). (c) Raster display of the normal dataset shows the correspondence between
the normal profiles and the 250th probelet and normal arraylet.
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Figure A.5: Kaplan-Meier (KM) survival analyses of only the chemotherapy patients from
the three sets classified by GSVD.
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Figure A.6: KM survival analysis of the initial set of 251 patients classified by a mutation
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Figure A.8: KM survival analyses of the initial set of 251 patients classified by GBM-
associated chromosome number changes.
(a) Analysis of the 247 patients with TCGA annotations in the initial set of 251 patients,
classified by number changes in chromosome 10, shows almost overlapping Kaplan-Meier
(KM) curves with a KM median survival time di↵erence of ⇠2 months, and a corresponding
log-rank test P -value ⇠10�1, meaning that chromosome 10 loss, frequently observed in
GBM, is a poor predictor of GBM patients’ survival. (b) KM survival analysis of the
247 patients classified by number changes in chromosome 7 shows almost overlapping KM
curves with a KM median survival time di↵erence of <one month, and a corresponding
log-rank test P -value >5⇥10�1, meaning that chromosome 7 gain is a poor predictor of
GBM survival. (c) KM survival analysis of the 247 patients classified by number changes in
chromosome 9p shows a KM median survival time di↵erence of ⇠3 months, and a log-rank
test P -value >10�1, meaning that chromosome 9p loss is a poor predictor of GBM survival.
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Figure A.9: KM survival analyses of the initial set of 251 patients classified by copy

number changes in selected segments containing GBM-associated genes or genes previously

unrecognized in GBM. In the KM survival analyses of the groups of patients with either

a CNA or no CNA in either one of the 130 segments identified by the global pattern,

i.e., the second tumor-exclusive arraylet (Dataset S3), log-rank test P -values <5⇥10�2

are calculated for only 12 of the classifications. Of these, only six correspond to a KM

median survival time di↵erence that is &5 months, approximately a third of the ⇠16

months di↵erence observed for the GSVD classification. One of these segments contains the

genes TLK2 and METTL2A, previously unrecognized in GBM. The KM median survival

time we calculate for the 56 patients with TLK2 amplification is ⇠5 months longer than

that for the remaining patients. This suggests that drug-targeting the kinase and/or the

methyltransferase-like protein that TLK2 and METTL2A encode, respectively, may a↵ect

not only the pathogenesis but also the prognosis of GBM.
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Figure A.11: Survival analyses of the patients from the three sets classified by chemother-

apy alone or GSVD and chemotherapy both. (a) KM and Cox survival analyses of the 236

patients with TCGA chemotherapy annotations in the initial set of 251 patients, classified by

chemotherapy, show that lack of chemotherapy, with a KM median survival time di↵erence

of ⇠10 months and a univariate hazard ratio of 2.6 (Table 2.3), confers more than twice the

hazard of chemotherapy. (b) Survival analyses of the 236 patients classified by both GSVD

and chemotherapy show similar multivariate Cox hazard ratios, of 3 and 3.1, respectively.

This means that GSVD and chemotherapy are independent prognostic predictors. With a

KM median survival time di↵erence of ⇠30 months, GSVD and chemotherapy combined

make a better predictor than chemotherapy alone. (c) Survival analyses of the 317 patients

with TCGA chemotherapy annotations in the inclusive confirmation set of 344 patients,

classified by chemotherapy, show a KM median survival time di↵erence of ⇠11 months and

a univariate hazard ratio of 2.7, and confirm the survival analyses of the initial set of 251

patients. (d) Survival analyses of the 317 patients classified by both GSVD and chemother-

apy show similar multivariate Cox hazard ratios, of 3.1 and 3.2, and a KM median survival

time di↵erence of ⇠30 months, with the corresponding log-rank test P -value <10�17. This

confirms that the prognostic contribution of GSVD is independent of chemotherapy, and

that combined with chemotherapy, GSVD makes a better predictor than chemotherapy

alone. (e) Survival analyses of the 154 patients with TCGA chemotherapy annotations in

the independent validation set of 184 patients, classified by chemotherapy, show a KM

median survival time di↵erence of ⇠11 months and a univariate hazard ratio of 2.2, and

validate the survival analyses of the initial set of 251 patients. (f ) Survival analyses of the

154 patients classified by both GSVD and chemotherapy, show similar multivariate Cox

hazard ratios, of 3.3 and 2.7, and a KM median survival time di↵erence of ⇠43 months.

This validates that the prognostic contribution of GSVD is independent of chemotherapy,

and that combined with chemotherapy, GSVD makes a better predictor than chemotherapy

alone, also for patients with measured GBM aCGH profiles in the absence of matched

normal profiles.
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A.2 Supplementary Files
Mathematica Notebook S1. Generalized singular value decomposition (GSVD)

of the TCGA patient-matched tumor and normal aCGH profiles. A Mathematica

8.0.1 code file, executable by Mathematica 8.0.1 and readable by Mathematica Player, freely

available at http://www.wolfram.com/products/player/.

doi:10.1371/journal.pone.0030098.s002.

Mathematica Notebook S2. Generalized singular value decomposition (GSVD)

of the TCGA patient-matched tumor and normal aCGH profiles. A PDF format

file, readable by Adobe Acrobat Reader.

doi:10.1371/journal.pone.0030098.s003.

Dataset S1. Initial set of 251 patients. A tab-delimited text format file, readable by

both Mathematica and Microsoft Excel, reproducing The Cancer Genome Atlas (TCGA) [4]

annotations of the initial set of 251 patients and the corresponding normal and tumor sam-

ples. The tumor and normal profiles of the initial set of 251 patients, in tab-delimited text

format files, tabulating relative copy number variation across 212,696 and 211,227 tumor and

normal probes, respectively, are available at http://www.alterlab.org/GBM_prognosis/.

doi:10.1371/journal.pone.0030098.s004.

Dataset S2. Segments of the significant tumor and normal arraylets, computed

by GSVD for the initial set of 251 patients. A tab-delimited text format file, readable

by both Mathematica and Microsoft Excel, tabulating segments identified by circular binary

segmentation (CBS) [49]Venkatraman2007

doi:10.1371/journal.pone.0030098.s005.

Dataset S3. Segments of the second tumor arraylet, computed by GSVD for

the initial set of 251 patients. A tab-delimited text format file, readable by both

Mathematica and Microsoft Excel, tabulating, for each of the 130 CBS segments of the

second tumor arraylet, the segment’s coordinates, the CBS P-value, and the log-rank test

P-value corresponding to the Kaplan-Meier (KM) survival analysis of the initial set of 251

patients classified by either a gain or a loss of this segment.

doi:10.1371/journal.pone.0030098.s006.



88

Dataset S4. Inclusive confirmation set of 344 patients. A tab-delimited text

format file, readable by both Mathematica and Microsoft Excel, reproducing the TCGA

annotations of the inclusive confirmation set of 344 patients. The tumor and normal

profiles of the inclusive confirmation set of 344 patients, in tab-delimited text format files,

tabulating relative copy number variation across 200,139 and 198,342 tumor and normal

probes, respectively, are available at http://www.alterlab.org/GBM_prognosis/.

doi:10.1371/journal.pone.0030098.s007

Dataset S5. Independent validation set of 184 patients. A tab-delimited text

format file, readable by both Mathematica and Microsoft Excel, reproducing the TCGA

annotations of the independent validation set of 184 patients. The tumor profiles of the

independent validation set of 184 patients, in a tab-delimited text format file, tabulating

relative copy number variation across 212,696 autosomal and X chromosome probes, are

available at http://www.alterlab.org/GBM_prognosis/.

doi:10.1371/journal.pone.0030098.s008.
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SUPPLEMENT II

B.1 Supplementary Files
Mathematica Notebook S1. Tensor generalized singular value decomposition

(tGSVD) of patient- and platform-matched tumor and normal genomic profiles.

A PDF format file, readable by Adobe Acrobat Reader. The corresponding Mathematica

9.0.1 code file, executable by Mathematica and readable by Mathematica Player, is available

at http://www.alterlab.org/OV_prognosis/.

Dataset S1. Discovery Set of Patients. A tab-delimited text format file, readable by

both Mathematica and Microsoft Excel, reproducing TCGA annotations of the discovery

set of 249 patients. The tumor and normal profiles of the discovery set of patients measured

by each of the two DNA microarray platforms, tabulating relative copy-number variation

across the 6p+12p, 7p and Xq tumor and normal probes, are available in tab-delimited text

format files at http://www.alterlab.org/OV_prognosis/.

Dataset S2. Validation Set of Patients. A tab-delimited text format file reproducing

TCGA annotations of the validation set of 148 patients. The tumor profiles of the validation

set of patients, tabulating relative copy-number variation across the 6p+12p, 7p and Xq

tumor probes, are available in tab-delimited text format files at http://www.alterlab.

org/OV_prognosis/.

Dataset S3. Most Tumor-Exclusive Tumor Arraylets. A tab-delimited text format

file tabulating the segments of the first, most tumor-exclusive tumor arraylets computed by

tGSVD for the discovery set of patients across 6p+12p, 7p and Xq.

Dataset S4. Di↵erential mRNA Expression. A tab-delimited text format file tabulat-

ing di↵erential expression of 11,457 autosomal and X chromosome mRNAs in the 6p+12p,
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7p and Xq tGSVD classes. The mRNA expression profiles of 394 of the 397 patients

in the discovery and validation sets are available in tab-delimited text format files at

http://www.alterlab.org/OV_prognosis/.

Dataset S5. Di↵erential microRNA Expression. A tab-delimited text format file

tabulating di↵erential expression of 639 autosomal and X chromosome microRNAs in the

6p+12p, 7p and Xq tGSVD classes. The microRNA expression profiles of 395 patients are

available in tab-delimited text format files at http://www.alterlab.org/OV_prognosis/.

Dataset S6. Di↵erential Protein Expression. A tab-delimited text format file tabulat-

ing di↵erential expression of 165 antibodies that probe for 136 autosomal and X chromosome

proteins in the 6p+12p, 7p and Xq tGSVD classes. The protein expression profiles of 282

patients are available in tab-delimited text format files at http://www.alterlab.org/OV_

prognosis/.



APPENDIX C

STATISTICAL METHODS

C.1 Box-Whisker Plot
In statistics, it is common to use box plots or box-and-whiskers plots as a tool for

exploratory data analysis. In this dissertation, we use box plots to visualize batch e↵ects

in the GBM patients (Figure 2.4). We also visualize the di↵erential mRNA, microRNA

and protein expression of OV patients in two tGSVD classes using box-and-whisker plots

(Figures 3.12, 3.13 and 3.14).

A box plot is nonparametric and does not make any assumption about the underlying

statistical distribution of the data. It is used to graphically depict the five-number summary

(minimum, first quartile, median, third quartile and maximum) of the data using a box with

a band within it. Consider the following data:

4.3 , 5.1 , 3.6 , 4.5 , 4.4 , 4.9 , 5.5 , 4.7 , 4.1 , 4.6 , 4.4 , 4.3 , 4.8 , 4.4 , 4.2 , 4.5 , 4.4

To obtain the five-number summary, we first arrange the data in ascending order.

3.6 , 4.1 , 4.2 , 4.3 , 4.3 , 4.4 , 4.4 , 4.4 , 4.4 , 4.5 , 4.5 , 4.6 , 4.7 , 4.8 , 4.9 , 5.1 , 5.5

The minimum value is 3.6 and the maximum value is 5.5. The median is the middle value

of the data. After sorting the data, out of the 17 data points, the middle value is the 9th

data point. Therefore, 4.4 is the median of this dataset. The median divides the dataset

into two groups of eight data points each. The medians of these two groups are 4.3 and

4.7. These are the first and third quartiles, respectively (Figure C.1). The bottom and

top lines of the box are the first (Q1) and third (Q3) quartiles and the band inside the

box represents the median (Q2) of the data. The spacings between the di↵erent parts of

the box indicate the degree of spread and skewness in the data. In this dissertation, the

lower and upper ends of the whiskers (lines connecting the box to the fences) represent the

lowest and the highest data points within 1.5 inter quartile range, i.e., 1.5(Q3�Q1) of the

lower and upper quartiles, respectively [102]. The data points lying outside of this range are
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Figure C.1: Box-whisker plot of sample data
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considered outliers and are marked as dots. Unlike mean and standard deviation, median

and quartiles are more robust to skewed or heavy-tailed distributions such as microarray

data. For example, if we replace the maximum value with 10 and the minimum value with

2, the median and quartiles remain unchanged whereas the mean and standard deviation

are sensitive to these changes.

C.2 Mann-Whitney Test
Mann-Whitney test is a nonparametric test used to test whether the medians of two

populations are equal. This test is also known as Wilcoxon Rank Sum or Mann-Whitney

Wilcoxon test [103, 104]. In many applications, this test is used in place of the two-sample

t-test when the normality assumption of the underlying population distributions is question-

able. Another advantage of this test is that it depends only on the ranks of the observations

and not on the actual values. The following assumptions are made about the samples:

1. There is a symmetry between populations with respect to the probability of a random

drawing of a larger observation.

2. The two samples are independent.

The statistical hypothesis is formulated as follows:

H0 : µ1 = µ2

H
a

: µ1 6= µ2

where µ1 and µ2 are the true population medians. A small P -value < ↵ suggests that the

evidence from the samples is statistically significant to reject the null hypothesis. The ↵

value used in this dissertation is 0.05 unless otherwise specified. For a small sample size of

two independent samples X and Y , the U statistic is calculated directly by ranking all the

observations into a single ranked list without regard to the sample in which they are found.

U
x

= n
x

n
y

+ n
x

(n
x

+ 1)

2
�R

x

U
y

= n
x

n
y

+ n
y

(n
y

+ 1)

2
�R

y

U = min(U
x

, U
y

)

where n
x

and n
y

are the sample sizes of X and Y , respectively, and R
x

and R
y

are the

sum of the ranks in X and Y , respectively. U is the test statistic. For large samples, U is

approximately normally distributed. The z statistic in this case would be

z =
U � µ

�
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where µ and � are the mean and standard deviation of U . Ties in ranking the observations

should first be resolved before calculating the U statistic in cases of both large and small

sample sizes. After the test statistic is obtained, the P -value is calculated as the probability

of obtaining a test statistic < �|U | or > |U |.
In this dissertation, the Mann-Whitney test was used to test whether two groups of

measurements of DNA copy number, mRNA, microRNA or protein expression classified by

the probelets di↵er significantly.

C.3 Hypergeometric Probability Distribution
The hypergeometric distribution is a discrete probability distribution that gives the

distribution of successes in n draws from a population of size N containing K successes

in the category of interest. The sampling is done without replacement. This distribution

assumes independence of K categories. The probability mass function (pmf) of the random

variable X is given by

P (X = k) =

�
K

k

��
N�K

n�k

�
�
N

n

�

where
✓
N

n

◆
=

N !

n!(N � n)!

which is the probability to observe the subset of k among the total K items in the category

of interest in a subset of n items selected from the total N items without repetitions. The

probability to observe at least k items among the total K items in the category of interest

in a subset of n items selected from the total N items without repetitions is given by

P (k;n,N,K) =

P
n

i=k

�
K

i

��
N�K

n�i

�
�
N

n

�

= 1�
P
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� (C.1)

since
P

n

i=0

�
K

i

��
N�K

n�i

�
�
N

n

� = 1

In this dissertation, the hypergeometric probability distribution is assumed while calculating

the P -values for enrichments annotation or gene ontology enrichment of TCGA annotations

in Chapter 2 and enrichment of gene annotations in Chapter 3. In these cases, we consider

the population to be the total number of patients or the total number of genes in the array
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(N), the sample size is the number of genes or patients in that particular group or category

(K) and a success is any gene or patient labeled to be of the category of interest by the

annotation that is being tested for enrichment. The probability [8] that the enrichment is

due to random chance is given by (C.1).

A P -value < ↵ suggests that the null hypothesis that the enrichment is due to random

chance can be rejected. The ↵ value chosen in this dissertation for the hypergeometric test

is 0.05.

C.4 Kaplan-Meier Survival Analysis
In medical research, nonparametric methods such as Kaplan-Meier survival analysis [65]

and the log-rank test are used to determine the distributions of patient survival times and

compare them even when only partial observations are available. An important advantage

of the Kaplan-Meier (KM) estimation is that this method can take into account censored

data, especially right censoring. For example, suppose a patient drops out of a study before

the study ends and the partial observation is that the patient was alive at least up until that

point. This type of partial measurement is known as right-censored data where we know

that a data point is above a certain value but the exact measurement is unknown [105].

In this dissertation, we use KM curves to analyze the survival times of two or more

groups of patients classified either by probelet of interest or other prognostic indicators or

both. We use the log-rank test to statistically test if the di↵erence that we observe between

the groups is significant.

The KM estimator is an estimator Ŝ(t), for the true survival function S(t). It can be

computed from the sample data as a product of all the conditional probabilities that the

probability of a patient surviving past an event time t(i) given a patient survives up until

that particular event time t(i).

Ŝ(t(j)) =

t(j)Y

i=0

n(i) � (c(i) + d(i))

n(i)
(C.2)

where n(i) is the number of patients surviving up until the event time t(i), c(i) is the number

of censored patients exactly at that particular event time t(i) and d(i) is the number of

deaths that occurred at the event time t(i). Ŝ(t(j)) calculated from equation C.2 for various

event times t(j) are then plotted in the form of a stepwise curve with time in the x axis

and fraction of patients surviving in the y axis. This plot is called a KM curve. With a

su�ciently large sample size, Ŝ(t) approaches the true survival function S(t). A KM curve
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can be used to qualitatively verify, for example, if patients in the treatment group live longer

than the patients in the control group of a clinical trial.

C.5 Log-Rank Test
When comparing the survival functions between two or more groups, an observed

di↵erence can be a true di↵erence observed or may be due to sampling error. Therefore, it

is essential to perform significance tests to determine if the di↵erence is true. In a survival

analysis of two groups, typically the log-rank test is used with censored data whereas the

Wilcoxon rank sum test is used if the data are not censored [106]. The log-rank test is a

large-sample �2 test where the null hypothesis H
o

is that the two populations have identical

survival distributions, and the alternate hypothesis H
a

is that the two populations do not

have identical survival distributions. The test statistic is called the log-rank test statistic.

Like any other type of �2 test, the computation of the test statistic involves observed and

expected cell counts and is computed as

Z =

P
t

i=0 (Oji

� E
ji

)
2

P
t

i=0 Vi

where O
ji

is the number of observed events in the group j and E
ji

is the number of expected

events (here a death) in the group j if there were in reality no di↵erence between the two

groups. t is usually the time at which the last event in the pooled groups occurs. V
i

is the

variance at the event time t, which is calculated as

V
i

=
O

i

(n
i

�O
i

)(nji

ni
)(1� nji

ni
)

n
i

� 1

where O
i

is the observed number of events at time i across both the groups; n
i

is the number

of patients at risk at the time point i, i.e., the number of patients alive at the time point i

across both groups; and n
ji

is the number of patients alive in the group j at the time point

i. From the Z statistic, the P -value is calculated assuming that the test statistic follows

the �2 distribution with one degree of freedom (number of groups -1).

C.6 Cox Proportional Hazards Model
The log-rank test cannot be used to explore (and adjust for) the several variables,

such as age, tumor stage, residual disease, therapy outcome, neoplasm status and various

other predictors, known to a↵ect patient survival. The Cox proportional hazards regression

analysis [66, 105] is used to investigate several variables at a time. This model gives the

hazard functions for the explanatory variables. The hazard function is the probability that
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an event will occur within a small time interval (for the scope of this dissertation, the event

is death) given that the individual has survived up to the beginning of that time point t,

i.e., it is the risk of dying at time t. The hazard function at a given time t is given by

h(t,X) = h0(t)⇥ e
Pp

i=1 �iXi

where p is the number of explanatory or confounding variables, X is hX1X2..Xp

i and h0(t) is

the baseline hazard function and it denotes the probability of dying when all the explanatory

variablesX
i

s are zero. The baseline hazard function is analogous to the intercept in ordinary

regression. �
i

s are the parameters and their estimates �̂
i

s are calculated by maximizing a

partial likelihood function L. L is called a partial likelihood function because it considers

probabilities only for patients who fail (death occurs) and does not consider censored data.

L =
kY

j=1

L
j

where k is the number of failure times. At the jth failure time, L
j

denotes the likelihood of

failing at this time, given survival up to this time. The set of individuals at risk at the jth

failure time is called the “risk set” and this number decreases as the failure time increases.

In order to maximize L, we solve for each

@lnL

@�
i

= 0

i = 1, 2, .., p

One important assumption of this model is that the hazard functions for any two individuals

at any time point are proportional. A simple test to verify this assumption is to check if the

KM survival curves of the two groups cross each other. If they do not, then the assumption

holds good. Cox model is a robust semiparametric model because no assumption is made

about the baseline hazard function h0(t). In fact, this model is very popular because it can

be shown that only the estimates �̂
i

s and their standard error are required to obtain a point

estimate or test for the significance of the e↵ect of explanatory variable (in this dissertation,

this variable is either the probelet value or the arraylet correlation of the patients) adjusted

for the other confounding variables.

To test for the significance, the Wald statistic, which is a z statistic, is calculated as:

Z
i

= �̂
i

/Standard Error(�̂
i

) where i = 1, 2, ..p

The two tailed p-value is calculated assuming a standard normal distribution.
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In order to obtain the point estimate of the e↵ect of the variable of interest adjusted for

other variables, hazard ratios are calculated for each of the regression coe�cients �̂
i

as

Hazard Ratio (HR
i

) = e�̂i where i = 1, 2, ..p

For example, if the estimated hazard ratio is 2 for the e↵ect of probelet adjusted for age

of the patient as a confounding variable, then we see that the hazard for the patients with

high (or low) probelet value is twice as much as the hazard for the patients with low (or

high) probelet value. In this dissertation, hazard ratios and the p-values associated with

the Wald test statistic are used in determining if the probelet values or arraylet correlations

of patients are confounded by other predictors such as age, tumor stage, neoplasm status

etc.
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