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ABSTRACT

A mapping class group element can be understood by an inductive process - by passing

to its action on the curve complexes of the subsurfaces in the complement of the curves it

fixes. By the result of Masur and Minsky, the curve complex of any surface of finite type is

hyperbolic. A fully irreducible outer automorphism (Out(F) analog of a pseudo-Anosov)

acts with positive translation length on the free factor complex, which is also a hyperbolic

space. But a reducible outer automorphism Φ fixes the invariant free factor A in the free

factor complex and thus, the action is not very informative. In analogy to subsurfaces, we

then look at the action of Φ on the free factor complex relative to A, which is a hyperbolic

complex that captures the information in the complement of A. In this dissertation, we

prove that a fully irreducible outer automorphism relative to a free factor system A acts

with positive translation length on the free factor complex relative to A. In order to prove

this, we prove the following key results:

• Define relative currents and prove that Φ acts with uniform north-south dynamics

on a certain subspace of the space of projectivized relative currents.

• Φ acts with uniform north-south dynamics on the closure of relative outer space.

• Define an intersection form between the space of projective relative currents and the

closure of relative outer space.



For my parents and brother.
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CHAPTER 1

INTRODUCTION

The study of Out(F), the outer automorphism group of the free group F of finite

rank, is highly influenced by the study of the mapping class group of a surface. Like

the action of a pseudo-Anosov homeomorphism on the curve complex, a fully irreducible

outer automorphism acts with positive translation length on the free factor complex. But a

reducible outer automorphism fixes a point on this complex. In this dissertation, we take

a step towards understanding reducible outer automorphisms that are fully irreducible

relative to a free factor system A by studying their action on three different spaces - the

free factor complex relative to A [HM14], the space of relative currents (Chapter 4) and

relative outer space [GL07].

1.1 What is Out(F)?
A free group F of rank n is the fundamental group of a wedge of n circles. In order

to understand F, it is important to know how it transforms under automorphisms and

hence, it is natural to study the group of automorphisms Aut(F). An inner automorphism

is given by conjugation by an element of F and so the group of inner automorphisms,

Inn(F), is isomorphic to F. Thus one studies the outer automorphism group, defined as

follows:

Out(F) := Aut(F)/ Inn(F).

The group Out(F) can be thought of as the mapping class group of a wedge of circles

or the group of homotopy equivalences of a wedge of circles which do not preserve a fixed

point.

Early fundamental contributions to the study of Out(F) were made by Whitehead and

Nielsen. It acquired a strong geometric flavor by the influence of Gromov and Thurston

and got a boost when Culler and Vogtmann defined a space called Culler-Vogtmann’s outer

space, which is an analog of the Teichmüller space, on which Out(F) acts. Later, Bestv-
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ina and Handel developed a powerful geometric tool by adapting Thurston’s train track

technology to study outer automoprhisms. For a detailed history of Out(F), the reader is

referred to [Vog02].

1.2 Mapping class group as a guiding example
Mapping class group of a surface Σ is the group of orientation preserving homeo-

morphism of Σ taken up to isotopy. The group MCG(Σ) acts on a simplicial complex

called the curve complex C(Σ) which is defined as follows: vertices are given by homotopy

class of essential, simple closed curves, and a k-simplex is given by a collection of k + 1

vertices which can be realized mutually disjointly. In 1999, Masur and Minsky [MM99]

showed that C(Σ) is hyperbolic and since then, it has played a crucial role in understanding

MCG(Σ). Some remarkable applications include rigidity results for MCG(Σ), bounded

cohomology for subgroups of MCG(Σ) and finite asymptotic dimension for MCG(Σ).

Several analogues of the curve complex for Out(F) have been defined and proven to

be hyperbolic, like the free factor complex, the free splitting complex and the cyclic splitting

complex. But none of them have proven to be as useful as the curve complex.

For instance, when a mapping class group element acts on C(Σ) with a fixed point,

that is, it fixes a curve α, then one can look at its action on the curve complex of the

subsurface given by the complement of α. Thus mapping class group elements can be

understood by an inductive process. On the other hand, consider an outer automorphism

which fixes a free factor A in the free factor complex of F. Since the complement of A in

F is not well defined, one cannot pass to the free factor complex of a free group of lower

rank. In [HM14], Handel and Mosher define free factor complex relative to a free factor system

FF (F,A) which is an Out(F)-analog of the curve complex for a subsurface. They also

prove that these relative complexes are hyperbolic for nonexceptional free factor systems.

In order to draw parallels with the theory of subsurfaces used to understand MCG(Σ),

we take a step towards understanding the action of a certain subgroup of Out(F) that acts

on the relative free factor complex. Our main theorem is a relative version of a result of

[MM99] that a mapping class group element acts loxodromically, that is with positive trans-

lation length, on the curve complex if and only if it is a pseudo-Anosov homeomorphism.

Let Out(F,A) be the subgroup of Out(F) containing outer automorphisms that fix A.
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After passing to a finite index subgroup, assume that each free factor in A is invariant un-

der the elements of Out(F,A). An outer automorphism Φ ∈ Out(F,A) is fully irreducible

relative to A if no power of Φ fixes a nontrivial free factor system of F properly containing

A.

Theorem A. Let A be a nonexceptional free factor system and let Φ ∈ Out(F,A). Then Φ acts

loxodromically on FF (F,A) if and only if Φ is fully irreducible relative to A.

1.3 Pseudo-Anosovs are loxodromic for the curve complex
In order to motivate the different chapters of this dissertation and explain the proof

strategy for Theorem A, we present a proof of the following theorem.

Theorem 1.3.1 ([MM99]). Let Σ be an oriented surface of finite type and let Ψ ∈ MCG(Σ). Then

Ψ acts loxodromically on C(Σ) if and only of Ψ is a pseudo-Anosov homeomorphism.

The following proof is due to Bestvina and Fujiwara [BF02, Proposition 11].

Proof. Let Λ+ and Λ− be the attracting and repelling measured laminations associated to

Ψ. Let PML(Σ) be the space of all projective measured laminations, which contains the

curve complex as a subset. The following facts will be used later:

• The pseudo-Anosov Ψ acts onPML(Σ) with uniform north-south dynamics, that is,

there are two fixed points Λ+ and Λ− and any compact set not containing Λ−(Λ+)

converges to Λ+(Λ−) under Ψ(Ψ−1)-iterates.

• The intersection number i(·, ·) between two curves in the curve complex extends to

a continuous, symmetric bilinear form i : PML(Σ)×PML(Σ)→ R.

• The fixed points Λ+ and Λ− are uniquely self-dual, that is, i(Λ±, µ) = 0 if and only

if µ = Λ±.

If U is a neighborhood of Λ+, then there exists a neighborhood of V of Λ+, such that

V ⊂ U and if a ∈ UC, b ∈ V, then i(a, b) > 0. Indeed, if this is not true, then find a

sequence of neighborhoods U ⊃ V1 ⊃ V2 ⊃ . . . and curves ai ∈ UC and bi ∈ Vi such that

{bi} converges to Λ+, {ai} converges to a 6= Λ+ and i(ai, bi) = 0. But by continuity of the

intersection number, i(ai, bi) converges to i(a, Λ+) which is not zero. Such a pair is called a



4

UV-pair. Now consider a sequence of nested neighborhoods of Λ+, U0 ⊃ U1 ⊃ U2 ⊃ U3 ⊃

. . . ⊃ U2N for some N > 0, such that the following hold:

• (Ui, Ui+1) is a UV-pair for all 0 ≤ i < 2N.

• ∃ k > 0 such that for all 0 ≤ i < 2N, Ψk(Ui) ⊂ Ui+1

Let a be a curve such that a ∈ U0 and a /∈ U1. Given α ∈ UC
i such that i(α, β) = 0, then

β ∈ Ui+1. Thus d(a, Ψ2Nk(a)) > N in the curve complex.

1.4 Dissertation aim
The proof due to Bestvina and Fujiwara can also be employed to prove that a fully

irreducible outer automorphism acts loxodromically on the free factor complex (original

proof in [BF10]). However, in this case, we need north-south dynamics on a certain space

of measured currents ([Mar95], [Uya14]), north-south dynamics on the closure of outer

space ([LL03]) and an intersection number between measured currents and F-trees in the

closure of outer space ([KL09]). The case of the fully irreducible automorphism will be

referred to as the ‘absolute case’.

Keeping in mind that we want to prove Theorem A using the Bestvina and Fujiwara

strategy, we aim to do the following in this dissertation:

• Define relative currents. (Chapter 4)

• Show that a fully irreducible outer automoprhism relative to A, denoted Φ, acts

with uniform north-south dynamics on a certain subspace of the space of projective

relative currents. (Chapter 4)

• Show that Φ acts with uniform north-south dynamics on the closure of relative outer

space. (Chapter 5)

• Define an intersection form between relative currents and trees in relative outer

space. (Chapter 6)

• Classify loxodromic elements for the free factor complex relative to a free factor

system. (Chapter 7)



CHAPTER 2

BACKGROUND ON OUT(F)

In this chapter, we will review some basics about Out(F) and define objects that will

be used throughout.

2.1 Outer space
In [CV86], Culler and Vogtmann defined outer space (unprojectivized outer space), CVn

(cvn), as the space of F-equivariant homothety (isometry) classes of minimal, free and

simplicial action of F by isometries on metric simplicial trees with no vertices of valence

two.

An F-tree is an R-tree with an isometric action of F. An F-tree is called very small if the

action is minimal, arc stabilizers are either trivial or maximal cyclic and tripod stabilizers

are trivial. Outer space can be embedded into RF via translation lengths of elements of F

in a tree in cvn [CM87]. The closure of CVn under the embedding into PRF was identified

in [BF94] and [CL95] with the space of all very small F-trees. Denote by CVn the closure of

outer space and by ∂CVn its boundary.

2.2 Marked graph and topological representative
We recall some basic definitions from [BH92]. Identify F with π1(R, ∗) where R is a

rose with n petals and n is the rank of F. A marked graph G is a graph of rank n, all of whose

vertices have valence at least two, equipped with a homotopy equivalence m : R → G

called a marking. The marking determines an identification of F with π1(G, m(∗)).

A homotopy equivalence φ : G → G induces an outer automorphism of π1(G) and

hence an element Φ of Out(F). If φ sends vertices to vertices and the restriction of φ to

edges is an immersion, then we say that φ is a topological representative of Φ.

A filtration for a topological representative φ : G → G is an increasing sequence of (not

necessarily connected) φ-invariant subgraphs ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G. The closure
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of Gr \ Gr−1, denoted Hr, is a subgraph called the rth-stratum. Let γ be a reduced path in

G. Then φ(γ) is the image of γ under the map φ. Denote the tightened image of φ(γ) by

[φ(γ)].

A path σ is a periodic Nielsen path if σ is nontrivial and φk(σ) is homotopic relative to

end points to σ for some k ≥ 1. The minimal such k is the period of σ and if the period is

one, then σ is a Nielsen path. A (periodic) Nielsen path is indivisible, denoted INP, if it does

not decompose as a concatenation of nontrivial (periodic) Nielsen subpaths. A path σ is a

pre-Nielsen path if φk(σ) is a Nielsen path.

2.3 Train track map
We recall some more definitions from [BH92]. A turn in a marked graph G is a pair of

oriented edges of G originating at a common vertex. A turn is nondegenerate if the edges

are distinct, and it is degenerate otherwise. A turn (e1, e2) is contained in a filtration element

Gr if both e1 and e2 are contained in Gr. If γ is an edge path given by e1 · e2 · · · em−1 · em,

then we say that γ contains the turn (ei−1, ei) where ei denotes opposite orientation.

For φ : G → G, a topological representative and an edge e, set Tφ(e) equal to the

first oriented edge of the edge path φ(e). Given a turn (e1, e2), we define Tφ(e1, e2) =

(Tφ(e1), Tφ(e2)). We say a turn is illegal if under some iterate of Tφ, the turn maps to a

degenerate turn, it is legal otherwise. A path γ is called r-legal if all of its illegal turns are

contained in Gr−1.

We associate a matrix called transition matrix, denoted Mr, to each stratum Hr. The ijth

entry of Mr is the number of occurrences of the ith edge of Hr in either direction in the

image of the jth edge under φ. A nonnegative matrix M is called irreducible if for every i, j,

there exists k(i, j) > 0 such that the ijth entry of Mk is positive. A matrix is called primitive

or aperiodic if there exists k > 0 such that Mk is positive. A stratum is called zero stratum

if the transition matrix is the zero matrix. If Mr is irreducible, then its Perron-Frobenius

eigenvalue λr is greater than or equal to 1. A stratum with an irreducible transition matrix

is exponentially growing (EG) if λr > 1, it is called nonexponentially growing (NEG) otherwise.

Definition 2.3.1 (Relative train track map). A topological representative φ : G → G of a

free group outer automorphism Φ is a relative train track map with respect to a filtration

∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G if G has no valence one vertices, if each nonzero stratum
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has an irreducible matrix and if each exponentially growing stratum satisfies the following

conditions:

• If E is an edge in Hr, then the first and the last edges in [φ(E)] are also in Hr.

• If γ ∈ Gr−1 is a nontrivial path with endpoints in Hr ∩Gr−1, then [φ(γ)] is a nontrivial

path with endpoints in Hr ∩ Gr−1.

• For each r-legal path β ⊂ Hr, [φ(β)] is r-legal.

A reduced path σ ⊂ G has height r if the highest stratum it crosses is Gr.

2.4 Completely split train track map (CT)
In [FH11], Feighn and Handel defined completely split train track maps for outer

automorphisms, which are better versions of relative train track maps. Instead of giving

a complete definition, we list some facts which are used in Chapter 3 and then describe a

complete splitting. Let φ : G → G be a completely split train track map. The following

facts proved in different papers can be found in [HM13, Section 1.5.2].

Facts 2.4.1. 1. Every periodic Nielsen path has period one.

2. If Hr is an EG stratum, then there is at most one indivisible Nielsen path (INP) in Gr

that intersects Hr nontrivially.

3. If Hr is an EG stratum and if ρr is an INP of height r, then ρr crosses each edge of Hr

at least once, the initial oriented edges of ρr and ρr are distinct oriented edges of Hr,

and:

(a) ρr is not closed iff it crosses some edge of Hr exactly once and in this case:

i. at least one end point of ρ is not in Gr−1.

ii. There does not exist a height r fixed conjugacy class.

(b) ρr is closed iff it crosses each edge of Hr exactly twice, and in this case:

i. the endpoint of ρr is not in Gr−1.

ii. the only height r fixed conjugacy classes are those represented by ρr, its

inverse and their iterates.
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If Hr is an EG stratum, then a nontrivial path in Gr−1 with end points in Hr ∩ Gr−1 is

called a connecting path. If an NEG stratum Hi is a single edge ei such that φ(ei) = eiui for

a nontrivial closed Nielsen path ui, then ei is called a linear edge. Let ui = wdi
i for some

di 6= 0 where wi is root-free. If ei and ej are distinct linear edges such that φ(ei) = eiwdi and

φ(ej) = ejwdj where di 6= dj and di, dj > 0, then a path of the form eiwpej where p ∈ Z is

called an exceptional path.

A decomposition of a path or a circuit σ into subpaths is a called a splitting if one can

tighten the image of σ under φ by tightening the image of each subpath. In other words,

there is no cancellation between images of two adjacent subpaths in the decomposition of

σ.

Let e be an edge in an irreducible stratum Hr and let k > 0. A maximal subpath σ of

[φk(e)] in a zero stratum Hi is said to be r-taken. A nontrivial path or circuit in G is said to

be completely split if it has a splitting into subpaths, each of which is either a single edge

in an irreducible stratum, an indivisible Nielsen path, an exceptional path or a connecting

path in a zero stratum Hi that is taken and is maximal in Hi.

A relative train track map is completely split if for every edge e in each irreducible

stratum φ(e) is completely split and if σ is a taken connecting path in a zero stratum,

then [φ(σ)] is completely split.

2.5 BFH laminations
In [BFH00], Bestvina, Feighn and Handel defined a dynamic invariant called the at-

tracting lamination associated to an EG stratum of a relative train track map φ : G → G.

The elements of the lamination are called leaves.

Let B be the space of lines defined as the quotient of ∂2F := (∂F × ∂F − ∆)/Z2 by

the action of F, where ∆ denotes the diagonal. We say β′ ∈ B is weakly attracted to

β ∈ B under the action of Φ if [Φk(β′)] converges to β. A subset U ⊂ B is an attracting

neighborhood of β for the action of Φ if [Φ(U)] is a subset of U and if {[Φk(U)] : k ≥ 0} is a

neighborhood basis for β in B. A bi-infinite path σ in a marked graph is birecurrent if every

finite subpath of σ occurs infinitely often as an unoriented subpath of each end of σ. An

element of B is birecurrent if some realization in a marked graph is birecurrent.

A closed subset Λ+ of B is called an attracting lamination for a free group outer automor-
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phism Φ if it is the closure of a line β that is bireccurent, has an attracting neighborhood

for the action of some iterate of Φ and is not carried by a Φ-periodic free factor of rank

one. The line β is said to be a generic leaf of Λ+. In this paper, we will look at the lift of the

attracting lamination to ∂2F and denote it also by Λ+.

Lemma 2.5.1 ([BFH00, Lemma 3.1.9]). Suppose that φ : G → G is a relative train track map

with respect to a filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G representing Φ and Hr is an aperiodic

EG stratum. Then there is an attracting lamination Λ+
r with generic leaf β so that Hr is the highest

stratum crossed by a realization of β in G.

In Chapter 6, we will give a more general definiton of lamination associated to F due

to Coulbois, Hilion and Lustig.

2.6 Free factor system
A free factor system of F is a finite collection of proper free factors of F of the form

A = {[A1], . . . , [Ak]}, k ≥ 0 such that there exists a free factorization F = A1 ∗ · · · ∗ Ak ∗ FN ,

where [·] denotes the conjugacy class of a subgroup. We refer to the free factor FN as the

cofactor of A keeping in mind that it is not unique, even up to conjugacy. There is a partial

ordering @ on the set of free factor systems given as follows: A @ A′ if for every [Ai] ∈ A

there exists [A′j] ∈ A′ such that Ai ⊂ A′j up to conjugation. The free factor systems ∅ and

{[F]} are called trivial free factor systems. Define rank(A) to be the sum of the ranks of the

free factors in A and let ζ(A) = k + N.

Example 2.6.1. The main geometric example of a free factor system is as follows: suppose

G is a marked graph and K is a subgraph whose noncontractible connected components

are denoted C1, . . . , Ck. Let [Ai] be the conjugacy class of a free factor of F determined by

π1(Ci). Then A = {[A1], . . . , [Ak]} is a free factor system. We say A is realized by K and

denote it by F (K).

2.7 Relative free factor complex
Let A be a nontrivial free factor system of F. In [HM14], the complex of free factor

systems of F relative to A, denoted FF (F;A), is defined to be the geometric realization

of the partial ordering @ restricted to the set of nontrivial free factor systems B of F such
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that A @ B and A 6= B. The exceptional free factor systems are certain ones for which

FF (F,A) is either empty or zero-dimensional. They can be enumerated as follows:

• A = {[A1], [A2]} with F = A1 ∗ A2. In this case, FF (F,A) is empty.

• A = {[A]} with F = A ∗Z. In this case, FF (F,A) is 0-dimensional.

• A = {[A1], [A2], [A3]} with F = A1 ∗ A2 ∗ A3. In this case, FF (F,A) is also 0-

dimensional.

Theorem 2.7.1 ([HM14]). For any nonexceptional free factor system A of F, the complex of free

factor systems of F relative to A is positive dimensional, connected and hyperbolic.

Definition 2.7.2 (Out(F,A)). The group Out(F,A) is the subgroup of Out(F) containing

outer automorphisms that fix A. After passing to a finite index subgroup, assume that

each free factor in A is invariant under the elements of Out(F,A).

Out(F,A) acts on FF (F,A) as follows: for Ψ ∈ Out(F,A) and D ∈ FF (F,A), Ψ ·

D = Ψ(D).

2.8 Fully irreducible relative to a free factor system
Let A be a nontrivial free factor system. An outer automorphism Φ ∈ Out(F,A) is

called irreducible relative to A if there is no nontrivial Φ-invariant free factor system that

properly contains A. If every power of Φ is irreducible relative to A, then we say that Φ is

fully irreducible relative to A (or relative fully irreducible).

Let Φ ∈ Out(F,A). Then by [BFH00, Lemma 2.6.7], there exists a relative train track

map for Φ, denoted φ : G → G, and filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ Gr = G such that

A = F (Gs) for some filtration element Gs. If Φ is fully irreducible relative to A, then

A = F (Gr−1) and the top stratum Hr is an EG stratum with Perron-Frobenius eigenvalue

λΦ > 1.

Example 2.8.1. Here is an example of a relative fully irreducible outer automorphism when

rank of cofactor of A is zero. Let F = 〈a, b, c〉 and let A = {[〈a〉], [〈b〉], [〈c〉]}. Let Φ be an

outer automorphism given by

Φ(a) = a, Φ(b) = aCbcA, Φ(c) = CbcBc.
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Let φ : G → G be a relative train track representative of Φ with G as in Figure 2.1. The

marking is given by

a→ e1, b→ e1e4e2E4E1, c→ e5e3E5

and the map φ is given as follows

φ(e1) = e1 φ(e2) = e2 φ(e3) = e3
φ(e4) = e5E3E5e1e4 φ(e5) = e5E3E5e1e4e2E4E1e5

2.9 North-south dynamics
Let X be a topological space. Let f : X → X be a homeomorphism. The map f is said to

have pointwise north-south dynamics if there are two points x+ and x− in X which are fixed

by f and any x 6= x−(x+) converges to x+(x−) under f ( f−1)-iterates.

The map f as above is said to have uniform north-south dynamics if the following hold:

there are two fixed points x+ and x− and for any compact set K in X \ x−(x+) and neigh-

borhood U+(U−) of x+(x−), there exists M+(M−) such that for all m ≥ M+(M−),

f m(K) ⊆ U+( f−m(K) ⊆ U−).

If the space X is compact, then by [HK53], point-wise north-south dynamics is equiva-

lent to uniform north-south dynamics.

2.10 Loxodromic element
Let X be a metric space and let f : X → X be a homeomorphism. Then f is a loxodromic

element if for some (any) x ∈ X,

lim
N→∞

d(x, f N(x))
N

> 0.

For example, a hyperbolic isometry of the hyperbolic plane is a loxodromic element,

a pseudo-Anosov is loxodromic for the action on the curve complex [MM99] and a fully

irreducible outer automorphism is loxodromic for the action on the free factor complex

[BF94].
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Figure 2.1. The graph G for Example 2.8.1



CHAPTER 3

CT TRAIN TRACK MAP AS A SUBSTITUTION

A train track representative ψ : Γ→ Γ of a fully irreducible outer automorphism Ψ can

be viewed as a substitution since the image of an edge in Γ is legal. If a is an edge of Γ

such that ψ(a) starts with a, then we get a ray ρa which is invariant under ψ. The results of

[Que87] about primitive substitutions can be used to calculate the frequency of occurrence

of subpaths in ρa, which turn out to be independent of the edge a. These frequencies of

subpaths in turn give rise to a ‘measured current’ intrinsically associated to Ψ. Detailed

discussion of currents follows in Chapter 4.

In the next chapter, we want to associate similarly defined currents to a fully irreducible

outer automorphism relative to a free factor system. Since the transition matrix of a relative

train track representative of such an automorphism is not primitive, the results of [Que87]

cannot be applied directly. In this chapter, we

• generalize the results on substitution dynamics for primitive substitutions to more

general substitutions,

• discuss how to view a completely split train track map as a substitution for the

purpose of calculating frequency of subpaths in a fixed ray.

3.1 Preliminaries
Let A be a finite set with cardinality greater than or equal to two. Let ζ be a substitution

on A, that is, a map from A to the set of nonempty words on A which associates to a letter

e ∈ A the word ζ(e) with length |ζ(e)|. The substitution ζ induces a map on the set of all

words on A by concatenation, that is,

ζ(x1x2 . . . xm) = ζ(x1)ζ(x2) . . . ζ(xm)

where x1x2 . . . xm is a word on A. Thus we define iterates ζn for all n ≥ 1. To the

substitution ζ, we associate its transition matrix, denoted M, where for a, b ∈ A, M(a, b)
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is the number of occurrence of a in ζ(b). The transition matrix for ζn is given by Mn.

Likewise, define a map from AN to AN, the set of all infinite words on A, also denoted

ζ, by the formula ζ(x1x2 . . .) = ζ(x1)ζ(x2) . . .. We are interested in possible fixed points or

periodic points of ζ.

Lemma 3.1.1 (Lemma 5.1, [Que87]). Let ζ be a substitution on an alphabet A such that

lim
n→∞
|ζn(a)| = +∞

for every a ∈ A. Then ζ admits periodic points, that is, there exists ρ ∈ AN, k ≥ 1 such that

ζk(ρ) = ρ.

Suppose ζ admits a fixed point, denoted ρ ∈ AN, such that ζk(ρ) = ρ for all k ≥ 1.

From now on, only keep in the alphabet A the letters that actually appear in ρ.

For every l > 0, let Al denote the set of all words on A of length l that appear in

ρ. Define a substitution ζl on Al as follows: let w = x1x2 . . . xl ∈ Al . Define ζl(w) :=

w1w2 . . . w|ζ(x1)| where wi ∈ Al and wi is the length l subword of ζ(w) starting at the

ith position of ζ(x1). In other words, ζl(w) consists of the ordered list of the first |ζ(x1)|

subwords of length l of the word ζ(w). The substitution ζl extends to a map on the set of

all words on Al . Denote by | · |l the length of words on Al . We have |ζl(w)|l = |ζ(x1)|. Let

Ml denote the transition matrix for ζl . It is clear from definitions that (ζn)l = (ζl)
n.

Lemma 3.1.2 (Lemma 5.2, [Que87]). If ρ = x1x2 . . . is a fixed point for ζ, then ρl ∈ AN
l is a

fixed point of ζl where ρl = (x1x2 . . . xl)(x2 . . . xl+1) . . ..

3.2 Primitive substitution
A substitution is called irreducible if for every pair a, b ∈ A, there exists k := k(a, b)

such that a occurs in ζk(b). A substitution is called primitive if there exists k such that for

every pair a, b ∈ A, a occurs in ζk(b).

Theorem 3.2.1 (Lemma 5.3, 5.4 [Que87]). If the substitution ζ is primitive, then for every l ≥ 2,

ζl is also primitive with the same Perron-Frobenius eigenvalue as ζ.

For u, w two words on A, let Lu(w) denote the number of times u occurs in w. The

following two lemmas tell us about the frequency of occurrence of subwords of ρ in ρ.
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Proposition 3.2.2 (Proposition 5.8, 5.9 [Que87]). Let ζ be a primitive substitution. Let a ∈ A.

Then

(a) for every b ∈ A

lim
n→∞

Lb(ζ
n(a))

|ζn(a)| = db

where db is positive, independent of a and ∑b∈A db = 1.

(b) for every subword w of ρ,

lim
n→∞

Lw(ζn(a))
|ζn(a)| = dw

where dw is independent of a and is positive.

We want to generalize the above results to substitutions which are not necessarily

primitive but are primitive on a subset of the alphabet.

3.3 Nonprimitive substitution
Consider an alphabet A =

⊔k
i=0 Bi. Define a partial order on the alphabet as follows. First

define a partial order on subsets of A given by Bi > Bj for i < j. For example, B0 > B1 and

so on. Thus we get a partial ordering on the letters of A where a > b if a ∈ Bi and b ∈ Bj

where i < j. The alphabet Al can now be given a partial lexicographic order as well. From

now on, we will consider a substitution ζ on A with the following properties:

• For a ∈ Bi, ζ(a) contains letters only from Bj for j ≥ i. This implies that the transition

matrix M for ζ is lower triangular block diagonal with respect to the partial order on

the set {Bi}k
i=0. Denote the diagonal blocks of M also by Bi for 0 ≤ i ≤ k where B0 is

the top left block, followed by B1 and so on.

• If Bi is a primitive block, then ζ(a) for a ∈ Bi ends and begins in a letter in Bi.

• B0 is primitive.

Lemma 3.3.1. Let Bi be a primitive block of M. After possibly passing to a power of ζ, there exists

a ∈ Bi such that ζ(a) begins in a. Also ρa := limn→∞ ζn(a) is fixed by ζ, that is, ζ(ρa) = ρa. If

b ∈ Bi is another letter which begins in b and ρb is fixed by ζ, then the set of subwords of ρa and ρb

are the same.
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Proof. Consider a function f : Bi → Bi where for a ∈ Bi, f (a) is the first letter of ζ(a). Since

Bi is a finite set, some power of f has a fixed point. After possibly passing to a power,

let a ∈ Bi be a fixed point of f . Since ζ(a) begins with a, we have that ζn(a) begins with

ζn−1(a) for every n > 0. Thus ρa is fixed by ζ. Since Bi is a primitive block, ζm(a) contains

b for some n > 0. Thus subwords that appear in ρb also appear in ρa and vice versa.

Example 3.3.2. Let A = {a, b, c, d}. Let ζ be given as ζ(a) = abbab, ζ(b) = bababbab, ζ(c) =

cad, ζ(d) = dcad. The transition matrices for ζ and ζ2 are given by

c d a b

M =


1 1 0 0
1 2 0 0
1 1 2 3
0 0 3 5

,

ca da dc ad bd ab ba bb

M2 =



1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 2 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 2 3 2 3 3
0 0 0 1 3 1 4 0
0 0 0 1 1 2 1 2


.

3.4 Eigenvalues for M and Ml

We now want to understand the spectrum of Ml and relate it to the spectrum of M. The

main result from this section is Proposition 3.4.1.

Proposition 3.4.1. For every l ≥ 2, the eigenvalues of Ml are those of M with possibly some

additional eigenvalues of absolute value less than equal or to one.

The three lemmas that follow will be used to prove Proposition 3.4.1.

Notation 3.4.2. Since (ζn)l = (ζl)
n, we have (Mn)l = (Ml)

n, which is denoted by Mn
l unless

the order needs to be specified. Denote the rows and columns of M by Rx and Cx for x ∈ A,

those of Ml by Rw and Cw and those of Mn
l by Rn,w and Cn,w for w ∈ Al .

Lemma 3.4.3. Let n ≥ 2. Let M, Ml , Mn
l be transition matrices for ζ, ζl , ζn

l , respectively. Then

(a) Ml is a lower triangular block diagonal matrix with respect to the partial order on Al .

(b) Let w ∈ Al start with x ∈ A. Then the sum of the entries of Cw is the same as the sum of the

entries of Cx which is equal to |ζ(x)|.
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(c) Let w1, w2 ∈ Al be such that both words begin with x ∈ A. Then the entries of Cw1 and Cw2

differ at most by (l − 1). The entries of Cn,w1 and Cn,w2 also differ at most by (l − 1).

Proof. (a) Clear from definitions of M and Ml .

(b) Let w, x be as in the statement of the lemma. Then |ζl(w)|l = |ζ(x)|, which implies that

column sum of Cw is the same as that of Cx.

(c) Let w1, w2, x be as in the statement of the lemma. Then ζl(w1) and ζl(w2) differ only

when the length l words starting at some position in ζ(x) are not subwords of ζ(x). If

|ζ(x)| ≥ l, then the first time such a word occurs is when it starts at position (l − 1)

from the end of ζ(x). If |ζ(x)| < l, then ζl(w1) and ζl(w2) can differ in at most |ζ(x)| <

l length l words. Thus there are at most (l − 1) such words. Replace ζ, ζl by ζn, (ζn)l

above to conclude that entries of Cn,w1 and Cn,w2 also differ at most by (l − 1).

Lemma 3.4.4. If Q is a s× s matrix such that absolute values of all its entries are bounded above

by δ > 0, then the absolute values of the eigenvalues of Q are bounded above by sδ.

Proof. Let λ 6= 0 be an eigenvalue of Q and let v = (v1, . . . , vs) be a corresponding

eigenvector. Let ri denote rows of Q. Then |ri · v| = |λvi|, which gives |λvi| ≤ δ ∑s
j=1 |vj|

for every 1 ≤ i ≤ s. Adding all the inequalities together, we get |λ| ≤ sδ.

Notation 3.4.5. We say a word w on A crosses Bi if w contains a letter in Bi. For every

Bi ⊂ A, let B̃i ⊂ Al be the set of all words w that start with a letter in Bi and such that w

does not cross Bj for any j < i. For every Bi ⊂ A, let Bi ⊂ Al be the set of all words w

that start with a letter in Bi and there exists a j < i such that w crosses Bj (note that B0 is

empty). Then B̃i ∪ Bi is the union of all words of length l that start with a letter in Bi. The

partial order on Al defined earlier gives that B̃0 > B1 > B̃1 > . . . > Bk > B̃k. The matrix

Ml is lower triangular block diagonal with respect to this partial order on Al . For a subset

S ⊂ Al , denote by S the transition matrix of ζl restricted to S.

Lemma 3.4.6. (a) For every 0 ≤ i ≤ k, the characteristic polynomial of Bi divides the character-

istic polynomial of B̃i.

(b) The eigenvalues of B̃i are those of Bi with possibly some additional eigenvalues of absolute value

less than or equal to one.
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(c) The eigenvalues of Bi have absolute value less than or equal to one.

Proof. (a) Consider the matrix Pi = B̃i−λI. We will do certain row and column operations

on this matrix to reduce it to a lower triangular block diagonal matrix with Bi − λI as

a diagonal block, which would imply that the characteristic polynomial of Bi divides

the characteristic polynomial of B̃i. For later use, denote the other diagonal block of Pi

by Q.

First perform the following row operations: for every x ∈ Bi, choose a word w ∈ B̃i

such that w starts with x. For every such w, replace the row Rw of B̃i by the sum of

rows Ru for all u ∈ B̃i that start with x. Rearrange the rows and columns such that

the top left block is indexed by the chosen words w. Denote the rearranged matrix by

P′i . The top left block of P′i is exactly Bi − λI. Indeed, suppose w, u ∈ B̃i in the top

left block of P′i start with x, y ∈ Bi, respectively. Then P′i (w, v) is exactly the number of

occurrences of x in ζ(y).

Now for any two columns Cw1 and Cw2 of P′i , where w1, w2 start with the same letter in

Bi, the first few entries (as many as the number of rows in the top left block of P′i ) are

equal. Now perform column operations as follows: for every x ∈ Bi and w the chosen

word in the top left block, subtract Cw from Cu for every u 6= w that start with x. Thus

we have a lower triangular block diagonal matrix, again denoted P′i , with diagonal

blocks Bi − λI and Q.

(b) Consider the lower block diagonal matrix P′i from above. Eigenvalues of P′i not coming

from the block Bi − λI come from the lower block, denoted Q. By Lemma 3.4.3(c), the

entries of Q are bounded in absolute value by (l− 1). We claim that the eigenvalues of

Q are bounded in absolute value by one.

Let λ0 be an eigenvalue of Q and hence of B̃i. Then for n ≥ 1, λn
0 is an eigenvalue of

(B̃i)
n which is a diagonal block of (Ml)

n = (Mn)l . Thus λn
0 is an eigenvalue of (B̃i)

n

that does not come from eigenvalue of Bn
i , the corresponding diagonal block of Mn.

Applying part (a) to ζn, (B̃i)
n can also be put in a lower triangular block diagonal form

with diagonal blocks Bn
i − λI and Q′ whose entries are bounded by (l − 1) and hence

every eigenvalue bounded in absolute value by size of Q′ times (l− 1) by Lemma 3.4.4.
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Thus |λn
0 | is uniformly bounded, which can happen only when |λ0| ≤ 1.

Thus all eigenvalues of B̃i are eigenvalues of Bi with the exception of some eigenvalues

whose absolute value is less than or equal to one.

(c) Let λ be an eigenvalue of Bi. Then λn is an eigenvalue of (Bi)
n, the diagonal block of

(Mn)l corresponding to words that start with a letter in Bi and there exists a j < i such

that they cross Bj. For every n, the entries of (Bi)
n are bounded by (l− 1). Indeed, if w

is a length l word that starts with x, then only the words that start at some position less

than l away from the last letter of ζn(x) belong to (Bi)
n. This implies that eigenvalues

of (Bi)
n are uniformly bounded. That is, |λn| is uniformly bounded, which can happen

only when |λ| ≤ 1.

Proof of Proposition 3.4.1. Since eigenvalues of a lower triangular block diagonal matrix are

obtained from eigenvalues of each block, the proposition follows from Lemma 3.4.6.

3.5 Frequency of words
The main result in this subsection is Proposition 3.5.5, which tells how to calculate the

frequency of occurrence of words which cross B0 in ρ.

Notation 3.5.1. Let λ be the top eigenvalue of the block B0 of M. Consider a subset Bl :=

B̃0 ∪ (
⋃k

i=1 Bi) of Al . Then the set of all length l words that cross B0 is a subset of Bl . The

transition matrix of ζl restricted to Bl is also lower triangular block diagonal with respect

to the order B̃0 > B1 > . . . > Bk of words in Bl . Then by Lemma 3.4.6, λ > 1 is the

top eigenvalue of Bl with multiplicity one. Since Bl is a diagonal block of Ml , we have

Mn
l (w, α) = Bn

l (w, α) for all w, α ∈ Al that cross B0.

For w, v words on A or Al , let (w, v) denote the number of occurrences of w in v.

Lemma 3.5.2. Let a ∈ B0 and let ρa = limn→∞ ζn(a) be such that ζ(ρa) = ρa. Let w ∈ Al be a

word that crosses B0. Then

frequency of occurrence of w in ρa = lim
n→∞

(w, ζn(a))
λn =: dw,a

exists and is nonnegative. Here λ is the top eigenvalue of B0.
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Proof. Let α ∈ Al start with a. For n large, the number of occurrences of w in ζn(a) is

approximately the same as the number of occurrences of w in ζn
l (α). Also (w, ζn

l (α)) =

Mn
l (w, α). We have

lim
n→∞

(w, ζn(a))
λn = lim

n→∞

(w, ζn
l (α))

λn = lim
n→∞

Mn
l (w, α)

λn = lim
n→∞

Bn
l (w, α)

λn =: dw,a.

Indeed, the limit exists because λ is the top eigenvalue of Bl . The limit is nonnegative

because it is a sequence of nonnegative numbers. The limit does not depend on the exact

choice of α because by Lemma 3.4.3(c), any two columns of Mn
l starting with the same

letter in A differ by a bounded amount and thus give the same limit.

Lemma 3.5.3 (Kirchhoff’s Law). Let a ∈ B0. Let w ∈ Al cross B0. Let we and ew be length one

extensions of w by e ∈ A. Then

dw,a = ∑
e∈A

dwe,a = ∑
e∈A

dew,a.

Proof. We have (w, ζn(a)) and ∑e∈A(we, ζn(a)) differ only when ζn(a) ends in w so the

difference is at most one. Thus∣∣∣∣∣ (w, ζn(a))
λn − ∑

e∈A

(we, ζn(a))
λn

∣∣∣∣∣→ 0 as n→ ∞

which implies that dw,a = ∑e∈A dwe,a. Similarly, dw,a = ∑e∈A dew,a.

Lemma 3.5.4. Let a, b ∈ B0 be distinct. Then

dw,b = κdw,a

for every word w that crosses B0 where κ = κ(a, b, ζ|B0).

Proof. Let’s first consider the case when length of w is one. The substitution ζ restricted to

B0 is primitive with top eigenvalue λ > 1. Then

dw,a = lim
n→∞

Mn(w, a)
λn = lim

n→∞

Bn
0 (w, a)

λn .

Since B0 is primitive, the limit of Bn
0 /λn is a matrix P that is spanned by a positive eigen-

vector corresponding to λ. Since left eigenvector of B0 is also positive, all columns of P are

positive multiples of each other. Thus dw,b = P(w, b) is a scalar multiple of dw,a = P(w, a)

which does not depend on w. Let this constant be denoted κ1.
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Now consider the case when length of w is l. We will first show that the constant κl ,

where dw,b = κldw,a, does not depend on w and then show that κl = κ1 for all l ≥ 2. Since

λ is the unique top eigenvalue of Bl , limn→∞ Bn
l /λn is a matrix P whose column span is an

eigenvector corresponding to λ. Thus dw,b = P(w, b) is a scalar multiple of dw,a = P(w, a)

which does not depend on w. Let this constant be denoted κl .

Now we will show that κl = κ1. Let w be a word of length one. We have dw,b =

∑e∈A dwe,b. Also dw,b = κ1dw,a and dwe,b = κ2dwe,a. Thus κ1dw,a = κ2 ∑e∈A dwe,a = κ2dw,a,

which implies κ2 = κ1. Repeat the same argument to get κl = κ1 for every l ≥ 2.

To summarize the results about substitutions, we have the following proposition.

Proposition 3.5.5. Let ζ be a substitution on an alphabet A such that the transition matrix is

lower triangular block diagonal with top left block B0 primitive, and for every e ∈ B0, ζ(e) starts

and ends with a letter in B0. Then there is a fixed infinite word ρ obtained by iterating a letter in B0

under ζ. Moreover, the frequency of a word w on A in ρ that crosses B0 is well defined up to scale

and satisfies Kirchhoff’s law.

3.6 CT train track as a substitution
Let Φ be a free group outer automorphism. Let φ : G → G be a completely split train

track representative of Φ with filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G. The transition

matrix for φ, denoted Mφ, is lower triangular block diagonal. Let a be an edge in an EG

stratum Hr such that up to taking powers φ(a) starts with a. Let ρa = limn→∞ φn(a). We

want to understand the frequency of occurrence of paths in Gr that cross Hr and appear in

ρa. We may not be able to treat φ as a substitution directly since there could be cancellations

and inverse of edges would have to be treated separately. The proof of the next proposition

explains how to view a completely split train track map as a substitution for the purpose

of calculating frequencies of certain paths.

We set up some notation about exceptional paths that will be used in the next proposi-

tion. Let e1, e2 ∈ G be two linear edges such that φ(e1) = e1σd1 and φ(e2) = e2σd2 where σ

is an INP and d1 6= d2. If d1, d2 > 0, then xm = e1σme2 where m ∈ Z is an exceptional path.

We say xm has height |m|. Let δ = d1 − d2. Then φ(xm) is the exceptional path xm+δ.
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Proposition 3.6.1. Let φ : G → G be a completely split train track map. Let a be an edge in an

EG stratum Hr such that φ(a) starts with a. Let γ be a path in Gr that crosses Hr. Then

lim
n→∞

(γ, φn(a))
λn =: dγ,a

exists and is nonnegative. Here λ is the Perron-Frobenius eigenvalue of the aperiodic EG stratum

Hr. If b ∈ Hr is another edge, then for every γ as above,

dγ,b = κdγ,a

where κ is a constant with κ = κ(a, b, φ|Hr).

Proof. Let ρa := limn→∞ φn(a). The ray ρa is completely split and the terms of the complete

splitting, called splitting units, of ρa form an alphabet A∞ for a substitution. But A∞ can

be an infinite set if there are exceptional paths. We will define a finite alphabet Aγ, which

depends on γ, by identifying some elements in A∞ in order to calculate the frequency of

occurrence of γ in ρa. We will also show that the frequency of γ in ρa does not depend on

the choice of the alphabet Aγ. Let N be the set of all INPs, r-taken connecting paths and

exceptional paths that appear in ρa.

Before defining the alphabet Aγ, define a relation from the set of all finite paths in ρa

that cross Hr, denoted Pr(ρa), to the set of all finite words on A∞, denotedW(A∞),

r : Pr(ρa)→W(A∞).

For a finite path γ ∈ Pr(ρa), the set r(γ) consists of the following words:

(a) If an occurrence of γ in ρa is a concatenation of splitting units, then r(γ) contains the

corresponding word on A∞.

(b) If an occurrence of γ in ρa is a subword of an INP σ, then r(γ) contains the element of

A∞ determined by σ, denoted wσ. There are only finitely many INPs that appear in ρa,

therefore the number of occurrences of a path γ in an INP is bounded. If σ contains n

occurrences of γ, then let r(γ) contain n copies of wσ. Note that a path γ in Pr(ρa) is

not contained in an exceptional path or an r-taken connected path.

(c) If an occurrence of γ has partial overlaps with some elements of N , then consider a

path γ′ such that γ′ is the smallest subpath of ρa that is a concatenation of splitting

units and which contains γ. Then r(γ) contains the word on A∞ corresponding to γ′.
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Thus every occurrence of γ in ρa corresponds to the occurrence of some word in r(γ).

Note that r(γ) can be an infinite set, for instance, when γ has partial overlap with infinitely

many exceptional paths in ρa. We will define the alphabet Aγ such that the set of words

in r(γ) viewed in Aγ will be a finite set. For simplicity, let’s assume that γ intersects only

one family of exceptional paths, say determined by linear edges e1, e2 ∈ G.

• Let H = {Hr = Hi1 , . . . , Hik} be the collection of strata crossed by edges in Hr.

For every Hij , let A(Hij) be the alphabet which contains an edge and its inverse

as distinct letters if they both appear in ρa otherwise the edge with the orientation

that appears.

An edge in G is called a Type 1 edge if it always appears with positive or negative

orientation but not both in ρa. An edge which appears with both orientations in ρa is

said to be of Type 2. If Hij is an EG stratum, then either all edges in Hij are Type 1 or

all are Type 2 (see [Uya14] for proof). Thus, if we consider a substitution on A(Hr)

representing φ restricted to Hr, then the substitution will be primitive.

• Now consider splitting units which are INPs, r-taken connecting paths and excep-

tional paths. Let A(Nγ) be an alphabet defined as follows:

(a) All oriented INPs and r-taken connecting paths that appear in ρa are contained

in A(Nγ). There can be infinitely many INPs in Gr but only finitely many

appear in ρa.

(b) Suppose γ contains an exceptional path determined by e1, e2 or a subsegment of

an exceptional path determined by e1, e2. Let N be the maximum length of such

an exceptional path that appears in γ, in φ(e) for all edges e in Hr and in an

r-taken connecting path. Then A(Nγ) contains exceptional paths determined

by e1, e2 of height less than or equal to N + 1 as distinct elements. All other

exceptional paths determined by e1, e2 of height greater than N + 1 correspond

to a single element of A(Nγ).

(c) Suppose γ does not intersect an exceptional path determined by e1, e2. Then all

exceptional paths determined by e1, e2 correspond to a single element of A(Nγ).
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• Let Aγ be defined as the set A(Hi1) t · · · tA(Hik) tA(Nγ) and let ζγ,φ be a sub-

stitution on Aγ determined by φ. Let r̃(γ) be the set of words in r(γ) viewed in the

alphabet Aγ. Then r̃(γ) is a finite set of words on Aγ. The frequency of occurrence

of a path γ ∈ Pr(ρa) in ρa is given by the sum of the frequencies of the words in r̃(γ).

If we replace N + 1 by N + C for any C ≥ 1 in the above construction to get a different

alphabet A′γ, then the frequency of γ calculated from the two alphabets is the same. More

precisely, let Aγ and A′γ be two alphabets which differ only in the naming of exceptional

paths determined by e1, e2 of length greater than N + 1. Let ζ and ζ ′ be the corresponding

substitutions, and let r̃(γ) and r̃′(γ) be the set of words in r(γ) viewed in Aγ and A′γ,

respectively. An exceptional path maps to another exceptional path under φ. Therefore, ζ

and ζ ′ have the same growth rate when restricted to A(Hr). Since the number of occur-

rences of γ does not change, the two substitutions yield the same frequency for words in

r̃(γ) and r̃′(γ) and hence the same frequency for γ.

Thus, we have obtained an alphabet Aγ. The completely split train track map φ indcues

a substitution ζγ on this alphabet. Now Proposition 3.5.5 can be applied to ζγ to compute

the frequency of occurrence of γ in ρa. Different substitutions constructed here for different

words γ differ only in exceptional paths. Since an exceptional path maps to another

exceptional path these different substitutions have the same growth rate when restricted

to A(Hr). Also Kirchhoff’s law still holds for frequencies of paths in ρa because (γ, φn(a))

and ∑e∈Gr
(γe, φn(a)) differ by a bounded amount.

We do some examples below to exhibit how to view a completely split train track map

as a substitution.

Example 3.6.2. Let R3 be the rose on three petals with labels a, b, c. Consider a homotopy

equivalence φ : R3 → R3 given by

φ(a) = a, φ(b) = Bac, φ(c) = CBac.

Here capital letters denote inverses. The transition matrix for φ is

b c a1 2 0
1 1 0
1 1 1
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There are two strata H1 = {a} and H2 = {b, c}. Every edge in H2 is of Type 2. Let ρC =

limn→∞ φn(C). We have H = {H2, H1}, A(H2) = {b, c, B, C} and A(H1) = {a, A}. Since

there are no exceptional paths, use one alphabet A = {b, c, B, C, a, A} and a substitution

ζφ on A whose transition matrix is given by

b c B C a A

0 0 1 1 0 0
1 1 0 1 0 0
1 1 0 0 0 0
0 1 1 1 0 0
1 1 0 0 1 0
0 0 1 1 0 1


Example 3.6.3. Consider a homotopy equivalence φ : R5 → R5 given by

φ(a) = ab, φ(b) = bab, φ(c) = cae, φ(d) = dcσd, φ(e) = dcae

where σ = abAB is a Nielsen path. There are two strata H1 = {a, b} and H2 = {c, d, e}.

Let ρc = limn→∞ φn(c). We have H = {H2, H1}, A(H2) = {c, d, e}, A(H1) = {a, b} and

A(N ) = {σ}. Since there are no exceptional paths, use one alphabet A = {c, d, e, a, b, σ}

and a substitution ζφ on A whose transition matrix is given by

c d e a b σ

1 1 1 0 0 0
0 2 1 0 0 0
1 0 1 0 0 0
1 0 1 1 1 0
0 0 0 1 2 0
0 1 0 0 0 1


In this example, the frequency of occurrence of the edge path ca in ρc comes from the

occurrence of the words ca and cσ in ρc. Thus the frequency of ca in ρc is equal to dca,c +

dcσ,c.

Example 3.6.4. This example illustrates the discussion of exceptional paths in Proposi-

tion 3.6.1. Consider a homotopy equivalence φ : R6 → R6 given by

φ(a) = ab, φ(b) = bab,
φ(c) = cσ2, φ(d) = dσ,
φ(e) = ea f , φ( f ) = f cσDea f ,

where σ = abAB. Some exceptional paths are xi = cσiD for i > 0. To calculate the
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frequency of words like f x4 or f cσ4 in ρ f , we consider the alphabet

A = {e, f , a, b, c, D, x1, x2, x3, x4, x5, σ, σ}

and substitution ζ such that

ζ(a) = ab, ζ(b) = bab,
ζ(c) = cσ2, ζ(d) = dσ,
ζ( f ) = f x1ea f , ζ(e) = ea f ,
ζ(σ) = σ, ζ(σ) = σ,
ζ(xi) = xi+1 for 1 ≤ i ≤ 3,
ζ(x4) = ζ(x5) = x5.

The path γ = f cσ4 does not occur as a concatenation of splitting units in ρ f . The path

γ′ = f x4 is the smallest subpath of ρ f that is a concatenation of splitting units and contains

γ. Thus the frequency of occurrence of γ is the same as the frequency of occurrence of γ′.

3.7 Summary
In this chapter, we saw how to study substitutions which are not primitive but their

restriction to a smaller alphabet is primitive. In particular, we saw how to compute fre-

quencies of words that cross a particular subset of the alphabet, in an infinite word that is

fixed by the substitution.

A CT train track representative of Φ, a fully irreducible outer automorphism relative to

a free factor systemA, satisfies Proposition 3.6.1, with top stratum exponentially growing.

We will define ‘relative currents’ in the next chapter and associate a relative current η+
Φ to

Φ. The relative current η+
Φ will assign to every word in F which is not entirely contained

in A the frequency calculated in Proposition 3.6.1. Explicit examples of these calculations

are given in the next chapter.



CHAPTER 4

RELATIVE CURRENTS

In [Bon88], Bonahon first defined a space of geodesic currents for surfaces such that it

contains the set of closed curves as a dense set. He studied the embedding of Teichmüller

space in the space of geodesic currents and recovered Thurston’s compactification of Te-

ichmüller space. Currents for free groups were first studied by Reiner Martin [Mar95] in

his thesis. Analogous to geodesic currents, the space of currents for F contains the set of

conjugacy classes of elements of F as a dense set. Currents for free groups have also been

studied in [Kap05], [Kap06], [KL09].

Let A be a free factor system of F. In this chapter, we define a space of currents relative

to A (also called relative currents) such that it contains the conjugacy classes of elements of

F that are not contained in A as a dense set.

The main result of this chapter is a generalization of a theorem in [Mar95] (see also

[Uya14]) which says that a fully irreducible outer automorphism acts with uniform north-

south dynamics on a subspace of the space of projectivized currents. Let MRC(A) (see

Definition 4.2.6) be a subspace of the space of projectivized relative currents.

Theorem B. Let A be a nontrivial free factor system of F with ζ(A) ≥ 3. Let Φ ∈ Out(F,A) be

fully irreducible relative to A. Then Φ acts with uniform north-south dynamics onMRC(A).

4.1 Preliminaries
We give a short introduction to currents for free groups and define some basic terms.

4.1.1 Boundary of F

Given F and a fixed basis B of F, let Cay(F,B) be the Cayley graph of F with respect

to B. The space of ends of the Cayley graph is called the boundary of F, denoted by ∂F. It

is homeomorphic to the Cantor set. A one-sided cylinder set determined by a finite path

γ starting at the base point is the set of all rays starting at the base point that cross γ. Such
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cylinder sets form a basis for the topology on ∂F and are in fact both open and closed.

Let ∆ denote the diagonal in ∂F× ∂F. Let ∂2F := (∂F× ∂F− ∆)/Z2 be the space of

flip-invariant bi-infinite geodesics in Cay(F,B). This space is also called the double boundary

of F. Finite paths γ in Cay(F,B) determine two-sided cylinder sets, denoted C(γ), which

form a basis for the topology of ∂2F. Two-sided cylinder sets are open and compact and

hence closed. Compact open sets are given by finite disjoint union of cylinder sets. Also

∂2F is locally compact but not compact. The action of F on ∂2F is cocompact.

4.1.2 Currents for F

In [Mar95], a measured current is defined as an additive, nonnegative, F-invariant and

flip-invariant function on the set of compact open sets in ∂2F. It is uniquely determined

by its values on the cylinder sets given by words in F. For each conjugacy class α ∈ F, a

measured current µα can be defined as follows: for a cylinder set C in ∂2F, µα(C) is defined

as the number of lifts of α that are in C.

In [Mar95], Martin shows that the set of conjugacy classes of elements in F is dense

in the space of measured currents, denotedMC(F). He also shows that the space of pro-

jective measured currents is compact. In this chapter, we aim to generalize the following

theorem:

Theorem 4.1.1 ([Mar95]). A fully irreducible outer automorphism acts with uniform north-south

dynamics on the closure of the set of primitive conjugacy classes in the space of projectivized

measured currents.

4.1.3 Bounded cancellation constant and critical length

Lemma 4.1.2 ([Coo87]). Let G be a marked metric graph and let φ : G → G be a homotopy

equivalence. There exists a constant BCC(φ), called the bounded cancellation constant, depending

only on φ such that for any path ρ in G obtained by concatenating two paths α, β, we have

L(φ(ρ)) ≥ L(φ(α)) + L(φ(β))− BCC(φ)

where L is the length function on G.

Let BCC(φ) be the bounded cancellation constant for φ : G → G, a relative train track

representative of a relative fully irreducible outer automorphism Φ with top EG stratum
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Hr. The transition matrix of Hr has a unique positive eigenvector whose smallest entry

is one. For an edge ei in Hr, the eigenvector has an entry vi > 0. Assign a metric to G

such that each edge ei in Hr is isometric to an interval of length vi and all edges in Gr−1

have length one. Then the r-length of edges in Hr gets stretched by the PF eigenvalue λΦ

under φ. Let lr denote the r-length. Let α, β, γ be r-legal paths in G. Let α.β.γ be the path

obtained by concatenating these r-legal paths. The only r-illegal turns possibly occur at

the ends of the segments of β. Thus if λΦlr(β) − 2 BCC(φ) > lr(β), then iterations and

tightening of α.β.γ will produce paths with r-length of legal segments corresponding to β

going to infinity. We call 2 BCC(φ)
λΦ−1 the critical length for φ.

4.1.4 A subspace of ∂2F

Let A = {[A1], . . . , [Ak]}, k > 0, be a free factor system such that ζ(A) ≥ 3.

Definition 4.1.3 (Relative basis). Let BA be a basis of F such that a basis of A is a subset

of BA. Specifically,

BA = {a11, . . . a11s , . . . , ai1, . . . , aiis , . . . , ak1, . . . , akks , b1, . . . , bp}

where aij ∈ Ai and bi /∈ A for any [A] ∈ A. Let ∑k
i=1 is =: s. Define a set BA to be

the collection of all words a±ij a±kl of length two such that i 6= k and all bi. Note that if

rank(A) = rank(F), then the set of bi is empty. We call BA a relative basis of F.

Definition 4.1.4. Given a free factor A, a one-sided infinite geodesic starting at the base point

in Cay(F,BA) is in ∂A if eventually it crosses only edges labeled by words in A. Note that

∂A is an F-invariant set. Define ∂A =
⊔k

i=1 ∂Ai.

Definition 4.1.5 (Double boundary of A). Given a free factor A, define ∂2A to be the set

of bi-infinite geodesics in ∂2F which are lifts of conjugacy classes of elements in A. Then

define the double boundary of A as ∂2A :=
⊔k

i=1 ∂2Ai.

Definition 4.1.6. Let Y = ∂2F \ ∂2A. It inherits the subspace topology from ∂2F. It can also

be given a topology where cylinder sets in Y determined by finite paths that cross at least

one word in BA form a basis for the topology. The two topologies are in fact equivalent.

Lemma 4.1.7. Y is locally compact.
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Proof. A space is locally compact if every point has a compact neighborhood. Let x be

an element of Y. Take a finite subpath of x that cannot be written as a string of words

contained in a single [A] ∈ A and consider the cylinder set determined by that path. Then

this cylinder set is a compact open set in Y containing x.

Lemma 4.1.8. The action of F on Y is cocompact.

Proof. Consider a compact set C ⊂ Cay(F,BA) given by a finite union of cylinder sets

determined by all paths with one end point at the origin such that the label of each path is

a word in BA. For every bi-infinite geodesic γ in Y, there is a g ∈ F such that g · γ crosses

a path starting at the origin determined by a word in BA.

4.2 Relative currents
In this section, we define a relative current. We show that the space of projective relative

currents, denoted PRC(A), is compact and that conjugacy classes in F \ A are dense in

PRC(A).

4.2.1 Definition of relative current

Definition 4.2.1. With respect to the basis BA, let F \A denote the set of all words in F that

are not contained in any free factor Ai, for 1 ≤ i ≤ k. Note that F \ A contains conjugates

of words in Ai, as long as the conjugating elements are not in Ai.

Definition 4.2.2. Let [F \A] be the set of all conjugacy classes of elements in F that are not

contained in any conjugacy class of a free factor in A. Note that an element of F \ A can

be contained in the free product of distinct free factors representing elements of A.

Let C(Y) be the collection of compact open sets in Y. A relative current is an addi-

tive, nonnegative, F-invariant and flip-invariant function on C(Y). Let RC(A) denote

the space of relative currents. A subbasis for the topology of RC(A) is given by the sets

{η ∈ RC(A) : |η(C)− η0(C)| ≤ ε} where η0 ∈ RC(A), C ∈ C(Y) and ε > 0.

Out(F,A) acts onRC(A) as follows: let η ∈ RC(A), Ψ ∈ Out(F,A) and let C ∈ C(Y).

Then

Ψ.η(C) = η(Ψ−1(C)).
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A relative current can also be defined as an F-invariant, locally finite, inner regular

measure (called Radon measure) on the σ-algebra of Borel sets of Y.

Lemma 4.2.3. A nonnegative, additive function on C(Y) corresponds to a Radon measure on the

Borel σ-algebra of Y.

Proof. Given a nonnegative, additive function η on C(Y), define an outer measure η∗ :

2Y → [0, ∞] as follows: for A ∈ 2Y

η∗(A) := inf

{
∞

∑
i=1

η(Ci) : A ⊆
∞⋃

i=1

Ci where Ci ∈ C(Y) is a cylinder set

}
.

We have η∗(C) = η(C) for C ∈ C(Y) because every cover of a compact set has a finite

subcover and then use additivity of η. A cylinder set C in C(Y) is outer measurable, that

is, for every A ∈ 2Y, we have η∗(A) = η∗(A ∩ Cc) + η∗(A ∩ C). An outer measure is

a measure on the σ-algebra of outer measurable sets which in this case is the same as the

σ-algebra of Borel sets. Therefore, the outer measure η∗ is a measure on the Borel σ-algebra

of Y. The space Y is locally compact and Hausdorff and every open set in Y is σ-compact,

that is, a countable union of compact sets. Also η∗ is a nonnegative Borel measure on Y

such that it is finite on compact sets. Therefore by [Rud87, Theorem 2.18], η∗ is a regular

measure.

Thus the space of relative currents can be given a weak-∗ topology, that is, ηn → η in

RC(A) iff
∫

Y
f dηn →

∫
Y

f dη for all compactly supported functions f on Y. Since Y is a

locally compact space, by the result in [Bou65, Chapter III, Section 1],RC(A) is complete.

4.2.2 Coordinates for the space of relative currents

Fix a relative basis BA of F. Given w 6= 1 ∈ F, consider the unique oriented path,

denoted γw, determined by w starting at the base point and let C(w) := C(γw). This

cylinder set contains unoriented bi-infinite geodesics that cross γw. For w ∈ F \ A, we have

C(w) ⊂ C(Y). Orbits of cylinder sets of the form C(w) under deck transformations cover

Y. We denote η applied to C(w) by η(w).

• Let v ∈ F. Then v · C(w) is the set of all bi-infinite geodesics that cross an edge path

labeled by w starting at the vertex labeled v in the Cayley graph. By F-invariance of

a relative current, η(C(w)) = η(v · C(w)). Thus we work just with the cylinder sets
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determined by finite paths starting at the base point. Since every compact open set

is a finite disjoint union of cylinder sets, a relative current is uniquely determined by

its values on F \ A.

• Since a relative current is uniquely determined by its values on F \ A, a sequence of

relative currents ηn converges to η iff ηn(w)→ η(w) for all w ∈ F \ A.

• For any finite path γ in Cay(F,BA), we have C(γ) = C(γ), where γ denotes the

opposite orientation on γ. If w and γw are as above, then C(w) = C(γw) = C(γw) =

w · C(w). Thus η(w) = η(w).

• Let w = e0e1 . . . el ∈ F \ A where each ei ∈ BA. Then C(w) = ∪C(we) where

the union is taken over all basis elements in BA except e = el . Here e denotes the

inverse of e. Also C(w) = ∪e · C(ew) where e is any basis element other than e0. Thus

additivity of a relative current can be stated as

η(w) = ∑
e 6=el

η(we) or η(w) = ∑
e 6=e0

η(ew).

For example, let F = 〈a, b〉 and A = {[〈a〉]}, we have

η(b) = η(ba) + η(bb) + η(ba),

η(b) = η(ab) + η(bb) + η(ab)

• Let v, w ∈ F \ A be such that v is a subword of w. Then η(w) ≤ η(v).

Example 4.2.4 (Relative current). Consider a conjugacy class α ∈ [F \ A] such that α is

not a power of any other conjugacy class in F. Then ηα(w) is the number of occurrences

of w in the cyclic words α and α. Equivalently, one can also count the number of lifts of

α that cross the path γw in the Cayley graph. We call such currents and their multiples

rational relative currents. For example, let F = 〈a, b〉,A = {[〈a〉]} and let α = ababab. Then

ηα(b) = 3, ηα(ba) = 2, ηα(abab) = 1 and ηα(bab) = 1.

Definition 4.2.5 (Length k-extension). Given w ∈ F, a length k extension of w is a word

w′ = wx1 . . . xk where xi ∈ BA, xi 6= xi+1 and x1 is not the inverse of the last letter of w.
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Lemma 4.2.6. Any nonnegative function η on F \ A invariant under inversion and the action of

F, and satisfying the condition

η(w) = ∑
length one

extension of w

η(v)

for all w ∈ F \ A determines a relative current.

Proof. A set C ∈ C(Y) can be written as a disjoint union of cylinder sets C(w1), . . . C(wk)

with wi ∈ F \ A. Then define η(C) := ∑k
i=1 η(wi). The value η(C) does not depend on

the choice of wi. Thus we have an additive and nonnegative function on C(Y) which is

invariant under the action of F.

4.2.3 Projectivized relative currents

Let PRC(A) be the space of projectivized relative currents. It has quotient topology

induced from RC(A). A sequence of projective currents [ηi] converges to [η] in PRC(A)

iff there exist scaling constants ai such that the sequence of relative currents aiηi converge

to η inRC(A).

Example 4.2.7. Let F = 〈a, b〉 and let A = {[〈a〉]}. Consider the sequence ηanb ∈ RC(A).

This sequence converges to a relative current η∞ which is given by η∞(anbam) = 1 for all

n, m ≥ 0 and η∞(w) = 0 for all other w ∈ F \A. Whereas in the space of measured currents

as defined in [Mar95], the sequence µanb/n converges to the current µa.

Lemma 4.2.8. PRC(A) is compact.

Proof. Consider a sequence of projective relative currents [ηn]. We have to show that it has

a convergent subsequence. Fix a relative basis BA and the associated set BA = {u1, . . . , ur}

(see Definition 4.1.3). Let ηn be a representative of [ηn] normalized such that ηn(ui) ≤ 1

for all ui ∈ BA and ηn(uj) = 1 for some uj ∈ BA. We have ηn(w) ≤ ηn(ui) where

w ∈ F \ A and crosses a path labeled ui ∈ BA in Cay(F,BA). The bounded sequence

{(ηn(u1), . . . , ηn(ur))}n∈N has a subsequence that converges to a nonzero element of Rr.

For every w ∈ F \ A, {ηn(w)}n∈N is a bounded sequence and hence has a convergent

subsequence. Now by the diagonal argument, conclude that {(ηn(w))w∈F\A}n∈N has

a subsequence that converges to a nonzero element. Thus {[ηn]}n∈N has a convergent
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subsequence in PRC(A).

4.2.4 Density of rational relative currents

Proposition 4.2.9. The set of projectivized relative currents induced by conjugacy classes α ∈

F \ A are dense in PRC(A).

Let BA be a relative basis of F and let |w| denote the word length of w ∈ F with

respect to BA. In the absolute case, the following lemma is the main step to prove density

of rational measured currents in the space of measured currents for F. But it does not

directly apply to the relative setting as explained below.

Lemma 4.2.10 ([Mar95, Lemma 15]). Let µ be a measured current and let k ≥ 2. Let P =

2n(2n− 1)2n(2n−1)k−2
be a constant, where n = rank(F). If µ(w0) ≥ P for some w0 ∈ F with

|w0| = k, then there exists a conjugacy class α ∈ F and the corresponding measured current µα

with µ(w) ≥ µα(w) for all w ∈ F and |w| ≤ k.

The proof of the above lemma relies on finding cycles in a certain labeled directed graph

associated to µ defined as follows: vertices are given by words of length k− 1 and edges

are given by words of length k. A directed edge w joins vertex u to vertex v if u is the prefix

of w and v is the suffix of w. An edge w is labeled by µ(w). Since µ satisfies additivity laws

for all words in F, this graph satisfies Kirchhoff’s law at each vertex which is crucial to find

cycles (which correspond to α) in the graph. The same graph defined for a relative current

η0 does not satisfy Kirchhoff’s law at vertices which correspond to words in A because η0

is not defined for words in A.

Definition 4.2.11 (Signed measured current). A signed measured current on ∂2F is an F-

invariant and additive function on the set of compact open sets of ∂2F.

We now restate the above lemma for a signed measured current which is nonnegative

on words in F of bounded length.

Lemma 4.2.12. Let k ≥ 2 and let η be a signed measured current such that η(w) ≥ 0 for all

w ∈ F with |w| ≤ k. Let P = 2n(2n− 1)2n(2n−1)k−2
be a constant. If η(w0) ≥ P for some w0 ∈ F

with |w0| = k, then there exists a conjugacy class α ∈ F and the corresponding measured current
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ηα with η(w) ≥ ηα(w) for all w ∈ F and |w| ≤ k.

Definition 4.2.13 (k-extension of a current). For η0 ∈ RC(A), let η be a signed measured

current such that η(w) = η0(w) for w ∈ F \ A and η(w) ≥ 0 for all words w ∈ F with

|w| ≤ k. We call such an η a k-extension of η0.

Lemma 4.2.14. Let η0 be a relative current and let k ≥ 1. Then there exists a signed measured

current η which is a k-extension of η0.

To prove the above lemma, start by defining η on length one words inA arbitrarily and

then extend the current to length two words by satisfying the additivity property. It needs

to be checked that the constraints obtained from the additive property are consistent. A

detailed proof is given in Appendix A. Assuming the above lemma is true, we now prove

Proposition 4.2.9.

Proof of Proposition 4.2.9. We follow the same method of proof as in [Mar95, Proposition

16]. Let η0 be a relative current and let k ≥ 2. Choose R > 0 such that Rη0(w0) ≥ P

for some w0 ∈ F \ A with |w0| = k. Consider a signed measured current η which is a

k-extension of η0. Then by Lemma 4.2.12 applied to Rη, there exists an α1 ∈ F such that

Rη(w) ≥ ηα1(w) for all w ∈ F with |w| ≤ k. If Rη(w) ≤ ηα1(w) + P for all w ∈ F with

|w| ≤ k, then stop, otherwise again apply Lemma 4.2.12 to Rη − ηα1 to obtain α2 ∈ F

such that Rη(w)− ηα1(w) ≥ ηα2(w) for all w ∈ F with |w| ≤ k. By induction, ∑ ηαi(w) ≤

Rη(w) ≤ ∑ ηαi(w) + P for all words of length less than or equal to k.

It is necessary that at least one of the αi ∈ F \ A. Indeed, if they were all in A, then

∑ ηαi(w0) = 0 which would mean Rη(w0) ≤ P which is a contradiction. Now we have∣∣∣∣η(w)− ∑ ηαi(w)

R

∣∣∣∣ ≤ P
R

for all w ∈ F with |w| ≤ k. For w ∈ F \ A in fact, we have∣∣∣∣∣η0(w)−
∑αi /∈A ηαi

(w)

R

∣∣∣∣∣ ≤ P
R

where ηαi
is the restriction of ηαi to Y.

Since R can be chosen arbitrarily large, relative currents can be approximated by sums

of rational relative currents for all w ∈ F \ A with |w| ≤ k. Now we can approximate

∑αi /∈A ηαi by 1
m ηβm where βm = wm

1 wm
2 · · ·wm

l and wi is in the conjugacy class of αi.
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4.2.5 A-Whitehead graph

Definition 4.2.15 (A-separable conjugacy class). A conjugacy class α ∈ [F \ A] is A-

separable if it is contained in a nontrivial free factor system containing A. Topologically,

α is A-separable if there is an F-tree T with the set of vertex stabilizers given by A such

that an axis of α does not cross every orbit of edges.

To detect when a conjugacy class is A-separable, use Whitehead’s algorithm and a

theorem of Stallings [Sta99]. As defined in [Sta99], a collection C of conjugacy classes in F

is separable if there exist free factors F, F′ such that F = F ∗ F′ and each conjugacy class in

C is contained in either F or F′. Let αi ∈ Ai, 0 < i ≤ k, be a conjugacy class such that αi is

not contained in any proper free factor of Ai. We say αi is filling in Ai.

Lemma 4.2.16. A conjugacy class α ∈ [F \ A] is A-separable if and only if the collection of

conjugacy classes C = {α, α1, . . . , αk} is separable.

Proof. If C is separable, then there exist a decomposition F = F ∗ F′ such that each con-

jugacy class in C is contained either in F or F′. Suppose αi ∈ F. Then we claim that Ai

is contained in F up to conjugation. Suppose not. Then F ∩ Ai 6= ∅ up to conjugation.

Also the intersection of two free factors is a free factor. So αi is contained in a nontrivial

free factor of Ai, which is a contradiction. Thus {[F], [F′]} is a nontrivial free factor system

containing A that contains the conjugacy class w. On the other hand, if α is contained in a

proper free factor system D containing A, then C is separable.

Definition 4.2.17 (Whitehead Graph [Whi36]). Given a basis B of F, the Whitehead graph

of a collection C of conjugacy classes, denoted Wh(C), is defined as follows: the vertices

are given by basis elements and their inverses. There is an edge connecting vertices x and

y if xy is a subword of a conjugacy class in C.

Theorem 4.2.18 ([Sta99, Theorem 4.2]). Let C be a collection of conjugacy classes in F. If Wh(C)

is connected and C is separable, then there is a cut vertex in Wh(C).

Definition 4.2.19 (A-Whitehead Graph). For each [Ai] ∈ A, fix filling conjugacy classes

αi ∈ Ai. The A-Whitehead graph of a conjugacy class α ∈ [F \ A], denoted Wh(w,A), is

defined as the Whitehead graph of the collection {α, α1, . . . , αk}.
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Note that even though we fix some filling conjugacy classes to define the relative White-

head graph, detecting A-separability of α is independent of them by Lemma 4.2.16.

Example 4.2.20. Let F = 〈a, b, c, d〉 and A = {〈a, b〉}. Let α = cadb and α1 = abab. In the

A-Whitehead graph of α, a is a cut vertex with disjoint sets {a, c} and {a, b, b, c, d, d}. See

Figure 4.1. Let φ be the Whitehead automorphism given as φ(a) = a, φ(b) = aba, φ(c) =

ac, φ(d) = ada. Then φ(cadb) = cdb. Now the A-Whitehead graph for α′ = cdb is

disconnected, which implies that α = cadb is A-separable. See Figure 4.2. Indeed, α is

contained in the free factor system {〈c, adb〉, 〈a, b〉}.

4.2.6 A closed subspace of PRC(A)
In the absolute case, when a fully irreducible outer automorphism Ψ is a pseudo-

Anosov on a surface with one boundary component, the measured current corresponding

to the boundary conjugacy class in the space of projectivized measured currentsMC(F)

is fixed under the action of Ψ. Thus in [Mar95], a closed subspace is considered which is

the closure of all primitive conjugacy classes inMC(F). For the same reason, we pass to a

smaller closed Out(F,A)-invariant subspace of PRC(A). Let

MRC(A) = {[ηα] ∈ PRC(A)|α is A-separable}

Lemma 4.2.21. [ηα] ∈ PRC(A) is inMRC(A) if and only if α is A-separable.

Proof. Let’s assume that α is not A-separable. Then by Theorem 4.2.18, the A-Whitehead

graph of α with respect to any relative basis is connected without a cut vertex. Let wα ∈

F \ A be a cyclically reduced representative of α. Consider a relative current ηv where

v ∈ [F \ A] such that ηv(w2
α) > 0. This means that any A-Whitehead graph of v contains

the Whitehead graph of α as a subgraph and hence is connected without cut vertices. By

Theorem 4.2.18 and Lemma 4.2.16, this implies that v is not A-separable. Thus ηv(w2
α) = 0

for all A-separable conjugacy classes v in [F \ A], which in turn implies that η(wα) = 0 for

any [η] ∈ MRC(A). Since ηα(w2
α) > 0, we have that ηα /∈ MRC(A).

4.3 Stable and unstable relative currents
In this section, we associate a pair of relative currents to Φ, a fully irreducible outer

automorphism relative to A. A completely split train track representative of Φ will be
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used for this purpose. Since such a topological representative is often defined on a marked

graph which may not be a Cayley graph, we first show how to define coordinates for

relative currents using a marked graph.

Definition 4.3.1 (Coordinates with respect to a marked graph). Let G be a marked metric

graph in Culler-Vogtmann’s outer space, such that G has a subgraph Γ with F (Γ) = A.

Let g : R → G be the marking of G. Here R is the quotient of Cay(F,BA) under the

action of F. Let G̃ be the universal cover of G. The map g lifts to an F-equivariant map

g̃ : Cay(F,BA)→ G̃. The map g̃ identifies ∂2G̃ with ∂2F and ∂2Γ with ∂2A. Given an edge

path v in G̃, let

C(v) := {(x, y) ∈ ∂2F | v ⊂ (g̃(x), g̃(x))}

be a compact open set of ∂2F determined by the path v of G̃. For a relative current η and

a path v of G̃ that is not entirely contained in the lift of Γ, η(v) is defined to be equal to

η(C(v)). Since η is F-equivariant, we may consider v to be a reduced edge path in G itself.

The collection of compact open sets C(v) for all paths v in G that are not entirely contained

in Γ contains the cylinder sets determined by words in F that determine a basis for topol-

ogy of ∂2F. Since a relative current is uniquely determined by its values on elements in F,

it is also uniquely determined by its values on compact open sets determined by reduced

paths v in G that are not entirely contained in Γ.

Lemma 4.3.2. Let φ : G → G be a completely split train track representative of Φ, a fully

irreducible outer automorphism relative to A. Let a be an edge in the top EG stratum Hr such

that ρa is fixed under φ. Let v be any reduced edge path in G that crosses Hr. Let dv,a be the

frequency of occurrence of v in ρa. Then the set of values

dv,a + dv,a =: ηa
φ(v)

define a unique current ηa
φ relative to A. That is,

(a) ηa
φ(v) ≥ 0,

(b) ηa
φ(v) = ηa

φ(v),

(c) ηa
φ(v) = ∑

e∈E
ηa

φ(ve) where E is the set of edges of G and e is not equal to the inverse of the

terminal edge of v.



39

For an edge b 6= a in Hr we have that ηb
φ = κηa

φ for some constant κ(a, b, φ|Hr). Thus for every

fully irreducible outer automorphism relative toA, get a unique projective relative current, denoted

[η+
Φ ] = [ηa

φ].

Proof. By Proposition 3.6.1, we know that the values dv,a exist and are non-negative for

all reduced paths v in G that cross Hr. The equation (b) holds by definition of ηa
φ(v).

Proposition 3.6.1 provides a substitution determined by φ. Applying Proposition 3.5.5 to

this substitution, we see that ηa
φ(v) satisfies Kirchoff’s laws, that is, (c) holds. Since a

relative current is uniquely determined by its values on compact open sets in ∂2F deter-

mined by reduced paths in G that cross Hr, we get a unique relative current ηa
φ. Again by

Proposition 3.6.1, we have ηa
φ(v) = κηb

φ(v) for all reduced paths v in G that cross Hr and

for some constant κ. Thus the projective class [ηa
φ] =: [η+

Φ ] of the relative current ηa
φ is also

unique.

The projective relative current [η+
Φ ] is called the stable current for Φ. The stable current

for φ−1, denoted [η−Φ ], is called the unstable current for Φ.

4.4 Examples
Relative currents are uniquely determined by their values on words in F \ A. Using

the substitution dynamics techniques developed in Chapter 3, we show some examples of

how to calculate η+
Φ (w) for w ∈ F \A for some relative outer automorphisms Φ. The three

examples that follow illustrate the cases when the growth in the stratum corresponding to

A is less than, greater than and equal to the growth in the top EG stratum.

Example 4.4.1. Let F3 = 〈a, b, c〉. Let G be the rose on three petals labeled a, b and c.

Consider an outer automorphism Φ given by a train track representative φ : G → G where

φ(a) = a, φ(b) = bac, φ(c) = cbac.

Let A = {[〈a〉]}. The transition matrix for φ is given by

b c a

M =

1 1 0
1 2 0
1 1 1

 .
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Note that Φ is not fully irreducible relative to A because {[〈b, ac〉], [〈a〉]} is Φ-invariant.

But it is still instructive to understand the limiting behavior in this simple case.

Let ρb = limn→∞ φn(b) be a ray that is fixed by φ. View φ as a substitution ζ on the

alphabet A = {a, b, c}. Let Al be the set of words of length l on A that appear in ρb.

For example, A2 = {ba, ca, cb, ac}. Note that the sets Al are independent of the specific

choice b. Define a substitution ζl on Al as follows: let w ∈ Al start with x ∈ A. Then

ζl(w) consists of the ordered list of the first |ζ(x)| subwords of length l of the word ζ(w).

For example, ζ2(ba) = ba · ac · ca. Let Ml be the transition matrix of ζl and let Bl be the

transition matrix for ζl restricted to words in F \ A. We want to calculate the frequency of

occurrences of words which are not in A, in ρb.

Let w ∈ Al and let β be a word of length l that starts with b. Then

lim
n→∞

(w, φn(b))
λn = lim

n→∞

Mn
l (w, β)

λn = lim
n→∞

Bn
l (w, β)

λn =: dw,b

Here λ is the PF-eigenvalue of the top EG stratum. See Section 3.5 for detailed explanation.

For example, in length one and two, we have

b c

B1 =

[
1 1
1 2

]
,

ba ca cb ac

B2 =


1 1 1 0
1 1 0 0
0 1 2 0
1 1 1 1

 .

Let β = b and β = ba for length one and length two words, respectively. Then

db,b =
(5−

√
5)

10
, dc,b =

1√
5

,

dac,b =
1√
5

, dba,b =
(5−

√
5)

10
,

dca,b =
(−5 + 3

√
5)

10
, dcb,b =

(5−
√

5)
10

.

We get db,b = dba,b and dc,b = dca,b + dcb,b, which indicates that additivity holds for η+
Φ

(defined in Lemma 4.3.2).

One way to calculate the above numbers is to compute the Jordan decomposition of

the matrix Bl . Say Bl = SJS−1. Consider another matrix J′ which has a 1 in the spot

for λ and zeros everywhere else. Compute SJ′S−1 and read off entries from the column

corresponding to β. For example, we have
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B2 = SJS−1 = S


1 0 0 0
0 1 0 0

0 0 (3−
√

5)
2 0

0 0 0 (3+
√

5)
2

 S−1,

J′ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , SJ′S−1 =


(5−
√

5)
10

1√
5

1√
5

0
(−5+3

√
5)

10
(5−
√

5)
10

(5−
√

5)
10 0

(5−
√

5)
10

1√
5

1√
5

0
1√
5

(5+
√

5)
10

(5+
√

5)
10 0

 .

Example 4.4.2. Let F4 = 〈a, b, c, d〉. Let G be the rose on four petals labeled a, b, c, d.

Consider an outer automorphism Φ given by a train track representative φ : G → G by

φ(a) = abbab, φ(b) = bababbab, φ(c) = cad, φ(d) = dcad.

Let A = {[〈a, b〉]}. The transition matrix for φ is given by

c d a b

M =


1 1 0 0
1 2 0 0
1 1 2 3
0 0 3 5


Let ρc = limn→∞ φn(c). Consider φ as a substitution on the alphabet A = {a, b, c, d}.

Let Al be the set of words of length l on A that appear in ρc. We want to calculate the

frequency of occurrences of words, which cross c and d, in ρc. Let w ∈ Al and let γ be a

word of length l that starts with c. Using the same notation as in the previous example,

lim
n→∞

(w, φn(c))
λn = lim

n→∞

Mn
l (w, γ)

λn = lim
n→∞

Bn
l (w, γ)

λn =: dw,c

For example, A2 = {ab, ba, bb, ad, bd, ca, da, dc} and B2 = {ad, bd, ca, da, dc}. We get the

matrices

b c

B1 =

[
1 1
1 2

]
,

ca da dc ad bd

B2 =


1 1 1 0 0
1 1 0 0 0
0 1 2 0 0
1 1 1 0 0
0 0 0 1 1


and compute the frequencies as in the previous example.
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Example 4.4.3. Let F4 = 〈a, b, c, d〉. Let G be the rose on four petals labeled a, b, c, d.

Consider an outer automorphism Φ given by a train track representative φ : G → G by

φ(a) = ab, φ(b) = bab, φ(c) = cad, φ(d) = dcad.

Let A = {[〈a, b〉]}. The transition matrix for φ is given by

c d a b

M =


1 1 0 0
1 2 0 0
1 1 1 1
0 0 1 2


Let ρc = limn→∞ φn(c). Consider φ as a substitution on the alphabet A = {a, b, c, d}.

As before,

lim
n→∞

(w, φn(c))
λn = lim

n→∞

Mn
l (w, γ)

λn = lim
n→∞

Bn
l (w, γ)

λn =: dw,c

where λ is the PF-eigenvalue of the top stratum. We have A2 = {ab, ba, bb, ad, bd, ca, da, dc}

and B2 = {ad, bd, ca, da, dc}. We get the matrices

b c

B1 =

[
1 1
1 2

]
,

ca da dc ad bd

B2 =


1 1 1 0 0
1 1 0 0 0
0 1 2 0 0
1 1 1 0 0
0 0 0 1 1


and compute the frequencies as above.

4.5 Goodness
In [BFH97], Bestvina, Feighn and Handel studied the legal structure of conjugacy classes

under forward and backward iterates of a train track representative of a fully irreducible

outer automorphism. In [Bri00], Brinkmann generalized some of those results to relative

train track maps which will be used in this section.

Throughout this section, Φ ∈ Out(F,A) will be a fully irreducible outer automorphism

relative toA and φ : G → G a completely split train track representative of Φ with filtration

∅ = G0 ⊂ G1 ⊂ · · · ⊂ Gr = G such that F (Gr−1) = A, and Hr is the top EG stratum with

PF eigenvalue λΦ > 1. In this section, we use Facts 2.4.1 about completely split train track

maps.



43

In [Bri00], Brinkmann considers the following metric on G: edges in Hr get length

according to the PF eigenvector such that the smallest length is one and hence edges in Hr

get stretched by λΦ under the application of φ. Edges in Gr−1 get length one.

Throughout, we use the same notation for a conjugacy class in F and its representative

in G which is taken to be cyclically reduced. For a reduced path ρ in G by [φ(ρ)], we

mean the tightened image of ρ. Define ir(ρ) to be the number of r-illegal turns in ρ, lr(ρ)

the r-length of ρ and Lr(ρ) the length of the longest r-legal segment in ρ. Recall from

Section 4.1.3 that Lc
r =

2 BCC(φ)

λΦ − 1
is the critical r-length where BCC(φ) is the bounded

cancellation constant.

Denote by ρ−k a path in G with the property that the tightened image of φk(ρ−k) is ρ.

For a subpath ρ of a path σ, let [φk(ρ)]σ denote the maximal subpath of [φk(ρ)] contained

in [φk(σ)].

The following proposition is a generalization of [BFH97, Lemma 2.9].

Proposition 4.5.1 ([Bri00, Lemma 6.2]). Let φ : G → G be a relative train track map and let Hr

be an EG stratum. For every L > 0, ∃M(L) > 0 such that if ρ is a path in Gr that crosses Hr,

then one of the following holds:

(a) [φM(ρ)] contains an r-legal segment of r-length > L.

(b) [φM(ρ)] has fewer r-illegal turns.

(c) ρ can be expressed as a concatenation τ1ρ′τ2, where lr(τ1) ≤ 2L, lr(τ2) ≤ 2L, ir(τ1) ≤

1, ir(τ2) ≤ 1, and ρ′ splits as a concatenation of pre-Nielsen paths (with one r-illegal turn

each) and segments in Gr−1.

Lemma 4.5.2 (Backward iterations). Let φ : G → G be a completely split train track repre-

sentative of a fully irreducible outer automorphism relative to A. Given some number L0 > 0,

there exists M > 0, depending only on L0 and Hr, such that for any subpath ρ of an A-separable

conjugacy class α realized in Gr with 1 ≤ Lr(ρ) ≤ L0 and ir(ρ) ≥ 5, we have

(
10
9

)n

ir(ρ) ≤ ir(ρ
−nM)

for all n > 0.
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Proof. In [Bri00, Lemma 6.4], the same statement is proved for atoroidal outer automor-

phisms and for any path in Gr. The same proof follows by using Facts 2.4.1 about com-

pletely split train track representatives.

Given L = L0 + Lc
r , choose M as in Proposition 4.5.1. Subdivide the path ρ into subpaths

ρ1, . . . , ρm, τ such that ir(ρi) = 5 and ir(τ) < 5. Let ρ−M
i be the pre-image of ρi under

φM. Then ρ−M is the concatenation of ρ−M
i and τ−M. We claim that ir(ρ

−M
i ) ≥ 6 for

all i. Suppose for contradiction that ir(ρ
−M
i ) = 5 for some i. Then by Proposition 4.5.1,

ρ−M
i splits as a concatenation of at least three pre-Nielsen paths and paths in Gr−1. By

Facts 2.4.1, every Nielsen path has period one and there is at most one INP σ of height

r. If σ is not closed, then at least one end-point of σ is not contained in Gr−1. Therefore,

we cannot have three Nielsen paths in ρ−M
i separated by paths in Gr−1. If σ is closed,

then its end point is not in Gr−1. Since α is A-separable, it cannot have two consecutive

occurrences of σ in it. Indeed, since σ (which is not contained in Gr−1) is fixed by φ, it is

not A-separable. Therefore, its relative Whitehead graph is connected without cut points.

If α has two consecutive occurrences of σ, then its relative Whitehead graph will also be

connected without cut points, but α isA-separable. Therefore, ρ and ρ−M
i cannot have two

consecutive occurrences of σ.

We claim that ir(ρ−M) ≥ 6m+ ir(τ) ≥ (10/9)ir(ρ) and the lemma follows by induction.

Indeed, we have

ir(ρ−M)

ir(ρ)
≥ 6s + ir(τ)

5s + ir(τ)
≥ 10

9

when ir(τ) = 4 and s = 1. Here ir(ρ) = 5s + ir(τ) because the concatenation points are

legal.

Lemma 4.5.3 ([Bri00, Lemma 6.5]). Suppose Hr is an EG stratum. Given some L > 0, there

exists some constant C > 0 such that for all paths ρ ⊂ Gr with 1 ≤ Lr(ρ) ≤ L and ir(ρ) > 0, we

have

C−1ir(ρ) ≤ lr(ρ) ≤ Cir(ρ).

The notion of goodness was introduced in [Mar95] and formalized in [BFH97].

Definition 4.5.4 (Goodness). Given a loop or a path α in Gr that crosses Hr, we say that the

good portion, denoted g, of α is the set of r-legal segments that are r-distance Lc
r away from
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r-illegal turns. The bad portion, denoted b, is the part of α which is r-distance less than or

equal to Lc
r from an r-illegal turn. The r-length of α is equal to the r-length of g (denoted

gr(α)) plus the r-length of b (denoted br(α)). Define goodness of α as

g(α) =
gr(α)

lr(α)
.

Lemma 4.5.5 (Monotonicity of goodness). Let δ > 0 and ε > 0 be given. Then there exists

an integer M = M(δ, ε) such that for any A-separable conjugacy class α that crosses Hr with

g(α) ≥ δ, we have g(φm(α)) ≥ 1− ε for all m ≥ M.

The proof of the above lemma which is the same as in the absolute case can be found

in [Uya14, Lemma 3.10].

Definition 4.5.6 (Desired growth [Bri00]). Let σ be a path in G that crosses an EG stratum

Hr. We say σ has desired growth if there exist N > 0, λ > 1, ε > 0 and a collection of

subpaths S of σ such that the following hold:

(a) For every integer n > 0 and for every ρ ∈ S, we have

λnlr(ρ) ≤ max{lr([φnN(ρ)]σ), lr(γ)},

where γ is a subpath of σ−nN such that [φnN(γ)]σ−nN = ρ.

(b) There is no overlap between distinct paths in S.

(c) The sum of the lengths of the paths in S is at least εlr(σ).

Lemma 4.5.7. Let α ∈ F be an A-separable conjugacy class that crosses Hr. Then α has desired

growth either under forward iteration or under backward iteration.

Proof. Let L0 > Lc
r be a constant. There are several cases to consider.

1.
lr(α)
ir(α)

≥ L0. The proof of [Bri00, Proposition 7.1 (2)(b)(i)] shows that in this case, α

has desired growth in the forward direction.

2.
lr(α)
ir(α)

< L0.

(a) ir(α) ≥ 5. By [Bri00, Proposition 7.1 (2)(b)(ii)] and using Lemma 4.5.2, 4.5.3 we

get desired growth in the backward direction.
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(b) ir(α) < 5. We have that α is A-separable and crosses Hr nontrivially. Therefore,

α is not fixed and does not have two consecutive occurrences of a closed INP.

Since lr(α) is bounded from above, there are only finitely many possibilities for

α ∩ Hr. Suppose the r-length of no segment of α ∩ Hr grows under φ. Since

there are only finitely many segments of Hr of bounded length, after passing

to a power, assume that a segment αi of α ∩ Hr is fixed under φ. Also the end

points of αi are in Hr ∩ Gr−1. There has to be an illegal turn in αi, otherwise it

would grow and in fact, it has to be an INP because it persists. But at least one

end-point of an INP in G is not in Gr−1, thus we get a contradiction. Therefore,

we can pass to a uniform power M such that φM(α) satisfies (1) and hence has

desired growth in forward direction.

It can be seen in Brinkmann’s proofs that the numbers N, λ, ε do not depend on a specific

conjugacy class.

Let φ′ : G′ → G′ be a completely split train track representative of Φ−1. Let lr′ , ir′ , Lc
r′

and C′ be the corresponding notation related to φ′. There exists a constant B such that for

any conjugacy class α, we have

lr′(α)
B
≤ lr(α) ≤ Blr′(α).

Let g′ denote the goodness with respect to the train track structure of φ′.

Lemma 4.5.8. Given δ > 0, there exists M > 0 such that for any A-separable conjugacy class α

that crosses Hr, either

• g(φnM(α)) ≥ δ for all n ≥ 1 or

• g′((φ′)nM(α)) ≥ δ for all n ≥ 1.

Proof. Let L0 > Lc
r be the constant from Lemma 4.5.7. By the same lemma, there exist

N > 0, λ > 1 and ε > 0 such that any A-separable conjugacy class that crosses Hr has

desired growth. There are two cases:

(a) Let’s first consider the case when α has desired growth in the forward direction. This

happens when lr(α) ≥ L0ir(α). For case 2(b) in the proof of Lemma 4.5.7, pass to a
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uniform power of α which satisfies lr(α) ≥ L0ir(α). Let S be the collection of maximal

r-legal subpaths of α of r-length at least L0 + 1. Then by the choice of L0 we have for

ρ ∈ S,

lr(φnN(ρ)) ≥ λnN
Φ

1
L0 + 1

lr(ρ).

The paths in S account for a definite fraction ε > 0 of α. Now

gr(φ
nN(α)) ≥ ∑

ρ∈S
[lr(φnN(ρ))]α ≥ ∑

ρ∈S
λnN

Φ
1

L0 + 1
[lr(ρ)]α ≥ λnN

Φ
1

L0 + 1
εlr(α).

We also have lr(φnN(α)) ≤ λnN
Φ lr(α). Thus

g(φnN(α)) ≥ ε

L0 + 1
.

(b) If α has desired growth in the backward direction, then Lemma 4.5.2 and Lemma 4.5.3

imply

Blr′((φ′)nN(α)) ≥ lr(φ−nN(α)) ≥ C−1ir(φ
−nN(α)) ≥

(
10
9

)n 1
C2B

lr′(α).

Now the number of r′-illegal turns in (φ′)nN(α) is bounded above by those in α. We

have

ir′((φ
′)nN(α)) ≤ ir′(α) ≤ C′lr′(α).

Also the bad portion of (φ′)nN(α) is bounded from above by 2Lc
r′ ir′((φ

′)nN(α)). Thus

g′((φ′)nN(α)) ≥ 1−
2Lc

r′C
′B2C2

(10/9)n ≥ 1−
2Lc

r′C
′B2C2

(10/9)
.

Now by Lemma 4.5.5, find M > 0 such that either one of the goodness is greater than

δ.

4.6 North-south dynamics
We are now ready to prove a north-south dynamic result. Recall we have Φ a fully irre-

ducible outer automorphism relative toA and a completely split train track representative

φ : G → G. We also have a stable current [η+
Φ ] and an unstable current [η−Φ ] inMRC(A).

Notation 4.6.1. Let G be a marked metric graph in CVn and let G̃ be the universal cover of G.

By identifying ∂2F with ∂2G̃, we can define relative currents on cylinder sets determined

by paths in G.
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Let α be the realization in G of a conjugacy class in F and let v be a reduced path in G.

Let (v, α) be the number of occurrences of v in α. For a relative current η, let

〈v, η〉 := η(v), 〈v, α〉 := (v, α) + (v, α)

|η|r := ∑
e∈EHr

〈e, η〉

where EHr is the set of edges in Hr.

Proposition 4.6.2. Given a neighborhood U of [η+
Φ ] in MRC(A), there exists 0 < δ < 1 and

M(U) > 0 such that for any [ηα] ∈ MRC(A), with g(α) > δ, we have that φn([ηα]) ∈ U for all

n ≥ M.

Proof. The proof is similar to the proof of [Uya14, Lemma 3.11].

A relative current [η] is in U if there exists ε > 0, R >> 0 both depending on U such

that for all reduced paths v with 0 < lr(v) ≤ R, we have∣∣∣∣∣ 〈v, η〉
|η|r

−
〈v, η+

Φ 〉
|η+

Φ |r

∣∣∣∣∣ ≤ ε.

We need to show there exists a δ > 0 and M(U) > 0 such that for any conjugacy class α

with g(α) ≥ δ and for any n ≥ M, we have that∣∣∣∣∣ 〈v, ηφn(α)〉
|ηφn(α)|r

−
〈v, η+

Φ 〉
|η+

Φ |r

∣∣∣∣∣ ≤ ε, which is the same as

∣∣∣∣∣ 〈v, φn(α)〉
lr(φn(α))

−
〈v, η+

Φ 〉
|η+

Φ |r

∣∣∣∣∣ ≤ ε.

Let α be written as a concatenation of some good edges denoted ci in Hr, some bad

edges denoted bj in Hr and some subpaths in Gr−1. Since there are only finitely many

edges in Hr and finitely many paths v up to intersection with Hr with lr(v) ≤ R, pick an

integer N0(U) ≥ 1 such that ∣∣∣∣∣ 〈v, φn(ci)〉
lr(φn(ci))

−
〈v, η+

Φ 〉
|η+

Φ |r

∣∣∣∣∣ ≤ ε/4

for all edges ci and all n ≥ N0(U). The following is true by triangle inequality.∣∣∣∣∣ 〈v, φn(α)〉
lr(φn(α))

−
〈v, η+

Φ 〉
lr(η+

Φ )

∣∣∣∣∣ ≤
∣∣∣∣∣ 〈v, φn(α)〉

lr(φn(α))
− ∑〈v, φn(ci)〉

lr(φn(α))

∣∣∣∣∣+
∣∣∣∣∣∑〈v, φn(ci)〉

lr(φn(α))
− ∑〈v, φn(ci)〉

∑ lr(φn(ci))

∣∣∣∣∣
+

∣∣∣∣∣∑〈v, φn(ci)〉
∑ lr(φn(ci))

−
〈v, η+

Φ 〉
|η+

Φ |r

∣∣∣∣∣
We will look at individual terms in the inequality and find upper bounds.



49

• The following argument will show that one can choose N1(U) > 0 and δ > 0 such

that if n ≥ N1(U) and if g(α) > δ, then the contribution to occurrences of v in φn(α)

from mixed regions and from bad portions of α is arbitrarily small.

The segment v can occur in φn(α) either as a subsegment of some φn(ci), or as a

subsegment of φn(bi), or v can cross those mixed regions in φn(α) whose pre-image

in α is also a mixed region. The number of such mixed regions is bounded by lr(α).

Thus ∣∣∣∣∣ 〈v, φn(α)〉
lr(φn(α))

− ∑〈v, φn(ci)〉
lr(φn(α))

∣∣∣∣∣ ≤ Rlr(α)
lr(φn(α))

+
∑〈v, φn(bi)〉

lr(φn(α))
.

Using the definition of goodness, we have the following:

lr(φn(α)) ≥ λn
r g(α)lr(α), br(α) ≤ lr(αr)(1− g(α)), ∑ lr(φn(bi)) ≤ λn

r br(α)

where br(α) is the length of the bad portion of α. Thus

∑ lr(φn(bi))

lr(φn(α))
≤ λn

r (1− g(α))lr(α)
λn

r g(α)lr(α)
≤ (1− g(α))

g(α)
≤ ε/4.

Choose δ > 0 such that 1
1+ε/4 < δ < 1 and such that the above statement holds for

g(α) > δ. We have
Rlr(α)

lr(φn(α))
≤ R

λn
r g(α)

.

Choose N1(R, ε) = N1(U) ≥ 1 such that N1 ≥ logλr
(R(1 + 4/ε)) and g(α) > δ so

that
R|α|r
|φn(α)|r

≤ R
λn

r g(α)
≤ ε/4

for all n ≥ N1(U). Thus for all n ≥ N1(U), we have∣∣∣∣∣ 〈v, φn(α)〉
|φn(α)|r

− ∑〈v, φn(ci)〉
|φn(α)|r

∣∣∣∣∣ ≤ ε/2

• ∣∣∣∣∣∑〈v, φn(ci)〉
lr(φn(α))

− ∑〈v, φn(ci)〉
∑ lr(φn(ci))

∣∣∣∣∣ ≤ ∑ lr(φn(bi))

lr(φn(α))
∑〈v, φn(ci)〉
∑ lr(φn(ci))

≤ (ε/4)(1)

for all n ≥ N1(U).

• ∣∣∣∣∣∑〈v, φn(ci)〉
∑ lr(φn(ci))

−
〈v, η+

Φ 〉
|η+

Φ |r

∣∣∣∣∣ ≤
∣∣∣∣∣ 〈v, φn(ci)〉

lr(φn(ci))
−
〈v, η+

Φ 〉
|η+

Φ |r

∣∣∣∣∣ ≤ ε/4

for some edge ci in Hr by using mediant inequality (for a, b, c, d > 0, we have that
c
d
≤ a + c

b + d
≤ a

b
) for all n ≥ N0.
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Thus combining the three steps, we have that∣∣∣∣∣ 〈v, φn(α)〉
lr(φn(α))

−
〈v, [η+

Φ ]〉
|η+

Φ |r

∣∣∣∣∣ ≤ ε

for all n ≥ M(U) where M(U) = max{N0, N1}.

Lemma 4.6.3. Given neighborhoods U and V of [η+
Φ ] and [η−Φ ] inMRC(A), respectively, there

exists M1 > 0 such that for any A-separable conjugacy class α that crosses Hr, either φm([ηα]) ∈

U or (φ′)m([ηα]) ∈ V for all m ≥ M1.

The proof follows from Lemma 4.5.8 and Lemma 4.6.2.

Proposition 4.6.4 ([LU15, Proposition 3.4]). Let φ : X → X be a homeomorphism of a compact

space X and assume that X is sufficiently separable, for example metrizable. Let Y ⊂ X be a dense

set, and let P ,Q be two distinct φ-invariant points in X. Assume the following holds: for every

neighborhood U of P and V of Q, there exists an integer M2 ≥ 1 such that for all m ≥ M2 and

all y ∈ Y, one has either φm(y) ∈ U or φ−m(y) ∈ V. Then φ2 has uniform north-south dynamics

from P to Q.

Proof. We recollect the proof from [LU15, Proposition 3.4] here. Let K be a compact set

in X \ Q. The set K may or may not be disjoint from V. If not, then consider an open

neighborhood W of K which is also disjoint from Q. Then V1 = V \ (V ∩W) is also a

neighborhood of Q. Now consider y ∈ Y ∩ f m(W). Then f−m(y) is not in V1 because W

is disjoint from V1, therefore f m(y) ∈ U. Since Y is dense in X, Y ∩W is also dense in W.

This is not true for a closed set or a compact set, we need an open set. Consider an open

set U1 ⊂ U such that U1 ⊂ U. We need this because we are working with a dense set and

will need to take a closure. Therefore, f m( f m(W)) is in U1. Thus f 2m(K) is in U. Similar

argument works for f−1. Thus f 2 has generalized north-south dynamics.

Proposition 4.6.5 ([LU15, Proposition 3.5]). Let φ : X → X be as in Proposition 4.6.4 with

distinct fixed points P and Q and assume that some power φs with s ≥ 1 has uniform north-south

dynamics from P to Q. Then φ also has uniform north-south dynamics from P to Q.

Theorem B. LetA be a nontrivial free factor system of F such that ζ(A) ≥ 3. Let Φ ∈ Out(F,A)

be fully irreducible relative to A. Then Φ acts with uniform north-south dynamics onMRC(A).
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Proof. The proof follows from Lemma 4.6.3, Proposition 4.6.4 and Proposition 4.6.5.

4.7 Summary
In this chapter, we defined relative currents and showed that a fully irreducible outer

automorphism relative toA acts with uniform north-south dynamics on a certain subspace

of the space of projectivised relative currents. In the next chapter, we will show that such an

outer automorphism also acts with north-south dynamics on a relative version of Culler-

Vogtmann’s outer space. In Chapter 6, we will establish a duality between relative currents

and trees in relative outer space.

Figure 4.1. Whitehead graph for α = cadb and α1 = abab, Example 4.2.20

Figure 4.2. Whitehead graph for α = cdb and α1 = abab, Example 4.2.20



CHAPTER 5

NORTH-SOUTH DYNAMICS ON RELATIVE

OUTER SPACE

In the surface theory, a pseudo-Anosov mapping class group element acts with uni-

form north-south dynamics on the compactified Teichmüller space. In [BFH97], Bestvina,

Feighn and Handel showed that a fully irreducible outer automorphism acts with north-

south dynamics in the interior of Culler-Vogtmann’s outer space CVn. Then in [LL03],

Levitt and Lustig showed that in fact, north-south dynamics holds for all points in the

closure of CVn. The key technical tool they introduced was a map called Q-map defined

from the boundary of F to the completion of a tree in CVn union its boundary. In this

chapter, we aim to generalize the north-south dynamics result to the action of a relative

fully irreducible outer automorphism on the closure of relative outer space, PO(F,A).

The main result of this chapter is the following:

Theorem C. LetA be a nontrivial free factor system of F such that ζ(A) ≥ 3. Let Φ ∈ Out(F,A)

be fully irreducible relative to A. Then Φ acts on PO(F,A) with uniform north-south dynamics.

5.1 Relative outer space
In [GL07], Guirardel and Levitt define relative outer space for a countable group that

splits as a free product

G = G1 ∗ . . . ∗ Gk ∗ FN

where N + k ≥ 2. In [Hor14], Horbez shows that the closure of relative outer space is

compact and characterizes the trees in the closure of relative outer space. In our setting,

G = F and it splits as F = A1 ∗ . . . ∗ Ak ∗ FN for k ≥ 0. Let A = {[A1], . . . , [Ak]} be the

associated free factor system of F.

Subgroups of F that are conjugate into a free factor in A are called peripheral sub-

groups. An (F,A)-tree is an R-tree with an isometric action of F, in which every peripheral
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subgroup fixes a unique point. A Grushko (F,A)-tree is a minimal, simplicial metric

(F,A)-tree whose set of point stabilizers is exactly the free factor system A and edge

stabilizers are trivial. Two (F,A)-trees are equivalent if there exists an F-equivariant

isometry between them. An (F,A)-tree T is small if arc stabilizers in T are either trivial, or

cyclic and nonperipheral. A small (F,A)-tree T is very small if in addition, the nontrivial

arc stabilizers in T are closed under taking roots and tripod stabilizers are trivial.

The unprojectivized relative outer space O(F,A) is the space of all equivalence classes of

Grushko (F,A)-trees. Relative outer space, denoted PO(F,A), is the space of homothety

classes of trees in O(F,A).

Example 5.1.1. (a) Let F = A1 ∗ A2. In this case, relative outer space is just a point

represented by a one edge splitting with vertex stabilizers A1 and A2 and trivial edge

stabilizer.

(b) Let F = A1 ∗Z. In this case, relative outer space is one-dimensional. A schematic is

shown in part (i) of Figure 5.1. The central vertex v in (i) corresponds to the graph

shown in (ii) and the end points of the one simplices in (i) correspond to graphs shown

in (iii).

(c) Let F = A1 ∗ A2 ∗ A3. In this case, relative outer space is unbounded with respect to

the simplicial metric.

The graph of groups decomposition of F represented in Figure 5.2 is called a relative

rose.

5.2 Preliminaries
Let Φ be a fully irreducible outer automorphism relative to A.

Notation 5.2.1. Let φ′0 : G′ → G′ be a relative train track representative of Φ, where G′ is a

marked metric graph in CVn, with filtration ∅ = G0 ⊂ G1 ⊂ . . . ⊂ Gr = G′ such that A =

F (Gr−1) and the top stratum Hr is an EG stratum with Perron-Frobenius eigenvalue λΦ >

1. Denote by Λ+
Φ the attracting lamination associated to Hr and by Λ+

Φ(G
′) its realization

in G′. Let TG′ be the universal cover of G′ and let φ′ : TG′ → TG′ be a lift of the map

φ′0 : G′ → G′ which satisfies Φ(g) ◦ φ′ = φ′ ◦ g for g ∈ F.
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Definition 5.2.2 (A-train track map). Let TG be the tree in O(F,A) obtained by equivari-

antly collapsing the maximal φ′-invariant proper forest of TG′ . Denote the collapse map by

π : TG′ → TG. See Figure 5.3. The map φ′ : TG′ → TG′ descends to a map φ : TG → TG

representing Φ. Let G = TG/F and φ0 : G → G be the corresponding map. We say φ0 is an

A-train track representative of Φ.

5.3 Stable and unstable trees
Out(F,A) acts on O(F,A) via

lT.Ψ(α) = lT(Ψ(α))

for Ψ ∈ Out(F,A) and for every conjugacy class α ∈ F, where lT(α) is the translation

length of α in T. A stable tree T+
φ of Φ is defined as follows:

T+
φ = lim

p→∞

TGφp

λ
p
Φ

.

In other words,

lT+
φ
(α) = lim

p→∞

lTG(φ
pα)

λ
p
Φ

.

The stable tree is well defined projectively and we denote the projective class by T+
Φ .

The unstable tree, denoted T−Φ , of Φ is defined to be the stable tree of Φ−1. The fact that T±Φ

do not depend on the choice of the train track map φ follows from the same arguments as

in [BFH97, Lemma 3.4] whose relative version is stated below.

Proposition 5.3.1. Let T ∈ PO(F,A). Suppose there exists a tree T0 ∈ PO(F,A), an equivari-

ant map h : T0 → T and a bi-infinite geodesic γ0 ⊂ T0 representing a generic leaf γ of Λ+
Φ such

that h(γ0) has diameter greater than 2 BCC(h). Then

(a) h(γ0) has infinite diameter in T.

(b) there exists a neighborhood V of T such that Φp(V) converges to T+
Φ uniformly as p→ ∞.

The proof of Proposition 5.3.1 is essentially the same as in the absolute case in [BFH97,

Lemma 3.4] and [LL03, Proposition 6.1]. After proving Proposition 5.3.1, our goal will be

to prove that every tree T ∈ PO(F,A) satisfies the assumptions of Proposition 5.3.1 if γ is

allowed to be either in Λ+
Φ or Λ−Φ.
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Proposition 5.3.1 (a). Fix an equivariant map µ : TG → T0 with some bounded backtracking.

Let γ0 be the tightened image of γ, a generic leaf of Λ+
Φ, under µ. Let h : T0 → T be

the F-equivariant map as given in the proposition. If AB ⊂ TG is a segment, denote by

lT(ν(AB)) the length of the tightened image of AB under ν = h ◦ µ. Let Lip(ν) be the

Lipschitz constant of ν and let BCC(ν) be the bounded backtracking constant. We have

BCC(ν) ≤ Lip(µ)BCC(µ) + Lip(h)BCC(h).

By assumption, there is a segment A0B0 in γ0 such that its image in T by h has length

greater than 2 BCC(h). Let σ be the central subsegment of h(A0)h(B0) whose length is

lT(h(A0)h(B0)) − 2 BCC(h). We can find a segment AB ⊂ γ such that its image by µ

contains A0B0 and hence its tightened image by ν contains σ. Choose m0 such that φm0(e)

contains a translate of AB for every edge e in TG. If β is any leaf segment contained in Λ+
Φ,

then lT(ν(φ
m0(β))) ≥ lT(σ)|β| where |β| is the simplicial length of β in TG.

We claim that h(γ0) has infinite diameter in T. Indeed, the attracting lamination is

given by the closure of a generic leaf, say γ0. A leaf γ ∈ γ0 if every subsegment of γ is

contained in γ0. Since γ0 is invariant under the action of φ, we have φm0(γ0) ∈ γ0. This

implies that φm0(β) is a subsegment of γ0. Thus h(γ0) has infinite diameter in T.

We have that h(γ0) has infinite diameter in T. Consequently, for every edge e ∈ TG, the

length lT(ν(φ
p(e))) tends to infinity with p. Let β be an arbitrary edge path in TG and let

d+(β) = lim
p→∞

lTG(φ
p(β))

λ
p
Φ

.

The following lemma is restating Lemma 7.1 and Lemma 7.2 in [LL03] in the relative

setting and will be used to prove Proposition 5.3.1(b).

Lemma 5.3.2. (a) There exists c > 0 such that for all β ⊂ Λ+
Φ(TG)

lim
p→∞

lT(ν(φ
p(β)))

λ
p
ΦlTG(β)

= c.

(b) Let β be an arbitrary edge path in TG. Then

lim
p→∞

lT(ν(φ
p(β)))

λ
p
Φd+(β)

= c

and the convergence is uniform, that is, it is independent of β.

Proof. The proofs are essentially the same as for [LL03, Lemma 7.1, 7.2]. We provide the

proofs here for completeness.
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(a) For an edge e in TG let Np
e be the number of occurrences of e in φp(β). Since transition

matrix of φ0 : G → G is primitive, limp→∞ Np
e /λ

p
Φ has the form cekβ where ce depends

only on e and kβ depends on β. Since lTG(φ
p(β)) = λ

p
ΦlTG(β) = ∑ Np

e lTG(e), where the

sum is taken over orbits of edges in TG. Up to normalization, we have kβ = lTG(β). We

have that

lim
p→∞

Np
e

λ
p
ΦlTG(β)

= ce.

Given ε > 0, fix p0 such that lT(ν(φ
p0(β))) > (1/ε)BCC(ν). This is possible because

by Proposition 5.3.1(a), a generic leaf of Λ+
Φ is unbounded in T. Consider φp+p0(β)

which is a union of translates of φp0(e), with φp0(e) appearing Np
e times. We get the

following:

∑ Np
e (lT(ν(φ

p0(e)))− 2 BCC(ν)) ≤ lT(ν(φ
p+p0(β))) ≤∑ Np

e lT(ν(φ
p0(e))).

Dividing throughout by λ
p+p0
Φ lTG(β), we get

(1− 2ε)∑
ce

λ
p0
Φ

lT(ν(φ
p0(e))) ≤ lT(ν(φ

p+p0(β)))

λ
p+p0
Φ lTG(β)

≤∑
ce

λ
p0
Φ

lT(ν(φ
p0(e))).

We claim that lT(ν(φ
p0(e)))/λ

p0
Φ is bounded which implies that the limit in the state-

ment of the lemma exists. Indeed, we have lTG(φ
p0(e)) = λ

p0
Φ lTG(e). Under the map ν,

we get that lT(ν(φ
p0(e))) ≤ λ

p0
Φ lTG(e)Lip(ν).

(b) Write β as a concatenation β1 · β2 · . . . · βk such that each βi is a subsegment (or a trans-

late of a subsegment) of Λ+
Φ(TG). The maximum amount of cancellation under the map

φp is given by λ
p
ΦlTG(β)− lTG(φ

p(β)) which is less than or equal to λ
p
Φ(lTG(β)− d+(β)).

Also if φp(βi) and φp(βi+1) overlap in a segment of length D, then the cancellation

between their tightened images under ν in T is bounded by D Lip(ν)+ 2 BCC(ν). From

this, we obtain,∣∣∣∣∣lT(ν(φ
p(β)))−∑

i
lT(ν(φ

p(βi)))

∣∣∣∣∣ ≤ λ
p
Φ(lTG(β)− d+(β))Lip(ν) + k BCC(ν).

Dividing by λ
p
ΦlTG(β) and using part(a), we get

lim
p→∞

∣∣∣∣∣ lT(ν(φ
p(β)))

λ
p
ΦlTG(β)

−∑
i

c
lTG(βi)

lTG(β)

∣∣∣∣∣ ≤
(

1− d+(β)

lTG(β)

)
Lip(ν).
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Replacing β by φp0(β), we have

lim
p→∞

∣∣∣∣∣ lT(ν(φ
p+p0(β)))

λ
p
ΦlTG(φ

p+p0(β))
− c

∣∣∣∣∣ ≤
(

1− d+(φp0(β))

lTG(φ
p0(β))

)
Lip(ν).

We have λ
p0
Φ d+(β) = d+(φp0(β)). Thus for p0 large, d+(φp0 (β))

lTG (φ
p0 (β))

=
λ

p0
Φ d+(β)

lTG (φ
p0 (β))

is close to 1.

Thus we get the desired limit. Also notice that the convergence only depends on the

Lipschitz constant of ν.

Proof of Proposition 5.3.1(b). Let g ∈ F be a nonperipheral conjugacy class. For n ≥ 1, let βn

be a fundamental domain for the action of gn ∈ F on TG. Let ||g||T be the translation length

of g in T. Since lT(ν(φ
p(βn)))− 2 BCC(ν) ≤ ||Φp(gn)||T = ||gn||Tφp ≤ lT(ν(φ

p(βn))) and

d+(βn) = ||gn||T+
Φ

, by Lemma 5.3.2, we get

||gn||Tφp

cλ
p
Φ
→ ||gn||T+

Φ
as p→ ∞.

Since ||g||T = limn→∞ ||gn||T/n, we get that T converges to T+
Φ under forward iteration by

Φ.

For T′ close to T, there exists h′ : T0 → T′, linear on edges such that images of edges

have approximatey the same length in T′ as in T. Thus Lip(h) is close to Lip(h′) and thus

Lip(ν′) is close to Lip(ν). Since the convergence in Lemma 5.3.2(b) depends only on the

lipschitz constant of ν, we can find a small neighborhood V of T where the convergence is

uniform.

Our goal now is to prove that every tree T ∈ PO(F,A) satisfies the assumptions of

Proposition 5.3.1 if γ is allowed to be either in Λ+
Φ or Λ−Φ. We prepare ourselves for this

task by proving some results about Whitehead graphs, transverse coverings andQmap in

the next three sections which will then be put together in Section 5.7 to complete the proof

of Theorem C.

5.4 Relative Whitehead graph
The main lemma in this section is Lemma 5.4.6 which is used in the proof of Lemma 5.7.1.

We first recollect some observations in the absolute case about the Whitehead graph for a

fully irreducible automorphism. We then define a relative Whitehead graph and make

similar observations for a fully irreducible automorphism relative to A.
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Let ψ : Γ→ Γ be a train track representative of a fully irreducible automorphism where

Γ ∈ CVn and let Λ+
ψ be the attracting lamination.

Definition 5.4.1 (Whitehead graph [BFH97]). At a vertex v of Γ, the Whitehead graph, de-

noted Wh(v), is defined as follows: the vertices are given by the outgoing edges incident

at v and two vertices are joined by an edge if the corresponding outgoing edges in Γ form

a Λ+
ψ -legal turn, that is, there is a ψ-iterate of an edge of Γ that crosses that turn.

If ψ(v) = w where v, w are vertices in Γ, then ψ induces a simplicial map from Wh(v)

to Wh(w).

Definition 5.4.2 ([BFH97]). A finitely generated subgroup H of F carries a lamination Λ

if there exists a marked metric graph Γ0, an isometric immersion i : ΓH → Γ0 with

π1(i(ΓH)) = H and an isometric immersion l : R → ΓH such that i ◦ l is a generic leaf

of Λ(Γ0).

Proposition 5.4.3 ([BFH97, Lemma 2.1, Proposition 2.4]). (a) At every vertex of Γ, the White-

head graph is connected.

(b) Suppose π : Γ′ → Γ is a finite sheeted covering space and ψ′ : Γ′ → Γ′ is a lift of ψ. Then the

transition matrix of ψ′ is primitive and the Whitehead graph of ψ′ at a vertex v of Γ′ is the lift

of the Whitehead graph of ψ at π(v) and in particular is connected.

(c) If a finitely generated subgroup H of F carries Λ+
ψ , then H is a finite index subgroup of F.

We now look at an example of the Whitehead graph of a fully irreducible automor-

phism relative to A to see why a notion of a relative Whitehead graph is needed.

Example 5.4.4. Let F4 = 〈a, b, c, d〉, A = {[〈a, b〉]} and Φ a relative automorphism be given

by

Φ(a) = ab, Φ(b) = b, Φ(c) = cad, Φ(d) = dcad.

Let φ′0 : G′ → G′ be a relative train track representative of Φ where G′ is the rose on four

petals labeled a, b, c, d and vertex v. The Whitehead graph at v is shown in Figure 5.4.
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The Whitehead graph at v is disconnected with two gates {c, c, a, d} and {a, b, b, d}. If

all the directions coming from the rose corresponding to 〈a, b〉 are identified, then we do

get a connected graph.

We will now define a relative Whitehead graph. Let φ0 : G → G be the A-train track

representative of a relative fully irreducible automorphism Φ from Definition 5.2.2, with

the attracting lamination Λ+
Φ.

Definition 5.4.5 (Relative Whitehead graph). Let v be a vertex of G of valence greater than

one.

• If v has trivial stabilizer, then the relative Whitehead graph is defined as in Defini-

tion 5.4.1.

• If v has a nontrivial stabilizer, then do the following: attach a rose representing the

vertex stabilizer at v, construct the Whitehead graph as in Definition 5.4.1 and then

identify all the directions coming from the attached rose. Thus the vertices of the

relative Whitehead graph are the outgoing edges incident to v and a vertex, denoted

vA, representing the nontrivial vertex stabilizer A.

In Example 5.4.4, after collapsing the maximal invariant subgraph of G′, we get a

graph G which is a rose with two petals and vertex stabilizer A = 〈a, b〉. The relative

Whitehead graph at the vertex of G has vertices corresponding to c, c, d, d, vA and is shown

in Figure 5.5.

Before stating the next lemma, let’s look at two examples of covering spaces for the

relative rose, one by a finite index subgroup and another by an infinite index subgroup.

Let F6 = 〈a, b, c, d, e, f 〉 and A = {[〈a, b〉], [〈c, d〉]}.

• Let H = 〈a, b, e f 〉 be a subgroup of F. The (infinite sheeted) cover of the relative rose

corresponding to H is shown in Figure 5.6:

• A finite sheeted cover whose fundamental group contains H = 〈a, b, e f 〉 is shown in

Figure 5.7:

Lemma 5.4.6. Let φ0 : G → G be an A-train track representative of a fully irreducible automor-

phism relative to A.
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(a) The relative Whitehead graph of φ0 is connected at each vertex of G.

(b) Suppose p : G′′ → G is a finite sheeted covering space such that for every vertex v of G′′,

p∗(Stab(v)) = Stab(p(v)), and φ′′ : G′′ → G′′ is a lift of φ0 : G → G. Then the relative

Whitehead graph of φ′′ at a vertex v of G′′ is the lift of the relative Whitehead graph of φ at

p(v) and in particular is connected.

(c) Let H be a Φ-invariant, finitely generated subgroup of F such that for every [A] ∈ A, H ∩ A

equal to A, up to conjugation. If H carries Λ+
Φ, then H has finite index in F.

Proof. (a) The same proof as in the absolute case works by doing a blow-up construction

([BH92, Proposition 4.5]) at a vertex. We give a proof here for completeness. Suppose

the relative Whitehead graph at a vertex of G is not connected. For simplicity, let’s

first assume G has only one vertex v with valence greater than one. Then this vertex

is fixed under φ. Construct a new graph G by first deleting the vertex v and adding a

new vertex vi for each component of the relative Whitehead graph. Then connect all

the new vertices to a common vertex v by edges Ei. Thus G is a blow-up of G at v.

There is a homotopy equivalence φ : G → G such that no leaf of the lamination crosses

the new edges Ei. The fundamental group of the complement of ∪Ei gives a nontrivial

Φ-invariant free factor system containing A, which is a contradiction.

If G has more than one vertex of valence greater than one, then do the blow-up con-

struction at all the vertices of valence greater than two and repeat the argument.

(b) The graph G′′ gets a legal turn structure from the lift of G and it gets a legal turn

structure from the map φ′′. It needs to be shown that a turn in G′′ whose image in G is

Λ+
Φ-legal is in fact crossed by a lift of a leaf of Λ+

Φ to G′′.

(i) Let a′′, b′′ be two edges incident at a vertex v′′ of G′′ where p(a′′) = a and p(b′′) =

b are such that ab is a legal turn at p(v′′) = v in G. The same proof as [BFH97,

Lemma 2.1] works in this case. We present a proof here for completeness. Since

the transition matrix of φ0 : G → G is primitive, after passing to a power, assume

that φ0(a) = . . . ab . . .. Thus a has a fixed point x. Since φ0 is a homotopy

equivalence, φ′′ permutes the set p−1(x). After passing to a power, assume that

φ′′ also has a fixed point on a′′. Thus a′′ maps over a′′b′′ under φ′′. Since the
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image under φ′′ of an edge of G′′ crosses the turn formed by a′′ and b′′, a leaf of

the lamination associated to φ′′ (which is the lift of Λ+
Φ) crosses that turn.

(ii) Let v be a vertex of G′′ with nontrivial vertex stabilizer. Let a′′ be an edge at v′′

such that a = p(a′′) and it forms a Λ+
Φ-legal turn with the vertex stabilizer of

p(v′′) = v, that is, after passing to a power φ0(e) = . . . aw . . . for some edge e and

some path w in a blow-up of the vertex stabilizer of v. After passing to a further

power, assume that φ0(a) = . . . aw . . .. Thus a has a fixed point. Now by the same

argument as in the previous case, φ′′(a′′) maps over a′′w′′.

(c) Let ΓH be the core of the covering space of G corresponding to a subgroup H as in the

statement of the lemma. Here ΓH is a finite graph. Let i : ΓH → G be the isometric

immersion. If H has infinite index in F, then add more vertices and edges to ΓH to

complete it to a finite sheeted covering Γ′H of G. Then pass to a further finite sheeted

cover Γ′′H such that φ0 : G → G lifts to a map φ′′ : Γ′′H → Γ′′H. By the previous part,

the relative Whitehead graph is connected at every vertex of Γ′′H. Therefore, lifts of the

leaves of Λ+
Φ(G) cross every edge of Γ′′H. Under the projection p : Γ′′H → Γ′H, the edges

added to ΓH are crossed by leaves of Λ+
Φ so H does not carry Λ+

Φ.

5.5 Transverse covering
Let φ0 : G → G be an A-train track representative of a relative fully irreducible

automorphism Φ. Let φ : TG → TG be a lift to the universal cover TG of G. In this section,

we define a transverse covering for TG which will be used in the proof of Lemma 5.6.12.

Define an equivalence relation on Λ+
Φ(TG) as follows: two leaves γ, γ′ are equivalent

if there is a sequence of leaves γ = γ1, γ2, . . . , γn = γ′ such that γi and γi+1 overlap in a

nontrivial edge path in TG. Let Y(Λ+
Φ) = {Yi}i∈I be the set of subtrees of TG such that Yi is

the realization of leaves of Λ+
Φ(TG) in an equivalence class.

Definition 5.5.1 (Closed subtree [Gui04, Definition 2.4]). A subtree Y of a tree T is called

closed if the intersection of Y with any segment of T is either empty or a segment of T.

Definition 5.5.2 (Transverse Covering [Gui04, Definition 4.6]). A transverse covering of

an R-tree T is a family Y of nondegenerate closed subtrees of T such that every arc in T is
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covered by finitely many subtrees in Y and any two distinct subtrees in Y intersect in at

most one point.

Lemma 5.5.3. The set Y(Λ+
Φ) forms a transverse covering of TG.

Proof. Since an element Y of Y(Λ+
Φ) contains a leaf of Λ+

Φ, Y(Λ+
Φ) is a covering of TG. We

now need to check that every arc of TG is covered by finitely many Yi. Indeed, if an edge

of TG is covered by multiple Yi, then by the definition of the equivalence relation, they are

connected. Therefore, an edge of TG is covered by one subtree Yi and a finite arc is covered

by finitely many subtrees in Y(Λ+
Φ). Also by definition, two distinct subtrees Yi, Yj intersect

in at most one point.

Example 5.5.4. Recall the automorphism Φ from Example 5.4.4 given by Φ(a) = ab, Φ(b) =

b, Φ(c) = cad, Φ(d) = dcad. Let φ′ : TG′ → TG′ be a relative train track representative of Φ.

Say two leaves in Λ+
Φ(TG′) are equivalent if they overlap in an edge in the top EG stratum.

There are two different equivalence classes of leaves at a vertex in the universal cover TG′ .

See Figure 5.8.

By collapsing the edges with labels a and b in G′, we get a relative rose G with two

petals and a nontrivial vertex stabilizer. The covering of TG′ in Figure 5.8 descends to a

transverse covering of TG. See Figure 5.9.

5.6 Qmap
In [LL03], Levitt and Lustig define a map called the Q map from the boundary of F

to a tree with dense orbits in CVn. This map is the key tool used to prove north-south

dynamics for a fully irreducible automorphism on the closure of outer space. We will

follow the same techniques to get a relative result. The main proposition in this section is

Proposition 5.6.11.

Let T0 be a metric simplicial F-tree. Let v(T0) denote the volume of the quotient graph

T0/F. Let T be a metric minimal very small F-tree and let T be the metric completion of

T. Let T be an (F,A)-tree. The boundary of T, denoted ∂T, is defined as the set of infinite

rays ρ : [0, ∞)→ T up to an equivalence. Namely, two rays are equivalent if they intersect

along a ray. If T0 is a Grushko (F,A)-tree, then there is a canonical identification between

∂F \ ∂A (see Definition 4.1.4) and ∂T0. Denote by ρ a ray in T0 representing the point X
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in ∂T0. Given an equivariant map h : T0 → T, let r = h(ρ). We say X is T-bounded if r

is bounded in T (this does not depend on the choice of h as shown in [LL03, Proposition

3.1]). If r is unbounded, then we get a ray representing a point in ∂T.

Let h : T0 → T be a continuous map between R-trees. We say h has bounded cancellation

property if there exists a constant C ≥ 0 such that the h-image of any segment pq in T0 is

contained in the C neighborhood of the geodesic joining h(p) and h(q) in T. The smallest

such C is called the bounded cancellation constant for h, denoted BCC(h). The following

fact about BCC for very small trees is a generalization of Cooper’s bounded cancellation

lemma [Coo87], and can be found in [BFH97, Lemma 3.1] and [GJLL98].

Lemma 5.6.1. Let T be an R-tree with a minimal very small action of F. Let T0 be a free simplicial

F-tree, and h : T0 → T an equivariant map. Then h has bounded cancellation, with BCC(h) ≤

Lip(h)v(T0), where Lip(h) is the Lipschitz constant for h.

Proposition 5.6.2 (Small BCC). Let T ∈ PO(F,A) be a minimal F-tree with dense orbits and

trivial arc stabilizers. Given ε > 0, there exists an (F,A)-tree T0 ∈ PO(F,A), v(T0) < ε, and

an equivariant map h : T0 → T whose restriction to each edge is isometric and BCC(h) < ε.

The proof of the above proposition when T ∈ CVn and T0 ∈ CVn in [LL03, Proposition

2.2] starts with an equivariant map h : T0 → T which is isometric on edges. Then given an

edge e of T0, one replaces h by h′ : T′0 → T with v(T′0) ≤ v(T0)− 1/6|e|. If T ∈ PO(F,A),

then start with an equivariant map h : T0 → T isometric on edges where T0 ∈ PO(F,A)

and do the same argument.

Proposition 5.6.3 (Q map). Let T ∈ PO(F,A) be a minimal (F,A)-tree with dense orbits and

trivial arc stabilizers. Suppose X ∈ ∂F \ ∂A is T-bounded. Then there is a unique pointQ(X) ∈ T

such that for any equivariant map h : T0 → T and any ray ρ representing X in T0 ∈ PO(F,A),

the pointQ(X) belongs to the closure of h(ρ) in T. Also, every h(ρ) is contained in a 2 BCC(h)-ball

centered at Q(X), except for an initial part.

In [LL03, Proposition 3.1], the above lemma is proved for any tree with dense orbits in

the closure of outer space hence it applies to our setting as well. Since the free factors in A

are elliptic in T, take the tree T0 in the original proof to be such that T0 ∈ PO(F,A).
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Remark 5.6.4 ([LL03, Remark 3.7]). If Q(X) = Q(X′) for a bi-infinite geodesic γ with end

points X, X′, then h(γ) lies in a 2 BCC(h)-neighborhood of Q(X).

Example 5.6.5. Let H be a vertex stabilizer in T and X ∈ ∂H ⊂ ∂F. Then clearly, X is

T-bounded and Q(X) is the point of T fixed by H. Another less trivial example is as

follows: let L be an arational lamination on a surface with boundary. Let T be the dual

tree to the lamination. Then in the universal cover of the surface for {X, X′} ∈ L, the point

Q(X) = Q is the point in T to which the leaf collapses as the dual tree is formed.

Definition 5.6.6 (Dual lamination of a tree [CHL08b]). Let T be a tree with dense orbits in

∂CVn.

LQ(T) := {{X, X′} ∈ ∂2F| Q(X) = Q(X′)}.

It is shown in [CHL08b] that LQ(T) is the same as L(T) (see Section 2.5 for definition).

For an algebraic lamination L, let support s(L) ⊂ ∂F \ ∂A be the set of all X ∈ ∂F such

that L contains some pair {X, X′}. The laminations LQ(T+
Φ ) and LQ(T−Φ ) are F-invariant

and Φ-invariant.

Definition 5.6.7 (Eigenray). Let f0 : τ → τ be a relative train track map or anA-train track

map. Let f : Tτ → Tτ be a lift of f0 to the universal cover Tτ of τ. Let v0 be a fixed vertex

in τ with a fixed direction e, where e is an edge in an EG stratum. Let v be a lift of v0 to Tτ.

Then a lift based at v of the ray limn→∞ f n
0 (e) is called an eigenray of f based at v, denoted

by Xv ∈ ∂Tτ.

Recall from Definition 5.2.2 the A-train track map φ0 : G → G representing Φ and a lift

to the universal cover φ : TG → TG. Let EΛ+
Φ be the set of all eigenrays of φ.

Remark 5.6.8. In the absolute case of a fully irreducible automorphism, any eigenray is

in fact a half-leaf of Λ+
Φ, that is, it is contained in a generic leaf of Λ+

Φ. Thus it suffices

to consider points in s(Λ+
Φ) for the proof of [LL03, Lemma 5.2]. In the relative case, an

eigenray based at a vertex with trivial stabilizer is a half-leaf of Λ+
Φ but an eigenray based

at a vertex with nontrivial vertex stabilizer might not be a half-leaf of Λ+
Φ. It will be a

half-leaf of a diagonal leaf of LQ(T−Φ ) as explained below.

Lemma 5.6.9. s(LQ(T−Φ )) contains s(Λ+
Φ) and EΛ+

Φ.
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Proof. The statement that s(LQ(T−Φ )) contains s(Λ+
Φ) follows from Lemma 6.6.1 where it is

shown that LQ(T−Φ ) contains Λ+
Φ. Let Rv : R+ → TG be a ray representing an eigenray Xv

of φ based at a vertex v of TG with nontrivial stabilizer. Let Rv(∞) = Xv ∈ ∂TG, which is

identified with a point in ∂F, also denoted by Xv. Let ν : TG → T−Φ be an F-equivariant

map.

We first show that ν(Rv) is T−Φ -bounded. Suppose not. Then for every C > 0 and

every t0 > 0, there exist t2 > t1 > t0 such that dT−Φ
(ν(Rv(t2)), ν(Rv(t1))) > C. Now

choose C > 2BCC(ν). Since Rv is an eigenray, a generic leaf l+ of Λ+
Φ crosses the segment

σv = [Rv(t2), Rv(t1)] of Rv. By Remark 5.6.4, the ν image of l+ = {X, X′} is in a 2 BCC(ν)

neighborhood of Q(X) = Q(X′). This implies that the diameter of σv under ν is less than

2 BCC(ν), which is a contradiction.

Next we want to prove that Q(Xv) = ṽ where ṽ is the point in T−Φ whose stabilizer

contains the stabilizer of v. Given ε > 0, let h : T0 → T−Φ be an F-equivariant map with

BCC(h) < ε as given by Proposition 5.6.2. Let µ : TG → T0 be an F-equivariant map

and let ν = h ◦ µ. Let Rv = µ(Rv). Then by Proposition 5.6.3, h(Rv) is contained in a

2 BCC(h)-neighborhood of Q(Xv) except an initial segment. Suppose Q(Xv) 6= ṽ. There

exists a g ∈ F \ A for which the following is true: let σg be the subsegment of Rv joining

v and gv such that the length of σg := µ(σg) is nonzero and h(σg) is not contained in

a 2 BCC(h)-neighborhood of Q(Xv). Since Rv is an eigenray, it contains translates of the

segment σg. There exists some translate σ′g of σg joining points u, gu on Rv such that h(σ′g),

where σ′g := µ(σ′g), is in a 2 BCC(h)-neighborhood ofQ(Xv) because h(Rv) is T−Φ -bounded.

But g acts by isometries on T−Φ so the diameters of h(σg) and h(σ′g) cannot be different.

Thus ṽ is in a 2 BCC(h)-neighborhood of Q(Xv). Since ε, which bounds BCC(h), was

arbitrary, we have that Q(Xv) = ṽ.

Now we show that for every vertex v of TG with nontrivial stabilizer, there are at least

two eigenrays Xv, X′v based at v. This will imply that {Xv, X′v} ∈ LQ(T−Φ ) and hence EΛ+
Φ ⊂

s(LQ(T−Φ )). If the image of v in G = TG/F has at least two gates, then each gate will have

a fixed direction which gives different eigenrays based at v. If there is only one gate at

v, then in TG the orbit of a given ray Rv under the stabilizer of v gives distinct eigenrays

based at v.
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Remark 5.6.10. From the above proposition, the following two types of leaves are contained

in LQ(T−Φ ):

(a) leaves of the lamination Λ+
Φ, which we call Λ+

Φ-leaves, and,

(b) leaves obtained by concatenating two eigenrays, which are called diagonal leaves.

The next proposition, which is the relativization of [LL03, Proposition 5.1], is the main

technical proposition of this section.

Proposition 5.6.11. If T ∈ PO(F,A) is a minimal (F,A)-tree with dense orbits and trivial arc

stabilizers, then at least one of the following is true:

(a) there exists a generic leaf {X, X′} of Λ+
Φ or Λ−Φ such that Q(X) 6= Q(X′),

(b) there exists a diagonal leaf {X, X′} of LQ(T−Φ ) or LQ(T+
Φ ) such that Q(X) 6= Q(X′).

Since diagonal leaves are obtained by concatenating eigenrays, (b) implies (a) in the

above proposition. Morally, the above proposition says that if T ∈ PO(F,A) is a minimal

(F,A)-tree with dense orbits such that LQ(T) contains both LQ(T+
Φ ) and LQ(T−Φ ), then

T is in fact a trivial tree. The proof of the proposition depends on Lemma 5.6.13 and

Lemma 5.6.14. We need the following lemma for the proof of Lemma 5.6.13.

Lemma 5.6.12. If e, e′ are edges with a common initial vertex v in TG, then there exists a sequence

e = e0, e1, . . . , ek = e′ of distinct edges starting at v such that every edge path eiei+1 is crossed by

either a Λ+
Φ-leaf or a diagonal leaf of LQ(T−Φ ).

Proof. If the vertex stabilizer of v is trivial, then by Lemma 5.4.6, the Whitehead graph

of Λ+
Φ is connected at the vertex v. Hence the lemma follows by using the Λ+

Φ-leaves

of LQ(T−Φ ). Now let’s assume that the vertex stabilizer of v is nontrivial. Consider the

transverse covering Y(Λ+
Φ) of TG from Section 5.5. Since an element Y of Y(Λ+

Φ) contains

a generic leaf of Λ+
Φ, Y crosses the F-orbit of every edge in TG. Let Ye and Ye′ be the elements

of Y(Λ+
Φ) that contain e and e′, respectively. Let E, E′ be the set of edges with initial vertex

v which are in Ye and Ye′ , respectively.

If Ye is equal to Ye′ , then the lemma follows by using Λ+
Φ-leaves in LQ(T−Φ ). Suppose

Ye 6= Ye′ . Let p : TG → G be the quotient map by the action of F. Every gate at the vertex
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π(v) has a fixed direction. Thus we can find an eigenray X in TG based at v with initial

edge f in E (since Ye crosses F-orbit of every edge at v). Similarly, get an eigenray X′ based

at v and initial edge f ′ in E′. The diagonal leaf {X, X′} of L(T−Φ ) crosses f f ′. Now we have

a sequence of edges e = e0, e1, . . . , el = f , el+1 = f ′, el+2, . . . , ek = e′ starting at v such that

every edge path eiei+1 for i 6= l is crossed by a Λ+
Φ-leaf and elel+1 is crossed by a diagonal

leaf.

Lemma 5.6.13. Suppose Q(X) = Q(X′) for every generic leaf {X, X′} of Λ+
Φ and for every

diagonal leaf {X, X′} of LQ(T−Φ ). Let Z, Z′ belong to s(Λ+
Φ) ∪ EΛ+

Φ. Then the distance in T

between Q(Φp(Z)) and Q(Φp(Z′)) tends to 0 as p→ +∞.

Proof. We follow the proof of Lemma 5.2 in [LL03]. If Z is in s(Λ+
Φ), then there exists a ray

ρ in TG contained in Λ+
Φ(TG) with end point Z. If Z is in EΛ+

Φ, then there exists an eigenray

ρ of φ with end point Z. Let’s suppose Z ∈ EΛ+
Φ and Z′ ∈ s(Λ+

Φ) with corresponding rays

ρ and ρ′ to exhibit the proof in both cases. Let e, e′ be the initial edges of the two rays ρ

and ρ′. By Lemma 5.6.12, we can find a sequence of edges e = e0, e1, e2, . . . , ek = e′, in TG

connecting e to e′ such that the finite subpaths γi = eie′i are subpaths of either Λ+
Φ-leaves or

diagonal leaves of LQ(T−Φ ) where e′i is the same as ei+1 but not necessarily with the same

orientation. Note that the union of γi and γi+1 is either a tripod or a segment of length 3.

The rest of the proof follows exactly as in [LL03, Lemma 5.2].

The following lemma is the relativization of [LL03, Proposition 5.3]. Recall the A-train

track map φ0 : G → G, and a lift to the universal cover φ : TG → TG representing Φ where

TG ∈ PO(F,A).

Lemma 5.6.14. Suppose Q(X) = Q(X′) for every generic leaf {X, X′} of Λ+
Φ and for every

diagonal leaf {X, X′} of LQ(T−Φ ). Then there exist maps ip : TG → T, p ∈ N such that ip ◦ φp is

F-equivariant and BCC(ip)→ 0 as p→ ∞.

Proof. Assume that there are no vertices with trivial stabilizer in TG. If there were some

such vertices, then collapse a tree in TG/F and factor through the quotient of TG. For a

representative v of an orbit of vertices in TG, fix an eigenray Xv in EΛ−Φ such thatQ(Xv) =

ṽ, where ṽ is a point in T whose stabilizer contains the stabilizer of v. Then F-equivariantly
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assign an eigenray to every vertex in the orbit of v. In this way, assign an eigenray to each

vertex of TG.

We will now define a map ip : TG → T and show that ip(e) → 0 as p → ∞ for every

edge e of TG. For a vertex v ∈ TG, set ip(v) = Q(Φ−p(Xv)) and extend linearly on edges.

Now for an edge e of TG with end points v, u, we have, by applying Lemma 5.6.13 to

Φ−1, that distance between ip(v) = Q(Φ−p(Xv)) and ip(u) = Q(Φ−p(Xu)) goes to zero as

p → ∞. Thus ip(e) → 0 which implies that BCC(ip) → 0. The map ip satisfies a twisted

equivariance relation g ◦ ip = ip ◦Φp(g) for all g ∈ F.

Also ip ◦ φp is F-equivariant. Indeed,

g ◦ ip ◦ φp := g ◦ jp ◦ π ◦ φp = jp ◦Φp(g) ◦ φp ◦ π

= jp ◦ φp ◦ g ◦ π = jp ◦ π ◦ φp ◦ g = ip ◦ φp ◦ g.

Thus we have maps ip as in the lemma.

Proof of Proposition 5.6.11. Assume by contradiction that Q(X) = Q(X′) for every generic

leaf {X, X′} of Λ+
Φ and Λ−Φ and every diagonal leaf of LQ(T−Φ ) and LQ(T+

Φ ). Let e be an edge

in TG and let γ ∈ Λ+
Φ be a leaf that crosses e. Then φp(γ) is also a leaf of the lamination. By

assumption, the end points of γ map to the same point under the Q map. By Proposition

5.6.3 and Remark 5.6.4, (ip ◦ φp)(γ) is contained in a ball of radius 2 BCC(ip ◦ φp) in T. We

have BCC(ip ◦ φp) ≤ BCC(ip) + Lip(φp)BCC(φp). Since γ is a leaf of Λ+
Φ, φp restricted to

γ has no cancellation thus (ip ◦ φp)(γ) is in fact contained in a ball of radius 2 BCC(ip) in

T. Thus the diameter of (ip ◦ φp)(e) in T is bounded by 4 BCC(ip).

Now let u be a conjugacy class, represented by a loop of edge-length k in G = TG/F.

Since ip ◦ φp is F-equivariant, the translation length of u in T is bounded by 4k BCC(ip).

Since BCC(ip) → 0 as p → ∞, every u has zero translation length in T, which is a

contradiction.

5.7 Main theorem
We will now put together the results from Section 5.4 and Section 5.6 to prove the

following lemma, which shows that the conditions mentioned in Proposition 5.3.1 are

satisfied by all trees in PO(F,A) if γ is allowed to be a leaf of Λ+
Φ or Λ−Φ.
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Lemma 5.7.1. Let T ∈ PO(F,A). Then there exists a tree T0 ∈ PO(F,A), an equivariant map

h : T0 → T and a bi-infinite geodesic γ0 ⊂ T0 representing a generic leaf γ of Λ+
Φ or Λ−Φ such that

h(γ0) has diameter greater than 2 BCC(h).

Proof. There are three cases to consider for a tree T in PO(F,A).

• T has dense orbits (which implies that arc stabilizers are trivial by [LL03, Lemma

4.2]): Proposition 5.6.11 provides either a generic leaf {X, X′} in Λ+
Φ or Λ−Φ with

Q(X) 6= Q(X′), or it provides an eigenray Xv ∈ EΛ+
Φ or EΛ−Φ based at a vertex v

of TG such that Q(Xv) 6= ṽ, where ṽ is the vertex of T containing the stabilizer of v.

Choose h : T0 → T with 2 BCC(h) < d(Q(X),Q(X′)) or 2 BCC(h) < d(Q(Xv), ṽ)

using Proposition 5.6.2. In the first case, let γ0 be the geodesic joining end points cor-

responding to X, X′ in T0. In the second case, there exists a subsegment of an eigenray

Rv corresponding to Xv whose diameter in T is at least dT(Q(Xv), ṽ). Choose γ0 to

be any generic leaf (of either Λ+
Φ or Λ−Φ) crossing that subsegment.

• T does not have dense orbits and is also not simplicial: then T contains simplicial parts

and also subtrees Tv with the property that some subgroup Gv ⊂ F acts with dense

orbits on Tv. Let π : T → T′ be a collapse map such that T′ has dense orbits. Choose

γ0 as in the previous case, using T′. Then by Proposition 5.3.1, γ0 is unbounded in T′

and hence it is T-unbounded. The map h : T0 → T may be chosen arbitrarily.

• T is simplicial: we want to show that a generic leaf of Λ+
Φ is unbounded in T. We need

to show that a tail of a generic leaf of Λ+
Φ or Λ−Φ does not live in ∂B for any vertex

stabilizer B. By [GL95, Corollary III.4], vertex stabilizer in a tree in CVn is finitely

generated and has infinite index in F. Also given T in PO(F,A), for every [A] ∈ A,

a vertex stabilizer in T either contains the full free factor A or intersects it trivially.

By Lemma 5.4.6, a generic leaf of the attracting lamination cannot be carried by a

vertex stabilizer of T, therefore it is unbounded in T. One can choose h : T0 → T

arbitrarily.

Theorem C. Let A be a nontrivial free factor system such that ζ(A) ≥ 3. Let Φ ∈ Out(F,A)

be fully irreducible relative to A. Then Φ acts on PO(F,A) with uniform north-south dynamics:
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there are two fixed points T+
Φ and T−Φ and any compact set that does not contain T−Φ (T+

Φ ) uniformly

converges to T+
Φ (T−Φ ) under Φ(Φ−1)-iterates .

Proof. By Lemma 5.7.1 and Proposition 5.3.1, every T in PO(F,A) converges either to

T+
Φ under forward iterates or to T−Φ under backward iterates. We know that T+

Φ is locally

attracting and T−Φ is locally repelling. Thus given a tree T 6= T−Φ , the set of its limit points

under forward iterates cannot contain the repelling point T−Φ and hence T converges to T+
Φ .

Similarly, a tree T 6= T+
Φ under backward iterates converges to T−Φ . Since PO(F,A) is a

compact space, by [HK53], pointwise north-south dynamics implies uniform north-south

dynamics.

5.8 Summary
Now we know that a fully irreducible outer automorphism relative to A acts with

uniform north-south dynamics on both the relative outer space PO(F,A) and a subspace

MRC(A) of the space of projectivized relative currents. In the next chapter, we will see

how relative currents and trees in relative outer space act as dual to each other. We will

also see that the duality between the fixed points in PO(F,A) andMRC(A) is especially

nice.

(i)
(ii) (iii)

Figure 5.1. Relative outer space
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Figure 5.2. Relative rose

Figure 5.3. Collapse map π

Figure 5.4. Whitehead graph for Example 5.4.4
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Figure 5.5. Relative Whitehead graph for Example 5.4.4

Figure 5.6. Infinite sheeted cover

Figure 5.7. Finite sheeted cover
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Figure 5.8. Three different equivalence classes in TG′

Figure 5.9. Different equivalence classes in TG



CHAPTER 6

INTERSECTION FORM

Given two homotopy classes of simple closed curves on a surface, there is a well-

defined notion of geometric intersection number of the two curves. Such curves are special

examples of measured geodesic laminations. Thurston extended the notion of geometric

intersection number between curves to a pair of measured geodesic laminations. Using

this intersection number, the space of measured geodesic laminations can be viewed as its

own dual space. In [KL09], Kapovich and Lustig showed the space of measured currents

for F acts like a dual space to the closure of outer space. The goal of this chapter is to

establish a similar duality between the space of relative currents and relative outer space

(see Section 6.8).

6.1 Intersectin form for outer space and measured currents
In [KL09], Kapovich and Lustig established an intersection form between cvn, the clo-

sure of unprojectivized outer space and MC(F), the space of measured currents. The

precise statement is as follows:

Theorem 6.1.1 ([KL09, Theorem A]). There is a unique Out(F)-invariant, continuous length

pairing that is R≥0 homogeneous in the first coordinate and R≥0 linear in the second coordinate.

〈·, ·〉 : cvn ×MC(F)→ R≥0

Further, 〈T, ηg〉 = lT(g) for all T ∈ cvn and all rational currents ηg where g ∈ F \ {1}.

Kapovich and Lustig also give the following characterization of zero pairing:

Proposition 6.1.2 ([KL10, Theorem 1.1]). Let T ∈ cvn, and let η ∈ MC(F). Then 〈T, η〉 = 0 if

and only if supp(η) ⊆ L(T), where L(T) is the dual lamination of T and supp(η) is the support

of η in ∂2F.
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In this chapter, we define an intersection form forO(F,A), the closure of relative outer

space andRC(A), the space of relative currents.

6.2 First attempt
Generalizing the definition of intersection form due to Kapovich and Lustig, if T ∈

O(F,A) and ηα ∈ RC(A) is a rational relative current, then we can define 〈T, ηα〉 := lT(α).

But unfortunately, this pairing is not continuous. The following example was shown to us

by Camille Horbez.

Example 6.2.1. Let F2 = 〈a, b〉 with A = {[〈a〉]}. Let Tk ∈ O(F,A) be a simplicial tree

such that Γk = Tk/F is a graph with two vertices joined by an edge and there is a loop

at one of the vertices. Let 〈a〉 be the stabilizer of the vertex away from the loop. The

graph Γk is marked such that the loop is labeled by akb. Let the loop and the edge have

length 1. The limit of the sequence of trees Tk is the Bass-Serre tree of an HNN extension

whose vertex stabilizer is given by 〈a〉 and it has a length 3 loop labeled b. Next consider a

sequence of relative currents ηk = ηakb converging to η∞, which is given by η∞(anbmm) = 1

for all n, m ≥ 0 and η∞(w) = 0 for all other w ∈ F \ A. We have that 〈Tk, ηk〉 = 1

and 〈Tk, ηk+1〉 = 3 for all k. For continuity of the pairing, 〈Tk, ηk〉 and 〈Tk, ηk+1〉 should

converge to a unique value, 〈T, η∞〉, but that does not happen in this example.

In Section 6.8, we will define a pairing for PO(F,A) and PRC(A) along the lines of

zero pairing criterion of Kapovich and Lustig.

6.3 CHL laminations
In [CHL08a], Coulbois, Hilion and Lustig defined three laminations associated to F: al-

gebraic laminations, symbolic laminations and laminary languages. They also established

the equivalence of the three definitions. An algebraic lamination is a nonempty, closed and

F-invariant subset of ∂2F. Let Λ2(F) be the (compact, metric) space of algebraic lamination

in F.

Definition 6.3.1 (Convergence of laminations [CHL08a, Remark6.3]). A sequence of alge-

braic laminations Ln converges to a lamination L∞ in Λ2(F) if the following holds: let Ls
n

and Ls
∞ be the symbolic laminations associated to Ln and L∞, respectively, with respect to
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some (any) basis of F. Given a symbolic lamination Ls, let Lm(Ls) be the set of words in Ls

of length less than or equal to m. The sequence Ln converges to L∞ if for every m ≥ 1 there

exists a K(m) ≥ 1 such that for every k ≥ K(m), Lm(Ls
k) = Lm(Ls

∞).

6.4 Dual lamination for a tree
Definition 6.4.1 (L(T)). For a tree T ∈ CVn, a dual algebraic lamination L(T) is defined as

follows in [CHL08b]: let

Lε(T) := {(g−∞, g∞)|||g||T < ε, g ∈ F} ⊂ ∂2F,

so Lε(T) is an algebraic lamination and set L(T) :=
⋂
ε>0

Lε(T).

For trees in CVn, L(T) is empty. If Λ+
Ψ is the attracting lamination and T−Ψ is the unstable

tree associated to Ψ, a fully irreducible outer automorphism, then L(T−Ψ ) is the diagonal

closure of Λ+
Ψ , that is, if (X, X′) ∈ ∂2F and (X, X′′) ∈ ∂2F are in Λ+

Ψ which is a subset of

L(T−Ψ ), and X′ 6= X′′, then (X′, X′′) is also in L(T−Ψ ).

For trees in ∂CVn with dense orbits, two more definitions are given in [CHL08b]:

Definition 6.4.2 (L∞(T)). For a basis B of F, let L1
B(T) ⊂ ∂F be the set of one-sided infinite

words with respect to B that are bounded in T. By [CHL08b, Proposition 5.2] this set is

independent of the basis and henceforth will be denoted L1(T). The lamination L∞(T) is

the algebraic lamination defined by the recurrent laminary language in B± associated to

L1(T). It is shown in the same paper that this definition is also independent of the basis.

Definition 6.4.3 (LQ(T)). See Definition 5.6.6.

The equivalence of the three definitions of dual lamination of a tree in ∂CVn with dense

orbits is established in [CHL08b]. Note that L∞(T) can also be defined for trees which do

not have dense orbits, but it might not be equal to L(T).

6.5 Limits of trees and their dual laminations
In this section, we prove some results for trees in CVn. Since trees in PO(F,A) are

contained in CVn, the results of this section are applied to them later. The main proposition

in this section is Proposition 6.5.5.
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Consider a sequence of trees Tk in CVn converging to a tree T. Then one may ask

whether sequence of laminations L(Tk) converges to L(T) or not. An example in [CHL08b,

Section 9] shows that L∞ = limk→∞ L(Tk) may not be equal to L(T). Another example is

recorded here.

Example 6.5.1. Let F = 〈a, b〉 be the free group of rank two. Let Tk be a simplicial

F-tree given as follows: it is the universal cover of the one-edge free splitting with vertex

stabilizers given by 〈akb〉 and 〈a〉. The sequence Tk converges to a tree T which is the

Bass-Serre tree of the HNN extension with vertex group 〈a〉 and edge labeled b. The

algebraic lamination L(Tk) is the set of periodic lines determined by a and akb which

converges to the periodic lines determined by a, denoted . . . aaaa . . ., and the lines of the

form . . . aaaa b aaaa . . .. On the other hand, L(T) is given by the periodic lines determined

by a. Thus L∞ = limk→∞ L(Tk) is not equal to L(T). But the birecurrent line in L∞ is

contained in L(T). This is in fact always true by a result of [CHL06] (see Proposition 6.5.5).

The following lemma is needed for the proof of Lemma 6.5.5.

Lemma 6.5.2. Let T be a tree in CVn. Then the birecurrent leaves of L∞(T), which is the algebraic

lamination defined by the birecurrent laminary language associated to L1(T), are contained in

L(T).

Proof. Consider different cases according to whether T is simplicial or has dense orbits.

T has dense orbits: by [CHL08b, Proposition 5.8], a stronger statement is true, which says

that L∞(T) = L(T).

T is simplicial with trivial edge stabilizers but is not free: let T̂ be a free simplicial tree with

a collapse map c : T̂ → T with BCC(c) equal to zero. The map c extends to ∂T̂ and we

denote its restriction to ∂T̂ by Q : ∂T̂ → T t ∂T. There is a canonical identification between

∂2F and ∂2T̂. If X ∈ ∂T̂ is carried by a vertex stabilizer of T, then Q(X) is precisely (since

c has no cancellation) the vertex in T with that stabilizer, otherwise Q(X) is a point in ∂T.

Let l = {X, X′} be a birecurrent leaf in L∞(T). Since X and X′ are T-bounded, Q(X) and

Q(X′) are vertices in T. If Q(X) 6= Q(X′), then l crosses an edge e in T̂ that maps to a

nondegenerate edge in T. Since l is birecurrent, l crosses translates of e infinitely often,

which implies that X or X′ is not T-bounded. Thus Q(X) = Q(X′). Thus l is carried by a
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vertex stabilizer of T and hence l ∈ L(T).

T is simplicial with nontrivial edge stabilizers: by results of [Swa86] and [She55], for T there

exists T̂ a free simplicial tree with an F-equivariant map c : T̂ → T which is a composition

of a collapse map and a fold map. The edge paths in T̂ that possibly backtrack under the

map c are the ones that cross a minimal subtree (of T̂) of an edge stabilizer of T. By [BFH97,

Lemma 3.1], BCC(c) ≤ Lip(c) vol(T̂). By scaling the metric on T̂, we may assume that

Lip(c) is less than or equal to 1. Since the volume of the free simplicial tree T̂ is bounded,

BCC(c) is finite.

As before, consider the map Q : ∂T̂ → T t ∂T. Let X ∈ ∂T̂ be represented by a

one-sided infinite word x starting at the basepoint in T̂. If the tail of x is carried by a

vertex stabilizer of T, then except an initial segment, c(x) crosses the corresponding vertex

in T infinitely often with possibly some bounded backtracking. Thus set Q(X) to be that

vertex. If the tail of x is carried by an edge stabilizer H, then except an initial segment,

c(x) is a vertex of T whose stabilizer contains H and set Q(X) to be that vertex. Even

though there are finitely many vertices in T whose stabilizer contains H, there is only one

minimal subtree for H in T̂, which maps to a unique vertex in T. Thus in this case, Q(X)

only depends on the choice of T̂. If the tail of x is neither carried by a vertex stabilizer nor

an edge stabilizer, then Q(X) is an element of ∂T.

Now for a birecurrent leaf l = {X, X′} such that X and X′ are T-bounded, we get that

Q(X) = Q(X′). Thus the leaf l maps to a vertex of T under the map c with possiblly

bounded backtracking from edges in T̂ that fold under the map c. Hence l is in L(T).

When T is neither simplicial nor does it have dense orbits: let T′ be the simplicial tree which

is the graph of actions (see [Gui04] for definition) of T corresponding to the Levitt decom-

position [Lev94] of T. Let l = {X, X′} be a birecurrent leaf in L∞(T). Since X, X′ ∈ L1(T),

we get that X, X′ are also T′-bounded. Since l is birecurrent, by the previous two cases, l is

carried by a vertex stabilizer H of T′. Since vertices of T′ correspond to subtrees with dense

orbits in T, the leaf l is contained in some subtree Td of T with dense orbits and stabilizer

H. Since Td is a subtree of T, X and X′ are also Td-bounded.

The subgroup H is finitely generated because point stabilizers in the very small tree

T′ have bounded rank [GL95]. Therefore, there exists a finite graph ΓH and an immersion

i : ΓH → RB, where RB is a rose with petals labeled by elements of a basis B of F, such
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that π1(i(ΓH)) = H. Since H carries l, which can be viewed as a map l : Z → RB, there

exists a map lH : Z→ ΓH such that i ◦ lH = l. Since l is birecurrent, we claim that lH is also

birecurrent. Consider a word w in lH such that i(w) is a subword of l. Since l is birecurrent,

i(w) appears infinitely often in both ends of l. Let w1, w2, . . . , wn be the pre-images of all

occurrences of i(w) in lH. There are only finitely many such wi because ΓH is a finite graph.

Thus at least one of the wi appears infinitely often in both ends of lH. But we need to show

that every such wi appears infinitely often in lH. So consider a finite subword u of lH that

contains at least one appearance of each wi. Such a word exists because there are only

finitely many wi. Now i(u) appears infinitely often in both ends of l. Therefore, some

pre-image u1 of i(u) in lH appears infinitely often. Since every pre-image of i(u) contains

all the wis, each wi appears infinitely often in both ends of lH. Thus lH is birecurrent.

Let lH = {XH, X′H}. Since i is an immersion and X, X′ are Td-bounded, XH, X′H are also

Td-bounded. Thus lH is in L∞(Td), which is equal to L(Td) by the first case. Since Td is a

subtree of T and l is contained in Td, we get that l = i ◦ lH is in L(T).

Example 6.5.3 (Proof of Lemma 6.5.2 - T is simplicial with nontrivial edge stabilizer).

Consider the one-edge cyclic splitting T with vertex stabilizers 〈a, b〉 and 〈b, c〉 and edge

stabilizer 〈b〉. Let T̂ be the blow-up of a one-edge free splitting with stabilizers 〈a, b〉 and

〈c〉.

Definition 6.5.4. A lamination L is called birecurrent if every leaf of L is birecurrent.

Proposition 6.5.5 ([CHL06]). Let {Tk}k∈N be a sequence of trees in CVn converging to a tree

T. Also suppose that the sequence of laminations L(Tk) converges to L∞ in Λ2(F). Let Lr be a

birecurrent sublamination of L∞. Then Lr ⊆ L(T).

Proof. We will use notation from [CHL08b]. If the trees Tk are free simplicial, then their

dual lamination is empty and the lemma is true vacuously. So let’s assume that L(Tk) is

nonempty. Let l = {X, X′} be a leaf of L∞. Fix a basis B of F and realize X in this basis as

a one-sided infinite word. For l ≥ 1, let Xl ∈ F be the prefix of length l of X. We first show

that X ∈ L1(T), that is, for a point p ∈ T, the sequence Xl p is bounded in T. Suppose not.

Then for any C > 0, p ∈ T, K0 > 0, there exists q > r > K0 such that dT(Xq p, Xr p) > C.

Let u = X−1
r Xq. Then dT(up, p) > C. By Gromov-Hausdorff topology on CVn, given
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p, up ∈ T, let pk, sk ∈ Tk be approximations of p and up relative to some exhaustions

(see [Hor16, Lemma 4.1] for details). Then dTk(upk, sk) goes to zero and dTk(sk, pk) goes to

dT(up, p) as k → ∞. Thus given δ > 0, there exists a K1 > 0 such that for all k > K1,

dT(up, p)− δ ≤ dTk(upk, pk), or in other words, dTk(upk, pk) ≥ C− δ.

Now by the convergence criterion (Definition 6.3.1), for any m ≥ 1, there exists a

K2(m) > 0 such that for all k ≥ K2, Lm(L(Tk)) = Lm(L∞). Let m be the word length

of u with respect to the fixed basis. Since u ∈ Lm(L∞), we get that u ∈ Lm(L(Tk)) for all

k > max(K0, K1, K2). By [CHL08b, Remark 4.2], this means that, for every ε > 0, there

exists a cyclically reduced w in F such that ||w||Tk < ε and u is a subword of w. Also by

[CHL08b, Lemma 3.1(c)]

dTk(upk, pk) ≤ 2 BCC(B, pk) + ||w||Tk ,

where BCC(B, pk) is the bounded cancellation constant of the F-equivariant map from

Cay(F,B) to Tk such that the base point of Cay(F,B) is mapped to pk. We claim that

BCCk := BCC(B, pk) is bounded above by a constant. Let BCCT := BCC(B, p). Since

up is in the BCCT neighborhood of an axis of w in T, then by [Hor16, Lemma 4.1 (c)], for

sufficiently large k, sk is in the BCCT +1 neighborhood of axis of w in Tk. Given δ′ > 0, for

sufficiently large k, dTk(upk, sk) ≤ δ′. Therefore, upk is in a BCCT +1 + δ′ neighborhood of

axis of w in Tk. Since this is true for any cyclically reduced word w and a subword u, we

get that BCCk ≤ BCCT +1 + δ′.

By choosing C large enough, we get a contradiction since

C− δ ≤ dTk(upk, pk) ≤ 2BCCk + ||w||Tk ≤ 2(BCCT + 1 + δ′) + ε

for all k sufficiently large. Thus X and similarly X′ are both in L1(T). Therefore, l ∈ L∞(T).

If l = {X, X′} is birecurrent and l ∈ L∞(T), then by Lemma 6.5.2, l ∈ L(T). Thus

Lr ⊆ L(T).

Lemma 6.5.6. Let {Tk}k∈N be a sequence of trees in CVn converging to a tree T such that T has

dense orbits. Also suppose that the sequence of laminations L(Tk) converges to L∞ in Λ2(F). Then

L∞ ⊆ L(T).

Proof. If the trees Tk are free simplicial, then L∞ = ∅. Thus after passing to a subsequence,

assume that L(Tk) 6= ∅. Since T has dense orbits, by [LL03, Proposition 2.2] (see Propo-
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sition 5.6.2), given ε > 0, there exists a free simplicial F-tree S and an F-equivariant map

h : S → T which is isometric on edges (Lip(h) = 1) and BCC(h) < vol(S) < ε. We will

now construct F-equivariant maps hk : S→ Tk for k sufficiently large such that BCC(hk) is

bounded above by a linear function of ε.

For trees S ∈ CVn and T in CVn, let Lip(S, T) be the infimum of the Lipschitz constant

of all F-equivariant maps f : S → T. By [Alg12, Proposition 4.5], [Hor16, Theorem 0.2],

Lip(S, T) is equal to

Λ(S, T) := sup
g∈F\{1}

||g||T
||g||S

.

By [Alg12, Proposition 4.5], [Hor16, Proposition 6.15, 6.16], the supremum above can be

taken over a set of candidates C(S) ⊂ F. Since S is free simplicial, the set C(S) is finite.

For every δ > 0 and the finite set C(S) of elements of F, there exists a K > 0 such that

for all k ≥ K and for all g ∈ C(S),

||g||Tk ≤ ||g||T + δ.

Thus Λ(S, Tk) ≤ Λ(S, T) + δ′ where δ′ is the maximum of δ/||g||S over all g ∈ C(S).

This implies that Lip(S, Tk) ≤ Lip(S, T) + δ′ ≤ Lip(h) + δ′ ≤ 1 + δ′. By [Hor16, Theorem

0.4], Lip(S, Tk) is realized, that is, there exists an F-equivariant map hk : S → Tk, where Tk

is the metric completion of Tk, such that Lip(hk) = Lip(S, Tk) ≤ 1 + δ′ for all k ≥ K. Also

BCC(hk) ≤ Lip(hk) vol(S) ≤ (1 + δ′)ε.

Now consider a sequence of leaves lk ∈ L(Tk) converging to a leaf l ∈ L∞. Then by

Proposition 5.6.3 (Q map), the diameter of hk(lk) in Tk is bounded by 2 BCC(hk) which

is less than 2(1 + δ′)ε. Thus, in the limit, the diameter of h(l) in T is bounded above by

2(1 + δ′)ε. Since ε and δ were arbitrary, we get that l ∈ L(T).

6.6 Stable and unstable trees
Lemma 6.6.1. Λ∓Φ ⊆ L(T±Φ ) , Λ±Φ * L(T±Φ ).

Proof. We have T+
Φ = lim

n→∞

TGφn

λn
Φ

. Let w be a nontrivial conjugacy class in F \ A. Assume

lT+
Φ
(w) = 1. Let gm = Φ−m(w). Then lT+

Φ
(gm) = 1/λm

Φ which implies (g−∞
m , g∞

m ) is con-

tained in L1/λm
Φ
(T+

Φ ). Thus l− = limm→∞ gm is contained in L(T+
Φ ) =

⋂
m→∞

L1/λm
Φ
(T+

Φ ). Since

l− is a generic leaf of Λ−Φ and L(T+
Φ ) is a closed subset of ∂2F, conclude that Λ−Φ ⊆ L(T+

Φ ).
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Let gm = Φm(w) such that gm converges to a generic leaf l+ ∈ Λ+
Φ. We have lT+

Φ
(gm) =

λm
ΦlT+

Φ
(w) which grows as m goes to infinity. Thus l+ /∈ L(T+

Φ ).

Lemma 6.6.2. The stable and unstable trees T±Φ have dense orbits.

Proof. By a result of [Hor14, Proposition 4.16], which is a relativization of Levitt’s decom-

position theorem for trees in CVn [Lev94], we have the following: if T+
Φ does not have

dense orbits, then T+
Φ splits uniquely as a graph of actions, all of whose vertex trees have

dense orbits, such that the BassSerre tree GT+
Φ

of the underlying graph of groups is very

small (Section 5.1), and all its edges have positive length. Up to taking powers, GT+
Φ

is

Φ-invariant. If GT+
Φ

has an edge with trivial stabilizer, then by collapsing all other edges,

we get a Φ-invariant free factor system, which is a contradiction. If the edge stabilizers

are nontrivial, then they are nonperipheral. Then by theorems of Shenitzer [She55] and

Swarup [Swa86], there is a smallest free factor system containing the edge stabilizer and

A, which will have to be Φ-invariant. This is a contradiction.

6.7 Support of a relative current
Definition 6.7.1 (Support of a relative current). Support of a relative current η is defined

as the closure in Y (see Section 4.1.4 for definition) of the intersection of the complement of

all open sets U ⊂ Y such that η(U) = 0. For η ∈ PRC(A), supp(η) is a closed, nonempty

and F-invariant subset of Y.

Since Y is not a closed subset of ∂2F, supp(η) ⊂ Y may not be a closed subset of ∂2F.

Let supp(η) denote its closure in ∂2F. Then supp(η) \ supp(η) is contained in ∂2A which

is nonempty when lines in supp(η) accumulate on lines in ∂2A.

Example 6.7.2. Let F2 = 〈a, b〉, A = {[〈a〉]} and consider the sequence of relative currents

ηakb converging to η∞ in PRC(A) as in Example 6.2.1. Then supp(η∞) is given by bi-

infinite geodesics determined by . . . aaa b aaa . . .. Thus the set supp(η∞) also contains the

bi-infinite lines given by . . . aaaa . . .. Geometrically, consider a lamination L on a torus

with one puncture (with fundamental group identified with F2 = 〈a, b〉) as follows: the

lamination L contains the simple closed curve a and another leaf l which goes around b

and spirals towards a from both sides. In the absolute case, the support of the current µakb
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is the curve a and the curve ck obtained by Dehn twisting b around a, k times. The absolute

currents µakb projectively converge to the absolute current µa whose support is just the

curve a. But in the relative case, the support of the relative current ηakb is the curve ck and

the relative currents ηakb converge to η∞ whose support is the leaf l. Thus the closure of l

also contains the curve a.

We have that supp(η) is a closed, nonempty, F-invariant subset of ∂2F. Recall Nota-

tion 5.2.1 for a relative train track representative of Φ.

Lemma 6.7.3. Λ+
Φ ∩Y is minimal in Y, that is, Λ+

Φ ∩Y contains no proper closed (in Y), nonempty

F-invariant subset.

Proof. By [BFH00, Lemma 3.1.15], we have the following: suppose δ is a generic leaf in Λ+
Φ

that is not entirely contained in Gr−1. Then the closure of δ in ∂2F is all of Λ+
Φ. Suppose

Λ+
Φ ∩ Y contains a proper closed (in Y), nonempty, F-invariant subset S. A generic leaf δ

in S is not entirely contained in Gr−1 where F (Gr−1) = A. Since Y gets subspace topology

from ∂2F, the closure of δ in Y is all of Λ+
Φ ∩ Y, which is a contradiction.

Lemma 6.7.4. We have supp(η±Φ ) as a subset of Y is equal to Λ±Φ ∩ Y and supp(η±Φ ) ⊆ Λ±Φ ∪

∂2A.

A proof of a similar fact in the case of a fully irreducible automorphism can be found

in [CP12, Proposition 6.1].

Proof. Let a be a primitive conjugacy class in F \ A realized as α in G′ = T′G/F (see

Notation 5.2.1). Then α is a union of N r-legal paths for some N > 0. For every m ≥ 0,

αm := (φ′)m(α) contains at most N segments of leaves of Λ+
Φ ∩ Y. Let the complement

of Λ+
Φ ∩ Y in Y be covered by cylinder sets C(γ) where γ is a subpath of G′ that crosses

Hr and is not crossed by any leaf of Λ+
Φ. For every m ≥ 0, αm contains at most N occur-

rences of γ (at concatenation points of the r-legal segments). Thus ηαm(C(γ)) ≤ N. Since

ηαm /λm
Φ → η+

Φ as m → ∞, we have that η+
Φ (C(γ)) = 0. Thus supp(η+

Φ ) ⊆ Λ+
Φ ∩ Y. By

Lemma 6.7.3, Λ+
Φ ∩ Y is minimal in Y, therefore we have supp(η+

Φ ) = Λ+
Φ ∩ Y. Since Λ+

Φ is

a closed subset of ∂2F, we get that supp(η+
Φ ) ⊆ Λ+

Φ ∪ ∂2A.
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Lemma 6.7.5. Let {ηk}k∈N be a sequence of relative currents converging to a relative current η.

Suppose the sequence supp(ηk) converges to S∞ ⊂ Y. Then supp(η) ⊆ S∞.

Proof. Consider a word w ∈ F \ A such that η(w) > 0. Then given ε > 0, there exists an

N0 > 0 such that for every k > N0, ηk(w) > ε. Thus C(w) ∩ supp(ηk) is nonempty for

every k ≥ N0 which implies that C(w) ∩ S∞ is nonempty. Since this is true for any word

w ∈ F \ A with η(w) > 0, we get that supp(η) ⊂ S∞.

6.8 Intersection form
We are now ready to define an intersection form for closure of relative outer space and

the space of projectivized relative currents.

Definition 6.8.1. Define a function I : PO(F,A)×PRC(A)→ {0, 1} as follows:

I(T, η) = 0 if supp(η) ⊆ L(T),

I(T, η) = 1 if supp(η) * L(T).

Lemma 6.8.2. The function I satisfies the following properties:

(a) I(TΨ, η) = I(T, Ψη) for Ψ ∈ Out(F,A).

(b) Let Tk → T in PO(F,A) and ηk → η in PRC(A) such that I(Tk, ηk) = 0 for all k. If either

T has dense orbits or supp(η) is a birecurrent lamination, then I(T, η) = 0.

Remark 6.8.3. It is not true in general that if I(Tk, ηk) = 0 for all k, then I(T, η) = 0.

Consider the sequence of trees Tk as in Example 6.5.1 and the sequence of currents ηk as in

Example 6.7.2. Then I(Tk, ηk) = 0 but I(T, η) 6= 0.

Proof. (a) We have supp(Ψη) = Ψ supp(η) and L(TΨ) = Ψ−1L(T) which gives the de-

sired equality.

(b) Let S be the closure of limn→∞ supp(ηn) and let L(Tn) converge to L∞. Then S ⊆

L∞ and by Lemma 6.7.5, supp(η) ⊆ S . If T has dense orbits, then by Lemma 6.5.6,

L∞ ⊆ L(T). Thus supp(η) ⊆ L(T). If supp(η) is a birecurrent lamination, then by

Proposition 6.5.5, it is contained in L(T).
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Lemma 6.8.4 (Uniqueness of dual). Let Φ be a fully irreducible outer automorphism relative to

A. Let T ∈ PO(F,A) and η ∈ PRC(A). Then

(a) I(T±Φ , η∓Φ ) = 0.

(b) If I(T±Φ , η) = 0, then η = η∓Φ .

(c) If I(T, η∓Φ ) = 0, then T = T±Φ .

Proof. (a) By Lemma 6.6.1, Λ∓Φ ⊂ L(T±Φ ). Also ∂2A ⊂ L(T±Φ ) because A is elliptic in T±Φ .

Thus by Lemma 6.7.4, supp(η∓Φ ) ⊆ L(T±Φ ).

(b) By Lemma 6.6.1 and Lemma 6.7.4, supp(η+
Φ ) * L(T+

Φ ), therefore I(T+
Φ , η+

Φ ) 6= 0. Now

suppose I(T+
Φ , η) = 0 for some η 6= η−Φ . Then by definition, supp(η) ⊆ L(T+

Φ ). By

the Out(F,A) action, we also get that supp(Φn(η)) ⊆ L(T+
Φ ). By Theorem B, Φn(η)

converges to η+
Φ , therefore in the limit supp(η+

Φ ) ⊆ L(T+
Φ ), which is a contradiction.

(c) Similar argument as above using Theorem C.

6.9 Summary
Even though we were not successful in defining an intersection number along the

lines of Kapovich and Lustig, we were able to generalize the zero pairing criterion. Our

definition of intersection form was sufficient to establish uniqueness of pairing for the

stable and unstable trees and currents obtained from north-south dynamics on PO(F,A)

andMRC(A), respectively. The intersection form defined here is not continuous in gen-

eral (Remark 6.8.3), but Lemma 6.8.2 gives continuity at pairs containing the stable and

unstable trees or currents. The fact that the intersection form behaves well for the four

special points is enough to carry out the proof of Theorem A in the next section.



CHAPTER 7

LOXODROMIC ELEMENTS IN RELATIVE

FREE FACTOR COMPLEX

In this chapter, we will prove Thereom A. The proof is based on [BF02, Proposition 11].

Lemma 7.1 (UV-pair). Let Φ be fully irreducible relative to A. For every neighborhood U of T+
Φ

in PO(F,A), there exists a neighborhood V of η−Φ in PRC(A) such that for every T ∈ UC and

η ∈ V, we have I(T, η) 6= 0.

Proof. Assume by contradiction that there exists a U such that for every neighborhood V

of η−Φ , there exist T ∈ UC and η ∈ V such that I(T, η) = 0.

Let Vi be an infinite sequence of nested neighborhoods of η−Φ such that Vi ⊃ Vi+1 and

∩Vi = η−Φ . Then by assumption, there exist Ti ∈ UC and ηi ∈ Vi such that I(Ti, ηi) = 0.

Since PO(F,A) is compact, after passing to a subsequence, Ti → T, for T 6= T+
Φ . Also ηi →

η−Φ . Since the support of η−Φ gives a birecurrent lamination, by Lemma 6.8.2, I(T, η−Φ ) = 0,

which contradicts Lemma 6.8.4.

Lemma 7.2 (VU-pair). For every neighborhood V of η−Φ in PRC(A), there exists a neighborhood

U of T+
Φ in PO(F,A) such that for every η ∈ VC and T ∈ U, we have I(T, η) 6= 0.

Proof. Same as for Lemma 7.1.

Lemma 7.3. There exist nested sequences U0 ⊃ U1 ⊃ U2 ⊃ U3 . . . ⊃ U2N and V1 ⊃ V2 ⊃

V3 . . . ⊃ V2N of neighborhoods of T+
Φ and η−Φ , respectively, such that the following are true:

• ∃ k > 0 such that for every i, Φk(Ui) ⊂ Ui+1 and Φ−k(Vi) ⊂ Vi+1.

• (Ui, Vi+1) form a UV-pair for all i ≥ 0.

• (Vi, Ui) form a VU-pair for all i ≥ 1.
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Proof. Start with U0 to build a sequence as in the statement of the lemma. Then there

exists V1 such that (U0, V1) form a UV-pair. Next there exists a U1 such that (V1, U1) form

a VU-pair. If U1 * U0, then replace U1 by a smaller open set in U1 ∩U0.

Let ri = min{p |Φp(Ui) ⊂ Ui+1} for 0 ≤ i ≤ 2N and let si = min{p |Φ−p(Vi) ⊂

Vi+1} for 0 < i < 2N. The numbers ri and si exist because we have uniform north-south

dynamics. Now define k to be the maximum of the numbers {ri}2N
i=0, {si}2N

i=1.

Theorem A. Let A be a nonexceptional free factor system and let Φ ∈ Out(F,A). Then Φ acts

loxodromically on FF (F,A) if and only if Φ is fully irreducible relative to A.

Proof. Let D ∈ FF (F,A) be a free factor system. Let TD ∈ PO(F,A) be a simplicial

tree such that its set of vertex stabilizers is equal to D. Let ηD be a relative current with

support contained in ∂2D. Consider nested neighborhoods U0 ⊃ U1 ⊃ . . . ⊃ U2N of T+
Φ

and V1 ⊃ V2 ⊃ . . . ⊃ V2N of η−Φ and constant k as in Lemma 7.3 such that TD ∈ U0 ∩UC
1

and ηD ∈ VC
1 . See Figure 7.1. By Lemma 7.1 and 7.2, the following holds:

• If T ∈ UC
i and I(T, η) = 0, then η ∈ VC

i+1.

• If η ∈ VC
i and I(T, η) = 0, then T ∈ UC

i .

We have TDΦik ∈ Ui and Φ−ikηD ∈ Vi. If D is the set of vertex stabilizers of TD, then

Φ−2ik(D) is the set of vertex stabilizers of TDΦ2ik.

We claim that dFF (F,A)(D, Φ−2NkD) > 2N and dFF (F,A)(D, Φ2NkD) > 2N. For sim-

plicity, let’s first consider the case when N = 1 and for contradiction, assume that the

distance dFF (F,A)(D, Φ−2kD) is equal to 2. Let E be a free factor system distance one from

both D and Φ−2kD. There are two cases to consider:

(a) E @ D and E @ Φ−2kD: let TE be a simplicial tree whose set of vertex stabilizers is

given by E . Choose η such that I(TE , η) = 0. Then I(TD, η) = 0. Since TD ∈ UC
1 , we

get η ∈ VC
2 . Also I(TDΦ2k, η) = 0 and since η ∈ VC

2 , we get TDΦ2k ∈ UC
2 . But that is a

contradiction since TDΦ2k ∈ U2.

(b) E A D and E A Φ−2kD: we have I(TE , ηD) = 0. Since ηD ∈ VC
1 , we get TE ∈ UC

1 . Also

I(TE , Φ2kηD) = 0. Since TE ∈ UC
1 , we get Φ−2kηD ∈ VC

2 , which is a contradiction.
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The above proof in particular also shows that dFF (F,A)(D, Φ−2Nk(D)) > 2. For contra-

diction, suppose that dFF (F,A)(D, Φ−2NkD) ≤ 2N. Consider a geodesic

D = E0, E1, E2 . . . , El , El+1 = Φ−2NkD,

l < 2N, in FF (F,A). Without loss of generality, assume E1 @ D. Then starting with

applying the same argument as in (a) for the triple D, E1, E2, alternatively apply (a) and

(b) to reach a contradiction.

Example 7.4. As an example to exhibit the proof of Theorem A for N = 3, consider

a geodesic D = E0, E1, E2 . . . , E5, E6 = Φ−6kD in FF (F,A) connecting D and Φ−6kD.

Without loss of generality, assume E1 @ D. Let Ti be a tree in PO(F,A) whose set of

vertex stabilizers is given by Ei. We have T0 ∈ U0 ∩UC
1 and thus T6 is contained in U6.

• Given T1, choose η1 such that I(T1, η1) = 0, which implies that I(TD, η1) = 0 because

supp(η1) ⊂ ∂2E1 ⊂ ∂2D. Also I(T2, η1) = 0 because supp(η1) ⊂ ∂2E1 ⊂ ∂2E2.

• Given T3, choose η2 such that I(T3, η2) = 0, which implies that I(T2, η2) = 0 because

supp(η2) ⊂ ∂2E3 ⊂ ∂2E2. Also I(T4, η2) = 0 because supp(η2) ⊂ ∂2E3 ⊂ ∂2E4.

• Given T5, choose η3 such that I(T5, η3) = 0, which implies that I(T4, η3) = 0 because

supp(η3) ⊂ ∂2E5 ⊂ ∂2E4. Also I(T6, η3) = 0 because supp(η3) ⊂ ∂2E5 ⊂ ∂2E6.

We get the following chain of implications using all of the above information: TD ∈

UC
1 =⇒ η1 ∈ VC

2 =⇒ T2 ∈ UC
2 =⇒ η2 ∈ VC

3 =⇒ T4 ∈ UC
3 =⇒ η3 ∈

VC
4 =⇒ T6 ∈ UC

4 , which yields a contradiction. See Figure 7.2.
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Figure 7.1. Nested sets

Figure 7.2. Nested sets for Example 7.4



APPENDIX A

EXTENDING RELATIVE CURRENTS

In this appendix, we will prove Lemma 4.2.14, which says that given a relative current

η0, there exists a signed measured current η which is a k-extension of η0. We will first

show that we can extend η0 to a signed measured current η which may or may not be

nonnegative on all words of length less than or equal to k. We then show how to modify η

to get a k-extension of η0.

Throughout this appemdix, we will assume that A has only one free factor A0. When

A has more than one free factor in it, then the same process can be repeated for all the free

factors independently of each other.

Notation A.1. • Let BA be a relative basis of F. Let s be the rank of the free factor A0.

Denote the generators of A0 by ai, 1 ≤ i ≤ s. Also let A := {a±1 , . . . , a±s }.

• Let Sk be the set of words in A0 of length k with respect to BA. Let #Sk denote the

cardinality of Sk.

• Let S0
k be a subset of Sk (chosen once and for all) such that for every w ∈ Sk, exactly

one of w or w appears in S0
k .

• We will use letters e, x, y, z to denote the elements of BA.

• Whenever we write a forward (backward) extension of a word w by e ∈ BA as we

(ew), it is to be understood that e is not the inverse of the last (first) letter of w.

For every k > 0, define a signed measured current η on words in A0 of length (k− 1)

and use those values together with the additivity laws satisfied by η to define η on words

of length k. To start with words of length one, choose arbitrary values for η(ai) for all

1 ≤ i ≤ s. By induction, assume η(v) is defined for all words v of length less than or equal

to (k− 1). The following holds for all v ∈ S0
k−1 by additivity:
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η(v) = ∑
e∈A

η(ve) + ∑
e/∈A

η0(ve),

η(v) = ∑
e∈A

η(ve) + ∑
e/∈A

η0(ve).

Since η is invariant under taking inverses, the equation obtained from forward extension

of v is the same as the equation obtained from backward extension of v.

Rearranging the equations to have the unknown terms on the left-hand side, we get

∑
e∈A

η(ve) = η(v)− ∑
e/∈A

η0(ve) =: cv,

∑
e∈A

η(ve) = η(v)− ∑
e/∈A

η0(ve) =: cv.

Thus there are #Sk−1 equations in #S0
k variables and the number of variables are more

than the number of equations. Denote this system of equations by E1
k−1, that is, equations

obtained from one edge extensions of length (k− 1) words. Similarly, we can look at the

system Ei
k−i.

Consider the augmented matrix [M|c] for the system of equations E1
k−1 with rows

labeled by v ∈ Sk−1 and columns by w ∈ S0
k . Then Mv,w = 1 if w = ve or w = ve for

some e ∈ A and 0 otherwise. Denote a row vector of M by rv corresponding to v ∈ Sk−1.

Here are some observations about the matrix M.

• Each column has exactly two ones. Indeed, Mv,w is 1 exactly when v is a prefix of w

or w.

• There are (2s − 1) nonzero entries in each row because there are (2s − 1) possible

extensions of v by e ∈ A.

• Any two distinct rows can be the same in at most one column. Let w be common to

two distinct rows rv1 and rv2 . Then

w = v1e1 or e1 v1 and w = v2e2 or e2 v2

for some e1, e2 ∈ A. Then it must be true that v1 begins with e2 and v2 begins with e1.

Thus w is uniquely determined.

Lemma A.2. (a) For every i ≥ 1, an equation in the system Ei+1
k−i−1 is a linear combination of

equations in the system Ei
k−i. Thus it is sufficient to look at the system E1

k−1 to obtain all

constraints satisfied by η(w) for all w ∈ S0
k .



92

(b) Let u ∈ Sk−2. Then we have

∑
x∈A

rxu = ∑
x∈A

rxu.

(c) The set of relations ∑
x∈A

rxu = ∑
x∈A

rxu for every u ∈ Sk−2 generate any other relation among

the rows of M.

(d) We also have that

∑
x∈A

cxu = ∑
x∈A

cxu

where cv is the constant term of the equation determined by v ∈ Sk−1.

(e) The system of equations E1
k−1 is consistent and hence has a solution. Thus we can define η on

words of length k.

Proof. (a) Let u ∈ Sk−i−1. Then

η(u) = ∑
x∈A

η(ux) + ∑
x/∈A

η(ux).

By equations in Ei
k−i, we have

η(ux) = ∑
y∈F,|y|=i

η(uxy).

Adding all these equations over x ∈ BA we get

η(u) = ∑
x,y∈F,|x|=1,|y|=i

η(uxy) = ∑
z∈F,|z|=i+1

η(uz)

Thus we recovered an equation in Ei+1
k−i−1 by a combination of equations in Ei

k−i.

(b) For every x ∈ A, Mxu,w 6= 0 exactly when w = x u y or w = y u x for some y ∈ A.

Therefore, if Mxu,w 6= 0, then Myu,w 6= 0 for some y ∈ A.

(c) Consider a minimal relation R given by ∑
v∈Sk−1

dvrv = 0 where dv ∈ R. The equation

can be rescaled such that coefficient of at least one row, say rxu for some x ∈ A and

u ∈ Sk−2, is 1.

For every y ∈ A and w = xuy, we have Mxu,w = Myu,w = 1. Thus rxu and ryu share

exactly one common entry w and no other row has a nonzero entry in w. Thus dyu =

−1. Now consider y ∈ A. For any z ∈ A and w = yuz, we have Myu,w = Mzu,w = 1.

Thus dzu = 1. Hence our minimal relation is just ∑
x∈A

rxu − ∑
y∈A

ryu = 0.
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(d) We have

∑
x∈A

cxu = ∑
x∈A

η(xu)− ∑
x∈A,y/∈A

η(xuy)

= η(u)− ∑
x/∈A

η(xu)− ∑
x∈A,y/∈A

η(xuy)

= η(u)− ∑
x/∈A,y∈BA

η(xuy)− ∑
x∈A,y/∈A

η(xuy)

and similarly

∑
x∈A

cxu = η(u)− ∑
x/∈A,y∈BA

η(xuy)− ∑
x∈A,y/∈A

η(xuy)

= η(u)− ∑
x/∈A,y∈BA

η(yux)− ∑
x∈A,y/∈A

η(yux)

We see that

∑
x/∈A,y∈BA

η(xuy) + ∑
x∈A,y/∈A

η(xuy) = ∑
x/∈A,y∈BA

η(yux) + ∑
x∈A,y/∈A

η(yux).

Geometrically, we are looking at the same subset of ∂2F as a union of cylinder sets in

two different ways. See Figure A.1 when F = 〈a, b, c, d〉.

(e) Since the relations which generate all other relations among the rows of M are consis-

tent, [M|c] has a solution.

Proof of Lemma 4.2.14. Given a relative current η0, by Lemma A.2, get a signed measured

current η such that η0(w) = η(w) for all w ∈ F\A. This extension need not be nonnegative

on all words of length less than or equal to k. Let −M for M > 0 be the smallest value

attained by η(w) for a word w ∈ Awith |w| ≤ k. Consider a signed measured current ηA,C

defined as follows:

ηA,C(w) =
C

(2s− 1)|w|−1
for w ∈ A and 0 otherwise.

For C = M(2s − 1)k−1, η + ηA,C is nonnegative on words of length less than or equal to

k.
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Figure A.1. Example for proof of Lemma A.2(d)



APPENDIX B

ANOTHER DEFINITION OF RELATIVE

CURRENTS

In this section, we give another formulation of relative currents. We show that this new

space of relative currents is homeomorphic toRC(A).

Let SMC(F) be the space of F-invariant, locally finite, signed measured currents (Def-

inition 4.2.11) on ∂2F. It is a vector space and comes equipped with a weak-∗ topology,

that is, a sequence ηi ∈ SMC(F) converges to η iff
∫

f dηi →
∫

f dη for all compactly

supported continuous functions f on ∂2F. Let

SMC(F)+ := {η ∈ SMC(F)|η(w) ≥ 0 for all w ∈ F \ A}.

Define an equivalence relation on SMC(F)+ as follows : η1 ∼ η2 if η1|Y = η2|Y, that is,

η1(w) = η2(w) for all w ∈ F \ A. Denote the equivalence class of η ∈ SMC(F)+ by [η].

Note that all currents supported on ∂2A are in a single equivalence class, denoted [ηA]. A

sequence [ηi] converges to [η] iff there exist signed measured currents µi ∈ [ηA] such that

ηi(w) + µi(w)→ η(w) for all w ∈ F.

Proposition B.1. (a) There exists a continuous injective map frest : SMC+(F)/ ∼→ RC(A).

(b) There exists a continuous injective map fext : RC(A)→ SMC+(F)/ ∼.

Proof. (a) Given [η] ∈ SMC+(F)/ ∼, η(w) for w ∈ F\A is well defined. Thus frest([η]) :=

η|Y. The function is injective since two different classes [η1], [η2] differ on some w ∈

F \A giving different relative currents in the image. Consider a sequence [ηi] converg-

ing to [η]. Then ηi(w) converges to η(w) for all w ∈ F \ A.

(b) Given η ∈ RC(A), let η′ ∈ SMC(F)+ be an extension of η given by Lemma 4.2.14.

Define fext(η) := [η′]. This function is well defined because any two extensions of

η differ only by values on w ∈ A. This map is injective since two distinct relative



96

currents differ on some w ∈ F \ A and hence the equivalence classes of the extensions

are also distinct.

To establish continuity of the map fext, consider a sequence ηi → η ∈ RC(A) and

an extension η′ of η. We will show that there exist extensions η′i of ηi such that η′i(w)

converges to η′(w) for all w ∈ F. The convergence is clear for w ∈ F \ A.

Let BA be a relative basis of F and let |w| be the length of w ∈ F with respect to

BA. Given ε > 0 and n > 0, there exists M > 0 such that |ηi(v)− η(v)| ≤ ε for all

i ≥ M and v ∈ F \ A with |v| ≤ n. Let N be the rank of the cofactor of A. Since the

extension process (Appendix A) can be done for each free factor in A independently

of one another, we may assume that A has only one free factor A of rank s. Starting

with words of length one in A, set η′i(e) equal to η′(e). We claim that for all i ≥ M, η′i

can be chosen such that for all words w ∈ A such that |w| ≤ n, we have

|η′i(w)− η′(w)| ≤ 2Nε(1 + . . . + ql−2)

ql−1 ≤ 2Nε

where q = 2s− 1 and l = |w|.

Let the augmented matrix representing the system of equations for extension of ηi to

words of length l be [M|ci,l ] and let the corresponding matrix for η be [M|cl ]. For a

length l− 1 word v, let ci,l
v represent the corresponding entry of the vector ci,l . We have

ci,l
v = η′i(v)− ∑

e/∈A
ηi(ve)

Thus

|ci,l
v − cl

v| ≤ |η′i(v)− η′(v)|+
∣∣∣∣∣∑e/∈A

ηi(ve)− ∑
e/∈A

η(ve)

∣∣∣∣∣ ≤ |η′i(v)− η′(v)|+ 2Nε,

Consider the base case l = 2 for induction. We have c2
v − 2Nε ≤ ci,2

v ≤ c2
v + 2Nε since

η′i(e) = η′(e) for e ∈ A and |e| = 1. Since the sum of every row of M is q = 2s− 1, find

η′i(w) such that

η′(w)− 2Nε

q
≤ η′i(w) ≤ η′(w) +

2Nε

q
.

Now by induction on length, we have

|ci,l
v − cl

v| ≤ |η′i(v)− η′(v)|+ 2Nε ≤ 2Nε(1 + . . . + ql−3)

ql−2 + 2Nε =
2Nε(1 + . . . + ql−2)

ql−2 .
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Again using the fact that row sum is q, we get

|η′i(w)− η′(w)| ≤ 2Nε(1 + . . . + ql−2)

ql−1 ≤ 2Nε

for |w| = l.

Thus we can find signed measured currents η′i that are extensions of ηi such that

η′i(w)→ η′(w) for all w ∈ F. Thus the function fext is continuous.



APPENDIX C

EXAMPLES OF TRANSVERSE COVERING

Let Φ be a fully irreducible outer automorphism relative to A. Let φ′0 : G′ → G′

be a relative train track representative of Φ and let φ0 : G → G be an A-train track

representative of Φ (see Definition 5.2.2). Let TG′ and TG be the universal covers of G′ and

G, respectively. In Section 5.5, a transverse covering for TG was defined. In this appendix,

we record some examples of such transverse coverings and study their skeleton (defined

below).

Definition C.1 (Skeleton of a transverse covering). Given a transverse covering Y = {Y}i,

the skeleton S is a graph obtained as follows: the vertex set is the set Y ∪ V0(S) where

V0(S) is the set of all intersection points between distinct subtrees in Y . There is an edge

between Y ∈ Y and y ∈ V0(S) whenever y ∈ Y. The skeleton S is in fact a tree with a

simplicial action of F.

Remark C.2. In the absolute case of a fully irreducible outer automorphism, the Whitehead

graph of a leaf of the attracting lamination at a vertex (see Definition 5.4.1) is connected and

the skeleton of the transverse covering corresponding to the attracting lamination is just a

point. But in the relative case, there seems to be no relation between the connectivity of the

Whitehead graph of Λ+
Φ(TG′) and the skeleton of transverse covering of TG corresponding

to Λ+
Φ, as can be seen by the examples that follow.

Example C.3. Recall Example 5.5.4. The Whitehead graph of Λ+
Φ at the vertex of G′ was

disconnected. The F-quotient of the skeleton for the transverse covering Y(Λ+
Φ) of TG is a

graph with two vertices and two edges with one endpoint on each vertex. The vertex sta-

bilizers are [〈a, b〉] and [〈c, ad, abd〉] and the edge stabilizers are conjugates of 〈b〉. Indeed,

there are two orbits of edges in the skeleton since the group element d acts with positive

translation length on the skeleton and corresponds to the loop.
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Example C.4. Consider the automorphism Φ given by

Φ(a) = ab, Φ(b) = bab, Φ(c) = cad, Φ(d) = dcad.

Let φ′ : G′ → G′ be a relative train track representative where G′ is a rose on four petals.

The Whitehead graph of Λ+
Φ is connected at the vertex of G′. The skeleton of Y(Λ+

Φ) is just

a point with stabilizer F.

Example C.5. Consider the automorphism Φ given by

Φ(c) = cσdσd, Φ(d) = dσcσdσd, Φ(a) = a, Φ(b) = b,

where σ = abab. Let A = {[〈a, b〉]}. Let φ′0 : G′ → G′ be a relative train track represen-

tative, where G′ is a rose on four petals. In this example, the Whitehead graph of Λ+
Φ is

connected at the vertex of G′ as shown in Figure C.1.

A partial covering of the universal cover of G′, which gives the transverse covering of

TG, is shown in Figure C.2. Different colors correspond to different equivalence classes.

The transverse covering Y(Λ+
Φ) of TG is nontrivial. The stabilizer of a subtree in Y(Λ+

Φ) is

[〈c, σ, dσd〉]. The F-quotient of the skeleton of the transverse covering has two vertices and

two edges with one endpoint on each vertex. The edges are labelled by 〈σ〉 and the loop

corresponds to d.

Example C.6. Consider the automorphism Φ given by

Φ(c) = cσ1d, Φ(d) = dcσ1d, Φ(a) = ab, Φ(b) = a,

where σ1 = abAB is not fixed under Φ. Let σi := Φi−1(σ). By iterating d under Φ, get the

ray

dcσ1dcσ1dσ2dcσ1dcσ1dcσ1dσ2dcσ1dσ3d . . . .

Some subwords that appear in this ray are dσid for all i. We claim that the stabilizer of a

tree Y in the transverse covering Y(Λ+
Φ) of TG will be infinitely generated such that the

set of generators contains the set {c, σ1, σ2, . . . , }. Indeed, when we draw a covering of TG′

which descends to Y(Λ+
Φ), then the only deck transformation of TG′ that takes two edges

labeled d at the beginning and end of a σi is given by σi. Moreover, neither a nor b stabilize

the subtree Y. For H = 〈c, σ1, σ2, . . .〉, the subgroup Φ(H) is properly contained in H. Also
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in S/F (which is finite), there is an edge with infinitely generated stabilizer generated by

the σi.

In this example, the lamination is in fact carried by the infinitely generated subgroup

〈c, σ1d, σ2d, . . .〉, which is also not Φ-invariant.

Definition C.7. We say a group Γ is finitely generated relative to a collection of subgroups

{H1, . . . , Hk} if there exists a finite set F ⊂ Γ such that Γ is generated by F, H1, . . . , Hk.

Definition C.8 (Finitely supported action [Gui08, Definition 1.13]). An action of a count-

able group Γ on an R-tree T is said to be finitely supported if there is a finite subtree K

whose images under Γ cover T.

The following lemma is about the structure of the skeleton.

Lemma C.9. Let S be the skeleton of the transverse covering Y(Λ+
Φ) of TG.

(a) S/F is a finite graph of groups decomposition of F.

(b) The vertex stabilizers of S are finitely generated relative to peripheral subgroups.

(c) There is only one F-orbit of vertices with nonperipheral stabilizer in S.

Proof. (a) Since F is finitely generated and its action on TG is minimal, the action on TG

is finitely supported. By [Gui08, Lemma 1.14], the action of F on S is minimal and

finitely supported. Since S is simplicial, S/F is a finite graph of groups decomposition

of F.

(b) By [Gui08, Lemma 1.11], for a finite graph of groups decomposition of a finitely gener-

ated group, the vertex groups are finitely generated relative to the edge groups. Since

every edge in S is incident to a peripheral subgroup, an edge stabilizer is either trivial,

or nontrivial and peripheral. Thus the vertex stabilizers of S are finitely generated

relative to peripheral subgroups.

(c) Since each subtree Yi ∈ Y(Λ+
Φ) contains a generic leaf of a lamination as a line, every

orbit of edges in TG crosses Yi. Let e, e′ be two edges in two different subtrees Yi and

Yj such that e maps to e′ under some deck transformation g. Then by definition of our

transverse covering, g in fact takes Yi to Yj. Thus up to the action of F, there is only
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one subtree in Y(Λ+
Φ). Therefore, there is only one vertex with nonperipheral vertex

stabilizer in S/F.
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Figure C.1. Whitehead graph for Example C.5

Figure C.2. Transverse covering for Example C.5
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