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NE U R O SU R G E R Y

M o lec u la r , G en et ic , a n d  C ellu la r  P a t h o g en es is  o f  
N e u r o f ib r o m a s  a n d  S u r g ic a l  Im p l ic a t io n s

N EU RO FIBRO M A TO SIS  1 (NF1) IS A common autosomal dominant disease charac­
terized by complex and multicellular neurofibroma tumors. Significant advances have 
been made in the research of the cellular, genetic, and molecular biology of NF1. The 
NF1 gene was identified by positional cloning. The functions of its protein product, 
neurofibromin, in RAS signaling and in other signal transduction pathways are being 
elucidated, and the important roles of loss of heterozygosity and haploinsufficiency in 
tumorigenesis are better understood. The Schwann cell was discovered to be the cell 
of origin for neurofibromas, but understanding of a more complicated interplay of 
multiple cell types in tumorigenesis, specifically recruited heterogenous cell types 
such as mast cells and fibroblasts, has important implications for surgical therapy of 
these tumors. This review summarizes the most recent NF1 and neurofibroma litera­
ture describing the pathogenesis and treatment of nerve sheath tumors. Understanding 
the biological underpinnings of tumorigenesis in NF1 has implications for future 
surgical and medical management of neurofibromas.

KEY W O R D S: Loss of heterozygosity, Malignant peripheral nerve sheath tumor, Neurofibroma, Plexiform 
neurofibroma, Spinal neurofibroma
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I  eurofibromatosis 1 (NF1), or von 
Recklinghausen's disease, is an auto- 

I  ^  somal dominant condition occurring 
in 1 out of 3500 individuals (150). It is the most 
frequent of the phacomatoses, is clinically het­
erogeneous, and is characterized by neural 
crest-derived tumors (20, 194). Neurofibro­
mas, which are complex tumors arising from 
peripheral nerve sheaths, are the key feature 
of NF1 (94, 194). The morphological variants 
include localized or diffuse cutaneous neuro­
fibromas and intraneural neurofibromas of lo­
calized or plexiform type (20, 94, 194). Less 
commonly, patients may develop massive soft 
tissue or visceral neurofibromas (20, 94, 194). 
The presence of numerous localized cutane­
ous neurofibromas or a plexiform neurofi­
broma is virtually pathognomonic of NF1 (20, 
94, 194).

Although neurofibromas consist mostly of 
Schwann cells and fibroblasts, they also con­
tain other cell types, including perineural 
cells, mast cells, pericytes, endothelial cells, 
smooth muscle cells, and cells with interme­
diate features (Fig. 1) (10, 94, 139, 157, 194). 
Axons pass through neurofibromas, and typ­

ically, the lesions are associated with a recog­
nizable nerve (20). There is also a large 
amount of extracellular matrix (ECM) with 
collagen (139).

Recently, significant advances have been 
made in the understanding of the cellular, 
genetic, and molecular biology of NF1 and 
neurofibromas. For example, the NF1 gene has 
been identified (26, 187, 196), the functions of 
the neurofibromin protein and the interaction 
of that protein with signal transduction path­
ways are better understood, the Schwann cell 
was discovered to be the cell of origin of neu­
rofibromas (although it must develop in con­
cert with other cells in the microenvironment 
to form neurofibromas), inflammatory cells 
(including the mast cell) are recruited to the 
tumor environment and are important to neu­
rofibroma tumorigenesis, and several NF1 an­
imal models have improved our understand­
ing of the pathogenesis of neurofibromas and 
provided biological systems in which to test 
new therapies. This review summarizes the 
most recent NF1 literature describing the ge­
netic, cellular, and molecular pathogenesis, 
cell culture, and animal models of neurofibro-
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FIGURE 1. Schematic drawing showing a normal nerve and a neurofi­
broma. The nerve is composed o f Schwann cells that surround the axons 
and a collagen matrix containing fibroblasts and mast cells. It is sur­
rounded by perineurial cells, which serve as a diffusion barrier. In con­
trast, the neurofibroma consists o f  greater numbers o f Schwann cells, 
Schwann cells that are dissociated from axons, greater numbers o f  sup­
porting cells that are less organized than in the normal fascicle, and a 
breakdown o f the surrounding perineurial layer. Concept o f cells adapted 
with permission from McLaughlin and Jacks (124).

mas. Implications for surgical management of neurofibromas 
are discussed.

CLINICAL GENETICS
NFl is an autosomal dominant inherited condition, and all 

affected individuals are heterozygous for an NFl mutation 
(54). Because homozygosity in murine models has been shown 
to be lethal to embryos (16, 78), it is believed that one func­
tional NFl allele is necessary for survival (54). In contrast to 
the typical patient who is heterozygotic for the NFl mutation, 
some individuals demonstrate NFl features in a localized 
pattern, termed "segmental neurofibromatosis" or somatic mo­
saicism, and this phenotype is likely owing to a postzygotic, 
somatic mutation of the NFl gene in an early stage of fetal 
development (186, 188).

The penetrance of the NFl mutation is virtually 100% by the 
age of 10 years (54, 71, 72). A positive family history is iden­
tified in approximately half of all NFl cases (17, 21, 30, 71,134, 
181), whereas half represent new mutations (54). The inci­
dence of new mutations at the NFl locus ranges from 1 out of

7800 to 1 out of 23,000 (30, 71,114,181). Approximately 80% of 
new NFl mutations are paternal in origin (49, 79, 101, 178, 
185). It is not clear why the mutation rate at the NFl locus is 
high (54), but it is possible that a mutation at that locus 
provides a selective and proliferative advantage in a germ-cell 
precursor (151).

MOLECULAR GENETICS

NF1 G e n e  Structure and Function

In 1987, genetic linkage analysis of a large number of inde­
pendent families was used to map the NFl locus close to the 
centromere on the long arm of chromosome 17 (7, 162). In 
1990, the NFl gene was identified by positional cloning and it 
was located at 17qll.2 (26,187,196). The NFl gene is complex, 
spans more than 350 kb of genomic deoxyribonucleic acid 
(DNA), and contains 60 exons (111). The NFl gene produces 
an 11- to 13-kb messenger ribonucleic acid (mRNA) (10, 117) 
that is expressed in almost all tissues (196) but is most highly 
expressed in the brain, spinal cord, and the peripheral nervous 
system (38, 188). There are alternatively spliced NFl mRNA 
isoforms, and, depending on the tissue, they are differentially 
expressed (171).

Neurofibromin Protein

The protein product of the NFl gene is neurofibromin, 
which is a large peptide (220 kD) with 2818 amino acids (40, 
59, 65). It is most abundant in the nervous system. In adults, it 
is also found in neurons, oligodendrocytes, and Schwann cells 
(38, 188). It is also expressed in a variety of other cell types in 
adults, such as keratinocytes, adrenal medulla, and white 
blood cells (64,188). Neurofibromin is ubiquitously expressed 
during embryonic development and the adult pattern of tissue 
expression is established after the first week of postnatal life 
(63, 64). Neurofibromin is reduced or absent in rat and mouse 
neurofibroma cells (60, 88), and immunohistochemical stain­
ing of dermal and plexiform neurofibromas demonstrated that 
they are composed principally of Schwann cells that lack 
functional neurofibromin (131).

An important functional region of neurofibromin is its RAS- 
GTPase activating protein (GAP)-related domain (GRD), al­
though it only occupies a small area of the protein (360 amino 
acids) (18, 203, 204). The neurofibromin GRD stimulates the 
intrinsic GTPase of p21-RAS-GTP to hydrolyze GTP to GDP, 
thereby inactivating p21-RAS (Fig. 2) (1, 6, 15, 118, 182, 203). 
Thus, the main function of neurofibromin is inactivation of the 
active RAS-GTP and its signal transduction pathways. This is 
further corroborated by evidence that in neurofibroma tissue, 
which has decreased neurofibromin protein, amounts of the 
active RAS-GTP protein are increased compared with the 
inactive form (9, 14, 60, 88, 100, 122, 167).

RAS proteins regulate the cell by transducing signals from 
the plasma membrane to the nucleus by a series of down­
stream effectors (Fig. 2) (198, 200). The RAS protein is an­
chored to the cell membrane by farnesyl transferase (FT) (24),
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FIGURE 2 . Illustration depicting the role o f neurofibromin in RAS acti­
vation and signaling. Growth factors (gf) interact with receptors at the 
cell surface, activating guanine nucleotide exchange factors ("GKFJ and 
resulting in activated RAS. Activated RAS sends intracellular signals 
through the plwsplwinositol 3' kinase ("PI3KJ pathway to inhibit apoptosis 
and the raf-MAK (mitogen-activated kinase) pathway to stimulate cell 
proliferation. It also signals through the Ral GDS pathway, but its func­
tion is less well understood. Normally, neurofibromin downregulates RAS 
through its GAP-related domain, and, therefore, in its absence or at 
decreased levels, signaling is increased through all o f these pathways 
resulting in cell proliferation and inhibited apoptosis.

and this step is necessary in its normal functioning (198). RAS 
functions as part of a signal transduction pathway that is 
activated by growth factors and their receptors, including 
receptor tyrosine kinases such as epidermal growth factor 
(EGF), nerve growth factor, and platelet-derived growth factor 
via guanine nucleotide exchange factors (9). Increased RAS- 
GTP leads to increased signaling through raf kinase, and raf in 
turn activates a kinase cascade involving MEK kinase and the 
Erkl and Erk2 isoforms of mitogen-activated protein (MAP) 
kinase resulting in cell proliferation (14, 43, 179). Increased 
RAS-GTP also protects cells from apoptosis by activating pro­
tein kinase B/Akt via phosphoinositide 3-OH kinase (PI3- 
kinase) (43, 85) or by activation of NF-kB (43, 121). Overall, 
RAS is a key component of many growth factor signaling 
pathways and in the absence of neurofibromin it is constitu­
tively activated, resulting in increased cell proliferation and 
survival (188).

patient (germline), and loss of the second NF1 allele (somatic) 
results in functional loss of neurofibromin (48, 83, 158, 163). 
Both copies of the NFl gene are mutated in NF1 tumors (48, 
49, 79, 158), but, contrary to the classical Knudson's "two-hit" 
hypothesis (92), the majority never become malignant.

Studies have correlated LOH or inactivation of both NFl 
genes with deletions of the somatic NFl gene for benign 
cutaneous neurofibromas (32, 48, 83,145,158,164,199), plex- 
iform neurofibromas (37, 91,145), malignant peripheral nerve 
sheath tumors (MPNSTs) (104, 127, 145, 172), pheochromocy- 
tomas (205), and juvenile myelomonocytic leukemias (169) 
from N Fl patients. It is significant to note that LOH only 
occurs in the chromosome that does not carry the germline 
mutated allele (163, 164). The size of the deletion is variable 
and may include a limited region of the NFl gene or nearly the 
whole 17q arm with retention of 17p and centromeric markers 
(163).

LOH represents the second hit of the remaining allele and, 
in general, it may occur by nondisjunction, interstitial dele­
tions, large somatic deletions, loss of a whole chromosome 17, 
or somatic recombination (37,135). When LOH is not present, 
the second hit is usually a somatic gene mutation or a small 
intragenic deletion, and, overall, small subtle mutations may 
occur at a similar frequency to LOH (48, 120, 135). Further­
more, mutations may occur in unsequenced coding or non­
coding regions, and methylation or transcription repression 
could silence NFl gene expression without a mutation (39, 53, 
152, 155).

Point mutations affecting the correct splicing of the NFl 
gene are a common cause of N Fl (3, 51, 128), and they are 
responsible for both somatic and germline mutations (163). 
Most mutations in N Fl patients are thought to result in trun­
cation of the protein product (184), which would result in an 
inactive protein and decreased amounts of active neurofibro­
min. Small intragenic deletions and insertions account for a 
third of all mutations (Table 1) (188). Of the 300 reported 
mutations of the NFl gene (51), only 7% have been observed 
more than once (194).

Particular mutations are not typically associated with dis­
tinct phenotypic expressions of NFl, and several studies have 
been unable to find strong genotype-phenotype correlations 
(22, 25, 47, 180, 188). The marked clinical variability between 
multiple affected relatives with the same germline mutation 
may be owing to the nature, timing, and location of the "sec­
ond hit" mutation at the N Fl locus (25, 155, 158, 164, 199). 
Variants of other unknown genes may also modify the expres­
sion of the disease and result in certain phenotypes (199). 
Somatic mosaicism is another potential cause of interindi­
vidual phenotypic variation (25).

Mutations and Loss o f  Heterozygosity

Extensive loss of heterozygosity (LOH) testing and se­
quence analysis indicate that consistent with Knudson's two- 
hit hypothesis of tumor suppressor gene inactivation (92), one 
NFl allele carries a genetic alteration in all cells of an NFl

G en etic  D ifferences betw een  Plexiform Neurofibromas 
and Malignant Peripheral Nerve Sheath Tumors

Although benign and malignant neurofibromas both in­
volve the inactivation of the NFl gene and decreased neuro­
fibromin, malignant lesions have additional genetic abnormal-
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TABLE 1. Spectrum of NF1 gene mutations* 

Type of mutations
No. of reported 

independent 
occurrences

Chromosome rearrangements 9
Deletions of the entire gene 38
Single- and multi-exon deletion 42
Small intragenic deletions 63
Large insertions 3
Small insertions 29
Direct stop mutation (nonsense) 51
Amino acid substitution (missense) 31
Mutation in introns 26
Alteration of the 3' untranslated region 4
Nonpolymorphic silent base 

exchanges
4

Total 300

■' Originally from the National Neurofibromatosis Foundation International 
NF1 Genetic Analysis Consortium Database (188, 194).

(12, 95). The loss of PI6,NK4A contributes to a failure to inac­
tivate the cyclin D/cdk 4 complex that promote retinoblas­
toma (Rb) phosphorylation, which leads to a release of inhi­
bition of E2F, increasing cellular proliferation (183). Loss of 
P14a r f  protein stabilizes and activates p53 pathways by in­
hibiting the Mdm-2-induced P53 degradation and transactiva- 
tional silencing (168). Therefore, both P16,NK4A-c yclin 
D/cdk4-Rb and P53 pathways are critical to cell cycle control 
and tumor surveillance and may be involved in the transfor­
mation to malignancy (Fig. 3) (124).

MPNSTs demonstrate a high frequency of microsatellite 
instability, which is consistent with the idea that additional 
loci become targets for mutations during the malignant trans­
formation of neurofibromas, and overall, it involves a complex 
multistep process with multiple locations for genetic defects 
(183). MPNSTs also have unique chromosomal imbalances 
(115, 126), including gains in 7, 8q, 15q, and 17q (159, 160). 
Survival of patients with MPNSTs and gains in 7pl5-21 and 
17q22-qter is significantly decreased (160). Patients with 
MPNSTs may also have genetic losses (177) and may have 
large-scale chromosomal amplifications (126, 159, 160).

ities that may be involved in the transformation to malignancy 
(Fig. 3). MPNSTs demonstrate increased levels of the active 
RAS protein, RAS-GTP, compared with neurofibromas (60). 
The loss or mutation of the P53 gene, located at 17p13.1, has 
been observed in many NF1-related MPNSTs, but never in 
benign neurofibromas (13, 58, 82, 93, 103, 108, 116, 127, 133, 
145,183,202), and abnormalities in P53 expression in MPNSTs 
are associated with a poor prognosis (112). The loss of the P53 
gene results in abnormalities in DNA damage-induced cell 
cycle arrest and apoptosis (183). In animal models, loss of 
p53 in addition to Nfl is required to generate MPNSTs (29, 
192). Overall, loss of NF1 appears to be an early tumorigenic 
event in MPNSTs followed later by P53 loss (140) (Fig. 3).

In addition to LOH for the P53 gene in MPNSTs, LOH for 
the CDKN2A gene has also been observed (183). Approxi­
mately 50% of MPNSTs in NF1 patients have homozygous 
deletions for exon 2 of the CDKN2A (also known as INK4A or 
INK4A/ARF) gene, which encodes two distinct tumor suppres­
sors, P16,NK4A and P\4ARF (95, 132), but this deletion is not 
found in benign neurofibromas (12, 13, 95, 132). Also, muta­
tions have been found at CDKN2A in 60% to 75% of MPNSTs

FIGURE 3. Genetic changes involved in malignant transformation. I.oss 
o f both NF1 alleles in the Schwann cell (SC) results in neurofibroma for­
mation. Not pictured is the important role o f the heterozygote supporting 
cells in neurofibroma pathogenesis. Malignant transformation requires 
abnormalities or loss o f additional genes including P53 and/or PI 6 
(INK4A), and there are likely many other undiscovered genetic abnormali­
ties in MPNSTs.

CELLULAR ENVIRONMENT

N eurofibrom a Cellular Characteristics

The multicellular composition of neurofibromas has pre­
sented a major challenge in understanding their pathogenesis 
(94,157). Neurofibromas are unique among tumors because of 
the extent of cellular heterogeneity they exhibit; all of the cell 
types found in normal peripheral nerves, including Schwann, 
fibroblast, mast, and perineural cells, are found in neurofibro­
mas (Fig. 1) (157, 166). Reciprocal signaling among these cell 
types is known to occur in normal peripheral nerve sheath (81, 
89), and likely occurs in neurofibromas. However, decreased 
neurofibromin may result in altered responses in neurofibro­
mas. Neurofibromas are also characterized by the close cellu­
lar associations between the cell types (207) and by excessive 
ECM deposition (77,157, 207).

Schw ann Cell as the  Progenitor for Neurofibromas

Although it is well known that the Schwann cell is the cell 
of origin of schwannomas, it was far more difficult to define 
the key cell in neurofibroma tumorigenesis because of its 
cellular heterogeneity (157). The identification of the Schwann 
cell as the progenitor cell of neurofibroma formation repre­
sented a tremendous breakthrough and has resulted in new 
neurofibroma models focusing specifically on this cell (90,131, 
140, 155, 165, 166, 197). Several observations led to the recog­
nition of the Schwann cell as the primary cell type for neuro­
fibroma formation. For example, Schwann cells in normal 
nerves are usually found only in association with nerves, but 
in neurofibromas they are also found free in the ECM (84,166). 
Also, Schwann cells seem to be the primary target of growth 
factors stimulating neurofibroma formation (146), and 
Schwann cells are the major cell type amplified in neurofibro­
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mas (141, 176, 195). Neurofibroma Schwann cells have absent 
or markedly reduced NFl mRNA, whereas fibroblasts from 
the same neurofibromas consistently expressed some NFl 
mRNA and protein (155). More recently, the loss of both NF1 
alleles, which leads to neurofibroma formation, was found to 
occur exclusively in the Schwann cell (90, 165). Furthermore, 
both NFl gene copies are inactivated only in the Schwann cell, 
whereas a wild-type gene is retained in the other neurofi­
broma cells, including fibroblasts (90, 165).

The neurofibroma Schwann cells have other unique in vitro 
characteristics that may contribute to tumor formation (166). 
They seem to have a higher potential to be severely compro­
mised by mutations than other cells, because normal Schwann 
cells already express less NFl mRNA than fibroblasts and 
translation of mRNA into protein is slow and inefficient (155). 
The neurofibromin-deficient Schwann cell has been shown to 
demonstrate increased active RAS, RAS-GTP, but this is not 
seen in the other neurofibroma cells including the fibroblast 
(167). The neurofibroma Schwann cell also has altered mor­
phology, delayed senescence, lack of density-limited growth, 
and a propensity to form proliferative cell aggregates rich in 
ECM spontaneously (87, 131). Schwann cells that lack func­
tional neurofibromin have a substantial growth advantage 
compared with those with limited neurofibromin (131). The 
neurofibroma Schwann cell promotes angiogenesis and in­
vades basement membranes in contrast with normal Schwann 
cells and fibroblasts from neurofibromas (166). In addition to 
increased invasiveness, the cell displays a loss of negative 
autocrine growth control (130).

Role o f  the  Haploinsufficient Supporting Cells

A growing body of experimental evidence supports the idea 
that haploinsufficiency of NFl in the microenvironment of 
neurofibromas contributes to its tumorigenicity, and the im­
portance of tumor suppressor gene haploinsufficiency in tu­
mor cell biology is gaining more attention (123). In the het­
erozygous supporting cells in neurofibromas, half of the 
normal activity of the neurofibromin protein is lost. The single 
active NF1 allele may not generate enough functional protein 
to rise above the threshold needed to achieve an appropriate 
biological response (46), which may confer a growth advan­
tage that also contributes to tumorigenesis (74). An example of 
haploinsufficiency is the neurofibromin-deficient, NFl + / ~ 
Schwann cell, which has decreased but remaining neurofibro­
min function and aids in tumor formation (131). The NF1+/_ 
Schwann cells may also contribute to neurofibroma formation 
with their increased ability to induce angiogenesis and in­
creased invasiveness (87). Recently, it was discovered that 
neurofibromas contain both NF1_/_ and NF1+/_ Schwann 
cells and that only a portion of neurofibroma Schwann cells 
have mutations in both alleles (131,165). Thus, neurofibromas 
demonstrate Schwann cell heterogeneity (167).

Although NF1+/_ and NF1_/_ Schwann cells are both 
necessary in the pathogenesis of neurofibromas, alone they are 
not sufficient for tumor formation, which demonstrates the

importance of the presence of the other heterozygous support­
ing cells in the cellular environment (210). In neurofibromas, 
NF1+/_ fibroblasts demonstrate abnormal responses to cyto­
kines, increased collagen deposition, and increased prolifera­
tion (4, 139). NF1+/_ mast cells have increased infiltration to 
preneoplastic peripheral nerves in comparison with wild-type 
mast cells (210) and have increased proliferation in vitro and 
in vivo (74). In a mouse model, the type of supporting cells in 
mice with NF1-deficient Schwann cells determined
whether they developed neurofibromas (210). The mice in 
which the neighboring cells were heterozygous (N fl+/~) de­
veloped widespread neurofibromas that closely resembled 
human tumors, whereas the mice with neighboring cells that 
were wild-type (N fl+/+) only developed infrequent hyper­
plastic lesions in the cranial nerves (210). This study empha­
sizes the essential function of NF1 heterozygous cells in neu­
rofibroma formation and the importance of deciphering their 
individual roles in tumorigenesis and the mechanism of re­
cruitment to the tumor microenvironment (210).

M ast Cell Functions and Interactions with Schw ann 
Cells

Recent studies demonstrate that inflammatory cells includ­
ing mast cells are important to tumor initiation, progression, 
and angiogenesis (33, 34, 66) and that understanding the 
mechanisms that control recruitment of these cells is impor­
tant (207). A recent publication by Yang et al. (207) has ex­
panded the understanding of the contribution of the heterozy­
gous mast cell (N Fl+/~) to neurofibroma formation. The 
authors demonstrated that mast cells are recruited, migrate to 
the tumor microenvironment, and are hypermotile because of 
secretion of kit ligand, a growth factor, by the nullizygous 
Schwann cell (NFJ_/_) (207). Neurofibromin-deficient 
Schwann cells secrete five times the normal kit ligand, which 
serves as a chemoattractant for mast cells expressing c-kit 
receptor. In general, mast cells have increased survival and 
proliferation in response to kit ligand (73, 74), and the in­
creased motility and migratory abilities of the mast cells 
(N Fl+/~) in response to kit ligand are thought to be mediated 
by increased RAS activity (207). Although multiple RAS effec­
tor pathways are altered in N F l+/~ mast cells in response to 
kit ligand, there is evidence that activation of the Class 1A- 
PI3K-Rac2 pathway, which is enhanced in N F l+/~ mast cells, 
is directly responsible for the increased migration (207). This 
pathway has also been shown to be responsible for increased 
proliferation and survival of mast cells (73). Yang et al. (207) 
also provided evidence that heterozygous inactivation of 
N F l+/~ promotes rapid migration of mast cells on «4R1 inte- 
grins (mast cell surface proteins), in response to the kit ligand, 
and that this integrin attaches to endothelial cells through 
VCAM-1. This group notes that kit and «4R1 may be targets 
for future therapies as represented in Figure 4.

This study has demonstrated a unique interaction between 
the NFJ_/~~ Schwann cell and the heterozygous mast cell (Fig. 
4) (207). The homozygous NF1 mutant (NFJ_/_) Schwann
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FIGURE 4 . Schematic drawing o f the molecular pathways involved in 
mast cell recruitment to neurofibromas. The neurofibromin Schwann cell 
secretes kit ligand (k it l j.  which interacts with the mast cells expressing 
c-kit receptor. Migration o f the mast cell is mediated by the RAS/PI3K/ 
Rac2 signal pathway, which is already upregulated in N Fl + /_ mast cells. 
Endothelial cells are also involved in the mast cell migration by their 
VCAM-1 receptor interaction with the mast cell «4B1 integrin. Modified 
with permission from Viskochil (189).

cells caused the migration of the mast cells by secretion of the 
kit ligand (207). This finding demonstrates that the loss of NFl 
in Schwann cells results in an increase in growth factor pro­
duction that initiates an autocrine or paracrine loop, which is 
important for the progression of tumorigenesis (207). It is 
possible that many other Schwann cell growth factors also 
affect the supporting heterozygous cells and are important for 
tumor formation.

GROWTH FACTORS AND RECEPTORS
In addition to the influence of cellular environment on 

tumor formation, many other factors are involved in neurofi­
broma tumorigenesis. Schwann cell growth is normally regu­
lated through interactions with neurons (154, 201). In the 
normal adult nerve, Schwann cell proliferation is usually very 
slow (201). The family of small peptides known as heregulins 
and neuregulins (including glial growth factor (GGF)), are 
Schwann cell mitogens (86, 106, 109). Neuregulins stimulate 
Schwann cell growth in vitro (109) and activate transmem­
brane tyrosine kinase receptors (erbB2, -3, -4) that are struc­
turally and functionally related to epithelial growth factor 
receptor (EGF-R) (142).

Neurofibroma Schwann cells do not proliferate on their own 
in tissue culture but can be stimulated to divide when exposed 
to specific Schwann cell mitogens including transforming 
growth factor (TGF)-beta, acidic and basic fibroblast growth 
factor, and platelet-derived growth factor (PDGF) (28, 131, 
147, 161, 173, 174). Normally, growth factors cooperate to 
suppress cell death in Schwann cell precursors (55), but

growth factor dysregulation is thought to be involved in the 
tumorigenesis of neurofibromas (146). It is not known whether 
the changes in the growth factor expression are the direct 
result of NFl gene loss or from secondary genetic events in the 
tumorigenesis of neurofibromas (119). Inactivation of the NFl 
gene may render cells more responsive to humoral factors that 
are usually expressed in embryogenesis or it may increase 
growth factor expression.

Many Schwann cell mitogens may contribute to neurofi­
broma formation: hepatocyte growth factor (HGF) (96, 144), 
basic fibroblast growth factor (FGF) (55, 146), insulin growth 
factor 1 (IGF-1) (55, 67), and pigment epithelium-derived 
growth factor (PEDF) (36). Loss of neurofibromin in NF7_/~~ 
mouse Schwann cells induced and upregulated fibroblast 
growth factor (FGF-2), PDGF, and midkine (MK) (119). Fi­
nally, gene expression and upregulation of proteins in MPN- 
STs are increased compared with benign neurofibromas in­
cluding matrix metalloproteinase-13 (MMP-13), platelet- 
derived growth receptor alpha (PDGFA), HGF, PEDF, MK, 
and epithelial growth factor (EGF) (70). Overall, these growth 
factors stimulate Schwann cell proliferation or survival, sup­
port invasion by other cell types, or stimulate angiogenesis 
(28, 55,161).

In addition to growth factors stimulating neurofibroma for­
mation, specific receptor expression may also have a role. The 
EGF-R is expressed in cells from mostly malignant neurofi­
bromas, in transformed Schwann cells from NF7_/~~ mice, and 
rarely in benign neurofibromas, but it is not present in normal 
Schwann cells (41, 110). All cells with EGF-R responded to 
EGF by activation of downstream signaling pathways includ­
ing MAP/extracellular signal-regulated kinase, PI3K/AKT
(41,110). Thus, EGF-R expression may play an important role 
in NFl tumorigenesis and Schwann cell transformation (41), 
and it is thought to drive tumor development by providing a 
mitogenic signal or by serving as a survival factor by avoiding 
apoptosis (110). Agents that antagonized EGF-R or inhibited 
the PI3K pathway inhibited growth in MPNST cell lines and 
the transformed NF7_/~~ Schwann cells (41,110). Another key 
receptor, the kit tyrosine kinase receptor (c-kit), contributes to 
Schwann cell proliferation and hyperplasia (5). Expression of 
kit receptor is increased in NFl-derived Schwann and neuro­
fibrosarcoma cells, and high levels of kit expression correlated 
with a decreased expression of neurofibromin (5).

As mentioned above, the kit ligand is also important to 
neurofibroma formation. Kit ligand transcripts are markedly 
increased in neurofibromas (69, 156), transformed Schwann 
cells secrete high concentrations of kit ligand (5, 69), and other 
neurofibroma cells secrete far lower concentrations (207). The 
proliferation of the neurofibrosarcoma-derived Schwann cells 
is also increased by stimulation with kit ligand (5). Addition­
ally, as described above, heterozygous mast cells have in­
creased survival and proliferation and are recruited to the 
tumor microenvironment in response to the kit ligand, and in 
return, mast cells can secrete nerve growth factor (NGF) (107) 
and vascular endothelial growth factor (VEGF) (175), which
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are potent stimulants for Schwann cell proliferation, migra­
tion, and survival (175).

Other molecules including hedgehogs and their receptors 
are thought to be involved in neurofibroma pathogenesis (50). 
Hedgehogs are intercellular signaling molecules that normally 
regulate growth and patterning during early development 
(50). The hedgehog receptor patched (PTCH-2) is found in 
normal and neurofibroma Schwann cells (50). Interestingly/ 
perineural cells in plexiform neurofibromas express Indian 
hedgehog and Sonic hedgehog (50). These results suggest that 
PTCH-2 on Schwann cells may mediate paracrine hedgehog 
signaling from perineural cells in plexiform neurofibromas 
(50).

ANIMAL MODELS
Neurofibroma animal models have elucidated some of the 

roles of the neurofibromin protein in neurofibroma formation 
and in normal growth and development (98, 99). The models 
have also provided additional evidence that NF1 acts as a 
tumor suppressor gene (78). Additionally/ animal models pro­
vide genetically accurate models forpreclinical testing and can 
be used to identify novel targets for future therapies (68). The 
first mammalian NF1 models have been in the mouse, which 
provides a biological system more similar to humans than 
earlier models in Drosophila (188). The mouse and human NF1 
genes are highly related, the amino acid sequence of neurofi­
bromin is 98% identical, and there is also significant similarity 
between the non-coding region of the mRNA (11).

Xenograft M ouse Models

Early neurofibroma studies involved a xenograft model for 
studying neurofibroma formation by injecting human neuro­

fibroma tissue or Schwann cell preparations into immunode- 
ficient mice. This model was useful to study tumor growth 
and cellular modification (2, 102, 166). One such model in­
volved injection of human neurofibroma cells into sciatic 
nerves of nude mice; 2 months after engraftment, 70% of 
tumors survived and proliferated (102). Tumors survived 
longer and had better proliferation in the sciatic nerve than in 
the subrenal capsule (102). In another study, neurofibroma 
cells injected into subcutaneous tissue of nude mice did not 
produce tumors, suggesting the importance of environment in 
the development of tumors (166). In a later study, 
neurofibromin-deficient Schwann cells injected in the sciatic 
nerve consistently produced persistent neurofibroma-like tu­
mors with diffuse and extensive intraneural growth similar to 
human neurofibromas (131). This study demonstrated the im­
portance of the neurofibromin-deficient Schwann cell in neu­
rofibroma tumorigenesis (131).

Transgenic M ouse Models

The initial NF1 transgene mouse model (Table 2) was based 
on a mutation that was initially identified in an NF1 patient 
(16, 78). It was constructed by inserting a neomycin resistance 
gene (neo) in exon 31, resulting in an interruption of the gene 
segment that corresponded to a premature truncation Nfl 
mutation (16, 78). Interestingly, these mice that carry a germ- 
line mutation and are heterozygous for the Nfl mutation 
(Nfl h/N fl"31) did not develop the classic phenotype of NF1 
disease including neurofibromas, but they appeared to have 
learning problems (170), and 17 of 40 mice developed tumor 
types that are typical for humans with NF1, including pheo- 
chromocytoma (9 mice), neurofibrosarcoma (one mouse), and 
myeloid leukemia (seven mice) (78). The wild-type Nfl allele 
was lost in many of these tumors, including all of the pheo-

TABLE 2. NF1 transgene mice models 

Genotype Neurofibromas Other lesions Notes Ref. no.

Heterozygous (N fl+ ) No Pheochromocytoma, These tumors are found in NF, many (78)
leukemia, sarcoma with l.OH for wild-type N fl

Homozygous (Nf1~'~) No Cardiac Death at 12-14 days gestation; cells (1b)
abnormalities"' (N fl -- -) with increased proliferation

Chimeric (Nf1~''~ and Nf1+/+) Plexiform No Tumors did not have supporting wt (29)
cells (N fl '-- -)

Conditional (cre/lox) Nf1,low' Krox20-cre Plexiform No Tumors with typical Nf1~'~ Schwann (210)
(wt N fr+'+ supporting ceiis/.Yrt cells and N f71 supporting cells6
Schwann cells)

Conditional (cre/lox) /vf7,7ov,7ov; Krox20- No Hyperplastic nerve Demonstrates need for N fl + ''“ cells (210)
cre (wt N fl '-- -'- supporting cells/NfT'~ lesions in neurofibroma formation
Schwann cells)

( is linked N fl 1 :/> > •’ M PN S r No Most tumors with l.OH for both gene (29, 192)
loci

■* Cardiac abnormalities are nol Lypically seen in NF1 palienls.
''Tumor hislologicallv and molecularlv mosl similar lo human neurofibroma.

One-hundred percent of mice harboring nul Nfl and p53 alleles in cis synergize lo develop MPNST (192).
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chromocytomas and myeloid leukemias, supporting the con­
cept that the LOH is a necessary step in tumorigenesis in NFl 
(78). Incidentally, heterozygous mice also demonstrated a 
greater risk of developing several other tumor types not asso­
ciated with N Fl, including lymphoma, adenocarcinoma, hep­
atoma, and fibrosarcoma, but these tumors are also typically 
seen in older wild-type mice (78). It is not clear why these 
heterozygous mice did not develop the typical Nfl phenotype, 
but this model may have had a lower mutation rate for the 
remaining wild-type Nfl allele, or the regulatory mechanism 
controlling growth and development of target cells in the 
mouse may be different (78).

In contrast, transgene mice that are homozygous for the Nfl 
mutation (Table 2) die in utero at approximately 12 to 14 days 
gestation (16, 78). They display cardiac developmental abnor­
malities and have generalized edema and venous hemor­
rhages, but they do not have any other grossly apparent 
developmental defects at the time of fetal death (16, 78). The 
lethal cardiac defect with a double outlet right ventricle, a 
ventricular septal defect, and overabundant endocardial cush­
ions that block inflow of blood to the heart results in heart 
failure during gestation (16, 78). This abnormality is owing to 
hyperproliferation and the lack of normal apoptosis caused by 
the absence of the neurofibromin protein that normally mod­
ulates epithelial-mesenchymal transformation and prolifera­
tion in the developing heart by downregulating RAS activity 
(78). These findings are unique to mice because humans with 
NF1 do not normally demonstrate congenital cardiac abnor­
malities (113), but humans typically have one copy of the 
wild-type NF1 gene during gestation. Interestingly, neurons 
harvested from the peripheral nervous system of these em­
bryos survive in culture without growth factor stimulation 
(191), hematopoietic stem cells show constitutive MAP kinase 
activity and increased cell proliferation compared with het­
erozygote or wild-type cells (14, 100, 209), fibroblasts prolif­
erate at an increased rate, and perineurial cells fail to form 
fascicles around nerve bundles (153). These examples in cells 
without any neurofibromin demonstrate its importance for 
cell growth control and cell death.

Overall, the heterozygous and homozygous mice did not 
result in a suitable model for human NF1. Therefore, other 
animal models were established to include the features of 
NF1, including neurofibromas and neurofibrosarcomas (29). 
Chimeric mice ( N f N f 1 +/+) (Table 2) were developed by 
injection of Nf homozygous mutant embryonic stem cells 
at an early developmental stage (blastocysts) to overcome the 
lethality of the germline homozygous genotype (29). These 
mice survived to birth and all developed multiple neurofibro­
mas that resemble human plexiform neurofibromas, but they 
did not develop cutaneous neurofibromas (29). The neurofi­
bromas contained Schwann cells with homozygous mutations 
for the Nfl gene (Nf J _/_), supporting the concept that LOH is 
necessary for the development of neurofibromas (29). The 
neurofibromas differed from human ones, because there was 
not recruitment of wild-type cells in the lesions and Schwann 
cells were not found in the lesion and were only associated

with the adjacent trapped nerves (29). The difficulty with this 
model was that the cell type in which the Nfl was deleted 
could not be controlled and these animals could not be crossed 
to other mutant mouse strains (123).

Conditional Mouse Model

Later, a new conditional mouse model was developed that 
resulted in somatic inactivation of Nfl and ablation of neuro­
fibromin function specifically in Schwann cells (210) (Table 2). 
Zhu et al. (210) developed a mouse model in which a floxed 
Nfl allele was deleted by a Cre transgene under the control of 
the Schwann cell-specific promoter, Krox-20. In this model, 
Cre activity was confirmed to occur only in the Schwann cells. 
Thus, only the Schwann cells were homozygous for inacti­
vated NfJ _/_. When these mice were backcrossed onto an 
Nfj+/~ background resulting in all non-Schwann cells being 
haploinsufficient at N fl, the progeny, N f Krox20-cre, 
developed plexiform neurofibromas and all had enlarged pe­
ripheral nerves. The tumors included all of the typical sup­
porting cells that retain neurofibromin function (N fl+/~) and 
were identical to those seen in humans, exhibiting every dis­
cernible molecular and histological feature of the human 
counterpart, and this model had 100% penetrance in produc­
ing neurofibromas. This model gave further evidence that the 
Schwann cell is the cell of origin of neurofibromas (210).

Interestingly, the same researchers developed another 
mouse model, Krox20-cre, that had intact (wild-
type) Nfl function (N fl+/+) in all cells except those that ex­
pressed the Krox20-cre transgene (the Schwann cells, Nf J _/_). 
These mice did not exhibit enlarged peripheral nerves, failed 
to form frank neurofibromas, and only had hyperplastic le­
sions in the cranial nerves (210). Mast cell infiltration showed 
a marked reduction in the hyperplastic lesions compared with 
the model described above, which had significant mast cell 
involvement. The difference is that the hyperplastic lesions 
developed in an environment with N fl+/+ mast cells, 
whereas the neurofibromas developed in the context of hap­
loinsufficient N fl+/_ mast cells. This supports the paracrine 
model for neurofibromas, and overall, this model provides 
evidence for the absolute necessity for haploinsufficient sup­
porting cells in neurofibroma formation (210). It also illus­
trates another example of the importance of the relationship 
between the N F l_/_ Schwann cell and the N F l+/_ mast cell 
in neurofibroma formation.

Animal Model for MPNST

Another mouse model was developed for MPNSTs by gen­
erating mice with mutations in both Nfl and p53 genes (29, 
192) (Table 2). This model was generated by brother-sister 
mating of doubly heterozygous mice harboring null Nfl and 
p53 alleles linked in cis (29, 192). A cis-acting element is a 
genomic sequence that influences the transcription of a gene 
on the same DNA strand (188). All of these mice (N fl+/~: 
p53+/_) developed soft tissue sarcomas and MPNSTs in neu­
ral crest-derived tissue that had the concomitant loss of the
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normal Nfl and p53 alleles (29, 192). Most of these sarcomas 
exhibited LOH at both gene loci, and this model demonstrates 
that a mutation in the p53 gene in addition to that in Nfl is 
required for malignant transformation of cells of neural crest 
origin (29, 192) (Fig. 3). This mouse strain can lose both Nfl 
and p53 in one genetic event. The location of p53 and Nfl on 
the same chromosome suggests that mechanisms such as large 
deletions, rearrangements, or chromosomal loss may lead to 
the somatic inactivation of one allele or both of these genes 
during tumorigenesis (110).

TREATMENT APPROACHES
Improvements in the understanding of the cellular, molec­

ular, and genetic biology of NF1 and neurofibroma pathogen­
esis provide an opportunity to develop novel treatment ap­
proaches. Some areas that have been targeted in preclinical or 
clinical studies include various aspects of mast cell function­
ing, the RAS signaling pathway, and several growth factors 
and receptors (Table 3), but almost any molecule involved with 
neurofibroma tumorigenesis may be a potential target for 
future therapies. It may even be possible to design therapies 
that neutralize the effects of haploinsufficiency before the 
onset of tumorigenesis (210).

Prior to these targeted therapies, plexiform neurofibroma 
treatment was the subject of several clinical trials. In a ran­
domized noncomparative Phase II trial reviewed in Packer et 
al. (138), cis-retinoic acid was used for its differentiation effects 
and interferon-fl for its anti-inflammatory and antiangiogenic 
properties to treat plexiform neurofibromas. Although 5 of the 
57 patients had a 10 to 20% reduction in tumor size and 8 
patients had improvements in their symptoms, none had a 
demonstrable radiographic response. Although a majority of 
the patients with plexiform neurofibromas involved in a Phase
1 clinical trial using thalidomide for its antiangiogenic effect 
abandoned the study for reasons including toxicity, several 
patients had reduced tumor size on imaging (4 out of 20) and 
symptomatic improvement (5 out of 20) (61). Additionally,

chemotherapeutic agents, including vincristine and metho­
trexate, used in combination are under study for NF1 patients 
with plexiform neurofibromas (138), because of their promis­
ing results in childhood desmoid tumors (97).

M ast Cell Inhibitors

In 1987 and 1993, Riccardi (148,149) conducted trials of the 
mast cell inhibitor ketotifen, a relatively selective, noncompet­
itive histamine antagonist (HI-receptor) and mast cell stabi­
lizer, based on the concept that mast cells found in neurofi­
bromas and their associated secretion of growth factors may 
contribute to the itching, pain, and tenderness associated with 
cutaneous neurofibromas and tumor growth. Patients taking 
oral ketotifen had improvements in these symptoms in an 
open-labeled trial and in a double-blinded study; it was also 
observed that some patients had reduced tumor size.

Others have proposed treatments that reduce the mast cell 
activity, migration, or numbers within neurofibromas as pos­
sible therapeutic strategies (207). Options for treatment in­
clude pharmacologic inhibition of PI3K, kit activity, or «4B1 
adhesion (207). Currently, imatinib mesylate is being tested in 
tumors in which kit activation is important for tumorigenesis 
(44). Drugs targeting «4B1 activation are being tested in clin­
ical trials for Crohn's disease and multiple sclerosis, because 
inflammatory cell recruitment by adhesion to «4B1 is thought 
to be important for disease progression (56,129, 193).

Targeting RAS and Its Signaling Pathways

The RAS signal transduction pathway has also been tar­
geted for future treatments (198, 206). Anti-RAS therapies are 
broadly applicable, because RAS is one of the most common 
oncogenes mutated in human malignancies (198). As men­
tioned earlier, RAS-GTP has been found to be elevated for 
both benign and malignant NF1 neurofibromas (60).

One approach is the administration of molecules that inhibit 
the enzyme FT, which is normally important in anchoring the 
RAS protein to the cell membrane and is absolutely necessary for

RAS function (87, 206). Pre­
clinical studies have shown 
that FT inhibitors can block 
the growth of tumor cells car­
rying mutant RAS proteins 
and those with upregulation 
of wild-type RAS activity (35, 
57, 80, 143, 206). One study 
found that the FT inhibitors in­
hibited growth in vitro of a 
NF1-deficient MPNST cell line 
(206). Overall, FT inhibitors 
have been demonstrated to 
decrease hyperproliferation 
but do not seem to influence 
invasion in neurofibromin- 
deficient Schwann cells (87). 
FT inhibitors are currently be-

TABLE 3 . Tested m olecular targets involved in neurofibrom a tum origenesis 

Event Targeted m olecules Ref. no.

Mast cell migration «4B1"' (56, 129, 193)
Kit ligand"' (44)

RAS Farnesyl transferase"' (138, 198)
Antibody to ras (8, 42)

RAS-dependent pathways MEK (45, 52)
P13K (190, 208)
GAP-related domain (transfection) (8, 42)

Fibrosis [PDGF, FGF, FGF, 1AM, TGF-B1 ]"' (62, 75, 76)
Malignant transformation FGF-R (41, 110)
Degradation of FCM matrix metalloproteinase (105)
Cytokines [c-kit receptor, PDGF]"' (125)

■' Fvalualed in humans in clinica trials or in isoialed cases.
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irtg administered to patients with refractory cancer in Phase 1 
and 2 clinical trials (198). A Phase 1 clinical study using oral FT 
inhibitors in 17 patients with plexiform neurofibromas reviewed 
in Packer et al. (138) was the first study for neurofibromas that 
targeted a specific molecule. No patient had a radiographic de­
crease in their tumor size, but the study primarily evaluated 
safety; a current placebo-controlled crossover design study is 
examining the same agent (138).

Clinical trials have not yet begun on other methods of target­
ing the RAS effector pathway (198), including inhibitors that 
target MEK, which reverts many aspects of cellular transforma­
tion (45,52), and PI3K, which induces apoptosis (190,208). These 
downstream effectors of the RAS signaling pathway are prom­
ising targets for future neurofibroma treatment (198).

Another treatment option involving cells that have in­
creased RAS signaling is the delivery of gene therapy vectors 
with functional NF1 GRD proteins or with dominant negative 
RAS, which blocks RAS activity (98, 188). In neurogenic sar­
coma cell lines from NF1 patients with elevated RAS-GTP, 
transfection of the GRD portion of neurofibromin restored 
GAP function and inhibited proliferation of these cells (8, 42). 
Injection with neutralizing RAS antibodies also inhibited cell 
proliferation (8, 42). Another treatment approach involving 
RAS entails the development of viruses that are able to target 
and infect cells with activated RAS signaling (31). For exam­
ple, the human reovirus requires an activated RAS signaling 
pathway for infection of cultured cells and has been shown to 
cause tumor regression in mouse models (31).

O th e r  Potential Targets for Therapy

Another agent, 5-methyl-l-phenyl-2-(lH)-pyridone (pir- 
fenidone; Marnac, Dallas, TX), is currently being tested in 
clinical trials for adults with progressive plexiform and spinal 
neurofibromas (138). Pirfenidone is an antifibrotic tissue 
growth antagonist that modulates actions of cytokines includ­
ing PDGF, FGF, EGF, intracellular adhesion molecules (IAM), 
and TGF-B1 (62, 75, 76). It is designed to inhibit the growth- 
promoting effects of fibroblasts in plexiform neurofibromas.

EGF-R expression is common in cell lines from human 
malignant NF1 tumors and results in enhanced growth, and 
therefore inhibition of this molecule or downstream target 
may be useful in the treatment of Nfl-related malignancies
(41,110). For example, growth of malignant Nfl lines and the 
N f l m o u s e  Schwann cell is stimulated by EGF in vitro and 
is blocked by agents that antagonize EGF-R and PI3K function 
(41, 110). Other growth factors and receptors involved in 
neurofibroma tumorigenesis may also be targeted for future 
therapies. For example, imatinib mesylate, a rationally de­
signed inhibitor of c-Abl, PDGFR-a receptor and ligand, 
PDGFR-|3 receptor and ligand, and c-kit tyrosine kinase recep­
tor (19, 23, 137), has been used with success in a patient with 
metastatic pilocytic astrocytoma (125). This agent may have 
success treating neurofibromas because, as described above, 
increased expression of PDGF and c-kit occur in this tumor 
(136, 137).

SURGICAL IMPLICATIONS AND FUTURE 
DIRECTIONS

Currently, the principal mode of therapy for spinal neuro­
fibromas or plexiform neurofibromas is surgery. Although 
isolated single nerve root neurofibromas can be resected with­
out significant morbidity, patients with multiple spinal neu­
rofibromas often require multiple surgeries during their life­
time. Also, patients with large plexiform neurofibromas 
represent a surgical challenge, have a high recurrence rate if 
tumors are subtotally resected, intense adherence and inva­
sion into local tissue, and have a risk of malignant transfor­
mation. The increased understanding of the pathogenesis of 
neurofibromas has several important implications for the sur­
gical management of this disease.

Mast cells are recruited to tumor as part of an inflammatory 
response and subsequently function as active participants in 
tumor development. This recruitment of supporting cells and 
the lack of organization of the supporting and Schwann cells 
that completely encompass and surround the associated nerve 
root help explain why neurofibromas are phenotypically so 
different from a surgical management standpoint from schw­
annomas, which grow peripherally from the nerve sheath and 
do not infiltrate the nerve or recruit other cell types. Inflam­
matory cell and fibroblast recruitment are the likely key fac­
tors in the adherence of neurofibromas to surrounding tissue 
and pose the greatest challenge to their successful removal. 
Also, this mechanism of recruiting cells that infiltrate and 
encase the nerve explains why nerves involved with neurofi­
bromas are typically not functional (27). The foregoing discus­
sion of heterogenous cellular recruitment to the tumor also 
poses the possibility that surgery itself, with associated 
trauma and inflammation, may result in the recruitment of 
supporting cells to the local environment, leading to increased 
growth of existing nearby lesions or new formation of neuro­
fibromas (4), but this hypothesis remains to be tested.

Overall, many preclinical studies, as well as a few clinical 
trials using biological-based therapeutic approaches to target 
specific genetic or molecular events involved in neurofibroma 
tumorigenesis are in progress. In the future, these medical 
therapies may be useful for treatment of residual tumors, or as 
a measure to reduce tumor size prior to surgery, or even to 
decrease the incidence of spinal or plexiform neurofibromas. It 
may also be possible to apply new therapeutic agents to the 
local tumor environment to reduce the incidence of recur­
rences.

CONCLUSIONS
Remarkable progress has been made toward understanding 

the pathogenesis of neurofibromas since the cloning of the 
NF1 gene in 1990. The loss of NF1 function results in decreased 
neurofibromin and its GAP activity resulting in activation of 
the RAS pathways and uncontrolled cell proliferation. The 
development of neurofibromas requires loss or inactivation of
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the somatic NF1 allele in the Schwann cell as well as the 
presence of haploinsufficient supporting Schwann cells, mast 
cells, perineurial cells, and fibroblasts. It remains to be discov­
ered whether these supporting cells (NFJ+/_) respond to 
growth factors and signals from the Schwann cell that has 
already undergone a second hit mutation (NFJ_/_) or whether 
they respond to another stimulus including trauma or hor­
monal change to hyperproliferate and secrete factors resulting 
in an increased chance of a second mutation in the Schwann 
cell (124). Regardless, both activities are necessary for neuro­
fibroma formation. Additional genetic changes involving 
genes such as P53 and INK2A are most likely needed for 
malignant transformation.
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COMMENTS

This is an informative and excellent in-depth discussion of the 
metabolic and cellular basis for neurofibromas, especially those 

associated with neurofibromatosis Type 1 (N FI). The authors empha­
size the Schwann cell as the most likely cellular origin of these tumors, 
even though they are often weakly positive with S-1QQ stains. Some 
neuropathologists think a more likely origin is the progenitor cell for 
the Schwann cell, as well as the perineuria! fibroblasts. Just as frequent 
as N FI in our experience as surgeons is the solitary, usually globular, 
and non-plexiform neurofibroma. In these cases, there has been a 
major change in management in the past decade. These affect a nerve 
or element of the plexus and have many similarities to solitary schw ­
annomas, except that their capsule is not as well developed. They have 
two or more entering and exiting fascicles, which are usually tested by 
nerve action potential recordings. I.ike the schwannomas, they do not 
transmit a signal and can usually be sacrificed with minimal or minor 
functional loss. Usually, the other functional fascicles are worked 
away, much as in a schwannoma, if the fascicular structure as each 
pole is worked out. Fascicles are usually somewhat more adherent, 
especially at the base of the tumor, than a schwannoma, but they 
usually can be worked away from it.

Thus, in our 1994 publication (1), 99 patients with complete excision 
of solitary non-von Recklinghausen's disease neurofibromas were 
available for follow-up; 90% displayed either improved or unchanged 
motor function and 88% experienced partial or complete resolution of 
pain. In addition, in another 48 patients with von Recklinghausen's 
disease who had solitary tumors removed and underwent adequate 
follow-up, 83% showed improved or unchanged motor function and 
74% had partial or complete resolution of their pain syndromes. Even 
when difficult sites, such as the brachial plexus, are evaluated, the 
statistics are similar. And so, the neurofibromas previously thought to 
be unresectable without severe deficit are often resectable with little or

no deficit (2). This is a major change in non-plexiform neurofibroma 
management.

R ash id  M . Ja n ju a  
D av id  G . K lin e

New Orleans, imiisiana

1. Dormer T, Voorhies, R, Kline DG: Nerve sheath tumors of major nerves. 
J Neurosurg 81: 362-373, 1994.

2. Kline DG, Gaha A, Tiel Kf.. Hudson A: Tumors of peripheral nerve, in Winn 
K (ed): Ni'iiivhy£ical Sui'gi'iy. Philadelphia, WB Saunders, 2004.

The key molecular, genetic, and cellular events in neurofibroma 
tumorigenesis are discussed in detail in this article. The key points 

of the article include evidence that loss or decreased activity of neu­
rofibromin leads to increased Ras-guanosine triphosphate, which pro­
motes cell proliferation and protects cells from apoptosis. The authors 
further elucidate the genetic m utations necessary for conversion to 
malignant peripheral nerve sheath tum ors, including p53 gene muta­
tion and loss of heterozygosity for the CDKN2A gene. The authors 
cogently discuss the cellular m icroenvironment necessary for neuro­
fibroma genesis. Although N FI-/ - Schwann cells are the progenitor 
cells of the neurofibroma, these tumors are composed of multiple cell 
types including fibroblasts, mast cells, perineural cells, and NF1H /- 
Schwann cells. These other cells, which are haploinsufficient seem to 
confer a growth advantage contributing to tumorigenesis. In addition, 
increased growth factor and growth factor receptor expression seem 
to play a role in N FI tumorigenesis. The authors discuss a number of 
biologically-based treatments. These include inhibiting the cellular 
activity of these supporting cells and targeting of the Ras signaling 
pathway. I consider the article a must-read for those interested in N F I.

Edw ard R . L aw s, Jr .
Charlottesville, Virginia

This is a very informative and complete review of N FI that could be 
useful for busy surgeons who may not have the tim e or know 

where to look for this information. Articles like this are always helpful 
and, under Dr. Couldwell's direction, we now have an important 
reference for review. These types of reports make a subscription to 
Neurosurgery valuable.

I suggest that readers note the discussion regarding the role of the 
extracellular matrix and non-tumor cells in supporting and promoting 
neoplastic phenotype. This will be seen as an emerging story in 
neuro-oncology, as well as in other forms of cancer. Neurosurgery 
should publish more reports like this. They are informative, clear and 
very valuable for the practicing surgeon.

Jo se p h  M . P ie p m eier

New Haven, Connecticut
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