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Dynamic Origin-Destination Demand Estimation 
Using Automatic Vehicle Identification Data
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Abstract—This paper proposes a dynamic origin-destination 
(OD) estimation method to extract valuable point-to-point split- 
fraction information from automatic vehicle identification (AVI) 
counts without estimating market-penetration rates and identifi
cation rates of AVI tags. A nonlinear ordinary least-squares esti
mation model is presented to combine AVI counts, link counts, and 
historical demand information into a multiobjective optimization 
framework. A joint estimation formulation and a one-sided lin- 
ear-penalty formulation are further developed to take into account 
possible identification and representativeness errors, and the re
sulting optimization problems are solved by using an iterative 
bilevel estimation procedure. Based on a synthetic data set, this 
study shows the effectiveness of the proposed estimation models 
under different market-penetration rates and identification rates.

Index Terms—Road vehicle identification, state estimation, 
traffic information systems, transportation networks.

I. In t r o d u c t io n

riiIME-DEPENDENT origin-destination (OD) demand in- 
1  formation is an essential input for dynamic traffic assign

ment (DTA) models, used to describe and predict time-varying 
traffic network flow patterns, as well as to generate anticipa
tory and coordinated control and information supply strategies 
for intelligent traffic network management. In general, OD- 
trip-desire information can be obtained from direct-interview 
surveys or estimated from real-time traffic surveillance data. 
Populating OD-demand patterns from survey samples, how
ever, is a resource intensive and time-consuming process, and 
conventional survey methods cannot provide up-to-date dy
namic demand inputs required by online Advanced Traffic 
Management Systems (ATMS) and Advanced Traveler Infor
mation Systems (ATIS) applications. Deployment of intelligent 
transportation system (ITS) technologies offer more reliable 
and less costly channels to measure the time-varying states 
of transportation systems, and both real-time and archived 
traffic measurements provide valuable data to help capture the 
underlying travel decision processes.

Substantial research has been devoted to the dynamic 
demand-estimation problem using time-varying link counts. 
Early models [1]—[3] were proposed to estimate time-dependent 
OD flows on individual components, such as a single inter
section or a freeway facility; these models seek to estimate
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unknown dynamic OD split fractions based on the entry and 
exit flow measurements, under the simplifying assumption 
of constant link travel time. Extending the concepts and so
lution methodologies of the static OD-estimation problem, 
Cascetta et al. [4] proposed a generalized least-squares (GLS) 
estimator for dynamic OD demand based on a simplified 
assignment model for a general network. Growing interest 
in the application of simulation-based DTA models has been 
accompanied by several studies on the estimation of dynamic 
OD-trip desires. A bilevel GLS optimization model and an 
iterative solution framework have been proposed by Tavana 
and Mahmassani [5] to estimate the dynamic OD demand and 
to maintain the internal consistency between the upper level 
demand-estimation problem and the lower level DTA problem. 
Tavana [6] also provided an extensive literature review of 
the dynamic OD-demand-estimation problem and its inherent 
connection to the DTA problem.

In a real traffic network, the number of independent link 
counts is typically less than the number of unknown time- 
dependent OD pairs, so dynamic OD-demand estimation purely 
relying on traffic link counts might lead to an underdeter
mined system. As a result, additional information is needed 
to find a unique OD-demand estimate. The use of flow 
counts across screen lines and cordon lines in dynamic OD- 
demand estimation was introduced by Chang and Wu [7] and 
Chang and Tao [8] to extract more information from the existing 
traffic surveillance and survey data. Zhou et al. [9] proposed 
a multiobjective optimization framework to combine available 
historical static demand information and multiday traffic link 
counts to estimate the variation in the traffic demand over 
multiple days.

Automatic vehicle identification (AVI) data represent another 
data source of growing importance for estimating dynamic OD- 
demand flows, and more generally for traffic network man
agement. Two classes of demand-estimation problems using 
vehicle identification data should be distinguished: 1) the es
timation of tagged vehicle demand and 2) the estimation of 
population demand. Several studies focus on the first class of 
problems. Based on the transponder tag data collected from 
a freeway corridor in Houston, Dixon and Rilett [10] applied 
the framework developed by Cascetta et al. [4] to calculate 
the link-flow proportions based on the observed travel time 
from AVI counts. They presented both off-line GLS models 
and online Kalman filtering models for estimating tagged OD 
demand. Antoniou et al. [11] introduced path-flow proportion 
matrices that relate OD-demand flows to subpath tag counts, 
and extended Ashok’s framework [12] to estimate and predict 
tagged vehicular OD-demand flows.
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If only a subset of vehicles is equipped with transponder 
tags or only a subset of vehicles is correctly identified by 
the AVI readers, then the second class of problems needs 
to be explicitly considered in order to infer the population 
trip desires. Several models have been developed for the 
estimation of population demand using AVI counts. Recog
nizing low identification rates associated with license-plate- 
based AVI data. Van der Zijpp [13] proposed a constrained 
optimization formulation to jointly estimate the unknown OD- 
demand flows and identification rates. Along the same line, 
Asakura et al. [14] provided an off-line least-squares model 
to simultaneously determine the OD demand and the location- 
dependent identification rates, and further investigated day- 
to-day fluctuations in estimated OD demands. Dixon [15] 
proposed a three-stage procedure to estimate population OD 
demand from transponder-based AVI data: 1) Estimate the 
tagged OD-demand matrix from AVI data, 2) estimate market- 
penetration rates using AVI data and link counts, and then 
3) scale the estimated tagged vehicle demand to the total pop
ulation demand using the estimated market-penetration rates. 
In brief, the above models require estimating either market- 
penetration rates or identification rates so as to relate the 
AVI samples to the population demand using a multiplicative 
function structure. The estimation of market-penetration rates 
or identification rates, however, is a difficult problem in its 
own right, as these two types of rates are essentially time- 
dependent and location-dependent random variables. Moreover, 
the inclusion of market-penetration rates and identification rates 
in the demand-estimation problem could dramatically increase 
the number of unknown variables and impact the reliability of 
the final population demand estimate through the multiplicative 
structure.

This paper focuses on the estimation of population OD de
mand using partially observed AVI counts. To circumvent pri
mary difficulties associated with estimating market-penetration 
rates and identification rates, this research samples population 
OD split fractions from point-to-point AVI counts and extracts 
OD-demand distribution information, instead of treating OD 
split fractions as unknown variables, as is the case in several 
early dynamic OD-estimation models [1]—[3]. A nonlinear 
ordinary least-squares model is first proposed to systemati
cally combine AVI counts, link counts, and historical OD- 
demand information. Furthermore, two OD-demand-estimation 
formulations are developed to take into account the possible 
identification and representativeness errors. Synthetic AVI traf
fic counts are used to investigate the relative value of AVI 
counts to the OD-estimation problem under the different 
market-penetration rates and identification rates.

II. P r o b le m  S ta te m e n t

The following notation is used to represent all the variables 
in the dynamic OD-demand-estimation formulation.
I  Set of origin zones.
J  Set of destination zones.
Lic Set of links with link-count observations.
L vi Set of links with vehicle identification observa

tions.
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Subscript for link with traffic measurements. 
Subscript for origin zone, i € I.
Subscript for the destination zone, j  € J. 
Subscript for departure time intervals, r =  1,
2 , . . . , T a.
Subscript for observation time interval, i.e., sam
pling time interval, < =  1 , 2, . . . ,  T0.
Superscript for tag-equipped vehicles. 
Superscript for identified vehicles.
Superscript for iteration counter.
Number of vehicles on link I during observation 
interval t.
Vector of measured flows on the links, consisting 
of element
Number of vehicles observed on link s, traveling 
from link I during observation interval t. 
Demand volume with destination in zone j ,  orig
inating their trip from zone i during departure 
interval r.
Dynamic OD-demand matrix, consisting of 
elements
Number of vehicles observed in destination zone 
j ,  originating their trip at zone i during departure 
interval r.
Origin-to-destination split fraction, i.e., propor
tion of traffic departing from origin i dur
ing departure time interval r, heading towards 
destination j .
Link-to-link split fraction, i.e., proportion of traf
fic passing link I during observation time interval 
t, heading towards link s (link s is not necessary 
to be a downstream link of link I).
Link-flow proportions, i.e., proportion of vehic
ular demand flows from origin i to destination 
j ,  starting their trips during departure interval r, 
contributing to the flow on link I during observa
tion interval t.
Estimated link-flow proportions based on a DTA 
program.
Link-to-link-flow proportions, i.e., proportion of 
vehicular flows from origin i to destination j ,  
starting their trips during departure interval r, 
contributing to the link-to-link flow from link I 
(during observation intervals t) to link s. 
Estimated point-to-point-flow proportions based 
on a DTA program.
Estimated flow proportion matrix that includes 
elementsp^i.t).(i.j.r) and
Sampling error term in estimation of link-to-link 
split fraction
Combined error term in estimation of link-to-link 
split fraction
Combined error term in estimation of traffic flow 
on link I during observation interval t.
Target demand, which is the total traffic demand 
during period of interest for OD pair ( i . j ) .  
Historical OD-demand matrix, consisting of ele
ments
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illustration. In Fig. 1(a), an AVI reader located on link (1,5) 
records tagged vehicle flows departing from zone 1 , that is, 
E j  ^(i J) =  <:̂ (i'’) ^ ( i '}) ^(i 4 )' ^ I  counts (i|* .̂  and 

4j are also observed. If tagged vehicles are representative of 
the total population, then AVI counts can be used to estimate 
the OD split fractions for the population demand traveling from 
zone 1 , leading to the following measurement equations:

,7tg
(1 .3 ) (1-3)

fZtg(1 .4 ) d■(1.4)

(1 -j) E d ( i . j )
3

+  V(i.z)

+  r/(1 .4 )

(1 )

(2)

reader

Fig. 1. Example of utilizing AVI point-to-point counts.

Consider a traffic network consisting of multiple origins 
i e  I  and destinations j  e  J ,  as well as a set of nodes connected 
by a set of directed links. The analysis period of interest 
is discretized into departure time intervals r  =  1 , 2 , . . . ,  T,\. 
Link counts C(u) are available on link I e  Lic during observa
tion interval t  =  1 ,2 , ,T„.  AVI reader stations are located 
on link I e  L vi, and vehicle identification data include point 
counts c‘f ()V / € L Vi, t  =  1 . . . . .  T„ and point-to-point counts

c(i s t)^ ^  s e  ^ v i> t- = 1 , . . .  ,T0.
Note that the tg superscripts denote actual AVI tags, while the 

id superscripts denote those AVI tags that are actually identified 
by the readers. Specifically, cj® s ^  denotes point-to-point AVI 
tags, whereas a is the number of vehicles identified by AVI 
detectors, respectively, traveling from link I to link s during 
observation interval t. The market-penetration rate of AVI tags 
is the percentage of vehicles with tags in the entire vehicle 
population. The sampling time intervals for AVI counts and 
traffic link counts are assumed to be the same for notation 
simplicity, and with no loss of generality. As AVI reader stations 
are usually installed on link segments in a network, the “point- 
to-point counts” will be equivalently referred to as “link-to- 
link counts” in order to maintain congruity with “link counts” 
from point sensors. Given the link counts, vehicle identifica
tion counts, and prior information on OD trips, the dynamic 
OD-demand-estimation problem seeks to find time-dependent 
OD-trip desires (over a time horizon of interest) so as to 
minimize deviations between the observed traffic flows and 
the assigned traffic flows (resulting from a DTA process), 
and deviations between estimated OD-demand flows and the 
historical demand matrix.

In order to circumvent the difficulties in estimating market- 
penetration rates of AVI tags, this study utilizes probe ve
hicle data to extract spatial distribution information of trip 
makers in a traffic network. This approach can be illustrated 
using a small network (shown in Fig. 1). In that example, 
the problem is to estimate the population OD-demand flows 
d(i,2 ). d(i,3 ). and rf(i.4 ) from available AVI and loop detector 
counts. For simplicity, subscripts r  and t  are dropped in this

where V(i.3 ) and V(i.i) are sampling errors.
The loop detector on link (5,6) captures partial OD flow 

d ( i,2 ). so demand <i(1-2) can be related to link count C(j) using 
link-flow proportion P(/).( 1 .2 ), where /  denotes link (5,6), and
H f ) is the combined error in estimation of traffic flow on link 1.

C( J )  =  P ( f ) . ( 1 . 2 ) d ( 1 . 2 )  +  £ ( / ) (3)

Combining the above three measurement equations, one can 
create a system of nonlinear equations to estimate the unknown 
population OD-demand flows <i(i.2 ), d( 1 .3 ), and rf(i.4), without 
estimating the market-penetration rate of vehicle tags. Fig. 1(b) 
shows a more general case, where direct OD tagged vehicle 
counts are unavailable. Denote links (5,7) and (7,6) as links I 
and s, respectively. Link-to-link counts e^.a) cover partial OD 
flows <i( 1.2 ), rf(i.3 ), rf(i.4 ), while link counts e^) record partial 
OD flows <i(i.2 ). The resulting split fraction for link pair (/, s), 
which represents the percentage of vehicular flow traveling on 
link I contributing to the flow on link s, is

,.id
1 M
,,id
C(l)

J Z  P ( l . s ) ( i . j ) d ( i . j )  
i - j

- mi.>

P ( l ) ( 1 . 2 ) d ( 1 . 2 ) +  P ( l ) ( l : A ) d ( 1 . 3 ) +  P ( l ) ( l A ) d ( l A )
■ V( l . s

(4)

In this case, the information on OD-demand distributions 
can be partially revealed from the link-to-link split fractions, 
i.e., the ratio of the link-to-link AVI counts to the link AVI 
counts. Because link proportions are determined by the route 
choice behavior and traffic-flow propagation mechanism (both 
captured in the network traffic assignment process), the above 
link-to-link split formulation introduces additional difficulty 
and uncertainty in demand estimation, compared to the previous 
formulation that only uses OD split factions. In this study, 
a simulation-based DTA program, namely DYNASMART-P 
[16], is used to estimate the link flow and link-to-link-flow 
proportions.
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III. N o n l in e a r  L e a s t - S q u a r e s  F o r m u la t io n

This section formulates a dynamic OD-estimation model 
based on the following two assumptions.

1) AVI readers can correctly identify every tagged vehicle.
2) Tagged vehicles are a representative subset of the entire 

population.
The first condition assumes 100% identification rates and 

indicates cjj s ^  ^ and cjj ^  = c^f ty  Under the second
condition, the tagged vehicles probabilistically represent the 
entire population, and the split fractions of tagged vehicles can 
be used as sample estimates for the population split fractions. 
These assumptions will be relaxed in the next section. To 
construct a rigorous statistical inference model, the following 
discussion examines the properties of a random AVI sample 
for estimating split fractions. Recognizing that there are d^ g ^  
tagged vehicles choosing link s out of d ^  ^ vehicles observed 
on link I at time t, link-to-link identified vehicle count d^ g ^  
essentially follows a binomial distribution with the sample 
size of d^  ^  and the success probability of i.e.,
c(U,i) ~  Binomial [d$t), (c{Ls.t)/ c {Lt))\. Since

J 2  P( l , s , t ) ( i , j , r )
h j , T (5)

the sample proportion e‘,d
split fractions for the population proportion. That is

„id
' ( L s , l )  _ c ( l , s , t )

C(L) C(M)

hjjT
(6)

«id

,>id
C(M)

J 2  P( l , s , t ) ( i , j , T) d ( i , j , T)
l,3,T________________

C(U)
- V ( L s , t ) - (8)

Alternatively, if AVI readers cover the entry links of origin 
i and the exit links of destination j ,  then AVI OD counts are 
directly used to infer destination distributions without involving 
link flow and link-to-link-flow proportions

îd

Jd
(* , t )

E  d(i
3

,3,t  )
V ( , ,3,t ) (9)

The covariance of sampling errors can be analyzed as fol
lows. First, denote links s and s' as two distinct links reachable 
from link I. If links s and s' are two independent choice 
alternatives for vehicles traveling on link I at time t, then link- 
to-link AVI counts d(j  s ^  and d^ s, ^  follow a multinomial 
distribution, leading to the covariance of sampling errors as

b,( l , s , i )  ’ b ( l , s f , t)
oid ( 10)

If certain vehicles in link-to-link flows C(i_sd) also appear in 
flows C(i_stU), links s and s' cannot be viewed as independent 
choice alternatives for vehicles traveling on link I at time t. In 
this case, link counts ey-sj) and e^-s/j) can be partitioned into 
three mutually exclusive categories lo € fi.

ui =  1: choose only s; ui =  2: choose only s'; ui =  3: choose 
both s and s'.

The resulting covariance can be expressed in terms of vari
ance and covariance between disjoint sets.

Cov (rj(i,s,i).,rj(i,s',i))

= Y Y C o v  (t)(ijU>j1),t)(ijU/j1))

/d ,f  i \ is an unbiased estimator of

uiefiu/efi

J d -  Y Y b ( i , * , t ) b ( W , t )
(I-,1) uiefiui'efi

(ID

where b(iM,t) is the proportion of link flow from link I at time t 
heading towards category u> € fi.

A complete measurement equation of link-to-link split frac
tions can be obtained by substituting the estimates of flow 
proportion matrices from a DTA problem into (6 ).

J 2  P( l , s , t ) , ( i ,3, T ) d ( i , j , T ) 
h.j,T

and the mean and variance of the sampling error r](i.s.t) are 
H rl(u,t)) =  0  and

Var (r;( u j ) ) =  ‘ (7)
c (i , t)

where =  C(i,s,i)/C(n). Equation (7) indicates that the
variance of the sampling error fj(i,s,i) decreases as the size of 
the sample d^  ^  increases. If link volume q j j )  is observed from 
a loop detector for link I € L v a linear measurement equation 
can be obtained as

«id
c (l ,s, t) __________________
c(tt) J 2  P( l , t ) ( i , j ,T )d( i , j ,

■+C ( i ,s, t ) (12)

where C(i,s,t) refers to the combined error in estimation of link- 
to-link split fraction The combined error term C(i,s,t)
includes the following error sources:

1 ) model assumption errors related to the hypotheses on 
perfect representativeness and 1 0 0 % identification rates;

2 ) sensor errors (i.e., identification errors) related to link-to- 
link AVI count d(j  s ^  and link count d^ ^ ;

3) sampling errors T](i.s.ty,
4) aggregation errors related to time-varying OD-demand 

flows;
5) estimation errors related to link flow and link-to-link- 

flow proportions from the DTA program, which can be 
further caused by inconsistency in DTA assumptions on 
the route choice behavior, traffic-flow propagation, as 
well as input data errors related to traffic control and 
information strategies.

Because the split fractions only carry information on OD- 
demand distributions, it is necessary to combine other infor
mation sources that describe OD population demand volumes 
in order to estimate a complete OD matrix. Obviously, the 
observed traffic volume on link I during time interval t  can
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be related to the OD-demand flows using the link-flow propor
tions, corresponding to a measurement equation based on link 
counts

t )(i . j .r' . ■ d t ( 13)

If a static OD-demand matrix is available from existing 
survey data or other planning applications, the formulation 
proposed by Zhou et al. [9] can be adopted here to consider the 
deviation between the static demand and the sum of dynamic 
demand over the study period as

(14)

In addition, OD-demand flows should satisfy nonnegativity 
constraints

d t Vi, j ,  t . ( 15)

If values of split fractions are considerably small and the 
number of observations in the AVI point sample is large, 
the binomial probabilities can be approximated by a Pois
son distribution. If the AVI point sample size is sufficiently 
large with a moderate value of the split fraction, error terms 
C(i.s.t) can be assumed to follow a normal distribution with 
zero mean according to the central limit theorem. The bilevel 
dynamic OD-estimation framework developed by Tavana and 
Mahmassani [5] and Zhou et al. [9] can be adopted here to 
minimize the combined deviations with respect to link counts, 
historical static demand, and AVI split fractions, subject to the 
(definitional) DTA constraint and nonnegativity constraints for 
demand variables.

minx'  [Z i(D , C)  +  Z 2 (D, G ) +  Z 3 (D, C iA) 

s.t. P  =  assignment [D] from DTA

d t > 0  Vi, j , r

(16)

(17)

( 18)

where

Z i(D ,  C)

=  u»i ^
l&L\c .t

Z 2 ( D ,G )
l . J . T

■ tt>2E ■J-Tj

v  ( r\ /~ncMZ/3 ĵL/, L.' j

: t t >3

✓»id
I b i )
r>id

l . J . T

c(it) P(l , t ) ( i
l . J . T

IV. R e p r e s e n t a t i v e n e s s  B i a s e s  a n d

IDENTIFICATION ERRORS

The two idealized assumptions in the above analysis, that 
is, 1 0 0 % identification rates and perfect representativeness of 
AVI samples, could be difficult to satisfy in many applications. 
First, recognition rates vary significantly among different AVI 
technologies. Active tags, especially used for toll collection 
purposes, can provide a satisfactory > 99% identification rate, 
but license plates and passive tags typically have relatively 
low identification rates ranging from 50% to 80%. On the 
other hand, the AVI sample data might not be a perfectly 
representative image of the underlying population. For instance, 
tag users and nontag users might belong to different socio
economic groups with heterogeneous preferences in terms of 
the value of time, especially when tag users could experience 
less congestion on dedicated lanes in a toll plaza by paying 
one-time charges or monthly fees for transponder tags. If an 
electronic toll collection system exists on commuters’ daily 
routes, network users are more likely to purchase and use 
AVI transponders to avoid congestion, as opposed to net
work users who rarely use toll roads. The representativeness 
of AVI data, essentially, should be verified on a case-by- 
case basis. This section presents two formulations intended 
to recognize departures from the above assumptions. The first 
formulation presents a general and flexible framework for 
incorporating such deviations when additional information is 
available, while the second formulation considers a situation 
with limited information.

A. Joint Estimation o f  OD-Demand Volume and 
Fixed-Effect Parameters

Under low identification rates, observed split fractions 
could be considerably smaller than true split fractions of 
tagged vehicles. The effect of representativeness biases of AVI 
samples, on the other hand, could cause observed split fractions 
to either overstate or understate the population split fractions. 
When these two assumptions for the ordinary least-squares 
formulation are not attainable, there is a great need to establish 
a flexible estimation framework that can accommodate possible 
departure from the idealized conditions. A natural approach is 
to establish a joint estimation model as the following:

( 19)

(20)

where

rid
J (l .s. t)

rid
( l . s . t )

J(l._s._t)

J( l . s . t )a (l.s)

,.id

•C(i s . i ) (22)

' ' ( l . s. t )
n id
C ( U )

i-J-.T

S  P(l , t ) ( i , j ,T ',
l . J . T

d t

(21)

and u>i, u>2 , and W3 are positive weights associated with, re
spectively, the deviations with respect to link counts, historical 
static demand, and observed split fractions.

and a fixed-effect parameter «(|.S) is introduced to take into 
account the systematic impact due to representativeness biases 
and low identification rates in estimating link-to-link split 
fractions. The validity of the two idealized assumptions can
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Fig. 2. Conceptual view of distribution of observed split fractions.

be measured using the following statistical procedure. A full 
estimation model incorporates a fixed-effect parameter for each 
possible link pair (Z,s) explicitly, leading to a new objective 
function that jointly estimates the unknown OD-demand and 
fixed-effect parameters

Z 3 ( D , C [d) = w 3 £  E
ItzL-vi SG-Ẑvi

(23)

: a(i,s) =  1 

H i  : a (()S) ^  1

Z 3 ( D , C id) =  E E |w
lEiL-vijt StzL-v

Lid

total AVI counts for the entire planning horizon are available 
(e.g., in the context of static OD estimation), then fixed-effect 
parameters, which are designed to deal with time-series data, 
would not be appropriate for inclusion in the estimation model.

B. One-Sided Linear-Penalty Models Using 
Imprecise Knowledge

In many instances, the traffic planner knows the likely range 
of fixed-effect parameters but with little information about the 
exact values of representativeness and identification errors. For 
instance, license plate sample data have perfect representa
tiveness but low identification rates, meaning that «(z,s) < 1 
for sure. In an AVI system where passive tags are offered 
to the public at no charge, both representativeness errors and 
identification errors can coexist but the impact of low identi
fication rates is more likely to be dominating, also implying 
that E (a ( i iS)) < 1. In these two cases, it is desirable to design 
a population OD-demand estimator that can utilize the above 
imprecise knowledge from the planner. A simple one-sided 
penalty formulation, that is

The null hypothesis (Ho) states that the systematic deviation 
is zero, corresponding to a reduced model with fixed-effect 
parameters of 1. The alternative hypothesis (H i)  states that 
the systematic deviation is nonzero, corresponding to the full 
model. A standard F-statistic test can be applied in this context.

Z 3 ( D , C id) =
l e L vi,t sgLv

Lid (27)

(24)

(25)

The probability density function of observed split frac
tions for link pair (Z, 5 ) could be plotted in Fig. 2, in which 
b(i,s,t)a (i,s) is the center of the distribution. Alternatively, we 
can consider a two-sided penalty function to minimize the 
positive and negative deviations from observed AVI point-to- 
point split fractions.

(26)

where and are penalty terms for positive and negative 
deviations, respectively. This objective function can be viewed 
as an adaptation of a goal programming approach, which as
signs priority factors for overestimation and underestimation 
from the specified goals. The two-sided weights can be in 
turn interpreted as the relative confidence and preference of a 
decision maker on the possible sign of systematic deviations 
due to representativeness and identification errors.

The inclusion of the fixed-effect parameters considerably 
complicates the model structures, and the existence of numer
ous error sources, such as assignment modeling errors and tem
poral fluctuation of demand flows, might lead to inconclusive 
estimates for qj(zjS) with large variance. Additionally, if only

is proposed to accomplish this task. Instead of penalizing 
all positive and negative deviations with respect to uncertain 
b(i,s,t)a (i,s)’ this estimator only penalizes positive residuals 
between observed split fractions and estimated split fractions 
(shown in the shaded region in Fig. 2). In other words, estimated 
split fractions are penalized only if they are less than the 
corresponding observed split fractions.

It is easy to see that negative deviations between observed 
split fractions and estimated split fractions can be caused by 
either demand estimation errors or low identification rates of 
vehicle identification tags. Compared to the two-sided formu
lation (26), the simplified one-sided formulation (27) utilizes 
less information from AVI counts. However, by omitting neg
ative deviations and using instead of fr(z,s,t)ce(z,s) in 
the deviation function, this new objective function is able to 
eliminate the need for the planner to exactly estimate unknown 
representativeness errors and identification rates (i.e., fixed- 
effect parameters ay^))-  It should be noticed that, as fixed- 
effect parameters ce(z,s) become smaller, the difference between 
b(i,s,t)a (i,s) and fr(z,s,t) becomes larger, and consequently resid
uals of [by st) ~  b{i,s,t)} are less likely to be positive. That is 
to say, the larger representativeness errors or/and identification 
errors, the less information could be extracted from AVI counts 
using this one-sided formulation.

As part of multiobjective demand estimation, the value of 
still needs to be jointly determined by considering the 

relative confidence placed on link counts and historical demand 
information. For fixed values of w\  and W2 , a larger w 3" means 
that the decision maker has more confidence in the quality of 
AVI data, and vice versa. Compared to the least-squares form, 
another advantage of the linear-penalty function form is that it 
is much “smoother” with respect to outlying observations, in
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the sense that large deviations cannot substantially impair the 
estimation performance.

V. B i l e v e l  E s t i m a t i o n  A l g o r i t h m s  a n d  
I d e n t i f i c a t i o n  C o n d i t i o n s

The proposed bilevel programming problem can be solved 
by an iterative solution algorithm, extended from the solution 
framework in [5], [6 ], and [9],

Step 1) (Initialization) k =  1. Start from an initial guess of 
the traffic demand matrix, obtain flow proposition 
matrix P 1 from the DTA simulator.

Step 2) (Optimization) Substitute flow proportion matrix P k 
to solve the upper level estimation problem.

Step 3) (Simulation) Use estimated demand D k to run the 
DTA simulator so as to generate new flow propor
tions P k+1.

Step 4) (Evaluation) Calculate the deviation between simu
lated link flows and observed link counts, the de
viation between estimated demand D k and target 
demand G , as well as the deviation between esti
mated link-to-link split fractions and observed link- 
to-link split fractions.

Step 5) (Convergence test) If the convergence criterion is 
satisfied (estimated demand is stable or no signifi
cant improvement in the overall sum of deviations), 
stop; otherwise k = k  +  1 and go to Step 2).

The multiobjective optimization techniques presented by 
Zhou et al. [9] can be applied here to determine the weights in 
the upper level objective function. Standard nonlinear optimiza
tion algorithms, such as the projected gradient algorithm, can be 
applied to solve the proposed nonlinear estimation problem. To 
further construct a computationally feasible algorithm for the 
upper level estimation problem, one can linearize the nonlinear 
function of split fraction &(/.,,.() based on a first-order Taylor 
series approximation around previous estimate of D k~l at 
iteration k — 1 .

The proposed dynamic OD-demand-estimation problem has 
\I\ x  | J\ x  T ti unknown demand variables. Loop detectors can 
provide at most \ L\V\ x  T„ independent link volume measure
ments, and prior information on static OD demand can be 
viewed as \I\ x  |J | observations on the unknown dynamic 
OD-demand matrix. Additionally, AVI data provide at most 
\LV{\ x  \ L V{\ x  T„ link-to-link tagged vehicle counts, which 
dramatically alleviate the underspecification problem of OD 
estimation. To identify a unique solution for the dynamic 
OD-estimation problem, the number of independent observa
tions should be greater than the number of unknown demand 
variables, leading to a necessary condition for uniquely esti
mating a dynamic OD-demand matrix as

\Lu-\ x  T„ +  \I\ x  |J | +  \Lvi\ x  \Lvi\ x  Tn > \I\ x  |J | x  Tci.
(28)

It should be noted that AVI data only provide OD-demand 
distribution information, so OD-demand volume information 
from loop counts and historical OD tables must be added to 
identify a unique solution. Several factors, moreover, could

Fig. 3. Irvine simplified network.

significantly decrease the number of independent observations 
in an actual AVI data set. First, many OD flows might not be 
captured by any AVI readers in a general network with partial 
coverage of AVI detectors. In addition, time-dependent point- 
to-point AVI measures from two adjacent readers can be highly 
correlated, and consequently produce limited information on 
OD-demand distributions.

VI. N u m e r i c a l  E x p e r i m e n t s

A. Experiment Design

This section is intended to evaluate the performance of the 
proposed dynamic OD-demand-estimation models under differ
ent levels of market-penetration rates, identification rates, and 
AVI detector coverage. The experiments are conducted based 
on a simplified Irvine test bed network, as shown in Fig. 3, 
which includes 16 OD zones, 31 nodes, and 80 directed links 
(32 freeway links and 48 arterial links). The time of interest is 
the morning peak period (6:30 A .M .-8:30 A .M .).

Actual traffic link counts are measured on 16 links; at 30-s 
interval on ten freeway links, and at 5-min interval on six 
arterial links, but no real-world AVI traffic measurements are 
currently available in this data set. In order to capture a realistic 
OD-demand pattern for the underlying city network, this study 
first uses actual link counts and a historical static demand table 
to estimate the OD traffic demand matrix, and then uses the 
estimated matrix as the “true” OD demand in the following 
experiments. The “true” OD demand is loaded onto the network 
using a DTA simulation program (i.e., DYNASMART-P) to 
generate both link counts and point-to-point counts as the 
“ground-truth” observations in the synthetic data set. The DTA 
simulator is also used to provide link-flow proportions and 
link-to-link-flow proportions to the OD-estimation program. 
Note that, to ensure the internal consistency between link- 
flow measurements and point-to-point flow measurements, this 
study uses simulated link counts as estimation input, instead 
of the actual link-flow observations from the field data. In
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addition, stochastic disturbances that follow an independent 
normal distribution with zero mean are added into simulated 
link counts so as to emulate the effect of measurement errors, 
and the standard deviation of random errors is set to 1 0 % 
of the corresponding simulated link volume. AVI readers are 
assumed to cover all the entry/exit links of each OD-demand 
zone, indicating that OD AVI counts are available for each OD 
pair. In addition, both departure time interval in the dynamic 
OD-demand matrix and the AVI observation time interval are 
set to 5 min. Essentially, the lower level DTA problem can 
be viewed as a nonlinear constraint, and the proposed bilevel 
OD-demand framework could lead to multiple locally optimal 
solutions. As a result, the final estimation quality is sensitive to 
initial OD-demand values. If the initial guess is very close to 
the assumed actual OD flows, the estimation process is more 
likely to recover the true demand pattern with less iteration. On 
the other hand, if the initial demand values dramatically deviate 
from the ground truth demand flows, the iterative solution 
algorithm might converge to other locally optimal solutions. For 
each experiment in this study, the initial demand is assumed to 
be 50% of the assumed actual values. The OD pair from zone 
16 to zone 4 has the largest demand volume with an average of 
560 vehicles for every 5-min time interval, and demand flows 
for most of OD pairs range from 0 to 200 vehicles (per 5-min 
interval).

To quantify the accuracy of estimation results, the root mean 
squared error (RMSE) is used as a performance measure

RMSE =
Yl t)

Td x \I\ x \J\
(29)

where j  =  “true” demand volume for OD pair ( i , j )  dur
ing departure interval r , and d(ij ,T) =  estimated demand 
volume during departure interval r . Each reported value in the 
following experiments represents the mean of RMSE from five 
random replications.

B. Effect o f  Market-Penetration Levels o f  AVI Tags

To test the proposed nonlinear ordinary least-squares model 
without fixed-effect parameters, as shown in (2 1 ), identification 
rates in the first set of experiments are assumed to be 1 0 0 %, 
and the following two scenarios are evaluated. 1) All OD pairs 
have exactly the same market-penetration rate. 2) The market- 
penetration rates are assumed to follow an independent uniform 
distribution with a range [0.75 /?, 1.25 /?] among different OD 
pairs at different departure times, where (3 is the mean market- 
penetration rate for all OD pairs.

Fig. 4 shows the change of the solution quality in response 
to increasing market-penetration rates. When the market- 
penetration rate is zero, OD demand is estimated only using 
dynamic link-count data, corresponding to a do-nothing case. 
At a market-penetration rate of 1%, the additional AVI infor
mation does not generate significant error reductions compared 
to the do-nothing case under both penetration scenarios, which 
can be explained by the fact that the number of tagged vehi
cles observed during each observation time interval at such a

Fig. 4. Dynamic OD estimation as a function of different market-penetration 
rates.

low market-penetration level is still too small to provide reli
able samples for point-to-point split fractions. When average 
market-penetration rates are higher than 2.5%, both constant 
and random market-penetration schemes can produce consider
able error reductions. It is noticeable that, when the market- 
penetration rate reaches 5%, the proposed model produces 
nearly 2 0 % error reductions even under random tag penetration. 
The quality improvement in terms of RMSE further rises to 
around 40% at a 10% market-penetration rate, and marginal 
error reductions become relatively smaller beyond this market- 
penetration level. As expected, the random market-penetration 
scenario leads to a less perfectly representative sample data 
set, so the resulting estimation errors are relatively larger than 
those of the constant market-penetration scenario. However, the 
experiment results clearly demonstrate that, even under the ran
dom market-penetration scheme, the proposed OD-estimation 
model can still effectively utilize AVI information to enhance 
the observability of the dynamic OD-estimation problem, as 
long as the average market-penetration rates are sufficiently 
high enough to provide reliable samples for point-to-point split 
fractions.

C. Effect o f  Identification Rates

In the next set of experiments, the market-penetration rates 
are assumed to follow an independent uniform distribution 
with a range [7.5%, 12.5%] and the identification rates of AVI 
readers are assumed to follow a random uniform distribution 
with mean 7  and a range [ 7  — 0 .1 , 7  +  0 .1 ].

Table I summarizes the estimation errors and the corre
sponding percentage improvements compared with the do- 
nothing case (without AVI information) for the joint estimation 
model with fixed-effect parameters, as shown in (23), and 
the one-sided positive penalty formulation, as shown in (27). 
The experimental results show that the joint estimation model 
only produces a marginal performance improvement by using 
AVI information. The difficulty in applying this model can 
be attributed to two factors due to the inclusion of the fixed- 
effect parameters: the increase in the number of unknown vari
ables and the resulting high nonlinearity in the multiplicative 
model structure. In contrast, even under a medium level of
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TABLE I
P e r f o r m a n c e  o f  O D -E s t im a t io n  M o d e l s  in  t h e  P r e s e n c e  o f  

Id e n t if ic a t io n  E r r o r s

Identification
Rates

0 . 8

1.0
0.7
0.9

0 . 6

0.8
0.5
0.7

0.4
0.6

Joint RMSE 21.5 22.0 22.8 23.73 23.65
Estimation
Model

9.4% 7.6% 4.2% 0.2% 0.5%%
Improve
ment

One-Sided RMSE 18.12 19.17 20.84 22.22 23.02
Penalty
Model

%
Improve
ment

23.7% 19.4% 12.4% 6.5% 3.2%

identification rates [0.7, 0.9], the estimator with the one-sided 
linear-penalty form is still able to reduce error by nearly 2 0 %, 
revealing that this parsimonious structure is quite robust to 
the imperfect observations. As identification rates decrease, 
the observed values of split fractions are considerably smaller 
than the corresponding true split fractions of tagged vehicles, 
and the estimated OD demand is less likely to be restricted 
by the one-sided penalty function. As a result, the relative 
value of AVI data tends to be insignificant and estimation 
errors from the one-sided model become larger. The one-sided 
linear-penalty formulation, in general, presents a tractable and 
intuitive approach for incorporating partially observed point-to- 
point sensor data with considerable identification errors.

D. AVI Detector Coverage

The above experiments use a complete AVI coverage 
scheme, which requires extensive detector installation and 
maintenance efforts for a general traffic network. Clearly, it is 
more desirable to maintain the estimation quality while mini
mizing the total number of AVI detectors in the network. A set 
of experiments is conducted below to reveal possible relations 
between the estimation quality and the percentage of covered 
OD-demand flows by the AVI readers. Sixteen detector-location 
schemes are randomly generated with identification rates 
of 1 0 0 % and uniformly distributed market-penetration rates 
between [7.5%, 12.5%].

As indicated in Fig. 5, the estimation errors decrease with 
the increasing AVI coverage of OD-demand flows. The strong 
correlation between these two attributes suggests a basis for op
timizing AVI detector locations for the estimation of population 
OD-demand flows, that is, it is advantageous to first cover the 
OD pairs with large demand flows.

The following experiments represent a preliminary attempt to 
optimize the AVI location for OD-demand-estimation purposes. 
Recognizing that the Irvine test bed network in the study has 
an obvious triangular structure, where the OD-demand flows 
among zones 1, 4, and 16 account for 36.4% of the total OD- 
trip desires, we first locate AVI detectors on the entry/exit links 
for these critical OD zones on the boundary. Next, zone 12 
is equipped with AVI detectors to maximize the coverage on 
the remaining untracked OD flows in the network. In the same

Fig. 5. Relationships between estimation performance and AVI detector 
coverage.

TABLE II
E s t i m a t i o n  P e r f o r m a n c e  U n d e r  D i f f e r e n t  

AVI L o c a t i o n  S c h e m e s

# of Zones 
Covered

3 4 5 6 7 16

Zones
Covered

1,4,16 +12 +13 +15 +5 All

% Demand
Coverage

36.4% 47.3% 52.5% 61.4% 73.1% 100%

RMSE 20.90 19.12 18.41 16.81 16.65 14.78
%
Improvement

12.1% 19.6% 22.6% 29.3% 30.0% 37.9%

Fig. 6. Estimation errors as a function of the number of zones covered by AVI 
detectors.

way, zones 13, 15, 5, 2, and 11 are sequentially added into the 
coverage plan, and the corresponding OD-demand estimation 
errors at each step are reported in Table II. The estimation 
error reduction as a function of the number of zones covered 
is further plotted in Fig. 6 . Compared to the do-nothing case, 
nearly 30% error reduction is obtained by locating the AVI 
detectors to cover the six major zones, which capture 61.4% 
of the total OD flows in the study network. For the remaining 
OD zones carrying a lesser amount of significant amount of 
trip flows, only small marginal estimation error reductions 
could be obtained. According to this preliminary study, locating 
AVI detectors on major OD-demand zones with large traffic 
attraction/production can capture the essential OD distribution 
pattern in the network, and consequently improve the quality of 
OD estimates.
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Growing use of AVI technologies provides valuable point- 
to-point flow observations for estimating dynamic OD-trip de
sires. This paper has presented a novel OD-demand-estimation 
approach to effectively exploit OD-demand distribution infor
mation from AVI counts. A nonlinear ordinary least-squares 
model combines AVI counts with other available information 
sources into a multiobjective optimization framework. A joint 
estimation formulation with fixed-effect parameters and a one
sided linear-penalty formulation is further developed to deal 
with the possible identification and representativeness errors. 
The resulting models are solved using an iterative bilevel 
estimation framework. Based on a synthetic data set using 
the simplified Irvine test bed network, this study evaluates 
the performance of new estimation models and provides the 
following key findings.

1) Sufficient market penetration is required to obtain reliable 
information from AVI counts.

2) In the presence of identification errors, a parsimo
nious structure accounting for imprecise information can 
provide more robust estimates than a complex joint esti
mation model.

3) It is advantageous to locate AVI detectors on major 
OD-demand zones with large traffic attraction/production 
so as to capture the essential OD distribution pattern in 
the network.

This research has investigated possible benefits of AVI data 
for off-line OD-estimation applications through experimental 
control using synthetic data. The real-world AVI data, of 
course, are expected to provide valuable insight on the actual 
performance of alternative estimation models. Online DTA 
applications also call for further development of efficient and 
effective real-time demand estimation and prediction models 
and algorithms using point-to-point AVI data.
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