
ARTIST-GUIDED PHYSICS-BASED

ANIMATION

by

Benjamin J. Jones

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

August 2015

Copyright © Benjamin J. Jones 2015

All Rights Reserved

The U n i v e r s i t y o f Ut ah G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Benjamin J. Jones

has been approved by the following supervisory committee members:

Adam Wade Bargteil

Robert Michael Kirby II

Cem Yuksel

Ladislav Kavan

Nils Thuerey

Chair

Member

Member

Member

Member

3/20/15
Date Approved

3/20/15
Date Approved

3/20/15
Date Approved

4/14/15
Date Approved

4/7/15
Date Approved

and by

the School of

Ross T. Whitaker Chair/Dean of

Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Physics-based animation has proven to be a powerful tool for creating compelling ani­

mations for film and games. Most techniques in graphics are based on methods developed

for predictive simulation for engineering applications; however, the goals for graphics ap­

plications are dramatically different than the goals of engineering applications. As a result,

most physics-based animation tools are difficult for artists to work with, providing little

direct control over simulation results. In this thesis, we describe tools for physics-based

animation designed with artist needs and expertise in mind.

Most materials can be modeled as elastoplastic: they recover from small deformations,

but large deformations permanently alter their rest shape. Unfortunately, large plas­

tic deformations, common in graphical applications, cause simulation instabilities if not

addressed. Most elastoplastic simulation techniques in graphics rely on a finite-element

approach where objects are discretized into a tetrahedral mesh. Using these approaches,

maintaining simulation stability during large plastic flows requires remeshing, a complex

and computationally expensive process. We introduce a new point-based approach that

does not rely on an explicit mesh and avoids the expense of remeshing. Our approach

produces comparable results with much lower implementation complexity. Points are a

ubiquitous primitive for many effects, so our approach also integrates well with existing

artist pipelines.

Next, we introduce a new technique for animating stylized images which we call Dynamic

Sprites. Artists can use our tool to create digital assets that interact in a natural, but styl­

ized, way in virtual environments. In order to support the types of nonphysical, exaggerated

motions often desired by artists, our approach relies on a heavily modified deformable body

simulator, equipped with a set of new intuitive controls and an example-based deformation

model. Our approach allows artists to specify how the shape of the object should change

as it moves and collides in interactive virtual environments.

Finally, we introduce a new technique for animating destructive scenes. Our approach

is built on the insight that the most important visual aspects of destruction are plastic

deformation and fracture. Like with Dynamic Sprites, we use an example-based model

of deformation for intuitive artist control. Our simulator treats objects as rigid when

computing dynamics but allows them to deform plastically and fracture in between timesteps

based on interactions with the other objects. We demonstrate tha t our approach can

efficiently animate the types of destructive scenes common in film and games.

These animation techniques are designed to exploit artist expertise to ease creation

of complex animations. By using artist-friendly primitives and allowing artists to provide

characteristic deformations as input, our techniques enable artists to create more compelling

animations, more easily.

iv

CONTENTS

A B S T R A C T .. iii

L IST O F F IG U R E S .. vii

L IST O F T A B L E S .. ix

A C K N O W L E D G M E N T S .. x

C H A P T E R S

1......IN T R O D U C T IO N ... 1

1.1 Thesis S tatem ent... 3

2. R E L A T E D W O R K ... 4

2.1 E lastic ity ... 4
2.2 P las tic ity ... 6
2.3 F rac tu re ... 7
2.4 Example-Based D eform ation.. 8

3. D E F O R M A T IO N E M B E D D IN G F O R P O IN T -B A S E D
E L A S T O P L A S T IC S IM U L A T IO N .. 10
3.1 Introduction .. 10
3.2 Method ... 11

3.2.1 Notation .. 12
3.2.2 Approximating Deformation ... 12
3.2.3 Elastoplastic Model ... 13
3.2.4 Embedding Deformation .. 14
3.2.5 Updating Neighborhoods .. 16
3.2.6 Particle Resampling ... 17
3.2.7 Implementation Details .. 18

3.3 Results and Discussion ... 18
3.3.1 Limitations and Future W o rk ... 19

4. D Y N A M IC S P R IT E S : A R T IS T IC A U T H O R IN G O F
IN T E R A C T IV E A N IM A T IO N S 28
4.1 Introduction .. 28
4.2 Method ... 30

4.2.1 Authoring Phase .. 30
4.2.2 Example-based Simulation ... 30

4.3 Results .. 37
4.4 Conclusion ... 39

5. E X A M P L E -B A S E D P L A S T IC D E F O R M A T IO N O F R IG ID B O D IE S 48
5.1 Introduction48
5.2 M e th o d49

5.2.1 S k in n in g ...50
5.2.2 Impulse-based Deformation... ...51
5.2.3 Dynamics ...54
5.2.4 F racture.. ...54

5.3 Authoring Simulation Assets55
5.4 Results and Discussion ...56

5.4.1 Performance ..57
5.4.2 Limitations and Future Work ..57

6. C O N C L U S IO N64
6.1 Future Directions ..65

R E F E R E N C E S 67

vi

LIST OF FIGURES

3.1 From the initial configuration (a), each particle’s neighborhood undergoes
plastic deformation, resulting in a new rest space configuration (b). However,
the red and blue particles disagree about where their shared neighbors should
be. Performing a least squares global fit, we obtain the embedded space
configuration (c), which is used to update particle neighborhoods. Each
particle’s deformation gradient maps from its own rest space to the current
world space configuration (d).. 21

3.2 Comparison between our linear embedding (left) and nonlinear embedding
(right) for a twisted plastic bar. The world space behavior (blue) is nearly
identical, even though the linear embedding captures very little rotation.
Though small, changes in the linear embedding did cause neighborhoods to
change in this example... 21

3.3 We cancel splits tha t are likely to cause popping artifacts near the object surface. 22

3.4 A plastic bar is dropped onto the ground. W ithout neighborhood updates
(center left), the simulation becomes unstable after the object is significantly
flattened. Our embedding allows neighborhood updates which improve stabil­
ity (center right), but this also becomes unstable. Adding resampling (right)
preserves stability through the entire scene.. 23

3.5 A bar is twisted and sheared (left), then released. The final world space
configurations for (clockwise from top, left) elastic, slightly plastic, highly
plastic, and varying plasticity materials. For the nonuniform bar, the plastic
flowrate varies from high(red) to low(blue) along the bar....................................... 23

3.6 World space (above) and embedded space (below) of bunny dropped on a rigid
bar... 24

3.7 A bunny is dropped on a set of spheres. Clockwise from top left: Initial
configuration, world (skinned), world(particles), and embedded spaces after
impact. .. 25

3.8 A plastic block with dramatically different sampling densities flows when
dropped.. 25

3.9 An “upset fowl” destroys a pig’s house.. 26

3.10 Estimated total volume computed using our new approach, SPH, and the
skinned embedded space mesh for Figure 3.4... 26

4.1 Traditional sprite sheets capture all the poses a character or object can assume
in a game. (Example from “Age of Umpires” ; http://hockey.spacebar.org/.
Copyright Tom Murphy VII, used with permission.)... 41

4.2 The rig used to generate poses of the cartoon ball. The yellow dots are control
handles... 41

http://hockey.spacebar.org/

4.3 The example poses and the simplicial complex used to create a stylized bounc­
ing ball... 42

4.4 Three stylized behaviors generated by our system.. 43

4.5 These dynamic sprites platforms cover a broad range of behaviors...................... 43

4.6 The user places the catapult and springy platform to help the ball reach the
goal... 44

4.7 From left to right: Shape matching only, shape matching with examples, 3
different dynamic sprites... 44

4.8 W ith 3 example poses and their reflections, a simple manifold, and a finite
state machine, our system generates a lively, stylized walking behavior............. 45

4.9 A simple state machine transitions between behaviors based on user input,
the ragdoll’s sta te .. 46

4.10 Our ragdoll uses a bouncy I-beam like a trampoline to gain enough sideways
momentum to float over a pit of balls.. 46

5.1 Overview of the authoring and simulation process... 59

5.2 Overview of the deformation process.. 59

5.3 A fracture plane creates two new pieces. The surface triangles of the cut
tetrahedra are clipped against the cutting plane. Constraints are created
between the two pieces at shared vertices... 59

5.4 The kernel radius, y , controls how far deformations propagate. Smaller values
generate denting behavior, while larger values result in deformations that more
closely match the example poses... 60

5.5 A reckless driver crashes his car into a stack of barrels. An artist provided
example deformations of the barrel (left). At runtime, our simulator maps col­
lision impulses to deformations that match the style of the provided examples
while remaining physically plausible... 60

5.6 Colors represent the matrix, E, showing how the example weights vary over
the objects. White vertices are undeformed; red and green correspond to the
two input examples... 61

5.7 A bridge collapses as shipping containers fall onto it ... 62

5.8 A small fleet of spaceships crashes into an enemy vessel... 63

viii

LIST OF TABLES

3.1 Timing results for pictured examples. Time is given in seconds to produce one
30 Hz frame of animation.. ...27

3.2 Timing detail for Figure 3.4 ..27

4.1 Timing results for selected examples (ms per 60Hz frame)..47

ACKNOWLEDGMENTS

The work in this dissertation would not have been possible without the guidance of my

advisor, Adam Bargteil. He helped me gain the technical expertise needed to perform graph­

ics research, but more importantly, he taught me the soft skills I needed to communicate

my ideas clearly and effectively with the research community.

I ’m also very grateful to my collaborators: Stephen Ward, Ashok Jallepalli, Joseph

Perenia, and Alex Stuart at Utah; Jovan Popovic, Jim McCann, and Wilmot Li from

Adobe; Nils Thuerey from TU Munich; Tamar Shinar from UC Riverside; and Josh Levine

from Clemson. The ideas, insights, guidance, and even code you provided made our projects

successful.

Thank you to my committee, Adam Bargteil, Mike Kirby, Cem Yuksel, Ladislav Kavan,

and Nils Thuerey, for keeping me on track and focused. You have all provided me with

great advice and ideas that helped shape the work in my dissertation.

Finally, I ’d like to thank my friends and family who kept my spirits up in the face of

paper deadlines, negative reviews, and grad school-induced exhaustion.

CHAPTER 1

INTRODUCTION

Physics-based animation has become a ubiquitous tool for creating realistic depictions of

natural (and sometimes unnatural) phenomena in film and games. These approaches solve

the equations of motion, discovered by physicists and engineers for a variety of materials,

to compute lifelike motion. Using computers to simulate physics is not a new idea: some

of the earliest uses of computers were to compute bullet trajectories to create firing tables.

Since then, engineers have used simulation to aid design and predict failures before building

expensive physical prototypes. In the 1980s, graphics researchers began to use simulation as

a tool for animation, adapting the tools and techniques developed by engineers and scientific

computing researchers for a new application. This approach was remarkably successful as

evidenced by the pervasive, high-quality effects in movies and video games today.

Though popular, physics-based animation is very challenging for artists to use effectively

since it removes the direct control artists rely on for most other aspects of animation - mod­

eling, key-framing, or manipulating animation curves. A typical workflow for artists using

simulation techniques is a costly and time-consuming simulate, tweak, repeat cycle. Artists

adjust initial conditions and material properties, such as density or stiffness, then rerun

the simulation, hopefully achieving an animation closer to the desired result. Large-scale

simulations are slow to run, and it is difficult to predict the result of changing simulation

parameters since they are interconnected in complex, nonlinear ways.

Most research about physics-based animation is focused on simulating more phenomena,

more accurately, and more efficiently. Many of these works focus on issues important to

engineers and numericists, such as rate of convergence or discretization error. For graphics

applications, however, our goal is to create compelling animations: simulation can be a

useful tool, but the end goal is to aid animators, not to predict physical phenomena. In

particular, artistic control is a more important design criterion for graphics applications

than physical accuracy. Inspired by this philosophy, in this dissertation, we describe tech­

niques for artist-guided physics-based simulation. Specifically we created new techniques for

animating deformable solids tha t allow artists more direct control over simulation results

2

than existing approaches. Our methods can be used to animate elastoplastic materials,

create stylized animated sprites, and animate deforming, near-rigid objects.

Our first contribution is a new approach for animating elastoplastic materials. Most ma­

terials can be modeled as elastoplastic, deforming elastically up to a limit, then undergoing

permanent plastic deformation if internal stresses are too great. In order to compute elastic

forces, we require a surjective map from the object’s rest shape to its current configuration,

i.e. no two distinct points in the current configuration can map to the same point in

the rest configuration. Since plastic deformation changes the rest shape of the object,

this mapping may become degenerate, causing simulation instability. In order to ensure

stability, plastic deformation must either be limited, or the rest shape discretization must

be modified after large plastic flows. Most existing methods use a finite-element-based

approach using a tetrahedral mesh discretization and require complex, computationally ex­

pensive volumetric remeshing operations to maintain stability. We introduce a point-based

approach to animating elastoplastic materials tha t avoids the need for remeshing, only

requiring nearest-neighbors queries. As an added benefit, artists frequently work with point

primitives, for example in particle systems, so they can leverage their tools and experience

to postprocess simulation results.

Our second contribution is the method for creating stylized, animated artistic assets

tha t we call Dynamic Sprites. While powerful tools exist for creating stylized static images,

animating such images is a challenging problem. Stylized object behaviors are often non­

physical, so traditional simulation techniques are unable to produce satisfactory results. Our

approach allows artists to intuitively describe object behaviors using example deformations.

These objects exhibit stylized motions when placed in an interactive environment. We intro­

duce a set of controls that allow artists flexibility with respect to the laws of physics, while

using physics to naturally handle collision response and timing. The resulting animations

have exaggerated motion tha t matches the stylized static images provided as input.

Finally, we introduce a new artist-guided technique for animating destructive scenes

containing near-rigid objects. For these scenes, the most important visual features are

plastic deformation and fracture. State-of-the-art methods either animate objects using

finite-element-based elastoplastic simulation techniques, with all the challenges described

above, or model them as purely rigid and do not support plastic deformation. Elastic

vibrations are mostly imperceptible, so spending computational resources to simulate them

is a waste of effort, but we still want to capture plastic deformation. We introduce an

example-based model for plasticity while computing dynamics and fracture using existing

3

rigid-body techniques. Artists provide example deformations and fracture patterns while

authoring a scene. At runtime, we simulate objects as rigid bodies and deform and frac­

ture objects based on the impulses computed by the rigid body simulator. The resulting

animations contain physically plausible deformations tha t match the style of the provided

examples.

1.1 Thesis Statement
Physics-based animation is a tool for artists, so simulation methods must be designed

to address the needs and challenges of artists. This approach requires rethinking design

decisions and tradeoffs made for engineering applications such as choice of discretization

primitive, and developing new material models tha t provide flexible artistic control.

CHAPTER 2

RELATED WORK

Since the 1980s, researchers have developed techniques to animate a huge variety of

materials, including rigid bodies, deformable bodies, gasses, and liquids. Since the methods

described in this thesis are focused on deformable solids, our survey of related work will

also be concentrated on those phenomena.

2.1 Elasticity
The use of simulation to animate elastic materials dates back to Terzopoulos and

colleagues in the late 1980s [Terzopoulos et al. 1987]. Their work was the first to solve

the partial differential equations resulting from continuum mechanics to compute motion of

deformable objects. Most modern approaches are based on the finite-element discretization

described by O’Brien and Hodgins [1999]. O’Brien and Hodgins used a quadratic strain

measure in their approach that is invariant to rotations, but is less stable and more expensive

than a linear strain measure. Muller and colleagues introduced stiffness warping, which

permits the use of a linear strain measure while avoiding linearization artifacts, even in

the presence of rotational deformation [MUller et al. 2002; MUller and Gross 2004]. Irving

and colleagues introduced invertible finite elements, a method stable even in the presence

of extreme deformations [Irving et al. 2004]. Successful production systems have been

developed using these techniques for both real-time [Parker and O’Brien 2009] and offline

applications [Cole 2011].

A variety of meshless methods have been developed for animating elasticity. The

conceptually most simple approach is to connect point masses with springs (e.g. [Baraff

and W itkin 1998; Liu et al. 2013]). However, these approaches are not based on continuum

mechanics and typically do not converge under refinement; forces depend on mesh topology

and spring stiffnesses rather than elastic parameters such as Young’s modulus or Poisson’s

ratio. MUller and colleagues [2004] developed a point-based approach using a moving least

squares approximation of the deformation gradient and is based on continuum mechanics.

Deformation is estimated by animating the relative motion of each particle and its neigh­

5

bors. Many researchers, including ourselves, use a similar moving least squares approach

[Gerszewski et al. 2009; Zhou et al. 2013]. Martin and colleagues [2010] introduced elastons,

which provide a unified point-based approach for elastic volumes, shells, and rods. Their

method relies on a generalized moving least squares estimate of deformation tha t considers

derivative information, avoiding the need for volumetric sampling around shells and rods.

For many real-time applications, continuum-mechanics-based approaches are too com­

putationally expensive, and in the case of finite-element approaches, complicate modeling

since they require volumetric (typically tetrahedral or hexahedral) meshes. This has led

researchers to develop geometric methods tha t produce plausible deformations but have low

implementation complexity and runtime cost, and do not require volumetric meshes. The

first popular technique is known as position-based dynamics, first developed by Jakobsen

for the video game Hitman [2001] and later formalized by Muller and colleagues [2007]. In

this framework, objects are modeled as a set of particles and elasticity is emulated through

the use of constraint functions. Particles are integrated through time independently using a

first-order forward Euler scheme, and then the particle positions are iteratively adjusted to

satisfy the constraints, which are functions of positions only (i.e. do not depend on velocity).

This approach is incredibly flexible: the solver can operate on any constraint functions of

position. Researchers have developed constraints to model a variety of materials, including

gasses and liquids at interactive rates [Macklin and Muller 2013; Macklin et al. 2014].

Because position-based dynamics modifies positions of particles directly, rather than by

applying forces, animations often suffer from artificial damping.

Another geometric approach for animating deformable bodies is shape matching, de­

veloped by Muller and colleagues [2005]. In this method, objects are divided into shapes

-collections of particles. Elastic forces are computed by finding a best-fitting rigid trans­

formation from the rest position of a shape to its current world configuration and then

applying spring forces to pull particles toward the rigidly transformed shape. The main

advantage of this approach is tha t shapes are a very flexible primitive: they can consist

of a few particles, or the entire object. For example, Rivers and James [2007] developed

an optimized approach using shapes defined as overlapping subsets of a voxel lattice. One

limitation of the original shape-matching approach is tha t shapes must occupy a volume,

making it poorly suited to modeling strands or hair, for which points are nearly collinear.

Muller and Chentanez [2011] proposed a solution to this problem by associating orientations

with particles, which reduced volumetric sampling requirements. While this approach relies

on summing rotation matrices, which will not compose or interpolate rotations, the authors

6

produced compelling results.

Though Muller and colleagues provided a parameter range where shape matching is

provably stable for a single shape, this analysis breaks down in the presence of nonlinearities

introduced by many overlapping clusters. Bargteil and Jones [2014] proposed a strain lim­

iting approach similar to position-based dynamics to improve stability when using multiple

clusters while avoiding the artificial damping of pure position-based dynamics.

2.2 Plasticity
Terzopolous and Fleischer recognized the importance of animating plastic phenomena,

extending their pioneering work simulating elastic materials to include plasticity just one

year later [1988]. O’Brien and colleagues similarly incorporated plasticity into their finite-

element approach to simulate ductile fracture [2002]. Early work in graphics relied on an

additive plasticity model, in which total strain is the sum of elastic and plastic components.

Irving and colleagues [2004] recognized tha t such an additive model is appropriate only

for infinitesimal deformations, and tha t for finite deformations a multiplicative model is

more appropriate. Bargteil and colleagues [2007] proposed a method for performing such a

factorization tha t incorporates important features of plasticity such as plastic yield, work

hardening/softening, and creep.

W ith a suitable model for how and when plastic deformation should occur, the remaining

challenges for simulating plastic materials are related to ensuring simulation stability in the

presence of large plastic flows. Bargteil and colleagues performed wholesale, conforming

volumetric remeshing when basis functions became sufficiently ill-conditioned. W ojtan and

Turk [2008] used a nonconforming tetrahedral mesh, greatly reducing time spent performing

remeshing. They also avoided visual artifacts by maintaining separate surface and simula­

tion meshes. Both of these approaches remesh the entire domain, interpolating simulation

variables to the new tetrahedra. This approach causes artificial smoothing and diffusion.

To combat this, Wicke and colleagues [2010] proposed a method based on local-remeshing,

where only elements with poorly conditioned basis functions are remeshed. There are

two issues tha t complicate this approach. First, volumetric meshing generally, and local

remeshing specifically, are challenging, poorly understood problems; solutions often rely on

heuristics tha t seem to work “well-enough” in practice with very few quality guarantees.

Second, plastic deformation modifies the rest shape of each element independently, so when

remeshing is required, tetrahedra no longer fit together. In order to apply topological

operations such as edge flips, Wicke and colleagues construct a consistent material space

7

which minimizes internal strain energy, storing a per-element map from rest space to this

material space. By extending the set of mesh improvement operations and introducing

an approach to enforce incompressibility without locking, Clausen and colleagues [2013]

extended this technique to animate materials ranging from purely elastic to purely liquid.

These finite-element-based techniques produce extremely high-quality results, but have very

high implementation complexity.

Meshless methods have also been developed for animating plasticity. Muller and col­

leagues [2004] divided plasticity into two regimes, storing either plastic offsets for mostly

elastic materials, or elastic offsets for mostly plastic materials. This allowed them to model

mostly elastic objects with limited permanent deformation, or liquid-like materials with

limited elasticity. Gerszewski and colleagues [2009] compute elastic forces by tracking the

deformation gradient of the object rather than its rest state. This avoids instabilities when

the rest state may become degenerate, for example deformed into a coplanar configuration,

but is susceptible to drift and can therefore handle limited elastic deformation. Zhou

and colleagues [2013] adapted the technique of Gerszewski and colleagues to use implicit

integration to improve stability. Our approach, deformation embedding, explicitly maintains

the rest state of the object, allowing for arbitrary elastic deformations.

Other researchers have modeled plastic materials as mostly-liquid, modifying fluid sim­

ulators to incorporate elastic forces. Goktekin and colleagues [2004] used an eulerian fluid

simulator, adding elastic forces computed by tracking the elastic strain throughout the ma­

terial. Clavet and colleagues [2005] developed a meshless approach using an SPH-like fluid

simulator and incorporating elasticity by adding spring forces between particles. Plasticity

is incorporated by changing spring rest lengths. Since these approaches model materials as

modified fluids, animated materials behave more like fluids than solids.

2.3 Fracture
As with plasticity, fracture was quickly recognized as an important visual feature when

animating deformable solids. Terzopolous and Fleicher [1988] incorporated fracture along

with plasticity one year after their seminal paper on simulating elastic bodies. Approaches

based on finite-elements are common in practice, and typically rely on the method of

O’Brien and Hodgins [1999] and its refinements [O’Brien et al. 2002; Parker and O’Brien

2009; Pfaff et al. 2014]. To avoid the complexity of meshing, Pauly and colleagues [2005]

developed a meshless approach. Hegemann and colleagues [2013] proposed a level-set-based

technique capable of handling topological changes implicitly, capturing small-scale surface

8

details without high-resolution volumetric meshing.

For brittle materials, it is often undesirable to compute elastic dynamics, when only rigid

motion and fracture are desired. Muller and colleagues [2001] were able to animate fracture

in real time by treating objects as rigid for the purpose of dynamics, and performing a

quasistatic solve to incorporate plastic deformation and fracture in between timesteps. Bao

and colleagues [2007] improved on this approach by projecting out the null space (i.e. rigid

motion) during quasistatic analysis and supporting a simple plasticity model.

To support artistic control, and to reduce computational costs during simulation, a

variety approaches based on prescoring have been developed. Su and colleagues [2009]

aligned a fracture pattern to the location of impacts to produce plausible and controllable

fracture. By performing an approximate convex decomposition, MUller and colleagues [2013]

were able to achieve high-quality, intricate fractures in real time.

2.4 Example-Based Deformation
One of the biggest challenges when using physics-based animation is providing artists

with appropriate controls over the outcome of simulations. For modeling tasks, artists have

precise control over their meshes. Likewise, for keyframe animations, artists have control

of both the keyframes and animation curves between them. Once an artists has chosen to

use physics-based animation, however, their control is limited to material properties and

initial conditions. A popular solution is to allow artists to iterate using lower resolution

simulations and then add detail to create a high-resolution animation [Bergou et al. 2007;

Kavan et al. 2011].

M artin and colleagues [2011] proposed an alternative approach: example-based defor­

mations. Artists provide example deformations of their model and an extra potential is

included to create internal forces tha t act to return a deformed object to the example

manifold - interpolations of the provided examples. The main benefit of this approach

is tha t artists have intuitive controls over high-level object behavior (i.e. shapes), but

features such as global motion and collision response are handled automatically. Since its

introduction, researchers have proposed more efficient formulations, suitable for real-time

scenarios [Schumacher et al. 2012; Koyama et al. 2012]. Our work is inspired by the

example-based simulation paradigm and extends the method, addressing shortcomings of

the original approach and adapting it to new applications.

These example-based approaches require a method of interpolating between deformed

shapes. Martin and colleagues interpolated the per-element strains of mesh tetrahedra to

compute intermediate shapes. As described above in the case of plastic deformation, these

9

deformed tetrahedra do not “fit together,” so they must perform an optimization to find

a similar, realizable configuration. Schumacher and colleagues [2012] avoided explicitly

performing this reconstruction to improve efficiency. In their shape-matching framework,

Koyama and colleagues [2012] linearly interpolated the scale-shear component of their shape

basis matrices. In contrast, our approach is based on linear blend skinning; each example

is defined as the set of transformations for each bone and shape interpolation is performed

by interpolating these bone transformations.

CHAPTER 3

DEFORMATION EMBEDDING FOR
POINT-BASED ELASTOPLASTIC

SIMULATION

3.1 Introduction
Computer animation of elastoplastic materials, such as modeling clay, chewing gum,

and bread dough, has long been a goal of computer graphics, probably because these

materials demonstrate such intriguing behavior. As a field we have made progress toward

this goal and elastoplastic materials have recently been showcased in special effects, for

example the honey in Bee Movie [Ruilova 2007] and the food in Ratatouille [Goktekin

et al. 2007]. However, significant limitations in current techniques remain: some handle

only limited plastic deformation, some handle only limited elastic deformation, and others

require complex remeshing methodologies.

We present a straightforward, easy-to-implement, point-based approach for animating

elastoplastic materials. Our approach can handle extreme elastic and plastic deformations.

Because the approach is point-based, there is no need for complex remeshing—the corre­

sponding operation is a simple neighborhood query.

A material tha t has undergone plastic deformations does not, in general, have a zero-

stress state that can be realized in three-dimensional space. Put another way, the rest

space is not embeddable in three-dimensional space. This fact poses a challenge because

elastic forces depend on a mapping from rest space to deformed or world space. Some

authors have addressed this challenge by keeping plastic offsets from an initial rest state,

but this places limitations on the amount of plastic deformation that is possible. Others have

abandoned the rest state and keep elastic offsets, resulting in limited elastic deformations

and/or artificial plasticity. Borrowing an idea from Wicke and colleagues [2010], we take

a compromise approach and store an embedded space—the weighted least-squares best

embedding of rest space into three dimensions, while preserving the rest space exactly per

particle. Nearest neighbor queries can be performed efficiently in embedded space, allowing

us to update particle neighborhoods, while deformation can be computed accurately from

11

the rest space. W ithout updating particle neighborhoods, simulations become unstable

under large plastic flows. By maintaining both spaces, our method can handle large plastic

and elastic deformation simultaneously.

While our primary contribution is the development of our embedding into three di­

mensions, we also suggest an approach for estimating volume tha t allows for nonuniform

samplings. We demonstrate our approach on a variety of examples tha t display a large

range of material behaviors, including simultaneous elastic and plastic deformations. Our

method is the first point-based approach capable of simulating these examples, and is much

simpler to implement than competing finite element approaches.

It is worth noting tha t most previous point-based approaches for animating large plastic

flows incorporated SPH-like pressure forces. Such forces provide additional stability [Ger-

szewski et al. 2009] by favoring uniform sampling of simulated materials. However, they

also alter the behavior of the underlying material model, preventing, for example, the

simulation of hyperelastic materials. Moreover, such forces do not allow for adaptive

sampling without employing complex adaptive simulation frameworks [Adams et al. 2007].

By eschewing these nonphysical pressure forces and relying exclusively on elastic forces and

a volume preserving plasticity model, our framework allows for the simulation of arbitrary

material models. While a subtle point, this represents a significant scientific advance and

our examples demonstrate far larger plastic deformations than previously possible with

point-based methods for purely elastoplastic materials.

3.2 Method
The core of our approach is the maintenance of three domains: world space, rest space,

and embedded space. World space refers to the current, deformed object configuration.

Rest space is local to a particle and refers to the particle’s preferred relative positions

of its neighbors, stored as 3D vectors per neighbor. In general, the rest space cannot

be represented as a set of 3D points, as per-neighbor vectors cannot be reconciled exactly

between all particles. We introduce the embedded space, which is a global, least-squares best

fit of the rest space into three dimensions. It can be thought of as an approximate reference

configuration for the material. The rest space and world space are used to compute the

deformation gradient, from which we can compute elastic forces and plastic deformations.

The embedded space allows efficient updates to neighborhoods in the presence of plastic

deformation. Our method is summarized in Algorithm 1 and visualized in Figure 3.1.

12

A lg o rith m 1 Deformation Embedding for Elastoplasticity
initialize kernel support radii and particle neighborhoods
w hile Animating do

approximate deformation gradient
factor deformation into elastic and plastic components
compute elastic forces
integrate elastic, body, and damping forces
compute global embedding
resample particles
update neighborhoods

end w hile

3.2.1 N o ta tion

We use x j , e j , u j to denote to neighbor vectors—vectors between particles i and j —in

world, embedded, and rest space, respectively. Capital bold face letters refer to matrices.

The index j refers to the neighbors of particle i , which may change during the course of the

3.2.2 A pp roxim ating D eform ation

Following the work of Muller and colleagues [2004], we use moving least squares (MLS)

to approximate the deformation gradient, F. For each particle i, we seek the matrix Fj that

minimizes

j
where the sum is taken over the neighbors, j , and w j is a weighting kernel evaluated in

rest space. We compute the minimizer by solving the following linear system,

We refer to the quantity J2j wiju j u J as the particle i ’s basis matrix, Aj, which we invert

to solve the system. Note that if the rest space vectors u become coplanar, then A becomes

singular.

3.2 .2 .1 P artic le V olum e

It is common in point-based animation to assume tha t particles have a fixed, often

uniform, mass or volume. This assumption often leads to density fluctuations tha t can

cause spurious oscillations. In the context of plastic deformation, it is desirable to allow the

sampling to vary over time and thus we require a way of estimating the volume occupied by

a particle. Noting tha t A serves the same purpose as the basis matrix in tetrahedral finite

simulation.

(3.1)

(3.2)

13

element methods, tha t the volume of a tetrahedron is a multiple of the determinant of the

basis matrix, and tha t the units of det(A) are m 6, we approximate the volume of a particle

as,

V y a p - W ij) 3■ (3.3)
The denominator normalizes with respect to the weights used to compute A, which are

cubed by the determinant operation. We assign a constant density to the material and

allow each particle’s mass to change over time. The total mass of the material fluctuates

slightly due to this approximation (see Section 3.3), but we did not observe any resulting

artifacts in our examples.

3.2 .3 E lastop lastic M odel

We use a multiplicative plasticity model, where the total deformation gradient is the

product of elastic and plastic deformations, i.e. F = F eF p.

Following Irving and colleagues [2004], we diagonalize F e = U F eV T and compute the

diagonalized first Piola-Kirchhoff stress:

P = Atr(Fe - I)I + 2^(Fe - I). (3.4)

We then rotate the diagonalized stress P = U P V t and compute symmetrized forces

fi = V iP iA -1Wij u - (3.5)

f = —ffj = - fi

which are linear in position.

Using the plasticity model developed by Bargteil and colleagues [2007], we factor our

deformation gradient, F, into elastic and plastic components F e and F p, respectively. This

model preserves volume in rest space, and accounts for a range of material properties

including yield point, creep, and work hardening/softening. Specifically, we compute the

singular value decomposition of F = U F V T and factor the diagonal matrix F into F eF p.

To compute F p, we first compute

F
~ (3.6)

d e t(F 1/3)

This computation is essentially normalizing F to have determinant 1, ensuring volume

preservation. Since F is diagonal, we can perform the cube root operation on each entry

independently. We then compute F p = F 7, where

y (p P a v (IIP II - m ax(pY + K a))y (p > p y , K) = --------------- i i p --------------- (3.7)

14

which is clamped between 0 and 1. Py is the yield stress (at lower stresses there is no

plastic flow); v is the flow rate, which controls how quickly flow will occur; a is the total

accumulated plastic stress as computed by the simulation; and K controls the rate of work

hardening or softening. P y , v , and K are user-defined, while a is a simulation variable

integrated through time. The K a term can be thought of as adjusting the yield point. To

prevent rotation of the plastic deformation, we rotate the diagonalized deformation into

F e = U F eV T and F p = V F PV T. We use F e to compute elastic stress in Equation 3.4. For

more details, refer to Bargteil and colleagues [2007].

For damping forces, we use the SPH viscosity formulation of MUller and colleagues [2003].

These forces act to minimize velocity differences between neighboring particles, and are

computed by

= V— (vj - Vi) V 2W (u ij,h). (3.8)
pj

Note tha t this simple model damps all relative motion and is non-zero for rigid rotation.

Alternatively one could base damping forces on the time derivative of stress.

To update positions and velocities, we use either an explicit leapfrog scheme, or the

following Newmark integration scheme adapted from Bridson and colleagues [2003], which

integrates viscous forces implicitly and elastic forces explicitly:

- vn+1/2 = vn i At (tn xn vn+1/2)• v v + 2 aviscous(l)

• xn+1 = x n + Atvn+1/2

• Vn+1 = Vn+1/2 + At aelastic,body (tn+ ,Xn+1 ,Vn+1/2)

Each timestep of the Newmark scheme is more expensive than the explicit scheme, but

for simulations where high viscosity is desired, the implicit viscous solve permits larger

timesteps, resulting in better performance overall. We experimented with linearly implicit

Euler integration, but found tha t rotational motion was severely damped (see accompanying

video) and did not pursue this further.

3.2 .4 E m bedding D eform ation

As the material undergoes plastic deformation a particle’s neighbors may move far away

in rest space and no longer provide useful information. To update these neighborhoods

when such changes occur, we maintain a globally optimal embedded space, encoded as a

three-dimensional position, ei , for each particle. To update these positions, we first compute

temporary rest space vectors tha t incorporate the plastic deformation tha t occurred over

the previous timestep, u ij- = F pu ij .

15

The optimal least-squares embedding of the particles into three-dimensional space will

minimize the discrepancy of neighbor vectors between the embedded and rest spaces. We

formulate this optimization over the embedded positions, ei , as a weighted linear least-

squares problem

a r g m i n ^ | |w j (u j - e j) (3.9)
i j

which requires solving three decoupled, over-constrained linear systems: one for each di­

mension, x, y, and z. In matrix form, each system can be expressed as

Ce = u. (3.10)

C is similar to the constraint matrices tha t appear when using Lagrange multipliers or

projection methods for constrained dynamics. In our case, each row, r, of C encodes the

(weighted) constraint tha t if particle j is a neighbor of particle i then eij = u j . More

specifically,

C ri = Wij

C rj Wij

The vector e contains the embedded space positions for all particles and u j = w jU j . Note

tha t while eij = - e j i , the same is not true for u j and uji because rest space vectors, u j

are transformed by F Pi each timestep and diverge over time.

Because each particle has roughly 32 neighbors (constraints), C is roughly 32n x n. We

solve this non-square, highly over-constrained system by applying conjugate gradients to

the normal equations,

C T Ce u . (3.11)

Denoting the set of neighbors of i as n(i), the entries of C T C are

' 2 E wik if i = j
k2n(i)

(c t c) h = { - 2 w j
-W
0

ij

if i 2 n (j) A j 2 n(i)
if i 2 n (j) ® j 2 n(i)
otherwise.

(3.12)

This matrix is symmetric and diagonally dominant, but if all the neighborhoods are sym­

metric, will have a null-space containing the constant vector (corresponding to global

translations). We explicitly remove this by adding a row to C constraining the first particle

to maintain its current embedded position. Note tha t the system is not invariant to global

2

16

rotations, so no special handling is required. Because the system changes structure as

neighborhoods change or particles are split or merged, prefactoring is not possible.

While these embedded space positions provide a globally consistent reference configura­

tion, there will still be discrepancy between the rest and embedded spaces. The vectors U j

become the rest space vectors u j for the next timestep.

It is natural to compare our embedding to the elastic-energy minimization approach of

Wicke and colleagues [2010]. Interestingly, our linear embedding does not capture some

rotational changes to the rest space. However, world space dynamics are nearly identical

compared to the more expensive nonlinear optimization used by Wicke and colleagues,

as shown in Figure 3.2. This behavior is because rotations typically do not change the

neighbors with the highest smoothing weights (those closest to the particle), and the rest-

space vectors for those particles are preserved exactly. In our experiments, our linear solve

was nearly twice as fast as the elastic-energy minimization approach of Wicke and colleagues.

Another difference between our approach and that of Wicke and colleagues [2010] is in

how we store rest space. Wicke and colleagues store a single 3 x 3 matrix per tetrahedron,

which they call a plastic offset, tha t maps from embedded space to rest space. Instead, we

store rest space as about 30 rest-space neighbor vectors per particle. While our approach

requires more memory, we found storing a single matrix per particle problematic as a simple

least-squares fit introduced too much error into the mapping from embedded to rest space.

If memory consumption is a significant concern, higher order fitting techniques and/or

compression may prove effective.

3.2.5 U p d a tin g N eigh b orh ood s

After plastic flow, a particle’s neighbors may have moved far away, and no longer provide

useful information about the deformation gradient. We therefore update each particle’s

neighborhood by finding the nearest neighbors in the embedded space. We expect that

neighborhoods in embedded space are a good approximation of neighborhoods in rest space,

and they can be queried efficiently using a KD-tree. The only information lost in this process

is the difference between the rest space vector, u j , and the embedded space vector, e j ,

when a particle j moves out of particle i ’s neighborhood. When a new particle enters a

neighborhood, we initialize u j = e j . This process does lose some information about the

rest state (and, consequently, the internal stress), but the lost information is the least useful

as it comes from the particles tha t are farthest away.

17

3.2 .6 P artic le R esam pling

To improve computational efficiency and stability, we enable particle resampling in our

simulator. We selectively split and merge particles when neighborhood sampling is either

too dense, or too sparse. We quantify this by computing a basis matrix for each particle as

= X j (3-13)

where the index j runs over the neighbors of particle i, which may vary over time. Note

tha t this is simply a weighted covariance matrix, where the 4th power in the denominator

results in a 1 /r2 falloff away from particle i.

We perform an eigendecomposition of this matrix and examine its eigenvalues to decide

to split or merge particles. If the maximum eigenvalue is small, this indicates that there

are too few particles nearby, and the particle should be split. We split the particle into

two particles and place them along the eigenvector with the minimum eigenvalue. They are

offset from the particle’s original position by half the average distance to the particles in

the neighborhood.

Splitting particles near the surface can potentially cause rendering artifacts on the

object’s surface, which we attem pt to mitigate in two ways. First, we chose the middle

eigenvalue as a splitting direction because for surface particles, the smallest eigenvalue is

typically perpendicular to the surface, and the largest is already well sampled. The middle

eigenvector corresponds to a direction tangent to the surface tha t is poorly sampled. Second,

we reject splits tha t are likely to cause surface artifacts. We compute the distance from the

original particle to the center of mass of its neighborhood. If either split particle is more

than a factor of V2 away from the center of mass, the split is cancelled. Intuitively, this

condition attem pts to eliminate splits that are not tangent to the surface, as shown in Figure

3.3. We also cancel splits tha t would place a new particle inside of an obstacle. We classify

particles as “surface particles” if the distance from the particle to its neighborhood center

of mass is greater than a user-defined threshold, as interior particles likely have a uniformly

distributed neighborhood, while surface particles will have a neighborhood skewed away

from the surface.

If the minimum eigenvalue is too large, then there are too many particles nearby and the

particle should be merged with its nearest neighbor. The merged particle is placed halfway

between the two original particles. The split and merge thresholds are a user-specified

parameter, but reasonable values can be chosen by examining minimum and maximum

basis matrix eigenvalues from the object’s initial configuration.

18

While much more complex resampling methods exist [Adams et al. 2007; Ando et al.

2012], we consider the ease of implementation of our technique to be a major benefit.

3 .2 .7 Im plem en tation D eta ils

For our weighting kernels, we use the standard SPH kernels of MUller and colleagues [2003]:

The poly6 kernel, Equation 3.14, for all weights except for viscosity, where we use the SPH

viscosity kernel, Equation 3.15.

We initialize each particle’s smoothing radius by finding its nearest 32 neighbors, and

setting its radius to twice the average neighbor distance. During the simulation, a particle

can have a maximum of 32 neighbors, which must be within its radius in embedded space.

This constraint limits the number of neighbors and the number of non-zeroes in our matrices.

3.2 .7 .1 R endering

Generating visually appealing surfaces from particle data for rendering is a difficult

problem. In the examples in this paper, we used two methods: the skinning method of

Bhattacharya and colleagues [2011], and a simple surface mesh embedding technique. When

embedding a surface mesh, we update mesh vertex positions with the weighted average

of the displacements of nearby particles from the first frame of animation. The weights

are computed using the poly6 kernel with a user-defined, constant support radius. This

approach is sufficient for simulations with largely elastic deformations, but breaks down for

large plastic flows. Including more robust surface tracking and using the embedded space

to update weights are interesting directions for future work.

We have used our proposed method to simulate materials exhibiting a wide range of

elastoplastic behavior as shown in our figures and included videos. All examples were run

on a dual-2.8 GHz Intel Xeon processor machine using up to 12 cores. Trivially parallelizable

loops were multithreaded using the Intel TBB library.

Figures 3.2 and 3.4 demonstrate the importance of the two components of our mapping

to rest space: plastic offsets and embedded space. W ithout plastic offsets, the final world

pose of the bar in Figure 3.2 would not include any twist. W ithout neighborhood updates, a

(3.14)

V 2W (r , h) = - m (h - r)
'KhP

(3.15)

3.3 Results and Discussion

19

particle’s neighborhood may become degenerate, leading to an ill-conditioned basis matrix

and instability. By using embedded space to update neighborhoods, we maintain well

sampled neighborhoods and increase stability (see Figure 3.4). Resampling also improves

stability by merging particles that become extremely close in embedded space.

Figure 3.5 demonstrates our method’s ability to animate a wide range of plastic param­

eters, including spatially varying plasticity.

Figures 3.6 and 3.7 compare the world space and embedded space deformations of a

bunny dropped onto obstacles. The embedded space captures the key features of the global

plastic deformation. The high-frequency details of the original mesh are preserved as the

material flows plastically.

Figure 3.8 demonstrates our method’s robust handling of uneven sampling. Our new

volume estimate allows us to simulate objects with dramatically varying particle densities.

Previous work has required expensive fully adaptive sampling techniques [Adams et al. 2007]

or special handling of boundaries where regions of varying particle density meet [Solenthaler

and Gross 2011].

As the “upset fowl” collides with the rigid obstacles in Figure 3.9, it undergoes significant

elastic and plastic deformation. As it is crushed, it reacts elastically, lifting the upper block

before succumbing to creep and flowing plastically.

As shown in Figure 3.10, our volume estimate closely tracks both the “ground tru th ”

volume computed using the skinned, embedded space mesh, and the estimate used by SPH

based approaches.

Timing results are shown in Table 3.1 and Table 3.2.

3.3.1 L im itations and Future W ork

In practice, we found our method to be robust and stable for bulk motion. Typical failure

cases are a single particle or a small group of particles drifting away from the bulk material,

or getting caught on an obstacle (we colloquially refer to such particles as “jerk particles”).

These artifacts are usually induced by extreme or violent deformations or sharp corners

of rigid obstacles. In a production environment, these troublesome particles can be easily

deleted before skinning or rendering. Using a robust least squares solve, or minimizing the

L 1 norm in our embedding, may eliminate these problems, albeit at significant additional

cost.

In the current implementation, we allow particles to apply forces through solid obstacles,

which can lead to unnatural and undesirable behavior near sharp corners. Also, we do not

check for collisions between particles nearby in world-space, but far apart in embedded

20

space, which can result in interpenetration artifacts. We suspect both problems can be

efficiently resolved with an additional spatial partitioning scheme in world space.

Although our simple resampling scheme works to improve stability, our splitting method

can cause surface artifacts. Increasing the model resolution reduces these artifacts, but

a more robust resampling or skinning approach is a possible direction of future work.

Additionally, aggressively coarsening regions on the object interior could lead to improved

performance while preserving surface detail.

It is common for materials to become brittle after work hardening and become prone

to fracture. In our implementation, such topological changes happen by accident, when

particle neighborhoods change and parts of the material stop interacting. By intentionally

causing such topological changes, our method could be adapted to simulate ductile fracture.

Relatedly, we do nothing in particular to address “fusing” in embedded space, but did not

notice this to be a problem in our examples. One could address such issues using an embed­

ded surface mesh and ray casting when computing neighborhoods. We also note tha t many

previous techniques, both point-based [Gerszewski et al. 2009] and mesh-based [Bargteil

et al. 2007], allow such fusing and sometimes consider it a “feature.”

Because points behave nearly independently, this method is well suited to parallelization

on multicore architectures or GPUs. Most computations only output results for a single

particle, and read only from nearby particles. We employed multithreading to parallelize

these independent loops on the CPU; however, these access patterns are also well suited

for the memory hierarchy on current GPU architectures. Preliminary GPU implementation

efforts resulted in an order of magnitude speedup for simple elastic examples.

We have presented a simple to implement point-based method for animating elastoplastic

materials. By maintaining a globally optimal fit of the material's reference configuration

we are able to simulate materials undergoing simultaneous and extreme elastic and plastic

deformations. Like all point-based methods, our approach trades the numerical advantages

of discretizing the domain into disjoint elements (better conditioning, sparser matrices, etc.)

for the significant implementation advantage and simplicity of avoiding computing such a

discretization altogether.

21

(a)

/ O O \
f '

•• ; >9 QX
i • i
\ o O / \ o o /

Deformation Gradient

o o

original undeform ed per-particle “rest space” “em bedded space” current “world space”
configuration a fter plastic deform ation after least squares fit configuration

F ig u re 3.1. From the initial configuration (a), each particle’s neighborhood undergoes
plastic deformation, resulting in a new rest space configuration (b). However, the red and
blue particles disagree about where their shared neighbors should be. Performing a least
squares global fit, we obtain the embedded space configuration (c), which is used to update
particle neighborhoods. Each particle’s deformation gradient maps from its own rest space
to the current world space configuration (d).

F ig u re 3.2. Comparison between our linear embedding (left) and nonlinear embedding
(right) for a twisted plastic bar. The world space behavior (blue) is nearly identical, even
though the linear embedding captures very little rotation. Though small, changes in the
linear embedding did cause neighborhoods to change in this example.

22

Bad sp lit

- O - - '

position a fte r sp lit

^ ^ o r i g in a l position

A ne ighborhood
cen te r o f m ass

G ood sp lit

surface

F ig u re 3.3. We cancel splits that are likely to cause popping artifacts near the object
surface.

23

F ig u re 3.4. A plastic bar is dropped onto the ground. W ithout neighborhood updates
(center left), the simulation becomes unstable after the object is significantly flattened. Our
embedding allows neighborhood updates which improve stability (center right), but this also
becomes unstable. Adding resampling (right) preserves stability through the entire scene.

F ig u re 3.5. A bar is twisted and sheared (left), then released. The final world space
configurations for (clockwise from top, left) elastic, slightly plastic, highly plastic, and
varying plasticity materials. For the nonuniform bar, the plastic flowrate varies from
high(red) to low(blue) along the bar.

24

F ig u re 3.6. World space (above) and embedded space (below) of bunny dropped on a rigid
bar.

25

F ig u re 3.7. A bunny is dropped on a set of spheres. Clockwise from top left: Initial
configuration, world (skinned), world(particles), and embedded spaces after impact.

F ig u re 3.8. A plastic block with dramatically different sampling densities flows when
dropped.

26

F ig u re 3.9. An “upset fowl” destroys a pig’s house.

F ig u re 3.10. Estimated total volume computed using our new approach, SPH, and the
skinned embedded space mesh for Figure 3.4.

27

T able 3.1. Timing results for pictured examples. Time is given in seconds to produce one
30 Hz frame of animation.__

Example #Particles At Sec/frame
Figure 3.2 linear 5,000 .001 2.36
Figure 3.2 nonlinear 5,000 .001 4.30
Figure 3.4 5,408 .001 1.2
Figure 3.7 36,675 .0004 278
Figure 3.8 10,470 .005 2.39
Figure 3.9 21,708 .0001 92

T able 3.2. Timing detail for Figure 3.4
Step % computation time
Compute basis matrices 3.54
Viscosity solve 17.19
Compute forces 4.55
Explicit integration step 0.36
Embedding solve 41.70
Resampling 2.24
Neighborhood updates 22.91
Compute plastic offsets 3.73
Handle collisions 0.19

CHAPTER 4

DYNAMIC SPRITES: ARTISTIC AUTHORING
OF INTERACTIVE ANIMATIONS

4.1 Introduction
Drawing pictures is one of the oldest and most fundamental forms of human communi­

cation. Ever since our ancestors began creating cave paintings in prehistoric times, humans

have been making pictures to tell stories, explain ideas, and express emotions. Over the

years, technical advances have provided artists with an ever expanding arsenal of tools and

techniques for creating and editing images, and today, sophisticated software packages like

Adobe Photoshop and GIMP include a variety of features tha t enable users to copy, paste,

compose, morph, and otherwise manipulate their images. Unfortunately, while existing

digital tools make it easier than ever to create high-quality static images, making drawings

come “alive” through movement and interactive behaviors in cartoons, videos, or games is

a very different and challenging task.

Turning a drawing into a dynamic, interactive entity typically involves several steps

tha t require different types of expertise: a rigger defines articulation variables; an animator

creates keyframes that specify how those variables change over time; and a programmer

encodes the keyframed motions into behaviors. In some cases, simulation can provide

a more automated alternative for generating motions and behaviors, but it often requires

significant amounts of tuning to produce results that exhibit specific, desired characteristics.

For professional film and game production, these steps can be distributed to separate teams

of artists, riggers, animators, and programmers, which makes for a highly modular content

creation pipeline. However, for more casual users, the gap in required skills and expertise

between creating a drawing and making it come to life represents a significant barrier. This

is one likely reason why it is much easier to find examples of high-quality static drawings

(e.g., in online image repositories) than compelling dynamic content.

Sprite sheets, collections of static 2D drawings tha t depict representative poses for an

object, like the example shown in Figure 4.1, offer a more cohesive, drawing-centric approach

to creating dynamic images.

29

Producing motion with a sprite sheet involves cycling through drawings of the object.

Thus, artists can change both the appearance and dynamic behavior of an object using

traditional drawing tools by creating or editing various poses. Unfortunately, sprite sheets

require many drawings to produce smooth animations since even small deformations to a

pose require an entirely new drawing. Furthermore, even if these in-between poses can be

generated automatically, sprite sheets alone encode neither the timing information that is

critical for producing high-quality motions, nor the logic tha t defines how an object should

behave in response to external stimuli. As a result, sprite sheets still require a significant

amount of work to create and use. In contrast, we use physics to automatically provide

timing and achieve generalization outside the hand-drawn examples.

In this work, we present an approach for transforming static drawings into dynamic

sprites. To produce a dynamic sprite, the artist creates a pose manifold by drawing an

object, deforming it into example poses, and specifying sets of these example poses tha t can

be interpolated as the object moves. Our system uses example-based physical simulation to

automatically move the object through this pose manifold based on forces applied from the

external environment or user commands. In this way, we allow the artist to create dynamic

objects and characters without specifying many in-between frames, adjusting animation

curves, or writing code tha t defines object behavior.

The key feature of our approach is that it provides a set of explicit artistic controls over

various characteristics of dynamic sprites. First, the example poses themselves give artists

significant control over the appearance of the pose manifold.

However, combining several example poses at once can lead to a “muddy” manifold

where interesting features of the individual examples get lost in the blended pose. Thus,

we allow the artist to explicitly construct a simplicial complex (mostly line segments with

the occasional triangle) over the set of example poses. Furthermore, since external physical

forces alone may not induce sufficient motion within the pose manifold, our method provides

several additional knobs for controlling the manner in which objects transition between the

poses. For example, artists can tell the system to favor particular poses for specific object

states, such as a stretched out pose when an object has high velocity, or a neutral pose

tha t represents the object at equilibrium. The artist can also adjust how much energy an

object retains after interactions (e.g. the bounciness of a ball sprite). Modifying these

parameters allows artists to control the look and feel of motions and behaviors in a more

direct, intuitive manner than fine-tuning physical properties like the elasticity or density of

deformable objects.

30

For more complicated behaviors, arbitrary controllers can be used to traverse the pose
manifold. Compared to controllers used in traditional physics-based character animation,
our controllers are simpler because the sprites themselves can maintain important features
of the motion, such as balance, and otherwise “bend” the laws of physics when desired.

We used our approach to generate a variety of sprites that exhibit different types
of dynamic behavior, including a cartoony ball, bouncy characters, lively construction
materials, and articulated ragdolls, either passively animated or controlled by a finite
state machine. We also created three games that combine multiple sprites into interactive
environments. Our results demonstrate how our approach facilitates the creation of dynamic
objects from static drawings and gives artists intuitive and powerful control over not only
the pose manifold, but also how the pose manifold is navigated.

4.2 Method
Our approach proceeds in two phases: an authoring phase, in which an artist designs a

low-dimensional deformation rig, shown in Figure 4.2, then uses this rig to create example
poses and defines a simplicial complex connecting these poses, as shown in Figure 4.3. Then,
in the simulation phase, our system uses example-based simulation to create a dynamic,
interactive animation like the ones shown in Figure 4.4. We note that though the details of
our example-based simulation differ from previous work, our primary technical contribution
is in how we provide explicit artistic control over the pose manifold and how it is navigated.

4.2 .1 A u th orin g P h ase
As the first step to creating stylized interactive animations, the artist specifies a low

degree of freedom rig using the method of Jacobson and colleagues [2012]. Specifically,
the artist places a small number (5-10) of bones and/or pins on the input shape. By
manipulating this simple rig the artist creates a set of example poses that will guide the
simulation. This rig also determines how the example poses will be interpolated. The artist
additionally defines a simplicial complex over the example shapes that determines which
shapes may be blended. Then the artist loads the simplicial complex into our example-based
simulation and interactively tunes how the pose manifold is navigated by choosing what
optional filters to apply and with what strengths.

4.2 .2 E xam ple-b ased S im ulation
Our runtime environment builds on recent work that applies example-based simulation

to shape matching/position-based dynamics [Schumacher et al. 2012; Koyama et al. 2012].

31

Deformable objects are modeled as a set of particles, p i 2 P with positions, x i , and veloci­
ties, v i . The neighborhood of a particle N (p i) is the set of particles in the k-ring (typically,
k = 3) of p i in a precomputed triangulation of the particle set. At its most basic level, our
method applies a series of filters to the particle’s positions and velocities to satisfy the goals
of the artist. Our approach can also be cast in the prediction/correction framework: we
predict particle positions with a forward Euler integrator and then correct them to achieve
various goals; including pulling toward the pose manifold, removing interpenetration, and
artistic goals, such as setting the global orientation. See Algorithm 2 for a summary of the
simulation timestep. We now describe these operations in more detail.

A lg o rith m 2 Simulation Timestep
Apply body forces (e.g. gravity): v + = f / m * dt
Forward-euler position update: x + = v * dt
Compute desired rest shape
In te rleav e an d I te ra te

Local-neighborhood shape match
Global shape match
Resolve collisions

Compute velocity
Global momentum adjustment
Correct global orientation

4 .2 .2 .1 C om p u te D esired R est Shape
Our runtime environment takes as input the artist-authored pose manifold described by

a set of example poses, a low degree of freedom animation rig, a simplicial complex that
describes which poses can be blended, and any other rules (such as an equilibrium pose)
that guide navigation on the manifold. Then, during each simulation step we must select a
pose on this pose manifold that will be used as a rest state for shape matching.

To interpolate poses within a simplex, we first factor each handle transform into trans­
lational, scale/shear, and rotational components using a polar decomposition. Translation
and scale/shear terms are interpolated linearly, while rotations are combined using spherical
linear interpolation. The final pose is generated by applying linear blend skinning to the
interpolated transforms. Specifically, to blend two example poses with weights a and we
would have,

32

ei = YJjj=1 Wj(ri) S lerp(aR i , ftR 2)(aS i + ftS2)ri
+ a t i + f tt2 , (4.1)

where ei is the particle’s position in the pose selected from the pose manifold, r i is the
particle’s position in the initial rest configuration where the weights were computed, Wj(■)

blending more poses is straightforward.
It remains to describe how we compute the weights (a and ft above) we will use to

combine the example poses. The straightforward solution is to simply project the current
simulated shape onto the pose manifold. When external forces deform an object toward an
example pose, this straightforward manifold projection generates animations that smoothly
and plausibly transition between the user-provided examples. However, projection alone is
not adequate for forces orthogonal to the pose manifold, or when other artistic control is
desired. Thus, we have included additional control over how the simulation navigates the
pose manifold, resulting in richer behavior. The weights are computed by performing the
following operations:

1. Project current shape onto pose manifold
2. Adjust the equilibrium pose
3. A ttract toward equilibrium pose
4. Apply energy adjustment
5. Apply velocity-based adjustment

Note that the first two elements have been incorporated into previous example-based sim­
ulation approaches, while the last two are critical to achieving our results.

Project current shape onto pose manifold: The goal of this step is to find interpolation
weights in the simplicial complex, such that the skinned shape matches the current shape
as closely as possible. To account for rotations we additionally compute a global, best-fit
rotation. We alternate between solving for optimal weights with this rotation held fixed,
and solving for the optimal rotation with weights held fixed. To compute optimal weights,
we define our cost function as

i,j
where i and j are connected particles, R g is the current global rotation, x- is the vector
between particles i and j in world space, and e - is the vector between i and j computed

gives the weight of the j th handle at the specified position, and R , S, and t are the rotation,
scale/sheer, and translations computed by the polar decomposition. Generalization to

(4.2)

33

via linear blend skinning with the current interpolation weights (see Equation 4.1). This
projection yields barycentric coordinates, m p , in the simplicial complex that defines the
manifold.

As noted by Jacobson and colleagues [2012], positions of nearby particles computed
by linear blend skinning are highly correlated, so we adopt their “rotation clusters” op­
timization. Instead of summing over all particles i and j , we compute a smaller set of
representative particles using k-means clustering and sum over them. We use a simple
Newton solver to optimize the objective, using automatic differentiation to compute the
gradient and Hessian [Fike and Alonso 2011]. To compute the optimal global rotation, we
use the method of Sorkine and Alexa [2007].

Adjusting the equilibrium pose: As described thus far, our example-based framework
has no notion of a rest pose—all poses in the pose manifold generate zero elastic energy. To
address this limitation, we introduce the notion of an equilibrium pose, q, in the example
manifold. High-level planning and control strategies are incorporated into our method by
allowing artists explicit control over how this equilibrium pose is chosen. In our prototype,
complex behaviors are implemented using a 2-level finite state machine. The high-level
state machine switches between character behaviors (walking, jumping, falling, etc.), and
is controlled by user input and dynamic properties of the simulation, such as whether
or not the character is standing on the ground. The lower-level state machine controls
individual behaviors by adjusting the location of the equilibrium pose in the manifold, such
as transitioning through the poses in a walk cycle.

Attract toward equilibrium pose: In the spirit of position-based dynamics, we use a
first-order spring to attract toward the equilibrium pose:

meq = me + keq (q - me) , (4.3)

where m eq is the pose after attracting to the equilibrium pose, keq is a stiffness, m e the
barycentric coordinates after energy adjustment, and q the barycentric coordinates of the
equilibrium pose. By adjusting the stiffness of the manifold spring, the artist can control
how closely the specified trajectory is followed, and how the motion is influenced by other
other aspects of the simulation (e.g. energy adjustment).

Apply energy adjustment: Often, an artist will want the simulation to closely match
the pose manifold, requiring very high material stiffness. In these cases, any energy from
deformations orthogonal to the pose manifold is lost. To combat this, we apply some of this

34

lost energy in the pose manifold. Position-based dynamics does not have a explicit notion
of energy; however, a good proxy for kinetic energy is

e = X mi(A x)2, (4.4)
ie r

where mi is the mass of pi and A x is the change in a particle’s position. We compute this
energy when particles interact with other objects (e.g. during collisions). Our simulator
then pushes the interpolation weights by an amount proportional to this energy,

me = m p + kedee, (4.5)

where m e is the pose after applying energy adjustment, m p is the initial projection onto
the manifold, ke is a stiffness, and d e is the direction of energy offset. This direction can
be variably chosen as the direction away from the equilibrium (mp — m eq), the velocity in
the manifold, or an explicitly specified direction. To avoid unwanted oscillations, we ignore
energy contributions below a user-defined threshold.

The result is in-manifold deformation for shapes, even when experiencing orthogonal
interactions, and a reduction of out-of-manifold deformation. Transferring energy normal
to the manifold to a tangent direction may seem unphysical— it is. However, in practice
we have found that this approach does an excellent job of preserving the artist's intent,
expressed through the example shapes, as unphysical as this intent may be.

Apply velocity-based adjustment: In our framework, it is straightforward to use any
information from the simulation state to guide navigation of the manifold. For example, in
order to add cartoon-inspired stretch to a fast moving object, we attract interpolation
weights to a manifold vertex corresponding to the stretched pose, a, with a strength
proportional to the object’s speed, s.

m v = meq + kvs (a — m e,) , (4.6)

where m v is the pose after applying velocity adjustment, m eq is the pose after being
attracted to the equilibrium, kv is a stiffness, and a is the pose being attracted to (e.g.
the stretched pose).

4 .2 .2 .2 Shape M atch in g
Once we compute the current rest pose of the object using linear blend skinning with

appropriate interpolation weights, we are ready to compute dynamics. While any elastic
simulation method could be used, we use shape matching [Muller et al. 2005] for its efficiency

35

and implementation simplicity. Furthermore, because shape-matching models elasticity
with simple first-order dynamics, it fits in well with our framework of filtering of positions
and velocities, allowing a greater degree of artistic control.

While the initial shape matching work [Muller et al. 2005] supported only global shape
matching, more recently Rivers and James [2007] introduced a hierarchical approach. We
take a middle ground and interleave global shape matching passes, which quickly correct
any out-of-manifold deformation, and passes over local neighborhoods, which allow elastic
deformations not described by example poses. For completeness, we briefly describe the
shape matching approach. Given corresponding points in world space, xj, and in our
example pose, ej, we solve for translations, t x and t e, and rotation, R , that minimize

X m (R (ei - te) - (xj - tx))2 . (4.7)
i

The translations correspond to the center of mass for each set of particles and the rotation
is found by a polar decomposition. We can then compute goal positions, gi

gi = R (ej - te) + tx. (4.8)

We include all particles in the global shape matches. For the local-neighborhood passes,
we iterate over all the particles performing the shape match using only the particles in the
local neighborhood, N (p i), that is,

X mj (R (ej - t e) - (xj - t x))2 . (4 .9)
(Pi)

We then compute a particle’s goal position by averaging over all neighborhoods that contain
it.

gi = E j 1 ^ - (p,) gj , (4.10)
z^j\ieN (pj) 1

where gij is pi ’s goal position when shape matching using N (pj).
Additionally, we allow the artist to decompose an image into disjoint layers. To propa­

gate constraints between layers, we add an additional constraint on a set of “pin” particles
which join two layers. At initialization, for each pin, we find the triangle on the connecting
layer in which it is contained. Then, we compute the barycentric coordinates of the pin
with respect to its containing triangle. To enforce the constraint, we compute the world
position of the stored barycentric coordinates with the current triangle vertex positions,
and pull the pin particle toward it.

Collisions are handled by projecting overlapping particles out of objects, using the
underlying triangle mesh to detect and resolve collisions.

36

4 .2 .2 .3 G lobal M om en tu m A d ju stm en t
Position-based dynamics has difficulty producing highly elastic, “bouncy” collisions.

The inclusion of squashed poses in the pose manifold exacerbates this issue as they appear
to be rest poses to the shape matching. However, such collisions are essential to lively,
cartoon-style animation. To address this limitation, we add momentum directly to the
system after collisions with the ground. Specifically, for each object we store the momentum
we wish to add, p, which is updated each timestep with a contribution from each colliding
particle.

p i p + mikm (Xpro - Xpen) (4.11)
where mi is the particle mass, km is a scale, xpro is the particle’s (projected) position after
resolving the collision, and xpen is the penetrating particle position. Over time we add this
momentum to the system, for each particle,

Vi i Vi + m ir p /m 20, (4.12)

where v i is the particle’s velocity, mi its mass, r the rate at which we add the momentum,
and mo is the total mass of the object. Finally, we update p

p i (1 - r)p (4.13)

This approach has two important features. First, by computing p per object rather than
per particle, we avoid spatial discontinuities. Second, by adding momentum over time, we
allow the collisions to occur over a finite time period, allowing the object to deform while
it is on the ground, before jumping back into the air.

4 .2 .2 .4 O rien ta tion C orrection
In addition to the shape control provided by example-based shape matching, artists

may desire control over other aspects of the object’s motion. For example, an artist may
want to keep a character upright or aligned with its velocity. Providing such control is
straightforward in our framework and requires only applying another filter to the set of
particles. For the case of rotation control, we apply a first-order spring to the global
orientation of the object about its center of mass,

✓a = ✓b + koc (@g - ✓b) , (4.14)

where ✓b and ✓a are the global orientation before and after orientation control, respectively,
koc is a stiffness, and ✓g is the goal orientation. This goal angle can be a particular value, a

37

scripted trajectory, or other user-defined criteria, such as the current velocity direction. The
ordering of filters is important. For example, applying this filter before updating particle
velocities leads to the computed velocities having an unwanted ”spin” component.

4 .2 .2 .5 F lipp ing Sprites
In most sprite-based applications, characters can turn around simply by reflecting the

sprite about a vertical axis. Incorporating such a discontinuous change in our physics-based
simulator requires care to maintain plausible elastic simulation. Since the velocity at the
next timestep is computed as pn+1 _ pnv n+1 = P---- — ^ (4.15)dt v !
after flipping the sprite, we adjust the previous positions, pn so that velocities are not
changed by flipping. Artistically, this gives a sense of weight to objects as they change
direction; physically, it preserves linear momentum.

4.3 Results
To illustrate our authoring process we consider the classic animation task of creating a

bouncing ball with squash and stretch. Figure 4.2 shows the simple rig we use to create
the example poses in Figure 4.3. Figure 4.3 also visualizes the three line segments that
make up the example manifold, which allows interpolation between the undeformed pose
and either the squashed or stretched poses. In this example, the undeformed pose is set as
the equilibrium pose. In addition, we use energy adjustment to move the selected example
toward the squashed pose, which is otherwise largely ignored. Velocity-based adjustment
pushes the selected example toward the stretched pose when the ball is moving quickly,
and global orientation control aligns the pose with the velocity direction. Finally, global
momentum adjustment allows the ball to bounce, appearing to “come alive” and move of
its own volition. Figure 4.4 shows a variety of behaviors that can be achieved by changing
the parameters.

We have also incorporated dynamic sprites into several simple games. In this context,
the dynamic sprites enhance both visual complexity as well as gameplay compared to static
objects or previous example-based approaches.

In our first game, players attem pt to navigate a character vertically towards a finish
line by jumping on a sequence of platforms. The player can control the rest pose of the
character and apply left and right forces while in the air. W ith dynamic sprites, it is easy to
create a variety of platform types, as shown in Figure 4.5, that look and behave differently
based on the underlying examples and settings for the artistic controls.

38

For example, the brick platforms are mainly rigid and provide little vertical boost after
impact, while the I-beams bend elastically when the player lands. The rope platforms are
softer than the I-beams and do not spring back to their original shape as quickly.

In the second game, players position I-beams, catapults, and other objects to direct
a passive object (e.g. a bouncy ball) that is dropped from above towards a target. Our
dynamic sprites can be used to animate a variety of game objects ranging from sturdy brick
obstacles, to an energetic catapult and launching pad. A sample level is shown in Figure
4.6.

In our third game, ragdoll figures are fired from a cannon toward a target while various
boxes and I-beams serve as obstacles. Sample frames are shown in Figure 4.7.

We represent all game elements as dynamic sprites with different behaviors: the cannon
contracts on firing; the character is drawn to an elongated, “superman” pose when moving
quickly but assumes a fetal position upon impact; the I-beams wiggle elastically due to
bent example poses; and energy adjustment draws the boxes to a variety of poses that are
largely orthogonal to the external forces. As can be seen in the figure and accompanying
video, our dynamic sprites generate richer deformations than shape matching or standard
example-based physics, where the red poses are not activated. Unless a large number of
particles are perturbed toward an example pose, the manifold projection does not move
the current rest pose significantly through the manifold; the bulk of the material, which
is undeformed, has lowest cost for the current rest pose, especially for the stiff materials
we desire. The “rotation cluster” approximation we use for efficiency exacerbates this,
since only the representative particles are considered during our manifold projection step.
However, even when considering all particles during the projection step, it is difficult to
trigger example poses through local collisions when using stiff materials.

In the final game, our ragdoll character is now actively controlled using a 2-level finite
state machine (see Figures 4.8 and 4.9). The walking behavior state machine moves the
equilibrium pose through 6 keyframe poses on a manifold with a loop topology. Unlike in
traditional physics-based controllers, we did not need to consider balance and robustness of
the character’s locomotion; global orientation control keeps the character upright.

When the user wants to jump, first the character must crouch to prepare, and then can
spring upward into a standing pose, similarly to the snake character in the platformer game.
The character’s inflatable jacket can also be used to shoot him further up in the air, and
allow him to float down slowly. The floating behavior slowly blends from the inflated pose
to the neutral pose. The position in the pose manifold also determines the magnitude of

39

a drag force on the man as he slowly floats to the ground. Figure 4.10 shows the ragdoll
using a bouncy I-beam to help him float across a dangerous ball pit.

Our results exhibit many behaviors that might be considered artifacts in other physics-
based approaches. However, many of these are both desirable, and easily controllable by
an artist. For example, the “jiggliness” and excitability of the I-Beams in the cannon game
are easily adjustable from passive and stiff, to energetic and oscillatory, as seen in the
accompanying video. In the same way that cartoon drawings do not accurately reflect their
real-world inspiration, our physics-inspired (nonphysical) behavior is a stylized exaggeration
of real-world motion.

Our method does exhibit some behaviors that we consider to be artifacts. Some of the
blended poses seem unnatural or undesirable. This can be alleviated to some extent by
including more in-between poses in the manifold. Contact handling sometimes introduces
oscillations near collisions, especially during resting contact. Finally, the global rotations
applied by our orientation control can be visually jarring. A first-order spring-based control
method may not be adequate to achieve smooth, subtle rotation control.

Timing information is shown in Table 4.1.

4.4 Conclusion
Our current system allows artists to turn sketches of example poses into dynamic,

physical, reactive objects and actively controlled characters. We see several promising
directions for future work. In our current pipeline, objects are posed using a warping system.
This is not a requirement of the method; adding support for automatic registration (e.g.
[Sykora et al. 2009]) would allow us to use traditional sprite sheets as input. While we believe
that our parameters are intuitive, it might still be interesting to investigate automatic tuning
- e.g. changing momentum-preservation based on an artist-sketched bounce. Similarly, it
may be difficult for users of our system to understand if a behavior they are seeing results
from badly-tuned parameters or the need for more example poses; this is also a question
that we may be able to answer algorithmically. Because we focus on sketched input, our
technique works only in 2D; however, we believe that the pose manifold concept and the
control methods we propose should generalize to 3D.

Overall, we find that our system sits at an interesting point in the design space of
methods for creating dynamic content. By directly connecting artist-created poses with
physical properties, dynamic sprites enable artists to create more interesting and detailed
physics-based characters and objects with less effort than either traditional sprite sheets

40

(which sacrifice physical realism) or rigging and animation systems (which require several
different areas of expertise).

41

F ig u re 4.1. Traditional sprite sheets capture all the poses a character or object can assume
in a game. (Example from “Age of Umpires” ; http://hockey.spacebar.org/. Copyright Tom
Murphy VII, used with permission.)

F ig u re 4.2. The rig used to generate poses of the cartoon ball. The yellow dots are control
handles.

http://hockey.spacebar.org/

42

• ------ • — o o
F ig u re 4.3. The example poses and the simplicial complex used to create a stylized
bouncing ball.

43

r
F ig u re 4.4. Three stylized behaviors generated by our system.

F ig u re 4.5. These dynamic sprites platforms cover a broad range of behaviors.

44

F ig u re 4.6. The user places the catapult and springy platform to help the ball reach the
goal.

F ig u re 4.7. From left to right: Shape matching only, shape matching with examples, 3
different dynamic sprites.

45

F ig u re 4.8. W ith 3 example poses and their reflections, a simple manifold, and a finite
state machine, our system generates a lively, stylized walking behavior.

46

Figure 4.9. A simple state machine transitions between behaviors based on user input,
the ragdoll’s state.

Figure 4.10. Our ragdoll uses a bouncy I-beam like a trampoline to gain enough sideways
momentum to float over a pit of balls.

47

T able 4.1. Timing results for selected examples (ms per 60Hz frame).
Platform

Game
Puzzle
Game

Launcher
Game

Neighborhood Shape
Matching

3.3 2.2 6.0

Global Shape
Matching

0.3 0.1 0.1

Manifold Projection 5.0 8.9 2.0

Collisions 0.7 13.2 0.3
Other 1.2 1.0 0.5

CHAPTER 5
EXAMPLE-BASED PLASTIC DEFORMATION

OF RIGID BODIES
5.1 Introduction

One of the greatest successes of physics-based animation is its widespread use for creating
scenes containing large-scale destruction. The materials in these scenes are often man-made,
carefully engineered and designed to be nearly rigid. Ensuring that building foundations
remain stable, or that airplane wings maintain their shape in the presence of strong winds is
vital to ensuring safety. The assumption of rigidity breaks down, however, when materials,
well... break. During failure, man-made materials such as steel and concrete exhibit fracture
and plastic deformation. For computer graphics applications, these failure cases are the most
important - and most challenging - to animate.

Fracture is well-studied, both in engineering, and in computer graphics. Methods based
on continuum mechanics and finite elements can produce realistic crack patterns and prop­
agation. These methods are computationally expensive and in most cases model materials
as elastic bodies. For mostly rigid objects, spending computational resources on elasticity
calculations is essentially wasted effort, as most vibrations occur at frequencies that we
cannot see; rigid body simulation can capture almost all of the important dynamics of
the system. Consequently, geometric or artist-guided approaches to fracture are commonly
employed in practice [Weinstein et al. 2008; Zafar et al. 2010; Criswell et al. 2010; Budsberg
et al. 2014]. We adopt a similar approach to fracture: a nonphysical, artist-guided technique
that integrates well with our plasticity model.

In comparison to fracture, plasticity is relatively poorly understood. Metalworkers
have had some intuition about the properties of plasticity for centuries, heating, cooling,
and folding the blades of their swords to maximize their strength. Analytical models,
especially in graphics, are still based on heuristics. Measuring physical parameters is difficult
because the materials must be destroyed during measurement. Also, in many engineering
applications, analysts are concerned only with whether or not a material may fail; can they
expect a particular component to withstand its environment or not? In computer graph­

49

ics, methods based on continuum mechanics are commonly used to animate elastoplastic
materials. Again, this requires performing expensive, and frequently unnecessary, elasticity
calculations. To ensure robustness, plasticity must either be limited, or the simulation
domain must be periodically resampled or remeshed.

Rather than adapting engineering tools and techniques for use in graphics, we approach
the problem from a different perspective: in this paper, we present a method specifically
designed to animate destructive scenes, leveraging artist expertise and experience as much
as possible. Our method is built on a new variant of linear blend skinning, example-based
deformation, and rigid body dynamics. Artists create a simple rig for their simulated
objects, then deform the object using this rig to create characteristic deformations. At
simulation time, object dynamics are computed using an unmodified rigid body simulator.
The objects are deformed by mapping impulses computed by the rigid body simulator to
a spatially varying blend of the example deformations. This spatial variation allows us to
create a wide range of deformations at run time with only two or three example poses.

The major contributions of this work are:
• An example-based deformation model based on linear blend skinning with a spatially

varying blend of examples

• A method for mapping from discrete rigid body impulses to deformations

• A method for incorporating energy dissipation due to plastic deformation in system
dynamics by modulating the coefficient of restitution

• A prescoring fracture approach that complements our deformation model.
The end result is a method that leverages existing artist expertise with rigging and

skinning models; provides intuitive control over deformations by allowing artists to choose
example deformations; and leverages common, efficient rigid body simulators to compute
dynamics.

5.2 Method
To author assets that can be simulated using our technique, artists begin by rigging

their model with bones.1 Then, they use this rig to deform their input mesh into a set of
characteristic example poses. We describe the particular methods used in the authoring
phase of our pipeline in Section 5.3. An overview of our method is shown in Figure 5.1.

1In this discussion, we use the word “bone” generically to refer to the rig’s degrees of freedom.

50

Objects in our system are modeled as rigid bodies, with a shape computed via modified
linear blend skinning. Each object in our system stores standard rigid body properties:

• density, p, and mass, m (both constant during simulation)
• inertia tensor, I
• linear position, xcom, and momentum, p
• orientation, O, and angular momentum, L
• coefficient of restitution, Cr .

The geometry of our object is modeled using a tetrahedral mesh with N vertices. The
skinned vertex positions are determined by the transformations of the B bones. The user
provides a set of E example poses for the object, where each example contains a rotation
and translation for each bone. To track skinning properties over time, each object stores

• undeformed mesh vertex positions, u 2 RNx3

• skinned mesh vertex positions, x 2 RNx3

• skinning weights, W 2 RNxB
• example weights, E 2 RNxE
• deformation accumulator, A E 2 RNxE.

u and W are constant, while the remaining properties change during simulation. Other
material parameters are described below.

5.2.1 Skinning
Our method supports stylized deformation of object geometry while producing plausible

local deformations by using a modified version of linear blend skinning. In traditional linear
blend skinning, skinned vertex positions are computed as

where Tb is the current transformation of bone, b. To incorporate artist examples, we
restrict bone transformations, Tb, to interpolations of the bone transformations in the
provided examples, T be. We store barycentric coordinates e 2 RE that describe how to
combine the example transformations. We split each transformation into a translation and
rotation; translations are combined using linear interpolation and rotations are combined
using QLERP [Kavan and Zara 2005].

Unfortunately, skinning the whole object using a single set of barycentric weights has
two major drawbacks. First, the example deformations are global, while we expect plastic

(5.1)

51

deformation due to collision or other interactions to be somewhat localized. Second, as
discussed in Chapter 4, blending many different poses simultaneously gives unintuitive
results that poorly match the provided example poses.

Our solution to these problems is to allow the barycentric weights, e, to vary spatially
over the object, storing the weights for each mesh vertex in the matrix E. This approach
naturally supports local deformations, solving the first problem. We found that this ap­
proach also solves the second problem in most of our examples because interactions in the
simulation tend to locally induce deformations that blend a small number of examples,
avoiding “muddy” blends.

In traditional deformable body simulation, each vertex has its own positional degrees
of freedom and elastoplastic response is computed by analyzing stresses. Since we model
our objects as rigid, this approach is unsuitable. Instead, we map the impulses generated
by the rigid body constraint solver to deformations. Specifically, an impulse j i at vertex i

smooth deformations, we propagate this change to nearby vertices using a smoothing kernel.
An overview of this process is shown in Figure 5.2.

5 .2 .2 .1 P ro jection
To compute the deformation at a single vertex, we seek to find a change in barycentric

coordinates, A e, that would move the vertex in the direction of the applied impulse. We
first map the impulse to a desired change in position by

where a is a scaling parameter and fi is a threshold magnitude, preventing deformation, for
example, during resting contact.

Next we compute the change in example weights that best matches this desired change
in position. We can construct a Jacobian matrix whose columns represent the change in
skinned position of vertex i with respect to change of example weights,

5.2 .2 Im pu lse-based D eform ation

is mapped to a change in the barycentric coordinates in row i of the matrix, E. To ensure

A xi = a m ax(||ji|| — fi, 0) ji, (5.2)

Column e of this matrix is the change in skinned position for vertex i due to a change in
example weight e. Using Equation 5.1, we can see

(5.4)

52

where the transformation, Tb, has been separated into its translational, tb, and rotational,
R b, parts.

Using a Jacobian to map from one coordinate space to another is a common strategy.
For example, in character animation, the principal of virtual work maps forces in Cartesian
space to torques in joint space by applying the Jacobian transpose [Pratt et al. 2001]. We
could employ a similar strategy by computing a mapping using

A e, = J T A x,, (5.5)

which could be viewed as a transformation to generalized coordinates. If J , is full-rank
and orthonormal, this change of basis works well. However, for most sets of example
deformations, J j is likely to have neither of these features. Small, or zero, singular values
in J j cause some impulses to result in little or no deformation; if there are large singular
values or if the columns of J j form an overcomplete basis, the result is deformations that
are too large. The pseudo-inverse does not completely address these issues.

Instead, we advocate a mapping such that the magnitude of A e j is proportional to
A x j , regardless of the direction of the impulse, while still ensuring that the deformation
is plausible. To accomplish this, we compute the SVD of the Jacobian, J j = U S V T.
In our setting, the matrices computed by the SVD have an intuitive meaning: the matrix
U 2 R3x3 is a rotation matrix that encodes the preferred world space directions that trigger
deformation. The matrix V encodes the deformation modes at that vertex, while S encodes
their relative weights. Using this intuition, we compute the change in example weights as

(S U T A x,'
|| (S U TA x,) ||

Because of the normalization (and unit magnitude columns in V), the change is alway
proportional to the desired change. The direction and weighting between modes is taken
into account by the matrices S and U. In the case that the impulse is orthogonal to the
columns of J ,, this approach will change the direction of the deformation to match the
examples. If the columns of J , form an overcomplete basis, this approach computes weights
that balance between the different examples.

5 .2 .2 .2 P rop agation and A p p lica tion
Once we compute A e for the vertices where impulses have been applied, we propagate

the change to nearby vertices using a smoothing kernel. However, we must be careful when
choosing a distance metric. Distances should be shape aware, which rules out Euclidian

A e, = ||A x ,||V , , (_ j(„ . (5.6)

53

distances. Because our skinning weights are smooth by design, we considered computing
weights between coordinates in skinning weight space. However, we found that distances
between points in this space were close to a step function in our examples. Approximate
geodesic distances, computed using a few passes of Dijkstra’s algorithm, work well, and are
used in all of our examples. We update each row of the matrix A E by

A E j + = * () A ei (5.7)

where the y is the radius of the kernel, *, and represents a user tunable parameter. We use
the cubic kernel

*(x) = I - 3x2 + 1 : ^ (5.8)0 : otherwise.
We emphasize that this smoothing is applied to the example weights not to the rigid body
impulses. Smoothing the impulses would lead to “dent-like” behavior while smoothing the
example weights more closely follows the artis t’s intent.

Large impulses could result in large, instantaneous deformations. We address the
resulting discontinuities by deforming our objects over time, rather than at the instant
of impact. Specifically, we update the barycentric matrix by

E + = AAE , (5.9)

and then apply A E *= (1 - A), where A 2 [0 , 1]. This geometric series falls off quickly to
negligible values, but allows plastic deformations to occur over several frames of animation.
Please see the video for a comparison between several values of A. To ensure that the rows
of E remain barycentric, we clamp negative values to 0 and then scale each row so that
its entries sum to one. This normalization discards deformation that would cause us to
extrapolate outside our example space.

This delayed plasticity is related to the concept of plastic creep. When a material is
held in a deformed state, plastic deformation accumulates over time, even though such
deformation would be (almost) entirely elastic if the deformation occurs over a short period
of time. Silly putty, for example, exhibits this behavior: it will bounce elastically, but
well deform plastically if held against the ground. Since objects in our system are treated
as rigid and experience instantaneous impulses at a small (and changing) set of contacts
rather than sustained deformations, we cannot directly model creep. However, like creep,
out approach accumulates plastic deformation over time.

Once we have updated example weights, we compute new skinned vertex positions, x .
We translate and rotate x so the local center of mass is at the origin, and is aligned with

54

the principal axes of inertia, as is required by our rigid body simulator. We also update the
moment of inertia to account for changes in mass distribution.

5.2 .3 D yn am ics
As outlined in Figure 5.1, object dynamics are computed using an unmodified rigid body

simulator (BulletPhysics in our implementation [Coumans 2014]). Each timestep is split
into two phases, deformation and time integration. Before the deformation step, we save
the rigid body state (xcom, p, O, L) of each object. In the deformation phase, the simulator
is stepped forward. The impulses computed during this step are used to deform the objects
as described in Section 5.2.2.

Before the time integration step, the rigid body state is reset to its saved value, but the
the shape is updated to account for the deformation step. The time integration step simply
calls the rigid body simulator to get new positions and momenta.

This two-step scheme has two convenient features: first, it requires no modifications to
the rigid body simulator; and second, the rigid body solver is given a full timestep to resolve
any new collisions that may be caused by deformation.

5 .2 .3 .1 R e stitu tio n M odification
During a violent collision, part of the kinetic energy of the system is dissipated as

plastic deformation. This important aspect of plasticity is exploited by auto manufacturers,
for example, who engineer components to crumple, reducing impact on passengers. We
model this phenomenon by modulating the coefficient of restitution, Cr, while objects are
deforming. We found that the scaling function,

I|AE ^)C r*) , (5.10)

where C* is the default coefficient of restitution, and p and v are user controls, provides
suitable damping. The second term ensures that Cr increases slowly after collisions, avoiding
jittering artifacts. We experimented with several functions for the third term, such as a
clamped linear falloff, and preferred the exponential function over the alternatives.

5 .2 .4 Fracture
Our implementation uses a prescoring approach to fracturing. The artist separates the

input tetmesh into pieces using cutting planes, and we record which tetrahedra are split.
For each piece, the collision geometry consists of the faces of the uncut tetrahedra, the
triangulated cutting surfaces, and the triangulated, clipped faces of the cut tetrahedra as

55

shown in Figure 5.3. In our implementation, we restrict cuts to be planar and use Triangle
to compute the cut boundary and triangulate its interior in 2D space [Shewchuk 1996].
In principle, however, any technique that produces a triangulated cutting surface, such
as Voronoi-based fracture, could be used. The cut tetrahedra are duplicated to simplify
skinning and constraint generation, but are not used for collision detection directly.

In our initial implementation, we did not split the cut tetrahedra, assigning each tet to
a piece based on which side of the cutting planes its barycenter was on. Unfortunately, this
approach caused problems for the collision solver in Bullet, which generated unreasonably
large impulses to separate pieces after fracture. We suspect this is due to the dramatically
varying normals of the tetrahedra faces, as well as the large number of contacts near the
fracture plane. Using the volumetric tetrahedra for collision detection (rather than a surface
triangle mesh) did not solve this issue, and ran significantly slower. Our cutting approach
also improves the final rendered appearance compared to the semiregular jaggedness of the
uncut tetrahedra.

To incorporate fracture into object dynamics, we generate point-to-point constraints for
each tetmesh vertex shared by two pieces. We use Bullet's constraint threshold feature to
automatically break them when enforcement impulses violate a threshold. We only allow the
constraints to be broken during the deformation phase of the timestep. The masses of these
vertices are divided between the shared pieces. Skinned positions of the vertices on the cut­
ting surface are computed by barycentric interpolation of the enclosing tetrahedra, though if
coarse tetmeshes are used, the vertices could use interpolated skinning and example weights,
then compute positions via linear blend skinning. The only modification required to the
deformation procedure is to consider the constraints when computing approximate geodesic
distances: active constraints are considered zero-length edges between vertices.

5.3 Authoring Simulation Assets
We leverage recent research contributions for tetrahedral meshing, rigging, and skinning

to automate as much of the authoring pipeline as possible. Artists begin by creating a closed
triangle mesh. Next, they position a set of control bones and handles within the mesh.
Once the handles are positioned, we automate the process of assigning skinning weights to
mesh vertices by using bounded biharmonic weights [Jacobson et al. 2011]. These weights
are computed through a constrained optimization, which requires a tetrahedral mesh of
the object. Because we expect skinning weights to vary smoothly across the mesh, we
compute a coarse, enclosing, approximating tetrahedralization using the approach of Stuart

56

and colleagues [Stuart et al. 2013], rather than using a conforming tetrahedral mesh as
Jacobson and colleagues did. The meshing algorithm begins by tetrahedralizing a body
centered cubic lattice that encloses the triangle mesh, then iteratively adjusts vertices of the
mesh to match surface geometry. We ensure that the control handles specified by the artist
correspond to vertices in the tetrahedralization by initially snapping the nearest vertices in
the lattice to the handle locations and treating these vertex locations as constrained during
the optimization.

Once the mesh is rigged, the artist manipulates the control handles to produce char­
acteristic deformations. We use the fast automatic skinning transformations approach of
Jacobson and colleagues [2012] to automate rotational degrees of freedom.

5.4 Results and Discussion
To demonstrate the effect of the material parameters in our system, we modify the

parameters in a simple scene with 3 barrels being dropped on a loading dock. As seen
in the accompanying video, it is possible to create widely varying results by tuning these
parameters. Figure 5.4 demonstrates the effect of varying the kernel radius, y .

We also animated three more complex scenes that may appear in movies or games. In
the first, a reckless drive crashes into a stack of barrels and a wall, wrecking the car and
barrels. The barrels all have the same material properties but display a wide variety of
deformations due to the different impulses applied. Sample frames from the animation and
the example poses are shown in Figure 5.5. Figure 5.6 shows how the example weights, E,
vary over the object meshes.

In the second, a bridge collapses under the weight of five shipping containers falling
onto it, as shown in Figure 5.7. The bridge was prefractured with constraints automatically
broken during the simulation. Our deformation model produces plausible deformations
for both the containers and the bridge, even though they vary greatly in scale. While
generating this example, the artist was unsatisfied with the bridge deformation in the
preliminary results, so he added an additional example pose, resulting in significantly
improved results. The ability to iterate quickly, including changing example deformations
after seeing preliminary results, is a key advantage of our approach.

Finally, we animate a scene from a space battle. A fleet of small ships crashes into a
larger one, causing minor damage to their foe, but completely destroying their fleet. The
wings bend, twist, and break apart due to the impacts. Sample frames are shown in Figure
5.8.

57

5.4.1 P erform ance
The speed of our method is closely tied to the performance of the underlying rigid body

simulator. Because each of our timesteps requires two calls to the rigid body simulator as
well as our deformation computation, our simulator is 2.5 to 5 times slower than rigid body
simulation, depending on the scene. For scenes with many interacting objects, such as the
barrel pyramid in the car crash scene, collision detection dominates run time. The most
expensive parts of our deformation model are computing approximate geodesic distances
and performing skinning. In our implementation, these are multithreaded on the CPU,
but a GPU-based implementation is likely to provide a significant speed boost, as both are
very data parallel computations. These are computational bottlenecks because they affect
every vertex of our volumetric mesh (or in the case of approximate geodesic distances, a
subset that depends on kernel radius, 7). The car crash scene was the slowest scene due to
the complex collision configuration. The average simulation time for that example was 1.5
seconds per 60 Hz frame on a Macbook Pro. For that scene, 43% of computation time was
spent performing rigid body simulation, while 55% was spent computing deformation and
skinning. The other scenes simulated at more than one frame per second.

While our runtimes would not be acceptable for games, by reducing mesh resolution and
offloading computation to the GPU, we expect our method could run at interactive rates.

5.4 .2 L im itation s and Future W ork
Because the space of deformations used in our system is so large, depending on the

provided examples and parameters, objects may deform into self-intersecting configurations.
This is most common when the plasticity scaling parameter, a, is large and the kernel
radius, 7 , is small. Because the mesh is only used for collision detection and rendering,
these interpenetrations do not cause stability issues during simulation. Treating objects as
“two-sided” during rendering further mitigates this problem.

Integrating our approach into a full featured modeling application would allow for greater
flexibility. For example, users could paint various parameters over the mesh to create weak
or strong areas. Such tools could also provide more flexibility for fracturing objects.

Our examples deliberately use a small number of example deformations, reducing the
burden on the artist. If more examples were used, the basis formed by the columns of Ji
would be overcomplete and the mapping in Equation 5.6 would strike a balance between the
input examples. It would be interesting to explore ways of computing the examples weights
in such underconstrained scenarios that satisfy secondary goals, such as smoothness of the

58

example weights or favoring using a single example over an average of all examples. Abe
and Popovic [2006] might provide some guidance in this direction.

The objects in our results are all treated as volumetric solids. Even objects, like the
barrels, that might be better approximated as thin shells have their interior volume meshed.
While this approach worked well for our examples, extending our techniques to thin shells
remains an interesting area for future work. Relatedly, we make no effort to preserve the
volume of our objects. Even if the artist’s examples maintain volume, interpolations of the
examples may not. It would be interesting to consider volume preservation as a secondary
goal when the artist's examples form an overcomplete basis.

Due to the smoothness of linear blend skinning, it is difficult to achieve multiple scales
of deformation simultaneously. For example, while the bridge our example demonstrates
large-scale bending and twisting, it lacks smaller scale deformations such as denting or
crumpling. Effects shots in film are often created by layering multiple simulations, so addi­
tional deformations could be added as a postprocess; however, incorporating an additional
surface deformation model may produce more plausible results.

One major limitation of our method is that, like most other simulation techniques, the
simulation must be adjusted by changing material parameters and initial conditions. While
our example-based approach and intuitive parameters make it easier to author a simulation,
it may still be necessary to tune parameters and rerun simulations multiple times to achieve
a desired result. Allowing users to more directly adjust simulation output is an interesting
direction for future work.

In summary, we have presented a technique for animating the failure of near-rigid man-
made materials. Our primary contribution is an example-based plasticity model based on
linear blend skinning that leverages rigid body simulation for dynamics. Our method is
fast, artist friendly, and integrates easily into existing pipelines.

59

Authoring

e h h -

Ms
Time integration

Step RB simulator

%
Step RB simulator

Figure 5.1. Overview of the authoring and simulation process.

Impulses from
RB simulator

Project onto examples
using normalized Jacobian

Update
example weights

Propagate to
neighborhood

Figure 5.2. Overview of the deformation process.

Figure 5.3. A fracture plane creates two new pieces. The surface triangles of the cut
tetrahedra are clipped against the cutting plane. Constraints are created between the two
pieces at shared vertices.

60

F ig u re 5.4. The kernel radius, 7 , controls how far deformations propagate. Smaller values
generate denting behavior, while larger values result in deformations that more closely
match the example poses.

F ig u re 5.5. A reckless driver crashes his car into a stack of barrels. An artist provided
example deformations of the barrel (left). At runtime, our simulator maps collision impulses
to deformations that match the style of the provided examples while remaining physically
plausible.

61

F ig u re 5.6. Colors represent the matrix, E, showing how the example weights vary over
the objects. White vertices are undeformed; red and green correspond to the two input
examples.

62

F ig u re 5.7. A bridge collapses as shipping containers fall onto it.

63

F ig u re 5.8. A small fleet of spaceships crashes into an enemy vessel.

CHAPTER 6
CONCLUSION

Though originally developed for engineering applications, physical simulation has proven
to be a powerful tool for animation. In this dissertation, we showed that by reevaluating
design decisions made for engineering applications, we can create tools that are easier
for artists to work with and enable the creation of animations not feasible with existing
techniques.

We first developed a point-based method for animating elastoplastic solids. Our tech­
nique, deformation embedding, allows us to animate objects undergoing extreme elastic and
plastic deformations without volumetric meshing. This reduces requirements for artists
modeling assets to be simulated: as long as we can reliably tell inside from outside, we
can sample its interior with points and animate it using our simulator. Since artists often
have experience working with point primitives, for example particle systems, they can use
familiar tools to postprocess simulation results.

Next we developed Dynamic Sprites, a tool for creating stylized, animated objects
suitable for interactive applications. Using example-based simulation as a starting point,
we developed a flexible set of controls that allow artists to create stylized, exaggerated, and
even nonphysical animations. Traditional simulation tools for engineering were certainly
not developed with these types of applications in mind, so our approach required somewhat
drastic changes to traditional simulation techniques. However, our technique still leverages
physics to naturally handle some aspects of timing and collision response; this foundation
is what makes our approach suitable for interactive applications containing unpredictable
inputs and interactions.

Finally, we developed a method for animating destruction that focuses computational
resources on the most visually important features: rigid motion, plasticity, and fracture. Our
example-based plasticity model leverages artist expertise in rigging and skinning allowing
intuitive artistic control over deformations in the resulting animations. Dynamics are com­
puted using an unmodified rigid body simulator, so our technique is simple to implement,
easy to integrate with existing pipelines, and computationally efficient. Our results show

65

that our method can be used to animate the types of destructive scenes common in film.

6.1 Future Directions
While we have demonstrated that our methods can be used to create stylized animations,

we played the role of both researcher and artist for the examples in this dissertation. To
develop methods that are optimized for artists and appropriate for production use, we must
bring artists into the loop to validate and critique our designs. In particular, user studies
can help us to understand which features of our techniques are improvements over existing
tools, which features are regressions, and which artist challenges remain unaddressed.

A simple user study would entail asking artists to create an animation using both existing
tools and our prototypes and comparing their experiences with each, for example using a
concept art sketch as input. Qualitative results would be based on interviews both during
and after the artist completes the task, while quantitative comparisons would be based on
data such as the total time taken and the number of iterations required with various tools.
To mimic production-like challenges, we could require the final animations to satisfy some
“director constraints” such as the final location of objects.

In addition to validating the techniques in this thesis, there are a number of exciting
further research opportunities for artist-guided animation tools. During the past decade,
the internet has exploded as a place to share creative works as evidenced by the popularity
of services like Flickr, Youtube, Reddit, and Vine. Armed with even the simplest content
creation tools (for example a tool for putting funny text on a picture of a cat), users can
create and share content that can inform, entertain, and inspire. By creating tools that
let these users create interactive works, we can enable an entirely new way for people to
express themselves. While the work presented in this dissertation is a start to making these
tools a reality, there are still significant challenges to overcome.

Allowing users to provide example shapes is an effective means of artistic control;
however, open questions about how best to use these shapes for simulation remain. Modal
analysis has proven to be a valuable dimensional reduction technique for elastic simulation,
speeding up integration by reducing the number of necessary degrees of freedom. This
technique could prove to be useful for artist-guided simulation where the important degrees
of freedom are hand-crafted, rather than computed. However, most graphics applications
use linear modal analysis, assuming small deformations, whereas artists are likely to want
extreme deformations where this assumption breaks down. Investigate how artist created
modes and analytic or data-driven modes can be used to create a compact, expressive set
of degrees of freedom that can be simulated efficiently is an exciting research direction.

66

While the work in this dissertation used example deformations as a means for artists to
specify desired behavior, there may be other inputs that are more intuitive and expressive
for artists. In particular, deformations do not provide useful information about how the
object’s global position and orientation should change over time. In our work with Dynamic
Sprites, we allowed the user to control this via a set of simulation parameters, but allowing
a user to specify characteristic trajectories in addition to characteristic deformations would
help artists specify object behaviors in an intuitive way. Again, iteration with trained artists
is necessary in order to validate that we are providing the most intuitive controls.

As 3D display technology improves and becomes inexpensive, there will be a strong
demand for interactive, animated content for these devices. We may be able to leverage
emerging input technologies such as hand and finger tracking to create such 3D content.
Authoring tools that allow users to describe motions they wish to see, with their own, real-
world motions, will greatly lower the barriers to entry for generating compelling animated
content.

REFERENCES
Abe, Y. and Popovic, J. (2006). Interactive Animation of Dynamic Manipulation. In:

Proceedings of the 2006 A C M SIGGRAPH/Eurographics Symposium on Computer A n­
imation. SCA ’06. Vienna, Austria, pp. 195-204.

Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. (2007). Adaptively Sampled Particle
Fluids. In: A C M Trans. Graph. 26.3, p. 48.

Ando, R., Thurey, N., and Tsuruno, R. (2012). Preserving fluid sheets with adaptively
sampled anisotropic particles. In: IEEE Trans. Vis. Comp. Graph. 18.8, pp. 1202-1214.

Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. (2007). Fracturing Rigid Materials. In:
IEEE Transactions on Visualization and Computer Graphics 13.2, pp. 370-378.

Baraff, D. and Witkin, A. (1998). Large Steps in Cloth Simulation. In: Computer Graphics
(Proceedings of S IG G RAPH 98). Annual Conference Series, pp. 43-54.

Bargteil, A. and Jones, B. (2014). Strain Limiting for Clustered Shape Matching. In:
Proceedings of the A C M SIG G RAPH Conference on Motion in Games.

Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. (2007). A Finite Element Method
for Animating Large Viscoplastic Flow. In: A C M Trans. Graph. 26.3, p. 16.

Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. (2007). TRACKS: Toward
Directable Thin Shells. In: A C M Trans. Graph. 26.3, 50:1-50:10.

Bhattacharya, H., Gao, Y., and Bargteil, A. W. (2011). A Level-set Method for Skinning
Animated Particle Data. In: Proceedings o f the A C M SIGGRAPH/Eurographics Sym ­
posium on Computer Anim ation . Vancouver, British Columbia.

Bridson, R., Marino, S., and Fedkiw, R. (2003). Simulation of Clothing with Folds and
Wrinkles. In: The Proceedings o f the A C M SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 28-36.

Budsberg, J., Zafar, N. B., and Alden, M. (2014). Elastic and Plastic Deformations with
Rigid Body Dynamics. In: A C M SIG G RAPH 2014 Talks. SIGGRAPH ’14. Vancouver,
Canada, 52:1-52:1.

Clausen, P., Wicke, M., Shewchuk, J. R., and O’Brien, J. F. (2013). Simulating Liquids
and Solid-Liquid Interactions with Lagrangian Meshes. In: A C M Trans. Graph. 32.2.
Presented at SIGGRAPH 2013, 17:1-15.

Clavet, S., Beaudoin, P., and Poulin, P. (2005). Particle-based Viscoelastic Fluid Simulation.
In: The Proceedings of the A C M SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 219-228.

68

Cole, B. (2011). Kali: High Quality FEM Destruction in Zack Snyder’s Sucker Punch. In:
A C M SIG G R A P H 2011 Talks. ACM, p. 40.

Coumans, E. (2014). Bullet Physics Library. h t tp : / / b u l l e tp h y s ic s .o r g / .
Criswell, B., Smith, J., and Deuber, D. (2010). Transformers 2: Breaking Buildings. In:

A C M SIG G R A P H 2010 Talks.
Fike, J. and Alonso, J. (2011). The Development of Hyper-dual Numbers for Exact Second-

derivative Calculations. In: A IA A paper 886.
Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. (2009). A Point-based Method for

Animating Elastoplastic Solids. In: Proceedings of the A C M SIGGRAPH/Eurographics
Symposium on Computer Animation. New Orleans,Louisiana.

Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. (2004). A Method for Animating
Viscoelastic Fluids. In: A C M Trans. Graph. 23.3, pp. 463-468.

Goktekin, T. G., Reisch, J., Peachey, D., and Shah, A. (2007). An Effects Recipe for Rolling
a Dough, Cracking an Egg and Pouring a Sauce. In: A C M SIG G R A P H 2007 sketches,
p. 67.

Hegemann, J., Jiang, C., Schroeder, C., and Teran, J. M. (2013). A Level Set Method for
Ductile Fracture. In: Proceedings of the 12th A C M SIGGRAPH/Eurographics Sympo­
sium on Computer Animation. ACM, pp. 193-201.

Irving, G., Teran, J., and Fedkiw, R. (2004). Invertible Finite Elements For Robust Sim­
ulation of Large Deformation. In: Proceedings of the A C M SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 131-140.

Jacobson, A., Baran, I., Popovic, J., and Sorkine, O. (2011). Bounded Biharmonic Weights
for Real-time Deformation. In: A C M Trans. Graph. 30.4, 78:1-78:8.

Jacobson, A., Baran, I., Kavan, L., Popovic, J., and Sorkine, O. (2012). Fast Automatic
Skinning Transformations. In: A C M Trans. Graph. 31.4, 77:1-77:10.

Jakobsen, T. (2001). Advanced Character Physics. In: Game Developers Conference, pp. 383­
401.

Kavan, L. and Zara, J. (2005). Spherical Blend Skinning: A Real-time Deformation of
Articulated Models. In: 2005 A C M SIG G RAPH Symposium on Interactive 3D Graphics
and Games, pp. 9-16.

Kavan, L., Gerszewski, D., Bargteil, A., and Sloan, P.-P. (2011). Physics-inspired Upsam­
pling for Cloth Simulation in Games. In: A C M Trans. Graph. 30.4, 93:1-93:9.

Koyama, Y., Takayama, K., Umetani, N., and Igarashi, T. (2012). Real-time Example-based
Elastic Deformation. In: Proceedings of the A C M SIGGRAPH/Eurographics Symposium
on Computer Animation. SCA ’12, pp. 19-24.

Liu, T., Bargteil, A. W., O’Brien, J. F., and Kavan, L. (2013). Fast Simulation of Mass-
spring Systems. In: A C M Transactions on Graphics (TOG) 32.6, p. 214.

http://bulletphysics.org/

69

Macklin, M. and MUller, M. (2013). Position Based Fluids. In: A C M Transactions on
Graphics (TOG) 32.4, p. 104.

Macklin, M., MUller, M., Chentanez, N., and Kim, T.-Y. (2014). Unified Particle Physics
for Real-time Applications. In: A C M Transactions on Graphics (TOG) 33.4, p. 153.

Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. (2010). Unified simula­
tion of elastic rods, shells, and solids. In: A C M Trans. Graph. 29 (4), 39:1-39:10.

Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. (2011). Example-based Elastic
Materials. In: A C M Trans. Graph. 30.4, 72:1-72:8.

MUller, M. and Gross, M. (2004). Interactive Virtual Materials. In: The Proccedings of
Graphics Interface, pp. 239-246.

MUller, M., Charypar, D., and Gross, M. (2003). Particle-Based Fluid Simulation for Inter­
active Applications. In: The Proceedings o f the A C M SIGGRAPH/Eurographics Sympo­
sium on Computer Animation, pp. 154-159.

MUller, M. and Chentanez, N. (2011). Solid Simulation with Oriented Particles. In: A C M
Trans. Graph. 30.4, 92:1-92:10.

MUller, M., McMillan, L., Dorsey, J., and Jagnow, R. (2001). Real-Time Simulation of
Deformation and Fracture of Stiff Materials. In: Computer Anim ation and Simulation
2001. Proceedings of the Eurographics Workshop, pp. 113-124.

MUller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. (2002). Stable Real-Time
Deformations. In: The Proceedings of the A C M SIGGRAPH/Eurographics Symposium
on Computer A nim ation , pp. 49-54.

MUller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. (2004). Point
Based Animation of Elastic, Plastic and Melting Objects. In: The Proceedings of the
A C M SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 141-151.

MUller, M., Heidelberger, B., Teschner, M., and Gross, M. (2005). Meshless Deformations
Based on Shape Matching. In: A C M Trans. Graph. 24.3, pp. 471-478.

MUller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. (2007). Position Based Dynamics.
In: J. Vis. Comun. Image Represent. 18.2, pp. 109-118.

MUller, M., Chentanez, N., and Kim, T.-Y. (2013). Real Time Dynamic Fracture with
Volumetric Approximate Convex Decompositions. In: A C M Transactions on Graphics
(TOG) 32.4, p. 115.

O’Brien, J. F. and Hodgins, J. K. (1999). Graphical Modeling and Animation of Brittle
Fracture. In: The Proceedings of A C M SIG G R A P H 99, pp. 137-146.

O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. (2002). Graphical Modeling and Ani­
mation of Ductile Fracture. In: A C M Trans. Graph. 21.3, pp. 291-294.

70

Parker, E. G. and O’Brien, J. F. (2009). Real-Time Deformation and Fracture in a Game
Environment. In: Proceedings of the A C M SIGGRAPH/Eurographics Symposium on
Computer Anim ation , pp. 156-166.

Pauly, M., Keiser, R., Adams, B., Dutre; P., Gross, M., and Guibas, L. J. (2005). Meshless
Animation of Fracturing Solids. In: A C M Trans. Graph. 24.3, pp. 957-964.

Pfaff, T., Narain, R., Joya, J. M. de, and O’Brien, J. F. (2014). Adaptive Tearing and
Cracking of Thin Sheets. In: A C M Transactions on Graphics 33.4, xx:1-9.

P ra tt, J., Chew, C.-M., Torres, A., Dilworth, P., and P ra tt, G. (2001). Virtual Model
Control: An Intuitive Approach for Bipedal Locomotion. In: The International Journal
of Robotics Research 20.2, pp. 129-143.

Rivers, A. R. and James, D. L. (2007). FastLSM: Fast Lattice Shape Matching for Robust
Real-time Deformation. In: A C M Trans. Graph. 26.3.

Ruilova, A. (2007). Creating Realistic CG Honey. In: A C M SIG G RAPH 2007 posters. San
Diego, California, p. 58.

Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R., and Gross, M.
(2012). Efficient Simulation of Example-based Materials. In: Proceedings of the A C M
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1-8.

Shewchuk, J. R. (1996). Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator. In: Applied Computational Geometry: Towards Geometric Engineering.
Ed. by M. C. Lin and D. Manocha. Vol. 1148. Lecture Notes in Computer Science. From
the First ACM Workshop on Applied Computational Geometry, pp. 203-222.

Solenthaler, B. and Gross, M. (2011). Two-scale Particle Simulation. In: A C M Trans. Graph.
30.4, 81:1-81:8.

Sorkine, O. and Alexa, M. (2007). As-rigid-as-possible Surface Modeling. In: Proceedings of
the fifth Eurographics symposium on Geometry processing. Barcelona, Spain, pp. 109­
116.

Stuart, A., Levine, J., Jones, B., and Bargteil, A. (2013). Automatic Construction of
Coarse, High-Quality Tetrahedralizations that Enclose and Approximate Surfaces for
Animation. In: Proceedings of the A C M SIG G RAPH Conference on Motion in Games.
Dublin,Ireland.

Su, J., Schroeder, C., and Fedkiw, R. (2009). Energy Stability and Fracture for Frame Rate
Rigid Body Simulations. In: Proceedings o f the 2009 A C M SIGGRAPH/Eurographics
Symposium on Computer Animation. SCA ’09. New Orleans, Louisiana, pp. 155-164.

Sykora, D., Dingliana, J., and Collins, S. (2009). As-rigid-as-possible Image Registration
for Hand-drawn Cartoon Animations. In: Proceedings of International Symposium on
Non-photorealistic Anim ation and Rendering, pp. 25-33.

Terzopoulos, D. and Fleischer, K. (1988). Modeling Inelastic Deformation: Viscoelasticity,
Plasticity, Fracture. In: Proceedings of A C M SIGGRAPH, pp. 269-278.

71

Terzopoulos, D., P latt, J., Barr, A., and Fleischer, K. (1987). Elastically Deformable Models.
In: Proceedings o f A C M SIGGRAPH. Vol. 21, pp. 205-214.

Weinstein, R., Petterson, F., and Criswell, B. (2008). Destruction System. In: A C M SIG ­
G RAPH 2008 Talks. Los Angeles, California, 71:1-71:1.

Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F.
(2010). Dynamic Local Remeshing for Elastoplastic Simulation. In: A C M Trans. Graph.
29 (4), 49:1-49:11.

Wojtan, C. and Turk, G. (2008). Fast Viscoelastic Behavior with Thin Features. In: A C M
Trans. Graph. 27 (3), 47:1-47:8.

Zafar, N. B., Stephens, D., Larsson, M., Sakaguchi, R., Clive, M., Sampath, R., Museth, K.,
Blakey, D., Gazdik, B., and Thomas, R. (2010). Destroying LA for ”2012” . In: A C M
SIG G RAPH 2010 Talks, 25:1-25:1.

Zhou, Y., Lun, Z., Kalogerakis, E., and Wang, R. (2013). Implicit Integration for Particle-
based Simulation of Elasto-Plastic Solids. In: Computer Graphics Forum . Vol. 32. 7.
Wiley Online Library, pp. 215-223.

