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Polarizability of noninteracting 2D Dirac electrons has a 1 /  j q v  — 10 singularity at the boundary of 
electron-hole excitations. The screening of this singularity by long-range electron-electron interactions is 
usually treated within the random phase approximation. The latter is exact only in the limit of N  —'* oo, 
where N  is the “color" degeneracy. We find that the ladder-type vertex corrections become crucial close to 
the threshold as the ratio of the «th order ladder term to the same order random phase approximation 
contribution is ln"|gv — co\/N". We perform an analytical summation of the infinite series of ladder 
diagrams which describe the excitonic effect. Beyond the threshold, qv > co, the real part of the 
polarization operator is found to be positive leading to the appearance of a strong and narrow plasmon 
resonance.
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Introduction.—M any properties of interacting tw o
dimensional clcctrons with a linear Dirac spcctrum e =  
± v p ,  found in graphene monolayers, differ sharply from 
those with the parabolic spcctrum present in conventional 
semiconductor hctcrostructurcs [1,2]. A vanishing density 
of states at the Dirac point and less cffcctivc screening of 
the Coulomb interaction lead to the clcctronic properties of 
graphene being qualitatively different.

One of the distinct signatures of nonintcracting 2D 
clcctrons in graphene, causcd by the abscncc of spcctrum 
curvature, is a divergent behavior of the polarization 
operator (chargc susceptibility) at the threshold for the 
cxcitation of clcctron-holc pairs [3 -7 ], I I (0)((u, q) =

- N q 2/ I 6 y f a h ?  — o r ,  where N  is the degree of dcgcncr- 
acy (in graphene N  =  4 in the abscncc of magnetic field). 
The cffccts of clcctron-clcctron interaction on the polar
ization operator arc customarily accounted for by the ran
dom phase approximation (RPA) [5,8-10], which sums the 
infinite series of clcctron loops,

n ^ A =  ( n (0)) - '  -  Vir (1)

where V(/ =  l i r e 2/q ,  the diclcctric constant of the sub
strate being incorporated into the chargc e2. In particular, 
RPA predicts that the imaginary part of the polarization 
operator (which determines absorption in the system and 
the density-density correlation function) instead of diverg
ing actually vanishes at the threshold according to
— IIj(pA a  g - 2^ r = ~ q v ,  where g =  e2/ v  is the dimcn- 
sionlcss interaction constant.

A notable property of 2D clcctrons, well captured by 
RPA in a conventional Fermi liquid, is the cxistcncc of a 
low-frcqucncy collcctivc mode of chargc oscillations 
whose spcctrum is w 2 =  2e2E Fq, where E F is the Fermi 
energy. In undoped graphene, E F =  0, the plasmon mode 
is thus absent within RPA (finite doping or temperature can 
lead to the usual RPA plasmons [11,12]). M athematically 
this comcs from the fact that the real part of I I (0) is

PACS numbers: 73 .23 .-b , 72.30.+q

negative for q v  >  co (i.e., beyond the domain of 
clcctron-holc excitations). In the present Letter wc dem 
onstrate that this conclusion is an artifact o f the approxi
mation ( 1) and that a collcctivc mode docs exist in undoped 
graphene. This mode dcscribcs chargc fluctuations in a 
system of clcctron-holc pairs interacting in a final state 
( “ cxcitonic” cffcct), rather than free pairs, as implied by 
E q .(1 ).

Wc begin with noting that RPA is much less justified in 
the ease of undoped graphene than in the ease of the 
conventional parabolic spcctrum, where it is formally valid 
for momenta less than the inverse screening length, q <K k . 
In undoped graphene the vanishing density of carriers 
ensures that k —> 0. In particular, direct calculation of the 
clcctron sclf-cncrgy to the sccond order in interaction 
demonstrates that non-RPA contributions arc generally 
smaller than the RPA terms only by virtue of 1 / N  [13]. 
The RPA is cxact only in the formal limit of N  —> oo, sincc 
cach RPA term corresponds to the largest number of loops 
possible in cach order of the perturbation theory.

Below wc analyze consccutivc orders of the perturbation 
series in the bare interaction Vq =  l i r e 2f q  and compare 
RPA diagrams to the ladder corrections. Wc find that the 
ratio of the nth ladder term to the corresponding RPA 
contribution of the same order is N ~ nlan(^ " ^ ) and large 
closc to the threshold. After extracting the leading singular 
terms in cach order, wc calculate the infinite ladder series 
and obtain a nonpcrturbativc expression for the polariza
tion operator near the threshold. Summation of the leading 
divcrgcncics is possible  oncc wc realize that for q v / \ q v  — 
o)\ »  1 the main contribution arises from the processes 
that involve quasi-onc-dimcnsional motion of interacting 
particlcs along the direction of the external momentum q. 
In general, when N  ~  the perturbation expan
sion of the polarization operator rcccivcs similar contribu
tions from both the ladder and RPA terms. Thus, the 
polarization operator is composed of all possible com bi
nations of ladders and loops.
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Noninteracting electrons. —To demonstrate our method 
and to introduce some notations it is instructive to begin 
with reproducing the zeroth-order polarization operator. 
Close to the resonance, when \co -  qv\ q v ,  only those 
transitions are im portant that have mom enta p and q 
directed almost along the same line. M ore precisely, the 
electron is taken from the state in the lower cone with 
m omentum p almost antiparallel to q and placed in the 
upper cone in the state with momentum p + q, which is 
almost parallel to q. Obviously, this is possible only as long 
as p <  q. The relevance of these particular transitions is 
understood from  the form of the polarization operator,

cle
J 2  -77

C e™ .P+qC 6p, (2)

where the electron G reen's function consists o f the contri
butions from both cones /3 =  ± 1 ,

1
ep x 

' /8=+1

1 + ( 3 & p

f i v p  + if ir) '
(3)

where &p =  & • p / p  is the projection of the pseudospin
Pauli matrix onto the direction of electron momentum. The 
energy integral in Eq. (2) yields

_____________ - p ^ ) ( l  ~  ffo -p )

4 ’ ’
T r(l +  /3«x,

co -  (3v(p  + |p + q|) + />S77

(4)

We observe that (i) for positive co the singular denominator 
appears for /3 =  + 1 , (ii) the trace operation in the numera
tor imposes that p and p + q are antiparallel (for the 
parallel configuration the trace vanishes). Close to the 
threshold (ca =  qv)  collinear processes become dom inant 
allowing us to approximate |p + q| ~  t/ — p  + ~,p{‘j-p) > 
where 6 denotes the angle between p and - q  and T r(l + 
o'pt-qXl — tf-p) ~  4; thus, we obtain, from  Eq. (4),

fy p d p  f 00 cW
(27t)2 q v , _p¥>_ _|_ •

2 Uj-p) +  iyl

(5)

Upon calculating the integrals we recover n !0)(&>,t/)
N^ - q W / J q v  -  co. Note that, as expected, the relevant

angles are small, 6 ~  ^/| 1 — co /q v | 1.
First-order correction. —To the first order in the 

electron-electron interaction there are three diagrams, 
Fig. 1. O f these diagrams, the self-energy correction, 
Fig. 1 (a), is the m ost singular near the threshold,

n sr!(«, q)
N g j v , 5 / 2

162\/2  (qv  -  a>y/2
In (JC/q), (6)

where JC is the upper momentum cutoff. This singularity 
indicates that the infinite summation of the self-energy 
diagrams have to be performed first, thus yielding the

a) b)

o  0 - 0
s.+co p,+q 

P,+q ___ I 2 w e , + w

C  I T >
Pi

C)

FIG. I. First-order interaction correction: self-energy correc
tion (a), subleading RPA correction (b). leading vertex correction
(c). Figure (d) illustrates the origin of the singular behavior. 
~ (q v  — « )_l \n\qv — &)|. from almost collinear electron propa
gation. Both states P). p2 belong to the lower ( — ) cone, while 
Pi +  Q- P2 + Q correspond to the upper ( +  ) cone.

renormalization of the electron spectrum. To the lowest 
order in the interaction this gives v p =  w[l + J  In(JC/ /?)]
[4]. In the case of a conventional Fermi liquid the corre
sponding velocity renorm alization is trivial. In case of a 
linear spectrum considered here, however, logarithmic 
terms lead to a slight curvature of the electron spectrum 
which can smear the threshold singularities. In what fol
lows we assume the renormalized velocity but neglect this 
smearing by taking the velocity at a typical momentum, 
determined by the external momentum v  =  v q.

The next term, Fig. 1 (b), is the RPA correction which 
can be readily written as

n RPA(«- Ci)
77.■N2g

16“ q v O )

It can now be verified that the vertex correction, 
Fig. 1(c), yields a contribution which is opposite in sign 
and more singular than Eq. (7) as a result of the long-range 
character of the Coulomb interaction. The energy integra
tions are performed independently in each half of the 
diagram, resulting in

H T r y  y f f d  - f r T p , ^ ) ( l  +  f r T Pl) 

16 7~r co + f3 v (p  ̂ +  |p1 +  q|)
r  1 r  2 P

X
P1P2 « p ' ................

q (  1 +  a<rpi)(\. -  acrp^ q) 
co + a v ( p 2 + |p2 +  q|) P|-P2 (8)

To extract the leading contribution we note that it comes 
from almost collinear processes with a  =  /3 =  + 1 , and 
both p + q, p' + q are alm ost parallel to q and almost 
antiparallel to both p, p'. Using the small-angle expansion 
introduced in the previous section, and approximating
V.p-p <?2/ l P ~  P*\i we obtain

n  ̂ ( c o .q )
N e 2 

2

* n -
/=1 CO

1

I/’1 -  P2\ 

p i d p id d i

q v p,-qdr
2 (q-pj)

(9)

The in tegrals over the two angles are independen t and yield
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the same resonant denominator as in Eq. (7). However, the 
integrals over the magnitude of electron mom enta contain 
a logarithmic divergence which is due to the long-range 
nature of the Coulom b interaction. To cut off this

divergence we note that ]px — p 2l ~  l/’ i — /’2I +

\ 0 l2 is the angle between two momenta. 
Recalling that relevant angles 0 \2 ~  Iqv/co — 1| and that 
typical pj ~  q, we observe that small-angle expansion fails 
for |pi -  p 21 ~  q J \q v /c o  — 1|, which should be used as 
the lower cutoff. As a result we obtain

2477 co — q v  \|<w — qv\
(10)

We, therefore, find that RPA loops exceed the vertex terms 
only when N  »  ^ e  opposite limit, close to
the resonance, N  the ladder diagrams dom i
nate. We now turn to the summation of the ladder series.

Summation o f  the infinite ladder. —In the second order in 
electron-electron interaction the m ost dominant contribu
tion again comes from the ladder diagram. Fig. 2(a), with 
three pairs o f electron lines each yielding a 1 / yjqv -  co 
singularity, and two Coulomb interactions providing two 
additional powers o f the logarithm. The other diagrams are 
less singular at co =  q v .  Diagram 2(b) requires that at least 
one of the interaction lines carries a large momentum, ~ q ,  
while both momenta in the ladder-type diagram 2(a) are 
small. Exchange-type contributions, 2 (c )-2 (e ), though 
providing the main power-law singularity, involve trans
ferred mom enta which are ~ q  and lack the additional 
logarithms (while also lacking extra factors N).

Repeating the arguments from the preceding section we 
realize that to each order in the interaction the leading 
contribution comes from the ladder diagram. Fig. 2(f),

C D  0 = C >
c) d) e)

Pi+q
e,+(»

p2+q
e,+co

Pn.1+Q
e „+<+CQ

C L
Pi E1 P2 e2

FIG. 2. Leading, (a), and subleading, (b)-(e), non-RPA dia
grams of the second order. The ladder diagram (f) explains the 
origin of the most singular, (qv — co) "ln"\qv — w|, contribu
tion of the arbitrary order 11. All states propagating along the 
upper or lower part of the ladder belong to the upper or lower 
cone.

TTn<», q) =  —A'Tr

X G

■ n+1de

i—l

€| +<t>p| +q

2 it 

■ ■ G .

1/ 1/ 
v P1- P 2 • • • v p „ - p „ V

X ^e„-iP„-i • • • ^ i P r

All the m omenta are almost collinear, with those propagat
ing along the lower part o f the ladder, p (, being antiparallel 
to the external wave vector q and to all the momenta p, +  
q along the upper part o f the ladder. Energy integrations 
are independent in each step and result in the singularity 
being strongest when all the propagators in the upper or 
lower parts of the ladder belong to the upper (+ )  or lower 
(—) cones. The subsequent trace operation is easily per
formed as

Tr (1 -  <xPl) . . . ( !  -  <xPl,^ ) ( l  +  <xPn̂ q) . . .  (1 +  <Xp^q)

yielding the nth  order contribution to the polarization 
operator in the form

W f( c o .q )  =  ( - i Y N  I VtP1-P 2

H-t-1

x n —a 1 —
dp,

i—l co -  v(p i  + Ip, +  q |) +  ir)' (11)

Integrating over the angles and then evaluating the inte
grals over the absolute values of mom enta in the leading 
logarithmic approximation, we obtain

TT ■"'(&), q) =  —
1 T W )

^ J lq v iq v  — ca)
(12)

where we introduced the following dimensionless variable.

u l ~ F — ln(i qu i)- The summation o f the infinite) V q v — (o x \ q v — (aY2v2 Vqv~<D loMqv—<ov 
series can now be readily performed.

TT(&>, q) =  —N q
1 +  -  arcsin.r — (1 +  - x ) V  1 — .____7T__________ 2____7T 7______

4 v s H j ^ U ^ i - x 2

(13)

The above result (13) for the polarization ladder is 
sufficient to calculate the polarization operator in a more 
general case when N  ~  ln ( ]^ r^ |)  ^  L  In this regime both 
vertex and loop diagrams have to be summed sim ulta
neously. Such a summation can be performed by realizing 
that it yields a geometric series sim ilar to the usual RPA 
one ( 1) but with the bare polarization operator TT(0) re
placed by the polarization ladder TTV/ given by Eq. (13),

'Pico, q) =
TTV/(<w, q)

1 — V(q)W v (co, q ) ’
(14)

Collective mode .—The nonzero imaginary part of the 
polarization operator determines those values o f co and q 
for which the dissipation of the external field is possible.
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FIG. 3 (color online). Imaginary part of the polarization op
erator in units of q/4  for N  =  4 and g = 0.3: nonintcracting 
value lly (dashed line), RPA value IIrPA from (1) (dot-dashed 
line), and T "  from Eq. (16) that describes collcctivc response of 
excitons (solid line). The inset illustrates the relative height of 
the cxcitonic plasmon line to the background of individual 
clcctron-holc absorption. The position of plasmon qv  =  
1.006&), the absorption threshold qv = 1.081&).

The imaginary part o f Eq. (13), and as a result o f Eq. (14), 
arises in two cases: (i) Imaginary x  corresponds to the 
conventional domain, co >  q v ,  but modified by interaction 
o f electrons and holes, (ii) Positive 1 <  x  <  oo corresponds 
to the absorption below  the threshold and represents a 
nonperturbative effect which arises from lowering the en
ergy o f electron-hole excitations with finite q from attrac
tive Coulomb interaction. The new threshold of absorption 
io =  qu  is determined from the condition x  =  1, which for 
weak interactions g <5C 1 gives

u =  u [ l — (g]ng)2/2 \.  (15)

An even more striking property o fE q . (13) is the behavior 
o f its real part, which describes the polarizability of an 
interacting electron-hole pair. It is easy to see that the real 
part is positive for x  >  1 [14]. This change in sign, as 
compared with the real part o f the RPA polarizability (1), 
can already be traced to the first-order vertex correction
(10), which is opposite to the first-order RPA correction
(7). This fact has immediate consequences for the collec
tive response o f excitons, given by Eq. (14), which devel
ops a pole for a certain value o f frequency co{q). This new 
mode describes the propagation o f coherent oscillating 
charge density in a system o f interacting electron-hole 
pairs. The corresponding peak in the absorption has a finite 
but small width which is due to the fact that the collective 
mode falls within the range of decay via individual 
electron-hole pairs. Its behavior is illustrated in Fig. 3 for 
N  =  4.

Interestingly, the width of the plasmon is maximal 
around g ~  0.3. For smaller values o f the coupling strength 
the peak narrows by virtue of the narrowing o f the whole 
exciton domain, Eq. (15). For larger values, g »  1, the 
peak width decreases *  g ~ 2 while the height increases 
only '*■ g. The position of the peak in this limit tends to 
the value determ ined from the equation [recovered from

(13) and (14) when x  —> oo] I n ( ^ r ^ )  =  N,  which yields 

co{q) =  q v (  1 — e~N). (16)

Conclusion .—The usual RPA formalism adequately de
scribes dynamical charge fluctuations only in the limit 
N  »  In, qv i . Close to the Dirac cone we find that the\q v — co\

nth order term in the ladder series is larger than the 
corresponding term in the RPA series by a factor o f 
\nn{ q v / \q v  — a>\)/Nn. This stronger singularity in the 
ladder series arises due to the long-range interaction be
tween electrons which move almost collinearly to the 
external momentum q. The series is summed up analyti
cally yielding a nonperturbative result: the density and spin 
response functions acquire nonzero imaginary parts in the 
additional frequency range qu <  co <  qv .  This extension 
is a manifestation of the cxcitonic effect. The reversal o f 
the sign o f the electron polarizability in this new domain 
gives rise to a sharp plasmonic mode which is absent in the 
conventional RPA. Interestingly, a similar sign reversal o f 
the polarizability due to interactions has been reported to 
yield a surface plasmon in a different case o f a tw o
dimensional Anderson insulator [15].
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