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ABSTRACT

Temporal reasoning denotes the modeling of causal rekdtipa between different
variables across different instances of time, and the gtiedi of future events or the
explanation of past events. Temporal reasoning helps inetmadand understanding
interactions between human pathophysiological processesin predicting future out-
comes such as response to treatment or complications. Dgridayesian Networks
(DBN) support modeling changes in patients’ condition owere due to both diseases
and treatments, using probabilistic relationships betwh#erent clinical variables, both
within and across different points in time.

We describe temporal reasoning and representation in gleaed DBN in particu-
lar, with special attention to DBN parameter learning anf@rience. We also describe
temporal data preparation (aggregation, consolidatiod, abstraction) techniques that
are applicable to medical data that were used in our rese&vehdescribe and evaluate
various data discretization methods that are applicabhedadical data. Projeny, an open-
source probabilistic temporal reasoning toolkit devetbpe part of this research, is also
described.

We apply these methods, techniques, and algorithms to tseade processes modeled
as Dynamic Bayesian Networks. The first test case is hypsggiia due to severe illness
in patients treated in the Intensive Care Unit (ICU). We nidloe patients’ serum glucose
and insulin drip rates using Dynamic Bayesian Networks, @@admmend insulin drip
rates to maintain the patients’ serum glucose within a nbrarege. The model’'s safety
and efficacy are proven by comparing it to the current golddaed. The second test
case is the early prediction of sepsis in the emergency tlepat. Sepsis is an acute life
threatening condition that requires timely diagnosis aedtment. We present various
DBN models and data preparation techniques that detecissefik very high accuracy
within two hours after the patients’ admission to the emecgalepartment.

We also discuss factors affecting the computational thaldia of the models and



appropriate optimization techniques. In this dissertgtiwe present a guide to temporal
reasoning, evaluation of various data preparation, digateon, learning and inference
methods, proofs using two test cases using real clinical, @at open-source toolkit, and

recommend methods and techniques for temporal reasonmgdircine.
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CHAPTER 1

INTRODUCTION

There are, in general, two ways to predict the future. Yoy frarexample,
use horoscopes, tea leaves, tarot cards, a crystal balsafatth. Collec-
tively, these are known as “nutty methods.” Or you can put-+edearched
facts into sophisticated computer models, more commorigrmed to as “a
complete waste of time.” While all these approaches have dldeantages, |
find it's a lot easier and more economical to simply make sipff

- Scott Adams, 2004].

The guote above from Scott Adams humorously sums up the wdfifien building
computational models to predict the future, especially somplex and highly variable
field such as medicine. This dissertation is an attempt atingake prediction of the
future or the explanation of the past or the present usingghitistic methods in certain
clinical conditions not a complete waste of time, and on toeti@ry, computationally
tractable, repeatable and sufficiently accurate to be lsefu

Time is an essential component of the art and science of medi€ause-and-effect
relationships between diseases and clinical feature)etmceen interventions and clinical
features, are interpreted in the context of the time by wthehcause precedes the effect.
These relationships have different timescales, some pnogwan effect in the order of
seconds, with others producing an effect in the order of diexa Clinical pathophysi-
ology and treatment involves many of these overlappingeaunsl-effect processes. An
understanding of their complex interactions in terms ofsedity and temporal nature is
essential to interpret the patients’ clinical conditiotreat them effectively, and assess
their response to treatmerl|

Temporal reasoning involves the understanding of relahgos between different vari-
ables across time. It can contribute to models that explagt events and predict future
events based on available data. An ability to explain thé ges provide an understand-

ing of a patient’s disease processes and response to trgatiPeedicting future events
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is a natural continuation of the temporal modeling procassl can help in estimating
the prognosis and planning the treatment. Prediction cem lalp to avert impending
complications, both long-term (e.g., graft survival), atbrt-term (e.g., anticoagulation
therapy). Some clinical conditions such as long-term gsaftival involve pathophys-
iological processes that span several years. On the otlmel, fae pathophysiological
processes involved in insulin release and glucose hom@esjgan a short interval in the
order of a few hourq].

Temporal modeling and prediction have been used routimeseveral fields such as
financial projections and weather forecasting. Howevenpigral reasoning techniques
have not been studied to such an extent in clinical medidihes is due to various unique
characteristics such as the complexity of medical sciepiagtice of medicine, medical
data, the inherent uncertainty underlying the medicalgiecimaking process, and the
unavailability of tools to accommodate these unique charestics. This dissertation is
an attempt to define these unique characteristics, accoatmathd overcome the chal-
lenges they pose, develop a tool to facilitate probabiligmporal reasoning in medicine,
and apply these tools and techniques to two very differenptal problems in clinical
medicine to prove their use, validity, and generalizapilithis dissertation also aims to be

a primer on probabilistic temporal reasoning in medicine.

1.1 The Problem

The objective of clinical treatment is to change the clihaandition of a patient from
a less healthy to a more healthy state. Predicting the ewaloff the clinical condition
and of future events is a natural part of this process. Tlosgss is of special interest
in patients’ clinical conditions that change very rapidiyeotime due to critical illnesses
and aggressive treatments. Heuristic prediction of fuswents by the human clinical
expert is an uncertain process that is not well understob grocess also exhibits high
variability both across different human experts, and actherent instances in the same
expert@, 5, 6]. A repeatable, formal, evidence-based model becomedyhitgsirable to
improve understanding and accuracy, and to reduce unagri@nd variability of these
predictions.
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Many techniques for temporal learning and prediction hasenbused with varying
levels of success. These techniques span a spectrum of asethit purely rule-based
models at one end and complex mathematical pattern recmgnitodels at the other, and
various hybrid models in between. The accuracy and the gaiéify of these models for
clinical use also vary. Probabilistic models are one of tledl-wnderstood mathematical
models used in various fields including biomedicine. Prdistic models have been
used extensively in the biomedical domain to predict diseasd outcomes based on
clinical signs, symptoms, and laboratory findings. Naivgdsan and Bayesian Network
technigues have proven to be highly accurate. These tasbsmigave traditionally been
used with single-point-in-time models, such as predictimg possibility of various dis-
eases from vital signs, chest X-rayB, 9, 10|, coronary angiographgfl], and laboratory
findingsfl2, 13, 14, 15. These models have not been used to build or test models that
explicitly track the change in patients’ conditions ovendi. Temporal models often
prove to be more complex than atemporal modds[The lack of temporal probabilistic
models have been attributed to various problems such astheof powerful and easy
to use modeling tools, unavailability of temporal data ireasily computable format, the
large amount of missing data in temporal data sets, theciaiodity of temporal learning
algorithms, and problems in defining temporal relationsfii. Clinical data are col-
lected with the primary objective of providing clinical edoy human experts (physicians,
nurses, and others), and are often not collected with thectig of electronic processing
and reasoning. Even in well-designed electronic mediaarne systems, the data have
many unique characteristics that make the application ahina learning techniques very
difficult. These peculiarities have to deal with varyingmukarities of time, the enormity
of missing data in electronic medical records, and the lamgetions of structure and
format of the same data§].

Even though probabilistic temporal reasoning technique® lbeen used with much
success in other domains, they have a limited proof of sgbgesse in the clinical
domain. Hidden Markov Models (HMM) is one of the well-studiismporal reasoning
techniques used in biomedicid® 20]. HMMs help to model a Markov process as a
temporal model where an unobservable variable transibebseen different states over

time, and is measured by means of another proxy variable kra@the observed variable.
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The Markov Property reduces the computational complexjtallowing the conditional
probabilities for state transmission and observation todyestant over time given a set of
preconditions, as explained in Chapter 2. However, HMMs aldend well to modeling
very complex processes. Dynamic Bayesian Networks (DBNs)aageneral case of
HMMs which support modeling more complex processes thaassiple with HMMsP1].
DBNs have been used in other domains to model complex tempaeesses. However,
DBNs have not been used as extensively as HMMs in the biorakedammnain except in
a handful of cases due to various challenges introducedeadnos explained in detail in
subsequent chapters.

In addition to probabilistic techniques, nonprobabitistechniques have also been
used for temporal reasoning in various domains includilogngdicine. These techniques
include pattern recognition techniques such as Artificiauihl Networks (ANNs), and
statistical techniques such as logistic regres@anp3, 24, 25]. However, both pat-
tern recognition and statistical techniques can only resgcorrelation, and lack the
expressivity of probabilistic models to denote complexraichical, or temporal causal
relationships?6, 27, 28]. These techniques also have predetermined input (indispe))
and output (dependent) variables. These techniques lacHRekibility of probabilistic
models, which allow any variable whose value is not knownéddreated as an output
variable. ANNs also work as black boxes, and hence, thedigtiens are considered to
lack proper explanations, which are required in the praadicevidence-based medicine.
Hence, the pattern recognition and statistical technidnze® found limited acceptance
except in very specific problems with a single output vagahich as prediction of prog-
nosis following the diagnosis of a disease or a treatmergguhaore. These techniques and

their advantages and limitations are explained furtheriaper 2.

1.2 A Solution Using Dynamic Bayesian Networks
Dynamic Bayesian Networks theoretically provide a veryregpive and flexible model
to solve temporal problems in medicine. However, this imgslvarious challenges due
both to the nature of the clinical domain, and the nature e@BN modeling and infer-
ence process itself. The challenges from the clinical donmailude an insufficient knowl-

edge of temporal interactions of pathophysiological psses in the medical literature,
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the sparse nature and variability of medical data collectamd the difficulty in preparing
and abstracting clinical data in a suitable format withasing valuable information in

the process. Challenges pertaining to the DBN methodolagyiraplementation include
the lack of tools that allow easy modeling of temporal preess lack of algorithms that
support models involving various Markov processes witfed#nt orders, paucity of tools
that support different cases in the data sets spanningdiffelurations, difficulties with

input and output of large amounts of structured data intoartdf these tools, and the
computational complexity and tractabiliBg][ 30].

Overcoming these challenges will help to solve variousicdihtemporal reasoning
problems. This dissertation describes experiments imvgkemporal reasoning in medicine
using Dynamic Bayesian Networks (DBN). The goal of the redeavas to evaluate
various data preparation and temporal modeling methodsapply them to test cases
in clinical medicine to evaluate the hypothesis of whethmausate temporal reasoning
is possible in the clinical domain using DBNs. Evaluatiorirted methods and techniques
were done by comparing the predictions of the temporal nsddedvailable gold standards
- the clinical decisions of the physicians and other clingsaerts. The results of these two
test cases prove the hypothesis that temporal reasoning Dginamic Bayesian Results
can be done in an accurate, clinically useful, computatipeéicient, and timely manner.
The details of the two test caes, their hypotheses, and theriala, methods, and results
of the experiments are presented in Chapters 4 and 5.

The dissertation provides a review of various temporalae&g techniques and re-
lated worksB1]. This dissertation also describes an approach to prababitemporal
reasoning in medicine using Dynamic Bayesian Networkss &pproach is the result of
various experiments performed by the author as part of tistodal work underlying this
dissertation. This dissertation describes various probleith clinical data, and explains
techniques that are applicable to clinical data prepardbo use in temporal modeling.
Data preparation involves temporal abstraction and digang continuous variables into
discrete states. Pitfalls with manual data discretizaéind the advantages of algorith-
mic data discretization are described through various raxgats. Two different data
discretization algorithms implemented in the Weka sofevalatform were used in this

research. Results obtained from models created using stgmethms are compared with
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results obtained with manual data discretization, showhegdvantage of the algorithmic
data preparation process.

A toolkit that was developed to perform the experiments is tlissertation is also
described. This toolkit, Projeny (acronym for Probahitisietworks Generator in Java),
was created to enable easy authoring of temporal modelslwes data binding, param-
eter learning, and inference through an easy-to-use gralphierface. Projeny is based
on two other open source toolkits - BNJ (Bayesian NetworkgooJava), and JMatLink.
Projeny provides a user interface to BNT (Bayes Net Toolpaxpolkit that runs inside
a Matlab environment. Projeny has been released as opecessaiftware and is being
updated regularly. BNT provides all the DBN learning anceiehce algorithms for the
experiments described in this dissertation. The advastag8NT over other temporal
modeling toolkits is also described.

The research also involved testing the techniques and toslsive real clinical prob-
lems. Two test cases were used to test and prove the fegsibdcuracy, validity, and
usefulness of these tools and techniques in modeling amthgatlinical problems and
improving the clinical care of patients. Both experimentyavperformed as pure data-
only studies using the retrospective data of patientsdceat Intermountain Healthcare in
Salt Lake City, Utah, USA.

The first test case involves the modeling of glucose homsisstécritically ill patients
in the intensive care unit. Patients who are criticallyadé control of serum glucose levels
even if they are not diabetic, leading to a high increase iamsegglucose. Uncontrolled
hyperglycemia in these patients has been proven by sevghalra to worsen their clinical
condition and the outcomes, leading to higher mortality aratbidity[32]. On the con-
trary, aggressive glucose control in these patients hasdiemvn to improve the outcomes
and reduce the mortality and morbidiBZ][33][34]. However, it must be noted that this
claim has been disputed by some auti@BsB6]. Our hypothesis underlying this test case
is that the DBN model can accurately predict the serum gki¢éegels and recommend
insulin doses better than those of the current gold stan@&hetocol-insulin) to maintain
a normal serum glucose level. eProtocol-insulin is a coenmed rule-based protocol
developed and used at Intermountain Healthcare to recoshmsualin doses to maintain

patients’ serum glucose within normal lev@g]. The first experiment tests the accuracy
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of prediction of serum glucose and insulin drip rates in terapdata of patients. The
second experiment compares the insulin doses recommegdhd BBN model to those
produced by the current gold standard.

The second test case involves early prediction of sepsiatiergs seen at the emer-
gency departments (ED) of Intermountain Healthcare. Seissa dangerous disease
condition that evolves very rapidly, and early detectionl &areatment of sepsis leads
to significantly improved outcomes as shown by several as[B@ 39, 40, 41]. The
hypothesis underlying this experiment is that the DBN mar#el predict the presence
of sepsis in ED patients accurately and in a timely mannerpesed to the clinician’s
diagnosis which is the current gold standard. The objedtitkis experiment is to predict
sepsis in patients before their blood culture and sensitrésults are available so that
treatment can be initiated sooner. The experiments medseraccuracy of predicting
whether a patient has sepsis using the patients’ 3-houru6-th2-hour, and 24-hour data
since admission.

The dissertation also describes the computational contplekthe models and the
techniques that are useful to reduce the space and time epnyf these models. These
are described in context while describing the data prejpara¢chniques and the exper-
iments involving the two test cases. The dissertation piewian insight into various
techniques that can be used to reduce the computationallewityf these models and

to make them computationally tractable.

1.3 Outline of the Dissertation

This dissertation as a whole describes research involiagpplication of DBNSs in
the clinical domain, challenges and techniques for tempdata preparations, various
challenges involving temporal reasoning in general angdtgpecific to the clinical do-
main, results from applying these techniques to two clindoenditions, and a temporal
reasoning toolkit created as part of this research. Thisediation concludes with the
limitations of the techniques in this research as appleabthe biomedical domain, with
pointers for future research to overcome these limitations

Chapter 2 provides a comprehensive overview of probaicilestd other temporal

reasoning techniques. It also disambiguates between tamm@asoning and temporal
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representation, as the former term is used by several autbaidenote the latter since
the two are closely related. Chapter 2 also describes mlevarks involving temporal
reasoning in biomedical and other domains. It also provatle®verview of various toolkits
available for probabilistic temporal reasoning.

Chapter 3 describes the nature of clinical data that makegdeal reasoning difficult.
It presents various techniques used in this research apg@ropriate for data preparation
and abstraction for temporal reasoning while preserviegrnformation content. It pro-
vides a roadmap to other researchers involved in tempaxabreng for data preparation.
This chapter also describes the Projeny toolkit develogeobat of this research project,
along with the other toolkits it depends and is based on, haBBT[42], IMatLink[43],
and BNJB4]. It also describes a roadmap for future development of tiogeRy toolkit as
an open source software project.

Chapters 4 and 5 describe the two test cases. Chapter 4lssstinie modeling and
experiments involving the first test case, glucose homsissta the ICU. It describes
the materials and methods, modeling challenges, and dissube results of various
experiments involving this test case. Chapter 5 describessecond test case, early
prediction of sepsis in the emergency department. Thistehdigewise describes the
materials and methods, challenges with data preparatidnnasdeling, and discusses
the results. These two experiments involve very differaseases and modeling and
prediction problems. These two chapters prove the valaliy accuracy of the methods
and toolkits produced as part of the author's doctoral meseand support the claim of
their generalizability to temporal modeling problems ie tinical domain at large.

Chapter 6 discusses the validity of results obtained fromh leaperiments for their
utility in clinical care. It also discusses the validity dfetse results in the context of
interpolation and extrapolation of the range of values wfichl variables encountered in
the study. It discusses the generalizability and exterakdlity of the methods as well.
Chapter 6 concludes the dissertation by discussing theriedearned, the original con-
tributions to the field of temporal reasoning in medicina] antlines the future research
directions. This chapter also describes the limitation®BNs and recommends more
complex techniques that may be capable of overcoming tivag#ations. This may serve

as a topic to be explored by future research projects.



CHAPTER 2

REVIEW OF THEORETICAL FOUNDATIONS
AND RELATED WORKS

This chapter begins by defining and disambiguating the téemgoral reasoning and
temporal representation in the context of this dissenatidhis chapter then looks at
the various attributes of time, and provides a descripticieimporal representation from
the perspective of temporal ontology and logic. Temporgid@and constraints based on
first-order logic are defined. This discussion forms thedfasiunderstanding the complex
challenges in modeling time and answering questions pentaiko temporal logic. This
chapter then discusses various temporal databases thadrstipe storage of temporal
attributes and querying of temporal relationships betwesrous data elements. Tem-
poral databases and temporal query languages can endepsalaual data aggregation
tasks involved in data preparation as well as provide dat@agé for temporal reasoning
toolkits[45], and are hence briefly described in this dissertation.

This chapter then provides a nonexhaustive overview obuartemporal reasoning
methods that are applicable to biomedicine. Various siedis probabilistic, and pattern-
recognition-based temporal modeling and prediction tegles are discussed, with spe-
cial attention to probabilistic techniques. These techesjabstract many of the temporal
constraint solving problems. An overview of the temporaitoand constraint solving
problems, though not central to this dissertation, is waed@ to set the stage for the need
for higher levels of abstractions and to describe how thbs&actions satisfy the temporal
constraints.

This chapter also outlines challenges faced in probaicilismporal reasoning. These
challenges are due to various factors. Some of the chakeageinherent in temporal
representation and reasoning; other challenges are dioe tature of the medical science,

due to imprecise understanding of causal and temporaioesdtips; still other challenges
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are due to the nature of the data captured in the practice ditine, with the primary goal
being the provision of clinical care and not computationabieling.

This chapter provides a review of relevant works in temp@asoning in biomedicine.
The advantages of methods and techniques described ingbesthtion over these works
will be described in later sections. A description of thej@ng temporal modeling toolkit

developed as part of this research is presented on the Proprsitep].

2.1 Temporal Representation and Reasoning Defined

Temporal representation denotes the formal methods ustdittiure and express time
in a logical and computable manner. This is done with a waoéformal constructs to
denote time and temporal relationships between events.

Temporal reasoning denotes the modeling of causal or exf@gnrelationships be-
tween different variables or events, and the ability to mteftiture events or to explain
past events. However, some authors use the term ‘temp@sbmang’ to denote what
is described as ‘temporal representation’ in this diserta This ambiguity becomes

especially difficult to distinguish in the context of tempblogic as described below.

2.2 Temporal Representation

A computable model of time is critical for problems in the fiedical domain such
as diagnosis, prognosis, prediction of future events,amgilon of past medical events,
recognition of trends, continuous monitoring and contsgatiotemporal modeling of
epidemics, and so on. The need for a computable model of tmsealso been well
recognized in areas such as robotics, intelligent agelatsnmg of future actions, financial
analysis and projections, modeling of weather and climete, Many formalisms for
modeling time have been developed by various authors. &p#aiabase constructs and
temporal query languages have also been developed to stdrguery temporal data.
Temporal logic can then be applied to the data to answer igussif a temporal nature or

to detect any inconsistencies in the temporal data.
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2.2.1 Various Attributes of Time
Time can be modeled in a variety of ways depending on the doarad the nature of

the available data. Some of the more common formalisms aeided below.

2.2.1.1 Absolute and Relative Time

Time can be defined as a process that happens on its own, wibluy&vents attached
to points of time at which they occur and periods of time ovéicl they hold. This
absolute notion of time stems from the idea that time is aepetident dimension over
which things exist and events occur. A relative notion ofdidiscounts the importance
of time by itself, and describes the relevance of time by @xgressing the universe of
interest to be made of various events that are temporatye@#i6, 47]. An example of the
former would be a model of time in the universe, whereas amei@of the latter would be
the human perception of time in terms of events that are gbdeiFrom a computational
modeling perspective, both models of time are possible, lemé been described by
various authors. Temporal representation systems havetek that implement either
of these models or a combination of the two, and temporaloreag techniques that

accommodate either of these models are availdBle[

2.2.1.2 Implicit and Explicit Time

A medical record may provide the time during which an evempesaed either im-
plicitly by relating it to other events, or explicitly by spié/ing the time when an event
occurred. The medical record may say ‘the patient had crestaiter running uphill’
or ‘the patient had chest pain around 7PM on Monday evenihgplicit time models
require further analysis before they can be fit into a tempoadel of events. Storing
clinical data in temporal databases becomes especialiighar cases of discontinuous or
disjoint interval data such as ‘the patient had chest paiarwhoff for several years while
he was smoking and after he quit’. Words such as ‘beforetefgfor ‘during’ are used
to capture the temporal events in relation to one anothétrerahan capture the calendar
date and time at or during which these events occurred. Hempécit and explicit time
models are closely related to relative and absolute timeatsptespectively. Explicit time

models capture time on its own, rather than modeling it im&of events that happen
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in the system. Explicit time models may be point-based,rialebased, or based on a

combination of the two.

2.2.1.3 Discrete and Continuous Time

A temporal model may also be modeled as a sequence of diswetes that happen
at points of time, or as a sequence of processes that occtineounsly and overlap or
meet one anothetB]. For example, a patient’s heart rhythm can change from abrm
sinus rhythm to ventricular fibrillation, provided the gudarity of time is in the order
of minutes. On the other hand, the serum troponin levels @tmpt recovering from an
acute myocardial infarction changes continuously oveetivhen measured with the same
granularity of time. A continuous time model is also knowrsadense time modelf).
Both Situation Calculus and Event Calculus models desgribh&ection2.2.2can model
discrete changes well, but they do not lend well to modelimgtiouous changes. With
these models, it is not possible to accurately describe iablarof interest at a point
of time between two discrete events or measurements, thoergdin methods to repre-
sent continuous events with Situation Calcub@] and Event Calculu§[l] have been
described. Some physiologic models based on mathematjaatiens try to model such
continuous processddj]. Several authors have described a combination of logseta
models with mathematical equation-based mo&]s[Though probabilistic models such
as Dynamic Bayesian Networks mathematically can be pravemtk with varying gran-
ularities of time, currently available learning and infece algorithms require time to be
modeled as a discrete quantity to perform tractable legraia inference with large DBN
modelsP1, 53, 54.

2.2.1.4 Bounded and Unbounded Time

Bounded and unbounded temporal models denote whethemtieeatxis is finite or
infinite. Almost all temporal reasoning problems in bionoagke assume a finite model of
time. They attempt to model the temporal system and to mada@igiions or explanations
over a finite period of time in the future or the past. Howevegctable learning and
inference is possible in probabilistic temporal networkghveequences of unbounded

lengths by applying parameter tying through detection ofvedence classe$¥§|.
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2.2.2 Temporal Logic Ontologies and Formalisms

Among the many formalisms for representing temporal irtgoas in a system, Situ-
ation Calculus and Event Calculus are the ones most widetiesd and adopted. Tech-
niques such as Situation Calculus and Event Calculus abasaning with implicit time
models, and to an extent, explicit time models. Both are-@irder logic formalisms that
are used to express the state, actions, and changes in msyBtey are also useful to
solve temporal constraint satisfaction problems and tdipt¢he future state of a system
or to explain the past state.

Situation Calculus (SC) models the system in termsitfations which describe
the entire state of the universe at a given instance of time,variousactionsthat are
possible given the situation. This first-order-based logas first described by McCarthy
and Haye$}6]. Both possible scenarios (e.g., the patient’s serum gkeige 50 mg/dl,
encountered in hypoglycemic patients), and hypothetitahsons (e.g., the patient’s
serum glucose is 2mg/dl, which is not seen in live human [®iage considered, even
though the state of the universe (e.g., neurological andiaarfunctions of the patient)
is not completely defined in hypothetical situations. A sktfloentsprovide known
information about a given situation, whether possible qudtgetical. For example, we
may have one fluemlucose(s}hat expressestie patient’s serum glucose during situation
s, and another fluent that provides composite knowledge siscthe patient cannot be
alive in a situation s when the serum glucose is 2 mg/dlset of all allowedactions
along with the corresponding resulting situations are @efifor the given situation. A
knowledge of all possible situations, fluents, and actigrediequate to describe the state
of the given system and all possible outcomes by using fad+dogic b7, 56, 58].

Event Calculus (EC) is a logic-programming framework idtroed by Kowalski and
Sergotp9]. Event Calculus describes a temporal system in terneventsandproperties
Properties are fluents that hold true between the eventsniiate and terminate them.
Event Calculus provides a simpler model of a system by onlgetiog known events
and properties without the knowledge of the entire univerfsmterest. Various events
and properties can be represented along a time-axis agtayarallel and overlapping
timelines. These timelines all start and end at specifictsyamd hold various properties

throughout the timeline. The timelines may be continuowdigjoint, and maintain causal
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temporal relationships between them, with cause precetmgffect.

In contrast, Situation Calculus aims to model all possilgemutations of the universe
of interest and transitions between them. On a time-axisaBon Calculus can be repre-
sented as a multidimensional branching and merging modean Ehe above discussion, it
can be seen that Situation Calculus lends itself bettedatioaal or implicit time models,
and Event Calculus lends well to both implicit (relativephdaexplicit (absolute) time
models.

In addition to Situation Calculus and Event Calculus, otheéhors have described for-
malisms such afeatures and fluentermalism (Sandewall¥{Q], fluent calculugHolldobler
and Thielscherfi1, 62], and other%3, 64).

2.2.3 Temporal Constraint Representation and Satisfactio

Various forms and qualitative and quantitative formalisans available to represent
temporal constraints. Reasoning about temporal constiamlves whether a set of
variables (objects, fluents, states, etc.) exist to sagigfiyen constraint, and choosing the
most probable temporal relationship between these vasdobjects, fluents, etc.). The
most popular qualitative formalisms to represent tempmyaktraints are Interval Algebra
(Allen)[48], Point Algebra (Vilain and Kautz§[5], and otherp6]. These formalisms
denote temporal constraints using relationships such efer®, ‘after’, ‘during’, ‘at’,
and so on. Many algorithms are available for performingeaasy using these constraint
representationsf/, 68, 69|, and a detailed survey of these algorithms is presentetn [

Allen’s Interval Algebra uses thirteen different relatstips to denote temporal con-
straints between two intervals. These relationshipsbafere meets overlaps starts
during, finishes along with the inverses of these six relationships, andrétegtionship
equal48]. These are illustrated in Figur21 For example, the interval inflammation
may start the interval pain, and inflammation may havéefore-inverseelationship to
infection.

Vilain and Kautz's Point Algebra denotes temporal constsausing points in time
rather than intervals of time. Point Algebra uses disjurdiof three basic relationships,
< (before),= (at the same time), and (after). From these three, seven vectors are

then formed>, <, =, >=, <=, <> (not at the same time), and=> (not known).
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A before B L A
B after A

oo}

A mecets B
B met by A

>
oy

A overlaps B I A /
B overlapped by A ' B 1

A starts B
B started by A

oo}

A during B . f A i .
B contains A f B 1

>

A ends B .
B ended by A ' B

T >

A equals B

Figure 2.1: Allen’s Interval Algebra

Addition and multiplication logic between these vectors gnren defined. The truth tables
for addition and multiplication for the vectors used in gailgebra are then describ&8.
Addition is used to combine two different measures of refahips between two points.
Multiplication is used to find the relationships between twants, given their separate
relationships with a third point. For example, additionlveé used to find the relation-
ship between infection and sepsis, if we know that infectibways precedes sepsis, and
infection does not occur simultaneously as sepsis. If wenkti@at infection precedes
sepsis, and sepsis precedes severe sepsis, we can usdicatiliipto determine that
infection precedes severe sepsis. However, vector algii®s not answer all possible
combinations of vector additions and multiplicatiod|[ For example, if we know that
infection precedes inflammation, and infection precedes, ghis information alone is
insufficient to answer the temporal relationship betwedanmmation and pain.
Quantitative formalisms for temporal constraint repréagon have also been describ@étl|
72]. A well-known guantitative algorithm is the Distance Alga (Dechter, Mieri, and

Pearl)[71]. Distance Algebra denotes the values of various entities tme using both
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unary and binary constraints, to capture both point- anerval-based temporal data. A
unary constraint denotes the value of an entity at a speafitt ;n time. A binary con-
straint denotes the value of the entity between two pointsne. Interactions of various
constraints have been described for Distance Algebra. &aeer is referred to7fl] for

a detailed description. Combinations of qualitative andmiiiative temporal constraint
representation and solving have also been desciiBe@df, 75]. A detailed overview of

temporal logic and constraint formalisms are presentediitao and Montanarig].

2.2.4 Temporal Databases and Query Languages

Data storage and retrieval mechanisms become necessargriotgmporal data easily
for applying temporal logic-based operations on them. Mamyporal databases are
enhancements to well-known database technologies suckedsmsied, hierarchical, or
relational database systems. The temporal query languagesften extensions to the
Structural Query Language (SQL) to support temporal geerie

Database formalisms to support temporal data use poirmtEbassinterval-based on-
tologies of time to capture temporal semantic relationsimpclinical data. The earliest
example of a temporal database is the Time Oriented Datdbade) by Wiederhold et
al.[77] TOD is a file-based database system designed to represenusing timestamps
for medical data in medical records. Another early systeatiibed timestamps for clinical
data are the Rx system by Bluig]. Kahn et al. describe Extended Temporal Network
(ETNET), an object-oriented database system that captemgsoral relationships for the
ONCOCIN decision support syste#y. Pinciroli et al. describe some limitations of
relational databases in representing temporal data, @pbpe an object-oriented database
model to support temporal data representa86[

The well-known examples of temporal query languages arensins to the Struc-
tured Query Language (SQL) to support queries with a tenpatare. SQL does not
provide a simple way to formulate temporal queries, and irequcomplex date-time
comparisons to manually create temporal queBifs[Hence, various authors proposed
extensions to the SQL standard to support temporal quereaporal query formalisms
support queries such as ‘retrieve events that happene@éetwhen the patient had chest

pain and was admitted to the emergency department’, ‘vetegents since the patient was
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diagnosed with diabetes mellitus’, and so on. Das et al.rdes€hronusd?], and other
extensions to SQL to support temporal queries, and thescefeness to support clinical
decision supporg3, 84, 82]. Combi et al. describe GCH-OSQL and S-WATCH-QL, two
extensions to SQL to support temporal queries in clinicaliaptionsB5, 86]. Snodgrass
et al. describe TSQL2, a feature-rich extension to SQL tgsttgemporal querie8[/].
The draft version of the upcoming ISO SQL3 standard (the newesion of the current
SQL standard) included temporal extensions to the SQL krasv®QL/Temporal, but the

extension has since been withdra®h[8§].

2.3 Overview of Temporal Reasoning

As described in SectioR.1, the term ‘Temporal Reasoning’ is used in this dissertation
to denote the modeling of causal relationships across tand,inferring the state of a
system at any given point in time, including prediction diuite events or explanation of
past events. Temporal reasoning is an essential part afiolsegy treatment, and prognosis
in clinical medicine. The task of temporal reasoning is perfed by human experts as
an implicit part of the clinical care delivery process. Eamnde-based medicine (EBM)
constructs such as clinical protocols and guidelines atgicitly use temporal reasoning
as part of a supervised decision support process. Clineabkobn making is inherently
uncertain, due to difficulties in measuring the system umd@sideration, uncertainties
in eliciting these measurements, the large number of ictieia disease processes and
clinical manifestations, and due to an incomplete undedstey of the interactions as
well as the individual disease processes themselves. Tahmgasoning becomes harder
given these circumstances, compared to well-studied buptex domains where these
techniques have been applied with a higher degree of sycedsas continuous speech
recognition, and autonomous agent modeling.

The understanding and prediction of clinical events by huexgerts becomes difficult
for rapidly changing systems such as serum glucose contiblirssulin dosing in the
ICU, especially when the data are incomplete. Computetaegboral reasoning becomes
desirable in these cases. Many methods of temporal reagtiave been attempted in
clinical medicine. The accuracy of temporal reasoning ddpéoth on accurate modeling

and meaningful data preparation, as shown in Chapter 3. isnctiapter, we describe
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various modeling techniques that are applicable to tentpeasoning in the biomedical

domain.

2.3.1 Temporal Reasoning Techniques

Both qualitative and quantitative methods have been siuttiesolve temporal rea-
soning problems. Qualitative methods include rule-bakedye-based, and logic-based
methodsB9, 90]. Qualitative methods are closely related to logical folismas of time
described in Sectiord.2.2 and2.2.3

Quantitative Temporal reasoning techniques vary fromith@le difference equations
models, to differential equation-based models, regrassiodels, to the more complex
probabilistic models such as Bayesian models, and patemwgnition models such as
Artificial Neural Networks. The terms ‘time series analysénd ‘time series prediction’
are more popular with regression-based and similar modsds in financial analysis
and econometrics. Detailed descriptions of mathematicadets for temporal analysis
and prediction are provided by Box et 8l], Brockwell and Davis§2], Hamilton[93],
and Kedem and Fokian@f]. These works describe regression-based models including
auto-regressive moving average (ARMA), logistic regssKalman filter, and similar
methods for models involving continuous as well as nomindl@dinal discrete variables.
Support Vector Machines (SVM) have also been used in terhpeazoning in recent
timesP5, 96, 97].

Artificial Neural Networks also prove to applicable for sioly temporal reasoning and
prediction problemd8, 99, 100. They have been applied in several domains including
financial analysis, agent modeling, and biomedicine. H@awredue to the increasing
emphasis on evidence-based medicine, Artificial NeuraMyets are not as well accepted
in medicine as regression or probabilistic models becabislieetr ‘black box’ nature in
their inability to explain their reasonint1, 102 28].

Probabilistic methods such as Bayesian analysis haveitnaally been used for static
models, or models whose variables have a static value. Hidlfierkov Models and
Dynamic Bayesian models are becoming increasingly popaolsolve temporal problems

in the biomedical domain. A description of these methodsasiped in Sectior?.4.
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2.4 Probabilistic Methods in Temporal Reasoning

Probabilistic methods used in temporal reasoning inclugleelnic Bayesian Networks
(DBN), Hidden Markov Models (HMM), Kalman Filters, PartyaObserved Markov De-
cision Processes (POMDP), and Limited Memory Influence fiag (LIMID). All the
latter models can be described as specializations of Dyn&ayesian Networks. All
of these models use the Bayes theorem and the Markov projpermodel conditional
probabilities both within a given instance of time as welbasr a period of time. Hence,
we briefly describe Bayesian probabilities and the Markapprty before describing the

probabilistic models mentioned above.

2.4.1 Bayes Theorem

Bayes theorem describes the conditional probabilitiesiftérént stochastic random
variables in a probabilistic model. A stochastic varialsl®mne that takes a value from a
stochastic or probabilistic space, and its value is expess a probability distribution
over a set or range of possible values, in contrast with amatéstic variable whose value
can be known exactly.

A Naive Bayesian model is the simplest instantiation of tlag&s theorem. A Naive
Bayesian model assumes strong conditional independenaedre various independent
variables that are related to a single dependent variableexample, cough and fever can
be modeled as independent variables that predict pneumoraaNaive Bayesian model,
the three variables, cough, fever, and elevated white btetd @WBC) counts are assumed
to be conditionally independent of each other, and the poisgiof other diagnoses is not
considered unless they are mutually exclusive and exvausti

In a Multimembership Bayesian model, different clinicadtigres can be modeled to
be associated with different diseases, and each diseagesslered to be independent of
other diseases. However, this may not often be the case lvitbat models, and there are
often interactions between different groups of clinicattees and underlying illnesses.
Consideration of these interactions are often capturdukiclinical environment as differ-
ential diagnoses, given the history and clinical condittbthe patient’s illness. Bayesian
Networks (BN) overcome the limitations due to conditiommlependence assumptions in

the Multimembership Bayesian models, and allow for complebabilistic interactions
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between various nodes in the model.
In its simplest form, often used in a Naive Bayesian model Bayes theorem relates

the conditional and marginal probabilities of two variabes

P(BJA) P(A)

PUAIB) = =55

(2.1)
where B has a nonzero probability.

For ease of explanation, we rewrite the equaBdim terms of a disease and its clinical
finding. We useD to denote the disease aatto denote the finding as shown in equation
2.2

P(F|D) P(D)

(2.2)

In equation2.2, P(D) represents the probability of disease in the general ptipola
also known as prevalence or prior probability or pretesbphility of the diseaseP(F'| D)
denotes the probability of a patient having the clinical iingdwhen the patient has the
diseaseP(F’) represents the probability of the finding in the general fen. P(D|F)
denotes the probability of a patient having a disease wherfitlding is present, also
known as posterior probability of the disease. From equoai@ we can see that the
posterior probability of a disease can be calculated frarmrior probability as well as the
evidence.

The law of total probability, also known as the expansioe ratates that
P(A) = Z P(A|B) P(B) (2.3)
B

Applying the law of total probability to the denominator iguation2.2, we can

express the probability of the finding as
P(F) = P(D)P(F|D)+ P(D) P(F|D) (2.4)

where D, and I’ are the complementary events of the disease and finding) pfe

nounced as ‘not D’, and ‘not F', respectively? denotes the absence of disease, And
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denotes the absence of the finding. Equafigthelps us to calculate the prior probability
of the finding from the observed variables on the right-hadd ef the equation.

By combining equation2.2and2.4, we get

P(F|D) P(D)
P(D) P(F|D) + P(D) P(F|D)

P(D|F) = (2.5)
The chain rule of probability describes the calculationhaf joint probability distribu-

tion of multiple variables using their conditional probiiies. The rule states that

n

P(Xlzl'i, ey Xn:xn) = HP(Xi:xi\Xi,lzxi,l, ey Xlzl'l) (26)

i=1

which can be written in simple terms as
P(A, B,C, D) = P(A|B,C,D) P(B|C,D) P(C|D) P(D) (2.7)

Combining the chain rule (equati@nm) with the law of total probability (equatic2. 3),
we can calculate the probability of a disease given mulfipings. The joint probability
assumes that different symptoms of a single disease ardtiooadly independent. In
reality, many symptoms of a given disease are correlatedeXample, in case of sepsis,
white blood cell (WBC) count and body temperature are cateel. However, Bayes

theorem proves to be fairly accurate for small violationsaiditional independence.

2.4.2 BN Structure, Conditional Independence and d-sepat@n
A Bayesian Network structure is expressed as a directediagyaph (DAG) where
the nodes represent the random variables in the model, aretities represent the condi-
tional dependencies between the random variables. If atdateedge connects node A to
node B, then node A is known as a parent of node B, and node Bvgrkas a child of node
A. The random variables may be continuous or discrete. Theuacategories of values
of discrete variables are known as their states. The aayatizre of the graph allows us to
decompose the joint probability distribution into its congent conditional probabilities

by applying the chain rule. Itis not possible to perform theg€omposition using the chain
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rule if the graph contains cycles. The order of decompasisdased on the conditional
interdependencies described in the graph structure. Tbeeps of decomposing the
joint probability distribution into its constituents is &wn as factorization. The ability
to factorize a DAG makes it easier to calculate the joint plolity distribution. The
junction tree algorithm takes advantage of this propertgdaywerting a highly connected
graph into a tree structure of cliques (known as a ‘junctree’), and then by performing
exact inference on the junction traéf3.

We use the Bronchitis and Lung Cancer network, which is aetudfghe popular Asia
network described by Lautitzen and Spiegelhalt@g], to describe Bayesian Network
structure and various properties of these models. The Astiaark has more random
variables than the Bronchitis and Lung Cancer network shiovigure2.2 The Bron-
chitis and Lung Cancer network illustrated in Fig@€ is used to explain the principles
of Bayesian conditional probability and d-separation. &mg, bronchitis, lung cancer,
dyspnea, and chest X-ray findings are represented by theddgibpbB, L, D, andC,
respectively.

A patient may develop bronchitis or lung cancer due to snpkirdue to other causes.
The probability of bronchitis and lung cancer in the gen@@ulation are denoted by
P(B),andP(L), the prevalence or prior or pretest probabilities of thesediseases. The
probability of lung cancer given the knowledge of the patgeesmoking habit is denoted
by P(L|S), and the probability of bronchitis when we know whether thégnt smokes
is denoted byP(B|S).

The two diseases, bronchitis and lung cancer, may causeeg¢phortness of breath),
and radiographic findings detected in a chest X-ray. The itondl probabilities of
these two clinical findings (dyspnea and chest X-ray findirgggen the knowledge of
each of these two diseases (bronchitis and lung cancer)es@ibed by the symbols
P(D|B, L), and P(C|B, L), respectively. The conditional probabilities of the dses
given the patient's smoking habit, and those of the clinfeatures given the diseases,
may be calculated from a large sample of cases and controisedSe of explanation,
all the variables in the above model are assumed to be birthgy-are either present or
absent. Chest X-ray findings are assumed to be either nomedrmrmal, for ease of

explanation.
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Figure 2.2: Bronchitis and lung cancer - a simple Bayesiatuvizik

If there weren variables in the model, then the joint probability disttiba will require
an order of2" probabilities. This is computationally expensive, and g@timization
method is required. It should be noted that the figkireloes not assume independence
between the variables. Let us consider a subgraph of Fig2e/hich consists of the
three nodes lung cancer (L), dyspnea (D), and chest X-ragrakalities (C). The joint

probability of these three nodes is expressed as

P(L,D,C) = P(L) P(D,C|L) (2.8)

If we assume that dyspnea and chest X-ray abnormalitiesaa@itmonally indepen-

dent, then equatio®.8 can be rewritten as

P(L,D,C) = P(L) P(D|L) P(C|L) (2.9)
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Hence, we see that conditional independence reduces thieemwiiterms in the joint
probability distribution fromO(2") to O(n). It must be noted that the edges in a Bayesian
Network do not define a strict cause-effect relationshipeylmay explain relationships
that are causal, logical, temporal, or conceptl@®. Nodes that are connected directly
to each other are necessarily conditionally dependent.dderynodes that are connected
indirectly may or may not be conditionally independent. Tmimciple of d-separation
provides the necessary and sufficient conditions for cadit independence in nodes
that are connected indirectly.

Consider the three graphs in Fig®e&. The figure shows three graphs in converging,
diverging, and sequential configurations. Two nodes in plgeae conditionally indepen-
dent if and only if they are d-separated. Two nodes A and C iraptgare d-separated, if

and only if there is a node B between them such that:
¢ the connection is sequential or diverging, and the interatechode B is known.
e the connection is converging, and neither B nor any descgrdd is known.

While we note that conditional independence reduces thepatational complexity of
Bayesian Networks, and that d-separation defines conditiodependence, an interesting
phenomenon becomes apparent in cases of converging nslaifie. The principle of
d-separation in the case of converging nodes can be deddnbierms of ‘explaining
away’. In graph 1 in Figur@.3, we note that variables A and C try to explain the variable
B. If variable B is known, then variables A and C share the axation for B, and hence
become conditionally dependent. For example, if dyspn@abeacaused by both lung
cancer and bronchitis, if we know whether the patient hapialga or not, the probability of
lung cancer decreases as the probability of bronchitiasas and vice versa, even if we
know that lung cancer and bronchitis are independent of etheh. If one were to consider
the relationship between these two diseases in the contelytspnea, it would lead one
to think that these diseases have an inverse relationskwpeba them. This spurious
conditional dependence and apparent selection bias isrkmowstatistics as Berkson’s
paradox]04]. Hence, the author of the Bayesian Network must be awarki®piaradox

of ‘explaining away’ while designing a graph with convergiadges.
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1
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Figure 2.3: d-separation in Directed Acyclic Graphs

2.4.3 Markov Property

A Markov process is a stochastic process where the futute staa random variable
does not depend on its past state if its present state is kntwnay be noted that this
property is similar to d-separation in case of sequentiaesp as described in Section
2.4.2 and Figure2.3. An example is shown in Figur24. A process which only depends
on its immediate previous state is known as a first-order Mlagrocess; one whose
present state depends on ktrevious states is known aské'order Markov process.
Hence, a Markov process is a memoryless or a short-memocphadtic process. A
Markov process that has a finite set of states is often knowa K&arkov chain. A
Markov process may model time as a discrete or continuoustiyia Discrete time
Markov processes are better defined, more tractable, and pogular than continuous
time Markov processes. Each time instance in a discreteNlar&ov process is known as
a timeslice.

Figure2.4 shows sepsis as a finite state discrete Markov process.slfighre, sepsis
has three states, namely no sepsis, sepsis, and septic 8amtkof the arrows in the figure
represents a transition from one state to another or td.it8akh transition is associated
with a transition probability. The figure represents sepsia first-order Markov process.

A stochastic process is a Markov process of ofdiéits present state is independent of

all but its immediately previouk states. In other words, for a first-order Markov process,

P(Xyn=y| Xs =15 Vs <t)=P(Xyopn =y | Xy = x4, Vh > 0), Vt,h > 0.
(2.10)

Similarly, for ak'* order Markov process,
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Figure 2.4: Sepsis as a Markov process

PXpn=y|Xs=25,Vs <) = P( Xy =y | Xiom = Tpm, Vm < k), Vt,h > 0.
(2.11)

In equation®.10 and2.11, the quantityP(X;,, = y | X; = ;) is known as the tran-
sition probability. A Markov process may be time-homogarsear time-nonhomogeneous.
These may be simply known as homogeneous and nonhomogenespesctively. For a
homogeneous Markov process, the transition probabilityafgiven stochastic variable
remains constant for all values of The transition probability of a nonhomogeneous
Markov random variable changes with time. In other wordsafhomogeneous Markov

random variable,

PXyn=y|Xi=2)=PXp=vy|Xo=2), Vt,h > 0. (2.12)

The equality assertion in equati@l2is not true for nonhomogenous Markov pro-

cesses. Many biological processes are modeled as Markoegses, and Markov pro-
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cesses have received good acceptance in modeling biorhgghitams for predicting prog-
noses and outcomes. Modeling biological processes as hemag Markov processes
allows parameter tying and a reduction in the number of patars required to describe
the joint probability for a Markov process with a large timgration. Modeling temporal
biological processes as homogenous Markov processeslpeoaccurate estimations even

for nonhomogenous Markov processes, as shown in Chapteig 3. a

2.4.4 Hidden Markov Models

A Hidden Markov Model (HMM) is the simplest type of a Dynamiaysian Network
(DBN) with one hidden node and one observed node. A HidderktMaviodel represents
the stochastic process in terms of a hidden variable and seradxd variable. In a Hidden
Markov Model, the hidden node is represented as a discratdbl@ whereas the observed
variable may be discrete or continuous. The hidden variedoh@ot be measured directly.
It is measured through a proxy variable known as the obseragdble. The observed
variable is related to the hidden variable through an ewms@r observation) probability.
The state transitions of the hidden variable are descrilyethé transition probability,
which denotes the Markov nature of the stochastic procdss piobabilistic relationships
between various states of sepsis (no sepsis, sepsis, shptik), and WBC count (low,
normal, high) are shown in Figu&5as a Hidden Markov Model. Transition probabilities
are denoted by,,, and observation probabilities are denotedfy

In Figures2.5, and2.6, sepsis is represented as a Hidden Markov Model. Squares de-
note discrete variables and circles denote continuouablas. Shaded nodes are observed
and clear nodes are hidden. Fig@r& denotes the state transitions, and various transition
and observation probabilities using a single timeslicegnshs, Figur@.6 represents the
same Hidden Markov Model using three timeslices. Furtheemn&igure2.5 denotes
the observed nodes as discrete nodes, whereas Rgbidenotes the observed nodes
as continuous nodes. The transition probability is dendigd, and the observation
probability is denoted by. The prior probabilities of the directed acyclic graph are
denoted byr. The tuple(r, a, b) denotes the parameters of the Hidden Markov Model.

Hidden Markov Models can be used to predict temporal as welhtemporal se-

guences. Atemporal sequences that lend well to Hidden Makkodels include gene
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Figure 2.5: Sepsis state transitions as a Hidden Markov Mode
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Figure 2.6: Sepsis Hidden Markov Model with 3 timeslices
and protein sequences. Hidden Markov Models are used @xgns1 speech recogni-
tion, machine translation, motion and gesture recognig@me sequence prediction, and
prediction of clinical outcomes and prognosis such as tuemirrence after treatment and
graft survival in transplant recipients. Complex Hiddenrkéer Models such as factorial

and hierarchical Hidden Markov Models can be built by extegdimple Hidden Markov

Models. Rabiner provides a good description of Hidden MatWoadels in [LOS.
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2.4.5 Kalman Filter Models

Kalman Filter Models (KFM), also known as linear dynamicgstems (LDS), or
state-space models (SSM), model the hidden node as a consimandom variable, in
contrast to a Hidden Markov Model. The transition and obeton functions are assumed
to be linear-Gaussian, and the system is assumed to beyj@satlissian. Instead of
conditional probability tables, the joint probability igsgressed as a probability density
function. Kalman Filters are used in problems such as trechkn aircraft or a projectile
using a radar, and in tracking financial parameters, siregdhables in these models are
continuous in nature, with linear relationships betweemthThe linear-Gaussian nature
of the probability functions necessitate that these fumstibe unimodal. However, this
is not always the case in real-world clinical systems, sicpradicting the outcome of a
patient treated for a myocardial infarction. It is also nosgible to model all the hidden
clinical variables as continuous variables, or the prdiigds as linear-Gaussian functions.
Due to these reasons, Kalman Filter models have not foumdfisignt acceptance in the
clinical domain except in signal processing domains suatlexdrocardiogram (ECG) or
imaging. A detailed description of Kalman Filter Modelsrfra Hidden Markov Model

perspective is presented ihdg, and [107].

2.4.6 Dynamic Bayesian Networks

Dynamic Bayesian Networks represent the state-space stamsyn terms of multiple
random variables with complex probabilistic interactio$e variables may change in
value over time as seen in temporal models, or due to seagli@nfiormation as seen
in genetic or proteomic sequences. The term ‘dynamic’ dentiat the values of the
variables change over time, and not that the model’s streidiself changes over time. In
other words, the system being modeled is a dynamic one, imainvith a static Bayesian
Network where the variables have a fixed value.

A more appropriate term is ‘Temporal Bayesian Networkst the term ‘Dynamic
Bayesian Networks’ has received wider acceptance and noprdarity. The probabilistic
interactions themselves follow Bayesian principles (8a.4.1), and the temporal prob-
abilistic relationships follow Bayesian principles as bl the Markov property (Section

2.4.3. Similar to Hidden Markov Models, Dynamic Bayesian Netksallow hidden and
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observed nodes. The variables in the model may be discretatinuous, and time itself
may be modeled as discrete or continuous as well. Howevetelmavith discrete random
variables and discrete time are more popular and are cotgmda#dy more tractable.
Dynamic Bayesian Networks can be considered as a gendi@tizaf Hidden Markov

Models and Kalman Filters. For a detailed description of &yt Bayesian Networks,
the reader is referred t@1].

This dissertation only considers Dynamic Bayesian Netwavkh discrete variables
and a discrete representation of time. A simplified struectifrthe Glucose-Insulin Model
used as one of the test cases for the research described idigkertation is shown in
Figure2.7 as a 2-timeslice model. The figure shows a screenshot of telnmoProjeny,
a tool developed as part of the research described in theerdzion.

This model shows glucose homeostasis modeled as a DBN witplea interactions
between various stochastic random variables both withthaanoss timeslices. Insulin
resistance, insulin secretion, and total insulin giventadelen nodes, and the rest are

observed nodes. All the variables are modeled as discreesno

2.4.7 Partially Observable Markov Decision Processes

A Markov Decision Process (MDP) is a Markov Chain (Sectibd.]) where some
variables denote input or action nodes whose values aredawby a user or an agent.
A Markov Decision Process assumes that the entire systerbsisreable to the agent.
However, this is hardly the case. For example, the patientl®egenous insulin secretion or
insulin resistance are not visible to a closed-loop insulinsion system or to the clinician
who calibrates the insulin dosage. In such cases, the atibased on an observed
variable which represents the state of a hidden variableh $wdels where the action
depends on the observed value of a noisy variable which dsmaoiother observed variable
are known as Partially Observable Markov Decision Proce@2@®MDP). MDPs are also
known as Completely Observable Markov Decision ProcesS€8MDP) to distinguish
them from POMDPs.

Automated systems that use POMDPs use a reward variabl@ctido to score past
actions and select future actions. In an MDP, the state ofys¢em is updated after

each action, since the system is completely observable. ROBIDP, the state of the
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hidden variable cannot be updated directly after each mcbat is expressed in terms
of a probability distribution (observation probability|Exact inference for POMDPSs is
intractable in many cases. However, approximate inferatgerithms are available to
perform inference with POMDPs. For a detailed descriptibAR@MDPs, please se&(8
109, 110.

2.4.8 Limited Memory Influence Diagrams

Partially Observable Markov Decision Processes (POMDByrag that all the past
data about a system are available. However, it is not alwagsiple to obtain all the
past information about a system. For example, a diabetiemtainay not have the old
medical records that provide a historical picture of herd@ylated Hemoglobin (HbAlc)
results. Hence, the model needs to work with limited memagyralax the ‘no forgetting’
requirement. Lauritzen and Nilsson introduce the concépitroited Memory Influence
Diagrams (LIMID) to model such systendq[1, 112. They also describe methods to
find locally optimal solutions and to investigate whethesrsit solutions will be globally
optimal[l1d. LIMIDs are a recent technique, and applications in theri@dical domain

are becoming availablgl3.

2.5 Inference and Learning with DBNs

Learning is the process by which the structure or the joiabgbility distributions of
the Dynamic Bayesian Network are discovered. After thecttine and parameters of a
model are known, the model can predict future events or expkast events, in a process
known as inference. Learning and inference in case of Dyoddayesian Networks
use algorithms similar to those used in Hidden Markov ModeIsIM), and Kalman
Filter Models. Many of these algorithms are temporal extamsof those used for static
Bayesian Networks. Learning and inference may be perfoionéde or offline. ‘Offline’
denotes that all the temporal data corresponding to the hamdealready available, and
learning or inference is done with this fixed batch of datanli@e’ denotes that learning or
inference is sequentially updated as new data become lalailRestrospective analysis
of clinical data are amenable to offline inference. Prospedlinical decision support

requires online inference. Learning may be done offline énenn both these cases, or by
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initial offline learning followed by periodic online updateThe discussion presented here
about learning and inference summarizes a detailed déscripf learning and inference

tasks, algorithms, and their optimizations by Kevin Muri2y.

2.5.1 Inference

Several inference tasks for Dynamic Bayesian Networks amgoral models in gen-
eral have been describ@d]. All these tasks involve calculating the marginal proliisibs
of variables of interest. These inference tasks are graficepresented in Figurg.g,
reproduced with permission from Kevin Murpiy4. In this figure, the shaded region
represents the time interval for which data are availablee $ymbolt represents the
current time,T" denotes the length of the sequengedenotes the hidden variable, and
Y denotes the observed variable. The hidden variablemits the observed variablé
described by the observation probability. The upward-pagarrow denotes the time
instance at which we want to perform the inference.

Filtering denotes the estimation of the present state ohitiden variable when the
past and present values of the observed variable are knoWwis. pfocess is known as
‘filtering’ because the observation probability is noisgdave filter the noise to estimate
the hidden variable.

Viterbi decoding denotes the estimation of the most likedguence of the states of
the hidden variable until the present time, if the valueshefdbserved variable up to the
present time are known.

Prediction denotes the estimation of the value of the hid@eiable at a future point
in time, if the values of the observed variable up to the aurtiene are known.

Smoothing denotes the process of estimation of the valubeohidden variable at
some point of time in the past, if the value of the observedhtsde up to the present time
is known. For example, we might want to know whether a patmight have had an
insulin overdose in the past if we have a record of the hisébiserum glucose values.
Smoothing may be performed online or offline.

Control is performed with Markov Decision Processes (MC#)d Partially Observ-
able Markov Decision Processes (POMDP) where the modealdes! input or control

variables. In these models, an observed variable is set &siged value, and the value
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of a sequence of input variables required to produce theatkesalues of the observed
variable are estimated using a reward function. In the césksorete nodes, control is
modeled as an influence diagram. Markov Decision Processesusside the scope of
this dissertation, and are not discussed further. For al@e@i@escription of inference with
POMDP, please sed1Q.

2.5.1.1 Exact Inference

A Dynamic Bayesian Network with only discrete nodes can ieveded into a Hidden
Markov Model, and the forwards-backwards algorithm can ppliad on it for exact
inferencel05. The algorithm is efficient as long as the state-space ivetlarge. For
large state-spaces, more efficient methods are requirenhti€r algorithm and interface
algorithm are two efficient algorithms for this case. Thenfrer algorithm considers the
current timeslice as the frontier which d-separates thefpa® the future, and performs
reasoningl1Y. The interface algorithm is an optimization that conssder.5 slice DBN
- it considers the second slice along with only the tempoaales from the first slice,
and then performs forwards-backwards passes to calchataarginal probabilitie2[l].
Similarly, a DBN with linear-Gaussian nodes can be conderito a Kalman filter model
and exact inference can be performed with the Kalman Fileaeti21].

An alternative approach that applies to all DBN models is\tagable elimination
technique. The DBN is first unrolled (expanded) for the neagsnumber of timeslices,
and then filtering and smoothing are performed on the urdgllection tree model[14.
Only two slices of the model need to be stored in the memoryiateato perform junction

tree inference.

2.5.1.2 Approximate Inference
Exact inference is slow for models with fully discrete nadksaddition, exact repre-
sentations of the state-space do not exist for some contsyamd mixed continuous and
discrete models. Approximate inference algorithms ardabe to perform inference in
these cases. Deterministic and stochastic approximateeimée algorithms are available.
Deterministic algorithms behave in a predictable fashwamere a given set of inputs

always produce the same outputs. For example, the simppesof a deterministic algo-
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rithm is a mathematical function. The popular determiniatgorithms for DBN inference
are the Boyen and Koller (BK) algorithrh] 7, Factored Frontier (FF) algorithrhl§, and
the Loopy Belief Propagation (LBP) algorith@{9. Murphy proves that the BK and FF
algorithms are special cases of the LBP algoritaih[ The BK algorithm approximates
the joint distribution over an interface as the product & tharginals of smaller terms.
However, BK performs exact inference for a two-slice DBNd decomes intractable
for very large state-spaces. The Factored Frontier algarfirovides a more aggressive
approximation than the BK algorithm. Approximate algomith known as the Moment
Matching (MM) algorithm[L2(, and Expectation Propagation (EP) algoritdi2]] are
available to perform filtering and smoothing in Kalman Fikéodels (DBN models which
are continuous, linear, and Gaussian). In cases of coniswnmdels that are nonlinear or
non-Gaussian or both, the deterministic approximate @mfeg algorithms are still appli-
cable if the posterior can be approximated by a GaussianeMenfor highly multimodal
posteriors, stochastic algorithms are more accurate. Bthr @screte and continuous
cases, there is insufficient knowledge about the accurathyeadeterministic approximate
algorithms compared to the stochastic approximate algost

Stochastic algorithms do not provide fixed or predictablgots for a given input.
They are based on sampling techniques, and have many aggardser deterministic
algorithms. Both offline and online inference algorithme available. Offline methods
include Markov-Chain Monte Carlo (MCMC), with Gibbs sammgliand simulated anneal-
ing as special cases. Online methods use Particle FiltéAiRYy and several variations are
available. Stochastic approximate inference algorithmesapplicable to a wide variety
of models, namely discrete, continuous, or a mixture of We. tTheir state-space can
have variable size, and the model can change over time. Teeyuaranteed to give an
exact answer with an infinite number of cases. However, thessatile models come with
a performance hit. They are unsuitable for very large modelsith large amounts of
data. However, the speed limitation can be addressed by asiombination of exact and
stochastic inference algorithms. This is performed by gigixact inference on some of
the nodes, and then performing sampling on the rest, knoRaasBlackwellisation[22.
This can be combined with Particle Filtering, in a technignewn as Rao-Blackwellised

Particle Filtering. A combination of Rao-Blackwellisatiovith MCMC methods is also
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availablep1].

2.5.2 Learning
Bayesian Networks have the desirable property of learmiogy fevidence. Bayesian
Networks can learn both the network structure and the ciomdit probabilities. The
former is called structure learning and the latter is cgtlachmeter learning. The learning
algorithms for Dynamic Bayesian Networks are adaptatidrib@se for static Bayesian

Networks.

2.5.2.1 Expectation Maximization Algorithm

Clinical data are often incomplete due to the fact that nbtlatical observations
are recorded at all time points. Compared to data collegtionost other domains such
as weather forecasting, financial analysis, genetic oreproic sequencing, or speech
recognition, clinical practice is inherently a data-spaitemain. A clinician may order a
lab test on a given day, and may not repeat the test until 8terlgj physical examination,
or acuity of illness warrants repeating the test. Even gaygixamination findings are not
performed at every time instance unless necessary. Hercaged algorithms that can
learn the parameters or the structure of the model usingspiata sets.

We begin by describing the Expectation Maximization (EMjaalthm, one of the
frequently used algorithms for both parameter and stredearning in both static as well
as Dynamic Bayesian Networks that can handle data sets wsthng datal23. The EM
algorithm is traditionally used for parameter learninghvgparse data. The EM algorithm
internally implements a variety of inference algorithmgast of the parameter learning
process, and the choice of this inference algorithm can beseshmanually based on the
model.

The EM algorithm is an iterative hill climbing algorithm wiia two-step process, an
expectation (E) step and a maximization (M) step. In the etgt®n step, the nodes with
missing values are filled in based on the values of the obdamedes and the current
values of the parameters. In the maximization step, thenpetexs are recalculated using
the filled in values as if they were observed values. The kgJihood of the parameters

given the model and the data are calculated after eachigerat the E and the M steps.
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This is known as the expected log likelihood, which serves asirrogate for the log
likelihood, since the log likelihood cannot be calculaté@ctly due to missing data. This

process is repeated until convergence when the expectdidétigood is maximized.

2.5.2.2 Parameter Learning

Parameter learning in Dynamic Bayesian Networks is sinidnat in static Bayesian
Networks. Parameter learning may use either Bayesian iegsatvolving conditional
probabilities, or a frequentist approach using availabldence. Even if the frequentist
methods are used, the model may still be known as a ‘Bayesiadel because inference
using this model involves Bayesian methods. The parametertemporal model are tied
across timeslices when the model is assumed to be a homagbtavkov process. This
reduces the number of parameters required to describe ttielpamd permits the model to
support training cases with variable or infinite time dwas (‘lengths’) for both learning

and inference.

2.5.2.3 Structure Learning

Two types of structure learning algorithms are availaldenaly constraint-based learn-
ing and score-based learning. Constraint-based learnegto find a model structure
that satisfies a set of predefined constraints. Score-baseding uses predetermined
scores for specific network substructures to find the straatfithe complete model that
maximizes the score.

Structure learning involves learning both the intersliod antraslice structures. In-
traslice structure learning is similar to that with stati@yBsian Networks. The intraslice
connections must form a directed acyclic graph. Once iltesonnections are learned,
learning interslice connections becomes a variable-8efeproblem, where the parents
of nodes in timesliceé must be chosen for timeslige— 1. For fully observed models
with complete data, a variety of structure learning aldons are available. In cases with
missing data and partial observability, structure leggnimDynamic Bayesian Networks
becomes intractable.

Structure learning algorithms are available, but are netg$ tractable. Structure

learning uses inference as a subprocess, and a variety evende algorithms can be
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employed which affect both the accuracy and tractabilitystiicture learning algorithm
based on the EM algorithm, known as the Structural EM (SEMprthm, has been
described[24, 125. Attempts are being made to apply the structural EM albaond to
learn the structure of temporal models with sparse or ngssatal 26, though successful
implementations are not yet available.

Structure learning need not be a fully automated procegss Bfthe structure or the
entire structure can be manually defined using domain krdyyeleand the best structure
can be chosen from these predefined models using the stuearning algorithms. All
the models in the experiments described in this dissentdiaml their structure manually

defined using clinical literature.

2.6 Challenges in Temporal Reasoning

The process of temporal reasoning is met with a variety ofl@hges due to the
nature of the temporal reasoning task, the nature of the atadapreparing them in an
appropriate way, the limitations of the temporal reasommeghods, lack of feature-rich
and user-friendly toolkits, and the nature of the medicahdm itself. These challenges
have impacted the application of temporal reasoning iniggrend in the medical domain
in particular. The adoption of probabilistic and other temgd reasoning methods in
medicine severely lags behind many other domains. We eutlie main reasons that

impact the adoption of temporal reasoning methods in thacakdomain.

2.6.1 Missing Data Problem
As described in Sectio®.5.2.1 medical practice is a very data sparse domain. Clinical

practice does not require the measurement of all variablkiastances of time. Different

data elements are measured at different frequencies agdaig based on the nature of
these variables, their past values, and the clinical camddf the patient. Most data are
also not measured at constant intervals. The interval legtweriodic measurements of
the same variable fluctuates due to a variety of factors,lgpndse to human causes. Phys-
iological parameters such as heart rate and blood presanreecmeasured continuously
with electronic devices. However, a large number of clihateservations are recorded by

human experts and cannot be automated or measured corgipuou
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Temporal probabilistic models work well if all the data araidable at all points in
time, and if the time points are evenly spaced. Such evideaoeot be provided by
most medical data. The alternative is to develop modelsyihgns, and data preparation
techniques that support missing data, data being colledtedrious points in time, and

with variable intervals.

2.6.2 Granularity of Time

The frequency of data collection varies depending on theraatf the patient’s illness,
the patient’s clinical condition, and the medical servideeve the patient is treated. The
vital signs (heart rate, respiratory rate, blood pressare)often measured at 15-minute
intervals in the ICU. For critically ill patients, the serugtucose is measured at 2-hour
intervals in the ICU. However, for patients who are not catiy ill or who are admitted to
regular (non-ICU) medical or surgical wards, the vital signay be collected at 12-hour
or 24-hour intervals. Parameters such as serum glucosé@er laboratory tests may not
be performed every day.

The values of different clinical variables hold true forfdient durations of time,
depending on both the nature of the variable itself and tinecal condition of the patient.
For example, serum glucose fluctuates significantly everonmal healthy individuals
depending on their food intake. Serum glucose fluctuategteater degree in individuals
with diabetes mellitus, and in those who are critically Berum glucose measurements
do not hold true for more than a few hours, and are hence meghstir2-hour intervals
in the ICU, and are often measured once or many times a dayatetit patients who
are not acutely ill. However, HbAlc values do not fluctuaf@aly and provide a moving
average of the glucose control status of the patient. Thdsésto the fact that the average
lifespan of the red blood cells (RBC) is about 120-days, dpdagylation of hemoglobin
is an irreversible process that requires constant expdswerum glucose, and is directly
proportional to the level of serum glucose over 4 to 12 weklenice, the value of HbAlc
will hold true for a longer period of time compared to the \&abf serum glucose.

Similar variations in measurement of data and validity & theasured data are ob-
served with all clinical data elements. The granularity iofe both in terms of mea-

surement of data, and the validity of measured data, int@d@omplexities in building a
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temporal model that explains these data.

2.6.3 Temporal Data Aggregation
From Section2.6.1 and2.6.2 we see that clinical data are measured at variable

intervals of time, and each observation is valid for vagatdirations of time. We also
encounter cases where multiple measurements are made witiven interval of time,
either because the previous measurement was not avaitatbie tlinician who made the
second measurement, or the clinician wanted to confirm tbeigus measurement. In
some cases, clinical data are just lost due to human or etectfactors. This leads to
issues in cleaning and preprocessing the data to convetbiti suitable format that can
be used by a temporal reasoning system. These difficultiss additional challenges to
applying temporal reasoning in medicine. Temporal dataegggion and data preparation
are explained in the context of a detailed temporal datagregjon framework in Section
3.1

2.6.4 Challenges with Dynamic Bayesian Networks
In addition to challenges due to the nature of the medicalalopand the nature of
the clinical data themselves, there are additional chgélemposed due to the requirements
and limitations of the temporal reasoning methods and igdes. Challenges posed due
to the constraints of Dynamic Bayesian Network methods aonbrtiques are described

below.

2.6.4.1 Higher Order Markov Processes

Many Dynamic Bayesian Network toolkits assume that theesysbeing designed
involves first-order Markov processes. This is rarely theecwith clinical processes.
Different clinical processes in a system may have diffetemtporal orders. For example,
serum glucose may only depend on the feeding and insulirgeatata over a short period
of time in the past. However, serum HbAlc depends on serunog&ifor a long period of
time in the past. Itis hard to estimate current HbAlc valuegia HbAlc value measured

3 months ago, and just the latest serum glucose value.
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2.6.4.2 Structure Learning Problems

Dynamic Bayesian Networks require a causal or explanatiougtsire for the DAG
model. The graph structure may be described based on mdtkcature, or discovered
from available data, or by a combination of the two. Des@ipbdf biological processes
in medical literature are not easy to capture in a DynamiceBan Network. The hidden
nodes in a model are not easily understood from the medteaature. One would need
to combine literature from medicine, pathology, physigiogiochemistry, pharmacol-
ogy, and so on before the structure of the model along withidden nodes becomes
apparent. This is a very imprecise process. Clinical pracguidelines are often not
suitable for modeling in a probabilistic network. This ateis demonstrated in Chapter 5
while comparing different models created by the author &gljot sepsis in the emergency
department.

Temporal structure learning algorithms have various htoins described in Section
2.5.2 These limitations, combined with the imprecise nature eflical knowledge, make

structure learning a significant challenge to temporaloe#g in medicine.

2.7 Relevant Works Involving DBNs in Medicine
We present a comprehensive overview of works involving terafreasoning in medicine

that are relevant to the methods and experiments descnid@didissertation. In spite of
the various challenges involving temporal reasoning inicied, many works involving
temporal analysis and time-series prediction have beelnspheld. These works use a vari-
ety of techniques, from rule-based, regression-basedieun@l network-based techniques
on one end, to probabilistic techniques such as Markov Mpdéhtic Bayesian Networks,
and Dynamic Bayesian Networks on the other end. They invpteblems on a short
timescale such as prediction of the serum glucose, to a lorgstale such as prediction
of cancer survival and transplant graft survival. Some grpents involve simulated data,
whereas some experiments use real clinical data. Expetsni@rolving simulated data
can be used to validate the methods, whereas experimemtsimy real data serve as
validation and proofs of concepts of these methods’ abititgnswer clinical problems.
In this section, we only include works involving temporal deting and prediction in the

biomedical domain. Temporal representation, temporalietes, and temporal query



43

languages are not discussed.

Dynamic Bayesian Networks have been applied in medicinesarasmall number of
cases. Some of these studies have used simulated data,raadave used very limited
amounts of real clinical data. Very few studies have usegkldata sets comprised of real
patient data. However, other temporal probabilistic modetechniques such as Hidden
Markov Models have been used extensively in medicine. Qttateling techniques such
as artificial neural networks and logistic regression metale also been used in medicine
extensively. In December 2009, a PubMed query for ‘Hiddemkda Models’ returned
1,443 results, whereas ‘Dynamic Bayesian Networks’ retdd6 results. Less than 10 of
these 46 articles were relevant to clinical medicine, asd tean 5 involved large patient
data sets. Atemporal models using Bayesian Networks hawebalen used in medicine to
a large extent, with some using special nodes in a static hhodepresent temporal data.

One of the earliest works describing the use of Dynamic BayeNetworks in the
biomedical domain is by Andreassen et al. in 19%L[ Andreassen et al. described a
combination of Dynamic Bayesian Networks and differenéiguations to model serum
glucose and insulin dosing, and applied it to a data set stingiof 12 patients with
insulin-dependent diabetes mellitus using Hugin, a pegary Bayesian modeling toolkit.
Dagum and Galper described a Dynamic Bayesian Network ntogekdict sleep apnea
in a single patient using a large data set in 1927]. Hernando et al. described DIAB-
NET, a temporal causal probabilistic network model used aemqualitative recommen-
dations on insulin therapy for patients with gestationabeies, in 199828. Hernando
et al. have since described an evaluation of the DIABNETesystising the data of 9
patients]29.

Leong has described a temporal probabilistic modelingdagg named DynaMol
and theoretical models of various clinical scena@€]. Provan and Clarke described
DYNASTY, a system that enables construction of dynamic temalgrobabilistic models
using some clinical examples31].

Galan et al. described NasoNet, a temporal probabilisttesy for modeling the
spread of nasopharyngeal can@8d]. Sebastiani et al. have described a study about using
Dynamic Bayesian Networks to detect influenza in a pediatriergency departmea3.

Xiang et al. describe miniTUBA, a web-based system that Dyemmic Bayesian Net-
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work models for clinical decision suppot4. Dynamic Bayesian Networks have been
used by van Gerven et al. to predict the prognosis of patigitiiscarcinoid tumors[35.
Charitos et al. have described a Dynamic Bayesian Netwatesyto predict ventilator
associated pneumonia using a data set of 20 pati8t@s[ Langmead has described
the use of Dynamic Bayesian Networks to make treatment idesisusing simulated
data of patients with sepsis}7]. Peelen et al. have described a Dynamic Bayesian
Network model for predicting the outcome of patients witlpse in an intensive care
unit[13g. This study used Dynamic Bayesian Networks with a largea dt (2,271
patients), demonstrating successful use of DBN in a clirsieting.

In this dissertation, we describe the theoretical fourmeti challenges, methods to
overcome the challenges, and a toolkit to enable the apiolicaf DBN in medicine.
We hope that this detailed discussion will help to improwe tise of Dynamic Bayesian

Networks in medicine.



CHAPTER 3

MATERIALS AND METHODS

The experiments described in this dissertation involveeiss\steps to perform tem-
poral modeling and prediction, starting with clinical d&tam the electronic record. The
temporal reasoning methods described in this dissertaterapplied to two test cases -
insulin dosing and glucose homeostasis in the ICU, and gadgtiction of sepsis in the
emergency department. Multiple models were built and experts were performed for
each of these two test-cases. This chapter describes tleeag@materials and methods
that are common to both test-cases and their respectivelsnadd experiments. The
specific materials, methods, and results of each model gperiexent pertaining to the
two test-cases are described in further detail in Chapté@rsdlin-glucose test-case), and
5 (sepsis test-case).

The data first need to be transformed and abstracted intorefcuitable for temporal
reasoning, while minimizing the loss of information duehege transformations. Various
temporal models need to be constructed that reflect thesissad decision processes
being modeled. The tools and algorithms involved in the exrpents are described in
brief. The computational complexity and predictive accyraf various models and data

preparation methods are briefly described, with furtheaitiein Chapters 4 and 5.

3.1 Data Preparation
The accuracy of predictions performed by a machine learsyisgem depends on the
quality of data provided to the system. The input data ddterthe accuracy of the
model and the technique, because many machine learningnsydearn the structure
of the model, the parameters, or both from the training déta.shown in Chapters 4
and 5, the quality of training data can determine the sucoe$silure of a model or a

technique. Machine learning systems such as Dynamic Batyétworks cannot directly
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use the raw data obtained from an electronic medical reg@i@s. The data need to be
preprocessed and transformed into an appropriate fornfatebthey can be used by a
Dynamic Bayesian Network-based model or system.

Probabilistic machine learning models require data in d@icoous or discrete format.
They cannot use unstructured or free-text data. The modsisrithed in this dissertation
require discrete data. Clinical data from various souresedrio be compiled together
and transformed into a time-stamped, discretized formtt &ycommon structure for use
by automated tools. In this section, we describe the natlitbeosource data, and the
transformations and preprocessing that need to be pertobefere the data are usable by

our Dynamic Bayesian Network models.

3.1.1 Data Aggregation and Abstraction

Clinical data are generated by a variety of sources in atyaokeformats. Clinician
(physician or nurse) charting provides the history and@dinexamination data in a partly
structured and partly free-text format. Patients’ histisrpften free-text, although some
electronic medical record systems encode these data usicgused data entry in the form
of type-ahead prompts or pick lists. Vital signs are gemgaptured using a structured
data entry form and encoded using biomedical terminologies

Laboratory data are usually encoded using a clinical testogy, which may be a
standard terminology such as Logical Observation Identf¥eemes and Codes (LOINC),
or a local terminology developed by the specific laboratbgta generated by automated
monitoring devices are often numeric data wrapped in a st@messaging syntax such as
Health Level Seven (HL7) messages. Medication orders geiead using structured data
entry forms using standard terminologies as well. The nagin order and administration
records often use a fine-grained information model, whithwal the drug’s brand name,
physical form, route of administration, ingredients, sg#s of various ingredients, the
dosage and frequency of administration, and the time ofraadd administration to be
queried from the clinical database. A data mining method thkes advantage of the
information models used to capture, encode using clinerahinologies, and store these
structured data in the database is highly desirable, bugtisurrently available. A tookit

with this capability would allow the researcher to extragiposite clinical information
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using the same structure with which it was recorded by threatéin.

Structured and encoded electronic data are not availabédl inospitals. Even in
hospitals with advanced electronic medical record systeriarge portion of data are
available only on paper records. These records may be stamuestored as images in
the electronic medical record system, which do not suppddraated querying and data
retrieval.

At Intermountain Healthcare's LDS Hospital in Salt LakeyCthe data are captured
and stored in a well-structured form using an informatiordei@nd an enterprise refer-
ence terminology. The original electronic medical recoystem, HELP (Health Evalu-
ation through Logical Processing) encodes the data usirigrarbhical data dictionary
known as PTXT (Pointer to text), and stores the data in the MBatabase in mostly
encoded and partly free-text formd§9. Intermountain Healthcare also has a newer
electronic medical record system known as HELP2, which maslahierarchical concept-
based Healthcare Data Dictionary (HDD). The HELP2 data tmed in a Clinical Data
Repository (CDR). Both the HDD and CDR were developed inatmlation with 3M
Health Information System$4Q.

The data from HELP and HELP2 are highly structured and erttadeng biomedical
terminologies, and are usable for clinical documentatgwaell as decision support. How-
ever, all the data required for the temporal probabilistaxels needed to be aggregated
and abstracted before they could be used by the temporamiegstools. The proce-
dures described in this section apply to both the insuluegée and the sepsis prediction
models. The differences in data preparation between thestest-cases are noted where

appropriate.

3.1.1.1 Data Aggregation

The data required for both the insulin-glucose models aaddpsis prediction models
were available in encoded form in the clinical data repogitblowever, different clinical
variables required for these models were in disparate dagatables, and were encoded in
different formats. For example, the patient’'s age, datedafiasion, and admit diagnosis
were in the clinical encounters table. The laboratory tesmkre all available in a single

laboratory results table, and the vital signs were all atdd in another table. Medication



48

administration data were in a separate table. To train aigiresl probabilistic model,
medication administration was more appropriate than thdicagon order data, since the
medication orders were not always in agreement with the midtered medications.

The raw clinical data were available in an entity-timeihtite-value table format.
Each row in the laboratory or vital signs table had colummidying the patient and
the date/time-stamp of the observation. The tables hadiadai columns that specified
the data element and the value of the data element. The nambutas, or the value
of the observation may be contained in a single column eachp@ad across a group
of columns. If the observation is a simple data element sgcbeaum glucose, it may
be contained in a single column. For cases where the dateeeteronveys complex
information such as the serum glucose measured 1 hour dft@nsstration of a glucose
oral dose, performed as part of a glucose tolerance testjrtfarmation would need to
be postcoordinated from multiple pieces of observatiomil&rly, simple data elements
such as binary or nominal values were stored in a single aolt#owever, numeric data
elements were spread between multiple columns, with theevial one column and the
units of measure in another. An analysis of the PTXT ternaggland the Healthcare
Data Dictionary were performed and compared with the daieedtin the clinical data
repository to combine multiple pieces of clinical data frdifferent rows or columns in
the database table to reconstitute meaningful piecesro€aliinformation.

A denormalized table format was required to support the teaipeasoning tools used
in our experiments. The denormalized table had two colurepsesenting the patient
identifier and the date/time identifier, respectively. Hearethe remaining columns were
not in the attribute-value format as in the source data sablée denormalized table had
multiple additional columns, each representing a singkammgful reconstituted clinical
variable. For example, in the case of the insulin-glucosdets) in addition to the patient
identifier and date/time identifier columns, there were @oldal columns representing the
serum glucose, current insulin IV drip rate, current insiM bolus dose, current dextrose
dosage, patient’s diabetes status, etc.

Different clinical variables were measured with differ&iguency and periodicity in
the clinical setting. For example, for critically ill paties in the ICU, vital signs were

measured once every 15 minutes to an hour, and the serumsglwas measured once



49

every 2 hours. Lab tests were performed less often. Dataeglesnthat were measured
together did not have the same date/time-stamp in some.cékeg were often 1 to 15
minutes apart. Hence, storing them in the denormalizeé fafolduced several rows where
only a handful of columns were populated. For each patieafijnst loaded the timestamp
and the values of the most numerous clinical variable irdatdnormalized table. We then
selected the second most numerous clinical variable. lhaétient identifier and timestamp
of a given row of this second clinical variable existed indle@ormalized table, we updated
the row in the denormalized table to store the value of thieisé clinical variable in its
own column. If the combination of the patient identifier ahd timestamp did not exist,
then a new row was inserted into the denormalized table Wwigwvalue. This process was
repeated for all clinical variables in the data set.

3.1.1.2 Temporal Abstraction

At the end of the data aggregation step, all the data reftpthia clinical variables in
the model are stored in a single denormalized data table.datepresent in this table
are used to train and test the model. However, the data radifes Oy a few minutes
to a few hours, and produce a very sparse data table. A vergesjpiata table when
used for training necessitates the use of the expectatiotinmmation (EM) algorithm
which increases the computational expense of the modekwdducing the accuracy of
the learned parameters. However, the data can be tempoaalsolidated to pick one
representative data point per time interval for the smefie® interval represented in the
model, which will reduce the need for imputing missing valusing the EM algorithm.

The smallest time interval to be supported by the model isdbas both the nature of
the model and the availability of data. In the case of thelinsglucose data set, the serum
glucose is measured and the insulin dose is adjusted onaggdewery 2-hour interval
for critically ill patients in the ICU under the current insudosing protocol (eProtocol-
insulin) in use at LDS Hospital. Hence, a good starting puaias to abstract the data to
select one representative measurement for each clinicabla in the model for every
2 hours to coincide with serum glucose and the insulin drip measurements. In the
case of the sepsis data set, which consisted of both casesaindls from the emergency

department, the model consisted mostly of vital signs, twhvere available once every



50

hour in most cases. So, a timeslice interval of 1 hour waseshés the sepsis models,
and a representative data point was chosen for each clivaciable during every 1-hour
interval.

In both the insulin-glucose and sepsis prediction datg sstencountered both mul-
tiple instances and no instances of various clinical véembbserved during each chosen
timeslice interval. Missing data can mean a variety of thirthe data were not measured,
measured and then lost, or they were uneventful and in litletive expected values given
the prior measurements, and hence not recorded in this daseay also mean that a
value was measured on paper or was stored in a different pdreelectronic medical
record system, and hence unavailable at the time of dataapn. Several approaches
have been discussed to define and overcome the missing dédampr Little and Rubin
classify reasons for missing data as missing but completaigndom (MCAR), missing
at random (MAR), and not missing at random (NMARJ[]. Lin discusses methods for
dealing with missing data which are applicable to the cahstomain, including creating
a discrete state for the clinical variable to represent imgsdata, or creating a separate
proxy variable for each clinical variable to represent migslatafl42[143.

We did not apply special treatment for missing data in oureexpents. Bayes Net
Toolbox (BNT), which implemented all the algorithms we needo train and test the
models, supported parameter learning with missing valsegyuhe Expectation Maxi-
mization algorithm. Hence, we were able to leave missingeslas null values in the
database, and we designed our temporal modeling toolkijeRy, to support null values
from the database and to call the expectation maximizatgorighms in BNT.

However, we had to choose a representative data point &alivariable had multiple
observations in a given timeslice interval. A clinician ofadoratory may measure or
record multiple observations for a clinical variable duateariety of reasons. Common
reasons for clinicians to make multiple measurements declcases where the initial
measurement is not available, either due to a temporaryabidy issue at the point
and time of care, or because the initial measurement wasgomemtly lost. Permanent
loss of the data also leads to the missing data problem; hewévis cause is often
indistinguishable due to the sparse nature of clinical .détaother common reason for

a duplicate measurement is to verify and confirm a suspidiatial measurement. The
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cause of the duplicate measurement cannot be inferred witfidence unless the reason
is recorded by the person or the system that recorded thedtgmeasurement, which is
typically not done. Hence, we decided to treat all the dagpicdata with equal validity,
and apply automated techniques to select a representatiagdint.

Approaches to choosing the representative data point fariable if multiple data
points are available in a temporal data set are discusseditiyug authors under the
context of temporal data clusteririgf4[149[146. Some simple approaches for temporal
data sampling include selecting the average, or seledimgibst abnormal measurement.
We decided to select the average, since this process cartdreaically applied for all
numerical variables. We did not encounter multiple measergs for non-numeric values
in our data set.

At the end of this process, we had a temporally abstractedrdelized table, with
one data point or a null value for each variable per timegieepatient. The numerical
data were continuous in this data set. The data can be usk fotm with models and
algorithms that support continuous data. However, we desigpur models with entirely
discrete nodes, since models with discrete nodes are catignally less expensive and
more tractable than models with continuous data. Hence, Wesecto discretize the

continuous variables in our data set.

3.1.2 Data Discretization
Several data discretization methods are available toetigercontinuous data for use
with machine learning algorithms. We discuss some of theplgmand more popular
ones, as well as the more complex but less popular ones. Wealiglsuss how different
discretization techniques affected the accuracy andatbdity of our models. A detailed

review of various discretization techniques is presentdd47], and [148.

3.1.2.1 Data Clustering and Visualization

It is helpful to evaluate the distribution of the continuaasiables before we choose
the discretization technique and any manually selectedfybints. We used histograms
and cluster analysis to find clusters and study the distdbudf each continuous variable

individually. Visually discernible multiple clusteringas not found for the continuous
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variables, and many continuous variables formed one ldugter each with few outliers.

We describe various discretization algorithms that weeslutis our experiments. Equal
frequency discretization was not used in our experimentisisbdiscussed here for com-
prehensiveness and its appropriateness. Discretizatisperformed before the data were
divided into training and testing data sets.

3.1.2.2 Equal Interval Discretization

Equal width or equal interval is the most basic method amar@us discretization
methods. The range of the numerical values of the variablatefest is divided into
the desired number of intervals or bins by dividing the raegeally. The width of each
interval, in other words, the difference between the lowet the upper bounds, was the
same for all the bins. We used equal interval discretizaticcombination with domain-
based discretization for one of the models for the insulucgse test case, as described
below in Sectior3.1.2.4 Outliers and extreme values were included into the firsast |
interval, such as ‘20 and above’. The impact of including dldiers into the first and
last bins was not studied. We present the intervals chosendulin drip rate using equal
interval discretization in Tabl8.1

Table 3.1: Equal interval discretization for insulin drage

| State numbet Insulin drip rate in U/hr (left-open right-closed intersj|
0-2

[ec] e E N

2.

4 -

6 -

8-10
10-12
12-14
14-16
16-18
18-20

20 and above

P
R Bl © o N o gl &w| N -
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3.1.2.3 Equal Frequency Discretization

A popular alternative to equal interval discretizationggial frequency discretization.
In this method, the observed range of the numerical variabtiivided into a desired
number of bins such that all bins have the same number of wdits@ns. The widths of
different bins vary, in contrast with equal frequency dediation. The cut-off points for
the intervals in equal frequency discretization changetas the data set. This will lead
to intervals that are sensitive to each data set, and to nmoidee data. The model will
require retraining and validation for every new data se¢ tuchanging intervals. Hence,
we did not use equal frequency discretization in our expenits.

Hulst compares the error rate between two experiments peefd using a Dynamic
Bayesian Network model trained and tested using equalviaitend equal frequency
discretization techniqueb#9. The model involved glucose homeostasis and insulin dos-
ing using simulated data of 1,000 patients with no missing generated using a noisy
simulation algorithm. The tests demonstrated that equeival discretization produced a
smaller error rate than equal frequency distribution, arttle, equal interval discretization
technique was more accurate in this experiment.

However, it must be noted that Hulst's experiment used verglistimeslice size (15
minutes) compared to our insulin-glucose models (2 hoars},Hulst’'s experiments had
no missing data, in addition to using simulated data instdaéal clinical data. Hence,

the applicability of Hulst’s findings to our models cannotdseertained.

3.1.2.4 Domain-based Discretization

We propose a novel discretization technique named ‘dorbased discretization’ for
discretizing clinical variables. The technique is callddrhain-based discretization’ be-
cause the discretization is based on clinical domain kndgéeabout the specific variable.
Most physiological parameters have their normal, high,landranges defined in clinical
literature. For example, serum glucose has very low, lowmad, high normal, high,
and very high values described as numerical ranges in alititerature. We used the
normal, high, low, very high, and very low range boundarieBred in clinical literature
to discretize various clinical variables for which such &mdgon is available. We modified

the ranges slightly to support the available range of datee Width of the bins became
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progressively wider as one moved further away from the nbrargge of a variable. For
example, for discretizing serum glucose, we used for therwats shown in Tabl8.2 by
applying domain-based discretization.

As shown in Table8.2, the width of the intervals was small in the normal range, and
became progressively wider as the serum glucose value nfovider away from the
normal range. The rationale behind this sliding scale isttieclinician would care about
small differences within and near the normal range, but diaot care about differences of
the same small magnitudes as the clinical parameter becaneenely high or extremely
low.

Domain-based discretization was performed for serum gkei¢or one of our insulin-
glucose models. For parameters that did not have clearlpetetiigh, low, or normal
ranges in medical literature, such as the insulin drip rate,used equal interval dis-

cretization for the same model. Thus, a combination of dorbased and equal interval

Table 3.2: Domain-based discretization intervals for seglucose

| State numbef Serum glucose in mg/dl Bin Width | High / low / normal |

1 0-20 20 :

2 20 -35 15 Very low

3 35-50 15 :

4 50 - 65 15 low

5 65 - 80 15 :

6 80-90 10 Normal

7 90-100 10 Normal

8 100 - 110 10 High normal
9 110-120 10

10 120-135 15 :

11 135-150 15 High

12 150-170 20

13 170 - 200 30

14 200 - 240 40

15 240 - 290 50 :

16 290 - 350 60 Very high
17 350 -420 70

18 420 - 500 80 :

19 500 - 600 100 Extremely high
20 600 and above undefined




55

discretization was used for different variables in one efékperiments with the insulin-
glucose model. This is referred to again in context of theeerpent in Chapter 4.
Training and testing the model with a combination of domaa&ised and equal interval
discretization took a significant amount of time and compuatemory, as described in
Chapter 4. We found that this combination of equal intermal domain-based discretiza-
tion produced results with poor accuracy, as shown in Chaptélence, we applied an

information content-based technique known as k-meanseting, described below.

3.1.2.5 K-means Clustering

K-means clustering is an algorithm invented by Lloyd forgmitode modulation (PCM)
in signal transmission in 1957 and published in 195#]. Pulse-code modulation is a
technique where an analog signal’s amplitude is sampleqifzirm intervals, and encoded
for transmission using a finite set of digital signals. Thepmse of the algorithm is to
divide a given number of observations iritalusters, where each observation belongs to
the cluster whose mean is nearest to the given observatiom alforithm serves to fit
symbols into a channel of widthwith minimal loss of information. The technique can be
used to cluster both scalar, continuous observations dssldimensional real vectors
composed of multiple observations.ifnumber ofd-dimensional real vectors need to be
classified intdk clusters, the problem can be exactly solve@im®+1/ogn) time.

We used the k-means clustering algorithm implemented ina[t&ld]. The algorithm
takesk, the desired number of clusters, as the input, and dividesrtput data into
k-clusters such that each observation is in the cluster e/nosan it is closest to. The
algorithm returns the boundaries of each cluster and tloe exte as output. We arbitrarily
performed k-means clustering for variables in the insglicose model witlk = 10, and
k = 15 clusters. If there was a significant decrease in the erreusihgk = 15 compared
to £ = 10, we used 15 clusters for the variable. Otherwise, we usedusecs.

We selected a smaller number of states with k-means clagtedmpared to the com-
bination of domain-based and equal interval discretiratibhis reduced the size of the
state-space, and hence the number of parameters and theitesionqeal complexity of
parameter learning. We found that the insulin-glucose nsqai®duced much higher ac-

curacy with the data set discretized by k-means clusteongpared to the combination of
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domain-based and equal interval discretization. The gl@control model using k-means
clustering where the model recommended the insulin dosagermed as well as the
current rule-based protocol, as explained in Chapter 4.

We also used k-means clustering for the first sepsis predictiodel, as shown in
Chapter 5. We found that the model was computationally esigenand the area under the
ROC curve attained by the model was around 0.7. Hence, werm@dbther discretization

techniqgues and we applied the Minimum Description LengtByiImodel.

3.1.2.6  Minimum Description Length Discretization

K-means clustering only considers the input data set andeuof clusters: used to
represent the input data. An inappropriate number of dsstdl yield poor clustering
and lead to loss of valuable information contained in theiirgata. The optimal number
of clusters is hard to determine without experimentatiothwiarious values of for
the given data set. Hence, we explored algorithms that preseformation content.
We found that the minimum description length (MDL) algontidescribed by Fayyad
and Irani (1993) finds the minimum number of clusters of thmutrvariable required to
describe the variation in the output varialdlg]. All the relationships in our models
were directed, hence, describing the variation in one bbeiasing variation in one or
more variables is straightforward. The variations in thiédecbn nodes can be explained in
terms of variation in parent nodes. Hence, the MDL algorideamed to be appropriate
for discretizing the variables in our models. The model vgdrl sorting and then cutting
the distribution of input values at specific cut-points treduce the class entropy of the
resulting classedp?.

We found that MDL discretization produced a much smaller benof discrete states
for most of the continuous variables in the sepsis model. glheose homeostatis exper-
iments were conducted a year before the sepsis experinamuotshe MDL algorithm was
not used at that time. The sepsis model trained and tested MHDL discretization also
completed training and testing in a smaller amount of timel, groduced higher accuracy
than the model that used k-means clustering. However, figsmodel structure was also
changed between the two experiments, and hence the impeoieae only to the MDL

algorithm was not determined.
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3.2 Creating, Training, and Testing the DBN Model

Creating a Dynamic Bayesian Model consisted of three stepéining the nodes,
defining the edges, and defining the states of the nodes. \&&dra tool named Projeny,
written in Java programming language, that allows the wserdate, train, and test a model
through a graphical authoring interface. Projeny is basedroopen-source tool named
Bayesian Network Tools in Java (BNJ) by Hsu et4d][ which appears to have ceased
developmentin 2004. Projeny allows the creation of noddsages, along with the states
of the nodes. Bayes Net Toolbox (BNT), an open-source Matlalibox by Murphy[L53,
is used to perform the learning and inference tasks for owlaiso BNT runs inside
Matlab, and requires the model and the data to be input angubusing the Matlab
scripting language. However, Matlab cannot be called frodaza application directly.
Hence, we used another open source library known as JMatiredted by Mulle43]
to call the Matlab engine from the Projeny Java applicatiBnojeny was developed as
part of this dissertation research, and has been releastt thre GPL (GNU General
Public License) version 2 open-source liced&d]. Matlab is a proprietary mathematical
toolkit published by Mathwork4[55. A user guide of Projeny is provided on the Projeny
websitel54. This section uses the insulin-glucose model illustratedrigure 3.1 to
describe the methods. The specific models used in variousriexgnts are described
in detail in Chapters 4 and 5.

BNT supports only Bayesian Networks with first-order Marlgrecesses modeled as
a two-timeslice Dynamic Bayesian Network. To comply witlsthmitation, the model
is created as a two-timeslice model in Projeny. The strectidirthe models used in all
the experiments described in this dissertation are basetborain knowledge gathered
from medical literature. Structure learning algorithme aot used. We first begin by
modeling the nodes in the DBN. We then define the states bas#teooutput from the
discretization algorithm. Finally, the edges are definedraklice edges are defined first,
followed by interslice edges. Projeny generates the cmmdit probability tables for all
the nodes based on their parents, and initializes them withes. For nodes without any
parents, probability tables reflecting their prior prolitibs are created and filled with

Zeroes.
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3.2.1 Training and Testing Data Sets

Separate training and testing data sets needed to be cr@&edraining data set was
used for parameter learning, and the testing data set wasfaisanference. A common
convention is to use two-thirds of the data set for trainarg] one-third of the data set for
testingfl5q. We took the discretized data set described in Sec3idn2 and selected
one-third of the anonymized patient identifiers (‘FakeMREt random. The data of
these patients constituted the testing data set. The ddteeatmaining two-thirds of
the patients constituted the training data set. The saneegure was performed for all
the experiments for both the glucose homeostasis and sapdils.

Cross-validation is a technique which involves repeatedpdiaig of the full data set,
with or without replacing previously derived data subsats the full data set. Different
training and testing data sets are derived during each sagnipération. The results
calculated with different samples are then compared. Grakgation helps to overcome
biases due to sampling errors, and is also very useful withlshata sets[56. All our
experiments had large sample sizes, as described in Chaptend 5. Hence, cross-

validation was not performed.

3.2.2 Equivalence Class and Parameter Tying

An equivalence class denotes the nodes which have the sdanoé garameters -
conditional probability tables in the case of our modelse Plarameters in this case are
said to be ‘tied’. Parameter tying is a benefit of the Markovparty by assuming the
model to be a homogeneous Markov chain, i.e., the conditproaabilities do not change
over time. If a given node in the first timeslice and its cohorthe second timeslice
have the same set of ancestors, then they are considerediriathie same equivalence
class; if not, they are then in different equivalence clasddence, for a model with
nodes per timeslice, the maximum number of parameters {fitomal probability tables)
to be learned i2n, which is the number of nodes in the two timeslices. Howeifer,
m nodes in the first timeslice are in the same equivalence @sgkeir cohorts in the
second timeslice, then the total parameters needed toildesbe model i2n — m,
since these nodes in the first and the second timeslices hawaine parameters. Figure

3.2 shows an insulin-glucose model with the equivalence ctag$entified. Different
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equivalence classes are shown using numbers with diffe@@ot schemes next to the
nodes. Nine nodes in the first timeslice and nine nodes indbersl timeslice are in the
same equivalence classes. As shown in the figure, this maedebmly2n — m = 11
equivalence classes.

During training and testing, Projeny automatically ursdhepeats the network struc-
ture) the DBN for as many timeslices as are in the currenepts$idata. The structure of
the nodes and edges are repeated, and the parametersi@@igitobability tables) are
shared from the second until the last timeslice. Hence, foodel witht timeslices anad:
nodes per timeslice, instead of havimgparameters, we had — m parameters to learn.
This reduces the number of parameters to be learned by a fafctowhich reduces the
computational complexity for learning. For example, if thedel in Figure3.2were to be
trained on data sets with 10 timeslices, without paramgtegf 100 parameters must be
learned. With parameter tying, the model above has only iivalgnce classes. Hence,
only 11 parameters need to be learned whether the data s&d lmsasnore timeslices.

In addition to the reduction in complexity, parameter tyaigo helps to support train-
ing and testing data with an arbitrary number of timesli@eg] a data set where each
case (patient) has data with a different number of timesliCEhis provides support for
real clinical data where different patients have differemgths of stay, and hence data
sets of different temporal lengths. An alternative to tlppr@aach was described by Cho
and Haug using a sliding window model to tie the paramete@iaitly, and to support
models with an arbitrary number of timeslicéS[]. However, our approach provides a
more straightforward and explicit way to tie the parametBrsjeny identifies equivalence
classes and ties parameters automatically, and hencenatasi additional work on the

user’s part every time the model is modified.

3.2.3 Hidden and Observed Nodes
In the Hidden Markov Model paradigm, hidden nodes are thuestectinnot be observed
directly by an observer, and are estimated indirectly thhoanother proxy variable or
a combination of variables. In the DBN model, a hidden nodg iva estimated by
multiple observed nodes to which it is causally related.éxample, in the glucose-insulin

model described in FigurB.1, insulin secretion and insulin resistance are both hidden
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nodes. These two nodes describe physiological phenomeanitre iinsulin and glucose
metabolism and they cannot be measured directly. Howdwey,dan be estimated from
the observed nodes to which they are causally related, dimgjuthe patient’s diabetes
mellitus status, the serum glucose, and the insulin dosheopatient. They are easily
declared as hidden nodes through the data binding dialogie®, shown in Figur8.3,
When the data binding dialog box is opened, Projeny lists\imaes of all the nodes
in the first timeslice, and allows the user to select the agaalrolumn that provides the

data for this node. The user begins by connecting to the dagabThe user first selects

Data Binding I
MySGL Server Address:Port | 10.64.52.31:3306 | Matied
Create Matlab Metwork:

Username | dbn Password | Ty
Database I dbn j Connect I T Cpen Matlab Engine
Table Send DEM bo Matlab

3
et e |v_clucoata_tr>| o

Close Matlab Engine

?Sg@gﬁﬁm II"-.IE:'.-‘-.'ID j Time ID IREEDrdNLIm j

Seleck DEM Mode in the Left Column, whether it is Observed (checked)
or Hidden {unchecked) in the Middle Column, and the corresponding
Database field in the Right Calumn

Draw DEM in Matlab

Training Iterations
10

ElapsedTime v IhrEIapse

TypelDiabetes W ITypelDiahetes Train DEN

TypezDiabetes FITypeEDiahetes
Test Daka Inpuk

|T_slucpata_soo v
Test Dakta Cukpuk
|cLucDaTA_ouTHPE > |

InsulinResistance [ I

InsulinSecretion [ I

SerumiGlucase W ISerum_glucl:nse

Test DEM

InsulinBolus v IInsuIin_I:n:qus

InsulinDripR.ake v IInsuIin_u:Irip

Totallnsulingiven [ I | Testing done

Ll Ll Lef L f Lef L L Led L) L

Dextrose v IDextruse

Cancel | apply Arccepk

Figure 3.3: Projeny data binding dialog

I
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the table with the training data, and then the database c@uwmith the patient identifier
and the timeslice identifier. After this is done, the userc&sdahe observed nodes in the
pane at the bottom left, and chooses the database columeathi@tins the data for these
observed nodes from the pick list, which is prepopulateti tie names of all the database
columns in the table. The user leaves the check boxes unethdéok hidden nodes, and

does not select a database column to provide the trainirgsting data for these nodes.

3.2.4 Training the Model (Parameter Learning)

Projeny uses the two-timeslice DBN EM learning algorithnpiemented in BNT to
learn the parameters of the model. The Expectation Maximizalgorithm imputes
missing values in the training data set, and initializesghemeter learning algorithms
with the most likely data set given the model. The learniggathms calculate parameters
for each equivalence class and store the results in d-dioredsconditional probability
tables. Hered = 1+ numparents, where numparents is the number of parents of a given
node in the DBN. These probability tables can be saved todh®ater’s file system as
an XML file or a Matlab workspace file using specific Matlab coamds. They can be

loaded into the Matlab engine in the future so that trainiegdhnot be repeated.

3.2.5 Testing the Model

After training is completed, three tables are selecteddstitig the model. These three
tables include one input table with the test data set, an@twout tables - one for the most
probable estimate, and one for the marginal probabilityriistion for each node that is
estimated using the inference algorithms. Currently, éhpjuses a junction-tree-based
DBN inference algorithm implemented in BNAJ]. Other inference algorithms are not
supported at present.

After selecting the input and two output tables, the infesealgorithm is run by
clicking the ‘Test’ button. The junction tree algorithm calates the marginal probability
distributions for any node whose data were not provided éntéist data set. This allows
the model to estimate the values of all the nodes that werknmetn in a single step. This
is an advantage of the DBN model over models such as regneasib neural networks

that have preset input and output variables. The DBN modteistall the nodes whose
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values are provided as the input data for a specific patiemt,estimates the marginal
distributions of all the nodes whose values were left blamd saves these to the output
table.

After completing the testing process, the expected valua given node may be

calculated from the marginal distributions using the folenu

wherex;is the midpoint of the interval of thé”state of the given node, angis the
calculated probability associated with tie state of this node, and is obtained from the
marginal probability distribution.E£'V is the expected value of the node of interest in a
timeslice of interest.

A common mode of testing the accuracy of the model is to hid@bkes of interest
at random from the test data set, and then estimating thkie wesing the model. The
model is made to calculate the probability distributionghe variables of interest. The
expected value of these variables can then be calculatedtfre probability distributions.
The actual and the estimated values can then be comparegl staiistical tests. This
technique is used in both the insulin-glucose models ansisamdels in our experiments.

Evaluation using this and other evaluation methods areepted in Chapters 4 and 5.



CHAPTER 4

TEST CASE 1: STRESS-INDUCED
HYPERGLYCEMIA IN THE ICU

Hyperglycemia (increase in blood glucose or serum glucbeeathe normal range) is
commonly seen in patients who are critically ill, and aredesineated in the Intensive Care
Units (ICU). Intensive insulin therapy to maintain seruraggise within normal levels has
been shown to improve patient outcomes. We modeled glucosedstasis and insulin
dosing in the ICU using Dynamic Bayesian Networks. This ¢thiagiscusses the models,
the evaluation of their accuracy, and evaluation of thdetgaand efficacy compared to a

protocol that is currently being used to control serum ghedevels of patients in the ICU.

4.1 Overview
Hyperglycemia, in patients who are critically ill, is codsred to be a response to
stress, due to chemical mediators such as catecholamigeglacocorticoids that are
released by the body in response to acute stress caused lipéiss, and due to drugs
such as steroids, diuretics, and some antiviral drugs wdnieladministered as part of the
treatment. Hyperglycemia is seen in patients who are atigll, including those who

are not diabetic, due to these stress response mechaBgms|

4.1.1 Overview of the Problems
Hyperglycemia was once considered to be part of the bodymalresponse to stress.
However, several recent studies have shown that increasadchglucose levels further
worsen the patient’s condition and the outcomes, whergagaontrol of serum glucose
levels and maintaining them within the normal range impsowatcomes, and hence is
desired. The older treatment to achieve glucose contra idiminister insulin when

the serum glucose is greater than 215 mgl&g. A relatively newer intensive insulin
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therapy aims to maintain the patients’ serum glucose bet\88eand 110 mg/dL by ac-
tively adjusting the intravenous glucose drip and intraxeninsulin dosage with periodic
monitoring and adjustment once every 2 hours or [Esg[

In clinical trials involving critically ill patients, thaswho had intensive insulin therapy
demonstrated reduced mortality and morbidity compared pattients who had conven-
tional insulin therapyl59. However, a few studies have reported that patients udayg
intensive insulin therapy have slightly increased mastalue to hypoglycemidl6q. The
usefulness of intensive insulin therapy is currently debaty the medical communitygQ,
but the general consensus s that it reduces mortality amdichty of critically ill patients[34],
especially of those in surgical intensive ca@()[ 34].

Patients in the ICU are under continuous monitoring by ciams and their phys-
iological parameters are measured at regular, short migervConsidering the severe
mortality and morbidity associated with hyperglycemiaidgrcritical iliness, the im-
proved outcomes that can be achieved with good glucoseatpmind the rich avail-
ability of data in the ICU, this problem lends itself well toraputerized clinical care
protocols. Morris states that a clinical protocol must beéeguately explicit’ to reduce
interclinician variability during its applicatiodapl]. We posit that an adequately explicit
protocol will provide sufficient information to be implemed in a computer system and
execute without human intervention to find a solution. Hoevewdue to various com-
binations of comorbidities and their interactions, humaterpretation and intervention
is almost always requiretlfZ[163. Hence, a decision support system that helps the
clinicians to understand the patient’s condition easily amke better decisions is still
highly usefulfL62].

Several computerized and paper-based models have beemouseuhitor the serum
glucose and calculate the insulin dose. Two popular rugetgrotocols are the Yale
Insulin Infusion Protocoll64], a paper-based protocol developed at Yale University, and
eProtocol-insulin7], a computerized rule-based protocol developed at LDS Hdsp
Salt Lake City.
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4.1.2 Overview of the Experiments

We chose to model insulin dosing and glucose homeostasasesof stress induced
hyperglycemia in the ICU using a temporal probabilistic mlod he first objective of our
experiments is to test whether our models can predict thersgtucose and insulin dose
accurately in retrospective data using partial informaid the patients in the test data
set. This task is described as Viterbi Decoding in Sec@dnl Viterbi decoding is one
of the important inference tasks for the DBN, which estimdke values of the hidden (or
unknown) nodes given the values of observed (or known) nfsdesa given point in time
in the past until the current point in time. In this dissedat we call these experiments
‘Insulin and Glucose Estimation’ experiments, or simplgtifhation’ experiments.

After proving that the model can predict the past sequenseroim glucose and insulin
drip rates accurately, we wanted to test the ability of thedehdo control the serum
glucose of the patient within a normal range at a future paititne, by recommending an
appropriate insulin dose at the current point in time. Wégrer the fixed-lag smoothing
task described in Sectioh.5.1to recommend an insulin dose at a given point in time
to bring the serum glucose within normal range at a futuretpoi time. The glucose
dose recommended by the DBN model was compared to the gldossgerecommended
by eProtocol-insulin using a technique described by Wored.Et65 In this dissertation,
we call these models and experiments ‘Insulin Dose Recordateam’ experiments, or
simply ‘Recommendation’ experiments.

Both the Estimation and Recommendation experiments weferpgad with two dif-
ferent discretization techniques each. The two discrebizaechniques we used are a
combination of domain-based and equal interval discretizaand k-means clustering.
Table4.1lists the different discretization techniques and experita performed with the

‘stress-induced hyperglycemia in the ICU’ test case.

4.1.3 Data Set for the Experiments
The data for this test case were a subset of the eProtoadlrrtata of adult patients
collected during a 2-year period from January 2004 to De@rb05 at LDS Hospital.
Institutional Review Board (IRB) approval was obtainedhirJniversity of Utah and In-

termountain Healthcare. The anonymized data set was mowg Kathy Sward, and had
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Table 4.1: Stress-induced hyperglycemia in the ICU - expenits

Discretization technique
Objective of Experiment Domain-based + k-means clustering
equal interval
1. Glucose and Insulin Experiment 1 Experiment 2
Estimation
2. Insulin Dose Experiment 3 Experiment 4
Recommendation

been used for a previous research project on computerizetinrdosing protocold[6§.
The data set contained the data of patients treated in thekSAoauma, Respiratory
Intensive Care Unit (STRICU) at LDS Hospital. Patients wéhs than three timeslices
had their data excluded from the training and test data sietse Projeny requires at least
three timeslices of data for each patient. Temporal dat®6fpatients were included for
the experiments.

The data were then temporally aggregated and consolidateéescribed in Section
3.1.1 Variables listed in Tabld.2 were included for the four experiments. They were
discretized using the two techniques listed in Table and are described in further detalil

in context of each experiment in this chapter.

4.1.4 Model Structure
The model structure was derived using domain knowledge tilamcal literature. The
structure of the model is shown in Figutel. The patient’s type 1 and type 2 diabetes mel-

litus statuses were included in the model, as they deterthepatient’s insulin secretion

Table 4.2: Data elements selected for hyperglycemia exyeris

| Variable description | Acronym |
Anonymized patient identifier FakeMRN
Timestamp Timestamp
Serum Glucose measurement SerGluc
Dextrose IV bolus dose Dextrose
Insulin bolus dose (in U) InsulinBolus
Insulin drip rate (in Units/hr) InsulinDrip
Patient’s Type 1 diabetes mellitus statusTypelDM
Patient’s Type 2 diabetes mellitus statusType2DM
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and sensitivity to a certain extent even in patients who gpefglycemic due to severe
illness. We modeled the patient’s insulin secretion andlingesistance as hidden nodes,
with type 1 and type 2 diabetes mellitus statuses as thgeotise intraslice parents. They
cannot be measured directly in a patient, but they can bmatd from other observed
variables. We made an intraslice connection from insulereten to total insulin given.
The node ‘total insulin given’ represents the total amountnsulin introduced into the
patient’s bloodstream in a given timeslice. It is compodezhologenous insulin secretion,
insulin bolus dose, and intravenous (1V) insulin drip. ®m@ndogenous insulin secretion
is a hidden variable, total insulin given is also modeled dsdalen variable, with the
three aforementioned parents. Insulin bolus dose andimBuldrip rate are observed
nodes. Intraslice connections are made between serumsglwsal insulin bolus dose,
and between serum glucose and insulin drip rate, becausmgbkin bolus doses are
determined by the serum glucose level. An intraslice cotmeavas also made from
serum glucose to dextrose IV bolus dose. Interslice cororectvere made to serum
glucose in the second timeslice, from three nodes - dextrotse insulin given, and insulin
resistance, in the first timeslice. All the nodes were matlelediscrete variables. Time
was modeled as discrete as well, using timeslices that whaigs wide. The choice of
2-hour wide timeslices was made to support the eProtosuilim data which contained
data that were measured once every 2 hours.

In Figure 4.1, square or rectangular nodes indicate discrete variab@mtinuous
variables, which are indicated by circular nodes by conweentare not included in this
model. Clear nodes indicate hidden variables and shadeesnodicate observed vari-
ables. The figure shows a two-timeslice Dynamic Bayesianvbigt with intraslice and
interslice connections. The equivalence classes areifigeintvith numbers next to each
node. The two timeslice model has 11 equivalence classelesasibed in Sectiof.2.2
The parameters are tied between nodes in different tinesslit the same equivalence
class. In our data set, all patients had more than two ticessliln such cases, the model
will be unrolled to as many timeslices as are found in thego&s data by the learning and
inference algorithms used. The equivalence class of a giede will be the same from
the second until the last timeslice. For some nodes, thevalguice classes will be the

same from the first until the last timeslice, if their cohant¢he first and second timeslices
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are in the same equivalence class. As described in Sexi@od this reduces the number
of parameters required to describe the model by a facter wheret is the number of
timeslices in a given patient’s data set.

All the models used in the four experiments in this chapteetthe same nodes and
edges. However, the states of the nodes are different degeod the discretization
technique used. The learning and inference questions, hsasvéhe data preparation

steps, are different. These are described in the followaagjens.

4.2 Objective 1: Glucose and Insulin Estimation

The first task we performed to validate our methods, tools, t&chniques was to
confirm that our learning and algorithms work with good aecyr In other words, we
hypothesized that our models can estimate a given patikistserical values of serum
glucose and insulin drip rate with good accuracy. For the éwperiments performed to
validate this objective, we hypothesize that there is naiB@ant difference between the
actual and the predicted historical values of both seruroagle and insulin drip rate.

We divided the data at random with two-thirds of the pati@ssigned to the training
data set, and the remaining one-third of patients assigndtkettest data set. The model
was first discretized using a combination of domain-baseblemual interval discretiza-
tion. The model did not show very high accuracy, as desciitb&ection4.2.1 Hence, we
tried k-means discretization as an alternative discretizaapproach, which is described
in Section4.2.2

4.2.1 Experiment 1: Domain-based and Equal interval
Discretization
The objective of this experiment was to test whether the DBddl@eh can accurately
predict the historical values of serum glucose and insulip cte, using a data set pre-

pared using a combination of domain-based and equal intdisaetization.

4.2.1.1 Materials and Methods
4.2.1.1.1 Data preparation. The normal range for several physiological variables is

described in medical literature. It is possible to definerthamal, high, very high, low,



72

and very low ranges for serum glucose using clinical liten@tor by interviewing the
clinical domain experts. We used clinical literature toigethese values. After this was
performed, the states for serum glucose for the DBN modet wefined. To approximate
the clinical decision making process by human experts, tickhvof the intervals were
narrow in the normal range for serum glucose, and were pssialy widened as the
serum glucose value moved further away from the normal rambese are illustrated in
Table3.2

Elapsed Time was discretized using equal interval distagtin, with a bin width of
2 hours. Insulin drip rate could not be stratified into lowghniand normal ranges from
clinical literature. Hence, it was discretized using equsdrval discretization with a bin
width of 2 U/hour. Both type 1 and type 2 diabetes mellitusera@nary nodes, with two
states: absent and present. Both insulin secretion antinmesistance were binary nodes
as well, with two states: normal and impaired. Dextrose deag an ordinal variable,
which denoted various bolus doses of glucose administereavenously. We did not
have access to the patients’ severity of illness, nutri(erteral and parenteral feeding),
or medication information. Hence, these variables weranmatided in the model, even
though they were very relevant.

4.2.1.1.2 Learning.The training data set had the data of 508 patients, havin@8%0
timeslices each. Expectation-Maximization-based patarearning was used to learn
the parameters, with a maximum number of iterations set t 1Dhe EM algorithm
converged after 19 iterations and took about 5 hours. We assmmputer with a 3GHz
quad-core Intel Xeon processor with 8GB of RAM, running Mhatland Projeny. The
database was hosted on a separate server. Mgaishows the log likelihood for training
for the first 10 iterations, showing the Expectation Maxiatian algorithm getting close
to convergence.

4.2.1.1.3 Inference.The test data set had the data of 287 patients, having 3 to 366
timeslices each. Testing was done by randomly removing 20%bserved values of
serum glucose and insulin drip rate. If a patient had a daiaf $¢imeslicest/5 instances
each of serum glucose and insulin drip rate were removed bygihg their values to
null values in the database. This process was done for aighents in the test data set.

These removed values were then estimated by using a jurtctieibased exact inference
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algorithm. The inference algorithm calculated marginabability distributions for all
the values that were null in the input data. The inferenceralyn took about 1 hour
to complete. From these probability distributions, theestpd values and their standard
deviations were calculated for these nodes of intereshgusie procedure described in
Section3.2.5

4.2.1.2 Results

The model was validated by comparing the expected valuesastd by the inference
algorithm for randomly removed serum glucose and insulip date values against their
actual values. Correlation coefficients were calculate@ru® glucose was normally
distributed in both training and test data sets. Hence,dBaacorrelation coefficient is
a valid measure for this variable. However, insulin drigraad a skewed distribution, and
hence, Pearson correlation coefficient is not applicabpeaBnan correlation coefficient
was calculated for insulin drip rate. The correlation cagdfits are shown in Tabke 3.

The results from this experiment show that the model had taeglg correlation for
serum glucose and high correlation for insulin drip rate. 3\® plotted the difference
between the actual and predicted values of serum glucosmasulch drip rate in terms of
number of states, as shown in Figu#e8 and4.4. These figures show the high accuracy
of the model in estimating the clinical course of these pasiever time.

Figures4.3 and4.4 plot the number of states of difference between actual aad pr
dicted values on the X-axis. The Y-axis represents the nuwigases whose actual and
predicted values differed by the number of states on the iX-akhese two figures show

that the predicted values were within three states of theahealues in about 95% of cases

Table 4.3: Hyperglycemia experiment 1. Correlation coigfits.

Serum glucose estimation

Pearson’s correlation coefficient 0.810699
Spearman’s correlation coefficient 0.997237
Insulin drip rate estimation
Pearson’s correlation coefficient N/A*
Spearman’s correlation coefficient 0.999955

*Pearson’s correlation coefficient was not consideredrisulin Drip rate
because it was not normally distributed in training or tegtlata sets
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for both serum glucose and insulin drip rate. However, ofennoterest is the finding that
the serum glucose was predicted within 1 state of the acalakvn 63.7% of cases, and
the insulin drip rate was predicted within 1 state of the alctalue in 78.2% of cases, both

showing a high accuracy.

4.2.2 Experiment 2: K-means Clustering
We wanted to test whether the accuracy of the model can beiregiby using a dis-
cretization technique that preserved the informationeanbetter than the domain-based
or equal interval discretization techniques. Hence, wectetl the k-means clustering
technique, which discretizes the input data into a specifigdber of bins based on the

inherent clustering observed in the data. This techniqdessribed in detail in Chapter 3.

4.2.2.1 Materials and Methods
The nodes and the edges in the model were kept the same asia4&iy However, we

discretized all the continuous observed variables in thdehosing k-means clustering,
with k set to 10 and 15. We used the discretization producdd kvF 15 if the error rate
was much less than with k = 10. If there was not a significanticdn in error rate,
we used k = 10 bins. Learning and inference were performe@fsdy as mentioned in
Sectiord.2.1, using the same training and testing populations, albét different discrete
states due to the change in the discretization techniqugsedted values were calculated

using the same technique as in experiment 1.

4.2.2.2 Results

The inference algorithm calculated ttmarginal probability distributions (MPD)which
are the probabilities for various states of the estimatedbkes. The inference algorithm
also calculated the most likely state of each variable, kmagitsmost probable estimate
(MPE), based on its marginal probability distribution. The mostijable estimates for all
estimated variables of a patient chosen at random are showigure4.5. The variable
names shown at the top row in the figure correspond to the nowlsei matrices shown
in the figure. The first matrix namedvidenceshows the input data of the patient, with

each row representing a node in the model, and each columesesging a timeslice. The
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number in each cell in the matrix represents the discrete sfahe specific node in the
specific timeslice. It must be noted that the states are ntedbd®eginning at 1 (i.e., they
are not zero-indexed). The cells that are blank denoterditdden nodes or missing data.
The missing data may either denote true missing data, orateerdmoved at random for
estimation by the model as part of our experiment.

The matrix nameautmpein the figure denotes the results at the end of the inference.
The values of all the blank nodes were estimated by the inéeralgorithm. The figure
shows the most probable estimates.

We calculated the expected values and their standardadisons from the marginal
probability distributions, and we used these two measumesur statistical analyses. The
correlation coefficients for this experiment are shown ibl&4.4.

A comparison between Tablés3 and4.4 shows that k-means clustering produced
more accurate results than a combination of domain-basg@gunal interval discretiza-
tion. This difference is more pronounced in the case of therse objective: recommend-
ing insulin dose to maintain a normal serum glucose levelcdieed in Sectiod.3.

Figures4.6and4.7show the difference between the actual and predicted seucose
and insulin drip rates, respectively, in terms of numbertahdard deviations. The mean
and standard deviation of the actual serum glucose values W.6 mg/dL and 36.31
mg/dL, respectively. The mean and standard deviation afipied serum glucose values
were 111.992mg/dL and 29.822 mg/dL, respectively. The na@anstandard deviation of
the actual insulin drip rate values were 3.457 U/hour an@213/hour, respectively. The
mean and standard deviation of predicted insulin drip ratees were 3.415 U/hour and

0.735 U/hour, respectively.

Table 4.4: Hyperglycemia experiment 2. Correlation coigfits.

Serum glucose estimation

Pearson’s correlation coefficient 0.831984
Spearman’s correlation coefficient 0.996909
Insulin drip rate estimation
Pearson’s correlation coefficient N/A*
Spearman’s correlation coefficient 0.999995

*Pearson’s correlation coefficient was not consideredrisulin Drip rate
because it was not normally distributed in training or tegtilata sets




400

350

300

2.814)

250

200

150

Number of cases (n

1 T

0 T T T
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

Actual minus predicted serum glucose (in standard deviations)

Figure 4.6: Hyperglycemia experiment 2. Serum glucoseigot. predicted

450

400

8)

75
[
S

n=2,
W
=
[-=-}

(

[}
LA
=}

b2
[}
=}

Nmnller of cases
Lh
[-=-]

—
o}
=}

Lh
=]

—— i
T

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0
Actual minus predicted insulin dnip rate (in standard deviations)

0

Figure 4.7: Hyperglycemia experiment 2. Insulin drip ratetual vs. predicted

79



80

Figures4.6and4.7 show that a vast majority of predicted values of serum glecrsl
insulin drip rate are within one standard deviation of thielakcvalues. The figures show
that the model was highly accurate in predicting the serwnage and insulin drip rate

even in the absence of data about the patients’ nutritiorsamerity of illness.

4.3 Objective 2: Recommendation of Insulin Drip
Rate for Glucose Control

The first objective of the hyperglycemia test case was tala#di that the model works
according to its theoretical underpinnings, and predietsables in the model with ac-
curacy using real-world clinical data. After proving thibjective, our next objective
was to prove the clinical validity of the model in a real-wbdlinical use as well. A
rule-based protocol known as eProtocol-insulin is cutyensed on bedside computer
terminals in the Shock Trauma Respiratory ICU of LDS Hodp#&rotocol-insulin is an
open-loop computerized clinical decision support systesh &llows the clinical expert to
enter the values of the current serum glucose and nutritif@nmation. eProtocol-insulin
then computes the next insulin drip rate using a rule-basetqol, and recommends this
dosage to the clinical expert. The clinician may accept @ctethis recommendation,
and enter the action taken. If the recommendation is rejethe clinician may enter the
reason for rejecting it, and the new insulin drip rate thatdministered to the patient. If
the insulin drip rate is modified manually by the clinicianisientered into the computer
program.

The data set used for our experiments was also created bytb&eol-insulin com-
puter application. Hence, we considered eProtocol-insagi the gold standard against
which to compare the DBN model. Comparison was performeagusitechnique devel-
oped by Wong et alll65

4.3.1 Evaluation Technique
The goal of the experiments is to compare both the efficacysafety of the insulin
dose recommended by two different protocols to maintaimeeyiucose within the normal
range. eProtocol-insulin has a target insulin dose of 95dimgAt any given point in

time, the future insulin drip is calculated taking into agobthe current drip rate, current
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serum glucose level, and current nutrition informationdbiave a future serum glucose of
95mg/dL. The evaluation technique took actual data fronoteleol-insulin, and compared
it to simulated data from the new protocol or model that ismgetvaluated (e.g., DBN
model).

Each test-case for this evaluation technique is a four ficeesnodel. Hence, patients
with less than four timeslices of data were excluded frora @valuation. Test cases were
constructed by selecting every consecutive four timegla set from current patients
using a moving window which was four timeslices wide. Forrapée, if a patient had
a data set six timeslices in length, three test cases wemdraoted by selecting first to
fourth, second to fifth, and third to sixth timeslices. If aipat hadt timeslices of data
wheret > 4, thent + 1 — 4 test cases can be created. We created 10,433 test cases from
the temporal data of 287 patients. These 10,433 test caza@s@d a large sample size for
our test data set to compare the efficacy and safety of the DBdklis insulin drip rate
recommendation with that of eProtocol-insulin.

The technique is explained using Taldl&. We took each 4-timeslice test case, and
used the first three serum glucose measureméhnisi,, GG3) as-is. We changed the fourth
serum glucose({,) value to 95 mg/dL. We provided the first two insulin drip (& , 1>)
to the model, as well as the time elapsé&d, (75, 7,) between any two timeslices. The
DBN model is now made to predict the insulin ddprate at timel;, to achieve a serum
glucose level, of 95 mg/dL at timel;. The insulin drip ratex; ., , recommended by
eProtocol-insulin at tim&3 is already available in our data set. The two insulin dri rat
recommendations, the predicted dose recommendatidsy DBN model, and the actual

real-world dose recommendatioiy by eProtocol-insulin are now compared.

eProt
The model that predicted a better insulin dose in each of thd3B test cases is
considered the winning model in that case. The word ‘bettedefined in terms of
safety and efficacy. If the actual observed serum glucosat timeT, was greater than
95 mg/dL, the model (eProtocol-insulin or DBN model) thatammended the higher
insulin drip ratel; at timeT3 is considered to have better efficacy. For example, if the
serum glucose at timé; was 140 mg/dL, and if the DBN model recommended a higher
insulin drip rate at timél; than the recommendation of eProtocol-insulin, then DBN is

the winning model for this test case. If the DBN model recomdssl a lower insulin



Table 4.5: Evaluation of DBN protocol against eProtocailm

Variable T1 T2 T3 (time of T4 (in the
interest) future)
Serum Observed | Observed Observed Setto a
glucose target of 95
(Ga)
Insulindrip | Observed | Observed | Predicted by DBN| Not known
rate () or
eProtocol-insulin
Time lapse Not Observed Observed Known
(/L) applicable
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dose than eProtocol-insulin, then eProtocol-insulin & wWinner in this case, because
serum glucosé-, was higher than the target range. Hence, the necessaryalosesttol
the glucose adequately must be larger. Even if both moddlsi@l control the glucose
adequately, the model that predicted the higher glucose iddke winner in this case.

Conversely, safety is measured in terms of whether the npydduced hypoglycemia
during timeT,. Hypoglycemia (serum glucose below the normal range) igiaiselife
threatening condition, and it is safer to have mild hypesgiyia rather than hypoglycemia.
If the patient’s serum glucose at tirig¢ is below 95 mg/dL, then the model that recom-
mended the lesser insulin drip rate at tiffigs the safer one and is considered the winner
in this case. Ties were not encountered in experiments 3. and 4

We performed this evaluation with two different data setsated by using the two

different discretization techniques as described in dlved.

4.3.2 Experiment 3: Domain-based and Equal Interval Discrézation
We measured the efficacy and safety of the insulin drip ratemenendations of the
model and data set that we used in experiment 1, by applymtetthnique described in
Section4.3.1

4.3.2.1 Materials and Methods
The training and the testing model structures, the statéseodliscrete variables, and
the training data set were the same as in experiment 1, wised a combination of

domain-based and equal interval discretization. The tatt det was discretized using
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the same technique, a combination of domain-based and ederlal discretization as
described in experiment 1. However, each test case itsefarMaur-timeslice data set

created using the procedure described in Seati8rl

4.3.2.2 Results

We stratified the test results by the different ranges ofregglucose in timeslicd}.
We then counted the number of cases where the DBN model gawghertdose than
eProtocol-insulin and vice versa, which resulted in seriunage at time T4 falling within
this range. The results are shown in Tadblé

This experiment shows DBN performed better than eProtosallin in a large num-
ber of cases where G4 showed moderate hyperglycemia. HoweReotocol-insulin
performed better than DBN model in a large number of caseseMdd showed severe
hyperglycemia or severe hypoglycemia. DBN model recomradmnasulin drip rates that
were drastically different from those recommended in tla¢wrld by eProtocol-insulin.
This may be explained by the way the data were modeled in the althe DBN model,

leading to overfitting in the more common cases, but insefficaccuracy in the less en-

Table 4.6: Hyperglycemia experiment 3, eProtocol-insuinDBN model

Actual G4 | DBN-I3 > | DBN-I3 < Winning Winning
eProt-I3 eProt-I3 model margin
(Num of (Num of
cases) cases)
>500 0 0 - -
400 - 500 1 0 - insignificant
300 - 400 3 10 eProtocol 54%
200 - 300 33 56 eProtocol 26%
150 - 200 235 168 DBN 17%
110- 150 1612 722 DBN 38%
100- 110 1016 399 DBN 44%
90-100 1025 426 DBN 41%
80-90 940 356 eProtocol 45%
70 -80 570 188 eProtocol 50%
55-70 236 102 eProtocol 40%
40 - 55 27 13 eProtocol 35%
<40 0 1 - insignificant




84

countered cases. Domain-based discretization combirtbcegual interval discretization

does not seem adequate for accurate training and testihgsitest case.

4.3.3 Experiment 4. K-means Clustering
We wanted to improve the accuracy of predictions performgdhie DBN model.
We tested whether the accuracy can be improved by using eetistion technique that
preserves the information content of the data better thamagiobased and equal interval
discretization techniques. Therefore, we measured theaejfiand safety of the insulin
drip rate recommendations of the model and data set that @e insexperiment 2, by

applying the technique described in Sectb8.l1

4.3.3.1 Materials and Methods

The training and the testing model structures, the statéseodliscrete variables, and
the training data set were the same as in experiment 2, wischetized the data using the
k-means clustering technique. The test data set was dimataising the same technique
as described in experiment 2. However, each test case was-arfeeslice data set created

using the procedure described in Sectod.1

4.3.3.2 Results

We again stratified the test results by the different ranfiesrmm glucose in timeslice
T,. These ranges were defined by Wong et al. in their descripfithe technique. We then
counted the number of cases where the DBN model gave a higldese than eProtocol-
insulin and vice versa, which resulted in serum glucGsémeasured at timé)) falling
within this range. The results are shown in Tablé

The glucose ranges in this table are identical to the samgesansed to evaluate
the results in experiment 3. Hence, a direct comparison eapebformed between the
difference due to the two discretization techniques. Theetit experiment shows that
both eProtocol-insulin performed equally well. eProteicsulin was more efficacious in
cases of severe hyperglycemia and safer in moderate hyqaoglg.

However, the DBN model was more efficacious in moderate lgipeemia, and safer

in severe hypoglycemia. This behavior of the DBN model is sirdble quality, since



Table 4.7: Hyperglycemia experiment 4, eProtocol-insuinDBN model

85

Actual G4 | DBN-I3 > | DBN-I3 < Winning Winning
(mg/dL) eProt-13 eProt-13 model margin
(Num of (Num of
cases) cases)
>500 0 0 - -
400 - 500 1 0 DBN insignificant
300 - 400 5 8 eProtocol 23%
200 - 300 40 49 eProtocol 10%
150 - 200 203 197 DBN 2%
110- 150 1340 965 DBN 16%
100 - 110 708 583 DBN 10%
90 - 100 706 599 DBN 8%
80-90 644 509 eProtocol 12%
70 -80 382 269 eProtocol 17%
55-70 133 164 DBN 10%
40 - 55 15 22 DBN 19%
<40 1 0 eProtocol | insignificant

avoidance of severe hypoglycemia is more important tharralting moderate hyper-
glycemia. The difference in number of cases in each of thgeamtervals expressed as
a percentage, also known as winning margin, ranged betw¥#grad 23%. There was
not an extreme difference between the two models. HowdverDBN model was more

efficacious and safer in a larger number of cases than ePtatsulin.

4.3.4 Discussion

Experiments 1 and 2 show that the DBN model estimated thesglucose levels and
the insulin drip rates with high accuracy. Between thesedwmeriments, k-means clus-
tering provided a more accurate estimation of serum glueysds and insulin drip rates.
Experiments 3 and 4 show that k-means discretization peswdore accurate inference,
and by extension, parameter learning, compared to a cotignnaef domain-based and
equal interval discretization.

Considering the four experiments together, it can be seahkiimeans clustering
performed better than the manual discretization models ddn be attributed to the fact

that k-means clustering takes into account natural gragygai data points in the sample
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whereas manual discretization does not. This leads torbettenation of parameters
during training, and hence more accurate results from gtaterations.

The DBN model performed better and safer than eProtocaolimsn most cases,
even though the DBN model did not have access to the patitsgding data, whereas
eProtocol-insulin has these data available. The accuraityedBN can be improved by
using a more complete data set containing the patientsitioatiand severity of illness
data. The DBN model and k-means discretization may be ualitaith a more complete
data set for their use in a real-world clinical setting.

Statistical analysis for experiments 1 and 2 were done bgutaing the Pearson
and Spearman correlation coefficients. However, statiséinalysis was not performed
in experiments 3 and 4, since they were qualitative compasi©f safety and efficacy.
Statistical measures such as the Youden’'s J index (the niaxiwalue of sensitivity +
specificity - 1)L67], and other ROC curve comparison methddd are available for
comparing the accuracy of two diagnostic tests that detexrthe presence or absence
of a disease. However, both experiments 3 and 4 involvedtgtiaé comparisons of
safety and accuracy stratified by serum glucose ranges tidtstal test is not available to
compare qualitative estimates of safety and efficacy of teedligtion algorithms. Hence,
a quantitative comparison of the safety and efficacy of the pnotocols could not be

performed in experiments 3 and 4.



CHAPTER 5

TEST CASE 2: EARLY DETECTION OF SEPSIS
IN THE ED

Sepsis is defined as a combination of Systemic Inflammatogpétese Syndrome
(SIRS, a state of increased immune response), and a confom&aspected infection,
usually caused by bacteria. The infection may be presenirigd, skin, urinary tract,
bone, brain and meninges, intestines, blood, or otherdsss8epsis may occur whether
the infection stays localized or spreads to other partsebthdy. Presence of bacteria in
blood, known as bacteremia, does not by itself denote sapthe absence of a systemic
inflammatory response. Untreated or inadequately treadsdscof sepsis can lead to a
condition known as severe sepsis, which is characterizedobyplications such as an
uncontrollable fall in blood pressure, hemodynamic ca&gpmultiple organ failure, or
death. Early diagnosis of sepsis is essential for sucdeseaiment. Hence, we wanted
to apply Dynamic Bayesian Networks to the early diagnossepfis at the bedside in the
emergency department. We only included the data from the2drsiours after admission
for the test cases, and included only those variables timabeaobserved at the bedside
or can be measured easily in the laboratory within this tier goal was to detect the
presence or absence of sepsis within 24 hours after admiggien the bacterial culture

results are often unavailable.

5.1 Overview of Sepsis
The high mortality of sepsis warrants early diagnosis aedttnent. Sepsis is respon-
sible for nearly 10% of the ICU admissions in the United Satetaling about 1 million
cases nationwide every yedf9. The incidence rate of severe sepsis in the United States
is about 300 per 100,000 persons per year, with a total of0DBOcases nationwide per
year. Incidence of sepsis has been estimated to be betweeni834 per 100,000 hospital
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admissions in Spain, with about 50% mortality rate. In Genynéhe incidence of sepsis
is about 114 per 100,000 cases per YE&EY. These incidence and mortality rates indicate
that sepsis is a problem around the world with high mortaitgg morbidity across various
populations. Direct costs per sepsis patient for ICU treatinin the United States have
been estimated at more than $40,000. Gram negative balctamebeen implicated as the

most common cause, followed by other bacteria and otheppeatis.

5.1.1 Diagnosis of Sepsis and Its Complications

The following definitions are from the American College oféShPhysicians (ACCP),
and Society of Critical Care Medicine (SCCM) Consensus €armice held in 1991 to de-
fine common definitions for sepsis and related disorders ahtighed in 1992[71], here
onwards referred to as ‘ACCP & SCCM 1992 definitions’. Sepstefined as a systemic
inflammatory reaction in response to an infection. In addito SIRS, infection must be
present or suspected to confirm a diagnosis of sefp&Is[SIRS alone is not sufficient to
confirm a diagnosis of sepsis, since SIRS can be caused doaitdectious causes such
as pulmonary embolism, adrenal insufficiency, anaphyl@eascreatitis, trauma, ett{1]

In adults, Systemic Inflammatory Response Syndrome (SI&R8gfined as the pres-

ence of two or more of the following[/1]:
1. Body temperature below 36 C (degrees Celsius) or above 38 C
2. Tachycardia, with heart rate above 90 beats per minute

3. Tachypea (increased respiratory rate), with respiyatte above 20 per minute, or
arterial partial pressure of carbon dioxide«{C'O-) less than 4.3 kPa (kilo Pascals),

equivalent to 32 mmHg (millimeters of mercury).

4. White blood cell (WBC) count less than 4,000/3(cubic millimeter) or above

12,000/mm3, or the presence of more than 10% immature neutrophils (foans).

When sepsis causes Multiple Organ Dysfunction Syndrome ®)) such as damage
to vital organs, decreased perfusion, or hypotension, térsed severe sepsis. Sepsis-

induced hypotension is defined as a systolic pressure bedomrHg or a reduction in
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the baseline systolic blood pressure of more than 40 mmHgeiabsence of other causes
of hypotension] 71].
Sepsis can lead to a condition known as septic shock, whictdisated by hypoten-

sion (fall in blood pressure) that is not responsive to flleglacement or vasopressor
drugsfL71].

5.1.2 Early Detection of Sepsis in the Emergency Department

At LDS Hospital (LDSH), and Intermountain Medical Centavi), two tertiary care
hospitals of Intermountain Healthcare in Salt Lake CityalytUSA, the prevalence of
sepsis in patients who directly present at the emergencgrtiepnt is between 1.7%
to 2%. Clinical literature shows that patients with sepsi lave high mortality and
morbidity if they are not treated immediately and aggresgivHowever, a confirmatory
laboratory test for infections may take several hours tv@rsince culture and sensitivity
tests cannot be performed immediately.

Many patients have atypical presentations, and may not da@lear picture of SIRS.
To assist the clinicians in detection of sepsis, a clinieision support system for early
detection of sepsis is highly desirable. Sepsis presergsyagood case for early detection
using clinical decision support systems since the compsre#i8IRS are easily measured
at the bedside, or in the case of WBC and band counts, can amedtin a short amount
of time from the laboratory.

We wanted to use a temporal probabilistic model for the edétection of sepsis,
and try to understand how the accuracy and certainty ofenfegs change over time as
more data becomes available. We used Dynamic Bayesian Netaghniques using the
Projeny Toolkit, and our data preparation methods (desdrib Chapter 3) to create, train

and test DBN models for the early detection of sepsis in thergancy department.

5.2 DBN Approach for Sepsis Detection
Sepsis is a rapidly worsening clinical condition. Given tast rate of change in
the physiological parameters, the change in the clinicatitmn of sepsis patients lends

itself well to a temporal probabilistic model such as a DymaBayesian Network. Our
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objective was an early detection of sepsis even before mangratory tests become

available, ideally within the first few hours after admissio

5.2.1 Sepsis Data Set

We obtained a data set of about 3,100 patients treated atnotemtain Healthcare,
consisting of 20% cases (patients who had sepsis), and 80¥ot(patients without
sepsis), from Dr. Jason Jones at Intermountain Health¥deaised the anonymized data
set for our sepsis detection modeling. The data elementi&blain the raw data set
were the patients’ vital signs (heart rate, respiratorg,rabdy temperature, systolic blood
pressure, diastolic blood pressure, d&hd”'0s); the patients’ lab test results (WBC count,
bands percentage); and general encounter informatiore(yatage, date of admission,
date of discharge, etc.). The data set also contained ebl@named ‘Sepsis’, which was
entered by a clinician during a retrospective review domeliaical research. Mean blood
pressure or mean arterial pressure is the weighted avefafe systolic and diastolic
pressure. If the mean blood pressure for a specific timefica specific patient was not
available, it was calculated using the formula

MAP = DP + SP_% (5.1)
where MAP denotes mean arterial pressure, SP denotesisymte$ésure, and DP rep-
resents diastolic pressure. This formula is applicabledidtgpatients when the blood
pressure is not extremely high or low.

The data set we received did not have information about b{ooather specimen)
culture and sensitivity results from the microbiology ledtory, information signifying
multiorgan dysfunction syndrome (MODS), or treatment infation such as the adminis-
tration of 1V fluids and vasopressors, which help with a dagjs of septic shock. Hence,
we did not have the necessary clinical variables for diagugosevere sepsis or septic
shock.

We did not have clinical information denoting suspectedanfitmed infection (cul-
ture and sensitivity results, clinical notes, etc.). Hoarewe wanted to model a sepsis

detection system with the currently available data.
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Vital signs were the most numerous type of data in our dateaselt they were often
measured between 1 to 2 intervals, even though some measusewere up to 20 hours
apart. Hence, we used 1 hour as the width of the timeslicesnd8N models to help
with early detection of sepsis within a few hours after adiois. The lab tests were
not measured at such frequent intervals. Not all vital siyese measured at 1-hour
intervals. Hence, we had a large amount of missing data ineporally aggregated
and transformed data set.

We applied our data preparation and temporal reasoningitpads described in Chap-
ter 3 to build, train, and test sepsis detection models. Wated multiple prepared data
sets and temporal models, which showed varying levels afracy. Three of these models
and prepared data sets provided us the most insight and ssenie These 3 models, the
associated data preparation techniques, the resultshardssons learned are described

in the next 3 sections of this chapter.

5.2.2 Evaluation Technique

Sepsis was a binary variable in our model, with values of anekfalse. This variable
was entered by a clinician, and was considered as the refestandard. The goal of our
DBN models was to correctly estimate whether a patient hadiser not. Hence, the
clinician-entered sepsis diagnosis provided a referetasedard against which the DBN
models’ inferences will be compared. This makes our modeigas to laboratory tests
that are performed to detect specific diseases.

Given the similarity of our sepsis detection models to labany tests that detect a
disease, our DBN models can be evaluated using the samegwaltechniques applied
to laboratory tests. We decided to perform statisticalysislof our models’ inferences
in terms of sensitivity, specificity, positive predictivalue, negative predictive value, F-
value, and area under the ROC (receiver operator charstatggurve.

The clinician-entered values of sepsis, also consideretieaseference standard or
‘disease’, was left intact in the training data set. Theiclan-entered values of sepsis
in the test data set were hidden from the inference algordlanng the test iteration,
and were later used to validate the inferred values. Alliotagiables were left intact in

both the training and test data sets. The state of sepsisatsti by the DBN model was
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considered analogous to the lab test finding. If the proligluf sepsis estimated by the
DBN model was equal to or above 0.5, it was considered as aymisst. If the estimated
probability of sepsis was below 0.5, it was considered atnegtest.

A 2x2 confusion matrix and standard epidemiologic techegjoan then be applied
to calculate the sensitivity, specificity, positive preulie value, negative predictive value,
and the F-measure. The ROC curve was constructed and therrsteathe ROC curve

was calculated using a procedure described by Morrisorgiorosoft ExcellL72].

5.3 Experiment 1: Model 1 Using k-means Clustering
The first experiment describes a model created using thealidescription of sys-
temic inflammatory response syndrome (SIRS). The data setdwgaretized using the
k-means clustering technique. The model performed withraafaount of accuracy for
sepsis detection and it revealed various shortcomingstealescribed, and addressed in

subsequent experiments.

5.3.1 Materials and Methods

The structure of the model was designed based on the ACCP &BI802 definitions
of systemic inflammatory response syndrome (SIRS). Theseacie of infection was left
out of the model. Four binary intermediate nodes were coad, which denote the four
criteria for SIRS. We used the rules defined by ACCP & SCCM 1@&fihitions to set the
value of these binary nodes for both the training and thedi&tst sets.

The continuous variables in the temporally aggregated ams$atidated data were
heart rate (beats per minute), body temperature (degrdssi§)erespiratory rate (breaths
per minute),PaC'O, (in mmHg), WBC count (pemm?), and bands (percentage). These
continuous variables were discretized using k-meansariagt with. = 10, andk = 15.

If there was a significant reduction in error rate for a vaeathile using 15 bins compared
to 10 bins, then we used 15 bins for the variable. Otherwiseused 10 bins for the
variable. It must be noted that the k-means clustering dlgarfound less bins than the
value of &k we provided in some cases. In these cases, the number ofdnmsuted by
the algorithm were used for these variables. The modeltsireics shown in Figuré.1
The variables HRScore, TachypneaScore, BodyTempScor& St&e, and SIRSScore
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were defined as binary variables in accordance with the ACEZ&M 1992 definitions,
and their values were assigned to true or false in the trgidata set following the rules
specified by these definitions.

The discretized data set was divided into a training dataseta test data set. Two-
thirds of anonymized patients were allocated to the trgimata set at random, and the
remaining one-third of the patients were allocated to tsedata set. The value of sepsis
was replaced with null values for all the patients and allttmeslices in the test data set.
The test data set was then divided into four separate dathaeing up to 3, up to 6, up to
12, and up to 24 timeslices for each patient. Our goal waspeatetesting with data sets
having a different number of timeslices, so that we can sateulesting after the patient
has been in the hospital for increasing durations of timedo@4$, 5 hours, 11 hours, and
23 hours, respectively, since the first timeslice was measwhen the patient arrived at
the emergency department at time = 0 hours after admission).

Training was performed using an EM-based learning algarithiTraining was ex-
tremely resource intensive. Training took more than 90 sioan a computer with two
quad-core 2.25GHz (gigahertz) Intel Xeon processors, 2dgegabytes) of RAM (Ran-
dom Access Memory), and 32GB of swap space. Training (paantearning) ran out
of memory with Matlab consuming more than 40GB of memory (RAMI swap space
combined, with the rest of the computer's memory taken uphgy MySQL database
server, Projeny, the desktop environment and other baokgrprocesses). Hence, the
maximum number of timeslices per patient was iterativelyngd in the training data set
until the training algorithms executed successfully withaunning out of memory. We
tried pruning to 120 hours, 96 hours, 72 hours, and 48 hourd,tlae model ran out
of memory in all these cases. We finally pruned the training dat to a maximum of
24 timeslices (approximately 1 day). Training completedcessfully without out-of-
memory errors with this modification.

Testing was performed using a junction tree algorithm. iligstvas performed sepa-
rately with test data sets having a maximum of 3, 6, 12, anah2dsiices. The probability
of sepsis was estimated using the marginal probabilityidigion calculated by the infer-
ence algorithm. Expected values were not calculated (itrasnwith the hyperglycemia

models described in Chapter 4), since sepsis was a binarnjnabvariable. The proba-
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bility of sepsis was given by the probability for the sepsasiable to be in the ‘true’ (or
‘sepsis present’) state. If this probability was equal t@bove 0.5, it was considered a
‘positive test’. Otherwise, it was considered a ‘negatiest’t Statistical analyses were

performed as described under ‘Results’.

5.3.2 Results

The model detected sepsis with a fair amount of accuracy. MAuston matrix was
plotted with the actual values of sepsis considered as tisedde’, and the estimated
values of sepsis considered as the ‘test’. The confusionxrabng with the sensitivity,
specificity, positive predictive value, negative predietvalue, F-measure, and the area
under the ROC curve from testing with 3, 6, 12, and 24 timeslare given in Tablg.1

The area under the ROC curves for testing model 1 with 3, 6ad@ 24 timeslices are
shown in Figures.2

From the confusion matrices and the ROC curves, we can sethéaccuracy of the
model increases with availability of more data with the pggsof time. The increasing
accuracy with time can be easily explained by the fact thatare recognize trends in
various physiological parameters and detect a diseasawatk certainty as time passes.
The trends in these parameters with the passage of timdwastated in Figuré.3, and
their values shown in Table.2

The confusion matrices and ROC curves prove that the modetsnas expected.
However, our goal is early detection of sepsis. We aim torest the presence of sepsis
with high accuracy within 2 hours of admission (a 3-timesheodel), which is the shortest
duration of time supported by our DBN modeling technique e Tarrent model shows
a sensitivity of 0.51, a specificity of 0.87, positive preuie value of 0.65, negative
predictive value of 0.8 and an area under the curve of 0.6&wdsting with 3 timeslices.
These measures show that the model is more specific tharenssise.

Testing this model with 3 timeslices shows inadequate aoyur The model also
proved to be computationally very expensive, which netatesl the reduction of our
training data set. Hence, we modified the model to improveatt®iracy and reduce
the computational complexity. Two more models were cretiegthieve these objectives,

as shown in the following Sectiots4, and5.5.



Table 5.1: Sepsis model 1. Confusion matrices

(a) 3 timeslices

(b) 6 timeslices
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. | Actual | Actual
Sepsis Yes NoO Total
DBN 83 45 128
Yes
DBN 78 308 386
No
Total 161 353 514
Sensitivity 83/161 | 0.5155
(recall)
Specificity 308/353| 0.8725
PPV 83/128 | 0.6484
(precision)
NPV 308/386| 0.7979
F-measure 0.5744
AUC 0.6262
(c) 12 timeslices
.| Actual | Actual
Sepsis Yes NoO Total
DBN 102 65 167
Yes
DBN 59 288 347
No
Total 161 353 514
Sensitivity 102/161| 0.6335
(recall)
Specificity 288/353| 0.8159
PPV 102/167| 0.6108
(precision)
NPV 288/347| 0.8300
F-measure 0.6220
AUC 0.7040

.| Actual | Actual
Sepsis Yes NoO Total
DBN 89 60 149
Yes
DBN 72 293 365
No
Total 161 353 514
Sensitivity 89/161 | 0.5528
(recall)
Specificity 293/353| 0.8300
PPV 89/149 | 0.5973
(precision)
NPV 293/365| 0.8027
F-measure 0.5742
AUC 0.6063
(d) 24 timeslices
.| Actual | Actual
Sepsis Yes NoO Total
DBN 112 62 174
Yes
DBN 49 291 340
No
Total 161 353 514
Sensitivity 112/161| 0.6957
(recall)
Specificity 291/353| 0.8244
PPV 112/174| 0.6437
(precision)
NPV 291/340| 0.8559
F-measure 0.6687
AUC 0.7204




97

SaAIND DOY T |[9pow sisdas :z'G ainbi4

saol|saw 2 (p)

saol|sawin T (9)
(Md.1) Avogroads - |

/

QId.D) Aogreadg - |
1 80 90 +'0 0 0 1 80 90 +'0 0 0
L 1 1 1 1 c L 1 1 1 1 c
T0¢n T0¢n
1] 1]
h o o
roQ yoe
. .
v0TL 0=D0NV s.& o 0V0L 0= DNV ;\ &
90 90
\LI\ / 50° \\\ 502
1 1
saolisawn 9 (q) saolisswn ¢ (e)
(d.1) Aogoads - 1 QId.D) Ayogoadg - |
1 80 90 +'0 0 0 1 80 90 0 0 0
1 1 1 1 \_ c L 1 1 1 1 c
T0¢n f - TOcn
1] 1]
.._\ 2 \ 2
o Yo
. .
€909°0=DNV h...\.\_ g 79790 = DNV u\\\ o
903 903
.\qul 80~ 80~




98

b}
(44

0

TS3 TS6 TSI12 TS24

Figure 5.3: Sepsis model 1. Plot of statistical measurestove

Table 5.2: Sepsis model 1. Values of statistical measurestoue

Number of timeslices in test data self

TS3 TS6 TS12 TS24

Sensitivity 0.51553| 0.55280| 0.63354| 0.69565
Specificity 0.87252| 0.83003| 0.81586| 0.82436
PPV (precision) 0.64844| 0.59732| 0.61078| 0.64368
NPV 0.79793| 0.80274| 0.82997| 0.85588
F-measure | 0.57439| 0.57419| 0.62195| 0.66866
AUC 0.62620| 0.60635| 0.70398| 0.72041

5.4 Experiment 2: Model 2 Using MDL Discretization
A large number of nodes and states, along with the interneediades and missing
data, made model 1 computationally very expensive for patantearning. Transforming
all the physiological parameters from continuous varialéo binary intermediate nodes
led to loss of information, which in turn lowered the accyratthe model. The missing
data problem cannot be overcome while using the same datil@sever, the discretiza-
tion technique and the model structure can be changed to thakeodel computationally

more tractable and more accurate. We made these changes@h 2nand performed this
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experiment.

5.4.1 Materials and Methods

The ACCP & SCCM 1992 definitions of systemic inflammatory mesge syndrome
(SIRS) are intended for human use at the bedside. The sinapleenof the rules, trans-
forming continuous variables into binary variables, anehtlsatisfying the constraint of
‘any two out of four’ conditions is intuitive and user-fridly for the human experts to
compute in their minds. However, transforming continucaisables into binary interme-
diate variables led to the loss of large amounts of inforamativhich lowered the accuracy
of the model.

K-means clustering tries to find natural clustering pagtemthe input data, and fits
the input data set into a finite set of symbols (or discretesjaThis process is helpful to
reduce the dimensionality of the model. However, the k-ra&dumstering process does not
consider how the variation in an independent variable ,(bagly temperature) affects the
variation in a dependent variable (e.g., sepsis). Thetwania the dependent variable may
be explained by a smaller number of states than the numbé&atesgup to 10 or 15) used
for k-means clustering. Hence, we looked for algorithmg thscretize the continuous
independent variables in context of variation of the depandariable.

We found that the Minimum Description Length (MDL) algonttdescribed by Fayyad
and Iranifl57 divides the independent variable into a minimal numbertates required
to explain the variation in the dependent variable. The MIoathm produced a much
smaller number of states for all the continuous variablesn#aller state-space reduces
the computational complexity of parameter learning.

The continuous variables in the temporally aggregated amsdatidated data were
heart rate (beats per minute), body temperature (degrdssi§)erespiratory rate (breaths
per minute),PaCO, (mmHg), WBC count{m?), and bands (percentage). These were
discretized using Fayyad and Irani’'s MDL algorithm implertezl in Weka. From clinical
literature, it is observed that the patient’s age affects tie patient’s body responds to
sepsis. A child, a young adult, and an elderly person wilpoesl in different ways to
sepsis, and the patterns seen in their heart rate, blooduysesdemperature, WBC count,

etc. will be different even if they have similar sepsis caiotis. Hence, we included
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the patient’s age as one of the variables in the model. Weemed patient’s age to the
various nodes representing various physiological pararsmeand to sepsis itself. The
model structure is shown in Figuge4.

Training and testing were done in the same way as experimédrieldiscretized data
set was divided into a training data set and a test data set-tfinds of anonymized
patients were allocated to the training data set at randachftge remaining one-third of
the patients were allocated to the test data set at randoewdlte of sepsis was replaced
with null values for all the patients and all the timeslicagthe test data set. The test
data set was then divided into four separate data sets hapirtg 3, up to 6, up to 12,
and up to 24 timeslices for each patient. Our goal was to tejpsting with data sets
having a different number of timeslices, so that we can sateulesting after the patient
has been in the hospital for increasing durations of timeo@4$, 5 hours, 11 hours, and
23 hours, respectively, since the first timeslice was measwhen the patient arrived at
the emergency department at time = 0 hours after admission).

Training was performed using an EM-based learning algarithraining was initially
performed with a data set having a maximum of 24 timesliceg&eh patient. Training
was much less resource intensive compared to model 1. migaiook about 8 hours, on
the same computer with two quad-core 2.25GHz Intel Xeongssars, 24GB of RAM,
and 32GB of swap space. Training (parameter learning) redunuch less memory with
Matlab consuming less than 7GB of memory. Hence, the maximumber of timeslices
per patient was increased in the training data set to théyficlabsen value of 72 timeslices
(approximately 3 days). Training completed successfulliess than 10 hours, with less
than 7GB of memory utilization with this modification.

Testing was performed using a junction-tree algorithm.timgswvas performed as in
model 1 with test data sets having a maximum of 3, 6, 12, andn2dstices, since our
goal was to predict sepsis within 24 hours after admissidre grobability of sepsis was
estimated using the marginal probability distributiorcegéited by the inference algorithm.
Expected values were not calculated (in contrast with thpeelglycemia models described
in Chapter 4), since sepsis was a binary, nominal variabhe. probability of sepsis was
given by the probability for the sepsis variable to be in tinge’ (or ‘sepsis present’) state.

If this probability was equal to or above 0.5, it was consediest ‘positive test’. Otherwise,
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it was considered a ‘negative test’. Statistical analyse®werformed as described under

‘Results’.

5.4.2 Results

The model estimated sepsis with significantly higher aayuthan model 1. A con-
fusion matrix was plotted with the actual values of sepsissatered as the ‘disease’, and
the estimated values of sepsis considered as the ‘test’.cdi@ision matrix along with
the sensitivity, specificity, positive predictive valuegative predictive value, F-measure,
and the area under the ROC curve from testing with 3, 6, 122drdneslices are given
in Table5.3 The area under the ROC curves for testing model 2 with 3, G224
timeslices are shown in Figue5.

From the confusion matrices and the ROC curves, we can se¢hthaccuracy of
prediction of model 2 is significantly better than that of mb#l. We can also see that the
accuracy increases with availability of more data with thegage of time. The trends in
these parameters with the passage of time are illustratéegure 5.6, and their values
shown in Tablé.4.

A comparison of the accuracy of sepsis detection of the numedel (model 2) with
that of the previous model (model 1) shows that using the MRjorgthm for data dis-
cretization and removing the binary intermediate nodemfitte model structure helped to
reduce the loss of information and to significantly imprdwe &ccuracy of the model. We
also see that reducing the size of the state-space significaeduced the computational
complexity of parameter learning.

Our goal, as in the previous model, is early detection ofisejde aim to detect sepsis
with high accuracy within 2 hours of admission (a 3-timesheodel), which is the shortest
duration of time supported by our DBN modeling techniquee Thrrent model shows a
sensitivity of 0.6, a specificity of 0.94, positive predvetivalue of 0.65, negative predictive
value of 0.93, and an area under the curve of 0.81 while tggtith 3 timeslices. All the
parameters except the sensitivity improved compared toeirftbdThese measures again
show that the model is more specific than it is sensitive.

However, we found some problems with the structure of theehduat can lead to

a reduction in accuracy. A detailed discussion of ‘explagnaway’, and d-separation is



Table 5.3: Sepsis model 2. Confusion matrices

(a) 3 timeslices

(b) 6 timeslices
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. | Actual | Actual
Sepsis Yes NO Total
DBN 99 54 153
Yes
DBN 65 825 890
No
Total 164 879 1043
Sensitivity 99/164 | 0.6037
(recall)
Specificity 825/879| 0.9386
PPV 99/153 | 0.6471
(precision)
NPV 825/890| 0.9270
F-measure 0.6246
AUC 0.8126
(c) 12 timeslices
.| Actual | Actual
Sepsis Yes No Total
DBN 117 61 178
Yes
DBN 47 818 865
No
Total 164 879 1043
Sensitivity 117/164| 0.7134
(recall)
Specificity 818/879| 0.9306
PPV 117/178| 0.6573
(precision)
NPV 818/865| 0.9457
F-measure 0.6842
AUC 0.8349

.| Actual | Actual
Sepsis Yes NoO Total
DBN 105 57 162
Yes
DBN 59 822 881
No
Total 164 879 1043
Sensitivity 105/164| 0.6402
(recall)
Specificity 822/879| 0.9352
PPV 105/162| 0.6481
(precision)
NPV 822/881| 0.9330
F-measure 0.6442
AUC 0.8238
(d) 24 timeslices
.| Actual | Actual
Sepsis Yes No Total
DBN 127 62 189
Yes
DBN 37 817 854
No
Total 164 879 1043
Sensitivity 127/164| 0.7744
(recall)
Specificity 817/879| 0.9295
PPV 127/189| 0.6720
(precision)
NPV 817/854| 0.9567
F-measure 0.7195
AUC 0.8430
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Figure 5.6: Sepsis model 2. Plot of statistical measurestove

Table 5.4: Sepsis model 2. Values of statistical measurestoue

TS3

TS6

TS12

TS24

Number of timeslices in test data set

TS3 TS6 TS12 TS24

Sensitivity | 0.60366| 0.64024| 0.71341| 0.77439
Specificity | 0.93857| 0.93515| 0.93060| 0.92947
PPV (precision) 0.64706| 0.64815| 0.65730| 0.67196
NPV 0.92697| 0.93303| 0.94566| 0.95667
F-measure | 0.62461| 0.64417| 0.68421| 0.71955
AUC 0.81259| 0.82376| 0.83495| 0.84295
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presented in Chapter 2. Mean blood pressure was explairegdl@ansystolic and diastolic

pressure due to the way the mean blood pressure was relase@<is, systolic pressure,

and diastolic pressure. Explanation of mean blood predsusepsis is hence weakened.

We had also made age a parent of sepsis in this model. We fbahddnnecting age

directly to sepsis will make age explain away some of theatiam in sepsis. Our goal was

to explain the variation in physiological parameters dugeyosis, and how this interaction

is influenced by age. Age does not by itself cause sepsis, emcklthe edge from age to

sepsis leads to learning spurious conditional probadsliti
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We fixed the above structural issues in the model, and reghaddraining and testing,

as described in experiment 3.

5.5 Experiment 3: Model 3 Using MDL Discretization
Model 2 was more accurate in detecting sepsis than modelH. just 3 timeslices
(2 hours) of patient data. The model may be very useful inadieig sepsis in the ICU.
However, issues with conditional independence (d-sejparatxplaining away) reduced
the accuracy of the model. Hence, we wanted to correct theehstidicture and repeat
the experiment. These changes led us to model 3, and thengaiesting, and results are

described as experiment 3.

5.5.1 Materials and Methods

In our model, mean blood pressure is a variable that abstsysttolic pressure and
diastolic pressure, and their relationship to sepsis. Tieetibn of the relationships caused
an incorrect representation of conditional independerideerefore, we removed mean
arterial pressure, which is fully explained by systolic ahastolic blood pressure, from
model 3. We then created edges from sepsis to systolic peeasd diastolic pressure.
The edge from age to sepsis indicates a spurious conditde@@ndence. Hence, we
removed the edge between age and sepsis. In model 3, age sl && d-separated
by the nodes that represent systolic blood pressure, d@btood pressure, heart rate,
respiratory rate, and WBC count. Age and sepsis togethdaiexihe variation in these
physiological parameters in the model. If none of these flwgsplogical parameters in
the model are known, then age and sepsis are mathematioaliijtionally independent,
as described in Sectidh4.2

We used the same data set used in experiment 2 to performmemi3. The contin-
uous variables in the temporally aggregated and consetiddata were heart rate (beats
per minute), body temperature (degrees Celsius), reepyraate (breaths per minute),
PaCO, (in mmHg), WBC count (pernm?), and bands (percentage). These were dis-
cretized using Fayyad and Irani's MDL algorithm implemehta Weka. The model
structure is shown in Figure.7.
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Training and testing were done in the same way as experimersiizg the same data
sets. The discretized data set was divided into training siettand test data set. Two-thirds
of anonymized patients were allocated to the training dettatsandom, and the remaining
one-third of the patients were allocated to the test data$etvalue of sepsis was replaced
with null values for all the patients and all the timeslicasthe test data set. The test
data set was then divided into four separate data sets haping 3, up to 6, up to 12,
and up to 24 timeslices for each patient. Our goal was to teesting with data sets
having different number of timeslices, to that we can sirtaitasting after the patient has
been in the hospital for increasing durations of time (2 Bp&rhours, 11 hours, and 23
hours, respectively, since the first timeslice was measwiezh the patient arrived at the
emergency department at time = 0 hours after admission).

Training was performed using an EM-based learning algaritisince model 2 was
computationally less expensive than model 1, we increasedhtimber of timeslices
in the training data set for model 3. Training was performdthwa data set having
a maximum of 168 timeslices (approximately 7 days since asiiom) for each patient.
Training was almost as resource intensive as model 2, whislgnificantly less resource
intensive than model 1. Training took about 9 hours, on threesaomputer with two
quad-core 2.25GHz Intel Xeon processors, 24GB of RAM, an@B2f swap space.
Training (parameter learning) required much less memamy thodel 1 but similar amount
of memory as model 2, with Matlab consuming less than 7GB ofmorg. Training
completed successfully in less than 9 hours, with less titaB @ memory utilization
with this modification.

Testing was performed using a junction-tree algorithm. timgswas performed as
before in models 1 and 2 with test data sets having a maximu®) 6f 12, 24, and 48
timeslices. Our goal was to detect sepsis within 24 houes afimission. However, in
contrast to models 1 and 2, we included a test data set witin#lices to study how
increased the duration of the test data set affects thetsesul

The probability of sepsis was estimated using the marginabability distribution
calculated by the inference algorithm. Expected valueswet calculated (in contrast
with the hyperglycemia models described in Chapter 4) esggpsis was a binary, nominal

variable. The probability of sepsis was given by the prolitgdor the sepsis variable to
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be in the ‘true’ (or “sepsis present”) state. If this prolidypiwas equal to or above 0.5, it
was considered a ‘positive test’. Otherwise, it was consid@ ‘negative test’. Statistical

analyses were performed as described under ‘Results’.

5.5.2 Results

The model detected sepsis with significantly higher acgutiaan both model 1 and
model 2. A confusion matrix was plotted with the actual valoésepsis considered as the
‘disease’, and the estimated values of sepsis considetée &sst’. The confusion matrix
along with the sensitivity, specificity, positive prediaivalue, negative predictive value,
F-measure, and the area under the ROC curve from testin@with12 and 24 timeslices
are given in Tablé.5. The area under the ROC curves for testing model 2 with 3, 6, 12
and 24 timeslices are shown in Figulrs.

From the confusion matrices, and the ROC curves, we can sg¢ehth accuracy of
sepsis detection of model 3 is significantly better than d¢ifidtoth model 1 and model 2.
We can also see that the accuracy increases with avaijatifilihore data with the passage
of time. The trends in these parameters with the passagmefdre illustrated in Figure
5.9, and their values shown in Tabte6. Table5.6 also includes the results from the test
data set with 48 timeslices.

A comparison of the accuracy of sepsis detection of the numedel (model 3) with
that of the previous models (models 1 and 2) shows that ubiedvtDL algorithm and
a clinically accurate model structure helped to reduce d¢isse bf information and avoid
the conditional independence problems, and to signifigamtprove the accuracy of the
model.

Our goal, as in the previous models, is early detection osisepVe aim to detect
sepsis with high accuracy within 2 hours of admission (an@slice model), which is
the shortest duration of time supported by our DBN modelechhique. The current
model shows a sensitivity of 0.69, a specificity of 0.95, pesipredictive value of 0.72,
negative predictive value of 0.94, and an area under theeai@.91 while testing with
3 timeslices. All the parameters including the sensitivitproved compared to model 2.
These measures again show that the model is more specifitt ieaensitive. However,

it shows much higher sensitivity than models 1 and 2.



Table 5.5: Sepsis model 3. Confusion matrices

(a) 3 timeslices

(b) 6 timeslices
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.| Actual | Actual
Sepsis Yes NoO Total
DBN 113 45 158
Yes
DBN 51 834 885
No
Total 164 879 1043
Sensitivity 113/164| 0.6890
(recall)
Specificity 834/879| 0.9488
PPV 113/158| 0.7152
(precision)
NPV 834/885| 0.9424
F-measure 0.7019
AUC 0.9110
(c) 12 timeslices
.| Actual | Actual
Sepsis Yes NoO Total
DBN 134 45 179
Yes
DBN 30 834 864
No
Total 164 879 1043
Sensitivity 134/164| 0.8171
(recall)
Specificity 834/879| 0.9488
PPV 134/179| 0.7486
(precision)
NPV 834/864| 0.9653
F-measure 0.7813
AUC 0.9336

.| Actual | Actual
Sepsis Yes NoO Total
DBN 116 44 160
Yes
DBN 48 835 883
No
Total 164 879 1043
Sensitivity 116/164| 0.7073
(recall)
Specificity 835/879| 0.9499
PPV 116/160| 0.7250
(precision)
NPV 835/883| 0.9456
F-measure 0.7160
AUC 0.9150

(d) 24 timeslices

.| Actual | Actual
Sepsis Yes NoO Total
DBN 141 48 189
Yes
DBN 23 831 854
No
Total 164 879 1043
Sensitivity 141/164| 0.8598
(recall)
Specificity 831/879| 0.9454
PPV 141/189| 0.7460
(precision)
NPV 831/854| 0.9731
F-measure 0.7989
AUC 0.9435
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Figure 5.9: Sepsis model 3. Plot of statistical measurestove

Table 5.6: Sepsis model 3. Values of statistical measurestoue

Number of timeslices in test data set
TS3 TS6 TS12 TS24 TS48
Sensitivity 0.68902| 0.70732| 0.81707| 0.85976| 0.88415
Specificity 0.94881| 0.94994| 0.94881| 0.94539| 0.94198
PPV (precision)| 0.71519| 0.72500| 0.74860| 0.74603| 0.73980
NPV 0.94237| 0.94564| 0.96528| 0.97307| 0.97757
F-measure | 0.70186| 0.71605| 0.78134| 0.79887| 0.80556
AUC 0.91102| 0.91499| 0.93362| 0.94353| 0.93029

5.6 Discussion
From the 3 models above, we can demonstrate that DBN methadge& used to
successfully detect sepsis in patients in the emergen@raeent within 2 hours of admis-
sion. The model can detect sepsis with variables that ardyradlected at the bedside,
and WBC count and bands percentage, which are easily obtaiom the lab in a short
duration of time. Of particular note is the results from itggtusing 3 timeslices in the
third experiment. This test iteration reflects inferencagigust 2-hours’ data from the

moment the patient is admitted to the emergency departnidns. test iteration showed
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a sensitivity of 0.69, a specificity of 0.95, positive preulie value of 0.72, negative
predictive value of 0.94, and an area under the ROC curveddf. OT'his model may be
suitable for use in the real-world clinical setting for gatetection of sepsis if it overcomes
the following limitation.

It must be noted that the prior probability of sepsis in ouadset was 0.2, because our
data set had 20% cases and 80% controls. In the emergenayrdeptof Intermountain
Healthcare, the prevalence of sepsis is about 2%, whicklatas into a prior probability
of 0.02. The real-world prior probability of sepsis is onliiQ of the prior probability
in our data set. Hence, the PPV and NPV of the model will changbe real world.
Hence, further testing and validation needs to be done &é¢fos model may be used in
an emergency department to detect sepsis.

The models and experiments above provide lessons to rede@®mputational com-
plexity of DBN learning and inference, and at the same timerove the predictive
accuracy. The experiments show that both data preparatidnmedel structure affect
the accuracy as well as the computational complexity of tloeleh The experiments
also show that it is possible to reduce the size of the sfaeeswithout a corresponding
reduction in accuracy. It is also shown that simple modeds dine designed to be intuitive
for human experts such as the SIRS model may not be commaéyiefficient or accurate
for probabilistic modeling. Models that take into accoum tomplex conditional inter-
dependencies and reflect them accurately, while definingttite-space in a meaningful
way, prove to be more accurate in probabilistic learningiafetence.

We have shown that by using more meaningful methods of da&j@apation such as
the MDL algorithm which analyzes the variation in the depamdvariable to discretize
the independent variable, we can obtain smaller but morenimgfal state-spaces. This is
a novel finding in the area of medicine, where probabilisgimporal reasoning methods
have not been used extensively. A majority of probabiligtimporal reasoning exper-
iments in the biomedical domain use Hidden Markov Modelsciwhin turn use equal
interval and equal frequency discretization. Hence, opegarments add new knowledge
to the area of probabilistic temporal reasoning in medidiygoroving that it is possible to
use more versatile models such as DBNs, with discretizétiomniques such as the MDL

algorithm, to accurately detect clinical conditions.



CHAPTER 6

CONCLUSIONS

Dynamic Bayesian Networks generalize a large class of [mibsigc temporal reason-
ing techniques that include Hidden Markov Models and Kalrkdter Models. DBNs
provide a powerful formalism to perform learning and infeze with models that have
complex probabilistic relationships within and acrossanses of time. Pathophysio-
logical processes and clinical practice workflow are inh#yetemporal processes. The
complexity of medical science and the practice of medicireenpt the need for clinical
decision support tools that can help with temporal modeéingd prediction. Dynamic
Bayesian Networks are an ideal candidate for applicatidnenrmedical domain to address
these challenges.

In spite of the success of DBNs and related techniques irr G#ids such as engineer-
ing, finance, economics, speech recognition, and genondipeoteomic modeling, they
have not been used to a significant extent in clinical mediohallenges to their adoption
include the difficulty in modeling clinical processes usatgmporal model, creating the
model structure, data aggregation, consolidation andetigation, support for variable
length temporal processes, learning and inference witlsingsdata, and ease of data
binding for learning and inference. These are the challetiget motivated this research.

This research addresses most of these challenges, asdédarthis dissertation.

6.1 Novel Contributions of this Research

6.1.1 Model Structure
We learned through our models and experiments that both Instrdeture and data
preparation can affect the computational tractability pretlictive accuracy of the model.
The structure of the model with discrete variables incluteshodes, edges, and the states

of the model. The nodes and edges can often be discoverednfiedfical literature or
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by interviewing clinicians. We described with evidence tieed to avoid conditional
independence and d-separation issues, and the problempbdil@ng away’, and how to

solve these issues.

6.1.2 Temporal Data Aggregation, Consolidation, and Abstuction
Temporal data aggregation and consolidation techniques also explored in detalil.
We described data preparation techniques that can be ¢jeadrto temporal reasoning
problems in medicine. We described methods that can be asggitegate and consolidate
clinical temporal data from many different data source® iatuniform denormalized
relational database table. We then described a method tormetemporal abstraction

to select a representative data point for each time interval

6.1.3 Discretization of Continuous Variables

The states of discrete variables are not easy to define.ddiiation is a double-edged
sword that makes the model amenable to learning and infet@nearious algorithms, but
it leads to loss of information and introduction of noisela same time. Discretization
techniques that are suitable for temporal probabilisésoaing given the complexity and
the sparse nature of clinical data have not been studiedopiy. Classical techniques
such as equal interval and equal frequency discretizatonat always yield the best
results.

We tested a combination of domain-based and equal intersatatization, and we
compared it to k-means clustering. We also separately coedplemeans clustering
to MDL discretization. We discovered that k-means clustgiand MDL discretization
techniques prove to be appropriate for use in the medicalagtogompared to domain-
based and equal interval discretization. We also demdasdtthat the MDL discretization
technique leads to more accurate and more tractable tetmpodgls. These findings may
be generalizable to other temporal models in the medicalasmnand may be amenable

to being performed in an automated way regardless of theenafuhe variable.
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6.1.4 Computational Tractability
We described the computational tractability of various elod) techniques and dis-
cretization techniques. We described how the structurbefriodel and data preparation
can be improved to make the model computationally moredkdet We performed these
tasks without a reduction in predictive accuracy of the nhodfée demonstrated that it
is possible to optimize a model to improve both the compoteti tractability and the

accuracy.

6.1.5 \Validation Techniques
We described how to process the results and validate theralbylating the expected
value and the statistical measures. These processes fmenet automatically by several
commercial or proprietary toolkits. We described how tof@en this task from starting
with the raw results, namely the marginal probability disitions. These techniques can
be generalized to perform validation from the marginal pimlty distributions obtained

using any other temporal model or toolkit.

6.1.6 Insulin Dosing and Glucose Control in the ICU

We created a model starting with medical literature, anohé and tested it using
the above-mentioned techniques in two test cases. The dsstcase, insulin dosing
and glucose control in the ICU for patients with stress-oetlihyperglycemia, showed
very high accuracy. Our model performed as well as eProtiosollin, the existing gold
standard at Intermountain Healthcare. Our model providiectally valid insulin doses
as validated by comparing them to the insulin doses recordatehy eProtocol-insulin.
It is to be noted that our model performed well even withoet platients’ feeding data,
which were available to eProtocol-insulin. This model shaxcellent promise for use
in a real-world clinical setting. A computational model iwitomparably high accuracy
to predict serum glucose or recommend insulin dose that éas tested with a similarly

large corpus of real clinical data have not been currentbgdieed in medical literature.
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6.1.7 Early Prediction of Sepsis in the ED

Our model predicted sepsis with very high accuracy even ghthe first 2 hours’
data from the instance when a patient is admitted to the esneygdepartment. The model
predicted sepsis with high accuracy even in the absencedtofewand sensitivity results.
The accuracy of our model increased if the patients’ datalohger duration is available
to the inference algorithm, which reflects the certainty iaigdosis made by physicians
in clinical practice. We also showed with multiple experiiteethe methods to improve
both the computational tractability and accuracy of the ehod\ computational model
with comparably high accuracy to predict sepsis that has tested with a similarly large

corpus of real clinical data have not been currently deedrib medical literature.

6.1.8 Projeny, an Open Source Temporal Reasoning Toolkit

Projeny, the probabilistic networks generator in Javani®pen-source toolkit that
was created as part of this research. The toolkit is basedme tother open-source
toolkits. Projeny has been released as open-source, aedusarly updated with new
features and bug fixes. Projeny allows the user to easilyetba nodes and edges in
a DBN model, define the states, and define which nodes arevelolsand which nodes
are hidden. Projeny also allows the user to perform dataifgnich a way that is easier
than most probabilistic modeling tools, whether free orppietary. Projeny also allows
the user to perform data binding for both training and testand saves the model in an
easily interoperable XML format. The modeling, learningganference tasks of all the
experiments in this dissertation were performed usingdPsgjproving the validity and
usefulness of the tool. Projeny has already been downloaubed than 100 times and is

being used by other DBN researchers.

6.1.9 Generalizability
Generalizability and external validity were among the ngals of this research. The
methods described in this research and tools created diigwgesearch are generalizable
to other similar temporal reasoning problems. The geresfility of the techniques have
partly been proved by applying them to the two test casesithestcin this dissertation.

Further generalizability and external validity for disdien problems (e.g., large time
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horizons, higher order Markov processes, etc.) remain tested.

6.1.10 Nonoriginal Contributions of this Dissertation
Chapter 2 of this dissertation provides a comprehensiversamnof temporal reason-
ing and representation. It serves as a starting point toearelser who wants to explore

temporal representation, temporal logic, or temporaloegg and prediction.

6.2 Limitations
Several limitations of the methods and tools described isdissertation have been

identified. The following sections discuss these limitasio

6.2.1 Limitations of the Learning and Inference Algorithms
The models and tools only support discrete nodes at predeatio a limitation of
the learning and inference algorithms that are used. Contis nodes are not supported.
The learning and inference algorithms used in this experipand the Projeny tool, only
support first-order Markov processes. Higher order Markcgsses are not currently
supported. The algorithms also do not support continumns-DBNs or DBN models

with timeslices of variable width.

6.2.2 Limitations of the Projeny Tool
Currently, the tool only supports one exact algorithm eactprameter learning and
inference. Approximate learning and inference algorithamsl other exact learning and
inference algorithms are not currently implemented. Tlneolimitations of the learning

and inference algorithms apply to Projeny due to its depecelen these algorithms.

6.2.3 Utility and Action Nodes
The models and tools described do not support utility anidactodes. By extension,
POMDPs and LIMIDs are not supported.

6.3 Future Research
Further research areas include new algorithms, new maptdehniques, implemen-

tation of new features in the tool, and new or extended agiptins.
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We hope to support more learning and inference algorithni&ajeny and to apply
these algorithms for parameter learning and inference.cohgutational tractability and
accuracy of these algorithms may be tested, and compared toitrently used algorithms.

We intend to perform more detailed comparisons and evalusitf various discretiza-
tion algorithms using the same model and data sets. Due &xfheratory and incremental
nature of this research project, an exact comparison otttehniques under identical
conditions could not be performed. Hence, we intend to kesstomputational tractability
and accuracy of models that use different data discretizagchniques under identical
conditions.

We also intend to explore POMDPs and LIMIDs, and model denisupport systems
that can recommend decisions using utility and action negelsreward functions. We
believe that these capabilities will enhance the utilitypasbabilistic temporal reasoning
techniques in the clinical domain. We will add new featu@®tojeny to support more
learning and inference algorithms, and more modeling teci@s such as POMDPs and
LIMIDs. We hope to actively improve the tool with inputs frotihe larger open source
community.

Finally, we intend to test the hyperglycemia and sepsis tsoai&h more rigor and
with larger data sets, and validate them under stricter iiond. We intend to evaluate
and refine these models for their appropriateness for user@alaclinical setting. We

intend to apply these tools and techniques to other bioraédioblems as well.
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