MANAGING PROVENANCE FOR KNOWLEDGE
DISCOVERY AND REUSE

by

David Allen Koop

A dissertation submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science

School of Computing
The University of Utah

May 2012

Copyright (©) David Allen Koop 2012

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of David Allen Koop

has been approved by the following supervisory committee members:

Juliana Freire , Chair 7/18/2011
Date Approved
Claudio T. Silva , Member 7/18/2011
Date Approved
Valerio Pascucci , Member 7/18/2011
Date Approved
Susan Davidson , Member 7/18/2011
Date Approved
Matthias Troyer , Member 7/18/2011
Date Approved
and by Alan Davis , Chair of
the Department of School of Computing

and by Charles A. Wight, Dean of The Graduate School.

ABSTRACT

Serving as a record of what happened during a scientific process, often computational, prove-
nance has become an important piece of computing. The importance of archiving not only data and
results but also the lineage of these entities has led to a variety of systems that capture provenance
as well as models and schemas for this information. Despite significant work focused on obtaining
and modeling provenance, there has been litte work on managing and using this information. Using
the provenance from past work, it is possible to mine common computational structure or determine
differences between executions. Such information can be used to suggest possible completions for
partial workflows, summarize a set of approaches, or extend past work in new directions. These
applications require infrastructure to support efficient queries and accessible reuse.

In order to support knowledge discovery and reuse from provenance information, the manage-
ment of those data is important. One component of provenance is the specification of the com-
putations; workflows provide structured abstractions of code and are commonly used for complex
tasks. Using change-based provenance, it is possible to store large numbers of similar workflows
compactly. This storage also allows efficient computation of differences between specifications.
However, querying for specific structure across a large collection of workflows is difficult because
comparing graphs depends on computing subgraph isomorphism which is NP-Complete. Graph
indexing methods identify features that help distinguish graphs of a collection to filter results for a
subgraph containment query and reduce the number of subgraph isomorphism computations. For
provenance, this work extends these methods to work for more exploratory queries and collections
with significant overlap. However, comparing workflow or provenance graphs may not require exact
equality; a match between two graphs may allow paired nodes to be similar yet not equivalent. This
work presents techniques to better correlate graphs to help summarize collections.

Using this infrastructure, provenance can be reused so that users can learn from their own and
others’ history. Just as textual search has been augmented with suggested completions based on
past or common queries, provenance can be used to suggest how computations can be completed or
which steps might connect to a given subworkflow. In addition, provenance can help further science
by accelerating publication and reuse. By incorporating provenance into publications, authors can
more easily integrate their results, and readers can more easily verify and repeat results. However,
reusing past computations requires maintaining stronger associations with any input data and un-

derlying code as well as providing paths for migrating old work to new hardware or algorithms.

This work presents a framework for maintaining data and code as well as supporting upgrades for

workflow computations.

v

To my parents

CONTENTS

ABST RACT . .. e iii

LIST OF FIGURES e e i X

ACKNOWLEDGEMENTS . .. e Xiv

CHAPTERS

1. INTRODUCTION e e e, 1
1.1 MOtIVALION . . . ottt e et e e e e e 1
1.2 Thesis Statementottt 2
1.3 Dissertation ObjJectivest e 2

2. BACKGROUND e e, 4
2.1 Provenance. 4
2.2 Scientific Workflow Systems 5
2.3 VIsTrails 7

3. VISCOMPLETE: DATA-DRIVEN SUGGESTIONS FOR VISUALIZATION SYS-

TEMS . 9
3.1 IntroduCtionot 9
3.2 Related Worko 13
3.3 Generating Data-driven Suggestionst 14

3.3.1 Problem Definition e 15
332 Mining Pipelines e 15
3.3.3 Generating Predictions 18
3.3.4 Biasingthe Predictions 20
34 Implementationt e 21
34.1 Triggeringa Completionu it 21
3.4.2 Computing the SUZEestionsttt e 21
343 The SuggestionInterface 22
3.5 USE CaSES . « v v vttt e 23
3.6 Evaluation e e 24
3.6.1 Dataand Validation Process i .. 24
3.6.2 Results 25
3.7 DISCUSSION . o oottt e 28

3.8 SUMMArY . . oo e 29

4. EFFICIENT EVALUATION OF EXPLORATORY QUERIES OVER PROVENANCE

COLLECTIONS . .. e e e 30
4.1 IntroduCtion e 30
42 Background e 34

4.2.1 Provenance and Workflows i 34
4.2.2 Queries Over Provenance Collections 35
4.2.3 Graphs and Isomorphisms 37
4.3 Indexing Framework. 37
4.3.1 Standard GraphIndexing........... ..., 38
4.3.1.1 Identifying Features 38

4.3.1.2 Index Construction and Query Processing 39

4.3.2 Wildcard Graph Indexing 39
4.3.2.1 2-Component Frequent Subgraphs 40

4.3.2.2 Summary Subgraphs. 40

4.3.2.3 Index Construction and Query Processing 42

4324 Verification. 43

4.4 Implementationttt ettt e 43
4.4.1 Index CONSIUCLION\ttt ittt e e e e e 44
4.4.1.1 Mining Frequent Subgraphs 45

4.4.1.2 Generating 2-component Frequent Subgraphs 45

4.4.1.3 Selecting Summary Graphs 45

4.4.1.4 Building the Discriminative Index 45

442 Query Processing e 46
4.42.1 Wildcard Query Verification 47

443 Index Maintenanceuueemmnnueeenniee .. 49
4.5 Workflow Completionsttt e e 49
4.5.1 Implementing Workflow Completionscovuunn... 51
4.6 Evaluation e 51
4.6.1 Theoretical COStSttt e 51
4.6.2 Data SetS. . ..o e e 52

47 DISCUSSION . . v v vttt e e e e e e e e e e e 53
4.7.1 Subworkflows 53
4772 Scalability 53
4773 Parameterso 58

4.8 Related Work e 58
4.9 SUMMATIYot e 59
5. VISUAL SUMMARIES FOR GRAPH COLLECTIONS 60
5.1 Introduction 60
5.2 Related Worko 64
5.3 GraphMatching 65
5.3.1 Definitionst e 65
5.3.1.1 Matching e 66

5.3.1.2 GraphEditDistance 67

5.3.2 Computing Graph Edit Distance, 68
5321 A¥Search........ 68

5.3.2.2 Edit Distance and the Assignment Problem 68

5.3.2.3 Including Neighborhood Information 69

5.3.3 Diffusion Matching e 70

5.3.3.1 Similarity Flooding 70

5.3.3.2 Scoring Unmatched Nodes 72

5.4 Summary Graphs e 73

5.4.1 Compound Similarity Scoringt 74

542 ConStrUCHON . . ot vttt ittt e e e 74

5.5 Visualizing and Interacting with Graph Summaries 75

5.5.1 Layoutand Display e 75

5.5.2 Controlling the Amount of Summarization 76

5.53 C0lor .. 77

5.5.4 Manipulating the Summary Graph 77

5.6 Case StUAIES . . . vt e e 82

5.6.1 Metabolic Pathways 82

5.6.2 Visualization Pipelines 84

5.6.3 Molecular StruCturesttt e 85

5.7 DISCUSSION oo vttt et et e e e e e e e 85

571 OVerlaps . ..o e 85

5.7.2 Multi-Edge Graphs e 86

573 SCOTING . o oo e 86

5.74 How Much Summarization? i 86

6. SUPPORTING REPRODUCIBLE AND REUSABLE PUBLICATIONS 87
6.1 Bridging Workflow and Data Provenance

Using Strong Links. e 87

6.1.1 Persisting Data Provenance Links 89

6.1.1.1 Deriving Strong Links 89

6.1.1.2 FileManagementc..uuiiniirueeennnnnnnn.. 93

6.1.1.2.1 Inputfiles. 93

6.1.1.2.2 Outputfiles. 93

6.1.1.2.3 Intermediatefiles. 94

6.1.1.2.4 CuStomizZation.ttt 94

6.1.2 Linking Provenance. ittt 94

6.1.2.1 Algorithms for Querying Linked Provenance 94

6.1.2.2 Embedding Provenance withData. 96

6.1.3 Using Strong Links 96

6.1.3.1 Caching 96

6.1.3.1.1 In-memorycaching., 96

6.1.3.1.2 Persistentcaching. i, 98

6.1.3.2 Publishing e 98

6.1.4 SharingData e 99

6.1.4.1 Centralized Storagecuiiiirirennnnnnn... 99

6.1.4.2 Decentralized Storage 100

6.1.5 Implementationttt e 100

6.1.5.1 StoringData 102

6.1.5.2 FindingData......... 102

6.1.6 ALPSCase Studyo 103

6.1.7 Related Work e 106

6.1.8 Summary 108

6.2 The Provenance of Workflow Upgrades 108

6.2.1 Workflow Upgrades. i 112

6.2.1.0.1 Incompatible workflows. 112

viii

6.2.1.0.2 Provenance of module implementation. 112

6.2.1.1 Detecting the Need for Upgrades 114

6.2.1.2 Processing Upgrades.o i, 114

6.2.1.2.3 Developer-defined upgrades. 115

6.2.1.2.4 Automaticupgrades. 115

6.2.1.2.5 User-assistedupgrades. i 115

6.2.1.3 Provenance Concernsuuiiiiienneann... 117

6.2.2 Implementation e 118

6.2.2.1 Replace, Remap,andCopy 118

6222 Algorithm. 118

6.22.3 Subworkflows...... 119

6.2.2.4 Preferences. 120

6.2.3 DISCUSSIONttt 120

6.24 Related Work 121

6.2.5 SUMMArYttt e e 123

7. CONCLUSIONS AND FUTURE WORK i, 125
REFERENCES . . . 127

ix

3.1

3.2

33
34

3.5

3.6

3.7

3.8

39

4.1

4.2

43

LIST OF FIGURES

The VisComplete suggestion system and interface. (a) A user starts by adding a module
to the pipeline. (b) The most likely completions are generated using indexed paths
computed from a database of pipelines. (c) A suggested completion is presented to the
user. The user can browse through suggestions using the interface and choose to accept
or reject the completion. e 11

Three of the first four suggested completions for a “vtkDataSetReader” are shown
along with corresponding visualizations. The visualizations were created using these
completions for a time step of the Tokamak Reactor dataset that was not used in the
training data. e 12

Deriving a path summary forthe vertex D. 16

Predictions are iteratively refined. At each step, a prediction can be extended upstream
and downstream; in the second step, the algorithm only suggests a downstream addition.
Also, predictions in either direction may include branches in the pipeline, as shown in
the Center. 17

At each iteration, we examine all upstream paths to suggest a new downstream vertex.
We select the vertex that has the largest frequency given all upstream paths. In this
example, “vtkDataSetMapper” would be the selected addition. 19

One of the test visualization pipelines applied to a time step of the Tokamak Reactor
dataset. VisComplete could have made many completions that would have reduced
the amount of time creating the pipeline. In this case, about half of the modules and
completions could have been completed automatically. 26

Box plot of the percentages of operations that could be completed per task (higher is
better). The statistics were generated for each user by taking them out of the training data. 27

Box plot of the percentages of operations that could be completed given two types of
tasks, novice and expert. The statistics were generated by evaluating the novice tasks
using the expert tasks as training data (novice) and by evaluating the expert tasks using
the novice tasks as training data (EXpert).ttt 27

Box plot of the average prediction index that was used for the completions in Figure 3.7
(lower is better). These statistics provide a measure of how many suggestions the user
would have to examine before the correct one was found. 28

A standard containment query searches a collection to find workflows with the specified
SUDEIaDN. . . o e 32

An exploratory query allows wildcards to permit less-specific queries. The dashed lines
in the query are wildcard paths; each result must contain a path between the connected
modules. 33

A representative workflow from a collection of workflows used for habitat modeling. . .. 35

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

5.1

5.2

Because the graphs identified by a feature may also be identified by subgraphs of that
feature, we choose discriminative features to be those whose subgraphs collectively
identify many more graphs. For example, I is selected because the graphs identified
by the combination of Fy and F5is 28 » 10.

While the features F5 and F3 occur together often, they are usually disjoint as defined
by the two-component feature Fi: | sup(F1)| < |sup(Fa) nsup(F3)|....covvvenon..

Because each subgraph of a frequent subgraph is also frequent, we choose summary
features to be those whose supergraphs have much smaller frequency.

Our index has two tiers, the summary features which summarize frequent features and
provide verification-free answers, and the discriminative features which point to both
the original workflow database and the summary features. Note that for this illustration,
many items have been omitted from the figure; in practice, each workflow is indexed by
at least one discriminative feature. e

The construction of our index involves feature mining, followed by the identification
of summary features, which are used to determine discriminative features and build the
INABX. « ottt

Query processing is faster because the discriminative index limits the number of candi-
dates and summary graphs limit the number of computationally-expensive verifications. .

Workflow completions are generated from a completion query by replacing wildcards
with modules and connections according to existing workflows in a collection.

Comparison of the number of subgraph isomorphism verifications required for queries
with different numbers of results across different indexing schemes. For both the
visualization workflows (a) and the Yahoo! Pipes workflows (b), we used the proposed
scheme having both summary features and 2-component subgraphs (S+2C), a scheme
using only summary features (S), and the original feature-based indexing scheme (Orig.).
The actual number of results is plotted as a baseline (Actual) as well as the number of
candidates (including summary graphs) after filtering for the proposed scheme (Cands.).

The effect of varying the thresholds for identifying the (a) discriminative and (b) sum-
mary features for the proposed index.

Mean ratio of the number of isomorphisms computed to the number of matching graphs
according to the number of edges in the query graph, shown for the proposed scheme
(Summary + 2C), only summary graphs (Summary), and the original feature-based
scheme (Original). e

A summary graph constructed from four molecules. The supplemental video shows the
order of summarization and how edit operations allow users to tune the visualization. . . .

A summary graph of enzyme relation graphs from the citric acid cycle for eight or-
ganisms. Notice that color can highlight differences while levels of gray indicate how
common a graph COMPONENL IS, oottt ettt ettt e e

X1

40

42

43

48

54

57

61

63

53

54

55

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

A comparison of graph-matching algorithms when run on the same two starting graphs,
shown in (a); mismatched vertices and edges in (b) and (c) are highlighted. A vertex-
only matching (b) has issues with mismatched edges (e.g., the two Bob nodes from
the red graph match the Bob and Robert nodes from the blue graph equally well). A
neighborhood matching will correct some errors because it takes into account neigh-
boring nodes, but it will not propagate this information to other nodes. For example,
the neighborhoods of the two Cynthia/Cindy nodes in each graph (one neighborhood
from each graph is highlighted in (a)) will match equally well and may cause an edge
mismatch as shown in (c). Global methods, like A* search and diffusion matching seek
to resolve such problems, leading to matchings without mismatched edges (d). 71

The settings for GraphSum allows users to control summarization, adjust vertex and
edge coloring, and toggle the display of individual graphs. 77

A summary of eight graphs representing visualization workflows generated by different
students for a specific homework problem. A single student’s work is highlighted in the
context of the other graph, allows specific comparisons with the group as a whole. 78

We define an initial ordering to merge graphs to create the summary graph, but after
each merge, we use the similarity scores for individual nodes to order the individual
node merges. The figure shows this node merge ordering for the workflow summary
graph shown in Figure 5.5. This ordering provides a natural method for navigating the
amount of summarization in a linear fashion. Note that any dependent merges must
occur before a gIVeN Merge.ottt 79

A summary graph of enzyme relation graphs from the citric acid cycle for eight or-
ganisms. We can show all colors to identify which entities appear in each graph (a).
Our GraphSum application allows a user to highlight a subset of the graphs to better
show individual differences (b). Users can also hide the other graphs to show only the
similarities and differences between the selected graphs (¢). 80

A piece of a molecular summary graph that shows how edit operations can be used to
transform one summary into another via two break operations, (a) to (b), followed by
two join operations, (b) to (c). With editing operations, the user can decide how the
summary is best presented. e 83

When provenance information references file-system paths, there is no guarantee those
files will not be moved or modified. We propose references that are linked to a persis-
tent repository which maintains that data and with hashing and versioning allows for
querying, reuse, and data lineage. L 90

The upstream signature S(M) for a module is calculated recursively as the signature of
the module concatenated with the upstream signatures of the upstream subworkflow for
each port and the signature of the connection. 92

Given a file which has been moved and renamed, we can use the managed file store and
provenance to first locate the managed copy, and we can locate the original input files
s Well. L. 95

Embedding provenance with data: provenance can be either saved to a separate file or
serialized to XML and embedded in an existing file. 97

The ManagedInputFile configuration allows the user to choose to create a new reference
from a file on his local filesystem or use an existing reference from the managed store. . . 101

Xii

6.6

6.7

6.8

6.9

6.10

An ALPS workflow colored by execution status (a). Blue modules were not executed
since intermediate data existed in persistent storage; yellow modules were cached in
memory; and green modules were executed. The results of a parameter exploration of
the fitting range (b). e

A workflow comparing road maintenance and number of miles of road by state before
and after upgrading two packages. In (a), the AggregateData module has been
replaced, and the developer has specified an upgrade to combine multiple aggregation
steps into a single ComposeData module. In (b), the interface of Ext ractColumn
has been updated to offer a new parameter. Finally, in (c), the interface of the plotting
mechanism has not changed, but the implementation of that module has, as evidenced
by the difference in the background of the resulting plots.

On the right, we show the provenance of upgrading workflow (A) to the updated work-
flow (B). Besides the provenance of the upgrade, here we show the provenance of the
executions of both (A) and (B). Note that version information is maintained in both
forms of provenance. e

Incompatible (left) and valid (right) versions of a workflow. In an incompatible work-
flow, the implementation of modules is missing, and thus, no information is available
about the input and output ports of these modules.

Upgrading a single module automatically involves deleting all connections, replacing
the module with the new version, and finally adding the connections back.

104

111

113

116

6.11 Workflow Evolution before and after upgrades as well as after retagging the nodes. 122

Xiii

ACKNOWLEDGEMENTS

I would like to thank my advisors, Juliana Freire and Cldudio Silva, for their guidance, support,
and direction throughout my work. I would also like to thank the other members of my committee
for their help in advancing my work: Valerio Pascucci, Susan Davidson, and Matthias Troyer have
given advice and helped organize my ideas.

I have had the opportunity to work with a number of talented collaborators, and I am grateful for
their contributions that have aided this work. Thank you to all of the members of the VisTrails team,
especially Erik Anderson, Steven Callahan, Tommy Ellqvist, Emanuele Santos, Carlos Scheidegger,
and Huy Vo, who have helped to assist me with my work and troubleshoot bugs; it has been a joy
to work with such a talented team. I would also like to thank Bela Bauer, Brigitte Surer, and the
rest of the ALPS group, for their help in testing many of the techniques integrated with VisTrails.
Other collaborators and co-authors, including Philippe Bonnet, Daniel Fink, Steve Kelling, and
Jeff Morisette, have been influential in my understanding of the issues in computational science,
reproducibility, and reuse.

There have also been a number of people and organizations that have helped shape and facilitate
my work, and I am grateful for this support. Thanks to folks I have worked with at VisTrails, Inc.,
including Douglas Alves, Benjamin Burnett, and Ramesh Pinnamaneni, for their work and insight.
Also, thank you to the staff at the School of Computing and Scientific Computing & Imaging
Institute at the University of Utah who helped troubleshoot technical and procedural issues, dealt
with scheduling and equipment needs, and made sure necessary paperwork was completed. Thank
you to Microsoft Research for a summer internship to expand my understanding, and to everyone
involved with provenance challenge workshops that helped grant me a broader understanding of the
field.

Thank you to the various funding agencies that have made the research possible, including the
Department of Energy SciDAC (VACET and SDM centers), and the National Science Foundation
(grants 1IS-0746500, CNS-0751152, 1IS-0713637, OCE-0424602, 1IS-0534628, CNS-0514485,
IIS-0513692, CNS-0524096, CCF-0401498, OISE-0405402, CCF-0528201, CNS-0551724). Also,
thank you to the students in the scientific visualization courses of 2007 and 2008 at the University
of Utah, who provided the provenance information used in this work.

Thank you to my friends and family for their support. Thanks to all of the friends I've met in

Utah as well as those from my years in Madison, Grand Rapids, and elsewhere. Specifically, thanks

to John, Steve, Erik, Joel, and Carlos, for dealing with rants and questions over lunch, as well as
the disc golfers and ultimate players who have provided the excuse for a break from work. Thank
you to my parents, Jan and Al, who always supported my education and continued to encourage my
work throughout the years. Finally, thank you to Jen, my wife, for her support and understanding

during this process.

XV

CHAPTER 1

INTRODUCTION

1.1 Motivation

Serving as a record of what happened during a scientific process, often computational, prove-
nance has become an important piece of computing. The importance of archiving not only data and
results but also the lineage of these entities has led to a variety of systems that capture provenance as
well as models and schemas for this information. Despite significant work focused on obtaining and
modeling provenance, there has been litte work on managing and using this information. Querying
this information has been studied for feasibility and interoperability concerns, but applications that
drive these queries have been limited. One of the applications for provenance is reproducibility—
exactly replicating a process or computation. This work proposes reuse as an improved application,
allowing provenance users to migrate work to new techiques or hardware and more easily extend
published findings.

Provenance documents how something was accomplished; a collection of such information is
thus extremely valuable in understanding solutions. Furthermore, using data mining, it is possible
to determine similar solutions or common pieces of provenance information. Such parts can then be
used to derive new complete or partial solutions. Note that an important component in such mining
is the structure of the provenance; with more abstraction, it can be easier to locate patterns. In order
to suggest relevant suggestions, existing structure can be used to index into a summary of collected
provenance.

Along similar lines, while suggestions are targeted to help users for specific tasks, summaries
of collections of provenance can be useful for browsing the information. Because provenance is
often understood as a graph of dependencies, a textual summary of information is usually difficult
to parse. On the other hand, visually a collection of graphs is complicated by the fact that comparing
graphs is NP-Complete. This work presents algorithms to build summaries of collections of graphs.
In addition, it demonstrates methods for editing these summaries by splitting and joining multinodes
and multiedges.

To support queries, completions, and summaries for provenance, there must be infrastructure
to support efficient access to the information. Indexing techniques are often used to speed queries

over certain fields in databases, but because provenance information is stored as a graph, a query

2

can leverage both distinct node criteria and connectivity constraints. Thus, indexing must also
encapsulate these features. However, because subgraph isomorphism is NP-Complete, even com-
paring two graphs in a collection to test their equivalence can be difficult. Existing techinques for
graph indexing leverage discriminative subgraphs that help filter candidates, limiting the number
of full verifications that need to be calculated via subgraph isomorphism calculations. However,
provenance queries can be more vague, referencing only loosely-connected pieces of a subgraph,
and may return large numbers of results. This work proposes a framework to adapt existing indexing
techniques to make provenance queries more efficient.

A key concern in provenance is the data associated with the steps involved. For exploratory
science, it is not always possible or efficient to curate data and ensure their longevity. At the
same time, referencing data by filenames or URIs is problematic; a file can be moved or deleted,
and linking provenance from outside the originating machine is difficult. This work proposes
a framework for both identifying and managing the input and output data involved inline with
provenance information.

For the goal of reuse—not simply reproducibility, it is important to have the ability to migrate
and adapt documented processes to use new hardware or techniques. To identify possible incom-
patibilities and how the necessary changes may be completed, documenting version information is
required. At the same time, the provenance of the changes themselves can be invaluable when diag-
nosing differences in results. Thus, provenance plays an important role in both allowing upgrades

but also in documenting changes.

1.2 Thesis Statement

Techniques for the management and analysis of provenance enable applications for knowledge

discovery and reuse by leveraging the information contained in provenance stores.

1.3 Dissertation Objectives
In this dissertation, we present a set of techniques for managing and analyzing provenance
information as well as applications that use this framework to aid in future work. The goal is to use
provenance, often viewed as archival data, to help develop solutions that use this information. The
outline of this dissertation can be separated into four contributions:

¢ A method to suggest possible workflow completions using provenance information about
previously constructed workflows [85]. This technique both offers starting points for novice

users and reduces the effort for more experienced users in constructing workflows.
e A framework for indexing provenance information that permits more exploratory queries

and supports queries that have large numbers of results. The techinques augment existing

3

graph indexing techniques by adding an extra layer to the index for more quickly locating
large numbers of results as well as incorporating disconnected features.

¢ A technique to display a collection of graphs in a visual summary that allows discovery of
similarities and differences. This can be used to display collections of provenance graphs
so users can discover changes, and the summaries are editable so they can serve to develop
reusable analogies that can be applied to other work.

e An infrastructure to support new modes of publication. To support work on executable
papers and Web-based publications, it is necessary to maintain links to data [84] and support
the longevity of provenance for later use through upgrades [86].

The rest of this dissertation is organized as follows. Chapter 2 reviews background on prove-
nance and other work in this area. Chapter 3 describes VisComplete, a recommendation system for
workflows that uses provenance information to derive completions. Chapter 4 describes an indexing
scheme for querying provenance information. Then, Chapter 5 describes techniques for visualizing
collections of graphs, including provenance graphs. Chapter 6 describes contributions that enabled
greater reuse and longevity for publications. Finally, Chapter 7 presents conclusions and directions

for future work.

CHAPTER 2

BACKGROUND

As this work relies on provenance, it is important to start by reviewing what constitutes prove-
nance, how it is generated and captured, and what techniques exist to manipulate and access this
information. The techinques and frameworks have been implemented or integrated into computa-
tional work, usually via an existing system. The VisTrails scientific workflow system has served as a
testbed for this work, and both the system and workflows in general have prompted and aided many
of the applications. However, the framework and algorithms are general and can be integrated with
other systems. This chapter begins by defining provenance before describing scientific workflow
systems and provenance capabilities. VisTrails is used as an example to highlight how provenance

and scientific workflow systems are coupled.

2.1 Provenance

Provenance is the lineage or history of some object, including relationships to other objects that
influence it. It can refer to the trail of ownership of a piece of artwork from painter to current owner,
the steps in baking a cake from ingredient collection to finished product, or the processes involved in
deriving a scientific result from experimental setup to analyses. While the term has not always been
associated with science, the concepts are ingrained into both the work and mindset of scientists.
Published results are derived from information about the exact procedures followed, captured data,
annotations, and documented analyses. In addition, all of this information is documented in the
publication so other scientists can validate procedures and reproduce and extend results. This
provenance is often as important, if not more, than the results.

As computing resources are used for more tasks and data are stored in digital form, the pace
of work has accelerated and the complexity of tasks has increased. Manually keeping track of all
steps followed, parameters set, and data used is burdensome and prone to error. For computational
tasks, it is more efficient to have computers record this information. Computational provenance,
then, tracks the steps and data involved in some computational task. The provenance (also referred
to as the audit trail, lineage, and pedigree) of a data product contains information about the process
and data used to derive the product [47, 137]. It provides important documentation that is key

to preserving the data, to determining its quality and authorship, and to reproducing as well as

validating the results. These are all important requirements of the scientific process.

The scope and granularity of provenance information vary based on the task and capture mech-
anism. For example, fine-grained information about the lineage database tuples can be captured
and used to analyze query results [144]. For more general tasks, the granularity of provenance
varies from a listing of all low-level system/kernel calls [49, 107] to abstracted workflow descrip-
tions [81, 145, 153]. Note that low-level capture is more general but requires significant work to
obtain a high-level description. More abstract provenance can be more easier understood but may
lack some of the details.

Another classification for provenance information involves the type of information being col-
lected. Prospective provenance captures the specification of a computational task (i.e., a script or
workflow)—it corresponds to the steps that need to be followed (or a recipe) to generate a data
product or class of data products. Retrospective provenance captures the steps that were executed
as well as information about the execution environment used to derive a specific data product—a
detailed log of the execution of a computational task. Note that retrospective provenance can be
captured for any task regardless of whether that task has prospective provenance. For example,
information like which processes were run, who ran them, and how long they took, can be captured
without knowing the sequence of steps ahead of runtime.

Provenance can also contain user-defined information, documentation that cannot be automat-
ically captured but records important decisions and notes. These data are often captured in the
form of annotations. Annotations can be added at different levels of granularity and associated with
components of both prospective and retrospective provenance.

To investigate the capabilities of various systems, relationships between them, and models
for storage, challenges were proposed and accomplished by a set of teams. The first challenge
highlighted different methods for capturing and querying provenance information [121]. The second
investigated interoperability of provenance models [122], and the third challenge focused on using
the Open Provenance Model (OPM) as a model for exchanging provenance between systems [123].
As a very general model, OPM allows a variety of types of provenance information to be recorded

without enforcing many constraints [105].

2.2 Scientific Workflow Systems
Computational tasks can be represented using a variety of mechanisms including computer
programs, scripts, and workflows. They can also be constructed interactively using specialized
tools (e.g., ParaView [82] for scientific visualization, GenePattern [54] for biomedical research) that
often have their own internal format to represent a task. Some complex computational tasks require

that different tools be weaved together, including loosely-coupled resources, specialized libraries,

6

distributed computing infrastructure, and Web services. For example, to analyze the results of a CT
scan, it may be necessary to preprocess the data with different parameters, visualize each result, and
compare them. To ensure reproducibility of the entire task, it is beneficial to have a description that
captures these steps and the different parameter values used.

Workflow and workflow-based systems have recently grown in popularity within the scientific
community as a means to assemble complex processes [40, 46, 81, 104, 114, 138, 145, 149, 153,
156]. Not only do they support the automation of repetitive tasks, but they can also systematically
capture provenance information for the derived data products [39]. Most workflow systems support
provenance capture, although each adopts its own data and storage models [39, 47]. These range
from specialized Semantic Web languages (e.g., RDF and OWL) and XML dialects that are stored
as files in the file system, to tables stored in relational databases.

A workflow describes a set of computations as well as an order for these computations. To
simplify the presentation, we focus on dataflows; but note that our approach is applicable to more
general workflow models. In a dataflow, computational flow is dictated by the data requirements of
each computation. A dataflow is represented as a directed acyclic graph where nodes are the compu-
tational modules and edges denote the data dependencies as connections between the modules—an
edge connects the output port of a module to an input port of another. Often, a module has a set
of associated parameters that can control the specifics of one computation. Some workflows also
utilize subworkflows where a single module is itself implemented by an underlying workflow.

Because workflows abstract computation, there must be an association between the module
instances in a workflow and the underlying execution environment. This link is managed by the
module registry which maps module identifiers to their implementations. For convenience and
maintenance, related modules are often grouped together in packages. Thus, the module identifier
may consist of package identifier, a module name, an optional namespace, and information about the
version of the implementation. Version information can serve to inform us when implementations
or interfaces in the environment change, and is part of provenance information.

Consider, for example, the VisTrails system [153]. In VisTrails, each module corresponds
to a Python class that derives from a predefined base class. Users define custom behaviors by
implementing a small set of methods. These, in turn, might run some code in a third-party library
or invoke a remote procedure call via a Web service. The Python class also explicitly describes the
interface of the module: the set of allowed input and output connections, given by the module’s
ports. A VisTrails package consists of a set of Python classes.

One of the benefits of workflow systems is that they lend themselves to visual programming
environments. Those browsing a collection of workflows should be able to gain an idea of the

computation from a depiction of the general structure without reading a long code listing. Connec-

7

tions show relationships between modules without the need to trace variable names, and parameter
settings can be located with the modules they affect. This enables users to more quickly set

parameter values, add computational modules, or delete extraneous analyses.

2.3 VisTrails

VisTrails (http://www.vistrails.org) is an open-source system that supports data exploration and
visualization. It combines and substantially extends useful features of scientific workflow and
visualization systems. Similar to scientific workflow systems [81, 117, 145, 156], VisTrails allows
the specification of computational processes which integrate existing applications, loosely-coupled
resources, and libraries according to a set of rules; and similar to visualization systems [71, 82,
91, 154], VisTrails makes advanced scientific and information visualization techniques available to
users, allowing them to explore and compare different visual representations of their data. As a
result, users can create complex workflows that encompass important steps of scientific discovery,
from data gathering and manipulation, to complex analyses and visualizations, all integrated in one
system.

A distinguishing feature of VisTrails is a comprehensive provenance infrastructure that trans-
parently captures and maintains detailed history information about the steps followed and data
derived in the course of an exploratory task [48]. Whereas workflows have been traditionally used
to automate repetitive tasks, for applications that are exploratory in nature, such as simulations,
data analysis, and visualization, very little is repeated—change is the norm. As a user generates
and evaluates hypotheses about data under study, a series of different, albeit related, workflows
are created as they are adjusted in an iterative process. VisTrails was designed to manage these
rapidly-evolving workflows: it maintains provenance of data products (e.g., visualizations, plots) of
the workflows that derive these products, and their executions. The system also provides annotation
capabilities that allow users to enrich the automatically captured provenance.

Besides enabling reproducible results, VisTrails leverages provenance information through a
series of operations and intuitive user interfaces that help users to collaboratively analyze data.
Notably, the system supports reflective reasoning by storing temporary results, by providing users
the ability to examine the actions that led to a result and to follow chains of reasoning backward
and forward [113]. Users can navigate workflow versions in an intuitive way, undo changes but
not lose any results, visually compare multiple workflows, and show their results side-by-side in a
visualization spreadsheet [17, 48, 135].

Because the need for data analysis and visualization is pervasive across disciplines, VisTrails
was designed with usability and extensibility in mind. VisTrails addresses important usability

issues that have hampered a wider adoption of workflow and visualization systems. To cater

8

to a broader set of users, including many who do not have programming expertise, it provides
a series of operations and user interfaces that simplify workflow design and use, including the
ability to create and refine workflows by analogy, to query workflows by example, and to suggest
workflow completions as users interactively construct their workflows using a recommendation
system [85, 130]. VisTrails is also linked to a new framework that allows the creation of custom
applications that can be more easily deployed to (nonexpert) end users [127, 128]. The extensibility
of VisTrails comes from an infrastructure that makes it simple for users to integrate tools and
libraries, as well as to quickly prototype new functions. This has been instrumental to enable the
use of the system in a wide range of application areas, including environmental sciences [16, 70],
psychiatry [10], astronomy [147], cosmology [9] , high-energy physics [42], quantum physics [7],

and molecular modeling [64].

CHAPTER 3

VISCOMPLETE: DATA-DRIVEN SUGGESTIONS
FOR VISUALIZATION SYSTEMS

3.1 Introduction

Data exploration through visualization is an effective means to understand and obtain insights
from large collections of data. Not surprisingly, visualization has grown into a mature area with
an established research agenda [109], and a number of software systems have been developed that
support the creation of complex visualizations [30, 71, 82, 83, 101, 114, 153, 154]. However, a
wider adoption of visualization systems has been greatly hampered due to the fact that these systems
are notoriously hard to use, in particular, for users who are not visualization experts.

Even for systems that have sophisticated visual programming interfaces, such as DX, AVS, and
SCIRun, the path from the raw data to insightful visualizations is laborious and error-prone. Visual
programming interfaces expose computational components as modules and allow the creation of
complex visualization pipelines which combine these modules in a dataflow, where connections
between modules express the flow of data through the pipeline. They have been shown to be
useful for comparative visualization and efficient exploration of parameter spaces [17]. Through the
use of a simple programming model (i.e., dataflows) and by providing built-in constraint checking
mechanisms (e.g., that disallow a connection between incompatible module ports), they ease the
creation of pipelines. Notwithstanding, without detailed knowledge of the underlying computational
components, it is difficult to understand what series of modules and connections ought to be added
to obtain a desired result. In essence, there is no “roadmap”; systems provide very little feedback to
help the user figure out which modules can or should be added to the pipeline. A novice user (i.e.,
an experienced programmer that is unfamiliar with the modules and the dataflow of the system),
or even an advanced user performing a new task, often resorts to manually searching for existing
pipelines to use as examples. These examples are then adapted and iteratively refined until a solution
is found. Unfortunately, this manual, time-consuming process is the current standard for creating
visualizations rather than the exception.

Recent work has shown that provenance information (the metadata required for reproducibility)
can be used to simplify the process of pipeline creation by allowing pipelines to be refined and

queried by example [130]. For example, a pipeline refinement can act as an analogy template for

10

creating new visualizations. This is a powerful tool and can be helpful in situations when the user
knows in advance what they want the end result to be. However, during pipeline creation, it is not
always the case that the user has an analogy template readily available for the visualization that is
desired. In these cases, the user is relegated to manually searching for examples.

In this chapter, we present VisComplete, a system that aids users in the process of creating
visualizations by using a database of previously created visualization pipelines. The system learns
common paths used in existing pipelines and predicts a set of likely module sequences that can
be presented to the user as suggestions during the design process. The quality and nature of the
suggestions depend on the data from which they are derived. Whereas in a single-user environment,
suggestions are derived based on pipelines created by a specific user, in a multi-user environment,
the “wisdom of the crowds” can be leveraged to derive a richer set of suggestions that includes
examples with which the user is not familiar. User collaboration and social data reuse has proven
to be a powerful mechanism in various domains, such as recommendation systems in commercial
settings (e.g., Amazon, e-Bay, Netflix), knowledge sharing on open Web sites (e.g., Wikipedia),
image labeling for computer vision (e.g., ESPGame), and visualization creation (e.g., ManyEyes).
The underlying theme shared by these systems is that they use information provided by many
users to solve problems that would be difficult otherwise. We apply a similar concept to pipeline
creation: pipelines created by many users enable the creation of visualizations by consensus. For
the user, VisComplete acts as an auto-complete mechanism for pipelines, suggesting modules and
connections in a manner similar to a Web browser suggesting URLs. The completions are presented
graphically in a way that allows the user to easily explore and accept suggestions or disregard them
and continue working as they were. Figure 3.1 shows an example of VisComplete incorporated
into a visual programming interface and Figure 3.2 shows some example completions for a single
module.

We propose a recommendation system that leverages information in a collection of pipelines
to provide advice to users of visualization systems and aid them in the construction of pipelines.
By modeling pipelines as graphs, we develop an algorithm for predicting likely completions that
searches for common subgraphs in the collection. We also present an interface that displays the
recommended completions in an intuitive way. Our preliminary experiments show that VisComplete
has the potential to reduce the effort and time required to construct visualizations. We found that
the suggestions derived by VisComplete could have reduced the number of operations performed by
users to construct pipelines by an average of over 50%. Note that although in this chapter we focus
on the use of VisComplete for visualization pipelines, the techniques we present can be applied to

general workflows.

11

‘uono[dwos oy 309(a1 10 1dador 01 9SO0YD pur 90BJIAUI AY) UIsn SUONSaF3ns Y3noy)

9SMO0IQ UBD IASn Y, 1osn oy} 01 pajuasaid st uonjodwod paysesdns vy (0) sourjadid jo aseqeep & woij paindwod syjed paxapur Suisn pojeIduas oI
suonddwod A1y 3sow oy, (q) ouradid oy 01 S[npowr e urppe Aq s}Ie)s Iosn y (B) "90BJIUI puB WAIsAS uonsagsns 93o[dwo)SIA YL, [°€ 2N

©)

(WL
13PEaY PUDPAINIONNSUNNIA
oooood

sslqoeIegabiap A
1331340300 BU YIENHIA
131]14U0ISIAIPGNSAOOTHIA

12[13UOISNAIXFIRIUITHIA
J31)13e18gAj0go L abRWIA
J31|1[eRdSaBRWIA
133|14pedabew|iia
13)]14A3wozneIRgaBeWw A
121133y ae)abRW A
JIPPRA

J21|14YdA|DUODHIA
*PUDWIOYIUNG 331130 3dAHIA
12)]1420841ng331130.3dAH Y A

T 0N0DPUD[ENQaaidQ4adAH N IA
J21]144N03U0)222320.2dAH NI
*113LI03DIASRIEQ LI DIRIBIHAIA
131]14[3A3TE TR [EDIYDIRIBIHHIA

spHnokeydes)
| 1fuBIpeID)
J21)13ARW02D)|
JR1|143G0dIURLID
131143UIRNEODLIBLAY|
J211130gydA|DILBLAD)
131]1A1RW0BNIMALRY
4R13AN0UODILRAD
12145210

**14818Q2INGUNYO L BIEAP I
J131]13u0nEAd 3|
ia)|1§aujA|ogarew daq
421|142 Buels L3esRIRg
1R)|1413(qORIRQ0 1 135EIRA
JENTFCRLIPLIS TS|
J12)|14195E3R QO 1 133(gQRIRQ)
dnounia|i4dsql
voRIYRQ|13dST
J33]142n03u0))
13)]14A3A103UUOD
131]142q0.deIeQal|sodwo))|
“j3Anawoaneregaisodwio))|
smi3uoIs|ApansAyanng
J33|I4in0juODEIEQA|OdpapUE]|
1483EQPIR150 BYEEANGLAY|
13114puaddy|

ALA

=
. 31

®

a1)13193(qoRIRgabINRNA
433)134N03U0DBUI BN HIA
14UOISIAIPGNSAO0THA

131]14UOISNAXF LU THA
131)14e18QA|0g0 | 3bRW RA

1311 4[enedSabew | RA
13)|14pegabew A
J13)[13A133Wo30RIRgRBRW A
131]143ye)abew A

JAPPRA

233]14YdA|DUOI A
**pUYWLIC}IUNG] 331130130AHA
1311430BN533113Q43dAHMIA
“0IUODPUENQARIIQIRdAH A
233]134N03U0DRIIIQIRAAHHIA

" 13WI03D1SEIRARI IUDIRIZIHNIA
13114 [3ABTEIBQE31YDIRIBIHHIA
13)]14In0keydesnna

IR UBIPRIDNIA
a3)13An2woanRA
121]143G01dIURUIDNIA
13)[143UIINQDLIBUIDNA
131]14a€YdA|DdIBUBDRIA
131[13A113 W03 2 143UADHIA

1331 44N0IU0 AU HIA

121[13UC1RAB[IHIA
131]14aujAjogareW 23 g HIA
a21)14216uRL [395RIROHIA
121]14123(qOBIEQO113SRIBANIA
13)[1433BLNSIASEIRQNA
131143350180 [1I3[GORIEQHIA
dnous|1dSORIA
UORULRQIRIHISTHA
LD s
13)]14A3IAIII3ULODHIA
131]143q01¢eIRgR1ISOAWIODNA
|13ABWoaDRIRga1ISOdWOD HIA
2]|3U0|SIAIPGNSARIRANG A
J33]134n03u03RIEQA|OdPAPUEEHIA
'14838QP(31401 BILQAINGUNYHIA
131)13puaddya

12

“eyep Sururesy oy} ur pasn Jou sem Jey) 19selep J0joeay yeweyo], ay) Jo das awn e 10§ suone[dwod asay) JuIsn pajeard aIdm SUONBZI[eNSIA
oy, -suonezirensia Surpuodsariod ym SuOE UMOYS dTe |, JIPEIYIeSeIR(IA,, B 10 suona[dwod paisadsns Inoj 1SIg 9yl JOo 921y, :g°€ InJij

]
IIBIMLA
oogpo

Ja19puayIn

| \, reahloda

1w m[m[m [[m]

SUILEYELTIT
0000000,

ispesyiaseleqiia
0o0ood

(m]
IIBOMLA

1IRONLA

19}144N0JUODNIA
ooooooon

Japeayjaseleaiia Japeayiasereaiia
] m[u]n[=[s) 0ooood

13

The rest of this chapter is organized as follows. In Section 3.2, we discuss related work.
In Section 3.3, we present the underlying formalism for generating pipeline suggestions, and in
Section 3.4, we describe a practical implementation that has been integrated into the VisTrails
system [153]. We then detail the use cases we envision in Section 3.5, report our experiments
and results in Section 3.6, and provide a discussion of our algorithm in Section 3.7. We conclude in

Section 3.8, where we outline directions for future work.

3.2 Related Work

Visualization systems have been successfully used to bring powerful visualization techniques to
a wide audience. Seminal workflow-based visualization systems, such as AVS Explorer [154], Iris
Explorer [111], and Visualization Data Explorer [71], have paved the way for more recent systems
designed using an object-oriented approach such as SciRun [114] for computational steering and
the Visualization Toolkit (VTK) [83] for visualization. Systems that incorporate standard point-
and-click interfaces and operate on data at a larger scale, such as Vislt [30] and ParaView [82],
still use workflows as their underlying execution engine. Development in workflow systems for
visualization is ongoing, as seen in projects such as MeVisLab [102] for medical visualization and
VisTrails [153] for incorporating existing visualization libraries with other tools in a provenance
capturing framework. Our completion strategy can be combined with and enhance workflow and
workflow-based visualization systems.

Recommendation systems have been used in different settings. Like VisComplete, these are
based on methods that predict users’ actions based solely on the history of their previous interac-
tions [68]. Examples include Unix command-line prediction [87], prediction of Web requests [50,
112], and autocompletion systems such as IntelliSense [103]. Senay and Ignatius have proposed
incorporating expert knowledge into a set of rules that allow automated suggestions for visualization
construction [132], while Gilson et al. incorporate RDF-based ontologies into an information
visualization tool [55]. However, these approaches necessarily require an expert that can encode
the necessary knowledge into a rule set or an ontology.

Fu et al. [50] applied association rule mining [3] to analyze Web navigation logs and discover
pages that co-occur with high frequency in navigation paths followed by different users. This
information is then used to suggest potentially interesting pages to users. VisComplete also derives
predictions based on user-derived data and does so in an automated fashion, without the need for
explicit user feedback. However, the data it considers are fundamentally different from Web logs:
VisComplete bases its predictions on a collection of graphs and it leverages the graph structure to
make these predictions. Because association rule mining computes rules over sets of elements, it

does not capture relationships (other than co-occurrence) amongst these elements.

14

In graphics and visualization, recommendation systems have been proposed to simplify the
creation of images and visualizations. Design Galleries [97] were introduced to allow users to
explore the space of rendering parameters by suggesting a set of automatically generated thumb-
nails. Igarashi and Hughes [72] proposed a system for creating 3D line drawings that uses rules
to suggest possible completions of 3D objects. Suggestions have also been used for view point
selection in volume rendering. Bordoloi and Shen [158] and Takahashi et al. [143] present methods
that analyze the volume from various view points to suggest the view that best shows the features
within the volume. Like these systems, we provide the user with prioritized suggestions that the
user may choose to utilize. However, our suggestions are data-driven and based on examples of
previous interactions.

An emerging trend in image processing is to enhance images based on a database of existing
images. Hays and Efros [61] recently presented a system for filling in missing regions of an
image by searching a database for similar images. Along similar lines, Lalonde ef al. [90] recently
introduced Photo Clip Art, a method for intelligently inserting clip art objects from a database to
an existing image. Properties of the objects are learned from the database so that they may be
sized and oriented automatically, depending on where they are inserted into the image. The use
of databases for completion has also been used for 3D modeling. Tsang et al. [151] proposed
a modeling technique that utilizes previously created geometry stored in a database of shapes to
suggest completions of objects. Like these methods, our completions are computed by learning from
a database to find similarities. But instead of images, our technique relies on workflow specifications
to derive predictions.

Another important trend is that of social visualization. Web-based systems such as VisPortal [19,
76] provide the means for collaborative visualization from disjoint locations. Web sites such as
Sens.us [63], Swivel [141], and ManyEyes [157] allow many users to create, share, and discuss
visualizations. One key feature of these systems is that they leverage the knowledge of a large
group of people to effectively understand disparate data. Similarly, VisComplete uses a collection

of pipelines possibly created by many users to derive suggestions.

3.3 Generating Data-driven Suggestions
VisComplete suggests partial completions (i.e., a set of structural changes) for pipelines as they
are being created by a user. These suggestions are derived using structural information obtained
from a collection G of already-completed pipelines.
Pipelines are specified as graphs, where nodes represent modules (or processes) and edges
determine how data flows through the modules. More formally, a pipeline specification is a directed

acyclic graph G(M, C'), where M consists of a set of modules and C'is a set of connections between

15

modules in M. A module is a complex object which contains a set of input and output ports through
which data flows in and out of the module. A connection between two modules m, and m; connects

an output port of m, to an input port of my,.

3.3.1 Problem Definition

The problem of deriving pipeline completions can be defined as follows. Given a partial graph
G, we wish to find a set of completions C'(G) that reflect the structures that exist in a collection of
completed graphs. A completion of G, G, is a supergraph of G.

Our solution to this problem consists of two main steps. First, we preprocess the collection of
pipelines G and create G, a compact representation of G that summarizes relationships between
common structures (i.e., sequences of modules) in the collection (Section 3.3.2). Given a partial
pipeline p, completions are generated by querying G, to identify modules and connections that

have been used in conjunction with p in the collection (Section 3.3.3).

3.3.2 Mining Pipelines

To derive completions, we need to identify graph fragments that co-occur in the collection of
pipelines G. Intuitively, if a certain fragment always appears connected to a second fragment in our
collection, we ought to predict one of those fragments when we see the other.

Because we are dealing with directed acyclic graphs, we can identify potential completions for
a vertex v in a pipeline by associating subgraphs downstream from v with those that are upstream.
A subgraph S is downstream (upstream) of a vertex v if for every v € S, there exists a path
from v to v’ (v’ to v). In many cases where we wish to complete a graph, we will know either
the downstream or upstream structure and wish to complete the opposite direction. Note that this
problem is symmetric: we can change one problem to the other by simply reversing the direction of
the edges.

However, due to the (very) large number of possible subgraphs in G, generating predictions
based on subgraphs can be prohibitively expensive. Thus, instead of subgraphs, we use paths, i.e.,
a linear sequence of connected modules. Specifically, we compute the frequencies for each path in
G. Completions are then determined by finding which path extensions are likely given the existing
paths.

To efficiently derive completions from a collection of pipelines G, we begin by generating a
summary of all paths contained in the pipelines. Because completions are derived for a specific
vertex v in a partial pipeline (we call this vertex the completion anchor), we extract all possible
paths that end or begin with v and associate them with the vertices that are directly connected

downstream or upstream of v. Note that this leads to many fewer entries than the alternative of

16

extracting all possible subgraph pairs. And as we discuss in Section 3.6, paths are effective and lead
to good predictions.

More concretely, we extract all possible paths of length [V, and split them into a path of length
N — 1 and a single vertex. Note that we do this in both forward and reverse directions with respect
to the directed edges. This allows us to offer completions for pipeline pieces when they are built
top-down and bottom-up. The path summary G, is stored as a set of (path, vertex) pairs sorted by
the number of occurrences in the database and indexed by the last vertex of the path (the anchor).
Since predictions begin at the anchor vertex, indexing the path summary by this vertex leads to
faster access to the predictions.

As an example of the path summary generation, consider the graph shown in Figure 3.3. We
have the following upstream paths ending with D: A - C - D, B - C — D, C — D, and
D. In addition, we also have the following downstream vertices: F and F'. The set of correlations
between the upstream paths and downstream vertices is shown in Figure 3.3. As we compute these
correlations for all starting vertices over all graphs, some paths will have higher frequencies than
others. The frequency (or support) for the paths is used for ranking purposes: predictions derived
from paths with higher frequency are ranked higher.

Besides paths, we also extract additional information that aid in the construction of completions.
Because we wish to predict full pipeline structures, not just paths, we compute statistics for the in-
and out-degrees of each vertex type. This information is important in determining where to extend
a completion at each iteration (see Figure 3.4). We also extract the frequency of connection types
for each pair of modules. Since two modules can be connected through different pairs of ports, this

information allows us to predict the most frequent connection type.

path vertex

0 (oD
© isesD
Ce)

D G

B—->C—->D
B—->C—->D
C—->D
C—->D
D
D

MmN E TS

Figure 3.3: Deriving a path summary for the vertex D.

17

“191UQ0 9y} ur umoys se ‘aurjadid oy ur soyourIq SpN[oUl ABW UONIAIIP JOYI U suondIpald ‘os[y "uonippe weansumop e s}sa33ns L[uo
wLos[e 9y} ‘dals puodas Ay} Ul {Weansumop pue weansdn papudixd 9q ued uonorpard e ‘das yoed 1y "pouyal A[OANRINNI I8 SUONIIPAL] :§°€ IN3I]

1913PUIYNIA

Jaddeppaseie@pa
<4 ooooooo

(m]
13}144N03UCDNA
4 n0ooooooo

\

i

0000

(]

19y|1496.18 \PA

000000000000000000

J9)j14A130wo9nejegabew)yia
oooooo

19pEay}aSEIEQMA

4 ooooo

4

Jejeogdiepfia
oooooooo

1012V IA
0000

l1addeppeseiegyia

4 ooooooo

O
19}{144N0JUCDNIA
4 _B0000o0ooo

_—

| Uoneiay|

1)1 49613 APA

_—

(m]
_ Japeayjageleayia
< ooooo

Jejeagdiepin
00000000l

(w]
1addepjasele@ya
[[[[[}

o
19}]141N0JUOD A

00000000

(w]

13))1 49613 PRA
<« O000mRO0000000000000000000c0

13)j14Answoanejegabewfa

< poooooo

_—

(]
_ Japeaylaseleayia
4 ooooo

18

3.3.3 Generating Predictions
Predicting a completion given the path summary and an anchor module v is simple: given the
set of paths associated with v, we identify the vertices that are most likely to follow these paths. As
shown in Algorithm 1, we iteratively develop our list of predictions by adding new vertices using

this criteria.

Algorithm 1: Generate Predictions
Input: A set of paths P
Output: A set of workflow completions P
GENERATEPREDICTIONS(P)
(1) possibles < FIRSTPREDICTION(P)

@ Pl

(3) while |possibles| > 0

4) do p «— REMOVEFIRST(possibles)

5) newPossibles < REFINE(p)

(6) if |[newPossibles| = 0

(7 then? — P +p

(8) else possibles < possibles + newPossibles

At each step, we refine existing predictions by generating new predictions that add a new vertex
based on the path summary information. Note that because there can be more than one possible new
vertex, we may add more than one new prediction for each existing prediction. Figure 3.4 illustrates
two steps in the prediction process.

To initialize the list of predictions, we use the specified anchor modules (provided as input). At
this point, each prediction is simply a base prediction that describes the anchor modules and possibly
how they connect to the pipeline. After initialization, we iteratively refine the list of predictions by
adding to each suggestion. Because there are a large number of predictions, we need some criteria
to order them so that users can easily locate useful results. We introduce confidence to measure the
goodness of the predictions.

Given the set of upstream (or downstream depending on which direction we are currently
predicting) paths, the confidence of a single vertex ¢(v) is the measure of how likely that vertex
is, given the upstream paths. To compute the confidence of a single vertex, we need to take into
account the information given by all upstream paths. For this reason, the values in G, are not
normalized; we use the exact counts. Then, as illustrated by Figure 3.5, we combine the counts
from each path. This means we do not need any weighting based on the frequency of paths; the

formula takes this into account automatically. Specifically,

() = DPesmanty) (v | P)
ZPEupstream(v) COWU(P)

19

‘uonIppe pPaldas Ayl 2q pnom addejieseieyia,, ‘Oidwexa sy uy “syjed weansdn [[e uoAld
Kouanbaiy 15931 o) SeY 1By} XI1I9A AU} JOJ[AS A\ "XOLOA WEBINSUMOP MU B 15933ns 03 syjed weonsdn [[e oUTIIEXS dM ‘UONIBINT YoBd 1Y :§°¢ NS

aseqeieq syred (q)
(m]
m N —‘ A 1addepy eyeghiodpa
[o o o [[[
(m] [m] (m]
.VMN A 1addeppaselegyia mN —‘ f— J1addepy eyegAlodA .VMN J1addeppageregya
[[[[]] [[[m[m]m] [[[[[|
oo oo oo
19}|141N0JUOD YA 19}j141n0JUODMIA 439})J141N0JUODRPA
poO00o0o0oogd 0oooooooo

—

EEIIETNT TN

(m]
19!
0000000000000000000000000

oF
19}1496 19 \PRA

000Ep000000000000000000000

J9)j14An8woanejegabewpa
Doooood

juowiSel surpadid (e)

od
19)1144N0JUODNIA

Oooooooon

19140619 NDRA

Jejeagdiepfin

19)14Answoagejegabew)ya n_
[[[[o o)

Oooooog|

JejeaogdiepyiAa
ooooooog

20

Then, the confidence of a graph G is the product of the confidences of each of its vertices:

eo(G) =[] el)

veG

While each vertex confidence is not entirely independent, this measure gives a reasonable approx-
imation for the total confidence of the graph. Because we perform our predictions iteratively, we
calculate the confidence of the new prediction p; ;1 as the product of the confidence of the old

prediction p; and the confidence of the new vertex v:

c(pit1) = c(pi) - ¢(v)

For computational stability, our implementation uses log-confidences so the products are actually
sums.

Because we wish to derive predictions that are not just paths, our refinement step begins by
identifying the vertex in the current prediction from which we wish to extend our prediction. Recall
that we computed the average in- and out-degree for each vertex type in the mining step. Then, for
each vertex, we can compute the difference between the average degree for its type and its current
degree for the current prediction direction. We choose to extend completions at vertices where the
current degree is much smaller than the average degree. We also incorporate this measure into our

vertex confidence so that predictions that contain vertices with too many edges are ranked lower:
ci(v) = c(v) + degree-difference(v)

We stop iteratively refining our predictions after a given number of steps or when no new
predictions are generated. At this point, we sort all of the suggestions by confidence and return
them. If we have too many suggestions, we can choose to prune our set of predictions at each step

by eliminating those which fall below a certain threshold.

3.3.4 Biasing the Predictions

The prediction mechanism described above relies primarily on the frequency of paths to rank
the predictions. There are, however, other factors that can be used to influence the ranking. For
example, if a user has been working on volume rendering pipelines, completions that emphasize
modules related to that technique could be ranked higher than those dealing with other techniques.
In addition, some users will prefer certain completions over others because they more closely
mirror their own work or their own pipeline structures. Again, it makes sense to bias completions
toward user preferences. We can adapt our algorithm to include such bias by incorporating a
weighting factor in the confidence computation. Specifically, we adjust our counts by weighting
the contribution of each path according to a pipeline importance factor determined by a user’s

preferences.

21

3.4 Implementation
Our implementation is split into three specific steps: determining when completion should be
invoked, computing the set of possible completions, and presenting these suggestions to the user.
Computing the possible completions requires the machinery developed in the previous section. The
other steps are essential to make the approach usable. The interface, in particular, plays a significant
role in allowing users to make use of suggestions while also being able to quickly dismiss them

when they are not desired.

3.4.1 Triggering a Completion

We want to provide an environment where suggestions are offered automatically but do not
interfere with a user’s normal work patterns. There are two circumstances in pipeline creation
where it makes sense to automatically trigger a completion: when a user adds a new module and
when a user adds a new connection. In each of these cases, we are given new information about the
pipeline structure that can be used to narrow down possible completions. Because users may also
wish to invoke completion without modifying the pipeline, we also provide an explicit command to
start the completion process.

In each of the triggering situations, we begin the suggestion process by identifying the modules
that serve as anchors for the completions. For new connections, we use both of the newly connected
modules, and for a user-requested completion, we use the selected module(s). However, when a user
adds a new module, it is not connected to the rest of the existing pipeline. Thus, it can be difficult to
offer meaningful suggestions since we have no surrounding structure to leverage. We address this
issue by first finding the most probable connection to the existing pipeline, and then continue with
the completion process.

Finding the initial connection for an added module may be difficult when there are multiple
modules in the existing pipeline than can be connected to the new module. However, because visual
programming interfaces allow users to drag and place new modules in the pipeline, we can use the
initial position of the module to help infer a likely connection. To accomplish this, we compute the
user’s layout direction based on the existing pipeline, and locate the module that is nearest to the

new module and can be connected to it.

3.4.2 Computing the Suggestions
As outlined in the previous section, we compute possible completions that emanate from a set of
anchor modules in the existing pipeline using path summaries derived from a database of pipelines,
and rank them by their confidence values. Depending on the anchor modules, a very large set of

completions can be derived and a user is unlikely to examine a long list of suggestions. Therefore,

22

we prune our predictions to avoid rare cases. This both speeds up computation and reduces the
likelihood that we provide meaningless suggestions to the user. Specifically, because our predictions
are refined iteratively, we prune a prediction if its confidence is significantly lower than its parent’s
confidence. Currently, this is implemented as a constant threshold, but we can use knowledge of the
current distribution or iteration to improve our pruning.

VisComplete provides the user with suggestions that assist in the creation of the pipeline struc-
ture. Parameters are also essential components in visualizations, but because the choice of pa-
rameters is frequently data-dependent, we do not integrate parameter selection with our technique.
Instead, we focus on helping users complete pipelines, and direct them to existing techniques [17,
77,78, 96] to explore the parameter space. Note that it might be beneficial to extend VisComplete
to identify commonly used parameters that a user might consider exploring, but we leave this for

future work.

3.4.3 The Suggestion Interface

In concert with our goal of unobtrusiveness, we provide an intuitive and efficient interface
that enables users to explore the space of possible completions. Auto-complete interfaces for
text generally show a set of possible completions in a one-dimensional list that is refined as the
user types. For pipelines, this task is more difficult because it is not feasible to show multiple
completions at once, as this would result in visual clutter. The complexity of deriving the completion
is also greater. For this reason, our interface is two-dimensional: users can select from a list of full
completions and then increase or decrease the extent of the completion.

Current text completion interfaces defer to the user by showing completions but allowing the
user to continue to type if he does not wish to use the completions. We strive for similar behavior
by automatically showing a completion along with a simple navigation panel when a completion is
triggered. The user can choose to interact with the completion interface or disregard it completely
by continuing to work, which will cause the completion interface to automatically disappear. The
navigation interface contains a set of arrows for selecting different completions (left and right) and
depths of the current completion (up and down). In addition, the rank of the current completion is
displayed to assist in the navigation and accept and cancel buttons are provided (see Figure 3.1(c)).
All of these completion actions, along with the ability to start a new completion with a selected
module, are also available in a menu and as shortcut keys.

The suggested completions appear in the interface as semitransparent modules and connections,
so that they are easy to distinguish from the existing pipeline components. The suggested modules
are also arranged in an intuitive way using a set of simple heuristics that respect the layout of the

current pipeline. The first new suggested module is always placed near the anchor module. The

23

offset of the new module from the anchor module is determined by averaging the direction and
distance of each module in the existing pipeline. The offset for each additional suggested module
is calculated by applying this same rule to the module to which it is appended. Branches in the
suggested completion are simply offset by a constant factor. These heuristics keep the spacing
uniform and can handle upstream or downstream completions whether pipelines are built top-down

or left-right.

3.5 Use Cases

We envision VisComplete being used in different ways to simplify the task of pipeline construc-
tion. In what follows, we discuss use cases which consider different types of tasks and different
user experience levels. The types of tasks performed by a user can range from the very repetitive
to the unique. Obviously, if the user performs tasks that are very similar to those in the database of
pipelines, the completions that are suggested are very full—almost the entire pipeline can be created
using one or two modules (see Figure 3.2 for examples). On the other hand, if the task that is being
performed is not often repeated and nothing similar in the database can be found, VisComplete will
only be able to assist with smaller portions of the pipeline at a time. This can still aid the user by
showing the possible directions to proceed with pipeline construction, albeit at a smaller scale.

The experience level of users that could take advantage of VisComplete also varies. For a
novice user, VisComplete replaces the process of searching for and tweaking an example that will
perform their desired visualization. For example, a user who is new to VTK and desires to compute
an isosurface of a volume might consult documentation to determine that a “vtkContourFilter”
module is necessary and then search online for an example pipeline using this module. After
downloading the example, they may be able to manipulate it to produce the desired visualization.
Using VisComplete, this process is simplified— the user needs only to start the pipeline by adding
a “vtkContourFilter” module and their pipeline will be constructed for them (see Figure 3.1). Mul-
tiple possible completions can easily be explored and unlike examples downloaded from the Web,
VisComplete can customize the suggestions by providing completions that more closely reflect a
specific user’s previous or more current work.

For experienced users, VisComplete still offers substantial benefits. Because experts may not
wish to see full pipelines as completions, the default depth of the completions can be adjusted
as a preference so that only minor modifications are suggested at each step. Thus, at the smallest
completion scale, a user can leverage just the initial connection completion to automatically connect
new modules to their pipeline. The user could also choose to ignore suggested completions as they
add modules until the pipeline is specific enough to shrink the number of suggestions. Unlike the

novice user who may iterate through many suggestions at each step, the experienced user will likely

24

choose to ignore the suggestions until they provide the desired completion on the first try.

3.6 Evaluation
3.6.1 Data and Validation Process

To evaluate the effectiveness of our completion technique, we used a set containing 2875 visual-
ization pipelines along with logs of the actions used to construct each pipeline. These pipelines were
constructed by 30 students during a scientific visualization course.! Throughout the semester, the
students were assigned five different tasks and carried them out using the VisTrails system, which
captures detailed provenance of the pipeline design process: the series of the actions a user followed
to create and refine a set of related pipelines [48].

The first four tasks were straightforward and required little experimentation, but the final task
was open-ended; users were given a dataset without any restrictions on the use of available vi-
sualization techniques. As these users learned about various techniques over the semester, their
proficiency in the area of visualization presumably progressed from a novice level toward the expert
level.

To predict the performance gains VisComplete might attain, we created user models based on
the provenance logs captured by VisTrails. User modeling has been used in the HCI community
for many years [23, 24], and we employed a low-level model for our evaluation. Specifically, we
assumed that at each step of the pipeline construction process, a VisComplete user would either
modify the pipeline according to the current action from the log or select a completion that adds a
part of the pipeline they would eventually need. We assumed that a user would examine at most ten
completions and could select a subgraph of any of these suggestions.

Because VisComplete requires a collection of pipelines to derive suggestions, we divided our
dataset into training and test sets. The training sets were used to construct the path summaries while
the test sets were used with the user models to measure performance.

We note that this model presumes a user’s foreknowledge of the completed pipeline, and this
certainly is not always the case. Still, we believe this simple model approximates user behavior
well enough to gauge performance. We also assumed a greedy approach in our model; a user would
always take the largest completion that matched their final pipeline. Note that this might not always
yield the best performance because the quality of the suggestions may improve as the pipeline is

further specified.

Yhttp://www.vistrails.org/index.php/SciVisFall2007

25

3.6.2 Results

Figure 3.6 shows one of the test pipelines with the components that VisComplete could have
completed highlighted along with its resulting visualization. To evaluate the situation where a set of
users create pipelines that all tend to follow a similar template, we performed a leave-one-out test for
each task in our dataset. Figure 3.7 shows that our suggestion algorithm could have eliminated over
50%, on average, of the pipeline construction operations for each task. Because Task 1 was more
structured than the other tasks, it achieved a higher percentage of reduction. Because Task 4 was
more open-ended, although the average percentage is also high, the results show a wider variation
(between 30% and 75%). This indicates that the completion interface can be faster and more
intuitive than manually choosing a template.

Because it is much more likely that our collection will contain pipelines from a variety of tasks,
we also evaluated two cases that examined the type of knowledge captured by the pipelines. Since
Task 5 was more open-ended and completed after the four other tasks, we expected that most users
would be proficient using the tool and closer to the expert user described in Section 3.5. We ran
the completion results using Tasks 1 through 4 as the training data (2250 pipelines) and Task 5 (625
pipelines) as the test data to represent a case where novice users are helping expert users, but we
also ran this test in reverse to determine if pipelines from expert users can aid beginners. Figure 3.8
shows that both tests achieved similar results; this implies that the variety of pipelines from the four
novice tasks balanced the knowledge captured in the expert pipelines.

Our testing assumed that users would examine up to ten full completions before quitting. In
reality, it is likely that users would give up even quicker. To evaluate how many predictions a user
might need to examine before finding the desired completion, we recorded the index of the chosen
completion in our tests. Figure 3.9 shows that the the chosen completion was almost always among
the first four. Note that we excluded completions that only specified the connection between the new
module and the existing pipeline because these trivial completions are possible at each prediction
index.

Our results show that VisComplete can significantly reduce the number of operations required
during pipeline construction. In addition, the completion percentages might be higher if our tech-
nique were available to the users because it would likely change user’s work patterns. For example, a
user might select a completion that contains most of the structure they require plus some extraneous
components and then delete or replace the extra pieces. Such a completion would almost certainly
save the user time but was not captured with our user model. Finally, the parameters (e.g., pruning
threshold, degree weighting) for the completion algorithms were not tuned. We plan to evaluate
these settings to possibly improve our results.

The completion examples shown in the figures of this chapter, with the exception of Figure 3.6,

26

‘A[reonewolne pajojdwod uadq

aAry pInod suone[durod pue se[npow ayy Jo jrey noqe ‘ased siy) up -ourpadid oy Suneard owm Jo junoure Y} pAdNPaAI dAeY prnom jey) suonajdwod
Auew opew ARy p[nod o[dWO)SIA "JoseIep J10Joeay yeweyo], 2yl Jo dois own e o3 parjdde sourjedid uonezifensia 3s9) 9y Jo dUQ :9°¢ NI

1019Y3IA
0000

1IBIMLA sosn Ag peppy [
00wo)|
Vel paroidwoy 77777
JaIapusyiIn
00000000

JaddeperegAioddmna
0o00000oog

) L]
Auadoagya JaddeperegAjoddin
| o [o

7/
7/
/

Ol
80In0S213YdSHIA

00o0ooogg

00
ayI4ean A agudiioma
PO000000 00000ogopo
\ _ !
o0 (B[] OO0
1901 | WEDNSHIA 80INOSMOLIYYIA SJUIOSEIIA JBYI4OUIINOYIA
0000L00000W00) [[[] 0000000, 0000000,
//
N
N ~N
~ < N .
N
Ny

WOJSURI] HIA

ooo

O
iapeatiasere@ia

00oodog

27

Operations Completed (Per Task)

51 [I---- --I |

% 3r oo I- - - -l N
=
i - {]}-4 :
1 °o I. .m- -I _
6 2|0 4|0 6|0 8|0 1(|)0
Percentage

Figure 3.7: Box plot of the percentages of operations that could be completed per task (higher is
better). The statistics were generated for each user by taking them out of the training data.

Operations Completed (Novice vs. Expert)

| | |
NOViCE - @ o I E BN BN BN BN BN B B B - = = = - * —
Expert - @ o0 O @0 + - m m m = - - - - - E - *. -
| | | | | I
0 20 40 60 80 100
Percentage

Figure 3.8: Box plot of the percentages of operations that could be completed given two types of
tasks, novice and expert. The statistics were generated by evaluating the novice tasks using the
expert tasks as training data (novice) and by evaluating the expert tasks using the novice tasks as
training data (expert).

28

Average Prediction Index (Per Task)

Tasks
w
|
-
|]
L
1
1
1
1
1
[|
1
=
|

Index

Figure 3.9: Box plot of the average prediction index that was used for the completions in Figure 3.7
(lower is better). These statistics provide a measure of how many suggestions the user would have
to examine before the correct one was found.

used the entire collection of pipelines to generate predictions. Figure 3.6 used only the pipelines

from Tasks 1-4.

3.7 Discussion

To our knowledge, VisComplete is the first approach for automatically suggesting pipeline com-
pletions using a database of existing pipelines. As large volumes of data continue to be generated
and stored and as analyses and visualizations grow in complexity, the creation of new content by
consensus and the ability to learn by example are essential to enable a broader use of data analysis
and visualization tools.

The major difference between our automatic pipeline completion technique and the related work
on creating pipelines by analogy [130] is that instead of using a single, known sequence of pipeline
actions, our method uses an entire database of pipelines. Thus, instead of completing a pipeline
based on a single example, VisComplete uses many examples. A second important difference is that
instead of predicting a new set of actions, our method currently predicts new structure regardless
of the ordering of the additions. This also means that VisComplete only adds to the structure while
analogies will delete from the structure as well. By incorporating more provenance information,

as in analogies, VisComplete might be able to leverage more information about the order in which

29

additions to a pipeline are made. This could improve the quality of the suggested completions.

We note that there will be situations where data about the types of completions that should occur
are not available. Also, some suggestions might not correspond to the user’s desires. If there are
no completions, VisComplete will not derive any suggestions. If there are completions that do not
help, the user can dismiss them by either continuing their normal work or by explicitly canceling
completion. Currently, we determine the completions in an offline step (by precomputing the path
summary, Section 3.3). We could update the path summary as new pipelines are added to the
repository, incorporating new pipelines as they are created. In addition, we could learn from user
feedback by, for example, allowing users to remove suggestions that they do not want to see again.
Completions could be further refined by assigning greater weight to those that more closely mirror
the current user’s actions, even if they are not the most likely in the database.

One important aspect of our technique is that it leverages the visual programming environment
available in many visualization systems. In fact, it would be difficult to offer suggestions without
a visual environment in which to display the structural changes. In addition, the information for
the completions comes from the fact that we have structural pipelines from previous work. Without
an interface to construct pipeline structures, it would be more difficult to process the data used
to generate completions. However, we should note that turnkey applications that are based on
workflow systems, such as ParaView [82], may also be able to take advantage of completions in
a more limited way by providing a more intelligent set of default settings for the user during their

explorations.

3.8 Summary

We have described VisComplete, a new method for aiding in the design of visualization pipelines
that leverages a database of existing pipelines. We have demonstrated that suitable pipeline frag-
ments can be computed from the database and used to complete new pipelines in real-time. Fur-
thermore, we have shown how these completions can be presented to the user in an intuitive way
that can potentially reduce the time required to create pipelines. Our results indicate that substantial
effort can be saved using this method for both novice and expert users.

There are several areas of future work that we would like to pursue. As described above, we
would like to update the database of pipelines incrementally, thus allowing the completions to be
refined based on current information and feedback from the user. We plan to refine the quality of the
results by formally investigating the confidence measure and its parameters. We would also like to
explore suggesting finished pipelines from the database in addition to the constructed completions
we currently generate. For finished pipelines, we could display not only the completed pipeline

structure but also a thumbnail of the result from an execution of that pipeline.

CHAPTER 4

EFFICIENT EVALUATION OF EXPLORATORY
QUERIES OVER PROVENANCE
COLLECTIONS

4.1 Introduction

Increasingly, scientific exploration requires advanced computing capabilities to help researchers
obtain insights into large datasets. The processes required to analyze and visualize data are often
defined as workflows, which are iteratively refined as researchers formulate and test hypotheses.
To manage these complex analyses, including the intermediate and final data products, workflow
systems have been developed and track the provenance of the data products as well as of the
workflow evolution [39, 47].

As the volume of provenance captured by these systems grows and is shared among users, new
opportunities are created for knowledge reuse. Different kinds of queries can be posed against
provenance [121]. Since workflow provenance can be represented as a graph [39], queries that
seek the detailed derivation history of a given data product require that the provenance graph be
recursively traversed (backwards), starting from the node that represents the data product. Another
useful class of queries involve exploring the structure of the workflows that derive the data products.
The workflows (and workflow traces) shared in provenance repositories expose users to examples
of (sophisticated) uses of tools and libraries [33, 110]. By querying this information, users can
leverage the collective wisdom it encodes. Not only can users find workflows that are relevant
for a particular task and learn to assemble new workflows by example [18, 130, 131], but recom-
mendation systems can be built to leverage this information to guide users in the workflow design
process [85]. This is especially important given the fact that, despite the growing popularity of
workflow systems, constructing workflows is often a challenging and time-consuming task. Detailed
knowledge of the underlying computational components is necessary to determine what modules
and connections ought to be added to obtain a desired result.

While there has been work on speeding up recursive queries over provenance graphs [65],
the problem of evaluating structural queries has been largely overlooked. In this paper, we study

the problem of efficiently evaluating structural queries that are exploratory in nature. Exploratory

31

queries are naturally expressed as simple graphs that may contain wildcards in constrast to standard
containment queries like the one shown in Figure 4.1. For example, Figure 4.2 shows an exploratory
query posed by a scientist interested in habitat modeling reports that were generated using the
RandomForest model with a climate predictor layer. This query can be quickly defined without
the need to understand exactly how the different components are connected. Queries with wildcards
are useful to search for workflows (or subworkflows) that contain a given structural pattern, but
can also be used and to identify possible directions for completing an unfinished workflow. For
example, when a workflow designer is faced with a known input and desired output, it is helpful
to identify different subworkflows that can connect the source and sink nodes of the the graph (see
Section 4.5).

Although there has been substantial work on graph indexing techniques to speed up the evalu-
ation of fully-specified structural queries [133, 166, 168], the same cannot be said of the problem
of efficiently evaluating exploratory queries: Existing approaches have focused on connected-graph
queries, not queries that are disconnected or contain wildcards. In addition, while the filtering
step in these indexing schemes significantly reduces the number of required (and costly) subgraph
isomorphism checks, vague queries often have a large number of answers, all of which must be
verified through subgraph isomorphism. FG-Index introduced a verification-free indexing scheme
to address this issue [29], but this comes at a cost: when the number of frequent subgraphs is large,
the index may become prohibitively large.

We propose a flexible, two-level framework to support exploratory queries over provenance
collections. Building on graph indexing techniques, we add 2-component frequent subgraphs to the
index to support vague queries like those with wildcards and summary graphs to limit the time spent
verifying candidate graphs after the filtering step. By augmenting the collection with summary
graphs before constructing a discriminative index, we can process queries by verifying summary
graphs first, reducing the total number of subgraph isomorphism checks required. We implemented
a prototype mechanism and evaluated it on two large collections of provenance information.

This chapter is organized as follows. We review workflow definitions as well as graph termi-
nology in Section 4.2 before introducing our indexing framework in Section 4.3. In Section 4.4,
we detail our implementation, and Section 4.5 describes applying the framework to workflow
completions. We evaluate our framework using provenance data from visualization and Yahoo!
Pipes workflows in Section 4.6. We discuss extensions and limitations in Section 4.7 and review

related work in Section 4.8 before concluding in Section 4.9.

32

ydeaSqns pagroads oy yaim smopdIom pul 03 UOTIOI[[0D B SaYdIeas A1onb juswurejuod piepuels v I 9angig

yodayTNLH
pod

M
vodeypjing
[m[nin

i
sdeppiing

n

vodoyTNLH

poOd

M
Hodeypjing

sdeppiing

yodayn1H
pO0

\\\\\\\\

L
wodaypiing
minjn
K

e
+ :mm oun @
s|opoNuny 1oPon EMB QO_\,_U__:m
r|rajrn; E
7 —— /
w B_>_.__0 Hmwm«_OU_Eo_ocﬂn_ U
i i S|9poNuny
anpereaplel
oeleap| En_a 1sajojwopuey || LINIXVIN 000
SAnpPIing
ninj
L]
SAWpIing i ﬁo_QEmmmm
injnj elegpjald4 [n[n]
[m]
L
Jo)dwesay
o [Li] L]
—— ._O“_.O__uw_n_wumc._m_w_ joqeneds
L
joqeneds L
10}01paidonels
4 \ ¥ oo
Jojoipaiderewl|d | | 10301paidonels eieapield
o oo =

33

vodayINLH
n[als}

\I\

L
vodaypling
0o

\'l\

M
s|jepopuny

njn)

SHVYIN

}sajojwopuey

t
SAnpIing
nir;

i
Jojolpaidarewl|
oo

L

10)0IpaldSH
od

L]

elegpiald
]

"S9[NPOW PIIOAUUOI YY) UMIQ Yied & UIejuod
Jsnuu 3 nsax yoea ‘syjed preopim are Aronb oy ur saur] paysep ayJ, ‘serenb oyroads-ssof mwrad 03 spreop[im smoq[e Aronb A1ojeioidxe uy gy 9an3i

HodayTALH
pogd

\|\

i

Hodeypjing
m[r[ry
\I/l\

L]
sdeppling

o

s|epopyuny
nininj

e

W19

L]
1salojwopuey

L
SAnpling
nin|

L
ereqgpiald
]

HodoyNLH

Qoo

s|epoNuny

PR

-
-
-
-
-
-

-

’

ps

00
’

m
Jojoipaidarewt|D
ogd

i
}sajojwopuey

m
J9|dwesay

nin|

L]
l0joIpaiderewl|d

]}

il
Jaq@reneds

Li]
l0joipaidonels
oo

34

4.2 Background

Before presenting our indexing framework for exploratory queries over provenance collections,
we will review terminology and definitions. Specifically, we wish to abstract these constructs to
graphs in order to leverage and extend existing graph indexing techniques. We first review the
correspondence between provenance and workflows, then define queries over workflow collections,

and finally abstract this to graphs.

4.2.1 Provenance and Workflows

Provenance information is represented as a directed acyclic graph (DAG) encoding dependen-
cies among computational steps. Similarly, workflows can also be represented as a graph specifying
the order of computation, and most scientific workflows are dataflows which are also DAGs. Fur-
thermore, when provenance is generated during the execution of a workflow, the provenance graph
directly reflects the structure of the workflow. Thus, a query over provenance graphs (or parts
of that query) can often be translated into a query over workflows. In many cases, the workflow
specification is shared among several provenance traces derived from multiple executions of similar
workflows. In addition, the workflow graph can be much more compact than the provenance graph,
especially for workflows that include looping constructs. Thus, while our indexing framework can
be directly applied to provenance graphs, it is usually more efficient to index the workflows behind
the provenance graphs.

A workflow is a set of steps usually associated with some partial order. The steps followed can
be controlled by their order, a set of logical constraints, or dictated by human input. A dataflow is
a special kind of workflow that is a DAG.! In a dataflow, each node performs a computation and
edges define the flow of data from the outputs of one node to the inputs of another [92]. While
general workflows may contain cycles and explicit control constructs [1], their provenance can be
represented as DAG—with loops unrolled and branches selected.

Formally, a workflow w is a set of computational modules linked by connections that define the
flow of data from one module to another. This is often represented as a DAG whose vertices are
modules and edges are connections. Each vertex and edge is distinguished with the type of module
or connection it represents. For example, the center module in Figure 4.3 has the type RunModels,
and the type of connection from it to the BuildMDS module is defined by the ports used to connect

the modules.

!The dataflow model is the most prevalent model supported by scientific workflow systems.

35

O 0o Oo
FieldData StaticPredictor ClimatePredictor
m\ f
mm
BuildMDS
MAXENT RandomForest
ENE
L]
RunModels
M
BuildMaps

LilLi[n}
BuildReport

Figure 4.3: A representative workflow from a collection of workflows used for habitat modeling.

4.2.2 Queries Over Provenance Collections

A provenance collection consists of a set of provenance records. The collection may contain
records generated from multiple executions of a single workflow, from a variety of workflows
created as part of a collaborative scientific project, or from an entire database of workflows built
by members of a scientific research group over a period of many years. Note that large, distributed
collections implicitly contain a wealth of scientific information, cataloging different strategies,
experimental approaches, and results. As described earlier, because provenance records often
contain (or link to) the specifications of the workflows that were run, these collections often contain
an embedded collection of workflows.

Some queries can be posed against a single workflow, others involve the differences between
two workflows, but many are best answered by examining an entire collection. If a user wishes to
know exactly which predictors in the workflow shown in Figure 4.3 affect the maps generated in the
report, they need only analyze that single workflow. Another important type of query is identifying
differences between pairs of workflows [15]. However, users are often interested in searching a

collection of workflows to find those that exhibit specific behaviors. For example, a user may wish

36

to locate all workflows that run using a RandomForest module, a climate predictor, and that
generate a report. We focus on this type of query. More formally, given a workflow collection W
and a query ¢, we wish to find the subset YW, © W such that every w € WV, satisfies q.

Like others [18, 85], we posit that a query can be represented as a workflow. The most basic
type of workflow query is containment. Formally, a workflow containment query q is a workflow
specification, and a workflow w € W satisfies ¢ if there exists an injective function f that maps
modules in ¢ to modules in w such that

o type(m) = type(f(m)), m € g, f(m) € w, and

o c(mi1,mg) € ¢ = 3c(f(ma), f(m2)) € w and type(c) = type(c’)
where ¢(m, m2) is a connection from module 1 to module ms. Thus, the query is satisfied when a
workflow contains the query workflow. This type of query can be used when looking for a particular
region of functionality; for example, searching for all workflows that run a predictor and resamples
its results.’

The problem with these containment queries is that the user must know exactly what to look
for—the exact module types and connectivity. We suggest a more powerful form of workflow
queries where the query allows wildcards for module or connection types. This relaxation allow
queries to specify existence of paths in addition to direct connections, and existence of a module
rather than a specific module type. More formally, an exploratory workflow query is a partial
workflow ¢, a workflow where modules and connections can have the wildcard type * meaning
any type of module or connectivity is allowed. Then, a workflow w satisfies the exploratory query
q if there exists an injective function f such that

o type(m) = or type(m) = type(f(m))

e type(c(my,mz)) = * = Ipath(f(m1), f(m2)) € w

o type(c) # * = type(c) = type(f(c))
where f(c) = f(e(my,m2)) = /(f(m1), f(m2)). Note that exploratory queries offer far greater
flexibility; users can query a collection without worrying about steps that are not important to their
search. For example, a user may wish to find all workflows that use a RandomForest module
and eventually output an HTML report that includes information from that model; whether or not
BuildMap is used is not relevant to the user. In an exploratory query, wildcards can be used to
indicate that a path must connect the two modules but with no restrictions on what modules that
path connects. See Figures 4.1 and 4.2 for an example of the difference between containment and

exploratory queries.

2Note that workflow queries may also include information about parameters: these can also be specified as part of the
workflow.

37

4.2.3 Graphs and Isomorphisms

Because we wish to make use of existing graph indexing approaches, we propose a translation
from workflow queries to queries over collections of graphs. Workflows can be naturally represented
as labeled graphs whose vertices and edges are labeled by the module or connection type. Formally,
a workflow w can be represented by the labeled graph G(V, E') where each module in w is repre-
sented by a vertex in V' and each connection is an edge in E. In addition, the labeling functions,
Ly (v) and Lg(e) are defined as the types of the modules and connections, respectively. Then, a
basic workflow query can be immediately translated into a subgraph isomorphism problem, and
exploratory workflow queries can be translated to an extension of subgraph isomorphism involving
wildcards.

Two graphs G and H are isomorphic if there exists a bijective function f : V(G) — V(H)
such that for every edge (v;,v;) € E(G), there exists an edge (f(v;), f(v;)) € E(H) and vice
versa. If G and H are labeled graphs, then f must also preserve labels: Ly (v;) = Ly (f(v;)) and
Lg((vi,v;)) = Le((f(vi), f(vj))). If we relax f to be an injective function, then G is subgraph
isomorphic to H, G € H, again with the same restrictions for labeled graphs.

Much of the existing graph indexing work has focused on speeding up graph containment
queries: given a query graph (), find all graphs G in the collection for which Q < G. This type of
query is analogous to our workflow containment query, and thus these approaches do not support
exploratory queries with wildcards. To extend these techniques, we must first extend the definition
of subgraph isomorphism to incorporate wildcards.

A wildcard graph G* is a labeled graph where any edge can have a special * label that denotes
a path (not necessarily a single connection) between two vertices. Then G* is wildcard subgraph
isomorphicto H if G*—{e | Lg(e) = *,e € E(G*)} (G* excluding all wildcard edges) is subgraph
isomorphic to H and for each wildcard edge (v;, v;), there exists a path from f(v;) to f(v;) such
that no internal vertex in this path is in f(V(G*)). Note that the restriction on the path ensures that
a query graph where vertices are specified and not identified as path of a path cannot be used in a

wildcard path.

4.3 Indexing Framework
With the abstraction of provenance and workflow queries over provenance collections to graph
queries, we will propose extensions to existing graph indexing frameworks to support exploratory
queries. The inherent graph structure in provenance queries means they are subject to theoreti-
cal constraints on subgraph isomorphism which is known to be NP-Complete [31]. Thus, doing
a subgraph isomorphism check for each graph in the collection will not scale. We propose a

two-level framework that extends existing graph indexing techniques by incorporating summary

38

graphs that capture verification-free subgraph isomorphisms and discriminative features defined
over the extended provenance collection. Our goal is to reduce the number of total subgraph
isomorphism checks while at the same time allowing less-specific, and thus more exploratory,
queries. The framework is rooted in the observation that even if we cannot resolve a query without
any verification as in [29], we can reduce the number of subgraph isomorphism computations by

finding a subset of the result set with limited verification.

4.3.1 Standard Graph Indexing

Standard graph indexing seeks to make subgraph containment queries over collections of graphs
more efficient by limiting the number of subgraph isomorphism checks. Indexing strategies have
primarily fallen into two categories: feature-based methods (see e.g., [133, 166, 168]) and hierar-
chical organization [62, 162]. We focus on feature-based methods because for exploratory searches,
users are often querying for specific (and often disconnected) features.

Feature-based graph indexing identifies features that aid in distinguishing graphs in a collection
from each other. Each feature is linked to the graphs that contain it, and all features are organized
in a hierarchy according to feature size. Queries are evaluated by identifying a set of features
contained by the query and computing the intersection of the graphs associated with each feature.
A graph must contain the same set of features as the query, but this is not sufficient as the features
do not necessarily uniquely identify a graph. Thus, we must check whether each candidate graph
is subgraph-isomorphic to the query. The fewer isomorphisms we compute, the faster the query

execution. Thus, we wish to find a set of features that minimizes the size of the candidate set.

4.3.1.1 Identifying Features

The first ingredient in graph indexing is identifying features that will help to differentiate the
graphs in our collection. To minimize the size of the index, we wish to find a set of features that
serves to filter the collection into small subsets of graphs such that the features are not redundant.
Formally, given a graph collection G, a subgraph H is frequent with respect to a threshold T if

|sup(H)| = T where the support of a subgraph H is
sup(H) ={G | H € Ge G}

Note that if a query graph contains a given frequent subgraph H, we can immediately exclude all
graphs in G that are not in sup(H).

For a frequent subgraph H, any subgraph of H is also frequent because any graph that contains
H must also contain all subgraphs of H. This means that there may exist a large number of frequent

subgraphs when a dataset has a large pattern that occurs frequently. More generally, when frequent

39

subgraphs have similar support values, they serve to prune nearly the same set of graphs. We desire
to select a smaller set of frequent subgraphs that still provides good pruning power. This implies
that selected feature subgraphs should not significantly overlap. Given the collection G and a set of

subgraphs F, a subgraph F' is discriminative if
sup(F) » N prer prer sup(F')

Figure 4.4 shows a set of frequent subgraphs, their respective supports, and the size of the intersec-
tion of the supports of their subgraphs. Note that F5 and F3 are well indexed by Fy, F5, and Fg and

thus are not discriminative.

4.3.1.2 Index Construction and Query Processing

After identifying the discriminative features, we build an index by organizing the features into
a hierarchy to facilitate apriori pruning. Note that this hierarchy may contain features that are
not discriminative in order to simplify traversals during query processing. Because each feature is
linked to a list of graphs that contain the feature, we can easily prune our search space for each
feature in the query. A query is processed by starting with individual vertices and building features
with increasing size by traversing the hierarchical index. Once we have the maximal features from
the query, we intersect the lists of graphs associated with each of the features. The intersection of
these graph lists forms the candidate set of graphs that may satisfy the query. Because we do not
know if the candidates actually match the query, we must then verify each candidate by computing
a subgraph isomorphism. Note that because subgraph isomorphism can be costly, it is important to

have features which prune a large portion of the collection.

4.3.2 Wildcard Graph Indexing

Standard graph indexing techniques present two major issues when dealing with exploratory
provenance queries. The first is that they usually assume that queries are connected graphs which
is not necessarily the case when dealing with workflows. For example, suppose that a user wishes
to find a workflow that uses a particular data source and produces a figure in a specific output
format. In this case, the user does not care what the internals of the workflow are, so the standard
containment query does not apply. A second issue is that answering queries with a large number of
satisfying workflows may result in many subgraph isomorphism calculations. A vague query like
one to find a common subworkflow might produce many candidates after filtering, all of which need
to be verified. We introduce 2-component frequent subgraphs and summary graphs to address these

issues.

40

DISCRIMINATIVE FEATURES

|sup(£1)| = 10, | sup(F)| = 32, [sup(F3)| = 35,
|sup(Fy)| = 70, |sup(F5)| = 54, | sup(Fp)| = 49
| sup(Fy) nsup(Fg)| = 36, | sup(Fy) nsup(Fs)| = 39,
| sup(F2) nsup(F3)| = 28

Figure 4.4: Because the graphs identified by a feature may also be identified by subgraphs of that
feature, we choose discriminative features to be those whose subgraphs collectively identify many
more graphs. For example, F7 is selected because the graphs identified by the combination of F5
and Fj3is 28 » 10.

4.3.2.1 2-Component Frequent Subgraphs

Because exploratory queries frequently contain only pieces of a graph, we propose an indexing
strategy that considers disconnected frequent subgraphs. Most existing frequent subgraph mining
algorithms can be extended to also consider disconnected subgraphs. The problem with doing
so is that the number of frequent subgraphs jumps exponentially. Any frequent subgraph with n
vertices has on the order of 2" possible disconnected frequent subgraphs that are also frequent.
We can classify these disconnected subgraphs by the number of components. An m-component
subgraph is a subgraph whose vertices can be partitioned into no fewer than m sets such that there
does not exist any path from a vertex in one set to a vertex in another set. Including 2-component
subgraphs in our set of frequent subgraphs only increases the number of frequent subgraphs by a
quadratic amount. In addition, a frequent subgraph with more than n components contains O(n?)
2-component subgraphs so we still have a large number of features to help prune the search space.
Figure 4.5 shows an example where the two-component subgraph F} filters many more graphs than
F5 and F3. This usually occurs when the query identifies components as nonoverlapping, but many

of the graphs indexed by the single-component features have them overlapping.

4.3.2.2 Summary Subgraphs
While frequent subgraphs prune the search space and help quickly locate graphs that may satisfy
the query, we still need to check every graph that remains after pruning. This verification step

involves the computation of a subgraph isomorphism, and this can be even more costly when

41

2-COMPONENT FEATURE

2

(5
.

Lc) F

3

| sup(F1)| = 22, |sup(F»)| = 62,
|sup(F3)| = 57, | sup(F2) n sup(F3)| = 50

Figure 4.5: While the features F5 and F3 occur together often, they are usually disjoint as defined
by the two-component feature Fy: |sup(F})| < |sup(Fs) n sup(F3)|.

wildcards are involved. Cheng et al. proposed FG-Index as a way to eliminate the verification
step by noting that when the query is itself a frequent subgraph, the indexed graphs automatically
satisfy the query [29]. While these verification-free answers are ideal, indexing all of the frequent
subgraphs—not only discriminative ones—can lead to prohibitive index sizes.

We propose summary subgraphs as a scalable way to limit the number of verification steps.
A summary subgraph F is linked to a subset of the graph collection where each graph G is a
supergraph of F'. Then, if a summary subgraph satisfies the query, we know that all of the graphs
the summary subgraph indexes also satisfy the query. In addition, we will only include subgraphs
that do not have immediate supergraphs that index a similar number of graphs. See Figure 4.6 for
an example showing which subgraphs are selected as summary features. Formally, a subgraph F' is

a summary subgraph in a set of graphs F if for all F € F, F' 2 F:
sup(F) « sup(F’)

A summary subgraph is analogous to the J-tolerance closed frequent subgraph [29], but we use
them differently. When a query graph H is found to be a subgraph of a summary subgraph G,
we know that all of the graphs that G indexes also satisfy H. Thus, if this single verification of
H < G succeeds, we avoid verifying all of the graphs GG indexes. Note that H may satisfy other
graphs; we leave the remaining graphs to either other summary graphs or basic verification using
subgraph isomorphism. However, because mining features are required for feature-based indexing

techniques, finding summary subgraphs takes minimal computation.

42

SUMMARY FEATURE

|sup(F1)| = 52, | sup(Fa)| = 62,
|sup(F3)| = 57, | sup(Fy)| = 60
| sup(F1) nsup(Fs)| = 50, | sup(F1) nsup(F3)| = 51,
|sup(£1) N sup(Fy)| = 50

Figure 4.6: Because each subgraph of a frequent subgraph is also frequent, we choose summary
features to be those whose supergraphs have much smaller frequency.

4.3.2.3 Index Construction and Query Processing

Our index is composed of both summary and discriminative features. Both summary and dis-
criminative features link to supergraphs of themselves that exist in the graph database, as illustrated
in Figure 4.7. Because we need to identify the summary subgraphs during query processing just like
any other candidate graph, our discriminative features will index to those graphs as well as those
in the graph database. Additionally, after identifying the summary subgraphs, any graph indexing
scheme can be applied to this extended graph database. Index construction begins by mining a set
of connected and 2-component frequent subgraphs. Then, we identify the summary graphs and add
them to the collection. Next, we create an index over the augmented collection; because we have
already mined features, it is more efficient to use a feature-based scheme. As described earlier,
discriminative features can be quickly extracted to index these graphs.

Query processing is similar to standard graph indexing schemes, except that we use 2-compon-
ent frequent subgraphs to better filter candidates and shortcut the verification process using summary
subgraphs. When pruning candidate graphs, we are able to use 2-component frequent subgraphs

as features. In addition, our verification step begins by checking all summary graphs first, then

43

SUMMARY
FEATURES i

DISCRIMINATIVE
FEATURES

INDEX WORKFLOW DB

Figure 4.7: Our index has two tiers, the summary features which summarize frequent features and
provide verification-free answers, and the discriminative features which point to both the original
workflow database and the summary features. Note that for this illustration, many items have been
omitted from the figure; in practice, each workflow is indexed by at least one discriminative feature.

verifying graphs that remain unverified by the summary graphs.

4.3.2.4 Verification

Given the summary graphs and discriminative index, our query processing proceeds like stan-
dard graph indexing with the exception that we choose to verify summary graphs before any of the
graphs from our collection. As noted earlier, whenever a summary graph S satisfies the query graph,
we immediately know that any graph indexed by .S also satisfies the query graph. This means that
we do not have to individually verify that entire subset of graphs. Note that if S does not satisfy
the query, we cannot exclude the graphs indexed by S because summary graphs are inclusive rather
than exclusive. However, we expect that frequent graphs will be summarized, and a query that has
a candidate summary graph that does not verify will either be indexed by another summary graph

or be infrequent.

4.4 Implementation
Our implementation of the index construction, query processing, and index maintenance is
described in this section. Note that we do much of our processing by levels of the subgraph

hierarchy.

44

4.4.1 Index Construction
As described earlier, there are two distinct steps in our index construction: summary graph se-
lection and constructing an index for the collection augmented with the summary graphs. Summary
graph selection requires frequent subgraph mining, and we also implement our discriminative index
using frequent subgraphs. For that reason, we mine features from the entire collection and use those
features for both steps. After mining, we choose summary graphs and construct a discriminative

subgraph hierarchy over the augmented collection. See Figure 4.8 for an overview of the process.

INPUT WORKFLOWS ALL FEATURES
1. MINE FEATURES

TR
2 g2

3. SELECT DISCRIMINATIVE
FEATURES

2. SELECT SUMMARY

‘ FEATURES

!

DISCRIMINATIVE FEATURES l
() 35[% SUMMARY FEATURES
—
2 o 28 %
2 %5
INDEX
4. BUILD INDEX

@—»:@

Figure 4.8: The construction of our index involves feature mining, followed by the identification of
summary features, which are used to determine discriminative features and build the index.

45

4.4.1.1 Mining Frequent Subgraphs

Among existing subgraph mining algorithms, we have chosen to use the open-source imple-
mentation of gSpan [164] from Jahn and Kramer [74]. Because summary graph and discriminative
feature selection involve comparing a graph against its super- or subgraphs, we maintain a directed
acyclic graph £ to manage these relationships. An immediate subgraph of a graph G is a subgraph
G’ where G’ is missing exactly one of the edges from G (it may also be missing a vertex if the edge
connects to a degree-one vertex). Then, as we mine features, we maintain links from every graph
to its immediate subgraphs in £. This will help us process graphs in levels where each level has all

graphs with a set number of edges.

4.4.1.2 Generating 2-component Frequent Subgraphs

To mine 2-component subgraphs, we can either modify an existing algorithm like gSpan [164]
or the Frequent Subgraph Miner [89] or process the set of connected frequent subgraphs and gen-
erate the 2-component subgraphs. For gSpan, the depth-first search can be amended to include a
component number so that mining will consider disconnected subgraphs [165]. However, if we
already have the set of connected frequent subgraphs, we can generate the 2-component frequent
subgraphs by examining all pairs of frequent subgraphs, and checking whether the intersection of
graphs matching both subgraphs contain them disjointly.

Given our subgraph relationship graph £, we can build 2-component frequent subgraphs (2CF-
SGs) by checking pairs of subgraphs level-by-level up from single-vertex pairs. If any pair of
subgraphs is not frequent, we need not continue to check supergraphs of that combination. Also,
note that as we compute these 2CFSGs, we will update £ to include the new subgraphs as well. The

entire process is detailed in Algorithm 2.

4.4.1.3 Selecting Summary Graphs

To select summary graphs, we follow the principles outlined in Section 4.3.2, but again work on
a level-by-level basis, in order to more easily determine whether a subgraph should be selected or
not. We maintain the set of supergraphs for each subgraph in parent level, and work top-down. Then
at any level, we can look up exactly what the cumulative supergraph support is without traversing

the entire supergraph hierarchy. Algorithm 3 details this process.

4.4.1.4 Building the Discriminative Index
After selecting summary graphs, we build a discriminative index over the graph collection
augmented with the summary graphs. As noted earlier, determining discriminative subgraphs is

similar to selecting summary graphs except that we are concerned with exclusion here in contrast to

Algorithm 2: Mine Frequent Subgraphs

Input: A collection of workflows G and a threshold T’
Output: A set F of frequent subgraphs of W

MINESUBGRAPHS(G)

€)) F < Run gSpan(G,T)

2) Add single-vertex features to F

3) pairs « all pairs of single-vertices from F

4) while pairs # :

(®)) foreach G1, G in pairs:

(6) matches < sup(G1) n sup(Ga)

(7) if |matches| <T

(8 continue

(9) G, <« G(Gl, GQ)

(10) if |{G | VERIFY(G',G)}| < T

(11) continue

(12) Fe—F+¢&

(13) G5 < IMMEDIATESUPERGRAPHS(G2)
(14) foreach Sy € G :

(15) pairs « pairs + (G1, S2)

(16) G{ < IMMEDIATESUPERGRAPHS(G)
(17) foreach S; € G:

(18) pairs « pairs + (S1, G2)

Algorithm 3: Select Summary Graphs

Input: A set F of frequent subgraphs of W
Output: A subset of summary subgraphs S
SELECTSUMMARYSUBGRAPHS(F)

ey
2
3)
“)
&)
(6)
(N
(®)

Sort F according to the number of edges in decreasing order
foreach G € F:
Gt <« IMMEDIATESUPERGRAPHS(G)
if GT = Jor | ugeg+ supports(G')| > T
S<S+G
supports(G) « sup(Q)
else
supports(G) — | Ugieg+ supports(G')|

46

summary graphs which emphasize inclusion. Recall a subgraph is discriminative when its subgraphs

that are also discriminative filter many fewer graphs. Thus, we work on a level-by-level basis, but

work from the bottom-up instead of top-down as we do with the summary graphs. Algorithm 4

formally expresses this idea.

4.4.2 Query Processing

Given a workflow query ¢ in graph form, we break the graph ¢ into features. Note that these

features may be 2CFSGs, so we begin with single-vertex features and grow them into progressively

47

Algorithm 4: Build Index
Input: A collection of workflows WV and summary graphs &
Output: Anindex 7T for the collection
BUILDINDEX(W, S)
(1) G—WuS

2) Sort G according to the number of edges in increasing order
3) foreach G € G

4) G~ « IMMEDIATESUBGRAPHS(G)

(%) if G~ = Jor| ngreg- supports(G')| > T

©6) T<T+G

7 supports(G) < sup(QG)

®) else

©)] supports(G) «— N greq-supports(G')

larger (and possibly disconnected) features according to the tree we maintain as part of the discrim-
inative index. When we have determined the maximal features, we compute the intersection of the
sets of graphs linked to these features. Note that the resulting set of candidates /* may contain
graphs from the collection and summary graphs.

Next, we must verify the set of candidates. Recall that if a summary graph S satisfies the query,
we immediately know that all of the graphs that S represents also satisfy the query. Thus, we
may be able to avoid some individual verifications by checking summary graphs first. However,
if a summary graph does not satisfy the query, we cannot assume that the graphs it indexes do
not satisfy the query; another summary graph may verify them or we may have to check them
individually. Algorithm 5 details this process. For workflow queries that do not involve wildcards,
these verification steps are just subgraph isomorphism checks. However, wildcard queries require

an extension of subgraph isomorphism. Figure 4.9 illustrates the entire process.

4.4.2.1 Wildcard Query Verification

Because wildcard queries are essentially disconnected graphs with special wildcard edges, we
can delete the wildcard edges and run the query over the disconnected graphs. However, during
verification, we need to evaluate whether the wildcard edges are satisfied by the candidate graph:
we need to check the wildcard subgraph isomorphism problem defined in Section 4.2. Since we
have chosen to mandate that paths between the two vertices on each side of the wildcard edge
must not contain vertices already matched to the query graph, we cannot evaluate this query using
standard transitive closure. Instead, we do this evaluation with a standard connectivity search on
the candidate graph by excluding any vertices already matched, using a depth-first search. Note that
this requires computing the matching generated from a subgraph isomorphism, and checking other

subgraph isomorphism answers if a suitable answer has not been found.

48

QUERY 1. FIND FEATURES FEATURES

2. INDEX FILTERING
:'% & INTERSECTION Soie gl ool o
g 7
=<3 E
/ CANDIDATES

SUMMARY CANDIDATES
VERIFIED ANSWERS l

%% %%E FROM SUMMARIES
| A C 4. DIFFERENGE
3. SUMMARY VERIFICATION — E]

A C D E 5. VERIFICATION
FG ™

ANSWERS

Figure 4.9: Query processing is faster because the discriminative index limits the number of
candidates and summary graphs limit the number of computationally-expensive verifications.

49

Algorithm 5: Process Query
Input: Query workflow @), index T, collection of summary graphs S, collection of workflows W
Output: A subset .4 of W that satisfy)
PROCESSQUERY(Q, 7, S, W)
(1) AW
2) features « single-vertex features of)
3) foreach F' € features

@ ifFreT

®) features «— features +

(6) IMMEDIATESUPERGRAPHS(F', Q)
(7) A—AnT(F)

() Sort A so that all G € S are first
) foreach G € A
(10) if VERIFY(Q, G)

(11) ifGeS

(12) A— A+ S(G)
(13) else

(14) A—A-G

(15 A<—A-S8

4.4.3 Index Maintenance

Because selecting frequent features requires mining, we cannot expect to regenerate the entire
index on the fly. Note, however, that both levels of the index can be updated to include new graphs
using existing summary and discriminative features. Unfortunately, it is difficult to discover new
frequent subgraphs after index creation as this requires recomputing the mining. As has been
discussed in other work [166], we can wait until a certain number of graphs have been added or
deleted and then recreate the index. In addition, we will always index base features like single
vertices or edges to ensure that new graphs will appear in search results. Thus, while the quality of
the index may degrade until it is recreated, it should not degrade too quickly. We may also choose
to recreate the discriminative index without updating the summary subgraphs, or we can recalculate

both levels of the index.

4.5 Workflow Completions
We can leverage exploratory workflow queries to suggest workflow completions, i.e., how a
partial workflow might be filled in. Similar to how textual completion works for programming
environments [103] or search fields [57], workflow completion seeks to provide suggestions to
users as they construct workflows. For example, in Figure 4.10, we show possible completions for
a modeling workflow. These completions are derived from an existing provenance collection and
aggregate workflow query results in order to rank putative completions. In [85], we showed that

using automatically generated completions, the effort to create workflows is substantially reduced.

50

“UOTJO[[0D B UI SMOPIOM TUIISIXD

0] SUIPIOJOE SUOTIOAUUOD pue sa[npowt Yim spreoprm 3uroe[dar Aq A1onb uonodwos & woiy pojerdussd are suond[dwod MOPION I dInSI

s}insey
Q) ®) Aenp uons|dwon
yodeyTNLH HodoyTNLH podoyTNIH
pood poo poo
L] L] L]
yodayp|ing uodaypjing podayp|ing
m]m[n] m[unj 0og
L Li M
s|opouny S|9poNuny S[epoNuUNy
jninjn (njnjn; _.UDE
\
\
!
L i I / i
Aanpereqgplel4 1saI04wopuey 1saJojwopuey Ve }saiojwopuey
ninj K
’
’
U
’
\s
0 SampIng sanpeiing 7
nin) ne /!
\
\
Ja|dwesay \
njn| b
K \
1
jeqreneds elegpield ;
’ O ’
1
1
uj m
M] Jojoipaidarewn|d Jojoipaidarewl|n
Jojo1paidarewn|d J0}01paidonels
oo oo
oo oo

51

In our experiments, we observed a reduction of over 50% in the the number of operations performed
by users to construct workflows.

Formally, a workflow completion of a partial workflow w is a (nonpartial) workflow w’ such
that the workflow query represented by w is satisfied by w’. Thus, each wildcard module is
matched to some module in the completion and each wildcard connection maps to some path in
the completion. Note that a completion need not do more than satisfy each wildcard constraint
and match non-wildcard modules and connections. Thus, completions may be simple, just filling
in the minimum structure (see Figure 4.10(a)), or more complex, adding additional branches (see
Figure 4.10(b)). Also, since a completion is the result of a workflow query, improvements in the

efficiency of workflow queries translate directly to improvements in workflow completion.

4.5.1 Implementing Workflow Completions

We can augment our indexing framework to support workflow completions by capturing the
paths that satisfy the connectivity constraints in wildcard queries. During wildcard query verifica-
tion, we can capture these paths and suggest them as completion paths. Note that we can expand
a completion path to include modules and connections attached to the path. However, we always
add only vertices and edges that do not appear in the query graph (i.e., the existing workflow). This
ensures that the user does not see suggestions that reflect the workflow pieces they have already
constructed.

Ideally, completions should be ranked based on their importance. If one completion occurs in
hundreds of workflows and another occurs only once, we would like to present the more prevalent
one first. Note that a match to a summary graph guarantees that a completion there occurs fre-
quently. Thus, after verifying only the summary graphs, we might immediately present the user
with suggestions for completing a workflow. We can continue to generate suggestions from the

other graphs in the background, but allow the user to see the initial suggestions quickly.

4.6 Evaluation
4.6.1 Theoretical Costs

The total cost of a workflow query g using a standard graph index is
Clg) = Cr +[Z(a)|Cy

where C is the filtering cost, C, is the cost of verification, and Z(q) is the set of candidate graphs
from the index given the query ¢q. Our improved index splits subgraph isomorphism checks into

two classes; we pay more up front in the hope of reducing the total number of verifications. Let

52

S(Z'(q)) denote the set of summary graphs identified by the index for a query ¢ and sup(S™) denote

the workflows indexed by the subset that satisfies ¢q. Then, the total cost is:
Clq) = Cy +[S(T'(0))|Co + IT'(q) — sup(S*(Z'(4)))|Co

Note that when sup(S™) is large, we avoid many verification steps as a single summary graph veri-
fication check suffices. In general, we seek to minimize |Z'(Q)| while at the same time maximizing
| sup(ST)|. The worst case is when the index identifies a set of summary graphs, none of which
satisfy the query (] sup(S™)| = 0); we perform extra verifications but because they are all negative,
we do not gain anything. However, these cases are rare as we expect frequent queries from users,
and any candidate sets for nonfrequent queries should be limited by the discriminative features. In

most cases, the summary graphs will provide fewer verification checks and thus faster query times.

4.6.2 Data Sets

We evaluated our techniques using two provenance collections. The first comes from a set
of visualization workflows and the second from Yahoo! Pipes workflows [163]—both are sets of
dataflows. The collection of 6,117 visualization workflows was generated over two years by 60
different users. The users were assigned specific tasks and generated workflows to solve these
problems. As such, we expect some overlap in the overall structure of the workflows, although
there should be some variation throughout. There were 150 different types of modules involved in
these workflows. The second collection is a set of 40,505 Yahoo! Pipes workflows used to construct
Web mashups. Here, the number of module types used was only 54, and users tended to follow
very similar patterns in workflow development. As such, there were few frequent patterns but many
occurrences of them.

We ran queries selected at random from the entire set of mined frequent subgraphs for these data
sets. In order to test the effectiveness of the summary subgraphs and the addition of 2-component
frequent subgraphs, we performed tests with both features enabled (S+2C), only summary graphs
enabled (S), and both features disabled (Orig.). Note that when both are disabled, the framework
is similar to glndex [166]. For the Yahoo! Pipes data with features that occurred at least 500 times
and the summary and discriminative thresholds also held at 500, we were able to compute answers
to queries with an average of over 700 candidate graphs with only 20 isomorphism checks. For the
visualization workflows, with the same parameters all at 200, we were able to compute answers to
queries with an average of over 380 candidate graphs with only 64 checks.

Our prototype uses a sgqlite3 database and python code to construct the index and perform
queries. Results for tests of the visualization dataset are shown in Figure 4.11a; note that for queries

with few results, our technique performs slightly more verifications than the number of results,

53

but for queries with many results, the summary graphs help dramatically reduce the number of
verifications. Figure 4.11b shows similar results for queries of frequent subgraphs in the pipes
dataset.

We also performed tests with a range of thresholds for summary graph selection and discrim-
inative feature selection. As expected, smaller thresholds produced better results in both cases.
Figure 4.12a shows that decreasing the discriminative threshold significantly decreases the number
of isomorphisms. Examining Table 4.1, we see that the number of graphs in the index does
not increase significantly either. Figure 4.12b shows that decreasing the summary threshold also
decreases the number of isomorphisms, although here we do not see as pronounced an effect. This
can be explained by the fact that frequent subgraphs with no supergraphs are always included. Thus,
the internal nodes, where the threshold matters, play a less significant role.

Figure 4.13 shows that the number of edges involved in the query has an effect on the mean ratio
of the isomorphisms computed; smaller graphs are more often summarized which is to be expected.
The subtraction of 2-connected features, however, does not follow the same pattern. In addition,
the original feature-based strategy does not have a ratio of one because the summary graphs are

computed as candidates but not verified.

4.7 Discussion
4.7.1 Subworkflows
Many workflow systems offer operations to abstract parts of a workflow into subworkflow
or compound modules, whose computation is the execution of another workflow. Note that a
workflow can be expanded (or refined [18]) by replacing its subworkflow modules with the actual
specifications for the subworkflows. If we add the restriction that subworkflows cannot be included
circularly, we can always expand both query workflows and workflows in the collection. When
indexing, we always index the fully-expanded workflow, and fully-expand a query before evaluating
it. Note that in some cases, it may be worthwhile to also index unexpanded workflows, specifically

when a subworkflow is very common, because it will reduce the time involved in mining.

4.7.2 Scalability
Since a given frequent subgraph has n connected subgraphs of its own, it may have O(n?)
2-component subgraphs. Thus, the number of 2-component frequent subgraphs can quickly become
unreasonable. Note that a large pattern will generate many frequent subgraphs, but because most
of them are summarized by the pattern, it is not necessary to mine all of them. If a 2-component
subgraph has a supergraph that is a summary graph, and the difference in their supports is minimal,

we need not worry about it or its supergraphs. A test using the visualization dataset confirmed

54

O Actual
8- 2 s8+2C
©l+s X
8_| x Orig. .
0 Cands. X
° .
2 g7
(&)
25
O 87
o
& | N
N _".E”—".;v—
=3 -;gf.f.__ﬁ____g,-
CT T T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500
Number of Results
(a) Visualization Data
= 704
S _| o0 Actual 3
& |2 ss2C Q/
+ S ‘»;’/ n
§—) 8ggds Q/ "
— ' /;_ . .+. +

Checks
10|00
N

5(I)O
@

o & A---Doee A A B A A Ao

I I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Results
(b) Pipes Data

Figure 4.11: Comparison of the number of subgraph isomorphism verifications required for queries
with different numbers of results across different indexing schemes. For both the visualization
workflows (a) and the Yahoo! Pipes workflows (b), we used the proposed scheme having both
summary features and 2-component subgraphs (S+2C), a scheme using only summary features (S),
and the original feature-based indexing scheme (Orig.). The actual number of results is plotted as a
baseline (Actual) as well as the number of candidates (including summary graphs) after filtering for
the proposed scheme (Cands.).

55

o
8- © Actual
— | & D=500
3 + D=300
7 x D=200
D=100
2 3-
X ©
@
e
O o
O_
=)
o
O_
«
B SR AL l:?%,'_' e SRR NP VN
~ XmmeT < R ¥ - A 7 -
o & By %
I I I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Number of Results
(a) Discriminative Thresholds
o
8- © Actual
— | & S=500
3 | + S=200
1 X S=100
2 8-
X ©
@
e
O o
O_
=
o
8_
- A~
i Sl A
o I TR,
I I I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Number of Results
(b) Summary Thresholds

Figure 4.12: The effect of varying the thresholds for identifying the (a) discriminative and (b)
summary features for the proposed index.

56

cC9 | 88% | SL9 | eve | 169 | vS¥ | LIy | €S¢ | Ov8 | 1€y | OLE | Of¢ _L UL SOpON Te10L, JO #
¥8C | 6ST | 9T | €€T | 68T | 8ST | ¥¥C | ¥€T | 16T | 19T | 8¥T | LET | sydein oAneurwLIosi Jo #
6vvl | 6vvl | 6bvl | 6v¥l | LO9C | LO9T | LO9T | LO9T | 09TS | 09CS | 09CS | 09CS sydern Arewwng jo #
00r | 00C | 00E | 00S | OO | 00C | 00OE | 00S | OOL | 00T | OOE | 00S PIOYSSIY], SAQBUTWLIOST(]
00Ss | 00S | 00S | 00S | 00C | 00OC | 0O0OC | 00C | OO | OOI | OOI | OOI ploysaxy [, Arewung

"S9SBAIOIP PIOYSAIY)
oy se Apueoyrusts sesearoul syderd Arewwins Jo requinu 9y} jey) 9JON °19SeIep UONBZI[ENSIA) JOJ SPIOYSAIY) SNOLIBA I0J SONSNRIS ['p d[qBL

57

‘([eu1SLI)) QWAYDS Paseq-aIniea) [eurdio ay) pue ‘(Arewwng) sydeid Lrewrwuns £[uo () + Lrewrwung) awayos pasodoid oy 10y umoys ‘yderd
Kxonb oty ur so3pa Jo 1oquunu 9y 03 Jurpiodde sydeId Suryojew Jo quinu Ay} 03 pandwod swsIydIowosT Jo Iqunu Y} JO oNel UBSN €' IS

sebpa Jo Jaquinu
8k L 9F SE vIE €L ¢} L O} 6 8 L 9] 14 € 4 X 0

¥0 <20

swsiydiowosl Jo onel uesw

o'l

[euibup m@ Alewwns m e + Alewwng m

gl

58

that with 25,708 frequent connected subgraphs, we would have 304,626 frequent 2-component
subgraphs, but running with the maximal heuristic, we can reduce this to 14,025 2-component

subgraphs.

4.7.3 Parameters

Although our focus in this work is on structural queries, we can also integrate parameters and
connection types into our approach. Connection types are edge labels, and we easily integrate this
information into existing algorithms. We could encode parameter information as part of the module
type and use the existing algorithms as well, but because parameters are more likely to vary across
workflows, this will likely lead to a much larger index. Instead, we propose that parameters be
indexed separately and queries processed by joining results from the parameter index with those
from the structural index. This also allows for queries that involve comparisons of parameters (e.g.,
temperature < 98.6); an exact structural index where parameter values are baked into module types

would not be very effective.

4.8 Related Work

Although there has been work on frameworks and interfaces for querying workflow collec-
tions [18, 130] and for using these collections to derive recommendations for users as they design
workflows [85], not much attention has been given to performing these tasks efficiently. To the
best of our knowledge, ours is the first proposal for an index structure that supports the efficient
evaluation of exploratory queries over collections of workflows.

There is a substantial body of work on techniques for indexing graph databases to speed up
subgraph queries. Much of that work has focused on mining and utilizing frequent features that
serve to differentiate graphs. Index features range from single vertices and edges to paths and
graphs. Zhao et al. [168] provide a discussion and empirical analysis of the role and granularity of
paths, trees, and non-tree subgraphs. GraphGrep [133] uses paths as index elements, gIndex [166]
uses discriminative subgraphs, and Tree + A [168] uses selective trees along with graphs generated
on-demand. These techniques work in two separate steps. First, there is a filtering step that uses the
index to prune graphs that do not match the query by intersecting the matches for each feature to
generate a set of candidate graphs. Then, in the verification step, each candidate graph is checked
via a subgraph isomorphism calculation against the input query. The goal of the pruning step is to
minimize the number of subgraph isomorphism checks required to evaluate the query. Note that
because of these checks, the query time scales according to the number of results. Chen et al. have
attacked the problem of searching collections of large graphs by using randomized summaries [25];

note that their summaries each characterize a single graph while our summary features index multi-

59

ple graphs.

FG-Index [29] improves on the feature-based techniques by avoiding the expensive verifica-
tion step when a query exactly matches an indexed feature. The FG-Index contains entries for
all frequent subgraphs in a tree structure with an edge-set lookup. This was later extended to
FG*-Index [28] which incorporated a feature-based lookup as well as on-demand indexing. The
size of the FG-Index is dependent on the number of frequent subgraphs; thus, if a collection has

a frequent subgraph G with 20 edges, all subgraphs of G (a set with close to 220

elements) will
also be frequent. Although it is inefficient to keep all such subgraphs indexed, by indexing only the
largest subgraph, we can still quickly return answers for queries that are subgraphs of the “large”
subgraphs.

Wildcard queries are also supported by XML query languages. A number of approaches have
been proposed for XML indexing to efficiently support wildcard queries that have path expressions
involving ancestor and descendant axes. These range from encoding parent-child and ancestor-
descendant relationships via numbering schemes [94] and using structure-encoded sequences for

documents [159] to indexing a subset of the data paths in an XML document [26], However, these

techniques are specifically designed for tree models and cannot be directly applied to graphs.

4.9 Summary

We have presented a new indexing strategy to support exploratory queries over provenance
collections. The proposed two-level indexing framework combines the pruning power of discrim-
inative features of graphs with verification-free answers from indexed frequent subgraphs. Our
results show that the addition of summary graphs and 2-component subgraphs significantly reduces
the number of verification steps for queries that have many results. In fact, for the Yahoo! Pipes
dataset, this number was nearly constant even as the number of results increased. Our framework is
also flexible: the two enhancements are naturally orthogonal, and we can integrate either with other
existing graph indexing schemes. In addition, we are able to apply our framework to suggestions
for workflow completions. As the amount of provenance data continues to grow, understanding and
using this information requires efficient support for the exploratory queries that users are interested

in.

CHAPTER 5

VISUAL SUMMARIES FOR GRAPH
COLLECTIONS

5.1 Introduction

From molecular structures to social networks and workflows, graph collections are widely
available. While visualizing a single graph has been an important step in understanding these data,
given large graph collections, it becomes crucial to analyze the differences and similarities in the
collection. The questions of how a graph differs from some norm or where edges or nodes change
across time are more important than being able to view each graph individually. We introduce
summary graphs to synthesize collections of graphs to a single, interactive visualization. See
Figure 5.1 for an example summary graph.

There are a variety of domains where graphs are common, and being able to better understand
relationships between graphs is important. Molecules are well-known structures that can be repre-
sented as graphs, and understanding structural differences can help inform physical or biological
processes. More recently, there has been a great deal of interest in social networks, and one
might consider analyzing groups of users across different networks by comparing relationships.
Metabolic pathways, the chemical interactions between enzymes and compounds in a cell, are also
represented as networks, and pathways in different organisms often vary, allowing researchers to
construct phylogenies using information about these differences. With structured computations
like visualization pipelines or workflows, we also have a graph structure that can be analyzed for
differences.

Graphs are usually best understood via visual encodings, and there has been significant work
in algorithms to lay out and draw them. However, most of this work has focused on single graphs.
There are also algorithms to calculate distances between graphs or find maximal common sub-
graphs. Here, most of this work has focused on pairwise comparisons of graphs. With more than two
graphs, understanding the similarities and differences can be a challenge with pairwise techniques.
In addition, these comparisons tend to be strict, with little flexibility when vertices or edges are not
exactly equal. The ability to gather a slightly “fuzzy” mapping between graphs is important when
summarization is the goal.

One of the major challenges in understanding relationships between graphs is that there is no

61

"UOTJRZITENSIA) UNJ O} SIASN MO[[8

suonerado JIpa MOy pue UONBZLIBWWNS JO JOPIO Y} SMOUS 09pIA [eyudwd[ddns oy, ‘se[nod[ouwr I1noj woij pajonnsuod ydeid Arewwuns y |

S N3

62

known computationally efficient method for comparing them. Testing whether one graph is an exact
subgraph of another (subgraph isomorphism) is NP-Complete, and relaxing constraints to allow
for greater freedom in any matching leads to even more possibilities. Unfortunately, exhaustive
algorithms tend to take too long because of the number of possible alignments, and heuristic
algorithms cannot be guaranteed to produce a good result. However, in many cases, a collection of
graphs contains significant overlap between individual graphs and locating possible matches is less
daunting than the general problem. We present a set of methods that are effective at matching pairs
of graphs by solving the assignment problem on a matrix that encodes cost estimates for matching
vertices. By first diffusing vertex similarities across a product graph, we can also integrate some
global connectivity information.

Given approaches for comparing pairs of graphs, we can build a summary graph using hierar-
chical agglomeration. From two graphs, we can construct a simple summary by combining matched
vertices and edges and connecting unmatched pieces of each graph. We recursively combine initial
and intermediate graphs until we end up with a single summary. Note that it may become apparent
that certain graphs do not share many (if any) similarities with the rest of the collection, and those
might be disregarded. An initial clustering step can help organize a set of graphs into logical
collections where summary graphs are appropriate.

Visualizing this computed summary graph should allow users to explore the similarities and
differences between graphs. As such, it is important to be able to recognize which pieces are unique
to a subset of graphs or common to most graphs. For large collections where a general understanding
is desired, we use lightness to indicate the relative occurrences of graph elements. By highlighting
a single graph with color in the context of the summary, one can understand how that graph relates
to the collection. Projecting a selected subset of graphs and using color to differentiate them allows
one to see how their specific relationship mirrors or differs from the summary. See Figure 5.2 for
an example of how color is used in a summary graph.

Finally, while our computed summaries usually offer a good initial picture of the collection, we
provide tools to allow users to interactively explore and update the summary graph. By ordering
matches according to a confidence measure, a user can control how much summarization occurs.
At a lower-level, users can select vertices and break or join them according to their wishes. Thus,
blemishes in an initial configuration can be quickly remedied. At the same time, this guidance can
be used to rerun the summarization process with a user’s preferences. In addition, these operations
are animated so a user can see exactly where nodes are split or joined as the layout is updated. This
is useful when navigating the amount of summarization.

In this chapter, we formally define summary graphs and show how they can be constructed

and visualized. Their construction is aided by an extension to an existing matching algorithm that

63

‘st juouoduwiod ydei3 € uowWWod MOy)eIIPUL ABIS JO S[QAJ] o[IYM

SQOUQIRJIP WYSIIYSIY Ued JOJ0D Jey) ONON “SWsIue3Io WIS J0J 9[040 p1oe oo ay) woly sydeid uonear swkzus jo ydeid Arewwns y :z'S 2angLf

=
K]
>
2
T

1seaA Buippng
ueag Jojse)d
ozie\

uewnH

1109 "3
INERIIE]

apojewaN

EEONEDE N

@

(®

64

produces concise, inexact matchings. In addition, we present operations for interactively editing
summary graphs as well as different modes for analyzing these visualizations. Finally, we present
applications that demonstrate the utility of our technique.

We begin by reviewing related work, and then build the definitions and computational machinery
for computing matches between pairs of graphs in Section 5.3. In Section 5.4, we formally define
a summary graph and detail how to construct one from a graph collection. Next, we describe how
we visualize and interact with summaries in Section 5.5. In Section 5.6, we provide case studies for
uses of summary graphs, and we conclude in Section 5.7 with a discussion of both shortcomings

and possible extensions.

5.2 Related Work

There has been substantial work in the area of graph visualization, ranging from layout algo-
rithms to methods for visualizing large graphs to interacting with graphs. However, the problem of
visualizing multiple graphs in a single view has been largely overlooked. Herman ef al. provide a
good summary of the early work on graph visualization and navigation [66].

There has been work on comparing and visualizing two or more trees at once. Furnas and Zacks
suggested Multitrees as a way to integrate sets of hierarchical information [51]. The InfoVis 2003
Contest generated significant work in tree comparison [119]. Much of it was rooted in work done
for consensus trees used for phylogenies in the biological community [2]. Munzer ef al.’s TreeJuxta-
poser tackled the problem of comparing large trees using focus+context and visibility criteria [108].
Tu and Shen showed how to encode changes in treemaps [152], and Graham and Kennedy used
directed acyclic graphs to agglomerate multiple trees [58]. They also provide a comprehensive
survey of work in the area of visualizing multiple trees [59]. Isenberg and Carpendale explored how
collaborators can share comparison information [73]. There has been some work to compare pairs
of graphs visually, including the visual diff for comparing two workflows by Freire et al. [48]. The
difference between pairs provenance graphs was considered by Bao et al. [14].

In contrast with the approach described in this chapter that aims to summarize a collection of
graphs, much of the work on graph summarization has focused on single, large graphs. Such graphs
can be clustered or summarized with regions collapsed into smaller entities (e.g., [44]). Other
approaches have used topology [12] and interaction [52, 155] to better navigate graphs. In addition,
edges can be bundled, allowing users to better identify connectivity when graphs have large numbers
of edges [34, 69]. Level-of-detail can also be used to more efficiently navigate large graphs [13].
There are also techniques for multivariate graphs that focus on relationships between nodes [160].
We note that while our focus is on combining graphs into a single visualization, as summary graphs

are graphs, this work can also be applied to them.

65

Also related to our work are techniques for computing matches between graphs. The diffusion
matching we present is an extension of the similarity flooding work by Melnik et al. [100] and the
analogy matching from Scheidegger et al. [130]. Our work, however, uses a different formation
that is rooted in the concepts of graph edit distance. Riesen and Bunke suggest an approximation
for graph edit distance that uses a solution to the assignment problem [124], and Zeng et al. use a
similar formulation for graph searching [167]. We also use a solution to the assignment problem to
solve our final matrix after performing a diffusion step. Heymans and Singh use another variant to

compare metabolic pathways to generate phylogenetic trees [67].

5.3 Graph Matching

Generating a summary graph requires that common substructures in a given collection of graphs
be merged. Our algorithm for constructing summary graphs depends on pairwise merges, and graph
matching plays an important role in determining these merges. We are not, however, concerned
with the strict, exact matching that is often considered in graph theory. Rather, we wish to find the
best inexact matches so as to maintain a compact set of vertices and edges. When two graphs have
nodes that are exactly the same and their neighborhoods are similar, it makes sense to match them.
However, there are often nodes that, while not equal, are also very similar. This similarity may
be due to the fact that they are known to be related or because they are used in similar contexts in
their respective graphs. For example, in chemistry, it is known that sodium and potassium are very
similar atoms as they appear in the same group in the periodic table. However, while sulfur and
nitrogen are less similar, if they are bonded to similar neighborhoods, it may still be reasonable to
match them.

Graph edit distance is a measure of graph similarity, and its delineation between substituting,
adding, and deleting components provides a framework for identifying when a merge is appropriate.
However, computing graph distance can be slow and approximations do not take into account
global connectivity. Similarity flooding uses a Markov chain on a product of two graphs to diffuse
similarities and determine matches with the influence of connectivity information [100]. We propose
extensions to similarity flooding that incorporate concepts from edit distance approximations and
provide information to consider when vertices are best left unmatched. We begin by defining graphs,
graph matchings, and the quality of a match. After reviewing graph edit distance and similarity

flooding, we present our enhanced matching algorithm.

5.3.1 Definitions
A graph G = (V, E) is a set of vertices V and set of edges £ where each edge e = (v1,v2) € E

connects two vertices v1,v2 € V. In an undirected graph, each edge is specified by an unordered

66

pair of vertices, and in a directed graph, the edges are specified by ordered pairs of vertices. Note
that an undirected graph can be transformed into an equivalent directed graph by creating a pair of