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Abstract
The inherently asynchronous nature of the data �ow computation model allows the exploitation of
maximum parallelism in program execution� While this computational model holds great promise�
several problems must be solved in order to achieve a high degree of program performance� The
allocation and scheduling of programs on MIMD distributed memory parallel hardware� is necessary
for the implementation of e�cient parallel systems� Finding optimal solutions requires that maxi	
mum parallelism be achieved consistent with resource limits and minimizing communication costs�
and has been proven to be in the class of NP	complete problems� This paper addresses the problem
of static allocation of tasks to distributed memory MIMD systems where simultaneous computation
and communication is a factor� This paper discusses similarities and di
erences between several
recent heuristic allocation approaches and identi�es common problems inherent in these approaches�
This paper presents a new algorithm scheme and heuristics that resolves the identi�ed problems
and shows signi�cant performance bene�ts�
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Abstract

The inherently asynchronous nature of the data �ow computation model allows the exploitation of

maximum parallelism in program execution� While this computational model holds great promise� sev�

eral problems must be solved in order to achieve a high degree of program performance� The allocation

and scheduling of programs on MIMD distributed memory parallel hardware� is necessary for the imple�

mentation of e�cient parallel systems� Finding optimal solutions requires that maximumparallelism be

achieved consistent with resource limits and minimizing communication costs� and has been proven to

be in the class of NP�complete problems� This paper addresses the problem of static allocation of tasks

to distributed memory MIMD systems where simultaneous computation and communication is a factor�

This paper discusses similarities and di�erences between several recent heuristic allocation approaches

and identi�es common problems inherent in these approaches� This paper presents a new algorithm

scheme and heuristics that resolves the identi�ed problems and shows signi�cant performance bene�ts�

� Introduction

A primary goal of program allocation and scheduling is to minimize program run time� The goals of

program allocation vary� however� with the circumstances of hardware and software requirements� Memory

size limits� restrictions on external I�O access and processor failure are several considerations that may

take precedence over execution time� In addition� the existence of shared memory� distributed memory and

the possible duplication of computations to eliminate communication� may signi�cantly alter the nature of

the allocation problem�

The inherently asynchronous nature of the data �ow computation model o�ers promising improvement

in performance over the control �ow programming model� Data �ow research has focused on developing

high speed data �ow multiprocessors� on recognizing the potential parallelism in sequential programs���	�

achieving parallel program performance� developing parallel languages ��	� Recent research has also ad


dressed the extension of data �ow concepts to the execution of programs on non data �ow architectures�

The data �ow computation model describes computations as a collection of work units called tasks���	�

Individual tasks are sequential segments of program execution which can run from start to completion

without synchronization� Tasks require input data to begin execution and the computational results of

tasks are then used as the input to subsequent tasks� A task is eligible for execution when all of its inputs

are ready� Precedence relationships are de�ned between pairs of tasks if the results from one task are
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Figure �� Data Flow Program Representation

required for the computation of the other� These precedence relationships de�ne a partial ordering of the

task set that allows the asynchronous parallel program execution�

Programs may be represented as directed weighted data �ow graphs see Figure ��� Graph nodes

represent tasks which are weighted proportionally to the amount of computation done� Arcs de�ne data

�ow between nodes and represent the requirement for the results of one node as input to another� The

arcs de�ne a precedence relationship between producer and consumer and are weighted proportionally to

the amount of data transferred� Loops and nesting of subgraphs are possible within the data �ow graph

model as is recursive nesting� Data �ow languages have been developed ��	 to exploit the properties of data

�ow graphs� The data �ow graph model can also be used to represent programs in traditional languages

���	�

Several researchers have focused on the problem of generating directed acyclic graphs for parallel

programs ���	 and also on the problem of extending static graph models to mixed static�dynamic graphs���	�

These are both ongoing areas of research� For the purposes of studying program allocation� graphs are

often translated into non
looping non
nested form as DAGs�

A graph representation may be used to characterize the parallel architecture� Graph nodes represent

processors and are weighted according to processor performance characteristics� Connecting arcs represent

communication pathways between processors and are weighted proportionally to the cost of communication

between processors�

Several data �ow architecture models have been developed� These include the Manchester Data Flow

Machine ���	� MIT�s Tagged
Token Data�owMachine ��	 and the DDM
� Computer��	� Other architectures

such as hypercube���	� HP May�y ��	 and Banyan networks���	 are amenable to data �ow program repre


sentations� Architectural characteristics common to many or all of these architectures include distributed

memory systems and MIMD control� An additional characteristic of many of these architectures is the

possibility of overlapping computation and communication� Separate hardware handles communication

allowing a processing node to execute tasks and communicate simultaneously�

A number of research e�orts have addressed the allocation of programs to distributed memory mul


tiprocessor systems using the data �ow program model for analysis� In the following sections this paper
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categorizes and discusses several related approaches to this problem� and identi�es common problems in


herent in these approaches� This paper presents a new algorithm scheme and heuristic cost procedure that

resolves the identi�ed problems and shows signi�cant performance bene�ts� The remainder of the paper is

organized into sections as follows� Section � de�nes the allocation problem� Section � categorizes related

work� Section � gives working concept de�nitions� Section � describes speci�c related algorithms� Section

� discusses performance of these algorithms� A new algorithm scheme is presented in Section �� A new

heuristic allocation procedure is presented in Section �� Section � describes simulation tests and results�

A complexity analysis is given in Section ��� Finally� Section �� presents Conclusions�

� Problem De�nition

This paper focuses on the problem of minimizing program run time for programs allocated to distributed

memory multiprocessors where signi�cant inter
processor communication costs exist� The task graphs are

assumed to be directed acyclic graphs and to be statically determined at allocation time� It is also assumed

that parallelism between computation work and communication work is a factor in the multiprocessor

system��� ��� ��	� Architecture con�guration and unit interprocessor communication costs are variables�

Processor utilization time is broken down into three components�

Task computation time is the time spent on the execution of tasks�

Local communication time is the time spent by a processor locally to e�ect communication�

Non�local communication time is the time spent during communication in which a processor may

carry out other activities�

Task computation time and local communication time are present irrespective of the allocation and together

comprise task weight� Non
local communication time potentially causes delays but may overlap with local

communication time or task computation time if there is work available for the processor to carry out�

Non
local communication time is represented by arc weight� In the processor network con�guration inter


processor communication delays vary depending on topology�

� Categories of Related Work

Other program allocation research e�orts utilize problem descriptions similar to that given above� Many of

the related program allocation algorithms have distinguishing characteristics that can be generally classi�ed

as follows�

List schedule algorithms walk the task graph allocating tasks to processors to build lists of tasks to be

executed by each processor ���� ��� ��	� This type of algorithm usually allocates the task graph in a

single pass�
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Task Clustering algorithms cluster tasks into groups or lists and then allocate the groups to processors

��� ��� ��	� This may be a multi
phase of single phase process�

Graph Folding algorithms use graph theoretic operations to transform the program task graph to match

the processor network graph topology� Algorithms of this type generally rely upon uniformity of the

input graph� Task level allocation algorithms ��	 may assume a standard unit arc weight and thus a

standard data size� for communication between adjacent tasks� Alternately� a process graph may be

used where processes are considered to contribute a processing load that is uniform over time ���� �	�

Search algorithms iteratively make modi�cations to an initial allocation attempting to make successive

improvements� Included in this type are simulated annealing ���	� steepest descent search ��	� and

branch and bound search ���	 algorithms� These algorithms often have relatively higher complexity

than the others due to the number of iterative improvements required�

The algorithm types considered for comparison here are of the task clustering and list schedule types�

Graph folding algorithms are not considered because of the limitations placed on the graph model� Search

algorithms are not considered because of their relatively higher complexity�

� Operational De�nitions

��� Graph Ordering

Several notions of graph ordering have been useful in program allocation research�

Topological ordering See Figure �� assigns a number to each task such that the descendents of a task

always have higher lower� number� There are usually many possible topological orderings for a

particular graph�

Level ordering see Figure �� is similar to topological ordering� Level ordering assigns to each task the

number that is equal to the number of tasks in the longest length precedent chain of tasks from the

root to the task� This de�nes a partial ordering of the tasks since multiple tasks may cohabit the

same level�

Precedent ordering see Figure �� � assigns a number to a task relative to the greatest completion time

or start time� of its precedent tasks for a particular program allocation� Tasks are numbered there


fore in completion time or start time� order� Precedent ordering satis�es the topological ordering

requirements but also considers the processing time requirements of allocated tasks�

Critical path ordering see Figure �� assigns a number to a task that is equal to the longest exit path

weight for that task� The exit path weight is the largest sum of precedence related task weights from

the task being numbered to the end of the program�

�Task Weights are shown above the tasks� Interprocessor arc weights are also shown�

�
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Figure �� Precedent Ordering Showing Processor Grouping
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��� List Schedule Scheme
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Figure �� List Schedule Scheme

List schedule algorithm types build processor task schedules by iteratively adding tasks to processors� In

operation� tasks are inserted into an eligible task set when their precedents are met and the processors

become eligible for allocation when idle� Heuristic cost functions and�or graph ordering are then used to

prioritize tasks and processors� The algorithms then match tasks to processors based on the determined

priorities� In addition to the task graph and processor graph de�nition� the list schedule algorithms

and some clustering algorithms� maintain similar sets of dynamic information about the task graph and

processor task sets during allocation� Figure � shows possible list schedule scheme information for the

graph fragment in Figure �a�� This information organizes the progression of the graph traversal� In some

of the algorithms� one or more of these features may be degenerate� Conceptually this information includes�

CNTi A counter of the number of allocated precedent tasks is maintained for each unallocated task� This

is used to determine when a task becomes eligible for allocation�

SCHEDULEp A sequence of tasks and their predicted completion times T��T��T� in Figure �� for each

processor� This is used to determine when precedents are satis�ed for unallocated tasks and when

allocated tasks will complete�

TSET The set of tasks eligible for allocation� Set representation varies for di�erent algorithms�
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PTR A pointer tracking completion or starting� times of allocated tasks and processors� A Task is added

to TSET when PTR has passed all its precedent tasks� PTR steps through the task set in completion

time order� Alternately start time� topological position or level order may be used�

PSET The set of processors that eligible for allocation� Set representation varies�

The heuristic cost functions are localized in that they make use of local information about each task

considered� such as exit path weight� task length� communication costs and precedent relationships� They

also make use of information about the schedule of tasks already allocated to each processor� but do not

consider the graph as a whole�

��� Task Clustering Scheme

Task clustering algorithms separate allocation of a task graph into two steps� clustering and assignment�

Heuristic cost functions are used to cluster tasks into groups and to allocate the groups to processors�

These steps may be combined into a single phase or left as separate phases� In either case the phases�

iteratively process tasks� usually in a manner similar to the list schedule scheme� In addition� heuristic

notions of graph ordering are used to evaluate assignment cost and to estimate execution time�

� Related Algorithm Types

NAME DATE ORDERING

List Schedule Algorithms

GREEDY �� PRECEDENT
CRITICAL PATH �� PRECEDENT
GREEDY CPM ������	 PRECEDENT

CAMPBELL ALG� �
 TOPOLOGICAL
WP ALGORITHM �� LEVEL ORDER
RAVI ALGORITHM �� PRECEDENT

Clustering Algorithms
SARKAR ALG� ����� TOPOLOGICAL

LAST ALGORITHM �� UNSPECIFIED
VERTICAL ALG� �� LEVEL ORDER

Figure �� Related Algorithms

Figure � lists several speci�c algorithm types relevant to the work reported here� These algorithm types

fall into the classes of list schedule and task clustering algorithms� These types are considered primarily

because they have been shown to produce reasonable results with minimum computational complexity and

with minimal restrictions on graph and architecture properties� These algorithm types are further related

in that they use the list schedule scheme and�or that they each employ one or more of the graph ordering

concepts described in Section ���� Graph ordering concepts are used in these algorithms to order the

sequence of execution of tasks allocated to a processor  SCHEDULEp� and�or to sequence the allocation

�
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of tasks� The complexity of these algorithms is discussed in Section ��� Speci�c algorithms types are

discussed in more detail below�

�� Greedy Algorithm� A list scheduling algorithm in which tasks are added to the eligible task set

when all parents are allocated which orders the allocation in precedent order� The eligible task set

TSET� is a simple FIFO queue� while the set of eligible processors PSET� is the set of all processors�

The heuristic allocation function here is to minimize communication costs� The algorithm assigns the

next eligible task to the processor that can schedule it the earliest� Figure � augments Figure � with

communication times for a uniform communication cost network� From the �gure� P � Processor

with minmaxt�� tb�� maxt�� ta�� maxt�� ta� tb����

�� Critical Path Method ���	� The CPM list scheduling algorithm has been used as a basis of comparison

for distributed memory allocation algorithms ���� ��	� In this algorithm the processor set PSET� is

a FIFO queue while the ready task set TSET� is an exit path length ordered priority queue� Tasks

are added to the eligible task set when all parents are allocated precedent order�� Communication

cost is not considered�

�� Greedy Critical Path Method� This list schedule algorithm type was proposed by Ho and Irani ���	

in ����� It is a combination of the Greedy and CPM algorithms�� Tasks are added to the eligible

task set TSET� when all parents are allocated precedent order�� TSET is a critical path ordered

priority queue� The heuristic assigns the highest priority available task to the processor that can run

it the earliest similar to Greedy above��

�� WP algorithm ���	� A list schedule algorithm that traverses the graph in level order TSET is level

ordered�� PSET includes all processors� Several local heuristics including CPM and task weight

priority� are used to prioritize the tasks within levels� Barrier synchronization forces each task to

execute in parallel with its level� Uniform communication time is assumed�

�A similar algorthim using the HLFET heuristic was proposed by Sih and Lee��� in �����
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�� Ravi Algorithm� This list scheduling algorithm type was investigated by Ravi� Ercogovac� Land and

Muntz ���	� It also uses exit path length priorities making the task set a priority queue� Tasks are

added to TSET in precedent order when all parent tasks have been allocated�� PSET is a stack

queue causing the most recently idled processor to be the processor selected for allocation� The

heuristics select the task from a range of high priority tasks� The task selected is the one which gives

the maximum savings in communication time for the chosen processor� If a task is allocated to the

same processor as one of its precedent tasks� then the communication cost between them is saved�

Figure � shows the communication savings for task C from Figure � relative to its precedent tasks A

and B�

�� Campbell Algorithm ��	� A list scheduling algorithm that traverses the graph allocating tasks in

topological order topological order TSET�� Tasks are assigned to processors dependent on two

heuristic cost functions� A communication cost function attempts to group tasks together that

communicate� while a parallelism maximizing heuristic attempts to separate tasks that are not in

each other�s transitive closure� PSET includes all processors�

�� Sarkar Algorithm� Sarkar and Hennessy ���	 proposed a two
phase clustering algorithm� The �rst

phase groups tasks into clusters while the second phase allocates clusters to processors� The tasks

within clusters in phase one� and on processors in phase two� are assumed to execute in topological

order� In phase one the algorithm iterates simulating the graph run time repeatedly to �nd the best

pair of clusters to merge� In phase two the algorithm iterates in a similar manner merging clusters

onto processors�

�� Vertical Algorithm� A two
phase clustering algorithm���	� Phase one repeatedly determines longest

execution path among unallocated nodes and assigns that node sequence to a processor� Phase two

determines the critical path including inter
processor communication� for the allocation and tries

to optimize it� Optimization is done by shifting tasks between processors to reduce communication

costs along the critical path� The optimization phase is repeated until no further improvement can
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be made� This algorithm assigns level ordering of execution for tasks assigned to each processor�

�� LAST Algorithm� A single phase clustering algorithm ��	� A Task is allocated singly if a su�cient

percentage of the adjacent tasks are allocated� If not then the task is grouped with other adjacent

unallocated tasks and the group is allocated as a unit� Tasks and clusters are assigned to a processor

based on relative communication cost and processor completion time�

� Discussion of Previous Work

Each of the algorithms studied makes use of one or more of the ordering concepts discussed except the LAST

algorithm which leaves the ordering unspeci�ed� These techniques attempt to characterize probable run

time program behavior� in order to structure and sequence the allocation algorithms and�or the allocated

program� Precedent ordering and topological ordering de�ne the sequence of graph traversal in algorithms

�� �� �� � and �� Precedent ordering and topological ordering also specify order of execution of allocated

tasks in algorithms �� � and �� Level ordering is used to group tasks into horizontal layers that can execute

in parallel in algorithms � and �� Each of these techniques may introduce unnecessary run time delays into

the task allocations generated� Of these� the delays caused by precedent ordering need special consideration

because they also arise in the other two ordering strategies�

PTR

P1

P2

P3

A

B C

tbta

Figure ��� Precedent Order Allocation State

��� Precedent Ordering

The position of tasks in precedent ordering re�ects an accurate estimation of program execution� and

accounts for both communication costs and execution times for each allocated task� Certain execution

delays may be attributed to precedent ordering�

As an example� Figures �a� and � depict a graph fragment and precedent order allocation state� At this

point in the allocation� task C is added to the eligible task set because its parents have both terminated� If

task C is allocated next� the state shown in Figure �� results� A signi�cant dead space has been introduced

into the schedule for processor P� because of communication delay due to arc AC� Several objections to

this allocation arise�
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�� Tasks with lower priorities might have been allocated to processor � to �ll in the dead space without

delaying task C�

�� Even if task C is delayed by a lower priority task the delay may not be as signi�cant as the e�ciency

gain particularly in systems with high communication cost��

�� Advancing the allocation pointer to further task completions on processors � and �� may add tasks

of even higher priority to the eligible task set� If these tasks could be assigned to processor � to

execute during the dead space or the time interval of task C� then task C is executed in preference

to a higher priority task� In this case a violation of the allocation heuristics arises as a result of

precedent ordering�

��� Topological Ordering

TIME = 23

P1

P2

0 1 2 3

Figure ��� Topological Allocation Order

TIME = 17

P1

P2

0 2 3

1

Figure ��� Non
Topological Allocation Order

Topological ordering sorts tasks based on precedence� but does not consider communication delays� Be


cause of this it may introduce the same allocation delays caused by precedent order allocation� Because

topological ordering does not consider the execution length of tasks� it may also introduce sequencing

delays when the lengths of all tasks are not equal� or when work cannot be evenly divided among the

available processors�

The graph fragment shown in Figure �b� is used as an example of execution delay caused by a topolog


ical allocation order� When the graph is allocated to two processors� task � is allocated before task � and is

placed with task � see Figure ��� to minimize communication cost� If the topological allocation ordering

is not used and both task � and � are considered eligible� then critical path priorities or minimization of

communication cost would result in the optimal allocation shown in Figure ���

The graph shown in Figure � is used as an example of delays introduced by requiring an particular

topological ordering of execution� Figure �� shows an optimal allocation of the graph on two processors�

This allocation does not preserve this topological ordering of execution of tasks because task � is executed
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Figure ��� Optimal Allocation true optimal�
P1

120 1 3 97 11

P2

2 4 5 8 106

TIME = 290

Figure ��� Optimal Allocation forcing topological execution order�

TIME = 220

P1

P2 2 4 5 7 8 10 11 12

0 1 3 6 9

Figure ��� Optimal Allocation Given Topological Execution Order

after task ��� Forcing this topological ordering of execution on this task assignment extends the execution

by more than �� percent see Figure ���� Furthermore� exhaustive search reveals that no allocation exists

that preserves this topological ordering of execution and has run time within �� percent of optimal run

time see Figure ����

��� Level Ordering

Level ordering is intended to relate topological position of tasks to their potential for parallel execution� The

entrance and exit path lengths� however� have a strong impact on the actual time that tasks are executed

and may not correspond well to topological level� In addition� since inter
processor communication time is

not considered� timing delays as discussed in section ���� may occur� Interval graphs ���	 connect pairs of

nodes that coexist over some interval and serve to illustrate the potential inaccuracy of level ordering� The

interval graph in Figure �� corresponds to the level ordering shown in Figure �� The optimal allocation

is shown in Figure �� and the corresponding interval graph in Figure ��� Path lengths in the graph allow

tasks to shift levels easily� and optimal allocation requires this� The result is a low correlation between

the level ordering and optimal allocation� Only � of the � arcs in the level order interval graph match the

optimal interval graph� and � arcs from the optimal interval graph are omitted�
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� Communication�Ordered Scheme

The previous algorithms generate allocation delays because they poorly estimate execution time state

relationships� The communication�ordered scheme extends the list scheduling scheme to overcome the

liabilities of the ordering techniques used in previous algorithms� This scheme adopts a discrete event

simulation model where task execution times and communication delays are modeled as events� The

sequence of allocation is determined by simulated time� and a task becomes eligible for allocation on a

processor when simulated time reaches the point when all precedent tasks have completed� all required data

could arrive at that processor and task execution could actually begin� In this scheme� tasks become eligible

for allocation at di�erent simulated times on di�erent processors due to variations in communication delays

across the processor network� We call this allocation ordering concept communication time ordering�

P1

P2

P3

A

B 

tbta
SIM. TIME

Figure ��� Communication
Ordered State

Figure �� illustrates communication time ordering for the graph fragment shown in Figure �a�� In

��



simulated time� tasks A and B have completed� Earliest potential execution times for task C are shown

as dotted rectangles� and task C will not be considered eligible until simulated time reaches those points�

At this point only processor P� is considered for scheduling� The other processors are active� and only

tasks that can begin immediately are eligible for scheduling� This allocation policy does not introduce the

dead space delays present in the other ordering strategies� Communication time ordering also maintains

a more accurate view of program execution that minimizes imbalance between processor schedules� In

comparison� the precedent order allocation in Figure � shows processor P� to be two task completions

ahead of processor P�� This state is not possible in communication
ordering because a task is not allocated

until simulated time reaches the point where it may actually begin�

INPUT� Processor graph� task graph �annotated by exit path lengths	
FUNCTION� Determine the sequence of tasks to be allocated to each processor�

Initially�
Clk � �
CQ � empty
TQ � empty
Pset � all processors
TSi � empty for all processors�
The root task is inserted into TS�

Loop till Clk �� ��

�� Process task completion events for tasks Tj in TQ with time �� Clk�

Add processor to Pset�

For all immediate descendent tasks Ti� decrement counter and if counter �� � then�

Compute the start time list STi for Ti

Remove the earliest start time and schedule a communication event in CQ for this task�

� Process communication events for each task Ti in CQ with time �� Clk �three cases are possible	�

�a	 Ti has already been allocated� discard event�

�b	 This is the last entry in time list STi�

remove Ti from all processor task sets

insert Ti in global task set�

�c	 This is not the last time list entry in STi�

insert Ti in task set for the appropriate processor�s	

remove the next start time entry from STi and schedule a new event in CQ�

�� Schedule tasks on processors�

Compare global task set and local task set for each idle processor to determine processor�task pairs based on heuristics
�see Figure �	� For each task to be allocated�

Remove processor from Pset�

Store start time and processor number�

Insert task completion event in TQ�

Delete task from all processor task sets if present�

Delete task from global task set if present�

�� Clk � min� �� next TQ time if any� next CQ time if any	�

Figure ��� Communication
Ordered Scheme Algorithm
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An outline of the communication
ordered allocation scheme is shown in Figure ��� The algorithm

requires the task graph and processor graph de�nitions and in addition� the following information set is

maintained�

Clk � Simulation time clock�

CQ � Communication event queue�

TQ � Task completion queue�

Pset � The set of eligible processors�

Ctri � For each unallocated task� A counter of the number of its precedent tasks that have been allocated�

For each allocated task the task processor number and start time is stored�

STi � For each unallocated task whose parents have completed there is a sorted list of start times� These

are the times when the task could be started on the processors in the system�

GS � Global task set contains tasks eligible for execution on all processors global tasks��

TSi � The set of eligible tasks for each processor i that are not globally eligible local tasks��

	 Heuristic Allocation Procedure

The heuristic allocation procedure used in this algorithm is tailored to the communication
ordered scheme�

The cost function uses greedy heuristics that attempt to minimize exit path length and reduce communica


tion delays and overall communication cost� Exit path lengths are computed for all tasks prior to allocation�

The communication
ordered scheme partially eliminates the need for heuristic cost functions to minimize

processor delays since tasks are only considered for allocation when they may be run immediately� There is

a distinction that can be made� however� between tasks in the local task sets local tasks� and those in the

global task set global tasks�� Global tasks are eligible for scheduling on all processors� while local tasks

are only eligible on a subset of the processors� A distinction may also be made between processors that

have tasks in their local task sets locally runnable� and those that do not idle�� Scheduling global tasks

on locally runnable processors may starve idle processors� This is true even when there are no immediate

idle processors� since there may be at the next scheduling iteration� Scheduling local tasks on runnable

processors reduces communication delays and the overall load on the communication network� The desire

to keep as many processors busy as possible and to reduce communication costs must be traded against

path length priorities� In priority order� the following heuristics are used�

�� Schedule global tasks on idle processors�

�� Prioritize global tasks by exit path length�

��



�� Schedule local tasks on runnable processors unless the exit path length of global tasks exceeds the

exit path length plus the saved communication delay of any local task�

�� Prioritize local tasks by exit path length plus saved communication delay�

�� Give preference to processors of parent tasks for scheduling global tasks�

INPUT� IQ�RQ�GS�TSi for each processor�
FUNCTION� Allocate eligible tasks to processors�
OUTPUT� Return list of allocated tasks�processor pairs

�� While IQ is not empty and GS is not empty�

T � top�GS	 �the highest priority global task	

Remove T from GS�

If a processor that ran a parent of T is in IQ then�

P � parent processor

else P � longest idle processor in IQ

Remove P from IQ

Allocate T to P

� While RQ is not empty�

P � top�RQ	

Remove P from RQ

T� � top�TSP 	

T � top�GS	

If �priority�T�	 � Saved Time	 � priority�T	 then
T � T�

else T � T

Remove T from all appropriate queues�

Allocate T to P

�� Return list of allocated task�processor pairs �T�P	

Figure ��� Heuristic Allocation Procedure

An outline of the heuristic allocation procedure is shown in Figure ��� The data used by the heuristic

allocation procedure includes the following�

GS � Global task priority queue exit path length priorities��

TSi � The priority queue of eligible tasks for each processor i exit path length priorities��

IQ � The idle queue of processors with no local tasks� IQ is ordered with longest idle processor �rst�

RQ � The runnable queue of processors with local tasks� RQ is ordered with processor with lowest top

priority local task �rst� This ordering is useful when comparing local tasks to global tasks to ensure

that the highest priority set of eligible tasks is selected for runnable processors�

��



T�P�T��T� � local variables�

The task sets GS and TSi are also used in the scheme description� The processors queues IQ and RQ

together comprise the processor set Pset from the scheme algorithm�


 Simulation Tests

Simulation testing was used to evaluate the performance of the allocation algorithm presented� As a

basis of comparison� several allocation algorithms were implemented based on algorithm types discussed in

Section �� The algorithms were implemented to operate on identical processor and task graph models as

described in Section �� The algorithm types implemented derived from the Greedy� Critical Path� Greedy

Critical Path� Ravi� Vertical and LAST � algorithms� The graphs were allocated for mesh processor systems

containing from � to �� processors� and with average cost ratio communication cost�computation cost�

varying from � to ��� Three sets of allocation tests were conducted and are described in the following

subsections� Figures �� to �� display results of the tests� The legend in Figure �� is used in all comparison

�gures�

��� Small Graph Tests

The �rst test set used a group of small graphs under ��� nodes� with very limited parallelism total work

� critical path length� � ��� �� In allocation tests using the small graph set� the clustering algorithms

underperformed the list schedule algorithms at low communication costs cost ratio below ����� Among

the list schedule algorithms reasonable speedup was obtained at low communication cost� At moderate to

high communication costs cost ratio above ���� the performance of all of the algorithms were similarly

low� In this range average speedup was consistently below ��� below ��� for cost ratio above ���� and

was frequently nonexistent or negative� Speedups in this range tended to �uctuate up and down with

increases in the number of processors� Low parallelism graphs seem to be equally suited then to any of

the list schedule algorithms at low communication cost ratios� but no consistent and signi�cant parallel

improvement is apparent for high communication costs�

��� Large Graph Tests

A set of �� randomly generated graphs with higher potential parallelism was used� These graphs ranged in

size from �� nodes to ���� nodes� The task weights were assigned randomly from a uniform distribution�

Communication cost weights were assigned by two methods� a� Cost ratio x Task Weight and b� Cost

ratio x Uniform Random Variable� While di�erent performance results were achieved using these two

methods� very little di�erence in the relative merits of the allocation algorithms was observed�

�Values for the LAST type algorithm are approximate and were extrapolated from comparison data ���� where it was
compared against the Greedy algorithm�

��



In tests using the large graph set� the relative performance of the comparison algorithms was consistent

with earlier reported results ���� ��� ��� ��� ��� �	� In comparison the communication
ordered allocation

algorithm showed signi�cantly superior response to increases in number of processors and increases in

communication cost ratio� It generated consistently superior allocations when the cost ratio exceeded ����

����� Algorithm Response

Figure �� show performance response with increasing communication � computation cost ratio and increas


ing number of processors� Since speedup limits are graph speci�c� the �gures shown are for a representative

task graph� A baseline curve in bold indicates the speedup achieved with a CPM scheduler for a zero com


munication cost multiprocessor� Other curves are for the comparison algorithms when the indicated cost

ratio is present� Consistent increases in speedup above ���� are obtainable for the task graph on a shared

memory multiprocessor� When communication cost ratio is below ��� not shown� and when the available

parallelism exceeds the available processors i�e� less than � processors in Figure ��a��� the list schedule al


gorithms performance is similar to the communication
ordered algorithm� When signi�cant communication

cost is a factor� run times degrade for all of the algorithms�

Characteristically� the communication
ordered allocator outperformed the range of comparison algo


rithms showing less performance degradation with increasing cost ratios� Also� characteristically� the

communication
ordered allocator showed superior response to increased number of processors� maintain


ing speedups close to shared memory performance until reaching a maximum level and �attening sharply

beyond the breaking point� In comparison� the other list schedule algorithms showed more gradual and

uneven increases in speedup and occasionally decline��

����� Overall Comparison

Figures �� and �� show the performance of the comparison algorithms relative to the communication


ordered allocator� In Figure �� communication cost � computation time cost ratios in column � vary from

� to ��� The �gures indicate average relative performance at the breaking point of the communication


ordered allocator for all graphs at each communication cost ratio� The entries in Figure �� are the average

ratio of the run time for the comparison algorithm divided by the run time for the communication
ordered

allocator� For example� a value of ��� indicates that the comparison algorithm produced an allocation that

required ��� times the communication
ordered allocation run time� The �Best� column was computed by

taking the best allocation achieved by any of the comparison algorithms for each test case and comparing

that against the communication
ordered allocator� Figure �� is a logarithmic plot of the data in Figure ��

omitting the BEST column�

At low cost ratios below ����� the list schedule algorithms performed nearly as well as the communication


ordered allocator� At cost ratio ��� and above� however� the communication
ordered allocator consistently

outperformed the comparison allocators individually and as a group� The relative performance of the list

schedule algorithms continued to degrade with increasing communication cost� None of the algorithms

��



Figure ��� Speedup Graphs

a� c�

b� d�
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Figure ��� LEGEND

Figure ��� Overall Comparison

showed signi�cant speedup with communication cost ratios above ���� for the task graphs used� The

relative performance of the clustering algorithms is nearly level and the LAST algorithm shows grad


ual relative improvement� however� the potential speedup is exhausted long before it converges with the

communication
ordered allocator�

C�T RAVI GCPMGDY CPM VERT LAST BEST

��� ���� ����� ����� ����� ����� ����� �����
�� ����� ���� ����
 ����� ����� ����� ����
��� ����� ���� ���� ���� ����� ���
 �����
��� ���� ����� ���� ���� ���� ���

 �����
��� ���� ����� ���� ����
 ���� ����� �����
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 ���� ����� ���� ����� ����� ����
 �����
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��� �
�� ���� ��
�� ����� ����� ����� ����

Figure ��� Overall Comparison Results
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��� Scheme Replacement Tests

Figure ��� Scheme Replacement

In the scheme replacement tests the performance of the precedent ordered scheme of the Greedy and

Greedy CPM algorithms is compared to the performance of the communication
ordered scheme using

similar heuristic cost functions� Two modi�ed algorithms are produced� Communication
ordered Greedy

and Communication
ordered Greedy CPM� These algorithms use the heuristics of the base algorithms with

the communication
ordered scheme� In the Communication
ordered Greedy algorithm� tasks are placed

in a local FIFO queue when eligible on a processor� while in the Communication
ordered Greedy CPM

algorithm� the tasks are placed in local priority queues� A global task queue is not used� Tasks are selected

by taking the top task o� of the local task queue for a processor� Figures �� and �� show the comparison

of the Greedy CPM and Communication
Ordered Greedy CPM algorithms and the comparison of the

Greedy and Communication
Ordered Greedy algorithms� Data was obtained as in Figures �� and ��� The

C�T GREEDY CPM GREEDY

��� ����� ������
�� ���� ������
��� ����� ������
��� ���� �����
��� ����� ������
��
 ����� ������
�� ���� ������
��� ��
� ������

�� ����� �����
���� ��
� �����
��� ����� �����

Figure ��� Scheme Replacement Results
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�gures indicate average improvement above �� percent for cost ratios above ���� and as high as �� percent�

These �ndings indicate that a signi�cant improvement may be seen when using the communication
ordered

scheme rather than the more typical precedent ordered scheme�

�� Complexity Analysis

The size of a precedence graph is bounded by the number of edges e� in the graph rather than the number

of nodes n�� Any scheduling algorithm that preserves precedence relations must have at least complexity

Oe�� The size of a processor graph is p� since communication between processor pairs is considered even

though it may be indirect�

The type of set structures used for processor and task sets varies with the heuristic allocation functions�

Priority queue set operations require Ologn�� time while FIFO queues operations require O��� The event

and communication queues� however� are priority queues�

Step � of the outer loop in Figure �� processes task completions� Computing start times during the

duration of the algorithm requires examining the cost of all arcs for all processors in the worst case and

requires Oep� time�

The worst case number of communication events is pn and each may require logn� set access time�

Step � processes communication events and requires Ologn�pn� time�

Each loop iteration in the allocation functions allocate a task and require queue access� Step � is

bounded though by the potential cost of deleting all tasks from all processor queues Ologn�pn��

The outer loop is executed at most once for each task completion On�� and message Opn� and has

Ologn�� complexity in Step �� The result is Ologn�pn�� Worst case cost then is Oep� logn�pn��

ALGORITHM COMPLEXITY

COMMUNICATION�ORDERED O�ep� pn log�n		
GREEDY O�ep	

CRITICAL PATH O�e� n log�n		
GREEDY CPM O�ep � n log�n		
CAMPBELL O�n�	

WP O�e� n log�n		
RAVI O�ne log�p		

SARKAR O�n�e	
LAST � O�n�	

VERTICAL O�n�	

Figure ��� Complexity Comparison

Figure �� shows complexities of the algorithm types discussed� � The �gure shows that the communication


ordered scheme is among the lower complexity algorithms� It signi�cantly outperforms the test algorithms

of lower complexity� Studies have shown that e is generally On� with high probability so the expected

performance bound is Opn logn���

�Complexity �gures for GREEDY� CRITICAL PATH� GREEDY CPM� WP� RAVI and LAST were derived by the authors�
The remainder were previously reported ��� 
� ����

��



�� Conclusions

The problem of optimizing program run time for programs allocated to distributed memory multiproces


sors where signi�cant inter
processor communication delays exist has been considered� Classes of related

suboptimal heuristic algorithms have been discussed� Particular attention has been given to two low cost

and e�ective allocation algorithm classes� list schedule and task clustering algorithms� Speci�c algorithm

types within these classes have been considered and common aspects of their schemes and ordering concepts

identi�ed and discussed� A new communication�ordered scheme based on discrete event simulation has

been presented that avoids certain problems that occur in the previous strategies� A new heuristic cost

procedure has been presented that is tailored to the communication�ordered scheme� Several sets of

simulation tests have been conducted� A comparison of the performance of the new algorithm to other

algorithm types has shown signi�cant improvement in allocated graph execution time� The most dramatic

improvement is shown in graphs that have signi�cant parallel potential and when moderate to high com


munication costs are present� Comparison tests also indicate that some existing algorithms can be modi�ed

to use the new scheme and show signi�cant improvement in so doing�
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