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ABSTRACT

Temporal reasoning denotes the modeling of causal relationships between different

variables across different instances of time, and the prediction of future events or the

explanation of past events. Temporal reasoning helps in modeling and understanding

interactions between human pathophysiological processes, and in predicting future out-

comes such as response to treatment or complications. Dynamic Bayesian Networks

(DBN) support modeling changes in patients’ condition overtime due to both diseases

and treatments, using probabilistic relationships between different clinical variables, both

within and across different points in time.

We describe temporal reasoning and representation in general and DBN in particu-

lar, with special attention to DBN parameter learning and inference. We also describe

temporal data preparation (aggregation, consolidation, and abstraction) techniques that

are applicable to medical data that were used in our research. We describe and evaluate

various data discretization methods that are applicable tomedical data. Projeny, an open-

source probabilistic temporal reasoning toolkit developed as part of this research, is also

described.

We apply these methods, techniques, and algorithms to two disease processes modeled

as Dynamic Bayesian Networks. The first test case is hyperglycemia due to severe illness

in patients treated in the Intensive Care Unit (ICU). We model the patients’ serum glucose

and insulin drip rates using Dynamic Bayesian Networks, andrecommend insulin drip

rates to maintain the patients’ serum glucose within a normal range. The model’s safety

and efficacy are proven by comparing it to the current gold standard. The second test

case is the early prediction of sepsis in the emergency department. Sepsis is an acute life

threatening condition that requires timely diagnosis and treatment. We present various

DBN models and data preparation techniques that detect sepsis with very high accuracy

within two hours after the patients’ admission to the emergency department.

We also discuss factors affecting the computational tractability of the models and



appropriate optimization techniques. In this dissertation, we present a guide to temporal

reasoning, evaluation of various data preparation, discretization, learning and inference

methods, proofs using two test cases using real clinical data, an open-source toolkit, and

recommend methods and techniques for temporal reasoning inmedicine.

iv



To my family,

my teachers, and

the giants of human knowledge

on whose shoulders I stand.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 A Solution Using Dynamic Bayesian Networks. . . . . . . . . . . . . . . . . . . . 4
1.3 Outline of the Dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. REVIEW OF THEORETICAL FOUNDATIONS AND RELATED WORKS 9

2.1 Temporal Representation and Reasoning Defined. . . . . . . . . . . . . . . . . . . 10
2.2 Temporal Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Various Attributes of Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1.1 Absolute and Relative Time. . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1.2 Implicit and Explicit Time. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1.3 Discrete and Continuous Time. . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1.4 Bounded and Unbounded Time. . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Temporal Logic Ontologies and Formalisms. . . . . . . . . . . . . . . . . . 13
2.2.3 Temporal Constraint Representation and Satisfaction. . . . . . . . . . . . 14
2.2.4 Temporal Databases and Query Languages. . . . . . . . . . . . . . . . . . . 16

2.3 Overview of Temporal Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Temporal Reasoning Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Probabilistic Methods in Temporal Reasoning. . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Bayes Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 BN Structure, Conditional Independence and d-separation . . . . . . . . 21
2.4.3 Markov Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.4 Hidden Markov Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.5 Kalman Filter Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.6 Dynamic Bayesian Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.7 Partially Observable Markov Decision Processes. . . . . . . . . . . . . . . 30
2.4.8 Limited Memory Influence Diagrams. . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Inference and Learning with DBNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.1 Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



2.5.1.1 Exact Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.1.2 Approximate Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2.1 Expectation Maximization Algorithm. . . . . . . . . . . . . . . . . . . 37
2.5.2.2 Parameter Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.2.3 Structure Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Challenges in Temporal Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.1 Missing Data Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.2 Granularity of Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.3 Temporal Data Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.4 Challenges with Dynamic Bayesian Networks. . . . . . . . . . . . . . . . . 41

2.6.4.1 Higher Order Markov Processes. . . . . . . . . . . . . . . . . . . . . . . 41
2.6.4.2 Structure Learning Problems. . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Relevant Works Involving DBNs in Medicine. . . . . . . . . . . . . . . . . . . . . 42

3. MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Data Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.1 Data Aggregation and Abstraction. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1.1 Data Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1.2 Temporal Abstraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Data Discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.2.1 Data Clustering and Visualization. . . . . . . . . . . . . . . . . . . . . . 51
3.1.2.2 Equal Interval Discretization. . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2.3 Equal Frequency Discretization. . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2.4 Domain-based Discretization. . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2.5 K-means Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2.6 Minimum Description Length Discretization. . . . . . . . . . . . . 56

3.2 Creating, Training, and Testing the DBN Model. . . . . . . . . . . . . . . . . . . . 57
3.2.1 Training and Testing Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Equivalence Class and Parameter Tying. . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 Hidden and Observed Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.4 Training the Model (Parameter Learning). . . . . . . . . . . . . . . . . . . . 63
3.2.5 Testing the Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4. TEST CASE 1: STRESS-INDUCED HYPERGLYCEMIA IN THE ICU . . 65

4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.1 Overview of the Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Overview of the Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Data Set for the Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.4 Model Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Objective 1: Glucose and Insulin Estimation. . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Experiment 1: Domain-based and Equal interval Discretization. . . . 71

4.2.1.1 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Experiment 2: K-means Clustering. . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2.1 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



4.3 Objective 2: Recommendation of Insulin Drip Rate for Glucose Control . 80
4.3.1 Evaluation Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Experiment 3: Domain-based and Equal Interval Discretization. . . . 82

4.3.2.1 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.3 Experiment 4: K-means Clustering. . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.3.1 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.3.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5. TEST CASE 2: EARLY DETECTION OF SEPSIS IN THE ED . . . . . . . . . 87

5.1 Overview of Sepsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1.1 Diagnosis of Sepsis and Its Complications. . . . . . . . . . . . . . . . . . . . 88
5.1.2 Early Detection of Sepsis in the Emergency Department. . . . . . . . . 89

5.2 DBN Approach for Sepsis Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.1 Sepsis Data Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2 Evaluation Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Experiment 1: Model 1 Using k-means Clustering. . . . . . . . . . . . . . . . . . 92
5.3.1 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Experiment 2: Model 2 Using MDL Discretization. . . . . . . . . . . . . . . . . 98
5.4.1 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Experiment 3: Model 3 Using MDL Discretization. . . . . . . . . . . . . . . . . 106
5.5.1 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6. CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Novel Contributions of this Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.1 Model Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.2 Temporal Data Aggregation, Consolidation, and Abstraction. . . . . . 115
6.1.3 Discretization of Continuous Variables. . . . . . . . . . . . . . . . . . . . . . 115
6.1.4 Computational Tractability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.5 Validation Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.6 Insulin Dosing and Glucose Control in the ICU. . . . . . . . . . . . . . . . 116
6.1.7 Early Prediction of Sepsis in the ED. . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.8 Projeny, an Open Source Temporal Reasoning Toolkit. . . . . . . . . . . 117
6.1.9 Generalizability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.10 Nonoriginal Contributions of this Dissertation. . . . . . . . . . . . . . . . . 118

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.1 Limitations of the Learning and Inference Algorithms. . . . . . . . . . . 118
6.2.2 Limitations of the Projeny Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.3 Utility and Action Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Future Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

viii



LIST OF FIGURES

2.1 Allen’s Interval Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Bronchitis and lung cancer - a simple Bayesian Network. . . . . . . . . . . . . . 23

2.3 d-separation in Directed Acyclic Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Sepsis as a Markov process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Sepsis state transitions as a Hidden Markov Model. . . . . . . . . . . . . . . . . . . 28

2.6 Sepsis Hidden Markov Model with 3 timeslices. . . . . . . . . . . . . . . . . . . . . 28

2.7 Serum glucose and insulin dose DBN model. . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Inference tasks for temporal probabilistic models. . . . . . . . . . . . . . . . . . . . 34

3.1 Serum glucose and insulin dose DBN model. . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Equivalence classes and parameter tying. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Projeny data binding dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Two-timeslice model of hyperglycemia DBN. . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Log-likelihood over 10 iterations of training using EM algorithm . . . . . . . . 73

4.3 Hyperglycemia experiment 1. Serum glucose, actual vs. predicted . . . . . . . 75

4.4 Hyperglycemia experiment 1. Insulin drip rate, actual vs. predicted. . . . . . 75

4.5 Hyperglycemia experiment 2. MPEs from the DBN model. . . . . . . . . . . . . 77

4.6 Hyperglycemia experiment 2. Serum glucose, actual vs. predicted . . . . . . . 79

4.7 Hyperglycemia experiment 2. Insulin drip rate, actual vs. predicted. . . . . . 79

5.1 Sepsis model 1. SIRS definition, using k-means clustering . . . . . . . . . . . . . 93

5.2 Sepsis model 1. ROC curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Sepsis model 1. Plot of statistical measures over time. . . . . . . . . . . . . . . . . 98

5.4 Sepsis model 2. SIRS with age, using MDL discretization. . . . . . . . . . . . . 101

5.5 Sepsis model 2. ROC curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Sepsis model 2. Plot of statistical measures over time. . . . . . . . . . . . . . . . . 105

5.7 Sepsis model 3. Modified SIRS with age, using MDL discretization . . . . . 107

5.8 Sepsis model 3. ROC curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.9 Sepsis model 3. Plot of statistical measures over time. . . . . . . . . . . . . . . . . 112



LIST OF TABLES

3.1 Equal interval discretization for insulin drip rate. . . . . . . . . . . . . . . . . . . . . 52

3.2 Domain-based discretization intervals for serum glucose. . . . . . . . . . . . . . . 54

4.1 Stress-induced hyperglycemia in the ICU - experiments. . . . . . . . . . . . . . . 68

4.2 Data elements selected for hyperglycemia experiments. . . . . . . . . . . . . . . . 68

4.3 Hyperglycemia experiment 1. Correlation coefficients.. . . . . . . . . . . . . . . . 74

4.4 Hyperglycemia experiment 2. Correlation coefficients.. . . . . . . . . . . . . . . . 78

4.5 Evaluation of DBN protocol against eProtocol-insulin. . . . . . . . . . . . . . . . 82

4.6 Hyperglycemia experiment 3, eProtocol-insulin vs. DBNmodel. . . . . . . . . 83

4.7 Hyperglycemia experiment 4, eProtocol-insulin vs. DBNmodel. . . . . . . . . 85

5.1 Sepsis model 1. Confusion matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Sepsis model 1. Values of statistical measures over time. . . . . . . . . . . . . . . 98

5.3 Sepsis model 2. Confusion matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Sepsis model 2. Values of statistical measures over time. . . . . . . . . . . . . . . 105

5.5 Sepsis model 3. Confusion matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Sepsis model 3. Values of statistical measures over time. . . . . . . . . . . . . . . 112



LIST OF ACRONYMS

PaCO2 Arterial Partial Pressure of Carbon Dioxide

ANN Artificial Neural Network

AUC Area Under the (ROC) Curve

BNJ Bayesian Network tools in Java (a software)

BNT Bayes Net Toolbox (a Matlab toolbox software)

BP Blood Pressure

CDR Clinical Data Repository

CDS Clinical Decision Support

CPT Conditional Probability Table

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Network

DBP Disatolic Blood Pressure

ECG Electrocardiogram

ED Emergency Department

EHR Electronic Health Record

EM Expectation Maximization (algorithm)

EMR Electronic Medical Record

HDD Healthcare Data Dictionary

HELP Help Evaluation through Logical Processing

HL7 Health Level Seven

HMM Hidden Markov Model

HR Heart Rate

ICU Intensive Care Unit



KFM Kalman Filter Model

LIMID Limited Memory Influence Diagram

LOINC Logical Observation Identifier Names and Codes

MAP Mean Arterial Pressure

MDL Minimum Description Length (algorithm)

MDP Markov Decision Process

MODS Multiple Organ Dysfunction Syndrome

MPD Marginal Probability Distribution

MPE Most Probable Estimate

MRN Medical Record Number

NPV Negative Predictive Value

POMDP Partially Observable Markov Decision Process

PPV Positive Predictive Value

PTXT Pointer to Text

ROC Receiver Operator Characteristic (curve)

RR Respiratory Rate

SBP Systolic Blood Pressure

SIRS Systemic Inflammatory Response Syndrome

STRICU Shock Trauma Respiratory Intensive Care Unit

xii



ACKNOWLEDGMENTS

A serendipitous discovery of the field of medical informatics a decade ago in an

internet cafe in Chennai set me on a quest to learn formally about what I had been doing

haphazardly on my own. A decade later, I look back in gratitude at all the people who

have helped and supported me along the way. First and foremost, I thank my parents for

patiently supporting me while I’ve been so far away from themfor so long. My wife

Myungae and my relatives have also given me the strength and confidence to pursue my

dream of pursuing research in this field. My family stood by meduring the ups, and more

so during the downs. I couldn’t have done this without their support.

I want to thank my mathematics tutor, Mr. K. Prathaban, who helped to broaden my

perspective about learning and life during my formative years. My high school physics

teacher, Mrs. Sudha Venkatesan, stimulated my curiousity for learning by experimenta-

tion. My uncles, Dr. M. Kuppusamy and Dr. K. Kaliappan, opened my eyes to the beauty

of science, and to the art and science of medicine. Dr. C. Sivalingam encouraged me by

lending me his computer and letting me work and play with his homegrown patient infor-

mation system, and my aunt K. Vimala amplified my interest in computer programming. It

is with this background that I gleaned that a systematic method to capture, use and analyze

clinical information and knowledge can help medical care tremendously. A visit to the

medical records room of my alma mater, Stanley Medical College, to find the records

of my former patients among decades worth of medical recordsconvinced me that using

technology to handle information is the best way to practiceevidence-based medicine and

to discover new clinical knowledge. My surgery professors,Dr. R. Surendran and Dr.

G. Balakrishnan, encouraged me to pursue this field. I wouldn’t have realized the joy of

learning and the fruits of perseverance without their help and support. Stanley Medical

College, its hospitals and fellow Stanleans taught me a lot about life by infecting me with

enthusiam and immunizing me with resilience. I hope to forever carry the Stanlean Spirit

forward.



When I arrived in a new land determined to work on clinical decision support, Prof.

Peter Haug provided me the guidance and support to learn about this field. He encouraged

me to test my limits and was patient with my mistakes. I thank him for immersing me in

the world of clinical decision support. My committee members, Drs. Bruce Bray, Brad

Farr, Scott Narus, Brent Muhlestein, and Adam Wilcox, provided insights from a variety

of backgrounds and perspectives, including cardiology, computer science and machine

learning. Dr. Lee Min Lau and Shaun Shakib helped me learn a lot about terminologies

and ontologies, which helped me with collecting, organizing and using clinical data for my

research. Dr. Jau-Huei Lin, Vikrant Deshmukh, and Anthony Wong helped to formulate

and refine my research questions. Drs. Kathy Sward and Jason Jones helped me with

the data sets for my research. Many researchers, clinicians, and staff of Intermountain

Healthcare helped with my research at LDS Hospital and Intermountain Medical Center.

My friend Dr. Binu Mathew provided input into my research from a computer science

perspective. I thank them all for their invaluable help.

The Department of Neurobiology and Anatomy, Health Sciences Center Information

Technology Services, the Division of Epidemiology, and theDepartment of Biomedical

Informatics at the University of Utah, and 3M Health Information Systems, Inc., provided

me financial support during various phases of my graduate program. I also received travel

awards from the University of Utah Graduate School. I thank these organizations for their

generous support, and I thank my mentors at these organizations, Dr. Kurt Albertine,

Cheri Hunter, Dr. Lee Min Lau, and Dr. Matthew Samore, for helping me learn through

real-world experience.

My friends Abdy, Aldo, Arun, Binu, Divya, Raj, Raja, Sameer,Suren, and Vikrant

provided me moral support that helped me to persevere whenever I hit an obstacle. I

also received help from authors of research articles and open source software. Dr. Kevin

Murphy deserves a special mention for his articles and toolkits.

I sincerely think that all the hidden and observed nodes, recognized and unrecognized

edges within and across different time slices, and their stochastic and deterministic influ-

ences in this large temporal probabilistic network of my past have made my present state

possible. So long, and thanks for all the fun!

xiv



CHAPTER 1

INTRODUCTION

There are, in general, two ways to predict the future. You can, for example,
use horoscopes, tea leaves, tarot cards, a crystal ball, andso forth. Collec-
tively, these are known as “nutty methods.” Or you can put well-researched
facts into sophisticated computer models, more commonly referred to as “a
complete waste of time.” While all these approaches have their advantages, I
find it’s a lot easier and more economical to simply make stuffup.

- Scott Adams, 2008[1].

The quote above from Scott Adams humorously sums up the difficulty in building

computational models to predict the future, especially in acomplex and highly variable

field such as medicine. This dissertation is an attempt at making the prediction of the

future or the explanation of the past or the present using probabilistic methods in certain

clinical conditions not a complete waste of time, and on the contrary, computationally

tractable, repeatable and sufficiently accurate to be useful.

Time is an essential component of the art and science of medicine. Cause-and-effect

relationships between diseases and clinical features, andbetween interventions and clinical

features, are interpreted in the context of the time by whichthe cause precedes the effect.

These relationships have different timescales, some producing an effect in the order of

seconds, with others producing an effect in the order of decades. Clinical pathophysi-

ology and treatment involves many of these overlapping cause-and-effect processes. An

understanding of their complex interactions in terms of causality and temporal nature is

essential to interpret the patients’ clinical conditions,treat them effectively, and assess

their response to treatments[2].

Temporal reasoning involves the understanding of relationships between different vari-

ables across time. It can contribute to models that explain past events and predict future

events based on available data. An ability to explain the past can provide an understand-

ing of a patient’s disease processes and response to treatment. Predicting future events
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is a natural continuation of the temporal modeling process,and can help in estimating

the prognosis and planning the treatment. Prediction can also help to avert impending

complications, both long-term (e.g., graft survival), andshort-term (e.g., anticoagulation

therapy). Some clinical conditions such as long-term graftsurvival involve pathophys-

iological processes that span several years. On the other hand, the pathophysiological

processes involved in insulin release and glucose homeostasis span a short interval in the

order of a few hours[3].

Temporal modeling and prediction have been used routinely in several fields such as

financial projections and weather forecasting. However, temporal reasoning techniques

have not been studied to such an extent in clinical medicine.This is due to various unique

characteristics such as the complexity of medical science,practice of medicine, medical

data, the inherent uncertainty underlying the medical decision making process, and the

unavailability of tools to accommodate these unique characteristics. This dissertation is

an attempt to define these unique characteristics, accommodate and overcome the chal-

lenges they pose, develop a tool to facilitate probabilistic temporal reasoning in medicine,

and apply these tools and techniques to two very different temporal problems in clinical

medicine to prove their use, validity, and generalizability. This dissertation also aims to be

a primer on probabilistic temporal reasoning in medicine.

1.1 The Problem

The objective of clinical treatment is to change the clinical condition of a patient from

a less healthy to a more healthy state. Predicting the evolution of the clinical condition

and of future events is a natural part of this process. This process is of special interest

in patients’ clinical conditions that change very rapidly over time due to critical illnesses

and aggressive treatments. Heuristic prediction of futureevents by the human clinical

expert is an uncertain process that is not well understood. This process also exhibits high

variability both across different human experts, and across different instances in the same

expert[4, 5, 6]. A repeatable, formal, evidence-based model becomes highly desirable to

improve understanding and accuracy, and to reduce uncertainty and variability of these

predictions.
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Many techniques for temporal learning and prediction have been used with varying

levels of success. These techniques span a spectrum of methods with purely rule-based

models at one end and complex mathematical pattern recognition models at the other, and

various hybrid models in between. The accuracy and the acceptability of these models for

clinical use also vary. Probabilistic models are one of the well-understood mathematical

models used in various fields including biomedicine. Probabilistic models have been

used extensively in the biomedical domain to predict diseases and outcomes based on

clinical signs, symptoms, and laboratory findings. Naive Bayesian and Bayesian Network

techniques have proven to be highly accurate. These techniques have traditionally been

used with single-point-in-time models, such as predictingthe possibility of various dis-

eases from vital signs, chest X-ray[7, 8, 9, 10], coronary angiography[11], and laboratory

findings[12, 13, 14, 15]. These models have not been used to build or test models that

explicitly track the change in patients’ conditions over time. Temporal models often

prove to be more complex than atemporal models[16]. The lack of temporal probabilistic

models have been attributed to various problems such as the lack of powerful and easy

to use modeling tools, unavailability of temporal data in aneasily computable format, the

large amount of missing data in temporal data sets, the intractability of temporal learning

algorithms, and problems in defining temporal relationships[17]. Clinical data are col-

lected with the primary objective of providing clinical care by human experts (physicians,

nurses, and others), and are often not collected with the objective of electronic processing

and reasoning. Even in well-designed electronic medical record systems, the data have

many unique characteristics that make the application of machine learning techniques very

difficult. These peculiarities have to deal with varying granularities of time, the enormity

of missing data in electronic medical records, and the largevariations of structure and

format of the same data[18].

Even though probabilistic temporal reasoning techniques have been used with much

success in other domains, they have a limited proof of successful use in the clinical

domain. Hidden Markov Models (HMM) is one of the well-studied temporal reasoning

techniques used in biomedicine[19, 20]. HMMs help to model a Markov process as a

temporal model where an unobservable variable transitionsbetween different states over

time, and is measured by means of another proxy variable known as the observed variable.
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The Markov Property reduces the computational complexity by allowing the conditional

probabilities for state transmission and observation to beconstant over time given a set of

preconditions, as explained in Chapter 2. However, HMMs do not lend well to modeling

very complex processes. Dynamic Bayesian Networks (DBNs) are a general case of

HMMs which support modeling more complex processes than is possible with HMMs[21].

DBNs have been used in other domains to model complex temporal processes. However,

DBNs have not been used as extensively as HMMs in the biomedical domain except in

a handful of cases due to various challenges introduced above and explained in detail in

subsequent chapters.

In addition to probabilistic techniques, nonprobabilistic techniques have also been

used for temporal reasoning in various domains including biomedicine. These techniques

include pattern recognition techniques such as Artificial Neural Networks (ANNs), and

statistical techniques such as logistic regression[22, 23, 24, 25]. However, both pat-

tern recognition and statistical techniques can only recognize correlation, and lack the

expressivity of probabilistic models to denote complex, hierarchical, or temporal causal

relationships[26, 27, 28]. These techniques also have predetermined input (independent),

and output (dependent) variables. These techniques lack the flexibility of probabilistic

models, which allow any variable whose value is not known to be treated as an output

variable. ANNs also work as black boxes, and hence, their predictions are considered to

lack proper explanations, which are required in the practice of evidence-based medicine.

Hence, the pattern recognition and statistical techniqueshave found limited acceptance

except in very specific problems with a single output variable such as prediction of prog-

nosis following the diagnosis of a disease or a treatment procedure. These techniques and

their advantages and limitations are explained further in Chapter 2.

1.2 A Solution Using Dynamic Bayesian Networks

Dynamic Bayesian Networks theoretically provide a very expressive and flexible model

to solve temporal problems in medicine. However, this involves various challenges due

both to the nature of the clinical domain, and the nature of the DBN modeling and infer-

ence process itself. The challenges from the clinical domain include an insufficient knowl-

edge of temporal interactions of pathophysiological processes in the medical literature,
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the sparse nature and variability of medical data collection, and the difficulty in preparing

and abstracting clinical data in a suitable format without losing valuable information in

the process. Challenges pertaining to the DBN methodology and implementation include

the lack of tools that allow easy modeling of temporal processes, lack of algorithms that

support models involving various Markov processes with different orders, paucity of tools

that support different cases in the data sets spanning different durations, difficulties with

input and output of large amounts of structured data into andout of these tools, and the

computational complexity and tractability[29][30].

Overcoming these challenges will help to solve various clinical temporal reasoning

problems. This dissertation describes experiments involving temporal reasoning in medicine

using Dynamic Bayesian Networks (DBN). The goal of the research was to evaluate

various data preparation and temporal modeling methods, and apply them to test cases

in clinical medicine to evaluate the hypothesis of whether accurate temporal reasoning

is possible in the clinical domain using DBNs. Evaluation ofthe methods and techniques

were done by comparing the predictions of the temporal models to available gold standards

- the clinical decisions of the physicians and other clinical experts. The results of these two

test cases prove the hypothesis that temporal reasoning using Dynamic Bayesian Results

can be done in an accurate, clinically useful, computationally efficient, and timely manner.

The details of the two test caes, their hypotheses, and the materials, methods, and results

of the experiments are presented in Chapters 4 and 5.

The dissertation provides a review of various temporal reasoning techniques and re-

lated works[31]. This dissertation also describes an approach to probabilistic temporal

reasoning in medicine using Dynamic Bayesian Networks. This approach is the result of

various experiments performed by the author as part of the doctoral work underlying this

dissertation. This dissertation describes various problems with clinical data, and explains

techniques that are applicable to clinical data preparation for use in temporal modeling.

Data preparation involves temporal abstraction and discretizing continuous variables into

discrete states. Pitfalls with manual data discretizationand the advantages of algorith-

mic data discretization are described through various experiments. Two different data

discretization algorithms implemented in the Weka software platform were used in this

research. Results obtained from models created using thesealgorithms are compared with



6

results obtained with manual data discretization, showingthe advantage of the algorithmic

data preparation process.

A toolkit that was developed to perform the experiments in this dissertation is also

described. This toolkit, Projeny (acronym for Probabilistic Networks Generator in Java),

was created to enable easy authoring of temporal models, andallows data binding, param-

eter learning, and inference through an easy-to-use graphical interface. Projeny is based

on two other open source toolkits - BNJ (Bayesian Network Tools in Java), and JMatLink.

Projeny provides a user interface to BNT (Bayes Net Toolbox), a toolkit that runs inside

a Matlab environment. Projeny has been released as open source software and is being

updated regularly. BNT provides all the DBN learning and inference algorithms for the

experiments described in this dissertation. The advantages of BNT over other temporal

modeling toolkits is also described.

The research also involved testing the techniques and toolsto solve real clinical prob-

lems. Two test cases were used to test and prove the feasibility, accuracy, validity, and

usefulness of these tools and techniques in modeling and solving clinical problems and

improving the clinical care of patients. Both experiments were performed as pure data-

only studies using the retrospective data of patients treated at Intermountain Healthcare in

Salt Lake City, Utah, USA.

The first test case involves the modeling of glucose homeostasis of critically ill patients

in the intensive care unit. Patients who are critically ill lose control of serum glucose levels

even if they are not diabetic, leading to a high increase in serum glucose. Uncontrolled

hyperglycemia in these patients has been proven by several authors to worsen their clinical

condition and the outcomes, leading to higher mortality andmorbidity[32]. On the con-

trary, aggressive glucose control in these patients has been shown to improve the outcomes

and reduce the mortality and morbidity[32][33][34]. However, it must be noted that this

claim has been disputed by some authors[35, 36]. Our hypothesis underlying this test case

is that the DBN model can accurately predict the serum glucose levels and recommend

insulin doses better than those of the current gold standard(eProtocol-insulin) to maintain

a normal serum glucose level. eProtocol-insulin is a computerized rule-based protocol

developed and used at Intermountain Healthcare to recommend insulin doses to maintain

patients’ serum glucose within normal levels[37]. The first experiment tests the accuracy



7

of prediction of serum glucose and insulin drip rates in temporal data of patients. The

second experiment compares the insulin doses recommended by the DBN model to those

produced by the current gold standard.

The second test case involves early prediction of sepsis in patients seen at the emer-

gency departments (ED) of Intermountain Healthcare. Sepsis is a dangerous disease

condition that evolves very rapidly, and early detection and treatment of sepsis leads

to significantly improved outcomes as shown by several authors[38, 39, 40, 41]. The

hypothesis underlying this experiment is that the DBN modelcan predict the presence

of sepsis in ED patients accurately and in a timely manner compared to the clinician’s

diagnosis which is the current gold standard. The objectiveof this experiment is to predict

sepsis in patients before their blood culture and sensitivity results are available so that

treatment can be initiated sooner. The experiments measurethe accuracy of predicting

whether a patient has sepsis using the patients’ 3-hour, 6-hour, 12-hour, and 24-hour data

since admission.

The dissertation also describes the computational complexity of the models and the

techniques that are useful to reduce the space and time complexity of these models. These

are described in context while describing the data preparation techniques and the exper-

iments involving the two test cases. The dissertation provides an insight into various

techniques that can be used to reduce the computational complexity of these models and

to make them computationally tractable.

1.3 Outline of the Dissertation

This dissertation as a whole describes research involving the application of DBNs in

the clinical domain, challenges and techniques for temporal data preparations, various

challenges involving temporal reasoning in general and those specific to the clinical do-

main, results from applying these techniques to two clinical conditions, and a temporal

reasoning toolkit created as part of this research. This dissertation concludes with the

limitations of the techniques in this research as applicable to the biomedical domain, with

pointers for future research to overcome these limitations.

Chapter 2 provides a comprehensive overview of probabilistic and other temporal

reasoning techniques. It also disambiguates between temporal reasoning and temporal
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representation, as the former term is used by several authors to denote the latter since

the two are closely related. Chapter 2 also describes relevant works involving temporal

reasoning in biomedical and other domains. It also providesan overview of various toolkits

available for probabilistic temporal reasoning.

Chapter 3 describes the nature of clinical data that makes temporal reasoning difficult.

It presents various techniques used in this research that are appropriate for data preparation

and abstraction for temporal reasoning while preserving the information content. It pro-

vides a roadmap to other researchers involved in temporal reasoning for data preparation.

This chapter also describes the Projeny toolkit developed as part of this research project,

along with the other toolkits it depends and is based on, namely, BNT[42], JMatLink[43],

and BNJ[44]. It also describes a roadmap for future development of the Projeny toolkit as

an open source software project.

Chapters 4 and 5 describe the two test cases. Chapter 4 describes the modeling and

experiments involving the first test case, glucose homeostasis in the ICU. It describes

the materials and methods, modeling challenges, and discusses the results of various

experiments involving this test case. Chapter 5 describes the second test case, early

prediction of sepsis in the emergency department. This chapter likewise describes the

materials and methods, challenges with data preparation and modeling, and discusses

the results. These two experiments involve very different diseases and modeling and

prediction problems. These two chapters prove the validityand accuracy of the methods

and toolkits produced as part of the author’s doctoral research, and support the claim of

their generalizability to temporal modeling problems in the clinical domain at large.

Chapter 6 discusses the validity of results obtained from both experiments for their

utility in clinical care. It also discusses the validity of these results in the context of

interpolation and extrapolation of the range of values of clinical variables encountered in

the study. It discusses the generalizability and external validity of the methods as well.

Chapter 6 concludes the dissertation by discussing the lessons learned, the original con-

tributions to the field of temporal reasoning in medicine, and outlines the future research

directions. This chapter also describes the limitations ofDBNs and recommends more

complex techniques that may be capable of overcoming these limitations. This may serve

as a topic to be explored by future research projects.



CHAPTER 2

REVIEW OF THEORETICAL FOUNDATIONS

AND RELATED WORKS

This chapter begins by defining and disambiguating the termstemporal reasoning and

temporal representation in the context of this dissertation. This chapter then looks at

the various attributes of time, and provides a description of temporal representation from

the perspective of temporal ontology and logic. Temporal logic and constraints based on

first-order logic are defined. This discussion forms the basis for understanding the complex

challenges in modeling time and answering questions pertaining to temporal logic. This

chapter then discusses various temporal databases that support the storage of temporal

attributes and querying of temporal relationships betweenvarious data elements. Tem-

poral databases and temporal query languages can encapsulate manual data aggregation

tasks involved in data preparation as well as provide data storage for temporal reasoning

toolkits[45], and are hence briefly described in this dissertation.

This chapter then provides a nonexhaustive overview of various temporal reasoning

methods that are applicable to biomedicine. Various statistical, probabilistic, and pattern-

recognition-based temporal modeling and prediction techniques are discussed, with spe-

cial attention to probabilistic techniques. These techniques abstract many of the temporal

constraint solving problems. An overview of the temporal logic and constraint solving

problems, though not central to this dissertation, is warranted to set the stage for the need

for higher levels of abstractions and to describe how these abstractions satisfy the temporal

constraints.

This chapter also outlines challenges faced in probabilistic temporal reasoning. These

challenges are due to various factors. Some of the challenges are inherent in temporal

representation and reasoning; other challenges are due to the nature of the medical science,

due to imprecise understanding of causal and temporal relationships; still other challenges
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are due to the nature of the data captured in the practice of medicine, with the primary goal

being the provision of clinical care and not computational modeling.

This chapter provides a review of relevant works in temporalreasoning in biomedicine.

The advantages of methods and techniques described in this dissertation over these works

will be described in later sections. A description of the Projeny temporal modeling toolkit

developed as part of this research is presented on the Projeny website[?].

2.1 Temporal Representation and Reasoning Defined

Temporal representation denotes the formal methods used tostructure and express time

in a logical and computable manner. This is done with a variety of formal constructs to

denote time and temporal relationships between events.

Temporal reasoning denotes the modeling of causal or explanatory relationships be-

tween different variables or events, and the ability to predict future events or to explain

past events. However, some authors use the term ‘temporal reasoning’ to denote what

is described as ‘temporal representation’ in this dissertation. This ambiguity becomes

especially difficult to distinguish in the context of temporal logic as described below.

2.2 Temporal Representation

A computable model of time is critical for problems in the biomedical domain such

as diagnosis, prognosis, prediction of future events, explanation of past medical events,

recognition of trends, continuous monitoring and control,spatiotemporal modeling of

epidemics, and so on. The need for a computable model of time has also been well

recognized in areas such as robotics, intelligent agents, planning of future actions, financial

analysis and projections, modeling of weather and climate,etc. Many formalisms for

modeling time have been developed by various authors. Special database constructs and

temporal query languages have also been developed to store and query temporal data.

Temporal logic can then be applied to the data to answer questions of a temporal nature or

to detect any inconsistencies in the temporal data.
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2.2.1 Various Attributes of Time

Time can be modeled in a variety of ways depending on the domain and the nature of

the available data. Some of the more common formalisms are described below.

2.2.1.1 Absolute and Relative Time

Time can be defined as a process that happens on its own, with various events attached

to points of time at which they occur and periods of time over which they hold. This

absolute notion of time stems from the idea that time is an independent dimension over

which things exist and events occur. A relative notion of time discounts the importance

of time by itself, and describes the relevance of time by onlyexpressing the universe of

interest to be made of various events that are temporally related[46, 47]. An example of the

former would be a model of time in the universe, whereas an example of the latter would be

the human perception of time in terms of events that are observed. From a computational

modeling perspective, both models of time are possible, andhave been described by

various authors. Temporal representation systems have been built that implement either

of these models or a combination of the two, and temporal reasoning techniques that

accommodate either of these models are available[48].

2.2.1.2 Implicit and Explicit Time

A medical record may provide the time during which an event happened either im-

plicitly by relating it to other events, or explicitly by specifying the time when an event

occurred. The medical record may say ‘the patient had chest pain after running uphill’

or ‘the patient had chest pain around 7PM on Monday evening’.Implicit time models

require further analysis before they can be fit into a temporal model of events. Storing

clinical data in temporal databases becomes especially harder in cases of discontinuous or

disjoint interval data such as ‘the patient had chest pain onand off for several years while

he was smoking and after he quit’. Words such as ‘before’, ‘after’, or ‘during’ are used

to capture the temporal events in relation to one another, rather than capture the calendar

date and time at or during which these events occurred. Hence, implicit and explicit time

models are closely related to relative and absolute time models, respectively. Explicit time

models capture time on its own, rather than modeling it in terms of events that happen
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in the system. Explicit time models may be point-based, interval-based, or based on a

combination of the two.

2.2.1.3 Discrete and Continuous Time

A temporal model may also be modeled as a sequence of discreteevents that happen

at points of time, or as a sequence of processes that occur continuously and overlap or

meet one another[48]. For example, a patient’s heart rhythm can change from normal

sinus rhythm to ventricular fibrillation, provided the granularity of time is in the order

of minutes. On the other hand, the serum troponin levels of a patient recovering from an

acute myocardial infarction changes continuously over time when measured with the same

granularity of time. A continuous time model is also known asa dense time model[49].

Both Situation Calculus and Event Calculus models described in Section2.2.2can model

discrete changes well, but they do not lend well to modeling continuous changes. With

these models, it is not possible to accurately describe a variable of interest at a point

of time between two discrete events or measurements, thoughcertain methods to repre-

sent continuous events with Situation Calculus[50], and Event Calculus[51] have been

described. Some physiologic models based on mathematical equations try to model such

continuous processes[15]. Several authors have described a combination of logic-based

models with mathematical equation-based models[52]. Though probabilistic models such

as Dynamic Bayesian Networks mathematically can be proven to work with varying gran-

ularities of time, currently available learning and inference algorithms require time to be

modeled as a discrete quantity to perform tractable learning and inference with large DBN

models[21, 53, 54].

2.2.1.4 Bounded and Unbounded Time

Bounded and unbounded temporal models denote whether the time-axis is finite or

infinite. Almost all temporal reasoning problems in biomedicine assume a finite model of

time. They attempt to model the temporal system and to make predictions or explanations

over a finite period of time in the future or the past. However,tractable learning and

inference is possible in probabilistic temporal networks with sequences of unbounded

lengths by applying parameter tying through detection of equivalence classes [55].



13

2.2.2 Temporal Logic Ontologies and Formalisms

Among the many formalisms for representing temporal interactions in a system, Situ-

ation Calculus and Event Calculus are the ones most widely studied and adopted. Tech-

niques such as Situation Calculus and Event Calculus allow reasoning with implicit time

models, and to an extent, explicit time models. Both are first-order logic formalisms that

are used to express the state, actions, and changes in a system. They are also useful to

solve temporal constraint satisfaction problems and to predict the future state of a system

or to explain the past state.

Situation Calculus (SC) models the system in terms ofsituations, which describe

the entire state of the universe at a given instance of time, and variousactionsthat are

possible given the situation. This first-order-based logicwas first described by McCarthy

and Hayes[56]. Both possible scenarios (e.g., the patient’s serum glucose is 50 mg/dl,

encountered in hypoglycemic patients), and hypothetical situations (e.g., the patient’s

serum glucose is 2mg/dl, which is not seen in live human beings) are considered, even

though the state of the universe (e.g., neurological and cardiac functions of the patient)

is not completely defined in hypothetical situations. A set of fluentsprovide known

information about a given situation, whether possible or hypothetical. For example, we

may have one fluentglucose(s)that expresses ‘the patient’s serum glucose during situation

s’, and another fluent that provides composite knowledge suchas ‘the patient cannot be

alive in a situation s when the serum glucose is 2 mg/dl’. A set of all allowedactions

along with the corresponding resulting situations are defined for the given situation. A

knowledge of all possible situations, fluents, and actions is adequate to describe the state

of the given system and all possible outcomes by using first-order logic [57, 56, 58].

Event Calculus (EC) is a logic-programming framework introduced by Kowalski and

Sergot[59]. Event Calculus describes a temporal system in terms ofeventsandproperties.

Properties are fluents that hold true between the events thatinitiate and terminate them.

Event Calculus provides a simpler model of a system by only modeling known events

and properties without the knowledge of the entire universeof interest. Various events

and properties can be represented along a time-axis as multiple parallel and overlapping

timelines. These timelines all start and end at specific events, and hold various properties

throughout the timeline. The timelines may be continuous ordisjoint, and maintain causal
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temporal relationships between them, with cause precedingthe effect.

In contrast, Situation Calculus aims to model all possible permutations of the universe

of interest and transitions between them. On a time-axis, Situation Calculus can be repre-

sented as a multidimensional branching and merging model. From the above discussion, it

can be seen that Situation Calculus lends itself better to relational or implicit time models,

and Event Calculus lends well to both implicit (relative), and explicit (absolute) time

models.

In addition to Situation Calculus and Event Calculus, otherauthors have described for-

malisms such asfeatures and fluentsformalism (Sandewall)[60], fluent calculus(Hölldobler

and Thielscher)[61, 62], and others[63, 64].

2.2.3 Temporal Constraint Representation and Satisfaction

Various forms and qualitative and quantitative formalismsare available to represent

temporal constraints. Reasoning about temporal constraint involves whether a set of

variables (objects, fluents, states, etc.) exist to satisfya given constraint, and choosing the

most probable temporal relationship between these variables (objects, fluents, etc.). The

most popular qualitative formalisms to represent temporalconstraints are Interval Algebra

(Allen)[48], Point Algebra (Vilain and Kautz)[65], and others[66]. These formalisms

denote temporal constraints using relationships such as ‘before’, ‘after’, ‘during’, ‘at’,

and so on. Many algorithms are available for performing reasoning using these constraint

representations[67, 68, 69], and a detailed survey of these algorithms is presented in [70].

Allen’s Interval Algebra uses thirteen different relationships to denote temporal con-

straints between two intervals. These relationships arebefore, meets, overlaps, starts,

during, finishes, along with the inverses of these six relationships, and therelationship

equal[48]. These are illustrated in Figure2.1. For example, the interval inflammation

may start the interval pain, and inflammation may have abefore-inverserelationship to

infection.

Vilain and Kautz’s Point Algebra denotes temporal constraints using points in time

rather than intervals of time. Point Algebra uses disjunctions of three basic relationships,

< (before),= (at the same time), and> (after). From these three, seven vectors are

then formed>, <, =, >=, <=, <> (not at the same time), and<=> (not known).
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Figure 2.1: Allen’s Interval Algebra

Addition and multiplication logic between these vectors are then defined. The truth tables

for addition and multiplication for the vectors used in point algebra are then described[65].

Addition is used to combine two different measures of relationships between two points.

Multiplication is used to find the relationships between twopoints, given their separate

relationships with a third point. For example, addition will be used to find the relation-

ship between infection and sepsis, if we know that infectionalways precedes sepsis, and

infection does not occur simultaneously as sepsis. If we know that infection precedes

sepsis, and sepsis precedes severe sepsis, we can use multiplication to determine that

infection precedes severe sepsis. However, vector algebradoes not answer all possible

combinations of vector additions and multiplications[65]. For example, if we know that

infection precedes inflammation, and infection precedes pain, this information alone is

insufficient to answer the temporal relationship between inflammation and pain.

Quantitative formalisms for temporal constraint representation have also been described[71,

72]. A well-known quantitative algorithm is the Distance Algebra (Dechter, Mieri, and

Pearl)[71]. Distance Algebra denotes the values of various entities over time using both
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unary and binary constraints, to capture both point- and interval-based temporal data. A

unary constraint denotes the value of an entity at a specific point in time. A binary con-

straint denotes the value of the entity between two points intime. Interactions of various

constraints have been described for Distance Algebra. The reader is referred to [71] for

a detailed description. Combinations of qualitative and quantitative temporal constraint

representation and solving have also been described[73, 74, 75]. A detailed overview of

temporal logic and constraint formalisms are presented by Chittaro and Montanari[76].

2.2.4 Temporal Databases and Query Languages

Data storage and retrieval mechanisms become necessary to query temporal data easily

for applying temporal logic-based operations on them. Manytemporal databases are

enhancements to well-known database technologies such as file-based, hierarchical, or

relational database systems. The temporal query languagesare often extensions to the

Structural Query Language (SQL) to support temporal queries.

Database formalisms to support temporal data use point-based or interval-based on-

tologies of time to capture temporal semantic relationships in clinical data. The earliest

example of a temporal database is the Time Oriented Database(TOD) by Wiederhold et

al.[77] TOD is a file-based database system designed to represent time using timestamps

for medical data in medical records. Another early system that used timestamps for clinical

data are the Rx system by Blum[78]. Kahn et al. describe Extended Temporal Network

(ETNET), an object-oriented database system that capturestemporal relationships for the

ONCOCIN decision support system[79]. Pinciroli et al. describe some limitations of

relational databases in representing temporal data, and propose an object-oriented database

model to support temporal data representation[80].

The well-known examples of temporal query languages are extensions to the Struc-

tured Query Language (SQL) to support queries with a temporal nature. SQL does not

provide a simple way to formulate temporal queries, and requires complex date-time

comparisons to manually create temporal queries[81]. Hence, various authors proposed

extensions to the SQL standard to support temporal queries.Temporal query formalisms

support queries such as ‘retrieve events that happened between when the patient had chest

pain and was admitted to the emergency department’, ‘retrieve events since the patient was
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diagnosed with diabetes mellitus’, and so on. Das et al. describe Chronus[82], and other

extensions to SQL to support temporal queries, and their effectiveness to support clinical

decision support[83, 84, 82]. Combi et al. describe GCH-OSQL and S-WATCH-QL, two

extensions to SQL to support temporal queries in clinical applications[85, 86]. Snodgrass

et al. describe TSQL2, a feature-rich extension to SQL to support temporal queries[87].

The draft version of the upcoming ISO SQL3 standard (the newer version of the current

SQL standard) included temporal extensions to the SQL knownas SQL/Temporal, but the

extension has since been withdrawn[81, 88].

2.3 Overview of Temporal Reasoning

As described in Section2.1, the term ‘Temporal Reasoning’ is used in this dissertation

to denote the modeling of causal relationships across time,and inferring the state of a

system at any given point in time, including prediction of future events or explanation of

past events. Temporal reasoning is an essential part of diagnosis, treatment, and prognosis

in clinical medicine. The task of temporal reasoning is performed by human experts as

an implicit part of the clinical care delivery process. Evidence-based medicine (EBM)

constructs such as clinical protocols and guidelines also implicitly use temporal reasoning

as part of a supervised decision support process. Clinical decision making is inherently

uncertain, due to difficulties in measuring the system underconsideration, uncertainties

in eliciting these measurements, the large number of interacting disease processes and

clinical manifestations, and due to an incomplete understanding of the interactions as

well as the individual disease processes themselves. Temporal reasoning becomes harder

given these circumstances, compared to well-studied but complex domains where these

techniques have been applied with a higher degree of success, such as continuous speech

recognition, and autonomous agent modeling.

The understanding and prediction of clinical events by human experts becomes difficult

for rapidly changing systems such as serum glucose control and insulin dosing in the

ICU, especially when the data are incomplete. Computerizedtemporal reasoning becomes

desirable in these cases. Many methods of temporal reasoning have been attempted in

clinical medicine. The accuracy of temporal reasoning depends both on accurate modeling

and meaningful data preparation, as shown in Chapter 3. In this chapter, we describe
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various modeling techniques that are applicable to temporal reasoning in the biomedical

domain.

2.3.1 Temporal Reasoning Techniques

Both qualitative and quantitative methods have been studied to solve temporal rea-

soning problems. Qualitative methods include rule-based,frame-based, and logic-based

methods[89, 90]. Qualitative methods are closely related to logical formalisms of time

described in Sections2.2.2, and2.2.3.

Quantitative Temporal reasoning techniques vary from the simple difference equations

models, to differential equation-based models, regression models, to the more complex

probabilistic models such as Bayesian models, and pattern recognition models such as

Artificial Neural Networks. The terms ‘time series analysis’, and ‘time series prediction’

are more popular with regression-based and similar models used in financial analysis

and econometrics. Detailed descriptions of mathematical models for temporal analysis

and prediction are provided by Box et al.[91], Brockwell and Davis[92], Hamilton[93],

and Kedem and Fokianos[94]. These works describe regression-based models including

auto-regressive moving average (ARMA), logistic regression, Kalman filter, and similar

methods for models involving continuous as well as nominal and ordinal discrete variables.

Support Vector Machines (SVM) have also been used in temporal reasoning in recent

times[95, 96, 97].

Artificial Neural Networks also prove to applicable for solving temporal reasoning and

prediction problems[98, 99, 100]. They have been applied in several domains including

financial analysis, agent modeling, and biomedicine. However, due to the increasing

emphasis on evidence-based medicine, Artificial Neural Networks are not as well accepted

in medicine as regression or probabilistic models because of their ‘black box’ nature in

their inability to explain their reasoning[101, 102, 28].

Probabilistic methods such as Bayesian analysis have traditionally been used for static

models, or models whose variables have a static value. Hidden Markov Models and

Dynamic Bayesian models are becoming increasingly popularto solve temporal problems

in the biomedical domain. A description of these methods is provided in Section2.4.
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2.4 Probabilistic Methods in Temporal Reasoning

Probabilistic methods used in temporal reasoning include Dynamic Bayesian Networks

(DBN), Hidden Markov Models (HMM), Kalman Filters, Partially Observed Markov De-

cision Processes (POMDP), and Limited Memory Influence Diagrams (LIMID). All the

latter models can be described as specializations of Dynamic Bayesian Networks. All

of these models use the Bayes theorem and the Markov propertyto model conditional

probabilities both within a given instance of time as well asover a period of time. Hence,

we briefly describe Bayesian probabilities and the Markov property before describing the

probabilistic models mentioned above.

2.4.1 Bayes Theorem

Bayes theorem describes the conditional probabilities of different stochastic random

variables in a probabilistic model. A stochastic variable is one that takes a value from a

stochastic or probabilistic space, and its value is expressed as a probability distribution

over a set or range of possible values, in contrast with a deterministic variable whose value

can be known exactly.

A Naive Bayesian model is the simplest instantiation of the Bayes theorem. A Naive

Bayesian model assumes strong conditional independence between various independent

variables that are related to a single dependent variable. For example, cough and fever can

be modeled as independent variables that predict pneumonia. In a Naive Bayesian model,

the three variables, cough, fever, and elevated white bloodcell (WBC) counts are assumed

to be conditionally independent of each other, and the possibility of other diagnoses is not

considered unless they are mutually exclusive and exhaustive.

In a Multimembership Bayesian model, different clinical features can be modeled to

be associated with different diseases, and each disease is considered to be independent of

other diseases. However, this may not often be the case with clinical models, and there are

often interactions between different groups of clinical features and underlying illnesses.

Consideration of these interactions are often captured in the clinical environment as differ-

ential diagnoses, given the history and clinical conditionof the patient’s illness. Bayesian

Networks (BN) overcome the limitations due to conditional independence assumptions in

the Multimembership Bayesian models, and allow for complexprobabilistic interactions
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between various nodes in the model.

In its simplest form, often used in a Naive Bayesian model, the Bayes theorem relates

the conditional and marginal probabilities of two variables as

P (A|B) =
P (B|A) P (A)

P (B)
(2.1)

where B has a nonzero probability.

For ease of explanation, we rewrite the equation2.1in terms of a disease and its clinical

finding. We useD to denote the disease andF to denote the finding as shown in equation

2.2.

P (D|F ) =
P (F |D) P (D)

P (F )
(2.2)

In equation2.2, P (D) represents the probability of disease in the general population,

also known as prevalence or prior probability or pretest probability of the disease.P (F |D)

denotes the probability of a patient having the clinical finding when the patient has the

disease.P (F ) represents the probability of the finding in the general population.P (D|F )

denotes the probability of a patient having a disease when the finding is present, also

known as posterior probability of the disease. From equation 2.2, we can see that the

posterior probability of a disease can be calculated from its prior probability as well as the

evidence.

The law of total probability, also known as the expansion rule, states that

P (A) =
∑

B

P (A|B) P (B) (2.3)

Applying the law of total probability to the denominator in equation2.2, we can

express the probability of the finding as

P (F ) = P (D) P (F |D) + P (D) P (F |D) (2.4)

whereD, andF are the complementary events of the disease and finding, often pro-

nounced as ‘not D’, and ‘not F’, respectively.D denotes the absence of disease, andF
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denotes the absence of the finding. Equation2.4helps us to calculate the prior probability

of the finding from the observed variables on the right-hand side of the equation.

By combining equations2.2and2.4, we get

P (D|F ) =
P (F |D) P (D)

P (D) P (F |D) + P (D) P (F |D)
(2.5)

The chain rule of probability describes the calculation of the joint probability distribu-

tion of multiple variables using their conditional probabilities. The rule states that

P (X1 = xi, . . . , Xn = xn) =
n∏

i=1

P (Xi = xi | Xi−1 = xi−1, . . . , X1 = x1) (2.6)

which can be written in simple terms as

P (A, B, C, D) = P (A |B, C, D) P (B |C, D) P (C |D) P (D) (2.7)

Combining the chain rule (equation2.6) with the law of total probability (equation2.3),

we can calculate the probability of a disease given multiplefindings. The joint probability

assumes that different symptoms of a single disease are conditionally independent. In

reality, many symptoms of a given disease are correlated. For example, in case of sepsis,

white blood cell (WBC) count and body temperature are correlated. However, Bayes

theorem proves to be fairly accurate for small violations ofconditional independence.

2.4.2 BN Structure, Conditional Independence and d-separation

A Bayesian Network structure is expressed as a directed acyclic graph (DAG) where

the nodes represent the random variables in the model, and the edges represent the condi-

tional dependencies between the random variables. If a directed edge connects node A to

node B, then node A is known as a parent of node B, and node B is known as a child of node

A. The random variables may be continuous or discrete. The various categories of values

of discrete variables are known as their states. The acyclicnature of the graph allows us to

decompose the joint probability distribution into its constituent conditional probabilities

by applying the chain rule. It is not possible to perform thisdecomposition using the chain
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rule if the graph contains cycles. The order of decomposition is based on the conditional

interdependencies described in the graph structure. The process of decomposing the

joint probability distribution into its constituents is known as factorization. The ability

to factorize a DAG makes it easier to calculate the joint probability distribution. The

junction tree algorithm takes advantage of this property byconverting a highly connected

graph into a tree structure of cliques (known as a ‘junction tree’), and then by performing

exact inference on the junction tree[103].

We use the Bronchitis and Lung Cancer network, which is a subset of the popular Asia

network described by Lautitzen and Spiegelhalter[103], to describe Bayesian Network

structure and various properties of these models. The Asia network has more random

variables than the Bronchitis and Lung Cancer network shownin Figure2.2. The Bron-

chitis and Lung Cancer network illustrated in Figure2.2 is used to explain the principles

of Bayesian conditional probability and d-separation. Smoking, bronchitis, lung cancer,

dyspnea, and chest X-ray findings are represented by the symbols S, B, L, D, andC,

respectively.

A patient may develop bronchitis or lung cancer due to smoking or due to other causes.

The probability of bronchitis and lung cancer in the generalpopulation are denoted by

P (B), andP (L), the prevalence or prior or pretest probabilities of these two diseases. The

probability of lung cancer given the knowledge of the patient’s smoking habit is denoted

by P (L|S), and the probability of bronchitis when we know whether the patient smokes

is denoted byP (B|S).

The two diseases, bronchitis and lung cancer, may cause dyspnea (shortness of breath),

and radiographic findings detected in a chest X-ray. The conditional probabilities of

these two clinical findings (dyspnea and chest X-ray findings) given the knowledge of

each of these two diseases (bronchitis and lung cancer) are described by the symbols

P (D|B, L), andP (C|B, L), respectively. The conditional probabilities of the diseases

given the patient’s smoking habit, and those of the clinicalfeatures given the diseases,

may be calculated from a large sample of cases and controls. For ease of explanation,

all the variables in the above model are assumed to be binary -they are either present or

absent. Chest X-ray findings are assumed to be either normal or abnormal, for ease of

explanation.
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Figure 2.2: Bronchitis and lung cancer - a simple Bayesian Network

If there weren variables in the model, then the joint probability distribution will require

an order of2n probabilities. This is computationally expensive, and an optimization

method is required. It should be noted that the figure2n does not assume independence

between the variables. Let us consider a subgraph of Figure2.2 which consists of the

three nodes lung cancer (L), dyspnea (D), and chest X-ray abnormalities (C). The joint

probability of these three nodes is expressed as

P (L, D, C) = P (L) P (D, C|L) (2.8)

If we assume that dyspnea and chest X-ray abnormalities are conditionally indepen-

dent, then equation2.8can be rewritten as

P (L, D, C) = P (L) P (D|L) P (C|L) (2.9)
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Hence, we see that conditional independence reduces the number of terms in the joint

probability distribution fromO(2n) to O(n). It must be noted that the edges in a Bayesian

Network do not define a strict cause-effect relationship. They may explain relationships

that are causal, logical, temporal, or conceptual[103]. Nodes that are connected directly

to each other are necessarily conditionally dependent. However, nodes that are connected

indirectly may or may not be conditionally independent. Theprinciple of d-separation

provides the necessary and sufficient conditions for conditional independence in nodes

that are connected indirectly.

Consider the three graphs in Figure2.3. The figure shows three graphs in converging,

diverging, and sequential configurations. Two nodes in a graph are conditionally indepen-

dent if and only if they are d-separated. Two nodes A and C in a graph are d-separated, if

and only if there is a node B between them such that:

• the connection is sequential or diverging, and the intermediate node B is known.

• the connection is converging, and neither B nor any descendant of B is known.

While we note that conditional independence reduces the computational complexity of

Bayesian Networks, and that d-separation defines conditional independence, an interesting

phenomenon becomes apparent in cases of converging relationships. The principle of

d-separation in the case of converging nodes can be described in terms of ‘explaining

away’. In graph 1 in Figure2.3, we note that variables A and C try to explain the variable

B. If variable B is known, then variables A and C share the explanation for B, and hence

become conditionally dependent. For example, if dyspnea can be caused by both lung

cancer and bronchitis, if we know whether the patient has dyspnea or not, the probability of

lung cancer decreases as the probability of bronchitis increases and vice versa, even if we

know that lung cancer and bronchitis are independent of eachother. If one were to consider

the relationship between these two diseases in the context of dyspnea, it would lead one

to think that these diseases have an inverse relationship between them. This spurious

conditional dependence and apparent selection bias is known in statistics as Berkson’s

paradox[104]. Hence, the author of the Bayesian Network must be aware of this paradox

of ‘explaining away’ while designing a graph with converging edges.
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Figure 2.3: d-separation in Directed Acyclic Graphs

2.4.3 Markov Property

A Markov process is a stochastic process where the future state of a random variable

does not depend on its past state if its present state is known. It may be noted that this

property is similar to d-separation in case of sequential nodes, as described in Section

2.4.2, and Figure2.3. An example is shown in Figure2.4. A process which only depends

on its immediate previous state is known as a first-order Markov process; one whose

present state depends on itsk previous states is known as akthorder Markov process.

Hence, a Markov process is a memoryless or a short-memory stochastic process. A

Markov process that has a finite set of states is often known asa Markov chain. A

Markov process may model time as a discrete or continuous quantity. Discrete time

Markov processes are better defined, more tractable, and more popular than continuous

time Markov processes. Each time instance in a discrete timeMarkov process is known as

a timeslice.

Figure2.4shows sepsis as a finite state discrete Markov process. In this figure, sepsis

has three states, namely no sepsis, sepsis, and septic shock. Each of the arrows in the figure

represents a transition from one state to another or to itself. Each transition is associated

with a transition probability. The figure represents sepsisas a first-order Markov process.

A stochastic process is a Markov process of orderk if its present state is independent of

all but its immediately previousk states. In other words, for a first-order Markov process,

P (Xt+h = y | Xs = xs, ∀s ≤ t) = P (Xt+h = y | Xt = xt, ∀h > 0), ∀t, h > 0.

(2.10)

Similarly, for akth order Markov process,
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Figure 2.4: Sepsis as a Markov process

P (Xt+h = y | Xs = xs, ∀s ≤ t) = P (Xt+h = y | Xt−m = xt−m, ∀m ≤ k), ∀t, h > 0.

(2.11)

In equations2.10, and2.11, the quantityP (Xt+h = y | Xt = xt) is known as the tran-

sition probability. A Markov process may be time-homogeneous or time-nonhomogeneous.

These may be simply known as homogeneous and nonhomogeneous, respectively. For a

homogeneous Markov process, the transition probability for a given stochastic variable

remains constant for all values oft. The transition probability of a nonhomogeneous

Markov random variable changes with time. In other words, for a homogeneous Markov

random variable,

P (Xt+h = y | Xt = x) = P (Xh = y | X0 = x), ∀t, h > 0. (2.12)

The equality assertion in equation2.12 is not true for nonhomogenous Markov pro-

cesses. Many biological processes are modeled as Markov processes, and Markov pro-
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cesses have received good acceptance in modeling biomedical systems for predicting prog-

noses and outcomes. Modeling biological processes as homogenous Markov processes

allows parameter tying and a reduction in the number of parameters required to describe

the joint probability for a Markov process with a large time duration. Modeling temporal

biological processes as homogenous Markov processes provides accurate estimations even

for nonhomogenous Markov processes, as shown in Chapters 4 and 5.

2.4.4 Hidden Markov Models

A Hidden Markov Model (HMM) is the simplest type of a Dynamic Bayesian Network

(DBN) with one hidden node and one observed node. A Hidden Markov Model represents

the stochastic process in terms of a hidden variable and an observed variable. In a Hidden

Markov Model, the hidden node is represented as a discrete variable, whereas the observed

variable may be discrete or continuous. The hidden variablecannot be measured directly.

It is measured through a proxy variable known as the observedvariable. The observed

variable is related to the hidden variable through an emission (or observation) probability.

The state transitions of the hidden variable are described by the transition probability,

which denotes the Markov nature of the stochastic process. The probabilistic relationships

between various states of sepsis (no sepsis, sepsis, septicshock), and WBC count (low,

normal, high) are shown in Figure2.5as a Hidden Markov Model. Transition probabilities

are denoted byapq and observation probabilities are denoted bybpq.

In Figures2.5, and2.6, sepsis is represented as a Hidden Markov Model. Squares de-

note discrete variables and circles denote continuous variables. Shaded nodes are observed

and clear nodes are hidden. Figure2.5denotes the state transitions, and various transition

and observation probabilities using a single timeslice, whereas, Figure2.6 represents the

same Hidden Markov Model using three timeslices. Furthermore, Figure2.5 denotes

the observed nodes as discrete nodes, whereas Figure2.6 denotes the observed nodes

as continuous nodes. The transition probability is denotedby a, and the observation

probability is denoted byb. The prior probabilities of the directed acyclic graph are

denoted byπ. The tuple(π, a, b) denotes the parameters of the Hidden Markov Model.

Hidden Markov Models can be used to predict temporal as well as atemporal se-

quences. Atemporal sequences that lend well to Hidden Markov Models include gene



28

Figure 2.5: Sepsis state transitions as a Hidden Markov Model

Figure 2.6: Sepsis Hidden Markov Model with 3 timeslices

and protein sequences. Hidden Markov Models are used extensively in speech recogni-

tion, machine translation, motion and gesture recognition, gene sequence prediction, and

prediction of clinical outcomes and prognosis such as tumorrecurrence after treatment and

graft survival in transplant recipients. Complex Hidden Markov Models such as factorial

and hierarchical Hidden Markov Models can be built by extending simple Hidden Markov

Models. Rabiner provides a good description of Hidden Markov Models in [105].
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2.4.5 Kalman Filter Models

Kalman Filter Models (KFM), also known as linear dynamical systems (LDS), or

state-space models (SSM), model the hidden node as a continuous random variable, in

contrast to a Hidden Markov Model. The transition and observation functions are assumed

to be linear-Gaussian, and the system is assumed to be jointly Gaussian. Instead of

conditional probability tables, the joint probability is expressed as a probability density

function. Kalman Filters are used in problems such as tracking an aircraft or a projectile

using a radar, and in tracking financial parameters, since the variables in these models are

continuous in nature, with linear relationships between them. The linear-Gaussian nature

of the probability functions necessitate that these functions be unimodal. However, this

is not always the case in real-world clinical systems, such as predicting the outcome of a

patient treated for a myocardial infarction. It is also not possible to model all the hidden

clinical variables as continuous variables, or the probabilities as linear-Gaussian functions.

Due to these reasons, Kalman Filter models have not found significant acceptance in the

clinical domain except in signal processing domains such aselectrocardiogram (ECG) or

imaging. A detailed description of Kalman Filter Models from a Hidden Markov Model

perspective is presented in [106], and [107].

2.4.6 Dynamic Bayesian Networks

Dynamic Bayesian Networks represent the state-space of a system in terms of multiple

random variables with complex probabilistic interactions. The variables may change in

value over time as seen in temporal models, or due to sequential information as seen

in genetic or proteomic sequences. The term ‘dynamic’ denotes that the values of the

variables change over time, and not that the model’s structure itself changes over time. In

other words, the system being modeled is a dynamic one, in contrast with a static Bayesian

Network where the variables have a fixed value.

A more appropriate term is ‘Temporal Bayesian Networks’, but the term ‘Dynamic

Bayesian Networks’ has received wider acceptance and more popularity. The probabilistic

interactions themselves follow Bayesian principles (Section 2.4.1), and the temporal prob-

abilistic relationships follow Bayesian principles as well as the Markov property (Section

2.4.3). Similar to Hidden Markov Models, Dynamic Bayesian Networks allow hidden and
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observed nodes. The variables in the model may be discrete orcontinuous, and time itself

may be modeled as discrete or continuous as well. However, models with discrete random

variables and discrete time are more popular and are computationally more tractable.

Dynamic Bayesian Networks can be considered as a generalization of Hidden Markov

Models and Kalman Filters. For a detailed description of Dynamic Bayesian Networks,

the reader is referred to [21].

This dissertation only considers Dynamic Bayesian Networks with discrete variables

and a discrete representation of time. A simplified structure of the Glucose-Insulin Model

used as one of the test cases for the research described in this dissertation is shown in

Figure2.7as a 2-timeslice model. The figure shows a screenshot of the model in Projeny,

a tool developed as part of the research described in this dissertation.

This model shows glucose homeostasis modeled as a DBN with complex interactions

between various stochastic random variables both within and across timeslices. Insulin

resistance, insulin secretion, and total insulin given arehidden nodes, and the rest are

observed nodes. All the variables are modeled as discrete nodes.

2.4.7 Partially Observable Markov Decision Processes

A Markov Decision Process (MDP) is a Markov Chain (Section2.4.1) where some

variables denote input or action nodes whose values are provided by a user or an agent.

A Markov Decision Process assumes that the entire system is observable to the agent.

However, this is hardly the case. For example, the patient’sendogenous insulin secretion or

insulin resistance are not visible to a closed-loop insulininfusion system or to the clinician

who calibrates the insulin dosage. In such cases, the actionis based on an observed

variable which represents the state of a hidden variable. Such models where the action

depends on the observed value of a noisy variable which denotes another observed variable

are known as Partially Observable Markov Decision Processes (POMDP). MDPs are also

known as Completely Observable Markov Decision Processes (COMDP) to distinguish

them from POMDPs.

Automated systems that use POMDPs use a reward variable or function to score past

actions and select future actions. In an MDP, the state of thesystem is updated after

each action, since the system is completely observable. In aPOMDP, the state of the
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hidden variable cannot be updated directly after each action, but is expressed in terms

of a probability distribution (observation probability).Exact inference for POMDPs is

intractable in many cases. However, approximate inferencealgorithms are available to

perform inference with POMDPs. For a detailed description of POMDPs, please see [108,

109, 110].

2.4.8 Limited Memory Influence Diagrams

Partially Observable Markov Decision Processes (POMDP) assume that all the past

data about a system are available. However, it is not always possible to obtain all the

past information about a system. For example, a diabetic patient may not have the old

medical records that provide a historical picture of her Glycosylated Hemoglobin (HbA1c)

results. Hence, the model needs to work with limited memory and relax the ‘no forgetting’

requirement. Lauritzen and Nilsson introduce the concept of Limited Memory Influence

Diagrams (LIMID) to model such systems[111, 112]. They also describe methods to

find locally optimal solutions and to investigate whether these solutions will be globally

optimal[112]. LIMIDs are a recent technique, and applications in the biomedical domain

are becoming available[113].

2.5 Inference and Learning with DBNs

Learning is the process by which the structure or the joint probability distributions of

the Dynamic Bayesian Network are discovered. After the structure and parameters of a

model are known, the model can predict future events or explain past events, in a process

known as inference. Learning and inference in case of Dynamic Bayesian Networks

use algorithms similar to those used in Hidden Markov Models(HMM), and Kalman

Filter Models. Many of these algorithms are temporal extensions of those used for static

Bayesian Networks. Learning and inference may be performedonline or offline. ‘Offline’

denotes that all the temporal data corresponding to the model are already available, and

learning or inference is done with this fixed batch of data. ‘Online’ denotes that learning or

inference is sequentially updated as new data become available. Restrospective analysis

of clinical data are amenable to offline inference. Prospective clinical decision support

requires online inference. Learning may be done offline or online in both these cases, or by
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initial offline learning followed by periodic online updates. The discussion presented here

about learning and inference summarizes a detailed description of learning and inference

tasks, algorithms, and their optimizations by Kevin Murphy[21].

2.5.1 Inference

Several inference tasks for Dynamic Bayesian Networks and temporal models in gen-

eral have been described[21]. All these tasks involve calculating the marginal probabilities

of variables of interest. These inference tasks are graphically represented in Figure2.8,

reproduced with permission from Kevin Murphy[114]. In this figure, the shaded region

represents the time interval for which data are available. The symbolt represents the

current time,T denotes the length of the sequence,X denotes the hidden variable, and

Y denotes the observed variable. The hidden variableX emits the observed variableY

described by the observation probability. The upward-pointing arrow denotes the time

instance at which we want to perform the inference.

Filtering denotes the estimation of the present state of thehidden variable when the

past and present values of the observed variable are known. This process is known as

‘filtering’ because the observation probability is noisy, and we filter the noise to estimate

the hidden variable.

Viterbi decoding denotes the estimation of the most likely sequence of the states of

the hidden variable until the present time, if the values of the observed variable up to the

present time are known.

Prediction denotes the estimation of the value of the hiddenvariable at a future point

in time, if the values of the observed variable up to the current time are known.

Smoothing denotes the process of estimation of the value of the hidden variable at

some point of time in the past, if the value of the observed variable up to the present time

is known. For example, we might want to know whether a patientmight have had an

insulin overdose in the past if we have a record of the historical serum glucose values.

Smoothing may be performed online or offline.

Control is performed with Markov Decision Processes (MDP),and Partially Observ-

able Markov Decision Processes (POMDP) where the model includes input or control

variables. In these models, an observed variable is set to a desired value, and the value
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Legend: Shaded region: time for which data are available.t : current time.T
: length of the sequence.X : hidden variable.Y : observed variable. Arrow :
time at which inference is performed. Probability term on the right side denotes
the inference task to be performed.

Figure 2.8: Inference tasks for temporal probabilistic models
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of a sequence of input variables required to produce the desired values of the observed

variable are estimated using a reward function. In the case of discrete nodes, control is

modeled as an influence diagram. Markov Decision Processes are outside the scope of

this dissertation, and are not discussed further. For a detailed description of inference with

POMDP, please see [110].

2.5.1.1 Exact Inference

A Dynamic Bayesian Network with only discrete nodes can be converted into a Hidden

Markov Model, and the forwards-backwards algorithm can be applied on it for exact

inference[105]. The algorithm is efficient as long as the state-space is notvery large. For

large state-spaces, more efficient methods are required. Frontier algorithm and interface

algorithm are two efficient algorithms for this case. The frontier algorithm considers the

current timeslice as the frontier which d-separates the past from the future, and performs

reasoning[115]. The interface algorithm is an optimization that considers a 1.5 slice DBN

- it considers the second slice along with only the temporal nodes from the first slice,

and then performs forwards-backwards passes to calculate the marginal probabilities[21].

Similarly, a DBN with linear-Gaussian nodes can be converted into a Kalman filter model

and exact inference can be performed with the Kalman Filter model[21].

An alternative approach that applies to all DBN models is thevariable elimination

technique. The DBN is first unrolled (expanded) for the necessary number of timeslices,

and then filtering and smoothing are performed on the unrolled junction tree model[116].

Only two slices of the model need to be stored in the memory at atime to perform junction

tree inference.

2.5.1.2 Approximate Inference

Exact inference is slow for models with fully discrete nodes. In addition, exact repre-

sentations of the state-space do not exist for some continuous, and mixed continuous and

discrete models. Approximate inference algorithms are available to perform inference in

these cases. Deterministic and stochastic approximate inference algorithms are available.

Deterministic algorithms behave in a predictable fashion,where a given set of inputs

always produce the same outputs. For example, the simplest type of a deterministic algo-
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rithm is a mathematical function. The popular deterministic algorithms for DBN inference

are the Boyen and Koller (BK) algorithm[117], Factored Frontier (FF) algorithm[118], and

the Loopy Belief Propagation (LBP) algorithm[119]. Murphy proves that the BK and FF

algorithms are special cases of the LBP algorithm[21]. The BK algorithm approximates

the joint distribution over an interface as the product of the marginals of smaller terms.

However, BK performs exact inference for a two-slice DBN, and becomes intractable

for very large state-spaces. The Factored Frontier algorithm provides a more aggressive

approximation than the BK algorithm. Approximate algorithms known as the Moment

Matching (MM) algorithm[120], and Expectation Propagation (EP) algorithm[121] are

available to perform filtering and smoothing in Kalman Filter Models (DBN models which

are continuous, linear, and Gaussian). In cases of continuous models that are nonlinear or

non-Gaussian or both, the deterministic approximate inference algorithms are still appli-

cable if the posterior can be approximated by a Gaussian. However, for highly multimodal

posteriors, stochastic algorithms are more accurate. For both discrete and continuous

cases, there is insufficient knowledge about the accuracy ofthe deterministic approximate

algorithms compared to the stochastic approximate algorithms.

Stochastic algorithms do not provide fixed or predictable outputs for a given input.

They are based on sampling techniques, and have many advantages over deterministic

algorithms. Both offline and online inference algorithms are available. Offline methods

include Markov-Chain Monte Carlo (MCMC), with Gibbs sampling and simulated anneal-

ing as special cases. Online methods use Particle Filtering(PF), and several variations are

available. Stochastic approximate inference algorithms are applicable to a wide variety

of models, namely discrete, continuous, or a mixture of the two. Their state-space can

have variable size, and the model can change over time. They are guaranteed to give an

exact answer with an infinite number of cases. However, theseversatile models come with

a performance hit. They are unsuitable for very large modelsor with large amounts of

data. However, the speed limitation can be addressed by using a combination of exact and

stochastic inference algorithms. This is performed by using exact inference on some of

the nodes, and then performing sampling on the rest, known asRao-Blackwellisation[122].

This can be combined with Particle Filtering, in a techniqueknown as Rao-Blackwellised

Particle Filtering. A combination of Rao-Blackwellisation with MCMC methods is also
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available[21].

2.5.2 Learning

Bayesian Networks have the desirable property of learning from evidence. Bayesian

Networks can learn both the network structure and the conditional probabilities. The

former is called structure learning and the latter is calledparameter learning. The learning

algorithms for Dynamic Bayesian Networks are adaptations of those for static Bayesian

Networks.

2.5.2.1 Expectation Maximization Algorithm

Clinical data are often incomplete due to the fact that not all clinical observations

are recorded at all time points. Compared to data collectionin most other domains such

as weather forecasting, financial analysis, genetic or proteomic sequencing, or speech

recognition, clinical practice is inherently a data-sparse domain. A clinician may order a

lab test on a given day, and may not repeat the test until the history, physical examination,

or acuity of illness warrants repeating the test. Even physical examination findings are not

performed at every time instance unless necessary. Hence, we need algorithms that can

learn the parameters or the structure of the model using sparse data sets.

We begin by describing the Expectation Maximization (EM) algorithm, one of the

frequently used algorithms for both parameter and structure learning in both static as well

as Dynamic Bayesian Networks that can handle data sets with missing data[123]. The EM

algorithm is traditionally used for parameter learning with sparse data. The EM algorithm

internally implements a variety of inference algorithms aspart of the parameter learning

process, and the choice of this inference algorithm can be chosen manually based on the

model.

The EM algorithm is an iterative hill climbing algorithm with a two-step process, an

expectation (E) step and a maximization (M) step. In the expectation step, the nodes with

missing values are filled in based on the values of the observed nodes and the current

values of the parameters. In the maximization step, the parameters are recalculated using

the filled in values as if they were observed values. The log likelihood of the parameters

given the model and the data are calculated after each iteration of the E and the M steps.
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This is known as the expected log likelihood, which serves asa surrogate for the log

likelihood, since the log likelihood cannot be calculated directly due to missing data. This

process is repeated until convergence when the expected loglikelihood is maximized.

2.5.2.2 Parameter Learning

Parameter learning in Dynamic Bayesian Networks is similarto that in static Bayesian

Networks. Parameter learning may use either Bayesian equations involving conditional

probabilities, or a frequentist approach using available evidence. Even if the frequentist

methods are used, the model may still be known as a ‘Bayesian’model because inference

using this model involves Bayesian methods. The parametersof a temporal model are tied

across timeslices when the model is assumed to be a homogenous Markov process. This

reduces the number of parameters required to describe the model, and permits the model to

support training cases with variable or infinite time durations (‘lengths’) for both learning

and inference.

2.5.2.3 Structure Learning

Two types of structure learning algorithms are available, namely constraint-based learn-

ing and score-based learning. Constraint-based learning tries to find a model structure

that satisfies a set of predefined constraints. Score-based learning uses predetermined

scores for specific network substructures to find the structure of the complete model that

maximizes the score.

Structure learning involves learning both the interslice and intraslice structures. In-

traslice structure learning is similar to that with static Bayesian Networks. The intraslice

connections must form a directed acyclic graph. Once intraslice connections are learned,

learning interslice connections becomes a variable-selection problem, where the parents

of nodes in timeslicet must be chosen for timeslicet − 1. For fully observed models

with complete data, a variety of structure learning algorithms are available. In cases with

missing data and partial observability, structure learning in Dynamic Bayesian Networks

becomes intractable.

Structure learning algorithms are available, but are not always tractable. Structure

learning uses inference as a subprocess, and a variety of inference algorithms can be
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employed which affect both the accuracy and tractability. Astructure learning algorithm

based on the EM algorithm, known as the Structural EM (SEM) algorithm, has been

described[124, 125]. Attempts are being made to apply the structural EM algorithms to

learn the structure of temporal models with sparse or missing data[126], though successful

implementations are not yet available.

Structure learning need not be a fully automated process. Parts of the structure or the

entire structure can be manually defined using domain knowledge, and the best structure

can be chosen from these predefined models using the structure learning algorithms. All

the models in the experiments described in this dissertation had their structure manually

defined using clinical literature.

2.6 Challenges in Temporal Reasoning

The process of temporal reasoning is met with a variety of challenges due to the

nature of the temporal reasoning task, the nature of the dataand preparing them in an

appropriate way, the limitations of the temporal reasoningmethods, lack of feature-rich

and user-friendly toolkits, and the nature of the medical domain itself. These challenges

have impacted the application of temporal reasoning in general, and in the medical domain

in particular. The adoption of probabilistic and other temporal reasoning methods in

medicine severely lags behind many other domains. We outline the main reasons that

impact the adoption of temporal reasoning methods in the medical domain.

2.6.1 Missing Data Problem

As described in Section2.5.2.1, medical practice is a very data sparse domain. Clinical

practice does not require the measurement of all variables at all instances of time. Different

data elements are measured at different frequencies and intervals based on the nature of

these variables, their past values, and the clinical condition of the patient. Most data are

also not measured at constant intervals. The interval between periodic measurements of

the same variable fluctuates due to a variety of factors, mostly due to human causes. Phys-

iological parameters such as heart rate and blood pressure can be measured continuously

with electronic devices. However, a large number of clinical observations are recorded by

human experts and cannot be automated or measured continuously.
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Temporal probabilistic models work well if all the data are available at all points in

time, and if the time points are evenly spaced. Such evidencecannot be provided by

most medical data. The alternative is to develop models, algorithms, and data preparation

techniques that support missing data, data being collectedat various points in time, and

with variable intervals.

2.6.2 Granularity of Time

The frequency of data collection varies depending on the nature of the patient’s illness,

the patient’s clinical condition, and the medical service where the patient is treated. The

vital signs (heart rate, respiratory rate, blood pressure)are often measured at 15-minute

intervals in the ICU. For critically ill patients, the serumglucose is measured at 2-hour

intervals in the ICU. However, for patients who are not critically ill or who are admitted to

regular (non-ICU) medical or surgical wards, the vital signs may be collected at 12-hour

or 24-hour intervals. Parameters such as serum glucose or other laboratory tests may not

be performed every day.

The values of different clinical variables hold true for different durations of time,

depending on both the nature of the variable itself and the clinical condition of the patient.

For example, serum glucose fluctuates significantly even in normal healthy individuals

depending on their food intake. Serum glucose fluctuates to agreater degree in individuals

with diabetes mellitus, and in those who are critically ill.Serum glucose measurements

do not hold true for more than a few hours, and are hence measured at 2-hour intervals

in the ICU, and are often measured once or many times a day by diabetic patients who

are not acutely ill. However, HbA1c values do not fluctuate rapidly and provide a moving

average of the glucose control status of the patient. This isdue to the fact that the average

lifespan of the red blood cells (RBC) is about 120-days, and glycosylation of hemoglobin

is an irreversible process that requires constant exposureto serum glucose, and is directly

proportional to the level of serum glucose over 4 to 12 weeks.Hence, the value of HbA1c

will hold true for a longer period of time compared to the value of serum glucose.

Similar variations in measurement of data and validity of the measured data are ob-

served with all clinical data elements. The granularity of time both in terms of mea-

surement of data, and the validity of measured data, introduce complexities in building a
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temporal model that explains these data.

2.6.3 Temporal Data Aggregation

From Sections2.6.1, and 2.6.2, we see that clinical data are measured at variable

intervals of time, and each observation is valid for variable durations of time. We also

encounter cases where multiple measurements are made within a given interval of time,

either because the previous measurement was not available to the clinician who made the

second measurement, or the clinician wanted to confirm the previous measurement. In

some cases, clinical data are just lost due to human or electronic factors. This leads to

issues in cleaning and preprocessing the data to convert it into a suitable format that can

be used by a temporal reasoning system. These difficulties pose additional challenges to

applying temporal reasoning in medicine. Temporal data aggregation and data preparation

are explained in the context of a detailed temporal data preparation framework in Section

3.1.

2.6.4 Challenges with Dynamic Bayesian Networks

In addition to challenges due to the nature of the medical domain, and the nature of

the clinical data themselves, there are additional challenges posed due to the requirements

and limitations of the temporal reasoning methods and techniques. Challenges posed due

to the constraints of Dynamic Bayesian Network methods and techniques are described

below.

2.6.4.1 Higher Order Markov Processes

Many Dynamic Bayesian Network toolkits assume that the system being designed

involves first-order Markov processes. This is rarely the case with clinical processes.

Different clinical processes in a system may have differenttemporal orders. For example,

serum glucose may only depend on the feeding and insulin dosage data over a short period

of time in the past. However, serum HbA1c depends on serum glucose for a long period of

time in the past. It is hard to estimate current HbA1c value using a HbA1c value measured

3 months ago, and just the latest serum glucose value.
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2.6.4.2 Structure Learning Problems

Dynamic Bayesian Networks require a causal or explanatory structure for the DAG

model. The graph structure may be described based on medicalliterature, or discovered

from available data, or by a combination of the two. Description of biological processes

in medical literature are not easy to capture in a Dynamic Bayesian Network. The hidden

nodes in a model are not easily understood from the medical literature. One would need

to combine literature from medicine, pathology, physiology, biochemistry, pharmacol-

ogy, and so on before the structure of the model along with itshidden nodes becomes

apparent. This is a very imprecise process. Clinical practice guidelines are often not

suitable for modeling in a probabilistic network. This claim is demonstrated in Chapter 5

while comparing different models created by the author to predict sepsis in the emergency

department.

Temporal structure learning algorithms have various limitations described in Section

2.5.2. These limitations, combined with the imprecise nature of medical knowledge, make

structure learning a significant challenge to temporal reasoning in medicine.

2.7 Relevant Works Involving DBNs in Medicine

We present a comprehensive overview of works involving temporal reasoning in medicine

that are relevant to the methods and experiments described in this dissertation. In spite of

the various challenges involving temporal reasoning in medicine, many works involving

temporal analysis and time-series prediction have been published. These works use a vari-

ety of techniques, from rule-based, regression-based, andneural network-based techniques

on one end, to probabilistic techniques such as Markov Models, static Bayesian Networks,

and Dynamic Bayesian Networks on the other end. They involveproblems on a short

timescale such as prediction of the serum glucose, to a long timescale such as prediction

of cancer survival and transplant graft survival. Some experiments involve simulated data,

whereas some experiments use real clinical data. Experiments involving simulated data

can be used to validate the methods, whereas experiments involving real data serve as

validation and proofs of concepts of these methods’ abilityto answer clinical problems.

In this section, we only include works involving temporal modeling and prediction in the

biomedical domain. Temporal representation, temporal databases, and temporal query
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languages are not discussed.

Dynamic Bayesian Networks have been applied in medicine in avery small number of

cases. Some of these studies have used simulated data, and some have used very limited

amounts of real clinical data. Very few studies have used large data sets comprised of real

patient data. However, other temporal probabilistic modeling techniques such as Hidden

Markov Models have been used extensively in medicine. Othermodeling techniques such

as artificial neural networks and logistic regression models have also been used in medicine

extensively. In December 2009, a PubMed query for ‘Hidden Markov Models’ returned

1,443 results, whereas ‘Dynamic Bayesian Networks’ returned 46 results. Less than 10 of

these 46 articles were relevant to clinical medicine, and less than 5 involved large patient

data sets. Atemporal models using Bayesian Networks have also been used in medicine to

a large extent, with some using special nodes in a static model to represent temporal data.

One of the earliest works describing the use of Dynamic Bayesian Networks in the

biomedical domain is by Andreassen et al. in 1991[15]. Andreassen et al. described a

combination of Dynamic Bayesian Networks and differentialequations to model serum

glucose and insulin dosing, and applied it to a data set consisting of 12 patients with

insulin-dependent diabetes mellitus using Hugin, a proprietary Bayesian modeling toolkit.

Dagum and Galper described a Dynamic Bayesian Network modelto predict sleep apnea

in a single patient using a large data set in 1992[127]. Hernando et al. described DIAB-

NET, a temporal causal probabilistic network model used to make qualitative recommen-

dations on insulin therapy for patients with gestational diabetes, in 1996[128]. Hernando

et al. have since described an evaluation of the DIABNET system using the data of 9

patients[129].

Leong has described a temporal probabilistic modeling language named DynaMol

and theoretical models of various clinical scenarios[130]. Provan and Clarke described

DYNASTY, a system that enables construction of dynamic temporal probabilistic models

using some clinical examples[131].

Galan et al. described NasoNet, a temporal probabilistic system for modeling the

spread of nasopharyngeal cancer[132]. Sebastiani et al. have described a study about using

Dynamic Bayesian Networks to detect influenza in a pediatricemergency department[133].

Xiang et al. describe miniTUBA, a web-based system that usesDynamic Bayesian Net-
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work models for clinical decision support[134]. Dynamic Bayesian Networks have been

used by van Gerven et al. to predict the prognosis of patientswith carcinoid tumors[135].

Charitos et al. have described a Dynamic Bayesian Network system to predict ventilator

associated pneumonia using a data set of 20 patients[136]. Langmead has described

the use of Dynamic Bayesian Networks to make treatment decisions using simulated

data of patients with sepsis[137]. Peelen et al. have described a Dynamic Bayesian

Network model for predicting the outcome of patients with sepsis in an intensive care

unit[138]. This study used Dynamic Bayesian Networks with a large data set (2,271

patients), demonstrating successful use of DBN in a clinical setting.

In this dissertation, we describe the theoretical foundations, challenges, methods to

overcome the challenges, and a toolkit to enable the application of DBN in medicine.

We hope that this detailed discussion will help to improve the use of Dynamic Bayesian

Networks in medicine.



CHAPTER 3

MATERIALS AND METHODS

The experiments described in this dissertation involve several steps to perform tem-

poral modeling and prediction, starting with clinical datafrom the electronic record. The

temporal reasoning methods described in this dissertationare applied to two test cases -

insulin dosing and glucose homeostasis in the ICU, and earlyprediction of sepsis in the

emergency department. Multiple models were built and experiments were performed for

each of these two test-cases. This chapter describes the general materials and methods

that are common to both test-cases and their respective models and experiments. The

specific materials, methods, and results of each model and experiment pertaining to the

two test-cases are described in further detail in Chapters 4(insulin-glucose test-case), and

5 (sepsis test-case).

The data first need to be transformed and abstracted into a format suitable for temporal

reasoning, while minimizing the loss of information due to these transformations. Various

temporal models need to be constructed that reflect the disease and decision processes

being modeled. The tools and algorithms involved in the experiments are described in

brief. The computational complexity and predictive accuracy of various models and data

preparation methods are briefly described, with further details in Chapters 4 and 5.

3.1 Data Preparation

The accuracy of predictions performed by a machine learningsystem depends on the

quality of data provided to the system. The input data determine the accuracy of the

model and the technique, because many machine learning systems learn the structure

of the model, the parameters, or both from the training data.As shown in Chapters 4

and 5, the quality of training data can determine the successor failure of a model or a

technique. Machine learning systems such as Dynamic Bayesian Networks cannot directly
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use the raw data obtained from an electronic medical record system. The data need to be

preprocessed and transformed into an appropriate format before they can be used by a

Dynamic Bayesian Network-based model or system.

Probabilistic machine learning models require data in a continuous or discrete format.

They cannot use unstructured or free-text data. The models described in this dissertation

require discrete data. Clinical data from various sources need to be compiled together

and transformed into a time-stamped, discretized format with a common structure for use

by automated tools. In this section, we describe the nature of the source data, and the

transformations and preprocessing that need to be performed before the data are usable by

our Dynamic Bayesian Network models.

3.1.1 Data Aggregation and Abstraction

Clinical data are generated by a variety of sources in a variety of formats. Clinician

(physician or nurse) charting provides the history and clinical examination data in a partly

structured and partly free-text format. Patients’ historyis often free-text, although some

electronic medical record systems encode these data using structured data entry in the form

of type-ahead prompts or pick lists. Vital signs are generally captured using a structured

data entry form and encoded using biomedical terminologies.

Laboratory data are usually encoded using a clinical terminology, which may be a

standard terminology such as Logical Observation Identifier Names and Codes (LOINC),

or a local terminology developed by the specific laboratory.Data generated by automated

monitoring devices are often numeric data wrapped in a standard messaging syntax such as

Health Level Seven (HL7) messages. Medication orders are captured using structured data

entry forms using standard terminologies as well. The medication order and administration

records often use a fine-grained information model, which allows the drug’s brand name,

physical form, route of administration, ingredients, strengths of various ingredients, the

dosage and frequency of administration, and the time of order and administration to be

queried from the clinical database. A data mining method that takes advantage of the

information models used to capture, encode using clinical terminologies, and store these

structured data in the database is highly desirable, but is not currently available. A tookit

with this capability would allow the researcher to extract composite clinical information
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using the same structure with which it was recorded by the clinician.

Structured and encoded electronic data are not available inall hospitals. Even in

hospitals with advanced electronic medical record systems, a large portion of data are

available only on paper records. These records may be scanned and stored as images in

the electronic medical record system, which do not support automated querying and data

retrieval.

At Intermountain Healthcare’s LDS Hospital in Salt Lake City, the data are captured

and stored in a well-structured form using an information model and an enterprise refer-

ence terminology. The original electronic medical record system, HELP (Health Evalu-

ation through Logical Processing) encodes the data using a hierarchical data dictionary

known as PTXT (Pointer to text), and stores the data in the HELP database in mostly

encoded and partly free-text forms[139]. Intermountain Healthcare also has a newer

electronic medical record system known as HELP2, which has amultihierarchical concept-

based Healthcare Data Dictionary (HDD). The HELP2 data are stored in a Clinical Data

Repository (CDR). Both the HDD and CDR were developed in collaboration with 3M

Health Information Systems[140].

The data from HELP and HELP2 are highly structured and encoded using biomedical

terminologies, and are usable for clinical documentation as well as decision support. How-

ever, all the data required for the temporal probabilistic models needed to be aggregated

and abstracted before they could be used by the temporal reasoning tools. The proce-

dures described in this section apply to both the insulin-glucose and the sepsis prediction

models. The differences in data preparation between these two test-cases are noted where

appropriate.

3.1.1.1 Data Aggregation

The data required for both the insulin-glucose models and the sepsis prediction models

were available in encoded form in the clinical data repository. However, different clinical

variables required for these models were in disparate database tables, and were encoded in

different formats. For example, the patient’s age, date of admission, and admit diagnosis

were in the clinical encounters table. The laboratory results were all available in a single

laboratory results table, and the vital signs were all available in another table. Medication
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administration data were in a separate table. To train a predictive probabilistic model,

medication administration was more appropriate than the medication order data, since the

medication orders were not always in agreement with the administered medications.

The raw clinical data were available in an entity-time-attribute-value table format.

Each row in the laboratory or vital signs table had columns identifying the patient and

the date/time-stamp of the observation. The tables had additional columns that specified

the data element and the value of the data element. The name, attributes, or the value

of the observation may be contained in a single column each, or spread across a group

of columns. If the observation is a simple data element such as serum glucose, it may

be contained in a single column. For cases where the data element conveys complex

information such as the serum glucose measured 1 hour after administration of a glucose

oral dose, performed as part of a glucose tolerance test, this information would need to

be postcoordinated from multiple pieces of observation. Similarly, simple data elements

such as binary or nominal values were stored in a single column. However, numeric data

elements were spread between multiple columns, with the value in one column and the

units of measure in another. An analysis of the PTXT terminology and the Healthcare

Data Dictionary were performed and compared with the data stored in the clinical data

repository to combine multiple pieces of clinical data fromdifferent rows or columns in

the database table to reconstitute meaningful pieces of clinical information.

A denormalized table format was required to support the temporal reasoning tools used

in our experiments. The denormalized table had two columns representing the patient

identifier and the date/time identifier, respectively. However, the remaining columns were

not in the attribute-value format as in the source data tables. The denormalized table had

multiple additional columns, each representing a single, meaningful reconstituted clinical

variable. For example, in the case of the insulin-glucose models, in addition to the patient

identifier and date/time identifier columns, there were additional columns representing the

serum glucose, current insulin IV drip rate, current insulin IV bolus dose, current dextrose

dosage, patient’s diabetes status, etc.

Different clinical variables were measured with differentfrequency and periodicity in

the clinical setting. For example, for critically ill patients in the ICU, vital signs were

measured once every 15 minutes to an hour, and the serum glucose was measured once
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every 2 hours. Lab tests were performed less often. Data elements that were measured

together did not have the same date/time-stamp in some cases. They were often 1 to 15

minutes apart. Hence, storing them in the denormalized table produced several rows where

only a handful of columns were populated. For each patient, we first loaded the timestamp

and the values of the most numerous clinical variable into the denormalized table. We then

selected the second most numerous clinical variable. If thepatient identifier and timestamp

of a given row of this second clinical variable existed in thedenormalized table, we updated

the row in the denormalized table to store the value of this second clinical variable in its

own column. If the combination of the patient identifier and the timestamp did not exist,

then a new row was inserted into the denormalized table with this value. This process was

repeated for all clinical variables in the data set.

3.1.1.2 Temporal Abstraction

At the end of the data aggregation step, all the data reflecting the clinical variables in

the model are stored in a single denormalized data table. Thedata present in this table

are used to train and test the model. However, the data rows differ by a few minutes

to a few hours, and produce a very sparse data table. A very sparse data table when

used for training necessitates the use of the expectation maximization (EM) algorithm

which increases the computational expense of the model while reducing the accuracy of

the learned parameters. However, the data can be temporallyconsolidated to pick one

representative data point per time interval for the smallest time interval represented in the

model, which will reduce the need for imputing missing values using the EM algorithm.

The smallest time interval to be supported by the model is based on both the nature of

the model and the availability of data. In the case of the insulin-glucose data set, the serum

glucose is measured and the insulin dose is adjusted once during every 2-hour interval

for critically ill patients in the ICU under the current insulin dosing protocol (eProtocol-

insulin) in use at LDS Hospital. Hence, a good starting pointwas to abstract the data to

select one representative measurement for each clinical variable in the model for every

2 hours to coincide with serum glucose and the insulin drip rate measurements. In the

case of the sepsis data set, which consisted of both cases andcontrols from the emergency

department, the model consisted mostly of vital signs, which were available once every
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hour in most cases. So, a timeslice interval of 1 hour was chosen for the sepsis models,

and a representative data point was chosen for each clinicalvariable during every 1-hour

interval.

In both the insulin-glucose and sepsis prediction data sets, we encountered both mul-

tiple instances and no instances of various clinical variables observed during each chosen

timeslice interval. Missing data can mean a variety of things: the data were not measured,

measured and then lost, or they were uneventful and in line with the expected values given

the prior measurements, and hence not recorded in this case.It may also mean that a

value was measured on paper or was stored in a different part of the electronic medical

record system, and hence unavailable at the time of data preparation. Several approaches

have been discussed to define and overcome the missing data problem. Little and Rubin

classify reasons for missing data as missing but completelyat random (MCAR), missing

at random (MAR), and not missing at random (NMAR)[141]. Lin discusses methods for

dealing with missing data which are applicable to the clinical domain, including creating

a discrete state for the clinical variable to represent missing data, or creating a separate

proxy variable for each clinical variable to represent missing data[142][143].

We did not apply special treatment for missing data in our experiments. Bayes Net

Toolbox (BNT), which implemented all the algorithms we needed to train and test the

models, supported parameter learning with missing values using the Expectation Maxi-

mization algorithm. Hence, we were able to leave missing values as null values in the

database, and we designed our temporal modeling toolkit, Projeny, to support null values

from the database and to call the expectation maximization algorithms in BNT.

However, we had to choose a representative data point if a clinical variable had multiple

observations in a given timeslice interval. A clinician or alaboratory may measure or

record multiple observations for a clinical variable due toa variety of reasons. Common

reasons for clinicians to make multiple measurements include cases where the initial

measurement is not available, either due to a temporary availability issue at the point

and time of care, or because the initial measurement was permanently lost. Permanent

loss of the data also leads to the missing data problem; however, this cause is often

indistinguishable due to the sparse nature of clinical data. Another common reason for

a duplicate measurement is to verify and confirm a suspiciousinitial measurement. The
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cause of the duplicate measurement cannot be inferred with confidence unless the reason

is recorded by the person or the system that recorded the duplicate measurement, which is

typically not done. Hence, we decided to treat all the duplicate data with equal validity,

and apply automated techniques to select a representative data point.

Approaches to choosing the representative data point for a variable if multiple data

points are available in a temporal data set are discussed by various authors under the

context of temporal data clustering[144][145][146]. Some simple approaches for temporal

data sampling include selecting the average, or selecting the most abnormal measurement.

We decided to select the average, since this process can be automatically applied for all

numerical variables. We did not encounter multiple measurements for non-numeric values

in our data set.

At the end of this process, we had a temporally abstracted denormalized table, with

one data point or a null value for each variable per timesliceper patient. The numerical

data were continuous in this data set. The data can be used in this form with models and

algorithms that support continuous data. However, we designed our models with entirely

discrete nodes, since models with discrete nodes are computationally less expensive and

more tractable than models with continuous data. Hence, we chose to discretize the

continuous variables in our data set.

3.1.2 Data Discretization

Several data discretization methods are available to discretize continuous data for use

with machine learning algorithms. We discuss some of the simple and more popular

ones, as well as the more complex but less popular ones. We also discuss how different

discretization techniques affected the accuracy and tractability of our models. A detailed

review of various discretization techniques is presented in [147], and [148].

3.1.2.1 Data Clustering and Visualization

It is helpful to evaluate the distribution of the continuousvariables before we choose

the discretization technique and any manually selected cut-off points. We used histograms

and cluster analysis to find clusters and study the distribution of each continuous variable

individually. Visually discernible multiple clustering was not found for the continuous
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variables, and many continuous variables formed one large cluster each with few outliers.

We describe various discretization algorithms that were used in our experiments. Equal

frequency discretization was not used in our experiments, but is discussed here for com-

prehensiveness and its appropriateness. Discretization was performed before the data were

divided into training and testing data sets.

3.1.2.2 Equal Interval Discretization

Equal width or equal interval is the most basic method among various discretization

methods. The range of the numerical values of the variable ofinterest is divided into

the desired number of intervals or bins by dividing the rangeequally. The width of each

interval, in other words, the difference between the lower and the upper bounds, was the

same for all the bins. We used equal interval discretizationin combination with domain-

based discretization for one of the models for the insulin-glucose test case, as described

below in Section3.1.2.4. Outliers and extreme values were included into the first or last

interval, such as ‘20 and above’. The impact of including theoutliers into the first and

last bins was not studied. We present the intervals chosen for insulin drip rate using equal

interval discretization in Table3.1.

Table 3.1: Equal interval discretization for insulin drip rate

State number Insulin drip rate in U/hr (left-open right-closed intervals)

1 0 - 2
2 2 - 4
3 4 - 6
4 6 - 8
5 8 - 10
6 10 - 12
7 12 - 14
8 14 - 16
9 16 - 18
10 18 - 20
11 20 and above
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3.1.2.3 Equal Frequency Discretization

A popular alternative to equal interval discretization is equal frequency discretization.

In this method, the observed range of the numerical variableis divided into a desired

number of bins such that all bins have the same number of observations. The widths of

different bins vary, in contrast with equal frequency discretization. The cut-off points for

the intervals in equal frequency discretization change based on the data set. This will lead

to intervals that are sensitive to each data set, and to noisein the data. The model will

require retraining and validation for every new data set, due to changing intervals. Hence,

we did not use equal frequency discretization in our experiments.

Hulst compares the error rate between two experiments performed using a Dynamic

Bayesian Network model trained and tested using equal interval and equal frequency

discretization techniques[149]. The model involved glucose homeostasis and insulin dos-

ing using simulated data of 1,000 patients with no missing data generated using a noisy

simulation algorithm. The tests demonstrated that equal interval discretization produced a

smaller error rate than equal frequency distribution, and hence, equal interval discretization

technique was more accurate in this experiment.

However, it must be noted that Hulst’s experiment used very small timeslice size (15

minutes) compared to our insulin-glucose models (2 hours),and Hulst’s experiments had

no missing data, in addition to using simulated data insteadof real clinical data. Hence,

the applicability of Hulst’s findings to our models cannot beascertained.

3.1.2.4 Domain-based Discretization

We propose a novel discretization technique named ‘domain-based discretization’ for

discretizing clinical variables. The technique is called ‘domain-based discretization’ be-

cause the discretization is based on clinical domain knowledge about the specific variable.

Most physiological parameters have their normal, high, andlow ranges defined in clinical

literature. For example, serum glucose has very low, low, normal, high normal, high,

and very high values described as numerical ranges in clinical literature. We used the

normal, high, low, very high, and very low range boundaries defined in clinical literature

to discretize various clinical variables for which such a definition is available. We modified

the ranges slightly to support the available range of data. The width of the bins became
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progressively wider as one moved further away from the normal range of a variable. For

example, for discretizing serum glucose, we used for the intervals shown in Table3.2 by

applying domain-based discretization.

As shown in Table3.2, the width of the intervals was small in the normal range, and

became progressively wider as the serum glucose value movedfurther away from the

normal range. The rationale behind this sliding scale is that the clinician would care about

small differences within and near the normal range, but would not care about differences of

the same small magnitudes as the clinical parameter became extremely high or extremely

low.

Domain-based discretization was performed for serum glucose for one of our insulin-

glucose models. For parameters that did not have clearly defined high, low, or normal

ranges in medical literature, such as the insulin drip rate,we used equal interval dis-

cretization for the same model. Thus, a combination of domain-based and equal interval

Table 3.2: Domain-based discretization intervals for serum glucose

State number Serum glucose in mg/dl Bin Width High / low / normal

1 0 - 20 20 .
2 20 -35 15 Very low
3 35 - 50 15 .
4 50 - 65 15 low
5 65 - 80 15 .
6 80 - 90 10 Normal
7 90 - 100 10 Normal
8 100 - 110 10 High normal
9 110 - 120 10 .
10 120 - 135 15 .
11 135 - 150 15 High
12 150 - 170 20 .
13 170 - 200 30 .
14 200 - 240 40 .
15 240 - 290 50 .
16 290 - 350 60 Very high
17 350 - 420 70 .
18 420 - 500 80 .
19 500 - 600 100 Extremely high
20 600 and above undefined .
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discretization was used for different variables in one of the experiments with the insulin-

glucose model. This is referred to again in context of the experiment in Chapter 4.

Training and testing the model with a combination of domain-based and equal interval

discretization took a significant amount of time and computer memory, as described in

Chapter 4. We found that this combination of equal interval and domain-based discretiza-

tion produced results with poor accuracy, as shown in Chapter 4. Hence, we applied an

information content-based technique known as k-means clustering, described below.

3.1.2.5 K-means Clustering

K-means clustering is an algorithm invented by Lloyd for pulse-code modulation (PCM)

in signal transmission in 1957 and published in 1982[150]. Pulse-code modulation is a

technique where an analog signal’s amplitude is sampled at uniform intervals, and encoded

for transmission using a finite set of digital signals. The purpose of the algorithm is to

divide a given number of observations intok clusters, where each observation belongs to

the cluster whose mean is nearest to the given observation. The algorithm serves to fitn

symbols into a channel of widthk with minimal loss of information. The technique can be

used to cluster both scalar, continuous observations as well asd-dimensional real vectors

composed of multiple observations. Ifn number ofd-dimensional real vectors need to be

classified intok clusters, the problem can be exactly solved inO(ndk+1log n) time.

We used the k-means clustering algorithm implemented in Weka[151]. The algorithm

takesk, the desired number of clusters, as the input, and divides the input data into

k-clusters such that each observation is in the cluster whose mean it is closest to. The

algorithm returns the boundaries of each cluster and the error rate as output. We arbitrarily

performed k-means clustering for variables in the insulin-glucose model withk = 10, and

k = 15 clusters. If there was a significant decrease in the error rate usingk = 15 compared

to k = 10, we used 15 clusters for the variable. Otherwise, we used 10 clusters.

We selected a smaller number of states with k-means clustering compared to the com-

bination of domain-based and equal interval discretization. This reduced the size of the

state-space, and hence the number of parameters and the computational complexity of

parameter learning. We found that the insulin-glucose models produced much higher ac-

curacy with the data set discretized by k-means clustering compared to the combination of
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domain-based and equal interval discretization. The glucose control model using k-means

clustering where the model recommended the insulin dosage performed as well as the

current rule-based protocol, as explained in Chapter 4.

We also used k-means clustering for the first sepsis prediction model, as shown in

Chapter 5. We found that the model was computationally expensive, and the area under the

ROC curve attained by the model was around 0.7. Hence, we explored other discretization

techniques and we applied the Minimum Description Length (MDL) model.

3.1.2.6 Minimum Description Length Discretization

K-means clustering only considers the input data set and number of clustersk used to

represent the input data. An inappropriate number of clusters will yield poor clustering

and lead to loss of valuable information contained in the input data. The optimal number

of clusters is hard to determine without experimentation with various values ofk for

the given data set. Hence, we explored algorithms that preserve information content.

We found that the minimum description length (MDL) algorithm described by Fayyad

and Irani (1993) finds the minimum number of clusters of the input variable required to

describe the variation in the output variable[152]. All the relationships in our models

were directed, hence, describing the variation in one variable using variation in one or

more variables is straightforward. The variations in the children nodes can be explained in

terms of variation in parent nodes. Hence, the MDL algorithmseemed to be appropriate

for discretizing the variables in our models. The model works by sorting and then cutting

the distribution of input values at specific cut-points thatreduce the class entropy of the

resulting classes[152].

We found that MDL discretization produced a much smaller number of discrete states

for most of the continuous variables in the sepsis model. Theglucose homeostatis exper-

iments were conducted a year before the sepsis experiments,and the MDL algorithm was

not used at that time. The sepsis model trained and tested using MDL discretization also

completed training and testing in a smaller amount of time, and produced higher accuracy

than the model that used k-means clustering. However, the sepsis model structure was also

changed between the two experiments, and hence the improvement due only to the MDL

algorithm was not determined.
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3.2 Creating, Training, and Testing the DBN Model

Creating a Dynamic Bayesian Model consisted of three steps:defining the nodes,

defining the edges, and defining the states of the nodes. We created a tool named Projeny,

written in Java programming language, that allows the user to create, train, and test a model

through a graphical authoring interface. Projeny is based on an open-source tool named

Bayesian Network Tools in Java (BNJ) by Hsu et al.[44], which appears to have ceased

development in 2004. Projeny allows the creation of nodes and edges, along with the states

of the nodes. Bayes Net Toolbox (BNT), an open-source Matlabtoolbox by Murphy[153],

is used to perform the learning and inference tasks for our models. BNT runs inside

Matlab, and requires the model and the data to be input and output using the Matlab

scripting language. However, Matlab cannot be called from aJava application directly.

Hence, we used another open source library known as JMatLinkcreated by Müller[43]

to call the Matlab engine from the Projeny Java application.Projeny was developed as

part of this dissertation research, and has been released under the GPL (GNU General

Public License) version 2 open-source license[154]. Matlab is a proprietary mathematical

toolkit published by Mathworks[155]. A user guide of Projeny is provided on the Projeny

website[154]. This section uses the insulin-glucose model illustratedin Figure 3.1 to

describe the methods. The specific models used in various experiments are described

in detail in Chapters 4 and 5.

BNT supports only Bayesian Networks with first-order Markovprocesses modeled as

a two-timeslice Dynamic Bayesian Network. To comply with this limitation, the model

is created as a two-timeslice model in Projeny. The structure of the models used in all

the experiments described in this dissertation are based ondomain knowledge gathered

from medical literature. Structure learning algorithms are not used. We first begin by

modeling the nodes in the DBN. We then define the states based on the output from the

discretization algorithm. Finally, the edges are defined. Intraslice edges are defined first,

followed by interslice edges. Projeny generates the conditional probability tables for all

the nodes based on their parents, and initializes them with zeroes. For nodes without any

parents, probability tables reflecting their prior probabilities are created and filled with

zeroes.
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3.2.1 Training and Testing Data Sets

Separate training and testing data sets needed to be created. The training data set was

used for parameter learning, and the testing data set was used for inference. A common

convention is to use two-thirds of the data set for training,and one-third of the data set for

testing[156]. We took the discretized data set described in Section3.1.2, and selected

one-third of the anonymized patient identifiers (‘FakeMRN’) at random. The data of

these patients constituted the testing data set. The data ofthe remaining two-thirds of

the patients constituted the training data set. The same procedure was performed for all

the experiments for both the glucose homeostasis and sepsismodels.

Cross-validation is a technique which involves repeated sampling of the full data set,

with or without replacing previously derived data subsets into the full data set. Different

training and testing data sets are derived during each sampling iteration. The results

calculated with different samples are then compared. Cross-validation helps to overcome

biases due to sampling errors, and is also very useful with small data sets[156]. All our

experiments had large sample sizes, as described in Chapters 4 and 5. Hence, cross-

validation was not performed.

3.2.2 Equivalence Class and Parameter Tying

An equivalence class denotes the nodes which have the same set of parameters -

conditional probability tables in the case of our models. The parameters in this case are

said to be ‘tied’. Parameter tying is a benefit of the Markov property by assuming the

model to be a homogeneous Markov chain, i.e., the conditional probabilities do not change

over time. If a given node in the first timeslice and its cohortin the second timeslice

have the same set of ancestors, then they are considered to bein the same equivalence

class; if not, they are then in different equivalence classes. Hence, for a model withn

nodes per timeslice, the maximum number of parameters (conditional probability tables)

to be learned is2n, which is the number of nodes in the two timeslices. However,if

m nodes in the first timeslice are in the same equivalence classas their cohorts in the

second timeslice, then the total parameters needed to describe the model is2n − m,

since these nodes in the first and the second timeslices have the same parameters. Figure

3.2 shows an insulin-glucose model with the equivalence classes identified. Different
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equivalence classes are shown using numbers with differentcolor schemes next to the

nodes. Nine nodes in the first timeslice and nine nodes in the second timeslice are in the

same equivalence classes. As shown in the figure, this model has only2n − m = 11

equivalence classes.

During training and testing, Projeny automatically unrolls (repeats the network struc-

ture) the DBN for as many timeslices as are in the current patient’s data. The structure of

the nodes and edges are repeated, and the parameters (conditional probability tables) are

shared from the second until the last timeslice. Hence, for amodel witht timeslices andn

nodes per timeslice, instead of havingnt parameters, we have2n−m parameters to learn.

This reduces the number of parameters to be learned by a factor of t, which reduces the

computational complexity for learning. For example, if themodel in Figure3.2were to be

trained on data sets with 10 timeslices, without parameter tying, 100 parameters must be

learned. With parameter tying, the model above has only 11 equivalence classes. Hence,

only 11 parameters need to be learned whether the data set has10 or more timeslices.

In addition to the reduction in complexity, parameter tyingalso helps to support train-

ing and testing data with an arbitrary number of timeslices,and a data set where each

case (patient) has data with a different number of timeslices. This provides support for

real clinical data where different patients have differentlengths of stay, and hence data

sets of different temporal lengths. An alternative to this approach was described by Cho

and Haug using a sliding window model to tie the parameters implicitly, and to support

models with an arbitrary number of timeslices[157]. However, our approach provides a

more straightforward and explicit way to tie the parameters. Projeny identifies equivalence

classes and ties parameters automatically, and hence eliminates additional work on the

user’s part every time the model is modified.

3.2.3 Hidden and Observed Nodes

In the Hidden Markov Model paradigm, hidden nodes are those that cannot be observed

directly by an observer, and are estimated indirectly through another proxy variable or

a combination of variables. In the DBN model, a hidden node may be estimated by

multiple observed nodes to which it is causally related. Forexample, in the glucose-insulin

model described in Figure3.1, insulin secretion and insulin resistance are both hidden
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nodes. These two nodes describe physiological phenomenon in the insulin and glucose

metabolism and they cannot be measured directly. However, they can be estimated from

the observed nodes to which they are causally related, including the patient’s diabetes

mellitus status, the serum glucose, and the insulin dose of the patient. They are easily

declared as hidden nodes through the data binding dialog in Projeny, shown in Figure3.3.

When the data binding dialog box is opened, Projeny lists thenames of all the nodes

in the first timeslice, and allows the user to select the database column that provides the

data for this node. The user begins by connecting to the database. The user first selects

Figure 3.3: Projeny data binding dialog
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the table with the training data, and then the database columns with the patient identifier

and the timeslice identifier. After this is done, the user checks the observed nodes in the

pane at the bottom left, and chooses the database column thatcontains the data for these

observed nodes from the pick list, which is prepopulated with the names of all the database

columns in the table. The user leaves the check boxes unchecked for hidden nodes, and

does not select a database column to provide the training or testing data for these nodes.

3.2.4 Training the Model (Parameter Learning)

Projeny uses the two-timeslice DBN EM learning algorithm implemented in BNT to

learn the parameters of the model. The Expectation Maximization algorithm imputes

missing values in the training data set, and initializes theparameter learning algorithms

with the most likely data set given the model. The learning algorithms calculate parameters

for each equivalence class and store the results in d-dimensional conditional probability

tables. Here,d = 1+numparents, where numparents is the number of parents of a given

node in the DBN. These probability tables can be saved to the computer’s file system as

an XML file or a Matlab workspace file using specific Matlab commands. They can be

loaded into the Matlab engine in the future so that training need not be repeated.

3.2.5 Testing the Model

After training is completed, three tables are selected for testing the model. These three

tables include one input table with the test data set, and twooutput tables - one for the most

probable estimate, and one for the marginal probability distribution for each node that is

estimated using the inference algorithms. Currently, Projeny uses a junction-tree-based

DBN inference algorithm implemented in BNT[42]. Other inference algorithms are not

supported at present.

After selecting the input and two output tables, the inference algorithm is run by

clicking the ‘Test’ button. The junction tree algorithm calculates the marginal probability

distributions for any node whose data were not provided in the test data set. This allows

the model to estimate the values of all the nodes that were notknown in a single step. This

is an advantage of the DBN model over models such as regression and neural networks

that have preset input and output variables. The DBN model takes all the nodes whose
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values are provided as the input data for a specific patient, and estimates the marginal

distributions of all the nodes whose values were left blank,and saves these to the output

table.

After completing the testing process, the expected value ofa given node may be

calculated from the marginal distributions using the formula,

EV =
∑

xi pi (3.1)

wherexiis the midpoint of the interval of theithstate of the given node, andpiis the

calculated probability associated with theith state of this node, and is obtained from the

marginal probability distribution.EV is the expected value of the node of interest in a

timeslice of interest.

A common mode of testing the accuracy of the model is to hide variables of interest

at random from the test data set, and then estimating their value using the model. The

model is made to calculate the probability distributions ofthe variables of interest. The

expected value of these variables can then be calculated from the probability distributions.

The actual and the estimated values can then be compared using statistical tests. This

technique is used in both the insulin-glucose models and sepsis models in our experiments.

Evaluation using this and other evaluation methods are presented in Chapters 4 and 5.



CHAPTER 4

TEST CASE 1: STRESS-INDUCED

HYPERGLYCEMIA IN THE ICU

Hyperglycemia (increase in blood glucose or serum glucose above the normal range) is

commonly seen in patients who are critically ill, and are hence treated in the Intensive Care

Units (ICU). Intensive insulin therapy to maintain serum glucose within normal levels has

been shown to improve patient outcomes. We modeled glucose homeostasis and insulin

dosing in the ICU using Dynamic Bayesian Networks. This chapter discusses the models,

the evaluation of their accuracy, and evaluation of their safety and efficacy compared to a

protocol that is currently being used to control serum glucose levels of patients in the ICU.

4.1 Overview

Hyperglycemia, in patients who are critically ill, is considered to be a response to

stress, due to chemical mediators such as catecholamines and glucocorticoids that are

released by the body in response to acute stress caused by theillness, and due to drugs

such as steroids, diuretics, and some antiviral drugs whichare administered as part of the

treatment. Hyperglycemia is seen in patients who are critically ill, including those who

are not diabetic, due to these stress response mechanisms[33].

4.1.1 Overview of the Problems

Hyperglycemia was once considered to be part of the body’s normal response to stress.

However, several recent studies have shown that increased serum glucose levels further

worsen the patient’s condition and the outcomes, whereas active control of serum glucose

levels and maintaining them within the normal range improves outcomes, and hence is

desired. The older treatment to achieve glucose control is to administer insulin when

the serum glucose is greater than 215 mg/dL[158]. A relatively newer intensive insulin
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therapy aims to maintain the patients’ serum glucose between 80 and 110 mg/dL by ac-

tively adjusting the intravenous glucose drip and intravenous insulin dosage with periodic

monitoring and adjustment once every 2 hours or less[159].

In clinical trials involving critically ill patients, those who had intensive insulin therapy

demonstrated reduced mortality and morbidity compared with patients who had conven-

tional insulin therapy[159]. However, a few studies have reported that patients undergoing

intensive insulin therapy have slightly increased mortality due to hypoglycemia[160]. The

usefulness of intensive insulin therapy is currently debated by the medical community[160],

but the general consensus is that it reduces mortality and morbidity of critically ill patients[34],

especially of those in surgical intensive care[160][34].

Patients in the ICU are under continuous monitoring by clinicians and their phys-

iological parameters are measured at regular, short intervals. Considering the severe

mortality and morbidity associated with hyperglycemia during critical illness, the im-

proved outcomes that can be achieved with good glucose control, and the rich avail-

ability of data in the ICU, this problem lends itself well to computerized clinical care

protocols. Morris states that a clinical protocol must be ‘adequately explicit’ to reduce

interclinician variability during its application[161]. We posit that an adequately explicit

protocol will provide sufficient information to be implemented in a computer system and

execute without human intervention to find a solution. However, due to various com-

binations of comorbidities and their interactions, human interpretation and intervention

is almost always required[162][163]. Hence, a decision support system that helps the

clinicians to understand the patient’s condition easily and make better decisions is still

highly useful[162].

Several computerized and paper-based models have been usedto monitor the serum

glucose and calculate the insulin dose. Two popular rule-based protocols are the Yale

Insulin Infusion Protocol[164], a paper-based protocol developed at Yale University, and

eProtocol-insulin[37], a computerized rule-based protocol developed at LDS Hospital in

Salt Lake City.



67

4.1.2 Overview of the Experiments

We chose to model insulin dosing and glucose homeostasis in cases of stress induced

hyperglycemia in the ICU using a temporal probabilistic model. The first objective of our

experiments is to test whether our models can predict the serum glucose and insulin dose

accurately in retrospective data using partial information of the patients in the test data

set. This task is described as Viterbi Decoding in Section2.5.1. Viterbi decoding is one

of the important inference tasks for the DBN, which estimates the values of the hidden (or

unknown) nodes given the values of observed (or known) nodesfrom a given point in time

in the past until the current point in time. In this dissertation, we call these experiments

‘Insulin and Glucose Estimation’ experiments, or simply ‘Estimation’ experiments.

After proving that the model can predict the past sequence ofserum glucose and insulin

drip rates accurately, we wanted to test the ability of the model to control the serum

glucose of the patient within a normal range at a future pointin time, by recommending an

appropriate insulin dose at the current point in time. We perform the fixed-lag smoothing

task described in Section2.5.1 to recommend an insulin dose at a given point in time

to bring the serum glucose within normal range at a future point in time. The glucose

dose recommended by the DBN model was compared to the glucosedose recommended

by eProtocol-insulin using a technique described by Wong etal.[165] In this dissertation,

we call these models and experiments ‘Insulin Dose Recommendation’ experiments, or

simply ‘Recommendation’ experiments.

Both the Estimation and Recommendation experiments were performed with two dif-

ferent discretization techniques each. The two discretization techniques we used are a

combination of domain-based and equal interval discretization, and k-means clustering.

Table4.1 lists the different discretization techniques and experiments performed with the

‘stress-induced hyperglycemia in the ICU’ test case.

4.1.3 Data Set for the Experiments

The data for this test case were a subset of the eProtocol-insulin data of adult patients

collected during a 2-year period from January 2004 to December 2005 at LDS Hospital.

Institutional Review Board (IRB) approval was obtained from University of Utah and In-

termountain Healthcare. The anonymized data set was provided by Kathy Sward, and had
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Table 4.1: Stress-induced hyperglycemia in the ICU - experiments

Discretization technique
Objective of Experiment Domain-based +

equal interval
k-means clustering

1. Glucose and Insulin
Estimation

Experiment 1 Experiment 2

2. Insulin Dose
Recommendation

Experiment 3 Experiment 4

been used for a previous research project on computerized insulin dosing protocols[166].

The data set contained the data of patients treated in the Shock, Trauma, Respiratory

Intensive Care Unit (STRICU) at LDS Hospital. Patients withless than three timeslices

had their data excluded from the training and test data sets,since Projeny requires at least

three timeslices of data for each patient. Temporal data of 796 patients were included for

the experiments.

The data were then temporally aggregated and consolidated as described in Section

3.1.1. Variables listed in Table4.2 were included for the four experiments. They were

discretized using the two techniques listed in Table4.1, and are described in further detail

in context of each experiment in this chapter.

4.1.4 Model Structure

The model structure was derived using domain knowledge fromclinical literature. The

structure of the model is shown in Figure4.1. The patient’s type 1 and type 2 diabetes mel-

litus statuses were included in the model, as they determinethe patient’s insulin secretion

Table 4.2: Data elements selected for hyperglycemia experiments

Variable description Acronym

Anonymized patient identifier FakeMRN
Timestamp Timestamp

Serum Glucose measurement SerGluc
Dextrose IV bolus dose Dextrose
Insulin bolus dose (in U) InsulinBolus

Insulin drip rate (in Units/hr) InsulinDrip
Patient’s Type 1 diabetes mellitus statusType1DM
Patient’s Type 2 diabetes mellitus statusType2DM
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and sensitivity to a certain extent even in patients who are hyperglycemic due to severe

illness. We modeled the patient’s insulin secretion and insulin resistance as hidden nodes,

with type 1 and type 2 diabetes mellitus statuses as their respective intraslice parents. They

cannot be measured directly in a patient, but they can be estimated from other observed

variables. We made an intraslice connection from insulin secretion to total insulin given.

The node ‘total insulin given’ represents the total amount of insulin introduced into the

patient’s bloodstream in a given timeslice. It is composed of endogenous insulin secretion,

insulin bolus dose, and intravenous (IV) insulin drip. Since endogenous insulin secretion

is a hidden variable, total insulin given is also modeled as ahidden variable, with the

three aforementioned parents. Insulin bolus dose and insulin IV drip rate are observed

nodes. Intraslice connections are made between serum glucose and insulin bolus dose,

and between serum glucose and insulin drip rate, because theinsulin bolus doses are

determined by the serum glucose level. An intraslice connection was also made from

serum glucose to dextrose IV bolus dose. Interslice connections were made to serum

glucose in the second timeslice, from three nodes - dextrose, total insulin given, and insulin

resistance, in the first timeslice. All the nodes were modeled as discrete variables. Time

was modeled as discrete as well, using timeslices that were 2hours wide. The choice of

2-hour wide timeslices was made to support the eProtocol-insulin data which contained

data that were measured once every 2 hours.

In Figure 4.1, square or rectangular nodes indicate discrete variables.Continuous

variables, which are indicated by circular nodes by convention, are not included in this

model. Clear nodes indicate hidden variables and shaded nodes indicate observed vari-

ables. The figure shows a two-timeslice Dynamic Bayesian Network with intraslice and

interslice connections. The equivalence classes are identified with numbers next to each

node. The two timeslice model has 11 equivalence classes, asdescribed in Section3.2.2.

The parameters are tied between nodes in different timeslices in the same equivalence

class. In our data set, all patients had more than two timeslices. In such cases, the model

will be unrolled to as many timeslices as are found in the patient’s data by the learning and

inference algorithms used. The equivalence class of a givennode will be the same from

the second until the last timeslice. For some nodes, the equivalence classes will be the

same from the first until the last timeslice, if their cohortsin the first and second timeslices
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are in the same equivalence class. As described in Section3.2.2, this reduces the number

of parameters required to describe the model by a factor oft, wheret is the number of

timeslices in a given patient’s data set.

All the models used in the four experiments in this chapter have the same nodes and

edges. However, the states of the nodes are different depending on the discretization

technique used. The learning and inference questions, as well as the data preparation

steps, are different. These are described in the following sections.

4.2 Objective 1: Glucose and Insulin Estimation

The first task we performed to validate our methods, tools, and techniques was to

confirm that our learning and algorithms work with good accuracy. In other words, we

hypothesized that our models can estimate a given patient’shistorical values of serum

glucose and insulin drip rate with good accuracy. For the twoexperiments performed to

validate this objective, we hypothesize that there is no significant difference between the

actual and the predicted historical values of both serum glucose and insulin drip rate.

We divided the data at random with two-thirds of the patientsassigned to the training

data set, and the remaining one-third of patients assigned to the test data set. The model

was first discretized using a combination of domain-based and equal interval discretiza-

tion. The model did not show very high accuracy, as describedin Section4.2.1. Hence, we

tried k-means discretization as an alternative discretization approach, which is described

in Section4.2.2.

4.2.1 Experiment 1: Domain-based and Equal interval

Discretization

The objective of this experiment was to test whether the DBN model can accurately

predict the historical values of serum glucose and insulin drip rate, using a data set pre-

pared using a combination of domain-based and equal interval discretization.

4.2.1.1 Materials and Methods

4.2.1.1.1 Data preparation.The normal range for several physiological variables is

described in medical literature. It is possible to define thenormal, high, very high, low,
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and very low ranges for serum glucose using clinical literature or by interviewing the

clinical domain experts. We used clinical literature to derive these values. After this was

performed, the states for serum glucose for the DBN model were defined. To approximate

the clinical decision making process by human experts, the width of the intervals were

narrow in the normal range for serum glucose, and were progressively widened as the

serum glucose value moved further away from the normal range. These are illustrated in

Table3.2.

Elapsed Time was discretized using equal interval discretization, with a bin width of

2 hours. Insulin drip rate could not be stratified into low, high, and normal ranges from

clinical literature. Hence, it was discretized using equalinterval discretization with a bin

width of 2 U/hour. Both type 1 and type 2 diabetes mellitus were binary nodes, with two

states: absent and present. Both insulin secretion and insulin resistance were binary nodes

as well, with two states: normal and impaired. Dextrose dosewas an ordinal variable,

which denoted various bolus doses of glucose administered intravenously. We did not

have access to the patients’ severity of illness, nutrition(enteral and parenteral feeding),

or medication information. Hence, these variables were notincluded in the model, even

though they were very relevant.

4.2.1.1.2 Learning.The training data set had the data of 508 patients, having 3 to209

timeslices each. Expectation-Maximization-based parameter learning was used to learn

the parameters, with a maximum number of iterations set to 100. The EM algorithm

converged after 19 iterations and took about 5 hours. We useda computer with a 3GHz

quad-core Intel Xeon processor with 8GB of RAM, running Matlab and Projeny. The

database was hosted on a separate server. Figure4.2shows the log likelihood for training

for the first 10 iterations, showing the Expectation Maximization algorithm getting close

to convergence.

4.2.1.1.3 Inference.The test data set had the data of 287 patients, having 3 to 366

timeslices each. Testing was done by randomly removing 20% of observed values of

serum glucose and insulin drip rate. If a patient had a data set of t timeslices,t/5 instances

each of serum glucose and insulin drip rate were removed by changing their values to

null values in the database. This process was done for all thepatients in the test data set.

These removed values were then estimated by using a junctiontree-based exact inference
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algorithm. The inference algorithm calculated marginal probability distributions for all

the values that were null in the input data. The inference algorithm took about 1 hour

to complete. From these probability distributions, the expected values and their standard

deviations were calculated for these nodes of interest, using the procedure described in

Section3.2.5.

4.2.1.2 Results

The model was validated by comparing the expected values estimated by the inference

algorithm for randomly removed serum glucose and insulin drip rate values against their

actual values. Correlation coefficients were calculated. Serum glucose was normally

distributed in both training and test data sets. Hence, Pearson correlation coefficient is

a valid measure for this variable. However, insulin drip rate had a skewed distribution, and

hence, Pearson correlation coefficient is not applicable. Spearman correlation coefficient

was calculated for insulin drip rate. The correlation coefficients are shown in Table4.3.

The results from this experiment show that the model had veryhigh correlation for

serum glucose and high correlation for insulin drip rate. Wealso plotted the difference

between the actual and predicted values of serum glucose andinsulin drip rate in terms of

number of states, as shown in Figures4.3and4.4. These figures show the high accuracy

of the model in estimating the clinical course of these patients over time.

Figures4.3, and4.4 plot the number of states of difference between actual and pre-

dicted values on the X-axis. The Y-axis represents the number of cases whose actual and

predicted values differed by the number of states on the X-axis. These two figures show

that the predicted values were within three states of the actual values in about 95% of cases

Table 4.3: Hyperglycemia experiment 1. Correlation coefficients.

Serum glucose estimation
Pearson’s correlation coefficient 0.810699

Spearman’s correlation coefficient 0.997237
Insulin drip rate estimation

Pearson’s correlation coefficient N/A*
Spearman’s correlation coefficient 0.999955

*Pearson’s correlation coefficient was not considered for Insulin Drip rate
because it was not normally distributed in training or testing data sets
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Figure 4.3: Hyperglycemia experiment 1. Serum glucose, actual vs. predicted

Figure 4.4: Hyperglycemia experiment 1. Insulin drip rate,actual vs. predicted
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for both serum glucose and insulin drip rate. However, of more interest is the finding that

the serum glucose was predicted within 1 state of the actual value in 63.7% of cases, and

the insulin drip rate was predicted within 1 state of the actual value in 78.2% of cases, both

showing a high accuracy.

4.2.2 Experiment 2: K-means Clustering

We wanted to test whether the accuracy of the model can be improved by using a dis-

cretization technique that preserved the information content better than the domain-based

or equal interval discretization techniques. Hence, we selected the k-means clustering

technique, which discretizes the input data into a specifiednumber of bins based on the

inherent clustering observed in the data. This technique isdescribed in detail in Chapter 3.

4.2.2.1 Materials and Methods

The nodes and the edges in the model were kept the same as in Figure4.1. However, we

discretized all the continuous observed variables in the model using k-means clustering,

with k set to 10 and 15. We used the discretization produced with k = 15 if the error rate

was much less than with k = 10. If there was not a significant reduction in error rate,

we used k = 10 bins. Learning and inference were performed as before, as mentioned in

Section4.2.1, using the same training and testing populations, albeit with different discrete

states due to the change in the discretization techniques. Expected values were calculated

using the same technique as in experiment 1.

4.2.2.2 Results

The inference algorithm calculated themarginal probability distributions (MPD),which

are the probabilities for various states of the estimated variables. The inference algorithm

also calculated the most likely state of each variable, known as itsmost probable estimate

(MPE),based on its marginal probability distribution. The most probable estimates for all

estimated variables of a patient chosen at random are shown in Figure4.5. The variable

names shown at the top row in the figure correspond to the rows in the matrices shown

in the figure. The first matrix namedtevidenceshows the input data of the patient, with

each row representing a node in the model, and each column representing a timeslice. The
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number in each cell in the matrix represents the discrete state of the specific node in the

specific timeslice. It must be noted that the states are numbered beginning at 1 (i.e., they

are not zero-indexed). The cells that are blank denote either hidden nodes or missing data.

The missing data may either denote true missing data, or the data removed at random for

estimation by the model as part of our experiment.

The matrix namedoutmpein the figure denotes the results at the end of the inference.

The values of all the blank nodes were estimated by the inference algorithm. The figure

shows the most probable estimates.

We calculated the expected values and their standard distributions from the marginal

probability distributions, and we used these two measures for our statistical analyses. The

correlation coefficients for this experiment are shown in Table4.4.

A comparison between Tables4.3, and4.4 shows that k-means clustering produced

more accurate results than a combination of domain-based and equal interval discretiza-

tion. This difference is more pronounced in the case of the second objective: recommend-

ing insulin dose to maintain a normal serum glucose level, described in Section4.3.

Figures4.6and4.7show the difference between the actual and predicted serum glucose

and insulin drip rates, respectively, in terms of number of standard deviations. The mean

and standard deviation of the actual serum glucose values were 110.6 mg/dL and 36.31

mg/dL, respectively. The mean and standard deviation of predicted serum glucose values

were 111.992mg/dL and 29.822 mg/dL, respectively. The meanand standard deviation of

the actual insulin drip rate values were 3.457 U/hour and 2.702 U/hour, respectively. The

mean and standard deviation of predicted insulin drip rate values were 3.415 U/hour and

0.735 U/hour, respectively.

Table 4.4: Hyperglycemia experiment 2. Correlation coefficients.

Serum glucose estimation
Pearson’s correlation coefficient 0.831984

Spearman’s correlation coefficient 0.996909
Insulin drip rate estimation

Pearson’s correlation coefficient N/A*
Spearman’s correlation coefficient 0.999995

*Pearson’s correlation coefficient was not considered for Insulin Drip rate
because it was not normally distributed in training or testing data sets
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Figure 4.6: Hyperglycemia experiment 2. Serum glucose, actual vs. predicted

Figure 4.7: Hyperglycemia experiment 2. Insulin drip rate,actual vs. predicted
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Figures4.6and4.7show that a vast majority of predicted values of serum glucose and

insulin drip rate are within one standard deviation of the actual values. The figures show

that the model was highly accurate in predicting the serum glucose and insulin drip rate

even in the absence of data about the patients’ nutrition andseverity of illness.

4.3 Objective 2: Recommendation of Insulin Drip
Rate for Glucose Control

The first objective of the hyperglycemia test case was to validate that the model works

according to its theoretical underpinnings, and predicts variables in the model with ac-

curacy using real-world clinical data. After proving this objective, our next objective

was to prove the clinical validity of the model in a real-world clinical use as well. A

rule-based protocol known as eProtocol-insulin is currently used on bedside computer

terminals in the Shock Trauma Respiratory ICU of LDS Hospital. eProtocol-insulin is an

open-loop computerized clinical decision support system that allows the clinical expert to

enter the values of the current serum glucose and nutrition information. eProtocol-insulin

then computes the next insulin drip rate using a rule-based protocol, and recommends this

dosage to the clinical expert. The clinician may accept or reject this recommendation,

and enter the action taken. If the recommendation is rejected, the clinician may enter the

reason for rejecting it, and the new insulin drip rate that isadministered to the patient. If

the insulin drip rate is modified manually by the clinician, it is entered into the computer

program.

The data set used for our experiments was also created by the eProtocol-insulin com-

puter application. Hence, we considered eProtocol-insulin as the gold standard against

which to compare the DBN model. Comparison was performed using a technique devel-

oped by Wong et al.[165]

4.3.1 Evaluation Technique

The goal of the experiments is to compare both the efficacy andsafety of the insulin

dose recommended by two different protocols to maintain serum glucose within the normal

range. eProtocol-insulin has a target insulin dose of 95 mg/dL. At any given point in

time, the future insulin drip is calculated taking into account the current drip rate, current
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serum glucose level, and current nutrition information to achieve a future serum glucose of

95mg/dL. The evaluation technique took actual data from eProtocol-insulin, and compared

it to simulated data from the new protocol or model that is being evaluated (e.g., DBN

model).

Each test-case for this evaluation technique is a four timeslice model. Hence, patients

with less than four timeslices of data were excluded from this evaluation. Test cases were

constructed by selecting every consecutive four timeslicedata set from current patients

using a moving window which was four timeslices wide. For example, if a patient had

a data set six timeslices in length, three test cases were constructed by selecting first to

fourth, second to fifth, and third to sixth timeslices. If a patient hadt timeslices of data

wheret > 4, thent + 1 − 4 test cases can be created. We created 10,433 test cases from

the temporal data of 287 patients. These 10,433 test cases provided a large sample size for

our test data set to compare the efficacy and safety of the DBN model’s insulin drip rate

recommendation with that of eProtocol-insulin.

The technique is explained using Table4.5. We took each 4-timeslice test case, and

used the first three serum glucose measurements (G1, G2, G3) as-is. We changed the fourth

serum glucose (G4) value to 95 mg/dL. We provided the first two insulin drip rates (I1, I2)

to the model, as well as the time elapsed (T2, T3, T4) between any two timeslices. The

DBN model is now made to predict the insulin dripI3 rate at timeT3, to achieve a serum

glucose levelG4 of 95 mg/dL at timeT4. The insulin drip rateG3eProt
recommended by

eProtocol-insulin at timeT3 is already available in our data set. The two insulin drip rate

recommendations, the predicted dose recommendationG3 by DBN model, and the actual

real-world dose recommendationG3eProt
by eProtocol-insulin are now compared.

The model that predicted a better insulin dose in each of the 10,433 test cases is

considered the winning model in that case. The word ‘better’is defined in terms of

safety and efficacy. If the actual observed serum glucoseG4 at timeT4 was greater than

95 mg/dL, the model (eProtocol-insulin or DBN model) that recommended the higher

insulin drip rateI3 at timeT3 is considered to have better efficacy. For example, if the

serum glucose at timeT4 was 140 mg/dL, and if the DBN model recommended a higher

insulin drip rate at timeT3 than the recommendation of eProtocol-insulin, then DBN is

the winning model for this test case. If the DBN model recommended a lower insulin



82

Table 4.5: Evaluation of DBN protocol against eProtocol-insulin

Variable T1 T2 T3 (time of
interest)

T4 (in the
future)

Serum
glucose

(Gx)

Observed Observed Observed Set to a
target of 95

Insulin drip
rate (Ix)

Observed Observed Predicted by DBN
or

eProtocol-insulin

Not known

Time lapse
(ILx)

Not
applicable

Observed Observed Known

dose than eProtocol-insulin, then eProtocol-insulin is the winner in this case, because

serum glucoseG4 was higher than the target range. Hence, the necessary dose to control

the glucose adequately must be larger. Even if both models did not control the glucose

adequately, the model that predicted the higher glucose dose is the winner in this case.

Conversely, safety is measured in terms of whether the modelproduced hypoglycemia

during timeT4. Hypoglycemia (serum glucose below the normal range) is a serious life

threatening condition, and it is safer to have mild hyperglycemia rather than hypoglycemia.

If the patient’s serum glucose at timeT4 is below 95 mg/dL, then the model that recom-

mended the lesser insulin drip rate at timeT3 is the safer one and is considered the winner

in this case. Ties were not encountered in experiments 3 and 4.

We performed this evaluation with two different data sets created by using the two

different discretization techniques as described in objective 1.

4.3.2 Experiment 3: Domain-based and Equal Interval Discretization

We measured the efficacy and safety of the insulin drip rate recommendations of the

model and data set that we used in experiment 1, by applying the technique described in

Section4.3.1.

4.3.2.1 Materials and Methods

The training and the testing model structures, the states ofthe discrete variables, and

the training data set were the same as in experiment 1, which used a combination of

domain-based and equal interval discretization. The test data set was discretized using
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the same technique, a combination of domain-based and equalinterval discretization as

described in experiment 1. However, each test case itself was a four-timeslice data set

created using the procedure described in Section4.3.1.

4.3.2.2 Results

We stratified the test results by the different ranges of serum glucose in timesliceT4.

We then counted the number of cases where the DBN model gave a higher dose than

eProtocol-insulin and vice versa, which resulted in serum glucose at time T4 falling within

this range. The results are shown in Table4.6.

This experiment shows DBN performed better than eProtocol-insulin in a large num-

ber of cases where G4 showed moderate hyperglycemia. However, eProtocol-insulin

performed better than DBN model in a large number of cases where G4 showed severe

hyperglycemia or severe hypoglycemia. DBN model recommended insulin drip rates that

were drastically different from those recommended in the real world by eProtocol-insulin.

This may be explained by the way the data were modeled in the case of the DBN model,

leading to overfitting in the more common cases, but insufficient accuracy in the less en-

Table 4.6: Hyperglycemia experiment 3, eProtocol-insulinvs. DBN model

Actual G4 DBN-I3 >
eProt-I3
(Num of
cases)

DBN-I3 <
eProt-I3
(Num of
cases)

Winning
model

Winning
margin

>500 0 0 - -
400 - 500 1 0 - insignificant
300 - 400 3 10 eProtocol 54%
200 - 300 33 56 eProtocol 26%
150 - 200 235 168 DBN 17%
110 - 150 1612 722 DBN 38%
100 - 110 1016 399 DBN 44%
90 - 100 1025 426 DBN 41%
80 - 90 940 356 eProtocol 45%
70 - 80 570 188 eProtocol 50%
55 - 70 236 102 eProtocol 40%
40 - 55 27 13 eProtocol 35%
<40 0 1 - insignificant
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countered cases. Domain-based discretization combined with equal interval discretization

does not seem adequate for accurate training and testing in this test case.

4.3.3 Experiment 4: K-means Clustering

We wanted to improve the accuracy of predictions performed by the DBN model.

We tested whether the accuracy can be improved by using a discretization technique that

preserves the information content of the data better than domain-based and equal interval

discretization techniques. Therefore, we measured the efficacy and safety of the insulin

drip rate recommendations of the model and data set that we used in experiment 2, by

applying the technique described in Section4.3.1.

4.3.3.1 Materials and Methods

The training and the testing model structures, the states ofthe discrete variables, and

the training data set were the same as in experiment 2, which discretized the data using the

k-means clustering technique. The test data set was discretized using the same technique

as described in experiment 2. However, each test case was a four-timeslice data set created

using the procedure described in Section4.3.1.

4.3.3.2 Results

We again stratified the test results by the different ranges of serum glucose in timeslice

T4. These ranges were defined by Wong et al. in their descriptionof the technique. We then

counted the number of cases where the DBN model gave a higherI3 dose than eProtocol-

insulin and vice versa, which resulted in serum glucoseG4 (measured at timeT4) falling

within this range. The results are shown in Table4.7.

The glucose ranges in this table are identical to the same ranges used to evaluate

the results in experiment 3. Hence, a direct comparison can be performed between the

difference due to the two discretization techniques. The current experiment shows that

both eProtocol-insulin performed equally well. eProtocol-insulin was more efficacious in

cases of severe hyperglycemia and safer in moderate hypoglycemia.

However, the DBN model was more efficacious in moderate hyperglycemia, and safer

in severe hypoglycemia. This behavior of the DBN model is a desirable quality, since
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Table 4.7: Hyperglycemia experiment 4, eProtocol-insulinvs. DBN model

Actual G4
(mg/dL)

DBN-I3 >
eProt-I3
(Num of
cases)

DBN-I3 <
eProt-I3
(Num of
cases)

Winning
model

Winning
margin

>500 0 0 - -
400 - 500 1 0 DBN insignificant
300 - 400 5 8 eProtocol 23%
200 - 300 40 49 eProtocol 10%
150 - 200 203 197 DBN 2%
110 - 150 1340 965 DBN 16%
100 - 110 708 583 DBN 10%
90 - 100 706 599 DBN 8%
80 - 90 644 509 eProtocol 12%
70 - 80 382 269 eProtocol 17%
55 - 70 133 164 DBN 10%
40 - 55 15 22 DBN 19%
<40 1 0 eProtocol insignificant

avoidance of severe hypoglycemia is more important than controlling moderate hyper-

glycemia. The difference in number of cases in each of the range intervals expressed as

a percentage, also known as winning margin, ranged between 2%, and 23%. There was

not an extreme difference between the two models. However, the DBN model was more

efficacious and safer in a larger number of cases than eProtocol-insulin.

4.3.4 Discussion

Experiments 1 and 2 show that the DBN model estimated the serum glucose levels and

the insulin drip rates with high accuracy. Between these twoexperiments, k-means clus-

tering provided a more accurate estimation of serum glucoselevels and insulin drip rates.

Experiments 3 and 4 show that k-means discretization provides more accurate inference,

and by extension, parameter learning, compared to a combination of domain-based and

equal interval discretization.

Considering the four experiments together, it can be seen that k-means clustering

performed better than the manual discretization models. This can be attributed to the fact

that k-means clustering takes into account natural groupings of data points in the sample
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whereas manual discretization does not. This leads to better estimation of parameters

during training, and hence more accurate results from the test iterations.

The DBN model performed better and safer than eProtocol-insulin in most cases,

even though the DBN model did not have access to the patients’feeding data, whereas

eProtocol-insulin has these data available. The accuracy of the DBN can be improved by

using a more complete data set containing the patients’ nutrition and severity of illness

data. The DBN model and k-means discretization may be validated with a more complete

data set for their use in a real-world clinical setting.

Statistical analysis for experiments 1 and 2 were done by calculating the Pearson

and Spearman correlation coefficients. However, statistical analysis was not performed

in experiments 3 and 4, since they were qualitative comparisons of safety and efficacy.

Statistical measures such as the Youden’s J index (the maximum value of sensitivity +

specificity - 1)[167], and other ROC curve comparison methods[168] are available for

comparing the accuracy of two diagnostic tests that determine the presence or absence

of a disease. However, both experiments 3 and 4 involved qualitative comparisons of

safety and accuracy stratified by serum glucose ranges. A statistical test is not available to

compare qualitative estimates of safety and efficacy of two prediction algorithms. Hence,

a quantitative comparison of the safety and efficacy of the two protocols could not be

performed in experiments 3 and 4.



CHAPTER 5

TEST CASE 2: EARLY DETECTION OF SEPSIS

IN THE ED

Sepsis is defined as a combination of Systemic Inflammatory Response Syndrome

(SIRS, a state of increased immune response), and a confirmedor suspected infection,

usually caused by bacteria. The infection may be present in lungs, skin, urinary tract,

bone, brain and meninges, intestines, blood, or other tissues. Sepsis may occur whether

the infection stays localized or spreads to other parts of the body. Presence of bacteria in

blood, known as bacteremia, does not by itself denote sepsisin the absence of a systemic

inflammatory response. Untreated or inadequately treated cases of sepsis can lead to a

condition known as severe sepsis, which is characterized bycomplications such as an

uncontrollable fall in blood pressure, hemodynamic collapse, multiple organ failure, or

death. Early diagnosis of sepsis is essential for successful treatment. Hence, we wanted

to apply Dynamic Bayesian Networks to the early diagnosis ofsepsis at the bedside in the

emergency department. We only included the data from the first 24 hours after admission

for the test cases, and included only those variables that can be observed at the bedside

or can be measured easily in the laboratory within this time.Our goal was to detect the

presence or absence of sepsis within 24 hours after admission when the bacterial culture

results are often unavailable.

5.1 Overview of Sepsis

The high mortality of sepsis warrants early diagnosis and treatment. Sepsis is respon-

sible for nearly 10% of the ICU admissions in the United States, totaling about 1 million

cases nationwide every year[169]. The incidence rate of severe sepsis in the United States

is about 300 per 100,000 persons per year, with a total of 750,000 cases nationwide per

year. Incidence of sepsis has been estimated to be between 83and 114 per 100,000 hospital
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admissions in Spain, with about 50% mortality rate. In Germany, the incidence of sepsis

is about 114 per 100,000 cases per year[170]. These incidence and mortality rates indicate

that sepsis is a problem around the world with high mortalityand morbidity across various

populations. Direct costs per sepsis patient for ICU treatment in the United States have

been estimated at more than $40,000. Gram negative bacteriahave been implicated as the

most common cause, followed by other bacteria and other pathogens.

5.1.1 Diagnosis of Sepsis and Its Complications

The following definitions are from the American College of Chest Physicians (ACCP),

and Society of Critical Care Medicine (SCCM) Consensus Conference held in 1991 to de-

fine common definitions for sepsis and related disorders and published in 1992[171], here

onwards referred to as ‘ACCP & SCCM 1992 definitions’. Sepsisis defined as a systemic

inflammatory reaction in response to an infection. In addition to SIRS, infection must be

present or suspected to confirm a diagnosis of sepsis[171]. SIRS alone is not sufficient to

confirm a diagnosis of sepsis, since SIRS can be caused due to noninfectious causes such

as pulmonary embolism, adrenal insufficiency, anaphylaxis, pancreatitis, trauma, etc.[171]

In adults, Systemic Inflammatory Response Syndrome (SIRS) is defined as the pres-

ence of two or more of the following[171]:

1. Body temperature below 36 C (degrees Celsius) or above 38 C

2. Tachycardia, with heart rate above 90 beats per minute

3. Tachypea (increased respiratory rate), with respiratory rate above 20 per minute, or

arterial partial pressure of carbon dioxide (PaCO2) less than 4.3 kPa (kilo Pascals),

equivalent to 32 mmHg (millimeters of mercury).

4. White blood cell (WBC) count less than 4,000/mm3(cubic millimeter) or above

12,000/mm3, or the presence of more than 10% immature neutrophils (bandforms).

When sepsis causes Multiple Organ Dysfunction Syndrome (MODS), such as damage

to vital organs, decreased perfusion, or hypotension, it istermed severe sepsis. Sepsis-

induced hypotension is defined as a systolic pressure below 90 mmHg or a reduction in
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the baseline systolic blood pressure of more than 40 mmHg, inthe absence of other causes

of hypotension[171].

Sepsis can lead to a condition known as septic shock, which isindicated by hypoten-

sion (fall in blood pressure) that is not responsive to fluid replacement or vasopressor

drugs[171].

5.1.2 Early Detection of Sepsis in the Emergency Department

At LDS Hospital (LDSH), and Intermountain Medical Center (IMC), two tertiary care

hospitals of Intermountain Healthcare in Salt Lake City, Utah, USA, the prevalence of

sepsis in patients who directly present at the emergency department is between 1.7%

to 2%. Clinical literature shows that patients with sepsis will have high mortality and

morbidity if they are not treated immediately and aggressively. However, a confirmatory

laboratory test for infections may take several hours to arrive, since culture and sensitivity

tests cannot be performed immediately.

Many patients have atypical presentations, and may not havea clear picture of SIRS.

To assist the clinicians in detection of sepsis, a clinical decision support system for early

detection of sepsis is highly desirable. Sepsis presents a very good case for early detection

using clinical decision support systems since the components of SIRS are easily measured

at the bedside, or in the case of WBC and band counts, can be obtained in a short amount

of time from the laboratory.

We wanted to use a temporal probabilistic model for the earlydetection of sepsis,

and try to understand how the accuracy and certainty of inferences change over time as

more data becomes available. We used Dynamic Bayesian Network techniques using the

Projeny Toolkit, and our data preparation methods (described in Chapter 3) to create, train

and test DBN models for the early detection of sepsis in the emergency department.

5.2 DBN Approach for Sepsis Detection

Sepsis is a rapidly worsening clinical condition. Given thefast rate of change in

the physiological parameters, the change in the clinical condition of sepsis patients lends

itself well to a temporal probabilistic model such as a Dynamic Bayesian Network. Our
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objective was an early detection of sepsis even before many laboratory tests become

available, ideally within the first few hours after admission.

5.2.1 Sepsis Data Set

We obtained a data set of about 3,100 patients treated at Intermountain Healthcare,

consisting of 20% cases (patients who had sepsis), and 80% controls (patients without

sepsis), from Dr. Jason Jones at Intermountain Healthcare.We used the anonymized data

set for our sepsis detection modeling. The data elements available in the raw data set

were the patients’ vital signs (heart rate, respiratory rate, body temperature, systolic blood

pressure, diastolic blood pressure, andPaCO2); the patients’ lab test results (WBC count,

bands percentage); and general encounter information (patient’s age, date of admission,

date of discharge, etc.). The data set also contained a variable named ‘Sepsis’, which was

entered by a clinician during a retrospective review done for clinical research. Mean blood

pressure or mean arterial pressure is the weighted average of the systolic and diastolic

pressure. If the mean blood pressure for a specific timeslicefor a specific patient was not

available, it was calculated using the formula

MAP = DP +
SP − DP

3
(5.1)

where MAP denotes mean arterial pressure, SP denotes systolic pressure, and DP rep-

resents diastolic pressure. This formula is applicable to adult patients when the blood

pressure is not extremely high or low.

The data set we received did not have information about blood(or other specimen)

culture and sensitivity results from the microbiology laboratory, information signifying

multiorgan dysfunction syndrome (MODS), or treatment information such as the adminis-

tration of IV fluids and vasopressors, which help with a diagnosis of septic shock. Hence,

we did not have the necessary clinical variables for diagnosing severe sepsis or septic

shock.

We did not have clinical information denoting suspected or confirmed infection (cul-

ture and sensitivity results, clinical notes, etc.). However, we wanted to model a sepsis

detection system with the currently available data.
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Vital signs were the most numerous type of data in our data set, and they were often

measured between 1 to 2 intervals, even though some measurements were up to 20 hours

apart. Hence, we used 1 hour as the width of the timeslices in our DBN models to help

with early detection of sepsis within a few hours after admission. The lab tests were

not measured at such frequent intervals. Not all vital signswere measured at 1-hour

intervals. Hence, we had a large amount of missing data in ourtemporally aggregated

and transformed data set.

We applied our data preparation and temporal reasoning techniques described in Chap-

ter 3 to build, train, and test sepsis detection models. We created multiple prepared data

sets and temporal models, which showed varying levels of accuracy. Three of these models

and prepared data sets provided us the most insight and new lessons. These 3 models, the

associated data preparation techniques, the results, and the lessons learned are described

in the next 3 sections of this chapter.

5.2.2 Evaluation Technique

Sepsis was a binary variable in our model, with values of trueand false. This variable

was entered by a clinician, and was considered as the reference standard. The goal of our

DBN models was to correctly estimate whether a patient had sepsis or not. Hence, the

clinician-entered sepsis diagnosis provided a reference standard against which the DBN

models’ inferences will be compared. This makes our models similar to laboratory tests

that are performed to detect specific diseases.

Given the similarity of our sepsis detection models to laboratory tests that detect a

disease, our DBN models can be evaluated using the same evaluation techniques applied

to laboratory tests. We decided to perform statistical analysis of our models’ inferences

in terms of sensitivity, specificity, positive predictive value, negative predictive value, F-

value, and area under the ROC (receiver operator characteristic) curve.

The clinician-entered values of sepsis, also considered asthe reference standard or

‘disease’, was left intact in the training data set. The clinician-entered values of sepsis

in the test data set were hidden from the inference algorithmduring the test iteration,

and were later used to validate the inferred values. All other variables were left intact in

both the training and test data sets. The state of sepsis estimated by the DBN model was
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considered analogous to the lab test finding. If the probability of sepsis estimated by the

DBN model was equal to or above 0.5, it was considered as a positive test. If the estimated

probability of sepsis was below 0.5, it was considered a negative test.

A 2x2 confusion matrix and standard epidemiologic techniques can then be applied

to calculate the sensitivity, specificity, positive predictive value, negative predictive value,

and the F-measure. The ROC curve was constructed and the areaunder the ROC curve

was calculated using a procedure described by Morrison using Microsoft Excel[172].

5.3 Experiment 1: Model 1 Using k-means Clustering

The first experiment describes a model created using the clinical description of sys-

temic inflammatory response syndrome (SIRS). The data set was discretized using the

k-means clustering technique. The model performed with a fair amount of accuracy for

sepsis detection and it revealed various shortcomings thatare described, and addressed in

subsequent experiments.

5.3.1 Materials and Methods

The structure of the model was designed based on the ACCP & SCCM 1992 definitions

of systemic inflammatory response syndrome (SIRS). The evidence of infection was left

out of the model. Four binary intermediate nodes were constructed, which denote the four

criteria for SIRS. We used the rules defined by ACCP & SCCM 1992definitions to set the

value of these binary nodes for both the training and the testdata sets.

The continuous variables in the temporally aggregated and consolidated data were

heart rate (beats per minute), body temperature (degrees Celsius), respiratory rate (breaths

per minute),PaCO2 (in mmHg), WBC count (permm3), and bands (percentage). These

continuous variables were discretized using k-means clustering withk = 10, andk = 15.

If there was a significant reduction in error rate for a variable while using 15 bins compared

to 10 bins, then we used 15 bins for the variable. Otherwise, we used 10 bins for the

variable. It must be noted that the k-means clustering algorithm found less bins than the

value ofk we provided in some cases. In these cases, the number of bins computed by

the algorithm were used for these variables. The model structure is shown in Figure5.1.

The variables HRScore, TachypneaScore, BodyTempScore, WBCScore, and SIRSScore
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were defined as binary variables in accordance with the ACCP &SCCM 1992 definitions,

and their values were assigned to true or false in the training data set following the rules

specified by these definitions.

The discretized data set was divided into a training data setand a test data set. Two-

thirds of anonymized patients were allocated to the training data set at random, and the

remaining one-third of the patients were allocated to the test data set. The value of sepsis

was replaced with null values for all the patients and all thetimeslices in the test data set.

The test data set was then divided into four separate data sets having up to 3, up to 6, up to

12, and up to 24 timeslices for each patient. Our goal was to repeat testing with data sets

having a different number of timeslices, so that we can simulate testing after the patient

has been in the hospital for increasing durations of time (2 hours, 5 hours, 11 hours, and

23 hours, respectively, since the first timeslice was measured when the patient arrived at

the emergency department at time = 0 hours after admission).

Training was performed using an EM-based learning algorithm. Training was ex-

tremely resource intensive. Training took more than 90 hours, on a computer with two

quad-core 2.25GHz (gigahertz) Intel Xeon processors, 24GB(gigabytes) of RAM (Ran-

dom Access Memory), and 32GB of swap space. Training (parameter learning) ran out

of memory with Matlab consuming more than 40GB of memory (RAMand swap space

combined, with the rest of the computer’s memory taken up by the MySQL database

server, Projeny, the desktop environment and other background processes). Hence, the

maximum number of timeslices per patient was iteratively pruned in the training data set

until the training algorithms executed successfully without running out of memory. We

tried pruning to 120 hours, 96 hours, 72 hours, and 48 hours, and the model ran out

of memory in all these cases. We finally pruned the training data set to a maximum of

24 timeslices (approximately 1 day). Training completed successfully without out-of-

memory errors with this modification.

Testing was performed using a junction tree algorithm. Testing was performed sepa-

rately with test data sets having a maximum of 3, 6, 12, and 24 timeslices. The probability

of sepsis was estimated using the marginal probability distribution calculated by the infer-

ence algorithm. Expected values were not calculated (in contrast with the hyperglycemia

models described in Chapter 4), since sepsis was a binary, nominal variable. The proba-
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bility of sepsis was given by the probability for the sepsis variable to be in the ‘true’ (or

‘sepsis present’) state. If this probability was equal to orabove 0.5, it was considered a

‘positive test’. Otherwise, it was considered a ‘negative test’. Statistical analyses were

performed as described under ‘Results’.

5.3.2 Results

The model detected sepsis with a fair amount of accuracy. A confusion matrix was

plotted with the actual values of sepsis considered as the ‘disease’, and the estimated

values of sepsis considered as the ‘test’. The confusion matrix along with the sensitivity,

specificity, positive predictive value, negative predictive value, F-measure, and the area

under the ROC curve from testing with 3, 6, 12, and 24 timeslices are given in Table5.1.

The area under the ROC curves for testing model 1 with 3, 6, 12,and 24 timeslices are

shown in Figure5.2.

From the confusion matrices and the ROC curves, we can see that the accuracy of the

model increases with availability of more data with the passage of time. The increasing

accuracy with time can be easily explained by the fact that wecan recognize trends in

various physiological parameters and detect a disease withmore certainty as time passes.

The trends in these parameters with the passage of time are illustrated in Figure5.3, and

their values shown in Table5.2.

The confusion matrices and ROC curves prove that the model works as expected.

However, our goal is early detection of sepsis. We aim to estimate the presence of sepsis

with high accuracy within 2 hours of admission (a 3-timeslice model), which is the shortest

duration of time supported by our DBN modeling technique. The current model shows

a sensitivity of 0.51, a specificity of 0.87, positive predictive value of 0.65, negative

predictive value of 0.8 and an area under the curve of 0.63 while testing with 3 timeslices.

These measures show that the model is more specific than it is sensitive.

Testing this model with 3 timeslices shows inadequate accuracy. The model also

proved to be computationally very expensive, which necessitated the reduction of our

training data set. Hence, we modified the model to improve theaccuracy and reduce

the computational complexity. Two more models were createdto achieve these objectives,

as shown in the following Sections5.4, and5.5.
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Table 5.1: Sepsis model 1. Confusion matrices

(a) 3 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

83 45 128

DBN
No

78 308 386

Total 161 353 514

Sensitivity
(recall)

83/161 0.5155

Specificity 308/353 0.8725
PPV
(precision)

83/128 0.6484

NPV 308/386 0.7979
F-measure 0.5744
AUC 0.6262

(b) 6 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

89 60 149

DBN
No

72 293 365

Total 161 353 514

Sensitivity
(recall)

89/161 0.5528

Specificity 293/353 0.8300
PPV
(precision)

89/149 0.5973

NPV 293/365 0.8027
F-measure 0.5742
AUC 0.6063

(c) 12 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

102 65 167

DBN
No

59 288 347

Total 161 353 514

Sensitivity
(recall)

102/161 0.6335

Specificity 288/353 0.8159
PPV
(precision)

102/167 0.6108

NPV 288/347 0.8300
F-measure 0.6220
AUC 0.7040

(d) 24 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

112 62 174

DBN
No

49 291 340

Total 161 353 514

Sensitivity
(recall)

112/161 0.6957

Specificity 291/353 0.8244
PPV
(precision)

112/174 0.6437

NPV 291/340 0.8559
F-measure 0.6687
AUC 0.7204
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Figure 5.3: Sepsis model 1. Plot of statistical measures over time

Table 5.2: Sepsis model 1. Values of statistical measures over time

Number of timeslices in test data set
TS3 TS6 TS12 TS24

Sensitivity 0.51553 0.55280 0.63354 0.69565
Specificity 0.87252 0.83003 0.81586 0.82436

PPV (precision) 0.64844 0.59732 0.61078 0.64368
NPV 0.79793 0.80274 0.82997 0.85588

F-measure 0.57439 0.57419 0.62195 0.66866
AUC 0.62620 0.60635 0.70398 0.72041

5.4 Experiment 2: Model 2 Using MDL Discretization

A large number of nodes and states, along with the intermediate nodes and missing

data, made model 1 computationally very expensive for parameter learning. Transforming

all the physiological parameters from continuous variables into binary intermediate nodes

led to loss of information, which in turn lowered the accuracy of the model. The missing

data problem cannot be overcome while using the same data set. However, the discretiza-

tion technique and the model structure can be changed to makethe model computationally

more tractable and more accurate. We made these changes in model 2, and performed this
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experiment.

5.4.1 Materials and Methods

The ACCP & SCCM 1992 definitions of systemic inflammatory response syndrome

(SIRS) are intended for human use at the bedside. The simple nature of the rules, trans-

forming continuous variables into binary variables, and then satisfying the constraint of

‘any two out of four’ conditions is intuitive and user-friendly for the human experts to

compute in their minds. However, transforming continuous variables into binary interme-

diate variables led to the loss of large amounts of information, which lowered the accuracy

of the model.

K-means clustering tries to find natural clustering patterns in the input data, and fits

the input data set into a finite set of symbols (or discrete states). This process is helpful to

reduce the dimensionality of the model. However, the k-means clustering process does not

consider how the variation in an independent variable (e.g., body temperature) affects the

variation in a dependent variable (e.g., sepsis). The variation in the dependent variable may

be explained by a smaller number of states than the number of states (up to 10 or 15) used

for k-means clustering. Hence, we looked for algorithms that discretize the continuous

independent variables in context of variation of the dependent variable.

We found that the Minimum Description Length (MDL) algorithm described by Fayyad

and Irani[152] divides the independent variable into a minimal number of states required

to explain the variation in the dependent variable. The MDL algorithm produced a much

smaller number of states for all the continuous variables. Asmaller state-space reduces

the computational complexity of parameter learning.

The continuous variables in the temporally aggregated and consolidated data were

heart rate (beats per minute), body temperature (degrees Celsius), respiratory rate (breaths

per minute),PaCO2 (mmHg), WBC count (mm3), and bands (percentage). These were

discretized using Fayyad and Irani’s MDL algorithm implemented in Weka. From clinical

literature, it is observed that the patient’s age affects how the patient’s body responds to

sepsis. A child, a young adult, and an elderly person will respond in different ways to

sepsis, and the patterns seen in their heart rate, blood pressure, temperature, WBC count,

etc. will be different even if they have similar sepsis conditions. Hence, we included
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the patient’s age as one of the variables in the model. We connected patient’s age to the

various nodes representing various physiological parameters, and to sepsis itself. The

model structure is shown in Figure5.4.

Training and testing were done in the same way as experiment 1. The discretized data

set was divided into a training data set and a test data set. Two-thirds of anonymized

patients were allocated to the training data set at random, and the remaining one-third of

the patients were allocated to the test data set at random. The value of sepsis was replaced

with null values for all the patients and all the timeslices in the test data set. The test

data set was then divided into four separate data sets havingup to 3, up to 6, up to 12,

and up to 24 timeslices for each patient. Our goal was to repeat testing with data sets

having a different number of timeslices, so that we can simulate testing after the patient

has been in the hospital for increasing durations of time (2 hours, 5 hours, 11 hours, and

23 hours, respectively, since the first timeslice was measured when the patient arrived at

the emergency department at time = 0 hours after admission).

Training was performed using an EM-based learning algorithm. Training was initially

performed with a data set having a maximum of 24 timeslices for each patient. Training

was much less resource intensive compared to model 1. Training took about 8 hours, on

the same computer with two quad-core 2.25GHz Intel Xeon processors, 24GB of RAM,

and 32GB of swap space. Training (parameter learning) required much less memory with

Matlab consuming less than 7GB of memory. Hence, the maximumnumber of timeslices

per patient was increased in the training data set to the finally chosen value of 72 timeslices

(approximately 3 days). Training completed successfully in less than 10 hours, with less

than 7GB of memory utilization with this modification.

Testing was performed using a junction-tree algorithm. Testing was performed as in

model 1 with test data sets having a maximum of 3, 6, 12, and 24 timeslices, since our

goal was to predict sepsis within 24 hours after admission. The probability of sepsis was

estimated using the marginal probability distribution calculated by the inference algorithm.

Expected values were not calculated (in contrast with the hyperglycemia models described

in Chapter 4), since sepsis was a binary, nominal variable. The probability of sepsis was

given by the probability for the sepsis variable to be in the ‘true’ (or ‘sepsis present’) state.

If this probability was equal to or above 0.5, it was considered a ‘positive test’. Otherwise,
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it was considered a ‘negative test’. Statistical analyses were performed as described under

‘Results’.

5.4.2 Results

The model estimated sepsis with significantly higher accuracy than model 1. A con-

fusion matrix was plotted with the actual values of sepsis considered as the ‘disease’, and

the estimated values of sepsis considered as the ‘test’. Theconfusion matrix along with

the sensitivity, specificity, positive predictive value, negative predictive value, F-measure,

and the area under the ROC curve from testing with 3, 6, 12, and24 timeslices are given

in Table5.3. The area under the ROC curves for testing model 2 with 3, 6, 12and 24

timeslices are shown in Figure5.5.

From the confusion matrices and the ROC curves, we can see that the accuracy of

prediction of model 2 is significantly better than that of model 1. We can also see that the

accuracy increases with availability of more data with the passage of time. The trends in

these parameters with the passage of time are illustrated inFigure5.6, and their values

shown in Table5.4.

A comparison of the accuracy of sepsis detection of the current model (model 2) with

that of the previous model (model 1) shows that using the MDL algorithm for data dis-

cretization and removing the binary intermediate nodes from the model structure helped to

reduce the loss of information and to significantly improve the accuracy of the model. We

also see that reducing the size of the state-space significantly reduced the computational

complexity of parameter learning.

Our goal, as in the previous model, is early detection of sepsis. We aim to detect sepsis

with high accuracy within 2 hours of admission (a 3-timeslice model), which is the shortest

duration of time supported by our DBN modeling technique. The current model shows a

sensitivity of 0.6, a specificity of 0.94, positive predictive value of 0.65, negative predictive

value of 0.93, and an area under the curve of 0.81 while testing with 3 timeslices. All the

parameters except the sensitivity improved compared to model 1. These measures again

show that the model is more specific than it is sensitive.

However, we found some problems with the structure of the model that can lead to

a reduction in accuracy. A detailed discussion of ‘explaining away’, and d-separation is
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Table 5.3: Sepsis model 2. Confusion matrices

(a) 3 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

99 54 153

DBN
No

65 825 890

Total 164 879 1043

Sensitivity
(recall)

99/164 0.6037

Specificity 825/879 0.9386
PPV
(precision)

99/153 0.6471

NPV 825/890 0.9270
F-measure 0.6246
AUC 0.8126

(b) 6 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

105 57 162

DBN
No

59 822 881

Total 164 879 1043

Sensitivity
(recall)

105/164 0.6402

Specificity 822/879 0.9352
PPV
(precision)

105/162 0.6481

NPV 822/881 0.9330
F-measure 0.6442
AUC 0.8238

(c) 12 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

117 61 178

DBN
No

47 818 865

Total 164 879 1043

Sensitivity
(recall)

117/164 0.7134

Specificity 818/879 0.9306
PPV
(precision)

117/178 0.6573

NPV 818/865 0.9457
F-measure 0.6842
AUC 0.8349

(d) 24 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

127 62 189

DBN
No

37 817 854

Total 164 879 1043

Sensitivity
(recall)

127/164 0.7744

Specificity 817/879 0.9295
PPV
(precision)

127/189 0.6720

NPV 817/854 0.9567
F-measure 0.7195
AUC 0.8430
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Figure 5.6: Sepsis model 2. Plot of statistical measures over time

Table 5.4: Sepsis model 2. Values of statistical measures over time

Number of timeslices in test data set
TS3 TS6 TS12 TS24

Sensitivity 0.60366 0.64024 0.71341 0.77439
Specificity 0.93857 0.93515 0.93060 0.92947

PPV (precision) 0.64706 0.64815 0.65730 0.67196
NPV 0.92697 0.93303 0.94566 0.95667

F-measure 0.62461 0.64417 0.68421 0.71955
AUC 0.81259 0.82376 0.83495 0.84295

presented in Chapter 2. Mean blood pressure was explained away by systolic and diastolic

pressure due to the way the mean blood pressure was related tosepsis, systolic pressure,

and diastolic pressure. Explanation of mean blood pressureby sepsis is hence weakened.

We had also made age a parent of sepsis in this model. We found that connecting age

directly to sepsis will make age explain away some of the variation in sepsis. Our goal was

to explain the variation in physiological parameters due tosepsis, and how this interaction

is influenced by age. Age does not by itself cause sepsis, and hence the edge from age to

sepsis leads to learning spurious conditional probabilities.
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We fixed the above structural issues in the model, and repeated the training and testing,

as described in experiment 3.

5.5 Experiment 3: Model 3 Using MDL Discretization

Model 2 was more accurate in detecting sepsis than model 1 with just 3 timeslices

(2 hours) of patient data. The model may be very useful in detecting sepsis in the ICU.

However, issues with conditional independence (d-separation, explaining away) reduced

the accuracy of the model. Hence, we wanted to correct the model structure and repeat

the experiment. These changes led us to model 3, and the training, testing, and results are

described as experiment 3.

5.5.1 Materials and Methods

In our model, mean blood pressure is a variable that abstracts systolic pressure and

diastolic pressure, and their relationship to sepsis. The direction of the relationships caused

an incorrect representation of conditional independence.Therefore, we removed mean

arterial pressure, which is fully explained by systolic anddiastolic blood pressure, from

model 3. We then created edges from sepsis to systolic pressure and diastolic pressure.

The edge from age to sepsis indicates a spurious conditionaldependence. Hence, we

removed the edge between age and sepsis. In model 3, age and sepsis are d-separated

by the nodes that represent systolic blood pressure, diastolic blood pressure, heart rate,

respiratory rate, and WBC count. Age and sepsis together explain the variation in these

physiological parameters in the model. If none of these five physiological parameters in

the model are known, then age and sepsis are mathematically conditionally independent,

as described in Section2.4.2.

We used the same data set used in experiment 2 to perform experiment 3. The contin-

uous variables in the temporally aggregated and consolidated data were heart rate (beats

per minute), body temperature (degrees Celsius), respiratory rate (breaths per minute),

PaCO2 (in mmHg), WBC count (permm3), and bands (percentage). These were dis-

cretized using Fayyad and Irani’s MDL algorithm implemented in Weka. The model

structure is shown in Figure5.7.
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Training and testing were done in the same way as experiment 2, using the same data

sets. The discretized data set was divided into training data set and test data set. Two-thirds

of anonymized patients were allocated to the training data set at random, and the remaining

one-third of the patients were allocated to the test data set. The value of sepsis was replaced

with null values for all the patients and all the timeslices in the test data set. The test

data set was then divided into four separate data sets havingup to 3, up to 6, up to 12,

and up to 24 timeslices for each patient. Our goal was to repeat testing with data sets

having different number of timeslices, to that we can simulate testing after the patient has

been in the hospital for increasing durations of time (2 hours, 5 hours, 11 hours, and 23

hours, respectively, since the first timeslice was measuredwhen the patient arrived at the

emergency department at time = 0 hours after admission).

Training was performed using an EM-based learning algorithm. Since model 2 was

computationally less expensive than model 1, we increased the number of timeslices

in the training data set for model 3. Training was performed with a data set having

a maximum of 168 timeslices (approximately 7 days since admission) for each patient.

Training was almost as resource intensive as model 2, which is significantly less resource

intensive than model 1. Training took about 9 hours, on the same computer with two

quad-core 2.25GHz Intel Xeon processors, 24GB of RAM, and 32GB of swap space.

Training (parameter learning) required much less memory than model 1 but similar amount

of memory as model 2, with Matlab consuming less than 7GB of memory. Training

completed successfully in less than 9 hours, with less than 7GB of memory utilization

with this modification.

Testing was performed using a junction-tree algorithm. Testing was performed as

before in models 1 and 2 with test data sets having a maximum of3, 6, 12, 24, and 48

timeslices. Our goal was to detect sepsis within 24 hours after admission. However, in

contrast to models 1 and 2, we included a test data set with 48 timeslices to study how

increased the duration of the test data set affects the results.

The probability of sepsis was estimated using the marginal probability distribution

calculated by the inference algorithm. Expected values were not calculated (in contrast

with the hyperglycemia models described in Chapter 4), since sepsis was a binary, nominal

variable. The probability of sepsis was given by the probability for the sepsis variable to
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be in the ‘true’ (or “sepsis present”) state. If this probability was equal to or above 0.5, it

was considered a ‘positive test’. Otherwise, it was considered a ‘negative test’. Statistical

analyses were performed as described under ‘Results’.

5.5.2 Results

The model detected sepsis with significantly higher accuracy than both model 1 and

model 2. A confusion matrix was plotted with the actual values of sepsis considered as the

‘disease’, and the estimated values of sepsis considered asthe ‘test’. The confusion matrix

along with the sensitivity, specificity, positive predictive value, negative predictive value,

F-measure, and the area under the ROC curve from testing with3, 6, 12 and 24 timeslices

are given in Table5.5. The area under the ROC curves for testing model 2 with 3, 6, 12,

and 24 timeslices are shown in Figure5.8.

From the confusion matrices, and the ROC curves, we can see that the accuracy of

sepsis detection of model 3 is significantly better than thatof both model 1 and model 2.

We can also see that the accuracy increases with availability of more data with the passage

of time. The trends in these parameters with the passage of time are illustrated in Figure

5.9, and their values shown in Table5.6. Table5.6 also includes the results from the test

data set with 48 timeslices.

A comparison of the accuracy of sepsis detection of the current model (model 3) with

that of the previous models (models 1 and 2) shows that using the MDL algorithm and

a clinically accurate model structure helped to reduce the loss of information and avoid

the conditional independence problems, and to significantly improve the accuracy of the

model.

Our goal, as in the previous models, is early detection of sepsis. We aim to detect

sepsis with high accuracy within 2 hours of admission (a 3-timeslice model), which is

the shortest duration of time supported by our DBN modeling technique. The current

model shows a sensitivity of 0.69, a specificity of 0.95, positive predictive value of 0.72,

negative predictive value of 0.94, and an area under the curve of 0.91 while testing with

3 timeslices. All the parameters including the sensitivityimproved compared to model 2.

These measures again show that the model is more specific thanit is sensitive. However,

it shows much higher sensitivity than models 1 and 2.
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Table 5.5: Sepsis model 3. Confusion matrices

(a) 3 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

113 45 158

DBN
No

51 834 885

Total 164 879 1043

Sensitivity
(recall)

113/164 0.6890

Specificity 834/879 0.9488
PPV
(precision)

113/158 0.7152

NPV 834/885 0.9424
F-measure 0.7019
AUC 0.9110

(b) 6 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

116 44 160

DBN
No

48 835 883

Total 164 879 1043

Sensitivity
(recall)

116/164 0.7073

Specificity 835/879 0.9499
PPV
(precision)

116/160 0.7250

NPV 835/883 0.9456
F-measure 0.7160
AUC 0.9150

(c) 12 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

134 45 179

DBN
No

30 834 864

Total 164 879 1043

Sensitivity
(recall)

134/164 0.8171

Specificity 834/879 0.9488
PPV
(precision)

134/179 0.7486

NPV 834/864 0.9653
F-measure 0.7813
AUC 0.9336

(d) 24 timeslices

Sepsis
Actual

Yes
Actual

No
Total

DBN
Yes

141 48 189

DBN
No

23 831 854

Total 164 879 1043

Sensitivity
(recall)

141/164 0.8598

Specificity 831/879 0.9454
PPV
(precision)

141/189 0.7460

NPV 831/854 0.9731
F-measure 0.7989
AUC 0.9435
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Figure 5.9: Sepsis model 3. Plot of statistical measures over time

Table 5.6: Sepsis model 3. Values of statistical measures over time

Number of timeslices in test data set
TS3 TS6 TS12 TS24 TS48

Sensitivity 0.68902 0.70732 0.81707 0.85976 0.88415
Specificity 0.94881 0.94994 0.94881 0.94539 0.94198

PPV (precision) 0.71519 0.72500 0.74860 0.74603 0.73980
NPV 0.94237 0.94564 0.96528 0.97307 0.97757

F-measure 0.70186 0.71605 0.78134 0.79887 0.80556
AUC 0.91102 0.91499 0.93362 0.94353 0.93029

5.6 Discussion

From the 3 models above, we can demonstrate that DBN methods can be used to

successfully detect sepsis in patients in the emergency department within 2 hours of admis-

sion. The model can detect sepsis with variables that are mostly collected at the bedside,

and WBC count and bands percentage, which are easily obtained from the lab in a short

duration of time. Of particular note is the results from testing using 3 timeslices in the

third experiment. This test iteration reflects inference using just 2-hours’ data from the

moment the patient is admitted to the emergency department.This test iteration showed
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a sensitivity of 0.69, a specificity of 0.95, positive predictive value of 0.72, negative

predictive value of 0.94, and an area under the ROC curve of 0.91. This model may be

suitable for use in the real-world clinical setting for early detection of sepsis if it overcomes

the following limitation.

It must be noted that the prior probability of sepsis in our data set was 0.2, because our

data set had 20% cases and 80% controls. In the emergency department of Intermountain

Healthcare, the prevalence of sepsis is about 2%, which translates into a prior probability

of 0.02. The real-world prior probability of sepsis is only 1/10 of the prior probability

in our data set. Hence, the PPV and NPV of the model will changein the real world.

Hence, further testing and validation needs to be done before this model may be used in

an emergency department to detect sepsis.

The models and experiments above provide lessons to reduce the computational com-

plexity of DBN learning and inference, and at the same time improve the predictive

accuracy. The experiments show that both data preparation and model structure affect

the accuracy as well as the computational complexity of the model. The experiments

also show that it is possible to reduce the size of the state-space without a corresponding

reduction in accuracy. It is also shown that simple models that are designed to be intuitive

for human experts such as the SIRS model may not be computationally efficient or accurate

for probabilistic modeling. Models that take into account the complex conditional inter-

dependencies and reflect them accurately, while defining thestate-space in a meaningful

way, prove to be more accurate in probabilistic learning andinference.

We have shown that by using more meaningful methods of data preparation such as

the MDL algorithm which analyzes the variation in the dependent variable to discretize

the independent variable, we can obtain smaller but more meaningful state-spaces. This is

a novel finding in the area of medicine, where probabilistic temporal reasoning methods

have not been used extensively. A majority of probabilistictemporal reasoning exper-

iments in the biomedical domain use Hidden Markov Models which in turn use equal

interval and equal frequency discretization. Hence, our experiments add new knowledge

to the area of probabilistic temporal reasoning in medicine, by proving that it is possible to

use more versatile models such as DBNs, with discretizationtechniques such as the MDL

algorithm, to accurately detect clinical conditions.



CHAPTER 6

CONCLUSIONS

Dynamic Bayesian Networks generalize a large class of probabilistic temporal reason-

ing techniques that include Hidden Markov Models and KalmanFilter Models. DBNs

provide a powerful formalism to perform learning and inference with models that have

complex probabilistic relationships within and across instances of time. Pathophysio-

logical processes and clinical practice workflow are inherently temporal processes. The

complexity of medical science and the practice of medicine prompt the need for clinical

decision support tools that can help with temporal modelingand prediction. Dynamic

Bayesian Networks are an ideal candidate for application inthe medical domain to address

these challenges.

In spite of the success of DBNs and related techniques in other fields such as engineer-

ing, finance, economics, speech recognition, and genomic and proteomic modeling, they

have not been used to a significant extent in clinical medicine. Challenges to their adoption

include the difficulty in modeling clinical processes usinga temporal model, creating the

model structure, data aggregation, consolidation and discretization, support for variable

length temporal processes, learning and inference with missing data, and ease of data

binding for learning and inference. These are the challenges that motivated this research.

This research addresses most of these challenges, as described in this dissertation.

6.1 Novel Contributions of this Research

6.1.1 Model Structure

We learned through our models and experiments that both model structure and data

preparation can affect the computational tractability andpredictive accuracy of the model.

The structure of the model with discrete variables includesthe nodes, edges, and the states

of the model. The nodes and edges can often be discovered frommedical literature or
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by interviewing clinicians. We described with evidence theneed to avoid conditional

independence and d-separation issues, and the problem of ‘explaining away’, and how to

solve these issues.

6.1.2 Temporal Data Aggregation, Consolidation, and Abstraction

Temporal data aggregation and consolidation techniques were also explored in detail.

We described data preparation techniques that can be generalized to temporal reasoning

problems in medicine. We described methods that can be used to aggregate and consolidate

clinical temporal data from many different data sources into a uniform denormalized

relational database table. We then described a method to perform temporal abstraction

to select a representative data point for each time interval.

6.1.3 Discretization of Continuous Variables

The states of discrete variables are not easy to define. Discretization is a double-edged

sword that makes the model amenable to learning and inference by various algorithms, but

it leads to loss of information and introduction of noise at the same time. Discretization

techniques that are suitable for temporal probabilistic reasoning given the complexity and

the sparse nature of clinical data have not been studied previously. Classical techniques

such as equal interval and equal frequency discretization do not always yield the best

results.

We tested a combination of domain-based and equal interval discretization, and we

compared it to k-means clustering. We also separately compared k-means clustering

to MDL discretization. We discovered that k-means clustering and MDL discretization

techniques prove to be appropriate for use in the medical domain compared to domain-

based and equal interval discretization. We also demonstrated that the MDL discretization

technique leads to more accurate and more tractable temporal models. These findings may

be generalizable to other temporal models in the medical domain, and may be amenable

to being performed in an automated way regardless of the nature of the variable.
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6.1.4 Computational Tractability

We described the computational tractability of various modeling techniques and dis-

cretization techniques. We described how the structure of the model and data preparation

can be improved to make the model computationally more tractable. We performed these

tasks without a reduction in predictive accuracy of the model. We demonstrated that it

is possible to optimize a model to improve both the computational tractability and the

accuracy.

6.1.5 Validation Techniques

We described how to process the results and validate them by calculating the expected

value and the statistical measures. These processes are performed automatically by several

commercial or proprietary toolkits. We described how to perform this task from starting

with the raw results, namely the marginal probability distributions. These techniques can

be generalized to perform validation from the marginal probability distributions obtained

using any other temporal model or toolkit.

6.1.6 Insulin Dosing and Glucose Control in the ICU

We created a model starting with medical literature, and trained and tested it using

the above-mentioned techniques in two test cases. The first test case, insulin dosing

and glucose control in the ICU for patients with stress-induced hyperglycemia, showed

very high accuracy. Our model performed as well as eProtocol-insulin, the existing gold

standard at Intermountain Healthcare. Our model provided clinically valid insulin doses

as validated by comparing them to the insulin doses recommended by eProtocol-insulin.

It is to be noted that our model performed well even without the patients’ feeding data,

which were available to eProtocol-insulin. This model shows excellent promise for use

in a real-world clinical setting. A computational model with comparably high accuracy

to predict serum glucose or recommend insulin dose that has been tested with a similarly

large corpus of real clinical data have not been currently described in medical literature.
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6.1.7 Early Prediction of Sepsis in the ED

Our model predicted sepsis with very high accuracy even withjust the first 2 hours’

data from the instance when a patient is admitted to the emergency department. The model

predicted sepsis with high accuracy even in the absence of culture and sensitivity results.

The accuracy of our model increased if the patients’ data of alonger duration is available

to the inference algorithm, which reflects the certainty of diagnosis made by physicians

in clinical practice. We also showed with multiple experiments the methods to improve

both the computational tractability and accuracy of the model. A computational model

with comparably high accuracy to predict sepsis that has been tested with a similarly large

corpus of real clinical data have not been currently described in medical literature.

6.1.8 Projeny, an Open Source Temporal Reasoning Toolkit

Projeny, the probabilistic networks generator in Java, is an open-source toolkit that

was created as part of this research. The toolkit is based on three other open-source

toolkits. Projeny has been released as open-source, and is regularly updated with new

features and bug fixes. Projeny allows the user to easily create the nodes and edges in

a DBN model, define the states, and define which nodes are observed and which nodes

are hidden. Projeny also allows the user to perform data binding in a way that is easier

than most probabilistic modeling tools, whether free or proprietary. Projeny also allows

the user to perform data binding for both training and testing, and saves the model in an

easily interoperable XML format. The modeling, learning, and inference tasks of all the

experiments in this dissertation were performed using Projeny, proving the validity and

usefulness of the tool. Projeny has already been downloadedmore than 100 times and is

being used by other DBN researchers.

6.1.9 Generalizability

Generalizability and external validity were among the maingoals of this research. The

methods described in this research and tools created duringthis research are generalizable

to other similar temporal reasoning problems. The generalizability of the techniques have

partly been proved by applying them to the two test cases described in this dissertation.

Further generalizability and external validity for dissimilar problems (e.g., large time
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horizons, higher order Markov processes, etc.) remain to betested.

6.1.10 Nonoriginal Contributions of this Dissertation

Chapter 2 of this dissertation provides a comprehensive summary of temporal reason-

ing and representation. It serves as a starting point to a researcher who wants to explore

temporal representation, temporal logic, or temporal reasoning and prediction.

6.2 Limitations
Several limitations of the methods and tools described in this dissertation have been

identified. The following sections discuss these limitations.

6.2.1 Limitations of the Learning and Inference Algorithms

The models and tools only support discrete nodes at present,due to a limitation of

the learning and inference algorithms that are used. Continuous nodes are not supported.

The learning and inference algorithms used in this experiment, and the Projeny tool, only

support first-order Markov processes. Higher order Markov processes are not currently

supported. The algorithms also do not support continuous-time DBNs or DBN models

with timeslices of variable width.

6.2.2 Limitations of the Projeny Tool

Currently, the tool only supports one exact algorithm each for parameter learning and

inference. Approximate learning and inference algorithms, and other exact learning and

inference algorithms are not currently implemented. The other limitations of the learning

and inference algorithms apply to Projeny due to its dependence on these algorithms.

6.2.3 Utility and Action Nodes

The models and tools described do not support utility and action nodes. By extension,

POMDPs and LIMIDs are not supported.

6.3 Future Research
Further research areas include new algorithms, new modeling techniques, implemen-

tation of new features in the tool, and new or extended applications.
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We hope to support more learning and inference algorithms inProjeny and to apply

these algorithms for parameter learning and inference. Thecomputational tractability and

accuracy of these algorithms may be tested, and compared to the currently used algorithms.

We intend to perform more detailed comparisons and evaluations of various discretiza-

tion algorithms using the same model and data sets. Due to theexploratory and incremental

nature of this research project, an exact comparison of these techniques under identical

conditions could not be performed. Hence, we intend to test the computational tractability

and accuracy of models that use different data discretization techniques under identical

conditions.

We also intend to explore POMDPs and LIMIDs, and model decision support systems

that can recommend decisions using utility and action nodesand reward functions. We

believe that these capabilities will enhance the utility ofprobabilistic temporal reasoning

techniques in the clinical domain. We will add new features to Projeny to support more

learning and inference algorithms, and more modeling techniques such as POMDPs and

LIMIDs. We hope to actively improve the tool with inputs fromthe larger open source

community.

Finally, we intend to test the hyperglycemia and sepsis models with more rigor and

with larger data sets, and validate them under stricter conditions. We intend to evaluate

and refine these models for their appropriateness for use in areal clinical setting. We

intend to apply these tools and techniques to other biomedical problems as well.
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