
INFORMATICS FRAMEWORK FOR EVALUATING

MULTIVARIATE PROGNOSIS MODELS:

APPLICATION TO HUMAN

GLIOBLASTOMA

MULTIFORME

by

Stephen Richard Piccolo

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Biomedical Informatics

The University of Utah

May 2011



Copyright c© Stephen Richard Piccolo 2011

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l  
 
 
 

STATEMENT OF DISSERTATION APPROVAL 
 
 
 

The dissertation of Stephen Richard Piccolo 

has been approved by the following supervisory committee members: 

 

Lewis J. Frey , Chair 11/18/2010 

 
Date Approved 

Philip S. Bernard , Member 11/18/2010 

 
Date Approved 

Lisa Cannon-Albright , Member 11/18/2010 

 
Date Approved 

Karen Eilbeck , Member 11/18/2010 

 
Date Approved 

Peter J. Haug , Member 11/18/2010 

 
Date Approved 

 

and by Joyce A. Mitchell , Chair of  

the Department of Biomedical Informatics 

 

and by Charles A. Wight, Dean of The Graduate School. 
 
 



ABSTRACT

For decades, researchers have explored the effects of clinical and biomolecular

factors on disease outcomes and have identified several candidate prognostic markers.

Now, thanks to technological advances, researchers have at their disposal unprece-

dented quantities of biomolecular data that may add to existing knowledge about

prognosis. However, commensurate challenges accompany these advances. For exam-

ple, sophisticated informatics techniques are necessary to store, retrieve, and analyze

large data sets. Additionally, advanced algorithms may be necessary to account for

the joint effects of tens, hundreds, or thousands of variables. Moreover, it is essential

that analyses evaluating such algorithms be conducted in a systematic and consistent

way to ensure validity, repeatability, and comparability across studies. For this study,

a novel informatics framework was developed to address these needs. Within this

framework, the user can apply existing, general-purpose algorithms that are designed

to make multivariate predictions for large, hetergeneous data sets. The framework also

contains logic for aggregating evidence across multiple algorithms and data categories

via ensemble-learning approaches. In this study, this informatics framework was ap-

plied to developing multivariate prognisis models for human glioblastoma multiforme,

a highly aggressive form of brain cancer that results in a median survival of only

12-15 months. Data for this study came from The Cancer Genome Atlas, a publicly

available repository containing clinical, treatment, histological, and biomolecular

variables for hundreds of patients. A variety of variable-selection approaches and

multivariate algorithms were applied in a cross-validated design, and the quality

of the resulting models was measured using the error rate, area under the receiver

operating characteristic curve, and log-rank statistic. Although performance of the

algorithms varied substantially across the data categories, some models performed

well for all three metrics—particularly models based on age, treatments, and DNA

methylation. Also encouragingly, the performance of ensemble-learning methods



often approximated the best individual results. As multimodal data sets become

more prevalent, analytic approaches that account for multiple data categories and

algorithms will be increasingly relevant. This study suggests that such approaches

hold promise to guide researchers and clinicians in their quest to improve outcomes

for devastating diseases like GBM.
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for Näıve Bayes Classifier models trained on clinical variables that have
been reported in the literature to have prognostic relevance for glioblas-
toma multiforme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.15 Results of empirical split-point selection on data simulated to support
perfect separation between longer-term survivors and shorter-term sur-
vivors at 360-days survival. The error rate (corrected for what would
be observed if the majority class were predicted by default) was used as
the evaluation criterion at each split point. When a tie occurred, the
median value was selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.16 Results of empirical split-point selection on data simulated to support
perfect separation between longer-term survivors and shorter-term sur-
vivors at 360-days survival. The AUC was used as the evaluation
criterion at each split point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.17 Results of empirical split-point selection on data simulated to support
perfect separation between longer-term survivors and shorter-term sur-
vivors at 360-days survival. The log-rank statistic was used as the
evaluation criterion at each split point. When a tie occurred, the median
value was selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



4.18 Results of empirical split-point selection on data simulated to support
perfect separation between longer-term survivors and shorter-term sur-
vivors at 100-days survival. The error rate (corrected for what would
be observed if the majority class were predicted by default) was used as
the evaluation criterion at each split point. When a tie occurred, the
median value was selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.19 Results of empirical split-point selection on data simulated to support
perfect separation between longer-term survivors and shorter-term sur-
vivors at 100-days survival. The AUC was used as the evaluation
criterion at each split point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.20 Results of empirical split-point selection on data simulated to support
perfect separation between longer-term survivors and shorter-term sur-
vivors at 100-days survival. The log-rank statistic was used as the
evaluation criterion at each split point. When a tie occurred, the median
value was selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.21 Survival split points selected for each cross-validation fold when the
empirical split-point method was applied to the full data set. . . . . . . . . 77

4.22 Overall survival for patients receiving radiation treatment versus pa-
tients not receiving radiation treatment. . . . . . . . . . . . . . . . . . . . . . . . . 81

4.23 Radiation treatment status versus age at diagnosis. . . . . . . . . . . . . . . . . 82

4.24 Radiation treatment status versus Karnofsky performance status (KPS). 83

4.25 Number of days to radiation treatment versus patient overall survival. . 84

4.26 Overall number of treatments versus radiation treatment status. . . . . . . 85

4.27 Kaplan-Meier curves comparing overall survival of patients predicted as
longer-term survivor (LTS) versus shorter-term survivor (STS) when the
NBC algorithm was applied to clinical data. Support Vector Machines-
Recursive Feature Elimination was used for variable selection, non-
radiation-treated patients were excluded, and median survival was the
split point between LTS and STS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.28 Patient overall survival versus age at pathologic diagnosis. . . . . . . . . . . 91

4.29 Area under receiver operating characteristic curve versus number of
DNA methylation genes included in Näıve Bayes Classifier models. Me-
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer that

results in a median survival of 12-15 months, [2] a short duration relative to most

other cancers. [3] However, the length of time that GBM patients survive after

diagnosis is variable—some patients survive only a few weeks while others survive

many years [4]—a pattern that suggests that individual patient and tumor char-

acteristics influence tumor aggressiveness, responses to treatments, and ultimately

survival. Unfortunately, despite extensive research efforts to date, GBM survival has

not been extended appreciably at the population level. [5] An understanding of factors

associated with GBM survival time could help researchers and physicians identify

patients less likely to respond to standard treatments [1] and could help researchers

identify mechanisms driving disease severity.

The lack of progress in developing reliable methods to prospectively differentiate

between longer-term survivors (LTS) and shorter-term survivors (STS) likely results—

at least in part—from the complexity of interactions between clinical, demographic,

and treatment factors as well as from the biological complexity of tumor initiation and

progression. Various studies have identified an array of candidate prognostic factors

for GBM, [2,4,6–19] yet it has remained unclear how best to account for the effects of

multiple factors working in concert to affect prognosis. In response to this problem,

some researchers have proposed multivariate prognosis models. [1, 11, 19, 20] While

such studies have shown promise for aiding clinicians with the task of predicting a

patient’s prognosis, no existing model attempts to account for all candidate prognostic

factors for GBM—existing models typically account for a single category of molecular

data and one or more clinical variables such as age. Additionally, many algorithms

exist for developing multivariate prognosis models, but each GBM study has typically
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employed only one such technique. Two reasons for these limitations are apparent: 1)

it is economically infeasible for individual research labs to acquire multiple categories

of clinical and molecular data for a reasonably sized patient cohort, and 2) no

informatics framework has been available for performing analyses that compare and

combine the outputs of multiple algorithms in a systematic and consistent way.

Fortunately, a recent initiative by the United States National Institutes of Health has

resulted in a publicly available data repository—The Cancer Genome Atlas (TCGA)

[21]—that contains data for hundreds of GBM patients. This resource is unique in the

breadth of data it contains—TCGA contains thousands of data points representing

clinical characteristics, treatments administered, and molecular features profiling each

patient’s tumor. Such a resource enables an unprecedented opportunity to evaluate

previously reported prognosis models, to discover new candidate prognosis models,

and to make systematic comparisons across data categories and algorithms. Accord-

ingly, the overaching goal of this research was to develop an informatics framework to

perform such analyses and to apply the framework to an analysis of GBM survival.

1.2 Main Objectives

Having a vast array of data for each patient presents not only opportunities

but also challenges. One important challenge is to filter the data into variable sets

that represent the key factors influencing patient outcome and that ignore irrelevant

factors. A related challenge is to develop models that account for potentially intricate

combinations of heterogeneous factors that jointly affect patient outcome. In response

to such challenges, the statistics and machine-learning communities have developed

general-purpose algorithms designed to filter variable sets and to make multivariate

predictions in many diverse contexts; however, such algorithms have been applied only

minimally in the context of predicting GBM survival, so their potential usefulness

in this setting is unknown. Thus, one key objective of this research was to apply

machine-learning algorithms in this context.

Theory and practical application suggest that no single algorithm is universally

optimal for performing classification tasks. [22] One algorithm may be well suited

for extracting meaningful patterns from a particular class of patient data whereas a
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second algorithm may be less suitable for the task. However, the second algorithm

may, in turn, be more effective than the first algorithm on a different class of patient

data. The heterogeneous nature of the TCGA data provides further justification

to employ multiple algorithms—for example, some variables are naturally discrete

(e.g., sex, mutation status) while others are inherently continuous (e.g., age, gene

expression) and follow diverse numerical distributions. Thus, another key objective of

this research was to explore methods that combine the outputs of multiple algorithms

into a unified prediction for each patient.

Having identified a multivariate model that differentiates successfully between

two classes (e.g., LTS and STS), a subsequent challenge is to interpret the model.

This challenge can be especially difficult when the model contains a large number

of variables, a scenario often encountered with biomolecular-profiling data. Invi-

didual variables used in the model can be evaluated one at a time. However, it is

often desirable to interpret a model as a whole to better understand the underlying

mechanisms driving the model’s success. Gene-set enrichment analysis (GSEA) [23]

is one approach for interpreting sets of genomic variables. In GSEA, selected genes

are evaluated against known functional categories in an attempt to identify functional

categories that are associated with the genes more than would be expected by chance.

However, when only a subset of known genes have been profiled, a selection bias may

impact the results and subsequent intepretation. Consequently, another objective of

this research was to explore this bias and develop a method to account for it.

1.3 Hypotheses

In accordance with the main objectives, the following hypotheses were evaluated

in this study:

• Multivariate algorithms can be used to derive clinical and biomolecular models

that differentiate significantly between GBM patients who survived a relatively

long (LTS) or short (STS) time after diagnosis.

• Methods that aggregate evidence across multiple data categories and algorithms

can differentiate between LTS and STS better than using methods that use
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evidence from a single data category or algorithm.

• Biologically relevant aspects of the models can be identified via comparison with

prior knowledge and via accounting for gene-selection bias.

The remaining sections of this dissertation describe in further detail the research

that was performed in this study. The Background section describes the clinical

need motivating this study, prior research that has been conducted in this area, and

how this study aims to improve on prior work. The Methods section describes the

algorithms that were used to formulate GBM survival models, explains modifications

that have been made to existing approaches, and outlines the study’s experimental

design; additionally, this section describes the informatics framework that was devel-

oped and details at a technical level its advantages over other approaches. The Results

section outlines the findings of this study in substantial detail. The Discussion section

provides additional interpretation of the results, addresses notable side observations

that came about during the analysis, explains limitations of this study, and suggests

how the research could be developed further in future studies. Finally, the Conclusion

postulates on the potential implications of this study for the biomedical informatics

research community.



CHAPTER 2

BACKGROUND

2.1 Univariate Predictors of GBM Survival

Over the past decades, researchers have searched for clinical, histological, and

treatment-associated factors that appear to shorten or lengthen overall GBM sur-

vival. An association between age at diagnosis and GBM survival has been reported

consistently and repeatedly. [4,6–15] Other factors reported to have some prognostic

relevance include Karnofsky Performance Status (KPS) (a measure of that patient’s

well being at the time of diagnosis), [8–14] extent of tumor resection, [9, 13–15]

radiation therapy, [6,14,16] and tumor necrosis. [7,9,24] In 2005, a phase III clinical

trial also suggested that treatment with Temozolomide, an oral alkylating agent,

extends survival in many patients. [2]

Due to technological advances, researchers have also searched for prognostic fac-

tors at the biomolecular level. Although many types of biomolecular alterations—for

example, DNA point mutations, DNA methylation changes, DNA amplifications and

deletions, and mRNA expression changes—have been observed regularly in GBM

tumors, [17, 25, 26] a prognostic relationship has been demonstrated for only a few

alterations, including IDH1 mutations, [17, 27] MGMT hypermethylation, [12, 18]

EGFR amplification, [13] CDK4 amplification, [14] MDM2 amplification, [13] and

FABP7 expression. [19] Unfortunately, for some of these associations, conflicting

results have been observed in other studies. [4, 12,14,16]

2.2 Multivariate Predictors of GBM Survival

Though it is promising that individual factors with prognostic relevance have

been observed for GBM, their value for predicting a given patient’s survival may be

limited, because individual factors often have a variable impact on survival. This

variability may, in part, result from combinations of factors that have cumulative or
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interacting effects. [28, 29] For example, in a recent study, simultaneous EGFR and

p53 alterations appeared to have a joint effect on GBM survival, whereas no effect

was observed for either alteration alone. [14] To account for such combinatory effects,

researchers have proposed multivariate models. [1, 11,19,20]

For example, in one study, multivariate techniques were applied to mRNA expres-

sion data for a group of GBM patients. [19] Liang, et al. examined whether GBM

patients—whose tumors by definition have similar histopathological features—could

be grouped into survival-associated subpopulations, based on genomewide mRNA

expression levels in the tumors. [19] They used agglomerative hierarchical clustering,

a popular unsupervised-learning algorithm, to divide patients into subpopulations

(clusters) that had relatively similar mRNA-expression profiles. Using a subset of

genes that were correlated with survival, they observed that the two upper-level

clusters had median survivals of 4 months and 25 months, respectively. Although

the generalizability of the model was not assessed, this finding suggested that mRNA

expression data may have potential to differentiate between LTS and STS.

Unsupervised-learning algorithms, such as the hierarchical-clustering method used

by Liang, et al., are designed to extract instrinsically meaningful patterns from data,

but they may not identify patterns that are optimally relevant to a particular outcome

(i.e., survival)—by nature, unsupervised-learning methods ignore outcomes. While

such approaches are useful in many scenarios (including when the outcome is un-

known), they may not be ideal when the researcher’s intent is to correlate independent

variables with a particular outcome. Thus, in complement to unsupervised-learning

methods, the statistics and computer-science communities have also developed a large

variety of supervised-learning algorithms designed to identify multivariate patterns

associated with outcomes of interest. Hundreds of supervised-learning algorithms

have been published in the literature and have been applied in many fields of study,

but such methods have been applied only minimally to GBM data in relation to

survival. [1, 11,30]

In one study, Lamborn, et al. used recursive partitioning analysis (RPA), [31]

a supervised-learning technique that divides patients into subpopulations according

to associations between combinations of independent variables and the outcome. [11]
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Lamborn, et al. investigated whether combinations of clinical variables could be

used to assign GBM patients to risk groups that had significantly different overall

survivals. Derived from a large sample of GBM patients who had been enrolled in

clinical trials and who had received radiation treatment, their RPA model was based

on age at diagnosis, KPS, and tumor anatomic site. When the model was evaluated

on the same data set from which it was derived, two-year survival estimates for

the groups were 65%, 35%, 17%, and 4%, respectively. In a follow-up analysis,

they also observed that this method could be used to detect survival-associated

subpopulations among patients that had received a particular treatment regimen.

Although the generalizability of the models was not assessed, the findings suggested

that multivariate models based on clinical data have potential to elucidate differences

in survival expectations among GBM patients as a whole or among patients receiving

a given treatment.

In a recent study, Colman, et al. applied supervised-learning methods to mRNA

expression data. [1] They explored the potential to predict an individual GBM pa-

tient’s survival status at the time of diagnosis. After examining multiple independent

data sets, they identified nine genes that consistently were differentially expressed

between patients who survived fewer than two years and patients who survived

longer. Then they developed a risk score based on the combined expression of the

nine genes: genes that were typically over-expressed were assigned a positive weight,

while under-expressed genes were assigned a negative weight. Then an optimal cutoff

value for distinguishing LTS from STS was identified using RPA. Colman, et al.

tested this method on a separate data set and found that the multigene score was an

independent, significant predictor of survival.

The results published by Colman, et al. suggest clinical viability for multivarate

prognosis models based on mRNA expression data. In fact, based on their findings,

the authors have marketed a test designed to distinguish LTS from STS in clinical

and research settings. [32] However, further exploration of the utility of such methods

is warranted. For example, Colman, et al. used univariate statistical approaches to

identify differentially expressed genes, yet multivariate approaches may reveal gene

subsets that influence survival jointly but not individually. [14] Additionally, the
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multigene scoring approach employed by Colman, et al. is basic and unsuitable for

data sets that contain discrete values. Accordingly, two foci of this study were to use

multivariate algorithms to filter variables sets and to make survival predictions using

multiple categories of clinical and molecular data.

2.3 Ensemble Predictors of GBM Survival

The studies described so far have been limited in at least two ways. Firstly,

each study evaluated a single category of GBM patient data (i.e., clinical, mRNA)

in isolation, whereas many types of prognostic factors (e.g., clinical, treatments,

biomolecular) have been observed for GBM patients and thus may influence GBM

tumor progression. [25] Secondly, each study reported applying only a single algorithm

to a respective data set, and it is likely that different algorithms perform better for

different categories of data or even for different subsets of patients. These limitations

appear commonly in other studies of GBM survival. Accordingly, other key foci

of this study were to evaluate the potential prognostic value of various categories

of patient/tumor data and the effectiveness of multiple algorithms for producing

accurate predictions of GBM survival.

Demonstrating the potential to develop prognostic models for a single category

of patient/tumor data provides an indication of the priority that should be placed

on collecting that data. However, intuition suggests that it should be possible to

improve prognostic models by aggregating insights across multiple data categories

and algorithms. In one study that implemented such an approach, Nigro, et al. [33]

acquired mRNA expression data and DNA copy-number data for a cohort of GBM

patients. Having applied filtering and clustering methods for the data categories

separately, they found that in both cases, one cluster contained predominantly STS

(< 2 years survival), while the other cluster had a combination of STS and LTS (>

24 months). Importantly, individual patients were not grouped identically for the

two data categories, an indication that the mRNA expression and DNA copy-number

data contained complementary prognostic information. Consequently, the authors

concluded that “analyzing genetic signatures on both DNA and RNA levels may

result in more robust molecular classification schemes than those derived from either
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experimental method alone” (p. 1685). [33] However, few such studies have been

conducted using multiple categories of patient/tumor data for the same set of patients.

Part of the reason may be that it has been economically infeasible for individual

research labs to obtain high-throughput molecular data—let alone multiple categories

of molecular data—for large patient cohorts. In fact, the patient cohort for the

Nigro, et al. study consisted of only 34 patients. Fortunately, the U.S. National

Cancer Institute and National Human Genome Research Institute have teamed to

invest in TCGA with the goal to “improve our ability to diagnose, treat, and prevent

cancer” by exploring “the entire spectrum of genomic changes involved in human

cancers”. [34] TCGA contains detailed clinical data (including time to survival) and

multiple categories of high-throughput biomolecular data for a cohort of over 300

GBM patients. Thus this vast resource provides an unprecedented opportunity to

explore multivariate prognosis models.

Although many supervised-learning algorithms exist, no single algorithm is uni-

versally optimal. [22] And generally speaking, the performance of a given algorithm

depends on the nature of the data to which it is applied. [22] Thus it may be useful

to apply multiple algorithms to potentially shed light on which algorithm(s) are well

suited (or not) to a particular category of data. However, lacking a priori knowledge

of which algorithm would perform best in a given scenario, ensemble methods—which

consider the outputs of multiple algorithms—have been suggested as a way to yield

better results than any single algorithm. [35] To gain advantage from combining the

outputs of multiple algorithms, it is desirable that the algorithms vary substantially

in the predictions that they make, a phenomenon known as classifier diversity. [36]

When classifier diversity exists (and in the common scenario where algorithms predict

imperfectly), the various algorithms commit prediction errors on different patients.

Ensemble methods attempt to capitalize on classifier diversity by aggregating the

collective insights provided by the individual algorithms—where one algorithm fails,

another algorithm may succeed. Many ensemble approaches have been proposed

in the literature, ranging in complexity from a simple majority vote [37] to more

advanced methods, such as those that assign weights to predictions based on the

perceived quality of the predictions. [38] In this study, a variety of such ensemble



10

approaches have been applied to the problem of GBM survival prediction.

2.4 Assessing Clinical Relevance

Although it is an interesting academic exercise to apply multivariate algorithms to

patient data in novel ways, the value of such research can be increased substantially if

it can be shown that the methods have clinical utility. In the case of survival analyses,

clinical utility means demonstrating that patients who survive a relatively long period

of time can be distinguished from patients who survive a relatively short time. Having

separated patients into distinct groups, standard survival-analysis techniques (e.g.,

the log-rank test [39] and Kaplan-Meier curves [40]) can be used to assess the overall

differences in survival between the groups. A method that successfully separates

patients into survival-associated groups can be invaluble in clinical settings at the

time of diagnosis. [41] For example, if a patient knew her survival would likely be

relatively short, she might opt for more aggressive treatments and/or to enter a

(potentially risky) clinical trial. [42]

One advantage of unsupervised-learning techniques is that they assign patients to

discrete groups, so the overall survival of the groups can be compared in a straight-

forward way using survival-analysis techniques. Conversely, supervised-learning al-

gorithms rely upon an explicit outcome, which they attempt to predict. For the

analyses performed in this study, the outcome is survival, which is naturally a con-

tinuous variable, and obvious groupings among patient survival times may not arise

(as in GBM). Consequently, researchers often use an alternative approach—patients

surviving longer than a given number of days or years are placed in one group,

and patients surviving shorter than that threshold are placed in another group. By

dividing the patients into distinct groups, researchers are able to present findings that

are intuitive to clinicians and that can be assessed using survival-analysis techniques

that are familiar to clinicians. An additional reason for grouping patients this way

is that supervised-learning algorithms have traditionally focused more on problems

with discrete outcomes, and thus existing methods are more developed in this area.

Thus, in this study, the outcome variable is a discretized form of survival: patients

are designated as either LTS or STS based on whether the patient survived a specific



11

number of days. (Details are outlined in the Methods section regarding the various

methods used to perform this discretization.)

2.5 Assessing Biological Relevance

If a model based on biomolecular data can be demonstrated to have high clinical

relevance to GBM survival, a logical next goal is to interpret the biological meaning

of the model. Identifying specific biological mechanisms that drive GBM tumor

aggressiveness could help bench researchers develop targeted treatments, potentially

leading to longer survival for patients subject to those biological mechanisms. In

addition to exploring biological mechanisms at a granular level, researchers have also

attempted to gain insights on the underlying functional categories associated with

the genes that appear to have most influence on the outcome. This class of methods,

commonly referred to as gene-set enrichment analysis (GSEA), [23] performs a func-

tional analysis on the top-level genes and identifies the known biological processes

or functions that are associated with the selected genes. Because some biological

processes have more genes associated with them than others, GSEA methods typically

correct for such bias. However, GSEA methods are typically designed for analysis of

high-throughput molecular data–such as mRNA-expression microarray data—that

profile almost every known gene. When custom (not genomewide) molecular assays

are used for molecular profiling, GSEA may need further refinement. In developing

such assays, researchers must decide a priori which molecular features to measure,

due to cost and/or technological restrictions. Because these decisions are at least

partially subjective, it is plausible that molecular features are selected in favor of

genes already believed to influence the disease(s) being studied. This potential

limitation is of particular relevance to researchers investigating multimodal data

sets like TCGA because each molecular-profiling platform measures a different set

of molecular variables. So having a method that could be applied more generally and

that could account for selection bias would be desirable.
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METHODS

3.1 Data

GBM data for this study were downloaded from the TCGA data portal [43] on

August 26, 2010. For each GBM patient, the portal contains clinical observations,

treatments that have been administered, histological observations of tumor samples,

number of days that patients survived, and biomolecular data that have been acquired

using various high-throughput profiling technologies. For this study, age, sex, and

Karnofsky performance status (KPS) were labeled as clinical variables. Treatment

variables were the following: radiotherapy, temozolomide, dexamethasone, lomus-

tine, bevacizumab, or other drug (indicating whether a given patient had received

any other type of drug treatment); each treatment variable contained binary values

indicating whether patients had received any of the given treatment. Histology

variables included in the analysis were number proliferating cells, percent tumor cells,

percent tumor nuclei, percent necrosis, percent stromal cells, percent inflammatory

infiltration, percent lymphocyte infiltration, percent monocyte infiltration, percent

granulocyte infiltration, percent neutrophil infiltration, percent osinophil infiltration,

presence of endothelial proliferation, presence of nuclear pleomorphism, presence of

palisading necrosis, and presence of cellularity. When a low value range (e.g., <5%

necrosis) was given, the range was rounded to bottom of the range; high-value ranges

(e.g., >95% tumor cells) were rounded up.

Molecular-level data representing DNA somatic mutations, DNA copy number

changes, DNA methylation states, mRNA expression levels, and miRNA expression

levels were also included in the analyses. These data were acquired using the fol-

lowing technologies: Sanger sequencing, Agilent Human Genome CGH Microarray

244A microarrays, Illumina DNA Methylation OMA002 and OMA003 custom pan-
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els, Affymetrix HG-133A microarrays, and Agilent 8 x 15K Human miRNA-specific

microarrays.

The TCGA data portal contains raw data as well as data that have been pre-

processed by the TCGA Consortium. [21] For somatic mutations, TCGA “Level 3”

data, which had been summarized at the gene level, were used. Somatic mutations

that had been marked as “silent” were excluded, based on an expectation that

synonymous mutations would by nature not have prognostic relevance. Additionally,

only mutations that had been validated and were considered “somatic” by the TCGA

Consortium were included. Finally, any gene that had fewer than two mutations was

excluded. For DNA copy number, the Level 3 data were mapped to the UCSC

hg19 version of the human genome, [44] and a mean value was calculated for each

chromosomal band. [45] For DNA methylation, Level 2 data were used (in the absence

of Level 3 data); these data contain “beta values” representing the proportion of

methylated molecules on the complementary probes for each locus. These data had

not been summarized at the gene level; thus, to get gene-level values, the mean beta

value across all probes associated with a given gene was calculated. For mRNA

and miRNA expression, Level 3 data, which had already been preprocessed and

summarized, were used.

For each patient, the overall survival time was calculated as the difference in days

between the date of initial pathologic diagnosis and the date of decease. Patients

having no recorded diagnosis date, having a pretreatment history, or missing >50

percent of data for a given data category were excluded. After performing this filtering

step, data for 313 GBM patients remained. Of those patients, 307 had data for at

least four data categories, and 100 had data for all categories. Table 3.1 lists the

number of patients and the number of data points for each category, along with the

proportion of missing values for each category. The All Data category represents a

combined data set containing the union of all other data categories.

3.2 Model Validation Procedure

Even when a multivariate algorithm is capable of fitting a model to a data set

with extremely high accuracy, the model may fail to generalize and thus have limited
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clinical relevance for the overall population. Cross validation is one technique for

assessing how well models generalize. Such an approach is essential, especially when

analyzing a data set like TCGA that is drawn from multiple institutions, includes

heterogeneously treated patients, and contains thousands of potential predictor vari-

ables.

In cross validation, the data instances (patients) are partitioned into sets of equal

size (or as close to equal as possible). In turn, each set is held separate for testing,

and the remaining instances are used to train a model. The trained models then are

used to predict the outcome of the respective test instances. One cross-validation

parameter that can be varied is the number of folds used. For example, in ten-fold

cross validation, the data set is divided into ten partitions, resulting in ten disjoint sets

of test instances. In leave-one-out cross validation, each test set contains only a single

instance, and the remaining instances are used for training. In this study, ten-fold

cross validation was used. Where possible, stratification was also used; stratification

attempts to spread instances from each class (e.g., LTS, STS) evenly across the folds.

In order to estimate optimal parameters for training a model, this study also

employed nested cross validation; with this approach, instances in each training set are

further subdivided into internal training and test sets; the parameters that perform

best internally are then used to train models on the outer training sets. Nested cross

validation provides performance estimates that approximate what can be obtained

on independent test sets. [46]

Having assigned patients to cross-validation folds, variable-selection approaches

were applied to the training sets. The purpose of such approaches is to reduce the

effect of noise in the data by focusing the models on variables that are most relevant to

the outcome. Having ranked the variables for each data category, the top-1, 5, 10, 50,

100, 500, or 1000 variables (if that many were available) were identified for each outer

training set. Because the optimal number of variables to include in a given model was

unknown, a similar selection procedure was applied to the internal cross-validation

folds. The number of top-ranked variables, n, that performed best on each training

set—based on lowest average area under the receiver operating characteristic curve

(AUC) across the internal folds—was considered optimal. Classification algorithms
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then used the best n features to train a model and predict the survival status of

patients in the respective outer folds. This procedure was performed independently

for each combination of data category, feature-selection approach, and classification

algorithm.

3.3 Variable Selection Approaches

In filtering variable sets, four selection approaches were used.

The first approach, None, is simply to perform no filtering. Two reasons for using

this approach may have merit: 1) it is possible that every variable contributes some

information, so excluding any variable may reduce classification performance, and

2) many classification algorithms have intrinsic techniques for filtering variables that

are particularly well suited to those algorithms, so pre-filtering with a contradictory

approach may negatively impact classification performance.

The second selection approach, prior knowledge filtering, requires a manual litera-

ture review to identify variables that have been reported to bear prognostic relevance

for each of the data categories. The purpose of applying this technique is to identify

all GBM prognosis variables for which the scientific community has reached some

consensus. Selecting variables based on prior knowledge also sets a baseline against

which the quantitative algorithms can be compared. For this study, a variable

was considered to constitute prior knowledge if two or more articles, published in

peer-reviewed journals, had reported the variable to be prognostic for GBM. Two

exceptions to this rule were allowed: 1) if only one article had reported any candidate

prognosis variable for a given data category, the variables from that article were used,

or 2) if a single study had validated candidate variables across multiple independent

data sets, those variables were considered robust and given preference over variables

reported in separate studies. Few articles researching the prognostic relevance of

miRNA expression have been published to date, so a single article was considered

sufficient for that category. The Colman et al. mRNA expression signature was

derived from multiple independent studies and thus was used. Table 3.2 lists each

data category along with the prior-knowledge variables that were selected for each

category.
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Another selection approach used in this study was the Support Vector Machines-

Recursive Feature Elimination (SVM-RFE) algorithm. [47] SVM-RFE is based on

Support Vector Machines, a powerful classification algorithm that assigns a weight

to each variable, quantifying its ability to discriminate the classes. SVM-RFE uses a

backward search: variables with the lowest weights are removed in an iterative fashion,

and variables are ranked according to the order in which they are eliminated. [47]

SVM-RFE has been shown to perform well on high-dimensional data sets with com-

plex dependencies among variables. [47] The implementation of this algorithm in the

Weka software package [48] was used in this study. The algorithm was configured to

eliminate 10% of variables in each iteration; when 10 or fewer variables remained, one

variable was eliminated in each iteration. Otherwise, default configuration settings

were used.

The final variable-selection approach was the RELIEF-F algorithm. [49] For a

random subset of instances (i.e., patients in this case), RELIEF-F compares each

instance against other instances of the same class (i.e., LTS or STS) and of a different

class; it then calculates a score for each variable based on whether values are similar

for instances of the same class and dissimilar for instances of a different class. [49] The

resulting score is a continuous value with higher numbers signifying a better ability to

differentiate and zero/negative values signifying no ability to differentiate. This study

used the Weka implementation of this algorithm with default configuration settings.

3.4 Classification Algorithms

In TCGA, some data categories contain hundreds or thousands of independent

variables. Additionally, variables vary not only in their semantics but also in their

scales of measurement. [50] Consequently, classification algorithms used in this study

needed to be capable of handling a large number of variables and multiple variable

types. The following algorithms meet these criteria and were employed in this study:

C5.0 Decision Trees, Näıve Bayes Classifier (NBC), and Support Vector Machines

(SVM). Each of these algorithms has been applied broadly in a variety of contexts

and represents a considerably different algorithmic approach.

The C5.0 Decision Trees algorithm [51] is conceptually similar to the RPA al-
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gorithm (used in the Lamborn, et al. study [11]) in that it uses combinations of

variables to assign patients to subgroups that are homogeneous in relation to the

outcome variable; however, unlike RPA, C5.0 Decision Trees is designed to handle

both continuous and discrete variables, [52] handle missing values, perform well on

large data sets, and account for intervariable dependencies.

NBC is based on Bayes’ Theorem of conditional probabilities and calculates the

class’ posterior probabilities as the product of the conditional probabilities for each

variable. [53] For simplicity, NBC assumes independence between variables; yet de-

spite its simplicity, NBC often performs as well as or better than more sophisticated

algorithms. [54] For this study, the Weka implementation of this algorithm was used.

Instead of the default settings, which assume that continuous variables follow a normal

distribition (which is not always the case in the TCGA data), a nonparametric kernel

density estimator was used to characterize continuous variables. This method has

been shown to reduce errors compared to the normality assumption. [55]

The SVM algorithm [56] uses a mathematically derived hyperplane to separate

instances of different classes; the instances lying on the hyperplane’s margin constitute

support vectors, and the algorithm seeks a maximal margin between the hyperplane

and the support vectors. [57] For this study, the Weka wrapper of the LibSVM library

[58] and the radial-basis function kernel (default setting) were used.

3.5 Ensemble Learning Approaches

Ensemble-learning methods are designed to create aggregate predictions based on

evidence from multiple individual predictions. For this study, a variety of existing

ensemble approaches were applied, and modified versions of existing approaches were

developed. In performing ensemble learning, predictions from each combination of

data category, feature-selection approach, and classification algorithm were consid-

ered. (Predictions for the All Data category were excluded.)

The first and simplest ensemble approach, majority vote, [37] counts the number

of predictions a patient received for a given outcome (i.e., LTS or STS) and makes

an aggregate prediction in favor of the outcome that received the most votes; in

situations where each outcome received the same number of votes, the predicted
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outcome is selected at random.

An advantage of majority vote is its simplicity; however, because each prediction is

given an equal weight, the aggregate prediction may be influenced heavily by incorrect

individual predictions. The second approach, simple weighted vote, [38] attempts to

place most emphasis on the individual predictions it believes to be most informative.

The implementation used in this study assigns a weight to each individual prediction

based on the AUC attained via nested cross validation for the relevant combination

of data category, feature-selection algorithm, and classification algorithm. Squared

weighted vote squares the weights used in the simple weighted vote in an attempt

to place exponentially higher emphasis on predictions that perform best in nested

cross validation. Two additional novel approachs—LTS predictive-value weighted vote

and STS predictive-value weighted vote—assign weights based on the percentage of

times (learned via nested cross validation) that patients were predicted correctly

as being LTS or STS, respectively. These approaches were motivated by the need to

improve predictive performance in data sets that have an unbalanced class distribution

and thus may favor predictions for either class. For example, STS predictive-value

weighted-vote places the most emphasis on predictions that it believes are effective for

identifying STS correctly and thus may perform relatively well on data sets containing

a small proportion of STS.

For each patient, the Select Best approach makes an aggregate prediction based

on the individual prediction that received the highest weight (AUC).

Two additional ensemble methods use the posterior probabilities assigned by

individual classification algorithms. The mean probability method averages the prob-

abilities for each outcome across all predictions—the outcome with the highest mean

probability is selected. Weighted mean probability assigns a weight, based on the

inner-fold AUC, to each probability, and then calculates the mean for each outcome.

Finally, Stacked Generalization uses the posterior probabilities from the original

predictions and trains a second-level classification algorithm to make aggregate predic-

tions based on those values. [59] In stacked generalization, any classification algorithm

can be used for the second-level predictions; however, this study used C5.0 Decision

Trees because it is designed to handle dependencies between attributes (in this case,
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predictions)—a condition that would be expected to occur when first-level algorithms

make similar predictions—and because its models are easily interpretable.

3.6 Outcome Discretization

In accordance with previous studies of GBM survival, [1, 30, 33] each patient was

designated as either a longer-term survivor (LTS) or shorter-term survivor (STS).

In the literature, several survival thresholds have been used to distinguish LTS from

STS; one of the most common thresholds is two-year survival [1,33]; however, in other

studies, different thresholds have been used. [12, 60] In this study, various survival

thresholds were used in an exploration of the effects the threshold has on performance.

Two-year survival was used in the initial experiments: patients surviving longer than

two years were labeled as LTS, while patients surviving shorter were labeled STS. In

a subsequent experiment, an empirical method was used to estimate which split point

would result in the best classification performance. [61] This method evaluates many

split points via an optimization procedure, attempting to split the patient population

into two groups that are subject to “different underlying disease mechanisms” (p.

95). [61] In this approach, 1) a series of candidate split points are determined: patients

are sorted by their respective survival times, and the median survival separating each

set of adjacent patients constitutes a candidate split point; 2) for each split point,

patients are designated as either STS or LTS, depending on their actual survival time;

3) cross validation is used to calculate an error rate at each split point; and 4) the

split point that results in the lowest error rate (compared to the error rate that would

have been achieved if the majority class had been predicted by default) is selected.

In implementing the split-point selection procedure, several modifications differed

from the published approach. The original authors used the C4.5 Decision Trees

algorithm for the cross-validation step; however, Quinlan has released an updated

version of the algorithm called C5.0 Decision Trees, which was used in this analysis.

Additionally, the published method selects the split point that performs best on the

full data set; however, this approach may result in models more likely to overfit the

data and thus that fail to generalize to external data sets. Consequently, in this

study, a split point was selected separately, via nested cross validation, for each outer
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cross-validation fold. Finally, because of the large number of variables in the TCGA

data set and because of the higher computational burden of performing nested cross

validation, 10-fold cross validation was used rather than leave-one-out cross validation

(as used by the original authors).

3.7 Performance Metrics

Having performed cross validation, a survival prediction existed for each patient.

The quality of the predictions was measured using various metrics: error rate, AUC,

and the log-rank survival statistic.

The error rate is calculated as the percentage of test instances misclassified across

all folds. (Of related interest is the proportion of patients of either class that were

predicted accurately.)

The AUC considers the posterior probabilites produced by the classification algo-

rithms; these probabilities represent the confidence with which the predictions were

made. In calculating the AUC, various confidence thresholds are used, and the true

positive rate is measured against the false positive rate across all thresholds.

In many machine-learning studies, the error rate and AUC are the performance

metrics of primary interest; however, in this study, the outcome variable (survival) is

naturally continuous. Thus, the performance was also measured using the log-rank

statistic. [39] The overall survival times of patients predicted as LTS were compared

against the overall survival times of patients predicted as STS. Subsequently, Kaplan-

Meier curves [40] were used to create a visual representation of the overall survival

differences between the two groups. The R project [62] and its survival package [63]

were used for calculating the log-rank statistic and producing the graphs.

The performance of the ensemble approaches was measured using the same metrics

by which individual algorithms were measured.

3.8 Custom Software Requirements

The complex nature of the analyses that were performed in this study necessitated

a custom software implementation to orchestrate the various analysis steps. The

name of this software package is ML-Flex because it is designed to perform machine-

learning analyses in a flexible and extensible way. ML-Flex is a command-line tool,
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written in the Java programming language. Although ML-Flex was developed for

the analyses performed in this study, its extensible nature also suits it well for more

general application. The following paragraphs explain the requirements that were

met by ML-Flex, along with brief explanations of the software’s architecture.

A vast array of multivariate algorithms have been published; however, the algo-

rithms are implemented in a variety of programming languages, have inconsistent

interfaces, and use a variety of file formats. Additionally, due to the heterogeneous

nature of the methods used to acquire and/or preprocess each category of TCGA

data, a variety of text-based data formats have been used to represent the data. Thus,

ML-Flex’s first requirement was to parse arbitrary data formats and store them in

local files that use a common data structure. Having collected and consolidated input

data, a second requirement was to transform data values based on criteria specific to

that type of data—for example, the DNA methylation data in TCGA are recorded

at the probe level, but a gene-centric value needed to be computed across all probes

for a given gene.

Having processed and stored the transformed data, the next requirement was

to apply variable-selection and classification algorithms to the data. Because the

TCGA data sets are large, and nested cross validation—a computationally intensive

procedure—needed to be performed multiple times, the software also needed to exe-

cute in parallel across multiple computing nodes and multiple processing cores within

each node, thus decreasing the amount of time required to complete the analyses.

Prior to performing the analyses, third-party software libraries with implementa-

tions of the algorithms were identified; however, no single library implemented all the

algorithms. Furthermore, Weka is written in the Java programming language, while

C5.0 Decision Trees is written in C. Consequently, an additional requirement was that

ML-Flex interface extensibly with third-party software written in many programming

languages. Accordingly, ML-Flex needed to contain logic for formatting the data in

whatever structure was required by a given third-party tool. For third-party software

packages that are not accessible via a Java application programming interface, ML-

Flex interfaces with them in the following way: 1) a formatted text file is saved to

the local file system, 2) the third-party software is invoked via command-line calls
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using the Runtime class in Java, and 3) after the software returns an exit code, the

software’s output files are parsed, and the results are recorded. Thus each software

package can operate natively, without requiring any language-specific wrappers.

Another important requirement was that ML-Flex output the analysis results to

structured text files that could then be imported into statistical packages and graphics

libraries to assist in reporting the results.

3.9 Custom Software Features

Using Java’s object-oriented nature, several abstract classes were developed within

ML-Flex. The abstract classes contain generic functionality for the main program-

ming logic and specify default parameters. For example, to extract and transform the

raw data, an abstract class called AbstractDataProcessor orchestrates the process of

parsing input files, transforming data values, and storing transformed data. Concrete

classes contain the specific logic and parameters required to extract and transform

each category of raw data. This extensible design makes it possible to add new

categories of data to analyses with minimal coding effort.

No existing software package contained implementations of all ensemble-learning

approaches that were performed in this study, so this functionality was added to

ML-Flex. ML-Flex uses an abstract class to retrieve the outputs of individual algo-

rithms and assign weights to individual predictions. It then uses concrete classes to

implement the specific logic for the various ensemble approaches.

Although implementations of nested cross validation exist in third-party software

packages, a custom implementation of this logic was incorporated into ML-Flex

because it was central to the TCGA analyses and because the custom implementation

facilitated executing tasks in parallel.

To process the data in parallel, a simple, coarse-grained architecture was imple-

mented. This approach is designed to operate in a cluster-computing environment

with minimal duplication of computations, without deadlocks, and with no need to

communicate directly across processing nodes or threads. For example, for vari-

able selection, ML-Flex instantiates a list of Java objects indicating each unique

combination of data category, algorithm, and cross-validation fold; then using the

java.util.concurrent framework, multiple, independent threads access the file
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system to check whether a given combination has been processed and the results

have been stored; if the combination has not been processed, the thread checks

the file system for an empty, correspondingly named lock file indicating that the

combination is currently being processed by another thread; if no lock file exists,

the thread attempts to use an atomic transaction to create the lock file; having

successfully created the lock file, the thread performs variable selection, the results

are stored on the file system, and the lock file is deleted. Similar logic is used to

perform classification tasks.

Even though ML-Flex is designed to process data quickly via parallelism, the

design of ML-Flex sacrifices some performance in favor of scalability and flexibility.

Although computing nodes operate independently and thus do not communicate

directly to optimize performance, any number of computing nodes may be used, and

individual computing nodes may run any operating system that supports the various

software components. (However, it is essential the clustering environment employ a

shared file system that allows atomic file creation.) Because text files track processing

status, ML-Flex is restartable, a desirable feature in cluster-computing environments

where server reliability may be limited. Before a job is restarted, lock files simply

must be deleted to clear the processing queue. Additionally, ML-Flex’s design makes

it possible to assign additional computing nodes to a job even after the job is already

running.

3.10 Custom Software Validation

Any custom software implementation requires a concerted effort to verify that the

software functions properly. ML-Flex was evaluated on various data sets for which

the expected outcome (or at least an approximation thereof) was known in advance.

For the first validation, the actual survival values of the TCGA patients were used.

As a preliminary step, patients who survived longer than the median were designated

as LTS, and the remaining patients as STS. Then for each patient, 900 continuous

values were generated at random using the standard normal distribution and assigned

to the patient. Subsequently, 100 binary values were generated for each patient, and

the symbols were shuffled at random. The resulting data set contained 1000 variables,
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each of which should be expected to have no ability to discriminate between LTS and

STS. The purpose of creating and evaluating this data set was to ensure that the

software contained no obvious problem that would give a positive result when none

was expected.

The second validation data set was generated using an approach similar to what

was used for the first set. However, in this case, three of the continuous random values

were increased by 50 points for each STS. Additionally, two of the binary values were

generated such that STS were always assigned a value of zero, while LTS were always

assigned a value of one. Although this data set mostly contained randomly generated

noise, it should be expected that 1) the variable-selection algorithms would place the

highly discriminatory variables at the top of their ranked lists, and 2) the classification

algorithms would be able to discriminate perfectly (or at least nearly so) between LTS

and STS. The purpose of evaluating this data set was to ensure that when an obvious

signal did exist, it could be found.

The final validation data sets were downloaded from the UCI Machine Learning

Repository, [64] which contains various “real-world” data sets that have been eval-

uated in many machine-learning studies over the years. Although few of the data

sets are cancer related, the purpose of this validation step was to ensure that the

classification results obtained on these data sets were similar to results that have

been achieved in other studies; achieving similar results would also suggest that

the software developed for this study could perform effectively on data sets with

varying levels of expected discrimination. The UCI data sets used for validation

were Iris, Breast Cancer (Wisconsin), [65] Hepatitis, Horse Colic, Ionosphere, Pima

Indians Diabetes, Statlog (Australian Credit Approval), Statlog (Heart), Tic Tac Toe

Endgame, Connectionist Bench (Sonar), and Congressional Voting Records. With

the exception of Iris, each of these data sets contain two classes; for consistency, Iris

was separated into two separate data sets—one containing setosa and versicolor data

(which are linearly separable), and the other containing versicolor and virginica data

(not linearly separable).
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3.11 Bias Correction Procedure for Gene
Set Enrichment Analysis

The GOstats [66] package was used to perform GSEA. GOstats uses the hypergeo-

metric distribution to correct for functional categories that have a relatively large (or

small) number of genes associated with them and thus would be more (or less) likely

to reveal associations with the selected genes. Using this package, an association was

tested between genes in top-performing models and biological pathways in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) homo sapiens database. [67]

To correct for potential gene-selection bias, the following method was used. For a

given data category, a subset of genes of the same size as the top-performing model

was randomly selected from the full set of genes profiled. GSEA was performed for

the random gene set, and the resulting p-values were recorded for each pathway.

When no result was returned for a pathway, the p-value was 1.0 by default. The

same process was repeated 1000 times. For each pathway, an empirical p-value was

then calculated by comparing the actual p-value with the distribution of p-values for

randomly selected gene sets. Empirical p-values below 0.05 were considered to be

statistically significant.
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Table 3.1. Summary of TCGA patients and variables included in the analyses for
each data category after filtering steps were performed.

Data Category # Patients # Variables Proportion Missing Data

Clinical 313 3 0.081

Treatments 313 6 0.004

Histology 313 6 0.006

DNA Methylation 188 2189 0.020

Somatic Mutations 112 154 0.000

DNA Copy Number 305 320 0.000

mRNA Expression 279 12042 0.000

miRNA Expression 276 534 0.000

All Data 313 15254 0.156
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Table 3.2. Variables that have been associated with GBM prognosis in the literature
and that were used in Experiment 2.

Data Category Variables

Clinical Age, KPS

Treatments Radiation, temozolomide

Histology Percent necrosis

DNA Methylation MGMT

Somatic Mutations IDH1, TP53

DNA Copy Number 7p, 9p, 10q23, 12q, 19p

mRNA Expression PDPN, AQP1, CHI3L1, RTN1, EMP3

GPNMB, IGFBP2, OLIG2, LGALS3

miRNA Expression hsa-miR-196a, hsa-miR-196b



CHAPTER 4

RESULTS

4.1 Validation Experiment: Simulated Data
With and Without Structure

Table 4.1 lists results of the validation experiment that was performed using

random, simulated data for which no significant separation between LTS and STS

was expected. Indeed, the algorithms differentiated poorly between LTS and STS. In

fact, in most cases, the error rate and AUC values were slightly worse than would be

expected by chance (0.498 and 0.500, respectively). None of the log-rank p-values were

below 0.05. Figure 4.1 displays an ROC curve for the result obtained with the C5.0

Decision Trees classification algorithm (with no variable selection). As expected, the

curve lies close to the x = y line, which represents the result that would be expected

by random chance. Figure 4.2 displays the associated Kaplan-Meier curves, which

overlap substantially (as expected). Table 4.2 lists results for the ensemble-learning

approaches. Again as expected, the results are similar to what would be expected by

chance.

Table 4.3 lists results of the validation experiment in which a subset of variables

were simulated to separate LTS from STS, whereas the remaining variables were

random noise. As expected, the algorithms separated the two classes perfectly,

resulting in error rates of 0.0, AUC values of 1.0, and extremely low log-rank p-

values; these results approach the upper limits of performance that could be expected

from the TCGA GBM data. Figure 4.3 and Figure 4.4 display an ROC curve and

Kaplan-Meier curves, respectively, for the results obtained using the C5.0 Decision

Trees classification algorithm (and no variable selection). Table 4.4 lists results for

the ensemble-learning approaches; these, too, performed extremely well, as expected.
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4.2 Validation Experiments: UCI Machine
Learning Repository Data

Table 4.5 list results of validation experiments that used data from the UCI Ma-

chine Learning Repository. No single algorithm always performed better than the rest.

And in many cases, predictive performance varied substantially from one algorithm to

another on a given data set. The SVM algorithm performed considerably worse than

C5.0 Decision Trees and NBC on the Statlog data sets but considerably better on the

Tic Tac Toe data. Such variability illustrates the concept of classifier diversity—some

algorithms are better suited than others to particular data sets. Accordingly, the

ensemble-learning approaches often performed better than individual algorithms (see

Table 4.6), though the results were mixed overall. Notably, the performance of the

ensemble-based approaches was highly consistent across the various approaches.

As a means of comparison, these tables also list results that were reported for

the UCI data sets on TunedIT.org, a web site that allows researchers to report

classification results for a wide variety of algorithms. In these tables, the TunedIT

values represent the mean error rate across all Weka classifiers that fall under the

bayes, functions, and trees classifier categories. For every data set except Ionosphere,

the TunedIT results fall within the range of results that were obtained using ML-Flex.

It is reasonable that the TunedIT results would vary moderately from the ML-Flex

results because the TunedIT results were obtained using a variety of algorithms and

configuration settings.

4.3 TCGA Experiment 1: Full Data
Set, Two-Year Survival

In an initial exploration of prognostic models that could be derived with the

algorithmic variable-selection approaches, an initial experiment was performed using

the full TCGA data set and two-year survival as the survival split point. Results

obtained using SVM-RFE variable selection are listed in Table 4.7. (Results for the

remaining variable-selection approaches are listed in Tables 4.8 and 4.9.)

A relatively high AUC value (0.683) and a significant log-rank p-value (0.0159)

were observed for the NBC models based on age, KPS, and gender data. However,

when variable selection was performed—thus limiting the models to a single clinical
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variable—the models became less stable and performed relatively poorly. This result

suggests that age, KPS, and gender each contributed some information that helped

differentiate between patients who survive longer or shorter than two years.

The second-lowest p-value (0.00104) and highest AUC value (0.705) were attained

by NBC models trained on treatment variables. This result suggests that patients

surviving longer than two years received different overall treatments from patients

surviving less than two years. A look at the underlying data reveals a clear trend

between patient survival and the overall number of treatments received (see Figure

4.5). Two possible explanations for this trend are that 1) the more treatments

a patient receives, the better her survival expectation, or 2) the longer a patient

survives, the more treatments she is likely to receive. The latter would likely be a

confounding effect.

When SVM-RFE variable selection and the SVM classification algorithm were

applied, DNA methylation models attained significance according to the log-rank

statistic (see Figure 4.6; p = 0.427). Interestingly, the models performed best when

the top-1000 ranked genes were included, and predictive performance tended to

improve as the number of genes increased (see Figure 4.7). Many studies have demon-

strated an association between gene-specific methylation and outcome—including a

relationship between MGMT methylation and GBM survival [2]—but global methyla-

tion patterns have also been suggested to influence tumor initiation and progression.

For example, recent research suggests that global hypomethylation contributes to

oncogene activation, loss of imprinting, and decrease in genomic instability. [68] On

the other side of the spectrum, global hypermethylation can silence transcription of

many genes—including tumor suppressors—and is recognized as a common molecular

abnormality across various cancers. [69] In fact, some cancer studies have shown a

prognostic relationship between methylation patterns across many genes even when

no relationship existed for the individual genes. [69] In the TCGA methylation data,

58.4% of profiled genes were more highly methylated in STS than in LTS (based on

mean difference, see Figure 4.8), a trend that suggests a slight bias toward hyperme-

thylation in the most aggressive tumors.

The best-performing somatic-mutation models contained 50 genes, but it appears
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the presence of such a large number of genes resulted in models being overfit to

the training data, which resulted in poor generalization. The top-ranked genes (e.g.,

PRAME, FRAP1, GRM1, PTCH1, EPHA3) were mutated differentially between LTS

and STS; however, because many of the genes were mutated infrequently (often only

two to three times across the population), the models failed to generalize. It may be

that limiting the analysis to genes that are mutated more frequently would stabilize

variable selection and result in better-performing models.

When all data were combined into an aggregate data set, C5.0 Decision Trees

models performed well according to the log-rank statistic (p = 0.00474) and AUC

0.452). Perhaps most notable about this result is that none of the C5.0 models

attained significance for individual data categories; however, when all data were

combined, the algorithm was much more successful at separating LTS from STS. The

interpretable nature of C5.0 Decision Trees makes it feasible to investigate hypotheses

about factors that may interact across data categories to affect survival. For example,

when the C5.0 rule learner was applied to the full data set, it suggested that patients

would be STS if they received lomustine treatment and had relatively low methylation

for either CD86 or IRAK3; conversely, it suggested that patients would be LTS if they

received lomustine treatment but had relatively high methylation for both CD86 and

IRAK3. These rules held true for approximately 26/32 (82%) of patients who received

lomustine. Such rules could guide researchers in developing treatments tailored to a

patient’s tumor–molecular profile; however, the true clinical and biological relevance

of such rules can only be speculated until further validation.

Although the NBC algorithm appears to have performed best overall, classifier

performance varied substantially across algorithms in this experiment. This higher

classifier diversity may be one reason the ensemble approaches resulted in AUC

values that were consistently higher than most individual classifiers (see Table 4.10).

However, the best performing ensemble approach was Select Best (AUC = 0.676,

p = 0.00762). By nature, Select Best is influenced strongly by the best individual

performers, which in this case were models based on clinical and treatments data.

In many cases, the ensemble approaches predicted all patients as LTS, likely an

indication that the ensemble approaches were influenced heavily by class imbalance
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between LTS and STS. However, as expected, the LTS predictive-value weighted vote

method helped counter some of the effects of class imbalance in comparison to the

majority vote and simple weighted vote methods.

One result from this experiment was counterintuitive and helps illustrate that

care must be taken to interpret the results. In this experiment, the lowest log-rank

p-value was attained when the SVM-RFE and NBC algorithms were applied to the

clinical data. Interestingly, Kaplan-Meier curves for the predictions reveal that the

subset of patients predicted as LTS survived a significantly shorter time compared

to the remaining patients (see Figure 4.9; p = 4.46e-05), an unexpected trend. One

limitation of the log-rank statistic is that significance can be attained even when

predictions are inaccurate; consequently, when evaluating survival-status predictions

it is essential also to examine Kaplan-Meier curves visually. A second important

observation is that the error rate and AUC sometimes conflict with each other. In

this case, the error rate was 0.220, substantially worse than the baseline expected by

chance (0.169). Conversely, the AUC was 0.590, substantially better than expected by

chance (0.500). The reason for this discrepancy is that NBC was unable to decipher

whether 23 of the patients were LTS or STS and thus predicted the two classes with

equal probabilities. Then by default, NBC designated these patients as LTS—an

apparently arbitrary decision. Of the 23 patients, 22 were actually STS. This explains

not only why the error rate was low but also why the LTS-predicted patients had

low survival as a group. However, because the AUC is not sensitive to arbitrary

thresholds, it indicated reasonably overall good performance, as illustrated by the

ROC curve for this result (see Figure 4.10).

4.4 TCGA Experiment 2: Prior Knowledge
Variables, Two-Year Survival

The second experiment on TCGA data was performed using the prior-knowledge

variables and two-year survival as a split point. Table 4.11 lists results for the

individual classification algorithms.

Two results attained statistical significance via the log-rank test: NBC models

trained on TP53 and IDH1 somatic mutations (p=0.00479, see Figure 4.11) and

NBC models trained on mRNA expression levels (p=0.00599, see Figure 4.12). No
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other result was statistically significant.

Interestingly, even though the NBC somatic-mutation models attained significance

via the log-rank test, the AUC value (0.520) was only slightly higher than what

would be expected by random chance (0.500). Additionally, the error rate (0.196)

was slightly worse than would be expected by chance (0.196). Taken together, these

results demonstrate again a key observation that arose in this study: no single metric

is suitable in isolation to quantify classification performance. In this case, the log-rank

statistic highlights a small subset of patients who were predicted as LTS. Of those

patients, only three survived longer than two years. However, as a group, the patients

predicted as LTS had significantly longer survival than patients predicted as STS. In

fact, two of the LTS-predicted patients survived 603 and 691 days—values that were

close to the survival threshold. Thus while these patients were misclassified—thus

impacting the error rate and AUC—the NBC algorithm still identified a patient subset

with potential clinical relevance. Indeed, recent research has suggested that IDH1

mutations offer a survival advantage, [17,27] which may partially explain this result.

The fact that mRNA-expression models performed well was unsurprising, given

that Colman, et al. had derived the gene set from multiple, independent data sources

and had used two-year survival as their threshold. [1] That their gene set also gener-

alized to TCGA at a significant level lends further credence to the clinical relevance

of that gene set. However, it was somewhat surprising that no model attained

significance for any other data category. Even clinical models, which accounted for age

and KPS—two well-known GBM prognostic variables—failed to reach significance.

Again in this case, it is important to acknowledge that no single performance metric

is adequate. Even though the log-rank statistic was not significant for the NBC

models, the AUC value was relatively high 0.676 (see ROC curve in Figure 4.13). A

look at the Kaplan-Meier survival curves (see Figure 4.14) reveals that a subgroup of

LTS were identified accurately; however, the log-rank statistic was heavily influenced

by the fact that the two curves intersect at one point. Thus in this case, the AUC was

a more telling metric of performance than the log-rank statistic. Because the AUC

is derived from posterior probabilities generated by the classification algorithms, the

ordering of the probabilities influences the AUC value; thus if, for example, the actual
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STS are predicted as STS with greater overall probability than the actual LTS, the

AUC can be informative even when the log-rank statistic and error rate are not.

Across all performance metrics in this experiment, NBC performed better than

C5.0 Decision Trees and SVM. In many cases, C5.0 Decision Trees and SVM predicted

all patients as LTS. NBC may have been less impacted by the class imbalance between

LTS and STS, a factor that can have a strong impact on the performance of many

classifiers, include C5.0 Decision Trees and SVM. [70]

When combining predictions across all data categories and algorithms, no ensemble-

learning approach attained statistical significance (see Table 4.12).

Taken together, these results suggest that multivariate prognosis models trained on

prior-knowledge variables have some ability to identify patients surviving longer than

two years. In particular, performance for somatic-mutation and mRNA expression

models was better than what was obtained using algorithmic variable selection. In

TCGA Experiment 1, the SVM-RFE algorithm ranked IDH1 and TP53 mutations

10th and 37th best across all cross-validation folds. In the same experiment, SVM-

RFE ranked none of the Colman, et al. mRNA expression genes highly; in fact, none

of the nine mRNA expression genes were ranked in the top 1000 across all folds. These

results demonstrate that the algorithmic variable-selection approaches do not always

coincide with prior knowledge, particularly in high-dimensional data sets where a

considerable amount of noise is likely.

4.5 TCGA Experiment 3: Full Data Set,
Empirical Survival Discretization

The experiments so far have used two-year survival, an arbitrarily decided thresh-

old, to distinguish LTS from STS. This section describes the results of an experiment

in which the survival threshold was determined empirically (for each cross-validation

fold).

In preliminary analyses, the empirical split-point method appeared to favor me-

dian survival. A closer look revealed two possible explanations for this apparent bias:

1) because C5.0 Decision Trees—the classification algorithm used by this method—

performs best when the class distribution is balanced, [70] it should naturally bias

toward the median, and 2) the existing method for correcting the error rate against
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chance expectation favors thresholds near the median. The following example illus-

trates the latter point. If the candidate threshold were 100 days, approximately 90%

of patients would be LTS; thus if all patients were predicted by default to be LTS,

the error rate would be 0.100. Then if the algorithm distinguished perfectly between

LTS and STS at this threshold, the error rate would be 0.000, and the improvement

over chance expectations would be 0.100. However, if the candidate threshold were

360 days, approximately 50% of patients would be LTS, and the default error rate

would be 0.500. Then if the algorithm could distinguish only moderately between

LTS and STS—for example, achieving an error rate of 0.390—the improvement over

chance would be 0.110. Thus even though the algorithm classified perfectly at 100

days, the 360-day threshold would be selected. In fact, 100 days would be selected

only if the improvement over chance exceeded 0.100 for no other threshold.

In evaluating ways to address this limitation, two other metrics were considered:

the AUC and log-rank statistic. To compare the effectiveness of these metrics, the

following simulations were performed. Using the actual GBM survival values, a

continuous independent variable was generated for each patient such that patients

below a given, artificially defined threshold had much lower values than patients

above that threshold. Thus it would be expected that the algorithm could differentiate

perfectly between LTS and STS at these thresholds. Figures 4.15, 4.16, and 4.17 show

the results of a simulation where the artificial threshold was 360 days (approximately

median survival in this data set). When the error rate (corrected for what would

be observed if the majority class were predicted by default) or AUC were used, the

simulated threshold was identified correctly and precisely. When the log-rank statistic

was used, several “optimal” thresholds were identified in a tie, and the median of these

values was near the correct threshold. These findings suggest that if the true threshold

for distinguishing LTS from STS is near the median, any of the three metrics could be

used. Figures 4.18, 4.19, and 4.20 show the results of a simulation where the artificial

threshold was 100 days. When the error rate was used, a large number of “optimal”

thresholds (including 100 days) was identified; among these, the median was 235.5

days. A similar result was observed for the log-rank statistic. However, when AUC

was used, the threshold was identified precisely at 99.5 days—no ties occurred. Taken
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together, these results suggest that the AUC is better than the error rate or log-rank

statistic at identifying survival split points. The likely reason for AUC’s advantage is

that its calculation is insensitive to class imbalances. [71]

When the AUC was used as the survival-threshold metric on the TCGA data, the

selected thresholds varied between 69.5 days and 147 days across the cross-validation

folds. Thus, in contrast to the previous experiments, in which most patients were

labeled STS, the great majority of patients were labeled LTS in this experiment.

Because the selected survival thresholds varied across cross-validation folds (see

Figure 4.21), the definition of LTS and STS was different for each fold. For example,

in fold 1, the selected threshold was 90.0 days, while in fold 4, the selected threshold

was 124.5 days. Because of this variability, it would not have been reasonable to

assess overall performance as if the threshold were fixed across all folds (like in

previous experiments). One alternative for addressing this problem is to calculate

the performance metrics separately for each fold, using only the test instances from

that fold. Having obtained a metric for each test set, the overall performance then

would be calculated as the mean performance across the folds. Especially on small

data sets, this approach is conservative for the log-rank statistic because only 1/k

(where k is the number of folds) instances are available for each calculation, so the

upper performance bound is reduced. Additionally, whenever the log-rank statistic

cannot be computed for a given fold (when all predictions are of the same class), its

value must default to zero (equivalent to a p-value of 1.0); consequently, the overall

performance estimate may become even more conservative. Tables 4.13, 4.14, and

4.15 list results for this experiment using the mean-across-folds method of measuring

performance. Several models performed quite well, despite the conservativeness of

this evaluation approach.

In examining the C5.0 models that were used to determine the thresholds, it

became apparent that radiation treatment was an extremely strong predictor of

survival status at the selected thresholds. In cross validation, predictions based on

treatment data (which include radiation) performed exceptionally well by all mea-

sures, across all variable-selection approaches and classification algorithms. Figure

4.22 illustrates that patients who received no radiation treatment survived drastically



37

less time than patients who received radiation treatment. Identifying a relationship

between radiation treatment and GBM survival is not novel—multiple studies have

previously observed this relationship, even going back many decades. [6,14,16] In fact,

radiation treatment is part of the standard of care for GBM. [72] However, the fact

that radiation treatment separated STS from LTS so strikingly in this experiment—

despite the presence of thousands of other potential predictor variables—suggests

that patients who receive no radiation treatment can typically expect a very short

survival, regardless of other clinical or biomolecular factors. However, at least for

the TCGA GBM patients, such a strong association between radiation-treatment

status and survival time likely represents a confounding effect. Some patients may

feel they are too old or frail to receive radiation treatment; for these patients, failure

to receive radiation may simply be a surrogate indicator of a patient’s age or overall

health. Indeed, in the TCGA data, patients who chose not to receive radiation

treatment were considerably older (see Figures 4.23) and had lower overall KPS

(see Figure 4.24) than patients who received radiation. Additionally, only a slight

trend exists between patient survival and the number of days before the treatment

started for patients who received radiation treatment (see Figure 4.25); this suggests

that non-radiation-treated patients did not simply delay treatment and then decease

prematurely as a consequence. Taken together, these observations strongly suggest

that including radiation treatment in multivariate models introduces a confounding

effect.

Aside from radiation treatment, drug treatments also appeared to have an effect on

patient survival. However, a closer look at the data revealed a potential confounding

effect. Patients who received radiation treatment also received a greater number

of overall treatments than patients who received no treatment (see Figure 4.26).

Although this finding is expected—radiation-treated patients survive longer and thus

may have opportunities to receive more drug treatments—part of the success in using

treatments to predict survival may stem from this bias.

The SVM algorithm performed relatively well on the mRNA expression data when

RELIEF-F was used for variable selection, attaining a mean AUC of 0.640. Because

radiation treatment was such a strong predictor of survival in this experiment, the
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possibility existed that the expression of some mRNA genes was a surrogate marker for

radiation treatment status. To test this hypothesis, correlation was measured between

the top-ranked mRNA expression genes and radiation treatment using Spearman’s

rank-based rho statistic (excluding missing values). Of the top-500 mRNA genes,

18.0% were correlated with radiation treatment status, while only 8.9% of all mRNA

genes were correlated with radiation treatment status. Accordingly, expression of

these genes may influence tumor aggressiveness to the point that patient well-being

is affected and patients are less likely to receive radiation treatments.

Table 4.16 lists results of the ensemble-learning approaches for this experiment.

All approaches had AUC values that were 0.780 or higher, and most approaches

attained significant log-rank p-values. As expected, the Select Best predictions were

influenced heavily by the individual predictions based on treatment data (including

radiation treatment). However, Stacked Generalization also performed quite well,

even though its second-level predictions accounted not only for treatment-related

predictions but also for predictions based on various categories of molecular data. And

true to its design, the STS-predictive value weighted vote method helped counteract

the effects of class imbalance and performed better than all other voting methods.

Overall, the results from this experiment suggest that a single independent variable

with extremely high prognostic relevance (radiation treatment) can dominate the

threshold-selection method. In this experiment, clinical, treatments, and mRNA

expression data each contained a strong signal that could be discerned by the clas-

sification algorithms. Indeed, the models performed well despite the likely effects of

class imbalance at the selected thresholds. When evaluating the performance of these

models, one should also consider that the conservative mean-across-folds method was

used to calculate the performance metrics.

4.6 TCGA Experiment 4: Radiation-treated
Patients, Median Survival

Because radiation treatment was a strong individual predictor in the previous

experiment and because radiation treatment is part of the standard of care for GBM,

non-radiation-treated patients were excluded for TCGA Experiment 4. Additionally,

to remove any effects of class imbalance, median survival was used as the threshold.
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After excluding patients who received no radiation treatment, 261 patients remained,

and the median survival was 423 days. Table 4.17 lists the results from applying the

RELIEF-F variable-selection approach and the various classification algorithms to this

subset of patients (see Tables 4.18 and 4.19 for results for the other variable-selection

approaches).

Once again, treatment data (not including radiation) distinguished well between

LTS and STS. All three classification algorithms performed well. As in previous

experiments, this success appears to be attributed at least partly to the relationship

between survival and the total number of treatments received. The models that

performed best were based on all five drug-treatment variables; however, interestingly,

the top-ranked treatment variable was other drug treatment—a variable that indicates

whether any of a number of infrequently administered treatments were given. In many

cases, these “other” treatments were targeted therapies (e.g., tamoxifen, rapamycin,

gefitinib, imatinib) that have been used primarily to treat other cancers. In other

cases, the treatments were hormonal (e.g., valproic acid, levetiracetam), chemother-

apy (e.g., carmustine, cisplatin), or immunotherapy treatments (e.g., dendritic cell

vaccine, erlotinib) that each may have a positive effect on some patients but that

individually have not been shown to increase GBM survival in phase III clinical trials.

The clinical data also performed quite well in this experiment. In particular,

C5.0 and NBC models based on the top-ranked clinical variable–age in every cross-

validation fold—attained statistical significance. Figure 4.27 displays Kaplan-Meier

curves for the NBC predictions. This result was unsurprising given that age is a well-

known GBM prognostic variable—the TCGA data show that as age increases, GBM

survival tends to decrease (see Figure 4.28). However, clinical-model performance was

considerably better in this experiment—with median survival as the threshold—than

in the other experiments. It may be that age influences a GBM patient’s prognosis

more strongly when other dominant factors (e.g., no radiation treatment) are not at

play.

Models based on DNA methylation also reached statistical significance. In fact,

nearly every algorithm performed well. Once again, the performance of the models

usually increased as the number of genes in the models increased (see Figure 4.29).
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One factor that may be relevant to global DNA methylation is patient age. Across all

methylation genes profiled, (12.9%) were significantly correlated with age (Wilcoxon

rank-sum test; p < 0.05). Contrarily, only 5.1% of genes were correlated when the

age values were randomly permuted (repeated 100 times). Even though causality

should not be inferred from these calculations, it seems likely that global methylation

patterns are affected by age. A recent study of gastrointestinal cancer demonstrated

just such an effect. [73] As such, survival predictions based on DNA methylation

may be confounded by age effects. To test this supposition further, an additional

experiment was performed using only age and DNA methylation variables (and limited

to patients with data for both categories). Neither data category outperformed the

other in all cases (see Table 4.20). When the two data categories were combined

(into a single data set or via ensemble-learning methods), predictive performance

often improved slightly (see Table 4.21). These results suggest that age and DNA

methylation contain different but complementary prognostic information.

In this experiment, every ensemble method attained statistical significance (see

Table 4.22). All but one (Stacked Generalization) had an AUC value that approached

the maximum individual result for this experiment. In terms of error rate and

AUC, Simple Weighted Vote performed (slightly) better than Majority Vote. Further,

Squared-weighted Vote performed better than Simple Weighted Vote. Additionally,

Weighted Mean Probability performed better than Mean Probability. Similar trends

occurred in the other experiments, a finding that attests to the value of using weight-

based measures to improve ensemble results.

4.7 TCGA Experiment 5: Radiation-treated
Patients, Median Survival,

No Treatment Data

As has been demonstrated previously, a clear relationship exists between the

number of treatments that a patient receives and the number of days a GBM patient

survives (see Figure 4.5). Additionally, at the time of diagnosis, physicians do not

always know which treatments will be administered to a given patient, and physicians

often alter treatment regimens based on a patient’s response to what has already been

administered. Thus the prognostic utility of treatment data is limited, and including
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treatment data in prediction models may cause a confounding effect. Indeed, the

results for TCGA Experiment 4 were consistently good when treatment data were

included in models. In an attempt to avoid such confounding effects, an additional

experiment was conducted in which treatment data were excluded. As in TCGA

Experiment 4, non-radiation-treated patients were excluded from this experiment,

and the median was used as the split point between LTS and STS.

Table 4.23 lists the results from applying the various variable-selection approaches

and classification algorithms to an aggregate data set containing data for all cate-

gories except treatments. And Table 4.24 lists the results from applying the various

ensemble-learning approaches. In some cases, the predictions differentiated between

LTS and STS at statistically significant levels; this finding suggests that models based

solely on clinical, histology, and biomolecular data—which can each be collected

at the time of diagnosis— can be used to inform prognosis predictions. However,

in most cases, the performance of the algorithms was considerably worse than in

TCGA Experiment 4. For example, the best AUC value and log-rank p-value for this

experiment were 0.594 and 7.94e-05, respectively, and in many cases the log-rank

p-values were not statistically significant; however, in TCGA Experiment 4, the

best AUC and log-rank p-value were 0.706 and 9.96e-09, respectively, and all but

two log-rank p-values were statistically significant. Interestingly, the best result for

this experiment was obtained using no variable selection and the SVM classification

algorithm; when these approaches were applied to the data set containing treatment

data (TCGA Experiment 4), the performance was substantially worse (AUC = 0.519,

log-rank p-value = 0.032). Taken together, these differences suggest further that

treatment data can cause a confounding effect and thus should be excluded or at

least treated specially.

In an additional attempt to account for the likely confounding effects of treat-

ments, a follow-on experiment was conducted in which only patients who had been

treated with radiation and temozolomide were included. For the subset of patients

who met these criteria (n = 134), none of the algorithms differentiated between LTS

and STS at a statistically significant level, and the AUC values were near 0.500

(see Tables 4.25 and 4.26). These results suggest the difficulty of using TCGA data
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to differentiate between patients who will respond relatively well to a given drug

treatment and patients who will not respond well. Even though all patients in this

experiment received temozolomide, the treatment regimens were not consistent among

all patients, and many of the patients received various other drug treatments. It is

possible that more effective prediction models could be derived from clinical trials that

administer consistent treatment regimens to all patients. However, clinical trials may

lack sufficient funding to acquire multiple categories of high-throughput molecular

data for an adequately large patient cohort.

4.8 Gene Set Enrichment Analysis of
DNA Methylation Genes

Across all TCGA experiments, the best-performing biomolecular models were

derived using hundreds of DNA methylation variables. A search of the literature

reveals that some of the top-ranked genes have previously been associated with—or

at least have a plausible connection with—tumorigenesis. However, with such a

large number of variables, it can be challenging to assess an entire model’s biological

relevance. GSEA is one approach for providing such interpretation.

The KEGG database contains hundreds of pathway diagrams representing existing

knowledge about protein interactions that affect particular biological processes. Also

included in KEGG are diagrams that represent the proteins involved in particular

cancers. Additionally, KEGG contains aggregate pathway diagrams that combine in-

dividual pathways according to some theme. One such aggregate diagram is pathways

in cancer, which attempts to represent all protein interactions involved in any cancer

type that is currently represented in KEGG.

Initially, the standard GSEA method was applied to the top-1000 ranked (via

RELIEF-F variable selection) methylation genes from TCGA Experiment 4. Table

4.27 lists the most significantly associated pathways. The top pathway, pathways

in cancer, was assigned a p-value of 2.87e-15, indicating a high likelihood that the

selected genes are known to be involved in human cancers in general. Several other

top-ranked pathways represent either individual cancers (e.g., bladder cancer, pan-

creatic cancer) or other pathways that could plausibly drive aberrant tumor growth

(e.g., TGF-beta signaling pathway, focal adhesion). Such findings were expected for
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two reasons: 1) it is reasonable to expect that at least some methylation genes that

differentiate LTS from STS would be associated with known cancer-related pathways,

and 2) the 2189 profiled methylation genes were manually selected by the TCGA

Consortium and thus would likely be biased toward genes from known cancer-related

pathways. As a way to validate the latter assumption, standard GSEA was applied

to the full set of methylation genes that had been profiled (see Table 4.28). Again

in this case, pathways in cancer and several known cancer-related pathways were

identified with extreme significance. These findings confirm that the selected genes

were biased strongly in favor of prior knowledge about cancer. (These findings also

provide evidence that GSEA behaves as expected.)

In an attempt to account for selection bias, the GSEA permutation approach

(described in Methods) was applied to the top-1000 methylation genes. As expected,

pathways in cancer and most other pathways that had been significant prior to the

correction were no longer considered significant (see Table 4.29). However, several

pathways remained significant, including TGF-beta signaling pathway and ErbB sig-

naling pathway, which each are known to play a role in tumorigenesis. [74,75] Also near

the top of the list were NOD-like receptor signaling pathway and Toll-like receptor

signaling pathway, which are involved in generating innate immune responses and

may be interconnected with each other. [76] The immune system is essential not only

for protecting against foreign pathogens but also for attacking tumor cells. [77] Other

significant pathways may not have an intuitive connection with tumorigenesis but do

affect the nervous system (e.g., olfactory transduction, amyotrophic lateral sclerosis,

Huntington’s disease). These pathways may have been selected simply because they

share genes with pathways that drive GBM tumorigenesis. It is also possible that

some pathways (or their subcomponents) that behave aberrantly in other diseases also

are deregulated in some GBM tumors, even though their phenotypic manifestations

are different.

It is important to note that pathways that were statistically significant before bias

correction were not necessarily spurious findings; in fact, these pathways may have

strong relevance to GBM survival. However, the bias-correction technique provides a

way to generate hypotheses about pathways that may influence GBM survival but that
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may have been overlooked in this context. It should also be noted that KEGG is hand

curated and contains only a subset of known biological pathways—any enrichment

study is limited by the knowledge source upon which it is based.
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Table 4.1. Cross-validation results when 900 randomly simulated continuous vari-
ables and 100 randomly simulated binary variables were used. Median survival was
the split point between longer-term survivors and shorter-term survivors. The purpose
of this experiment was to serve as a negative test, ensuring that when no obvious signal
existed in a data set, the performance metrics would indicate such.

Variable Selection Classification Error STS LTS AUC Log-rank

Approach Algorithm Rate Correct Correct p-value

None C5.0 0.188 0.958 0.094 0.526 0.761

None NBC 0.185 0.981 0.000 0.524 0.126

None SVM 0.169 1.000 0.000 0.606 N/A

SVM-RFE C5.0 0.188 0.958 0.094 0.526 0.761

SVM-RFE NBC 0.185 0.981 0.000 0.524 0.126

SVM-RFE SVM 0.169 1.000 0.000 0.579 N/A

RELIEF-F C5.0 0.188 0.958 0.094 0.526 0.761

RELIEF-F NBC 0.169 1.000 0.000 0.581 N/A

RELIEF-F SVM 0.169 1.000 0.000 0.553 N/A
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Table 4.2. Cross-validation results when 900 randomly simulated continuous vari-
ables and 100 randomly simulated binary variables were used. Ensemble-learning
approaches were applied, and median survival was the split point between longer-term
survivors (LTS) and shorter-term survivors (STS). The purpose of this experiment
was to serve as a negative test, ensuring that when no obvious signal existed in a data
set, the performance metrics would indicate such.

Algorithm Error STS LTS AUC Log-rank

Rate Correct Correct p-value

Majority Vote 0.173 0.996 0.000 0.518 2.65e-18*

Simple Weighted Vote 0.173 0.996 0.000 0.518 2.65e-18*

Squared-Weighted Vote 0.173 0.996 0.000 0.518 2.65e-18*

LTS Predictive Value Weighted Vote 0.192 0.958 0.075 0.525 0.939

STS Predictive Value Weighted Vote 0.173 0.996 0.000 0.518 2.65e-18*

Select Best 0.173 0.996 0.000 0.561 0.772

Mean Probability 0.179 0.985 0.019 0.556 0.435

Weighted Mean Probability 0.176 0.985 0.038 0.552 0.925

Stacked Generalization 0.543 0.465 0.449 0.457 0.206
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Figure 4.1. Receiver operating characteristic curve for validation experiment
in which the C5.0 Decision Trees algorithm attempted to discriminate between
longer-term survivors and shorter-term survivors using 900 randomly simulated con-
tinuous variables and 100 randomly simulated binary variables. No variable selection
was performed.
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Figure 4.2. Kaplan-Meier curves for validation tests in which the C5.0 Decision Trees
algorithm attempted to discriminate between longer-term survivors and shorter-term
survivors using 900 randomly simulated continuous variables and 100 randomly
simulated binary variables. No variable selection was performed.
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Table 4.3. Cross-validation results when 900 randomly generated continuous vari-
ables and 100 randomly generated binary variables were used. Three of the continuous
variables and two of the binary variables were modified to support perfect discrimina-
tion between longer-term survivors (LTS) and shorter-term survivors (STS). Median
survival was the split point between LTS and STS. The purpose of this experiment
was to serve as a positive test, indicating that when an obvious signal existed in a
data set, it could be found.

Variable Selection Classification Error STS LTS AUC Log-rank

Approach Algorithm Rate Correct Correct p-value

None C5.0 0.000 1.000 1.000 1.000 5.43e-40*

None NBC 0.000 1.000 1.000 1.000 5.43e-40*

None SVM 0.000 1.000 1.000 1.000 5.43e-40*

SVM-RFE C5.0 0.000 1.000 1.000 1.000 5.43e-40*

SVM-RFE NBC 0.000 1.000 1.000 1.000 5.43e-40*

SVM-RFE SVM 0.000 1.000 1.000 1.000 5.43e-40*

RELIEF-F C5.0 0.000 1.000 1.000 1.000 5.43e-40*

RELIEF-F NBC 0.000 1.000 1.000 1.000 5.43e-40*

RELIEF-F SVM 0.000 1.000 1.000 1.000 5.43e-40*
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Table 4.4. Cross-validation results when 900 randomly generated continuous vari-
ables and 100 randomly generated binary variables were used. Three of the continuous
variables and two of the binary variables were modified to support perfect discrimina-
tion between longer-term survivors (LTS) and shorter-term survivors (STS). In this
experiment, ensemble-learning approaches were applied, and median survival was the
split point between LTS and STS. The purpose of this experiment was to serve as a
positive test, indicating that when an obvious signal existed in a data set, it could be
found.

Algorithm Error STS LTS AUC Log-rank

Rate Correct Correct p-value

Majority Vote 0.000 1.000 1.000 1.000 5.43e-40*

Simple Weighted Vote 0.000 1.000 1.000 1.000 5.43e-40*

Squared-Weighted Vote 0.000 1.000 1.000 1.000 5.43e-40*

LTS Predictive Value Weighted Vote 0.000 1.000 1.000 1.000 5.43e-40*

STS Predictive Value Weighted Vote 0.000 1.000 1.000 1.000 5.43e-40*

Select Best 0.000 1.000 1.000 1.000 5.43e-40*

Mean Probability 0.000 1.000 1.000 1.000 5.43e-40*

Weighted Mean Probability 0.000 1.000 1.000 1.000 5.43e-40*

Stacked Generalization 0.000 1.000 1.000 1.000 5.43e-40*
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Figure 4.3. Receiver operating characteristic curve for validation tests in which
the C5.0 Decision Trees algorithm attempted to discriminate between longer-term
survivors (LTS) and shorter-term survivors (STS) using 900 randomly simulated
continuous variables and 100 randomly simulated binary variables. Three of the
continuous variables and two of the binary variables were modified to support perfect
discrimination between LTS and STS. No variable selection was performed.
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Figure 4.4. Kaplan-Meier curves for validation tests in which the C5.0 Decision
Trees algorithm attempted to discriminate between longer-term survivors (LTS) and
shorter-term survivors (STS) using 900 randomly simulated continuous variables and
100 randomly simulated binary variables. Three of the continuous variables and two
of the binary variables were modified to support perfect discrimination between LTS
and STS. No variable selection was performed.
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Table 4.5. Cross-validation results when classification algorithms were applied to
several UCI Machine Learning data sets. Values indicate the error rate that was
attained for respective combinations of algorithm and data set. The TunedIT values
represent the mean error rate that was observed on the TunedIT.org web site across
all Weka classifiers that fall under the bayes, functions, and trees categories.

Data Set C5.0 NBC SVM TunedIT

Breast Cancer 0.053 0.026 0.036 0.055

Hepatitis 0.247 0.156 0.221 0.193

Horse Colic 0.119 0.198 0.244 0.192

Ionosphere 0.094 0.077 0.060 0.118

Pima Indians 0.272 0.249 0.352 0.270

Statlog (Australian) 0.157 0.183 0.442 0.168

Statlog (Heart) 0.193 0.159 0.444 0.216

Tic Tac Toe 0.374 0.308 0.069 0.157

Sonar 0.250 0.288 0.327 0.268

Voting 0.030 0.095 0.042 0.055
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Table 4.7. Cross-validation results when all patients were included, two-year survival
was the split point between longer-term survivors and shorter-term survivors, and the
SVM-RFE variable-selection approach was used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.220 0.938 0.000 0.590 4.46e-05*

SVM 0.204 0.954 0.019 0.455 0.238

Treatments

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.182 0.931 0.264 0.707 0.000388*

SVM 0.169 1.000 0.000 0.488 N/A

Histology

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.173 0.992 0.019 0.497 0.615

SVM 0.169 1.000 0.000 0.544 N/A

DNA Methylation

C5.0 0.245 0.880 0.100 0.490 0.328

NBC 0.181 0.962 0.067 0.554 0.427

SVM 0.181 0.943 0.167 0.557 0.037*

Somatic Mutations

C5.0 0.196 1.000 0.000 0.500 N/A

NBC 0.277 0.889 0.045 0.559 0.385

SVM 0.214 0.967 0.045 0.395 0.231

DNA Copy Number

C5.0 0.170 0.988 0.020 0.504 0.43

NBC 0.272 0.835 0.180 0.516 0.563

SVM 0.167 0.996 0.000 0.543 0.0797

mRNA Expression

C5.0 0.262 0.861 0.146 0.504 0.892

NBC 0.211 0.918 0.167 0.570 0.108

SVM 0.240 0.887 0.146 0.536 0.551

miRNA Expression

C5.0 0.261 0.846 0.229 0.538 0.987

NBC 0.196 0.952 0.104 0.540 0.657

SVM 0.174 1.000 0.000 0.589 N/A

All Data

C5.0 0.233 0.877 0.226 0.552 0.00338*

NBC 0.204 0.942 0.075 0.561 0.383

SVM 0.169 0.977 0.113 0.643 0.0233*
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Table 4.8. Cross-validation results when all patients were included, two-year survival
was the split point between longer-term survivors and shorter-term survivors, and the
None variable-selection approach was used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.166 0.981 0.113 0.683 0.0159*

SVM 0.173 0.996 0.000 0.553 0.614

Treatments

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.204 0.915 0.208 0.705 0.00104*

SVM 0.169 1.000 0.000 0.463 N/A

Histology

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.173 0.985 0.057 0.474 0.487

SVM 0.169 1.000 0.000 0.524 N/A

DNA Methylation

C5.0 0.324 0.772 0.167 0.469 0.21

NBC 0.170 0.981 0.033 0.584 0.495

SVM 0.160 1.000 0.000 0.547 N/A

Somatic Mutations

C5.0 0.196 0.989 0.045 0.517 0.0854

NBC 0.259 0.922 0.000 0.453 0.0578

SVM 0.205 0.989 0.000 0.397 0.337

DNA Copy Number

C5.0 0.184 0.965 0.060 0.512 0.676

NBC 0.302 0.784 0.260 0.556 0.303

SVM 0.164 1.000 0.000 0.496 N/A

mRNA Expression

C5.0 0.262 0.853 0.188 0.520 0.362

NBC 0.215 0.913 0.167 0.533 0.134

SVM 0.176 0.996 0.000 0.574 0.866

miRNA Expression

C5.0 0.250 0.860 0.229 0.544 0.122

NBC 0.261 0.882 0.062 0.432 0.0669

SVM 0.174 1.000 0.000 0.586 N/A

All Data

C5.0 0.246 0.850 0.283 0.567 0.00474*

NBC 0.240 0.908 0.038 0.503 0.433

SVM 0.169 1.000 0.000 0.632 N/A
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Table 4.9. Cross-validation results when all patients were included, two-year survival
was the split point between longer-term survivors and shorter-term survivors, and the
RELIEF-F variable-selection approach was used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.176 0.992 0.000 0.694 0.494

SVM 0.169 1.000 0.000 0.451 N/A

Treatments

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.195 0.958 0.057 0.681 0.116

SVM 0.179 0.988 0.000 0.498 0.187

Histology

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.173 0.981 0.075 0.463 0.185

SVM 0.169 1.000 0.000 0.505 N/A

DNA Methylation

C5.0 0.239 0.892 0.067 0.480 0.609

NBC 0.186 0.943 0.133 0.600 0.0609

SVM 0.160 1.000 0.000 0.412 N/A

Somatic Mutations

C5.0 0.196 1.000 0.000 0.500 N/A

NBC 0.214 0.967 0.045 0.468 0.366

SVM 0.205 0.989 0.000 0.430 0.337

DNA Copy Number

C5.0 0.164 1.000 0.000 0.500 N/A

NBC 0.308 0.796 0.160 0.512 0.986

SVM 0.164 1.000 0.000 0.488 N/A

mRNA Expression

C5.0 0.262 0.879 0.062 0.471 0.405

NBC 0.262 0.866 0.125 0.489 0.721

SVM 0.186 0.983 0.000 0.465 0.63

miRNA Expression

C5.0 0.217 0.908 0.188 0.548 0.0865

NBC 0.178 0.991 0.021 0.484 0.198

SVM 0.174 1.000 0.000 0.615 N/A

All Data

C5.0 0.204 0.942 0.075 0.509 0.0943

NBC 0.153 0.969 0.245 0.671 1.89e-05*

SVM 0.169 0.996 0.019 0.610 0.322
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Figure 4.5. Patient overall survival versus the total number of treatments received
by each patient.



59

0 500 1000 1500 2000 2500 3000 3500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival (days)

P
ro

po
rt

io
n 

su
rv

iv
ed

Predicted LTS
Predicted STS

p−value:  0.037

Figure 4.6. Kaplan-Meier curves comparing overall survival of patients predicted as
longer-term survivor (LTS) versus patients predicted as shorter-term survivor (STS)
for SVM models trained on DNA methylation data. Support Vector Machines-Recur-
sive Feature Elimination was used for variable selection, and two-year survival was
the split point between LTS and STS.
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Figure 4.7. Area under receiver operating characteristic curve versus number of
DNA methylation genes included in Support Vector Machines models. Support Vector
Machines-Recursive Feature Elimination was used for variable selection, and two-year
survival was the split point between longer-term survivors and shorter-term survivors.
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Figure 4.8. Mean difference in global DNA methylation between longer-term
survivors (LTS) and shorter-term survivors (STS) for each gene that was profiled.
Two-year survival was the split point between LTS and STS.
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Table 4.10. Cross-validation results when all patients were included, two-year sur-
vival was the survival split between longer-term survivors and shorter-term survivors,
and ensemble-learning approaches were applied.

Ensemble Error STS LTS AUC Log-rank

Method Rate Correct Correct p-value

Majority Vote 0.169 1.000 0.000 0.601 N/A

Simple Weighted Vote 0.169 1.000 0.000 0.610 N/A

Squared-Weighted Vote 0.169 1.000 0.000 0.614 N/A

LTS Predictive Value Weighted Vote 0.169 1.000 0.000 0.620 N/A

STS Predictive Value Weighted Vote 0.169 1.000 0.000 0.603 N/A

Select Best 0.192 0.938 0.170 0.676 0.00762*

Mean Probability 0.169 1.000 0.000 0.641 N/A

Weighted Mean Probability 0.169 1.000 0.000 0.651 N/A

Stacked Generalization 0.220 0.900 0.189 0.544 0.0408*
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Figure 4.9. Kaplan-Meier curves comparing overall survival of patients predicted as
longer-term survivor (LTS) versus patients predicted as shorter-term survivor (STS)
for NBC models trained on clinical data. Support Vector Machines-Recursive Feature
Elimination was used for variable selection, and two-year survival was the split point
between LTS from STS.
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Figure 4.10. Receiver operating characteristic curve for NBC models trained on
clinical data. Support Vector Machines-Recursive Feature Elimination was used for
variable selection, and two-year survival was the split point between longer-term
survivors and shorter-term survivors.
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Table 4.11. Cross-validation results when all patients were included and two-year
survival was used as the split point between longer-term survivors and shorter-term
survivors. The prior-knowledge variable-selection approach was used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.173 0.981 0.075 0.676 0.0655

SVM 0.169 1.000 0.000 0.508 N/A

Treatments

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.169 1.000 0.000 0.596 N/A

SVM 0.169 1.000 0.000 0.497 N/A

Histology

C5.0 0.169 1.000 0.000 0.500 N/A

NBC 0.169 1.000 0.000 0.431 N/A

SVM 0.169 1.000 0.000 0.457 N/A

DNA Methylation

C5.0 0.160 1.000 0.000 0.500 N/A

NBC 0.170 0.987 0.000 0.575 0.302

SVM 0.165 0.994 0.000 0.510 0.916

Somatic Mutations

C5.0 0.196 1.000 0.000 0.500 N/A

NBC 0.196 0.967 0.136 0.520 0.00479*

SVM 0.205 0.989 0.000 0.353 0.628

DNA Copy Number

C5.0 0.164 1.000 0.000 0.500 N/A

NBC 0.266 0.839 0.200 0.504 0.419

SVM 0.164 1.000 0.000 0.428 N/A

mRNA Expression

C5.0 0.172 1.000 0.000 0.500 N/A

NBC 0.211 0.913 0.188 0.538 0.00599*

SVM 0.172 1.000 0.000 0.459 N/A

miRNA Expression

C5.0 0.174 1.000 0.000 0.500 N/A

NBC 0.181 0.978 0.062 0.461 0.171

SVM 0.174 1.000 0.000 0.449 N/A

All Data

C5.0 0.188 0.942 0.170 0.556 0.0299*

NBC 0.243 0.888 0.113 0.567 0.598

SVM 0.169 1.000 0.000 0.416 N/A
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Figure 4.11. Kaplan-Meier curves comparing overall survival of patients predicted
as longer-term survivor versus patients predicted as shorter-term survivor for Näıve
Bayes Classifier models trained on IDH1 and TP53 somatic mutations.
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Figure 4.12. Kaplan-Meier curves comparing overall survival of patients predicted
as longer-term survivor versus patients predicted as longer-term survivor for Näıve
Bayes Classifier models trained on the Colman, et al. mRNA expression profile. [1]
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Figure 4.13. Receiver operating characteristic curve for Näıve Bayes Classifier
models trained on clinical variables that have been reported in the literature to have
prognostic relevance for glioblastoma multiforme.
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Figure 4.14. Kaplan-Meier curves comparing overall survival of patients predicted
as longer-term survivor versus patients predicted as shorter-term survivor for Näıve
Bayes Classifier models trained on clinical variables that have been reported in the
literature to have prognostic relevance for glioblastoma multiforme.
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Table 4.12. Cross-validation results when all patients were included, two-year
survival was the split point between longer-term survivors and shorter-term survivors,
prior-knowledge variables were used, and ensemble-learning approaches were applied.

Ensemble Error STS LTS AUC Log-rank

Method Rate Correct Correct p-value

Majority Vote 0.169 1.000 0.000 0.587 N/A

Simple Weighted Vote 0.169 1.000 0.000 0.583 N/A

Squared-Weighted Vote 0.169 1.000 0.000 0.583 N/A

LTS Predictive Value Weighted Vote 0.173 0.992 0.019 0.599 0.1

STS Predictive Value Weighted Vote 0.169 1.000 0.000 0.584 N/A

Select Best 0.173 0.981 0.075 0.676 0.0655

Mean Probability 0.169 1.000 0.000 0.637 N/A

Weighted Mean Probability 0.169 1.000 0.000 0.646 N/A

Stacked Generalization 0.176 0.988 0.019 0.504 0.743
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Figure 4.15. Results of empirical split-point selection on data simulated to sup-
port perfect separation between longer-term survivors and shorter-term survivors
at 360-days survival. The error rate (corrected for what would be observed if the
majority class were predicted by default) was used as the evaluation criterion at each
split point. When a tie occurred, the median value was selected.
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Figure 4.16. Results of empirical split-point selection on data simulated to sup-
port perfect separation between longer-term survivors and shorter-term survivors at
360-days survival. The AUC was used as the evaluation criterion at each split point.
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Figure 4.17. Results of empirical split-point selection on data simulated to sup-
port perfect separation between longer-term survivors and shorter-term survivors at
360-days survival. The log-rank statistic was used as the evaluation criterion at each
split point. When a tie occurred, the median value was selected.
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Figure 4.18. Results of empirical split-point selection on data simulated to sup-
port perfect separation between longer-term survivors and shorter-term survivors
at 100-days survival. The error rate (corrected for what would be observed if the
majority class were predicted by default) was used as the evaluation criterion at each
split point. When a tie occurred, the median value was selected.
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Figure 4.19. Results of empirical split-point selection on data simulated to sup-
port perfect separation between longer-term survivors and shorter-term survivors at
100-days survival. The AUC was used as the evaluation criterion at each split point.
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Figure 4.20. Results of empirical split-point selection on data simulated to sup-
port perfect separation between longer-term survivors and shorter-term survivors at
100-days survival. The log-rank statistic was used as the evaluation criterion at each
split point. When a tie occurred, the median value was selected.
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Figure 4.21. Survival split points selected for each cross-validation fold when the
empirical split-point method was applied to the full data set.
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Table 4.13. Cross-validation results when all patients were included and the empiri-
cal split-point method was used to distinguish longer-term survivors from shorter-term
survivors in each cross-validation fold. The SVM-RFE variable-selection approach
was used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.137 0.000 1.000 0.500 N/A

NBC 0.154 0.000 0.983 0.611 0.782

SVM 0.150 0.000 0.985 0.491 0.91

Treatments

C5.0 0.118 0.475 0.945 0.710 3.78e-05*

NBC 0.102 0.642 0.953 0.857 1.87e-06*

SVM 0.102 0.400 0.970 0.854 0.000104*

Histology

C5.0 0.137 0.000 1.000 0.500 N/A

NBC 0.153 0.000 0.982 0.539 0.648

SVM 0.137 0.000 1.000 0.558 N/A

DNA Methylation

C5.0 0.169 0.067 0.922 0.494 0.246

NBC 0.133 0.025 0.972 0.497 0.574

SVM 0.161 0.083 0.923 0.530 0.109

Somatic Mutations

C5.0 0.101 0.000 1.000 0.500 N/A

NBC 0.116 0.000 0.983 0.483 0.949

SVM 0.109 0.000 0.992 0.516 0.854

DNA Copy Number

C5.0 0.138 0.000 1.000 0.500 N/A

NBC 0.216 0.062 0.883 0.502 0.481

SVM 0.141 0.013 0.992 0.507 0.0848

mRNA Expression

C5.0 0.233 0.104 0.866 0.485 0.327

NBC 0.183 0.083 0.930 0.521 0.0819

SVM 0.171 0.237 0.897 0.560 0.149

miRNA Expression

C5.0 0.197 0.278 0.877 0.578 0.475

NBC 0.152 0.070 0.965 0.518 0.302

SVM 0.129 0.000 1.000 0.589 N/A

All Data

C5.0 0.144 0.350 0.923 0.637 7.4e-05*

NBC 0.131 0.192 0.958 0.789 0.000548*

SVM 0.099 0.408 0.967 0.845 4.98e-06*
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Table 4.14. Cross-validation results when all patients were included and the empiri-
cal split-point method was used to distinguish longer-term survivors from shorter-term
survivors in each cross-validation fold. The None variable-selection approach was
used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.131 0.071 0.988 0.529 0.148

NBC 0.144 0.067 0.974 0.717 0.024*

SVM 0.147 0.000 0.989 0.389 0.842

Treatments

C5.0 0.118 0.475 0.945 0.710 3.78e-05*

NBC 0.102 0.658 0.949 0.864 7.23e-06*

SVM 0.102 0.400 0.970 0.845 0.000104*

Histology

C5.0 0.137 0.000 1.000 0.500 N/A

NBC 0.163 0.000 0.970 0.540 0.437

SVM 0.137 0.000 1.000 0.429 N/A

DNA Methylation

C5.0 0.164 0.158 0.922 0.540 0.114

NBC 0.120 0.000 0.994 0.497 0.929

SVM 0.120 0.000 0.994 0.419 0.712

Somatic Mutations

C5.0 0.101 0.000 1.000 0.500 N/A

NBC 0.116 0.000 0.983 0.506 0.949

SVM 0.101 0.000 1.000 0.680 N/A

DNA Copy Number

C5.0 0.151 0.050 0.981 0.516 0.509

NBC 0.295 0.119 0.786 0.451 0.315

SVM 0.141 0.000 0.996 0.485 0.621

mRNA Expression

C5.0 0.263 0.157 0.817 0.487 0.304

NBC 0.157 0.083 0.957 0.516 0.018*

SVM 0.136 0.000 0.995 0.682 0.966

miRNA Expression

C5.0 0.199 0.259 0.876 0.567 0.498

NBC 0.276 0.071 0.807 0.446 0.306

SVM 0.129 0.000 1.000 0.608 N/A

All Data

C5.0 0.134 0.438 0.931 0.684 0.000118*

NBC 0.160 0.058 0.960 0.501 0.056

SVM 0.141 0.000 0.996 0.701 0.862
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Table 4.15. Cross-validation results when all patients were included and the empiri-
cal split-point method was used to distinguish longer-term survivors from shorter-term
survivors in each cross-validation fold. The RELIEF-F variable-selection approach
was used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.137 0.000 1.000 0.500 N/A

NBC 0.205 0.154 0.885 0.707 0.146

SVM 0.186 0.142 0.913 0.613 0.129

Treatments

C5.0 0.118 0.475 0.945 0.710 3.78e-05*

NBC 0.102 0.642 0.953 0.856 1.87e-06*

SVM 0.106 0.367 0.974 0.864 0.000201*

Histology

C5.0 0.137 0.000 1.000 0.500 N/A

NBC 0.163 0.000 0.970 0.536 0.54

SVM 0.141 0.000 0.996 0.434 0.88

DNA Methylation

C5.0 0.191 0.000 0.909 0.454 0.511

NBC 0.146 0.033 0.960 0.501 0.439

SVM 0.146 0.000 0.964 0.452 0.512

Somatic Mutations

C5.0 0.101 0.000 1.000 0.500 N/A

NBC 0.126 0.000 0.971 0.439 0.699

SVM 0.109 0.000 0.992 0.399 0.854

DNA Copy Number

C5.0 0.138 0.000 1.000 0.500 N/A

NBC 0.401 0.447 0.620 0.589 0.246

SVM 0.138 0.000 1.000 0.500 N/A

mRNA Expression

C5.0 0.157 0.068 0.956 0.512 0.393

NBC 0.203 0.073 0.901 0.452 0.187

SVM 0.146 0.037 0.975 0.640 0.433

miRNA Expression

C5.0 0.182 0.084 0.920 0.502 0.335

NBC 0.256 0.151 0.791 0.476 0.386

SVM 0.129 0.000 1.000 0.599 N/A

All Data

C5.0 0.134 0.333 0.950 0.642 0.000458*

NBC 0.131 0.333 0.945 0.814 0.000262*

SVM 0.106 0.283 0.983 0.806 0.000686*
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Figure 4.22. Overall survival for patients receiving radiation treatment versus
patients not receiving radiation treatment.
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Figure 4.23. Radiation treatment status versus age at diagnosis.
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Figure 4.24. Radiation treatment status versus Karnofsky performance status
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Table 4.16. Cross-valiation results when all patients were included, the empirical
survival split-point method was used to distinguish longer-term survivors from short-
er-term survivors in each cross-validation fold, and ensemble-learning approaches were
applied.

Ensemble Error % STS % LTS AUC Log-rank

Method Rate Correct Correct p-value

Majority Vote 0.137 0.000 1.000 0.847 N/A

Simple Weighted Vote 0.134 0.013 1.000 0.855 0.241

Squared-Weighted Vote 0.128 0.042 1.000 0.858 0.0377*

LTS Predictive Value Weighted Vote 0.137 0.000 1.000 0.851 N/A

STS Predictive Value Weighted Vote 0.115 0.246 0.975 0.856 0.000125*

Select Best 0.099 0.675 0.949 0.860 9.77e-07*

Mean Probability 0.137 0.000 1.000 0.849 N/A

Weighted Mean Probability 0.134 0.013 1.000 0.860 0.241

Stacked Generalization 0.121 0.567 0.931 0.749 2.33e-06*
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Table 4.17. Cross-validation results when non-radiation-treated patients were ex-
cluded and median survival (423 days) was used as the split point between longer-term
survivors and shorter-term survivors. The RELIEF-F variable-selection approach was
used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.398 0.542 0.662 0.602 0.000483*

NBC 0.418 0.466 0.700 0.590 0.000581*

SVM 0.467 0.473 0.592 0.541 0.157

Treatments

C5.0 0.333 0.771 0.562 0.666 4.27e-07*

NBC 0.333 0.702 0.631 0.656 3.5e-06*

SVM 0.318 0.756 0.608 0.640 3.97e-07*

Histology

C5.0 0.521 0.573 0.385 0.479 0.145

NBC 0.475 0.374 0.677 0.511 0.411

SVM 0.533 0.351 0.585 0.421 0.0891

DNA Methylation

C5.0 0.429 0.629 0.500 0.565 0.103

NBC 0.325 0.888 0.419 0.657 1.32e-05*

SVM 0.429 0.809 0.284 0.566 0.0785

Somatic Mutations

C5.0 0.459 0.880 0.188 0.534 0.278

NBC 0.480 0.880 0.146 0.479 0.157

SVM 0.449 0.560 0.542 0.534 0.126

DNA Copy Number

C5.0 0.492 1.000 0.000 0.500 N/A

NBC 0.449 0.868 0.224 0.562 0.33

SVM 0.516 0.209 0.768 0.480 0.759

mRNA Expression

C5.0 0.487 0.479 0.548 0.513 0.808

NBC 0.457 0.546 0.539 0.553 0.0383*

SVM 0.491 0.529 0.487 0.535 0.277

miRNA Expression

C5.0 0.536 0.475 0.452 0.463 0.819

NBC 0.498 0.051 0.965 0.519 0.674

SVM 0.494 0.373 0.643 0.519 0.637

All Data

C5.0 0.310 0.756 0.623 0.689 9.96e-09*

NBC 0.333 0.817 0.515 0.687 4.66e-07*

SVM 0.318 0.725 0.638 0.702 2.56e-07*
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Table 4.18. Cross-validation results when non-radiation-treated patients were ex-
cluded and median survival (423 days) was used as the split point between longer-term
survivors and shorter-term survivors. The None variable-selection approach was used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.452 0.489 0.608 0.548 0.0039*

NBC 0.410 0.580 0.600 0.626 4.25e-05*

SVM 0.571 0.305 0.554 0.432 0.0145*

Treatments

C5.0 0.318 0.756 0.608 0.682 3.97e-07*

NBC 0.333 0.702 0.631 0.656 3.5e-06*

SVM 0.318 0.756 0.608 0.642 3.97e-07*

Histology

C5.0 0.533 0.641 0.292 0.467 0.0192*

NBC 0.487 0.382 0.646 0.510 0.455

SVM 0.525 0.359 0.592 0.445 0.86

DNA Methylation

C5.0 0.436 0.573 0.554 0.564 0.135

NBC 0.380 0.843 0.351 0.628 0.00119*

SVM 0.399 0.921 0.216 0.586 0.0022*

Somatic Mutations

C5.0 0.541 0.740 0.167 0.453 0.0708

NBC 0.490 0.680 0.333 0.409 0.893

SVM 0.459 0.300 0.792 0.543 0.404

DNA Copy Number

C5.0 0.504 0.915 0.064 0.489 0.689

NBC 0.508 0.651 0.328 0.472 0.443

SVM 0.508 0.116 0.880 0.500 0.705

mRNA Expression

C5.0 0.462 0.605 0.470 0.537 0.843

NBC 0.449 0.639 0.461 0.537 0.084

SVM 0.530 0.630 0.304 0.457 0.6

miRNA Expression

C5.0 0.511 0.466 0.513 0.490 0.395

NBC 0.515 0.568 0.400 0.480 0.722

SVM 0.528 0.492 0.452 0.475 0.0395*

All Data

C5.0 0.368 0.588 0.677 0.632 1.46e-05*

NBC 0.475 0.641 0.408 0.547 0.0646

SVM 0.475 0.412 0.638 0.519 0.032*
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Table 4.19. Cross-validation results when non-radiation-treated patients were ex-
cluded and median survival (423 days) was used as the split point between longer-term
survivors and shorter-term survivors. The SVM-RFE variable-selection approach was
used.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Clinical

C5.0 0.456 0.565 0.523 0.544 0.00267*

NBC 0.395 0.702 0.508 0.614 9.54e-06*

SVM 0.433 0.519 0.615 0.559 0.00218*

Treatments

C5.0 0.318 0.756 0.608 0.682 3.97e-07*

NBC 0.333 0.702 0.631 0.656 3.5e-06*

SVM 0.318 0.756 0.608 0.641 3.97e-07*

Histology

C5.0 0.502 0.763 0.231 0.497 0.832

NBC 0.494 0.344 0.669 0.492 0.726

SVM 0.525 0.412 0.538 0.463 0.347

DNA Methylation

C5.0 0.485 0.629 0.378 0.504 0.96

NBC 0.387 0.798 0.392 0.598 0.00311*

SVM 0.417 0.764 0.365 0.590 0.0701

Somatic Mutations

C5.0 0.551 0.680 0.208 0.444 0.227

NBC 0.490 0.800 0.208 0.424 0.53

SVM 0.480 0.220 0.833 0.462 0.682

DNA Copy Number

C5.0 0.500 0.977 0.008 0.492 0.319

NBC 0.484 0.550 0.480 0.493 0.358

SVM 0.476 0.233 0.824 0.483 0.79

mRNA Expression

C5.0 0.513 0.555 0.417 0.486 0.932

NBC 0.483 0.504 0.530 0.518 0.579

SVM 0.517 0.454 0.513 0.502 0.551

miRNA Expression

C5.0 0.511 0.568 0.409 0.488 0.709

NBC 0.481 0.898 0.130 0.510 0.363

SVM 0.558 0.398 0.487 0.403 0.248

All Data

C5.0 0.349 0.618 0.685 0.651 0.000187*

NBC 0.398 0.641 0.562 0.618 0.0142*

SVM 0.352 0.702 0.592 0.656 7.31e-06*
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Figure 4.27. Kaplan-Meier curves comparing overall survival of patients predicted
as longer-term survivor (LTS) versus shorter-term survivor (STS) when the NBC
algorithm was applied to clinical data. Support Vector Machines-Recursive Feature
Elimination was used for variable selection, non-radiation-treated patients were ex-
cluded, and median survival was the split point between LTS and STS.
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Figure 4.28. Patient overall survival versus age at pathologic diagnosis.
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Figure 4.29. Area under receiver operating characteristic curve versus number of
DNA methylation genes included in Näıve Bayes Classifier models. Median survival
was the split point between longer-term survivors and shorter-term survivors, and
variables were ranked using Support Vector Machines-Recursive Feature Elimination.
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Table 4.20. Cross-validation results when age at diagnosis and DNA methylation
data were used as data categories. No variable selection was applied, non-radia-
tion-treated patients were excluded, and median survival was the split point between
longer-term survivors and shorter-term survivors. Only patients with data for both
data categories were included.

Data Algorithm Error STS LTS AUC Log-rank

Category Rate Correct Correct p-value

Age

C5.0 0.442 0.416 0.730 0.573 0.0145*

NBC 0.411 0.843 0.284 0.634 0.0436*

SVM 0.460 0.910 0.095 0.492 0.609

DNA Methylation

C5.0 0.485 0.618 0.392 0.505 0.754

NBC 0.399 0.843 0.311 0.576 0.000354*

SVM 0.448 0.876 0.162 0.523 0.0208*

All Data

C5.0 0.485 0.618 0.392 0.505 0.754

NBC 0.399 0.843 0.311 0.577 0.000354*

SVM 0.405 0.820 0.324 0.624 0.00657*
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Table 4.21. Cross-validation results when ensemble-learning approaches were ap-
plied to age data and DNA methylation data. Non-radiation-treated patients were
excluded, and median survival was the split point between longer-term survivors
and shorter-term survivors. Only patients with data for both data categories were
included.

Ensemble Error STS LTS AUC Log-rank

Method Rate Correct Correct p-value

Majority Vote 0.436 0.876 0.189 0.593 0.11

Simple Weighted Vote 0.436 0.843 0.230 0.576 0.03*

Squared-Weighted Vote 0.436 0.843 0.230 0.575 0.03*

LTS Predictive Value Weighted Vote 0.429 0.843 0.243 0.585 0.0144*

STS Predictive Value Weighted Vote 0.423 0.843 0.257 0.566 0.0244*

Select Best 0.460 0.798 0.230 0.530 0.304

Mean Probability 0.436 0.685 0.419 0.611 0.0174*

Weighted Mean Probability 0.436 0.685 0.419 0.592 0.0174*

Stacked Generalization 0.479 0.764 0.230 0.497 0.755
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Table 4.22. Cross-validation results non-radiation-treated patients were excluded,
median survival (423 days) was the split point between longer-term survivors and
shorter-term survivors, and ensemble-learning approaches were applied.

Ensemble Error STS LTS AUC Log-rank

Method Rate Correct Correct p-value

Majority Vote 0.364 0.725 0.546 0.696 1.69e-05*

Simple Weighted Vote 0.349 0.733 0.569 0.703 1.03e-06*

Squared-Weighted Vote 0.326 0.740 0.608 0.706 7.29e-08*

LTS Predictive Value Weighted Vote 0.337 0.725 0.600 0.704 2.63e-07*

STS Predictive Value Weighted Vote 0.352 0.718 0.577 0.703 1.29e-06*

Select Best 0.318 0.733 0.631 0.682 3.65e-07*

Mean Probability 0.352 0.863 0.431 0.689 9.29e-07*

Weighted Mean Probability 0.356 0.840 0.446 0.697 3.9e-06*

Stacked Generalization 0.460 0.588 0.492 0.540 0.0978
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Table 4.23. Cross-validation results when non-radiation-treated patients were ex-
cluded and median survival (423 days) was used as the split point between longer-term
survivors and shorter-term survivors. In this experiment, all data categories except
Treatments were combined into a single data set.

Variable Selection Classification Error STS LTS AUC Log-rank

Approach Algorithm Rate Correct Correct p-value

None C5.0 0.475 0.550 0.500 0.525 0.665

None NBC 0.479 0.641 0.400 0.546 0.0638

None SVM 0.418 0.481 0.685 0.594 7.94e-05*

SVM-RFE C5.0 0.475 0.573 0.477 0.525 0.0988

SVM-RFE NBC 0.429 0.679 0.462 0.580 0.0119*

SVM-RFE SVM 0.448 0.542 0.562 0.565 0.0106*

RELIEF-F C5.0 0.498 0.679 0.323 0.501 0.379

RELIEF-F NBC 0.441 0.702 0.415 0.586 0.0957

RELIEF-F SVM 0.452 0.527 0.569 0.556 0.139
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Table 4.24. Cross-validation results when non-radiation-treated patients were ex-
cluded, median survival (423 days) was used as the split point between longer-term
survivors and shorter-term survivors, and ensemble-learning approaches were applied.
All data categories except Treatments were used.

Ensemble Error STS LTS AUC Log-rank

Method Rate Correct Correct p-value

Majority Vote 0.437 0.687 0.438 0.584 0.00222*

Simple Weighted Vote 0.433 0.679 0.454 0.586 0.00238*

Squared-Weighted Vote 0.437 0.679 0.446 0.590 0.00111*

LTS Predictive Value Weighted Vote 0.444 0.649 0.462 0.586 0.0113*

STS Predictive Value Weighted Vote 0.444 0.672 0.438 0.587 0.00372*

Select Best 0.437 0.649 0.477 0.578 0.00411*

Mean Probability 0.444 0.855 0.254 0.583 0.0224*

Weighted Mean Probability 0.433 0.840 0.292 0.584 0.00572*

Stacked Generalization 0.494 0.473 0.538 0.506 0.298



98

Table 4.25. Cross-validation results when only patients who received radiation and
temozolomide treatment were included. Median survival (423 days) was used as
the split point between longer-term survivors and shorter-term survivors. All data
categories except Treatments were combined into a single data set.

Variable Selection Classification Error STS LTS AUC Log-rank

Approach Algorithm Rate Correct Correct p-value

None C5.0 0.530 0.448 0.493 0.470 0.352

None NBC 0.515 0.284 0.687 0.503 0.987

None SVM 0.530 0.403 0.537 0.419 0.159

SVM-RFE C5.0 0.470 0.537 0.522 0.530 0.297

SVM-RFE NBC 0.507 0.522 0.463 0.515 0.704

SVM-RFE SVM 0.575 0.418 0.433 0.430 0.18

RELIEF-F C5.0 0.507 0.627 0.358 0.493 0.991

RELIEF-F NBC 0.552 0.463 0.433 0.460 0.267

RELIEF-F SVM 0.507 0.448 0.537 0.457 0.235
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Table 4.26. Cross-validation results when only patients who received radiation
and temozolomide treatment were included and ensemble-learning approaches were
applied. Median survival (423 days) was the split point between longer-term survivors
and shorter-term survivors. All data categories except Treatments were used.

Ensemble Error STS LTS AUC Log-rank

Method Rate Correct Correct p-value

Majority Vote 0.515 0.284 0.687 0.485 0.454

Simple Weighted Vote 0.530 0.299 0.642 0.479 0.241

Squared-Weighted Vote 0.537 0.299 0.627 0.477 0.246

LTS Predictive Value Weighted Vote 0.537 0.284 0.642 0.478 0.19

STS Predictive Value Weighted Vote 0.537 0.299 0.627 0.485 0.199

Select Best 0.493 0.552 0.463 0.537 0.727

Mean Probability 0.515 0.239 0.731 0.495 0.637

Weighted Mean Probability 0.515 0.269 0.701 0.490 0.366

Stacked Generalization 0.515 0.448 0.522 0.485 0.141
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Table 4.27. Results of standard (noncorrected) GSEA analysis applied to top-1000
ranked DNA methylation genes by the RELIEF-F algorithm. Patients receiving no
radiation treatment were excluded, and median survival was used as the split point.
The KEGG pathways most highly enriched for the genes are displayed.

KEGG Pathway p-value

Pathways in cancer 2.87e-15

TGF-beta signaling pathway 3.63e-09

Bladder cancer 2.65e-07

Focal adhesion 3.14e-07

Pancreatic cancer 2.2e-06

Chagas disease 3.61e-06

Chronic myeloid leukemia 4.1e-06

Prostate cancer 4.46e-06

MAPK signaling pathway 5.35e-06

Amyotrophic lateral sclerosis (ALS) 6.11e-06

Toll-like receptor signaling pathway 9.85e-06

Melanoma 1.24e-05

ErbB signaling pathway 1.27e-05

Amoebiasis 1.55e-05

Malaria 2.01e-05

Colorectal cancer 4.25e-05

Fc epsilon RI signaling pathway 5.09e-05

Cytokine-cytokine receptor interaction 7e-05

Leukocyte transendothelial migration 8.94e-05

Axon guidance 0.000109
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Table 4.28. Results of standard (noncorrected) GSEA analysis applied to all
methylation genes (when patients receiving no radiation treatment were excluded
and median survival was used as the split point).

KEGG Pathway p-value

Pathways in cancer 2.05e-39

Melanoma 4.24e-13

Focal adhesion 5.2e-12

Leishmaniasis 4.07e-11

Prostate cancer 3.33e-10

Bladder cancer 1.08e-09

p53 signaling pathway 4.53e-09

Cytokine-cytokine receptor interaction 5.25e-09

TGF-beta signaling pathway 5.87e-09

Chagas disease 1.47e-08

Axon guidance 3.88e-08

Malaria 1.3e-07

Amoebiasis 2.29e-07

Chronic myeloid leukemia 3.73e-07

MAPK signaling pathway 4.18e-07

Basal cell carcinoma 6.88e-07

Leukocyte transendothelial migration 1.92e-06

Pancreatic cancer 2e-06

Colorectal cancer 2.11e-06

Hematopoietic cell lineage 2.68e-06
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Table 4.29. Results of permutation-corrected GSEA analysis applied to top-1000
ranked DNA methylation genes by the RELIEF-F algorithm (when patients receiving
no radiation treatment were excluded and median survival was used as the split point).

KEGG Pathway p-value

Olfactory transduction 0.001

Amyotrophic lateral sclerosis (ALS) 0.004

TGF-beta signaling pathway 0.005

Toll-like receptor signaling pathway 0.008

NOD-like receptor signaling pathway 0.011

Tyrosine metabolism 0.018

Huntington’s disease 0.019

ErbB signaling pathway 0.024

Pancreatic cancer 0.027

Fc epsilon RI signaling pathway 0.035

Progesterone-mediated oocyte maturation 0.036

Glycine, serine and threonine metabolism 0.038

Chronic myeloid leukemia 0.039

PPAR signaling pathway 0.04

Glycosaminoglycan biosynthesis - heparan sulfate 0.049



CHAPTER 5

DISCUSSION

5.1 General Observations

Because GBM is a complex disease for which patient survival time is influenced by

a variety of heterogeneous factors, one objective of this study was to assess how well

multivariate prediction algorithms could differentiate between GBM patients who

would survive a relatively long or short time after diagnosis. Using ML-Flex, the

custom software package developed for this study, various algorithms were applied

to retrospective GBM data from TCGA. In many cases, the algorithms identified

subsets of patients that experienced significantly longer or shorter survival than the

remaining patients.

A desirable outcome of this study might have been that one particular algorithm

or data category performed well in all cases and thus could have been favored for

further development of GBM prognosis models. However, in this study, classification

performance varied substantially across algorithms and data categories, even though

some data categories appeared to be more informative than others. Across the various

experiments, better performance was typically observed when variable selection was

performed than when all variables were included in the models; this finding coincides

with the expectation that many variables have little or no ability to differentiate

between LTS and STS. Among classification algorithms, NBC performed quite well

and often (at least slightly) better than the other algorithms. However, in many cases,

C5.0 Decision Trees and SVM performed (at least slightly) better than NBC. Such

variability is not a surprise considering the diversity of the algorithmic approaches—a

given algorithm may be suited well to a particular type of data and not to others.

Across the experiments, the data categories that appeared to contain most prognostic

relevance were clinical, treatments, and DNA methylation; in some experiments,

models based on the remaining data categories—histology, somatic mutations, DNA
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copy number, mRNA expression, and miRNA expression—performed moderately

well, but the algorithms had only marginal success with these categories overall.

(Potential reasons for the relatively poor performance of these categories are described

in the Limitations section below.)

Rather than compare performance extensively across algorithms or data cate-

gories, this study employed ensemble-learning approaches in an attempt to aggregate

evidence across multiple algorithms and data categories. In a few cases, the ensemble

methods outperformed all individual algorithms. But in general, the ensemble meth-

ods’ main advantage was their consistency. While performance varied considerably

across algorithms and data categories, the ensemble methods often approximated the

best individual performers. In some cases, the ensemble methods performed well

because they identified and favored one individual algorithm/category combination

that generalized well; in other cases, the ensemble methods appear to have extracted

complementary evidence from several algorithms/categories. These findings suggest

that in the absence of a priori knowledge about which algorithm or data category

would be most useful for making survival predictions, ensemble methods may be the

most effective choice.

Limited predictive performance was observed for multivariate models based on

previously reported GBM prognostic variables when the survival threshold was two

years (the threshold used most frequently in the literature). Subsequent experiments

revealed that better performance could be attained when the survival threshold was

different from two years (and when the variables are not limited by prior knowledge).

At least two factors likely influenced these performance differences: 1) prior knowledge

about factors influencing GBM prognosis is incomplete, 2) the choice of survival

threshold influences predictive performance strongly due to class imbalances.

In evaluating the biological relevance of methylation genes that helped differentiate

between LTS and STS, GSEA analyses revealed a strong bias in favor of genes

from pathways already believed to affect tumorigenesis. The permutation method

attempted to correct for this bias and generated hypotheses about pathways that may

drive GBM tumor aggressiveness but may have been overlooked in this context. For

the best-performing DNA methylation models, some hypotheses pointed to the body’s
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innate immune response as a prognostically relevant biological mechanism for GBM.

Researchers are actively studying the immune system’s role in suppressing tumor

growth, and immunotherapies are being investigated as a means to help the immune

system target tumors. In fact, at least one such therapy has already shown promise

for GBM. In a series of clinical trials conducted at Duke University, patients with an

in-frame deletion in the EGFR gene (EGFRvIII) were vaccinated with peptide-pulsed

dendritic cells; after treatment, the patients experienced antitumor immune responses

with no serious adverse events, and some have had remarkable recoveries. [78]

In this study, three metrics—error rate, AUC, and log-rank statistic—were used to

assess model performance. The error rate is frequently reported in machine-learning

studies due to its simplicity of calculation and interpretation. However, care must

be taken to interpret the error rate when the class distribution is imbalanced—an

important consideration in this study. Although the AUC’s method of calculation

is relatively complex—and thus less intuitive—the AUC’s interpretation remains

consistent for any class distribution. Additionally, the AUC accounts not only for

discrete classes predicted by an algorithm but also for the confidence with which those

predictions are made. (In this study, the AUC estimates the likelihood that a classifier

assigned a randomly chosen STS a higher probability of being STS than a randomly

chosen LTS.) This property also suits the AUC well for assessing model performance in

inner cross-validation folds and for serving as a weight in ensemble-learning methods.

On the other hand, a disadvantage of the AUC is that it depends on the quality

of the algorithms’ posterior probabilities; some algorithms, such as C5.0 Decision

Trees, are designed only to give discrete probabilities. An important advantage of

the log-rank statistic is its familiarity to clinicians. The log-rank p-value provides

an intuitive—though arbitrarily determined—assessment of a given model’s quality

via “statistical significance” thresholds. However, a potential disadvantage of the

log-rank statistic is that it weighs outliers heavily. In sum, none of these metrics is

adequate in isolation, and sometimes they conflict with each other. Perhaps the best

way to assess model performance is to focus on models that perform well according to

all three metrics yet to keep an eye open for special cases that otherwise demonstrate

clinical relevance (such as the IDH1/TP53 somatic-mutation models).
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Finally, it should be noted that even though multivariate models in this study

predicted survival status poorly for many data categories, it should not be inferred

that effective models are impossible—or even unlikely—to be developed for those data

categories. Such inferences could become Type II errors (false negatives) as methods

of developing such models are refined. An important goal of this study was to apply

commonly used, general-purpose algorithms to the TCGA data for GBM and gain a

sense for the performance levels that can be attained when such algorithms are tested

in a rigorous and consistent fashion. Other algorithms that are more sophisticated

or better suited to the poor-performing data categories may prove valuable in future

studies.

5.2 Major Contributions

In 2007, Dupuy and Simon surveyed the literature for studies that had examined a

relationship between high-throughput molecular data and cancer outcomes. [79] For

21 of 42 studies that were examined in detail, the authors expressed concern over

methodological flaws in the studies’ experimental designs. For example, some cross-

validated studies performed variable selection on the entire data set rather than within

each training set, an approach that can bias results tremendously. Methodological

concerns and differences between studies may arise partly because independent labs

each develop custom software to perform their analyses, yet considerable time and

software-engineering effort is required to ensure validity. ML-Flex was developed as

a means to address these gaps by performing cross-validation studies in a rigorous,

consistent, and repeatable fashion. Additionally, because repositories like TCGA

contain gigabytes of data, the time required to construct multivariate models is

an important consideration. Despite the growing availability of high-performance

computational resources, most software is not designed to take advantage of multiple

central processing units (CPUs) within each server or multiple processing cores within

each CPU. Thus in the development of ML-Flex, an additional effort was made to

ensure experiments could be executed in a time-efficient manner. ML-Flex uses the

threading capability within the Java virtual machine to capitalize on such resources.

No software package with this architecture is freely available to researchers at this
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time. Thus plans are in place to share ML-Flex with the broader research community

in hopes that it will become a standard tool for performing large-scale, cross-validated

studies. The extensible nature of ML-Flex should enable developers to customize its

use to a broad range of research purposes.

Previous studies of GBM prognosis typically have focused on one or two categories

of patient data. Contrarily, in this study, eight categories of patient data have been

tested side by side in a comparative assessment of prognostic relevance. Although care

must be taken to consider the limitations of such an analysis (especially the possibility

of false-negative results), comparative assessments across data categories may help

guide investment of financial resources for future analyses. In particular, researchers

and funding agencies must weigh the incremental costs of acquiring multiple categories

of high-throughput molecular data for each patient.

Although other research groups are analyzing the GBM data in TCGA, no other

study has reported the use of supervised-learning algorithms to analyze this data set

in relation to prognosis. Thus this study has the potential to pave the way for future

supervised-learning studies in TCGA (and elsewhere).

Because various types of molecular aberrations can influence tumor growth, a key

goal of the TCGA Consortium is to facilitate development of methods that integrate

data across modalities. This study has demonstrated two approaches for performing

integrative analyses: 1) combining all data into an aggregate data set and allowing

multivariate algorithms to model intercategory relationships at a granular level, and 2)

making multivariate predictions for each data category separately and then combining

predictions at a coarse level using ensemble-learning approaches. Although neither

approach resulted in predictive performance that was consistently better than the

best single-category models, the integrative methods used in this study demonstrate

alternatives for researchers to consider as multimodal data sets become more common.

It may be that such methods perform considerably better when applied to other

diseases or when the number of component algorithms is increased.

In this study, algorithmic refinements have also been explored. Firstly, the Edger-

ton, et al. method of selecting survival split points was modified to use the AUC rather

than the chance-corrected error rate. As described in the Results section, a simulation
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study demonstrates that this modification should result in better precision when the

split point is away from the median. Secondly, three novel, weight-based ensemble

methods were developed and applied. While the performance of these methods did not

always exceed previously developed methods, they consistently performed better than

majority vote and simple weighted vote and thus show promise for further refinement.

5.3 Limitations

Because biomedical informatics is a relatively young field—especially in the realm

of genetics/genomics research—detailed protocols do not exist for performing exper-

iments such as those in this study. General guidelines must be followed to ensure

statistical and methodological rigor; however, many seemingly minor decisions—each

of which could have a drastic impact on the results—must be made. In this study,

an attempt has been made to default such decisions toward the simplest approach.

However, arbitrary decisions sometimes had to be made. This section describes such

issues as well as extraneous factors that may have impacted performance. It is

hoped that this study will serve as a starting point for future research by elucidating

methodological factors that must be considered in performing such a study.

The TCGA data are being provided by several research centers throughout the

United States. While special efforts are being made to ensure consistency in specimen

handling, tumor-sample quality, and clinical data definitions, the TCGA data by

nature are heterogeneous and likely to contain noise that could impact predictive

performance. Acknowledging this limitation, an added measure of confidence can be

placed in models that do perform well on this data set. Additionally, because the data

come from different institutions and are handled by a variety of people, data quality

can be affected. Thus manual examination of the data and some subjective inter-

pretation were necessary for this study. For example, the drug-treatment data often

contained multiple spellings (including mispellings) for a given drug, and sometimes a

drug’s commercial name was listed instead of its generic name. These inconsistencies

were manually corrected before executing the experiments in this study.

Ideally, TCGA would contain data only for GBM patients who had been treated

uniformly (as in clinical trials). Such a design would enable assessments of the
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effectiveness of specific treatments and of cofactors that may influence treatment

responses. However, until recently, no drug treatment had been shown to improve

GBM survival in a phase III clinical trial [2]; thus the standard of care has not

included specific drug treatments until recently. Consequently, a wide variety of drug

treatments (and treatment regimens) have been administered to TCGA patients.

The various treatments likely affected patient survival to differing degrees—as al-

ready noted, the total number of drug treatments received is associated with patient

survival—so treatment status may have a confounding effect on other factors that

affect survival. Thus even though this study attempted to address a clinician’s

need to prospectively estimate patient prognosis at the time of diagnosis—treatment

regimens are not always known at the time of diagnosis—treatment data were included

in this study to estimate the effects that treatments have on survival. Various

alternatives could be employed to deal with the treatment-data confounding effects;

for example, 1) analyses may be limited to patients who received specific treatments,

2) treatment data may be excluded from analyses, and 3) predictions based on

treatment data may be used as covariates in multivariate survival analyses. The

first two of these approaches were employed in TCGA Experiment 5, and the results

were mixed. Filtering patients by treatments may result in subpopulations that are

inadequately sized to derive generalizable models or attain statistical significance—

especially considering the fact that sample sizes in TCGA are limited to begin with.

Including treatment-based predictions as covariates in multivariate analyses would

provide an estimate of the prognostic value offered by a given data category and

algorithm, independent of treatment status; however, this estimate would provide

little additional insight due to the heterogeneous nature of the treatment data.

Two variables that are not recorded in TCGA but that may have offered valuable

insights are tissue anatomic site and year of diagnosis. In the Lamborn, et al. study,

[11] tissue anatomic site showed promise as a prognostic factor; it is plausible that

GBM tumors differ in their aggressiveness, operability, and in the effects they have

on cognitive function, depending on the location of the brain from which the tumor

arises. An evaluation of the relationship between year of diagnosis and patient survival

may have offered insights into confounding effects that may result from changes in
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treatments, surgical techniques, methods of tumor-sample preservation, etc. that have

occurred across the span of years during which the TCGA patients were diagnosed

and treated.

One decision that may have impacted the results considerably is the choice of

data normalization and summarization techniques. For example, when multiple

histology values were provided (e.g., for the top and bottom of slides or for mul-

tiple samples), the mean value was used; however, it may be that the maximum or

minimum value would better represent these features. Additionally, treatment data

were transformed into binary values, even though patients who received multiple

doses of a given drug may have gained more benefit than patients who received

a single dose. Additionally, all biomolecular data were summarized according to

higher-level functional categories. For example, somatic-mutation, DNA methylation,

and mRNA expression data were summarized at the gene level; DNA copy-number

data were summarized by chromosomal band; and miRNA data were summarized

by known gene targets. Although summarizing raw data may sometimes reduce

signal, summarization methods enable easier interpretation, reduce computational

demands, and may represent underlying biological mechanisms better than raw data.

An interesting area for future research would be to assess the effects of various

data-summarization approaches on downstream classification performance.

Transforming time-to-event data into a binary outcome (e.g., STS, LTS) can

result in a loss of information [79]; however, to be consistent with prior studies that

have attempted to separate patients into discrete groups, [1, 19, 20] survival was also

discretized in this study. Discretizing survival can also introduce bias if the two

groups have different censorship structures [79]; however, such bias was avoided in

this study by excluding patients who were still alive (n = 74) when the analysis

was performed. Although this exclusion affected sample size only moderately in this

study, such an approach may not be acceptable when studying other cancer types for

which survival is generally longer. Consequently, multivariate prediction algorithms

that retain survival as a continuous variable and account for censorship status (thus

allowing living patients to be included) may be more suitable for general application.

Alternatively, living patients who have survived longer than the discretization thresh-
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old can be included in analyses and labeled LTS; however, to maintain consistency

across experiments, that approach was not used in this study.

Instead of discretizing survival using either an abritrary threshold or the empirical

split-point method, an alternative approach would be to examine the survival distri-

bution visually and seek to identify natural groupings that have occurred. Figure 5.1

shows the overall distribution of survival times for GBM patients used in this study.

No clear bimodal distribution exists in the data; however, noticeable irregularities in

the distribution exist around 100 days, 500 days, and 800 days. The irregularity at

100-days survival likely represents (at least in part) the differences in survival between

patients who received radiation treatment or not. The irregularities near 500 days and

800 days have no straightforward explanation and may represent thresholds dividing

groups of patients whose tumors have different biological underpinnings. One way to

formalize this approach would be to use a technique like k-means clustering to identify

groups within the distribution quantitatively. One challenge with using this approach

is that sample sizes in TCGA are limited. Thus using a population-level database of

GBM patient survival—such as what may be found in public cancer registries—could

be useful for deriving general-purpose thresholds.

Across the experiments performed in this study, the same data set was evaluated

multiple times via cross validation. Although cross validation maintained statistical

rigor for each experiment, the possibility exists that enough attempts to attain

statistical significance would eventually result in log-rank p-values that fall below the

alpha threshold (i.e., p < 0.05) by random chance. Researchers have developed many

approaches to account for this so-called “multiple-testing bias”; however, no approach

is standardly applied in this setting. Perhaps the most conservative correction for

multiple tests is the Bonferroni approach, which divides the alpha threshold by

the total number of tests; p-values lower than the corrected threshold then are

considered significant. Accounting for all combinations of variable-selection approach,

classification algorithm, and data category that were tested, plus the various ensemble

approaches that were tested, the total number of tests across all experiments was

342. Thus according to the Bonferroni correction, log-rank p-values would need to

be lower than 0.0001462 to be considered significant. Several results from this study
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attained this level of significance; however, the Bonferroni correction, which assumes

independence between tests, is overly conservative in this setting because many of

the tests were highly interrelated. A reasonable, though less rigorous, approach to

accounting for multiple tests across experiments is simply to place most emphasis

on the data categories that perform consistently well. For example, models based on

clinical, treatment, and DNA methylation data performed well for multiple algorithms

and in multiple experiments, despite differences in survival threshold. Models based

on mRNA expression also performed well, though their performance was less robust

across algorithms and experiments.

One other way to address multiple-testing concerns is to evaluate prognostic

models on an (or preferably multiple) external data set. If a model performs well on

independent sets of patients, confidence in the model increases substantially. However,

TCGA is unique in its breadth of data, making it infeasible at this time for individual

labs to perform external validation. Consequently, this study has simulated external

validation with a cross-validation approach. However, as the TCGA Consortium

continues to collect data for additional GBM patients, the results of this study can

be validated on a separate set of GBM patients.

5.4 Opportunities for Future Work

The multivariate algorithms employed in this study can be configured using var-

ious parameters. For simplicity, default parameters were selected in most cases.

However, performance can vary dramatically as such parameters are modified. Thus it

is possible that parameters other than those used in this study could result in improve

performance. One way to estimate optimal parameters for a given classification task

is to experiment with various settings in internal cross-validation folds and select

settings that perform best internally. A slightly different but related technique, which

could be employed using ML-Flex’s current design, is to treat different parameter

configurations as separate algorithms and use ensemble-learning approaches to com-

bine evidence across the various configurations. If a single configuration performed

exceptionally better than other configurations in internal folds, Select Best should

account for it; otherwise, the collective wisdom produced by the various configurations
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may prove beneficial.

TCGA contains various categories of biomolecular data. For some data cate-

gories (e.g., DNA copy number, DNA methylation, mRNA expression), data have

been profiled using multiple high-throughput technology platforms. For simplicity of

computation and interpretation, only a single platform was examined in this study

for each data category. However, ML-Flex’s extensible design makes it possible to

process data from any platform that produces text-based output. Two interesting

avenues for future research would be 1) to compare predictive performance across

platforms and 2) to combine evidence across platforms via ensemble approaches. For

the latter, an additional refinement could be to develop a hierarchical model in which

ensemble methods derive an aggregate prediction for each data category, and then

aggregate predictions are combined into an overall prediction.

As already noted, class imbalance can affect classification performance because

many algorithms are designed for scenarios where the classes are balanced. A recent

study observed that class imbalance especially affects high-dimensional data sets,

unless a very strong signal exists in the data. [80] In this study, class imbalance

often appeared to affect ensemble-learning approaches even more markedly than

individual algorithms. For this study, two novel ensemble-learning methods—STS

predictive-value weighted vote and LTS predictive-value weighted vote—were devel-

oped in an attempt to counter class-imbalance effects. Although these methods

did not always outperform other ensemble approaches, they showed promise as a

means to place emphasis on the minority class. In future research, these methods

will be explored further and compared with existing methods for dealing with class

imbalance, including cost matrices.

When survival values are discretized, the performance of classification algorithms

may suffer, particularly for patients whose survival times are near the discretization

threshold. In lieu of discretizing survival, an alternative approach would be to retain

survival as a continuous variable and use regression algorithms to obtain continuous

predictions for each patient. The log-rank statistic and Kaplan-Meier curves—familiar

and well-accepted standards for assessing clinical relevance—require that patients be

assigned to discrete groups. One way to meet this requirement would be to apply a
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clustering algorithm to the continuous survival predictions and compare the actual

survival values of patients in each cluster. Such an approach may outperform methods

that either 1) discretize survival or 2) perform unsupervised clustering on the entire

data set. Additionally, this approach could also be used as an ensemble-learning

method because it could account for predictions from multiple data categories and

algorithms.

Although this study has focused on GBM, the first cancer type with a substantial

amount of data in TCGA, the U.S. government recently announced that an additional

$275 million would be invested in TCGA and that it will eventually cover more than

20 cancer types [81]; those efforts are now ongoing. As new data sets become available

in TCGA, the tools and methods of this study can be applied to other cancer types.

Although prognosis has been the outcome of interest in this study, the ML-Flex

package can be used to perform multivariate analyses for any outcome relevant to a

given cancer type. Because ML-Flex will be made available publicly, other researchers

will be able to explore relationships in TCGA that otherwise would have required a

considerable software-engineering effort.

5.5 Relevance to Biomedical Informatics

Shortliffe and Blois have defined biomedical informatics as ”the scientific field that

deals with biomedical information, data, and knowledge—their storage, retrieval, and

optimal use for problem solving and decision making.” [82] Although other definitions

exist, this definition has been used commonly in the field.

Accordingly, the purpose of this study was to help solve an important biomedical

problem: short patient survival after GBM diagnosis. In pursuit of this goal, large

quantities of biomedical data were retrieved, stored, and processed. Scientific tools

and techniques were developed and applied in an attempt to convert data to infor-

mation, which could then be interpreted and potentially be considered knowledge. It

is hoped that such knowledge will serve as building blocks for future research and

ultimately have a positive impact on human health.

Biomedical informatics is a highly interdisciplinary field. In isolation, the fields

of biology, medicine, computer science, information systems, or statistics lack the
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perspective and tools necessary for studies such as this one to be accomplished.

However, as these fields continue to become connected through biomedical informatics

approaches, scientific progress is sure to accelerate dramatically.



116

Survival (Days)

F
re

qu
en

cy

0 1000 2000 3000 4000

0
5

15
25

35

Figure 5.1. Distribution of survival times across all GBM patients that were used
in this study.



CHAPTER 6

CONCLUSION

The aggressive nature of GBM leaves clinicians with a relatively short time span

to determine optimal treatments for each patient. Although radiation treatment,

surgical resection, and temozolomide treatment have shown promise for lengthening

GBM survival times, few patients survive longer than five years after diagnosis. A

better understanding of factors that are associated with GBM survival—and thus

that may indicate a lack of response to standard treatments—could help clinicians

prioritize patients for clinical trials and help patients make decisions about entering

such trials. An increased understanding of the biological mechanisms that drive tumor

aggressiveness—and that may differentiate the most (or least) lethal tumors from the

remaining tumors—may also lead researchers to molecularly targeted treatments that

improve patient outcomes. [83]

Some prognostic insight may be gained from considering a patient’s age or KPS

or from examining a patient’s tumor under a microscope. However, these data

have limited ability to distinguish between LTS and STS. Even though biomolecular

aberrations are at the root of tumor initiation and progression, [84] no prognosis

model based on biomolecular data is in widespread use by clinicians who treat GBM

patients. [1] Until recent years, bench researchers studying GBM prognosis have been

limited to small-scale efforts that evaluated one or a few biomolecular variables at a

time. Fortunately, technological advances are making it possible for researchers to

examine the biomolecular characteristics of cancer cells with increasing granularity

and at decreasing costs. (The magnitude of such data sets will only increase as “next-

generation” sequencing technologies become more commonplace.) The resulting data

deluge necessitates the use of sophisticated informatics techniques to store, retrieve,

and analyze the data sets; however, implementation of such techniques often lies
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outside the expertise of bench researchers and clinicians.

Although some prognostic factors may determine a GBM patient’s fate in isolation,

it is likely that multiple factors work in concert to influence tumor aggressiveness

and ultimately survival for many patients. In some cases, tens, hundreds, or even

thousands of factors may each have a subtle impact on tumor activity. Complicating

the situation further, prognostic factors may interact with each other synergistically

or antagonistically. For reasons such as these, multivariate approaches to devel-

oping prognosis models are warranted—traditionally used statistical techniques for

predicting survival may not be suitable in the face of thousands of independent

variables, strong dependencies between variables, and multiple scales of measurement.

Moreover, it is essential that analyses be conducted in a systematic and consistent

way to ensure validity, repeatability, and comparability across studies.

In this study, a variety of multivariate approaches were applied to various cate-

gories of data for a cohort of GBM patients, and predictive performance was evaluated

in a robust, cross-validated design. Although performance of the algorithms varied

substantially across the data categories, some models performed well for all three

metrics—particularly models based on age, treatments, and DNA methylation.

Even though a long road may still lie ahead for researchers working to eradicate

devastating diseases like GBM, informatics tools and techniques such as those pre-

sented in this study promise to guide researchers in their efforts to improve outcomes

and explain the biological underpinnings of disease.
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