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Figure I: Volume renderings of a 64-1 synthetic volume with four different curvature measures. Left to right: first principal curvature ffj, 
second principal curvature ff2, mean curvature (ffj +  ff2)/2 , and Gaussian curvature k1k2. Magenta indicates negative curvature, green 
indicates positive. Iso-curvature contours arc in black, except for zero curvature in blue.

Abstract

Direct volume rendering of scalar fields uses a transfer function to 
map locally measured data properties to opacities and colors. The 
domain o f the transfer function is typically the one-dimensional 
space of scalar data values. This paper advances the use of cur
vature information in multi-dimensional transfer functions, with a 
methodology for computing high-quality curvature measurements. 
The proposed methodology combines an implicit formulation of 
curvature with convolution-based reconstruction of the field. We 
give concrete guidelines for implementing the methodology, and il
lustrate the importance of choosing accurate filters for computing 
derivatives with convolution. Curvature-based transfer functions 
arc shown to extend the expressivity and utility o f volume render
ing through contributions in three different application areas: non- 
photorcalistic volume rendering, surface smoothing via anisotropic 
diffusion, and visualization of isosurfacc uncertainty.
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1 Introduction

Direct volume rendering depicts structure in scalar fields through a 
simple combination of mappings. At each rendered sample point, 
locally measured numerical quantities (mainly the data value itself) 
arc mapped via the transfer function to optical quantities such as 
opacity and color. Basic computer graphics routines can then shade, 
composite, and project the samples into a coherent visualization.

In nearly all applications, some part of this process involves the 
first-order differential structure o f the field: the gradient. Shad
ing routines generally require the gradient direction as input to a 
surface-based lighting model. There is also a trend towards using 
gradient magnitude in the transfer function domain, enabling vi
sualization of material boundaries based on data value and edge 
strength [Lcvoy 1988], In cither case, first-order differential field 
structure enhances the clarity and effectiveness of direct volume 
rendering. This paper further promotes the use of differential struc
ture in direct volume rendering, by demonstrating a family of trans
fer functions based on curvature, using second-order derivatives.

The theory behind curvature measurement in volume visualiza
tion draws from two distinct fields of study. The first is differ
ential geometry. We compute isosurfacc curvature directly from 
the volume data using a simple algebraic framework of differen
tial invariants. Additional insight into the underlying field structure 
comes from geometry orthogonal to the isosurfaccs, which is also 
described by an invariant. The second field of study guiding this 
work is signal processing and filter design. Numerical differentia
tion accentuates noise, and the problem increases with the order of 
the derivative. Care must bc taken to measure second derivatives ro
bustly and accurately. We describe a convolution-based derivative 
measurement scheme which allows control of the tradeoff between 
accuracy, continuity, and filter size. This curvature measurement 
method obviates intermediate surface construction, surface param
eterization, and explicit finite difference schemes. The ability to 
compute reliable curvature information at arbitrary points in sam
pled volume data creates new opportunities for direct volume ren
dering with curvature-based transfer functions.

This paper selects different components of curvature information 
to serve as domain variables in multi-dimensional transfer func-
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tions. We demonstrate that curvature-based transfer functions en
hance the expressive and informative power of direct volume ren
dering with contributions in three different application areas. Non- 
photorealistic volume rendering is improved in Section 5 with con
tours exhibiting constant thickness in image space, and a flexible 
method of emphasizing ridge and valley surface creases. Section 6 
shows how volume rendering with total curvature provides a tech
nique for studying the behavior of volumetric surface processing 
algorithms. Section 7 uses flowline curvature as a way to quali
tatively indicate regions of high geometric uncertainty in surface 
models created by isosurfacing.

2 Previous Work

This paper builds on a significant amount of previous research in 
volumetric curvature measurement and its application to volume vi
sualization. M ongaeta l. [1992; 1994] use convolution with Gaus
sian kernels, as well as their first, second, and third derivatives to 
compute surface curvature characteristics, and to find ridge lines 
(extrema in normal curvature along the principal curvature direc
tion). Interrante et al. [1995] use ridge and valley lines to sim
plify depiction of the skin surface for surgical planning. Their later 
work [1997; 1997] systematically explores a variety of methods for 
using strokes or textures aligned with principal curvature directions 
to effectively convey the configuration of semi-transparent isosur
faces relative to internal structures. Kinetic visualization [Lum etal. 
2003] uses particle motion along the principal curvature direction 
to clarify depiction of surface orientation. In the work that most di
rectly influences our own, Hladuvka et al. [2000] describe volume 
renderings with two-dimensional transfer functions using a sim
plified space of principal curvatures, and demonstrate that surface 
shape is an intuitive space in which to specify color and opacity.

Another thread of previous work adapts non-photorealistic ren
dering (NPR) techniques to direct volume rendering [Gooch and 
Gooch 2001; Ma et al. 2002], Treavett and Chen [2000] create 
pen-and-ink style visualizations of volume data with a combina
tion of volume-space and image-space measurements, including a 
simple curvature measure. Rheingans and Ebert [2001] modify 
the standard volume rendering pipeline by applying a variety of 
NPR techniques to enhance interesting features and regions, and 
to provide depth and orientation cues. Csebfalvi et al. [2001] use 
gradient information to create interactive visualizations emphasiz
ing object contours, quickly revealing internal structures with lit
tle parameter tuning. Lu et al. [2002] mimic stipple drawing by 
using a variety of feature detection methods to place point primi
tives in the volume with carefully controlled density and location. 
Lum and Ma [2002] use commodity graphics hardware to create 
richly detailed renderings of volume datasets using a combination 
of NPR methods. Nagy et al. [2002] use graphics hardware to en
rich interactive volume renderings with artistic shading methods 
and curvature-directed strokes and hatches.

3 Curvature Measurement

The contribution of this section is a self-contained derivation and 
intuitive explanation of our curvature measurement method, ending 
with the three simple steps required to put it into practice. The steps 
can be implemented without perfect understanding of the underly
ing mathematics. Following Monga etal. [1992], we rely on convo
lution with continuous filters, rather than an explicitly constructed 
coordinate frame aligned with the gradient direction [Interrante 
1997; Nagy et al. 2002], We feel our convolution-based approach 
is significantly simpler than a previous method based on charac
terizing multiple planar curves passing through the point of inter
est [Hladuvka et al. 2000], Though visualization results may bene

fit from a pre-process smoothing of the data, no pre-computation is 
required for the curvature measurement itself.

The curvature of a surface is defined by the relationship be
tween small positional changes on the surface, and the resulting 
changes in the surface normal. In sampled volume data, surfaces 
are implicitly represented as isosurfaces of reconstructed contin
uous data values /( x ) .  Assuming that the values of /  increase 
as we move further inside objects of interest (e.g., a standard CT 
scan), the surface normal is defined as n =  — g /|g |, with the gradi

ent g =  V f  =  • Curvature information is contained in

VnT, a 3x 3 matrix. However, we do not want to evaluate the gradi
ent of a (pre-computed) normalized vector, since this hinders direct 
convolution-based measurement of the original data. Expanding 
upon the derivation in [Mitchell and Hanrahan 1992]:

Vn1 -V fr
Vlsl

- ± ( «

VgT gVTlgl
|g| Igl2 

gVTigTg) = - n [H- 
|g|

gU gr H)
2 |g|2

= - Ti - i I - n n T)H .
|g| '

I is the identity matrix, and H is the Hessian matrix:

gVTigTg)
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H

H
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d 2f / d x d v
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d 2 f / d x d v  
d 2f / d v 2 
d 2 f / d v d z

d 2f / d x d z  
d 2 f / d v d z  
d 2f / d z 2

(1)

The outer product of n with itself, nnT, is a linear operator that 
projects onto the one-dimensional span of n. I — nnT projects onto 
the orthogonal complement of the span of n, namely, the tangent 
plane to the isosurface. Letting P = I — nnT, then

t  1Vn = —— PH. (2)

Reading Equation 2 from right to left permits some intuitive un
derstanding of VnT. Vector calculus tells us that the Hessian matrix 
H represents how the gradient g changes as a function of infinites
imal changes of position in K3 [Marsden and Tromba 1996], The 
changes in g have a component along g (the gradient can change 
length), and a component within the tangent plane (the gradient 
can change direction). For the purposes of describing curvature, 
only the latter component matters. It can be isolated with left- 
multiplieation by P. Finally, the — l / |g |  scaling factor converts in
finitesimal changes of the (un-normalized) gradient g into infinites
imal changes of the unit-length normal n.

Both P and H  are symmetric matrices, but in general, VnT is not 
symmetric. However, if v lies in the tangent plane, then Pv = v and 
v P = vT, so for u and v in the tangent plane.

vt P H u vt H u u t H v =  u t P H v .

That is, the restriction of VnT =  — PH/ 1g| to the tangent plane is 
symmetric, and thus there exists an orthonormal basis { p j .p ,}  for 
the tangent plane in which VnT is a 2 x 2 diagonal matrix [Hoffman 
and Kunze 1971], This basis can be easily extended to an orthonor
mal basis for all of K3, { p j.p ,.! !} . In this basis, the derivative of 
the surface normal is

V n1
Kj 0 a l 
0 KS CT,
0 0 0‘

The bottom row is all zero because no change in position can 
make the normal n change in length. Motion within the tangent
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plane, along p, and p ,, leads to changes of n along the same di
rections, with proportionalities ifj and k ? respectively. There is no 
cross-term, or twisting of the normal, by the choice of {p, ,p , }. By 
the definition of surface curvature [Do Carmo 19761, p f and p , are 
the principal curvature directions, while K-, and K-, are the principal 
curvatures. As one moves along the normal, o ff  of the surface or 
deeper into it, the normal tilts according to cr, and cr,. This aspect 
of implicit surface curvature, termed,fiowtine curvature by ter Haar 
Romeny et al. [19911, is explored further in Section 7. The above 
derivation of VnT is not novel. Others have exploited the fact that 
it has eigenvalues k-,, k-,, and 0 to compute curvature of implicit 
surfaces [Belyaev et al. 1998; Preusser and Rumpf 20021.

Multiplying VnT by P  has the effect of isolating k-, and K-, in the 
{p , ,p , ,n }  basis:

' 1 0 0
G =  VnTP =  VnT 0 1 0 =

0 0 0

Our surface curvature measurements are based on G, which we 
term the geometry tensor. In practice, G  will be known only in 
the (X ,Y ,Z )  basis of the volume axes, and will not have the readily 
transparent form of Equation 3. Matrix invariants provide the lever
age to extract the desired curvature values k:, and k? from G, re
gardless of the principal curvature direction coordinate frame. The 
trace of G is k-, +  k-,. The Frobenius norm of G, notated |G |F and

defined as V trace(GGT), is ' / i c f  + & .  k*| and K-, are then found 
with the quadratic formula.

To summarize, here are the steps needed to compute curvature at 
an arbitrary point in a scalar field:

1. Measure the first partial derivatives comprising the gradient g. 
Compute n =  —g /|g |, and P  =  I  — nnT.

2. Measure the second partial derivatives comprising the Hessian 
H (Equation 1). Compute G  =  —P H P /|g |.

3. Compute the trace T  and Frobenius norm F  of G. Then,

T  +  V 2 F 2 - T 2 T -  s/ 2 F 2 - T 2
K> -  2 ’ ^2 ~~ 2 '

If the data values inside regions of interest are lower than the 
background (e.g., inverted from a standard CT scan), the only 
change in the formulation is the sign of the geometry tensor: 
G  =  P H P /|g |. Though not used in this paper, the principal cur
vature directions are easily found as eigenvectors of G. The most 
important task in the curvature computation is measuring all the 
necessary partial derivatives (in g and H). It is for this task that we 
use convolution with continuous filters.

4 Measuring Derivatives with Convolution

Image-order volume rendering of discretely sampled data relies on 
convolution with continuous filters to reconstruct values at arbi
trary locations, such as sample points along a ray. We perform 
three-dimensional reconstruction as a separable product of one
dimensional convolutions along the X ,Y , 7  axes. The combination 
of filters used on each axis determines whether the reconstructed 
quantity is the interpolated data value, or one of its many partial 
derivatives. Measuring d ' f / d x d y ,  for example, is done with first- 
order derivative filters on the X  and Y  axes, and with a zero-order 
derivative (interpolation) filter on the Z axis. Accurate curvature 
measurement depends on a judiciously chosen combination of fil
ters for zero, first, and second derivatives. For reasons of practical
ity and efficiency, we use piecewise polynomial filters with sym
metric support. We apply the filter design framework of Moller

et al. [19981 to inform the choice of filters. It is the first time the 
framework has been used to create second derivative filters.

We review the spatial filter design framework by considering 
a continuous function f i t )  in one dimension. Sampling f i t )  at 
unit intervals produces a sequence of discrete values, notated f[k], 
where k is an integer. From f[k] we must approximate both the 
original function f i t ) ,  as well as its first and second derivatives 
f i t )  and f i t ) .  Each of the three approximations is done by con
volution with a continuous filter. The result of convolving f[k] with 
continuous filter vi’(r) is notated f i t ) .  By combining the IVth or
der Taylor expansion of f  with the convolution definition of f"  (r), 
Moller e ta l. [19981 derive:

f i t )  =  < / ( r ) + « f / ' ( r ) + « f / " ( r )  +  .. .

+ a%flN)(t) +?N <4)

The a*  are termed error coefficients. From a formulaic standpoint, 
a* encapsulates a convolution of vr with the fi-th term of the sam
pled Taylor expansion of / .

From a practical standpoint, however, the vector of error coeffi
cients is the means by which we "dial up” a filter vt\ according to 
the desired derivative and accuracy properties. We describe both 
of these in turn. Looking at Equation 4, we can see that if a filter 
vr does a perfect job of reconstructing f i t ) ,  then f i t )  = f i t ) ,  so 
£/q =  1 and all other a)*’ (as well as the remainder term rJJ) are zero. 
Similarly, for ideal first (or second) derivative filters, a f  (or a*’) is 
unity, and all other coefficients are zero. The measurement behav
ior of a filter vr is governed by its first non-zero error coefficient. 
To specify that vr should be a rf-order derivative filter, we require 
a* =  0 for all n <  d, and set a^j =  1.

In spatial filter design, filter quality is quantified in terms of ac
curacy: the more accurate a filter is, the higher degree polynomial 
it can reconstruct exactly. A kth degree error filter (&-EF) filter is 
one which can exactly reconstruct polynomials of degree k — 1 or 
lower. In the context of Equation 4, we gain accuracy by requir
ing one or more of the error coefficients beyond a^j to be zero. To 
specify that vr should be a -derivative &-EF filter, we let /V =  d + k 
and require a* =  0 for all n : d  < n < N. Note that the number of 
constraints we set (that is, the number of a)*’ we specify) is the sum 
of the derivative order and the accuracy level. This also turns out to 
be the lower bound on the filter support (the number of data value 
samples required in the convolution sum).

Continuity is also a desirable filter property, since it avoids 
visual artifacts in reconstruction, and it helps reduce post
aliasing [Marschner and Lobb 19941. A continuous filter is CM 
if it has M  continuous derivatives. It can be shown that infinitely 
many piecewise polynomial filters satisfy any given derivative, ac
curacy, and continuity requirements [Moller 19991. The filter wit) 
is ultimately implemented as a list of coefficients of piecewise poly
nomials in t. The coefficients are found as the solution of a linear 
system embodying the derivative, accuracy, and continuity proper
ties described above [Moller 19991.

Spatial filter design supports the creation and characterization 
of second derivative filters, but unfortunately curvature is not sim
ply a second derivative. Rather, Section 3 showed how curvature 
is extracted from both first and second derivatives, through alge
braic transforms. We have conducted an empirical study to better 
understand how filter quality affects curvature measurements. Our 
study used measurements of mean curvature (if, +  k' , ) / 2 on the 
Marschner-Lobb [19941 dataset, a 403 sample floating-point vol
ume with isosurfaces resembling a graph of the sine function. Fig
ures 2 shows the analytical form of the data, including colormap- 
ping with correct mean curvature values.

Figure 3 shows results from a variety of filter combinations. Fig
ure 3(a) uses the Catmull-Rom cubic spline and its first and sec
ond derivatives. Because the Catmull-Rom spline is C 1 but not C2,
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4- (h'| 4- K-,j/2

Figure 2: Marschner-Lobb dataset with ideal reconstruction. In (b), 
colors indicate mean curvature.

its second derivative is discontinuous, leading to markedly discon
tinuous curvature measurements. This example demonstrates how 
well-regarded reconstruction filters arc not always the basis of use
ful derivative reconstruction filters, especially in the context of sec
ond derivatives. Figure 3(b), on the other hand, better captures the 
shape and curvature on the thin ridges, but at the expense of using 
an 83 sample support over which the convolutions arc performed. 
Large filter supports arc costly, especially in three dimensions, be
cause of poor memory locality. Finding filters which give good 
results with reasonable supports is an ongoing research problem.

Seeking to provide practical advice on a filter set for efficient cur
vature measurement, we performed a search among the filters (cre
ated by the framework above) with 43 sample support. Allowing up 
to 3rd order continuity (C3) and 4th order accuracy (4-EF), a total of 
200 filter combinations were assessed by rendering the Marschncr- 
Lobb dataset. These renderings (not shown) used an orthonormal 
projection from directly above the dataset, with shading turned off, 
to generate grayscale images of mean curvature. Based on the dif
ference between the ideal and rendered curvatures, an "optimal” 43 
filter set was found; sec Figure 3(c). An interesting property of this 
filter set is that for the derivatives, high accuracy is more important 
than high continuity. For example, there arc 4-support 2nd deriva
tive filters with higher continuity than C°, but they arc 1-EF, not 
2-EF.

Figure 3(d) uses another set of filters, also created by the frame
work above, but better known through the BC-splincs of Mitchell 
and Nctravali [1988]. Interpolation is done by the Catmull-Rom fil
ter (B,C = 0,0.5), which is the only 3-EF (the most accurate) inter
polating BC-splinc. The first and second derivatives arc measured 
with the first and second derivatives of the cubic B-splinc (B,C = 
1,0), which is the only C2 (the most smooth) BC-splinc. In our 
quantitative comparison of 200 filter sets, these did nearly as well 
as the "optimal” 43 filters. Given that any 43 sample filter set will 
bc quite limited in the feature detail it can reconstruct and mea
sure, we recommend that when practical considerations dictate a 43 
support, the filters listed in Figure 3(d) arc sufficient; only slightly 
better results will come from filters with higher polynomial degree.

When larger filter supports can bc employed, higher accuracy 
is more important than higher continuity. In most practical appli
cations, the underlying data can bc sufficiently modeled with low 
degree polynomials. 3-EF or 4-EF filters should bc sufficient; those 
in Figure 3(b) arc excellent. When measuring derivatives in noisy 
data, smoothing often improves accuracy. Such smoothing can bc 
a pre-process. Or, it can be folded into the convolution, by slightly 
blurring values, instead of interpolating them. For instance, instead 
of using the Catmull-Rom filter as in Figure 3(d), we can use the 
B-splinc. We have found that the resulting loss of accuracy on very 
small features is compensated for by the reduction of spurious cur
vature variations due to noise. For the remainder of this paper, we 
use the B-splinc and its derivatives for our curvature measurements.

(a) /  : Catmull-Rom
f  : I'' deriv of Catmull-Rom 
/ "  : 2nd deriv of Catmull-Rom

(degree 6 ) 
(degree 6 ) 

D, CJ, 4-EF (degree 5)

(C) /  : 0-D. c-. 3-EF (degree 7) 
f  : 1 -D. C2. 2-EF {degree 4) 
f"  : 2 D. ( ' ’ . 2  IT  (degree])

(d) /  : Catmull-Rom
f  : I'' deriv ofB-spline 
/ "  : 2'“l deriv of B-spline

Figure 3: Marschner-Lobb dataset with various filtered reconstruc
tions. Below each image is a list of the three filters used to re
construct the data value and the first and second derivatives. The 
polynomial degrees arc listed for (b) and (c). In (a) and (d) the 
polynomial degrees arc 3, 2, and 1.

5 Non-Photorealistic Volume Rendering

5.1 C o n tro llin g  C o n to u r  T h ick n e ss

Contours (sometimes referred to as silhouettes) arc a basic part of 
all current approaches to non-photorcalistic volume rendering. By 
emphasizing the transition between front-facing and back-facing 
surface locations, contours delineate object shape and clarify sites 
of occlusion. Contours of polygonal surfaces arc drawn on edges 
between faces with different visibilities, as determined by a sign 
change in v • n, the dot product between the view vcctor v and the 
face normal n [Gooch and Gooch 2001]. Lacking polygonal dis
cretization, volume rendered contours arc generally produced with 
a univariate function of v- n. For instance, the surface color is dark
ened when v- n is within some user-determined range around zero.

Figure 4: Contours based solely on v • n
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An unfortunate consequence of this approach is uncontrolled 
variation in the apparent contour thickness. As shown in Figure 4, 
where the surface is nearly flat, a large region of surface normals 
is nearly perpendicular to the view vector, making the contours too 
thick. Conversely, in fine structures, where the emphasis provided 
by contours could be especially helpful, they can be too thin.

We propose regulating the thickness of volume rendered con
tours by using curvature. Specifically, the normal curvature along 
the view direction, kx. restricts the range of surface normal ori
entations rendered as contour. We find ks, in terms of the tangent 
projection P  and the geometry tensor G, exploiting the fact that re
stricted to the tangent plane, G  is exactly the Weingarten map [Do 
Carmo 19761:

(Pv)T Pv 
|Pv| |Pv|

1 G v G v
IPvl- vT P v

Figure 5: Creating contour thickness T  based on surface normal n, 
view vector v, and radius of surface curvature R = 1 / kx .

Contours with approximate image space thickness T  are ren
dered with a two-dimensional transfer function of ks, and v n. Our 
method is an approximation because ks, is assumed to be constant 
over the contour extent. Figure 5 illustrates a slice through a sur
face, on the plane spanned by the surface normal and the view vec
tor as it grazes the surface. Within this plane, m  is the single surface 
normal orthogonal to v. A certain range of surface normals around 
m  must be rendered as contour so that, when projected on the image 
plane, the contour region appears to have thickness T . This range is 
a function of T  and of R , the radius of curvature at this point along 
the contour. Letting 0T denote the maximum angle between m and 
a surface normal within the contour:

|m -n | >  cos(0T ) =$■ |v - n| < sin(0r )

= H v -n  <
s/ R 2 - ( R - T ) 2 _  j l R T - T 2

r 2
1 ( 2 - 1  
R \  R

=$■ | v - n | < s / T  ks,(2 — F k'v (5)

Figure 6(a) graphs the inequality in Equation 5; it is simply a 
portion of a circle. When curvature kx is small, a narrow range 
of surface orientations should contribute to the contour, while a 
larger range of orientations must be colored to create the contour 
on high curvature features. The lookup table in Figure 6(b) is one 
way to implement the contour transfer function. High values of 
ks, are clamped to 1 /T  to ensure that very small features are not 
missed. The transition between dark and light in the contour trans
fer function may be blurred somewhat to soften the contour edges, 
and to avoid accentuating minor surface variations near the contour.

(a) Contour function (b) 2-D lookup table

Figure 6: Graph of contour function, and the lookup table used to 
implement thickness-controlled contours in practice.

Figure 7: Thickness-controlled contours, using 7  =  1 (left) and 
T =  2.5 (right).

Figure 7 demonstrates thickness-controlled contours with two 
different values for the thickness parameter T. The contour thick
ness around the ears and back of the bunny are now equal, and the 
surface details on the lower body are more clearly depicted, in con
trast to Figure 4. Also, varying T  succeeds in adjusting the image 
space thickness of the contours. Since the dimensions of T  are vox
els, setting 7  =  1 means that contours should be about as thick as 
the size of one voxel projected onto the image plane. As with pre
vious methods for volume rendered contours, it is possible for our 
thickness-controlled contours to be drawn at locations where there 
is actually no change in surface visibility. Also, contours may be 
drawn improperly in regions where curvature is too low to be mea
sured accurately. We have not found either of these problems to be 
serious impediments to the illustrative purpose of contours.

5.2 E m p h as iz in g  V a lle ys  and  R id ge s

One ingredient missing in the current vocabulary of non- 
photorealistic volume rendering techniques is the use of curvature 
magnitudes to enhance depiction of surface details. Conveying 
overall surface shape is effectively done by using textures aligned 
with curvature directions [Interrante et al. 1997; Interrante 1997; 
Girshick et al. 2000; Lum et al. 2003], but we wish to avoid the 
overhead of pre-computing and storing the necessary volumetric 
texture. Though visually similar to depiction of ridge and valley 
lines, our approach is simpler than previous volumetric methods in 
that we do not use third derivatives [Monga et al. 1994], nor do we 
perform a local search to determine curvature extrema [Interrante 
et al. 1995], Rather, we work in the two-dimensional space of prin
cipal curvatures ((CpKs). similar to the approach of Hladuvka et 
al. [2000], with the important difference that the geometry tensor 
can distinguish between convex and concave surface geometry.

Figure 8 demonstrates transfer functions of the ( k} , k-,) principal 
curvatures. Figure 8(a) portrays curvature space with a sequence of 
quadratic surface patches (each a 203 volume) rendered with the 
transfer function shown. Figure 8(b) shows how curvature trans
fer functions can emphasize surface variations not otherwise read-
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6 Visualizing Surface Smoothing

(a) Volume rendered diagram of (v ^ v ,)  space. The colors in the 
(K'pk',) transfer function domain are mapped onto the patches with 
corresponding surface curvature.

(b) Left: Visualization of ear curvature using transfer function from 
(a); Right: ridge and valley emphasis implemented with inset transfer 
function, combined with Gooch shading

Figure 8: Principal curvature transfer functions

ily seen. Following a technical illustration convention of darken
ing valleys and lightening ridges [Gooch et al. 1999], we darken 
or lighten volume rendered samples according to their location in 
( ,  k2 ) space, using the transfer function shown in Figure 8(h). In 
addition to the curvature-based transfer function, Gooch shading is 
used to convey overall shape [Gooch et al. 1998].

Figure 9 highlights the complementary nature of our two 
curvature-based non-photorealistie volume rendering effects. 
Thickness-controlled contours delineate the shapes of large struc
tures, while ridges and valleys highlight tine surface details. In 
these renderings, surface color is assigned as a function of three 
vectors (v, n, 1: view, surface normal, light) and three different 
kinds of curvature (>'», K'(, k2: view direction, principal curvatures). 
We follow the example of previous work demonstrating the benefit 
of expressing multi-dimensional transfer functions as the separable 
product of simpler functions [Kniss et al. 2002]:

R G B (v,n,l, kv, K,, k2) =  g (n -l) c(k-v, v -n ) e(ic,, k2) .

Gooch shading comes from g (n - l) ; e(KV,n-v) creates thickness- 
controlled contours; e(fq , k2) provides ridge and valley emphasis. 
The contour thickness T  is the only parameter to tune in c( K'v, v • n). 
The ridge and valley emphasis does require subjective adjustments, 
but the intuitive nature of (k'(, k-,) space makes this relatively sim
ple. By far the most challenging parameter setting remains the 
opacity assignment, for which we use a two-dimensional transfer 
function of data value and gradient magnitude, as guided by previ
ous work [Kindlmann and Durkin 1998; Kniss et al. 2002],

Medical imaging and three-dimensional range sensing technologies 
produce high resolution descriptions of object surfaces, but they of
ten suffer from noise. Level set methods for denoising the data have 
become popular because of their inherent ability to handle com
plex topology [Osher and Sethian 1988], Level sets can be evolved 
by minimizing an energy function based on principal curvatures, 
the lowest-order differential invariants of surface shape [Tasdizen 
et al. 2002]. Minimizing the surface integral of total cunvtture 
kt  =  \ / k \ +  k;  gives an isotropic surface smoothing, analogous 
to Gaussian image blurring. A variant of this energy function can 
be used to preserve prominent features on the surface while elimi
nating noise [Tasdizen et al. 2002], generalizing anisotropic image 
diffusion [Perona and Malik 1990] to surface processing.

We propose that curvature-based direct volume rendering is a 
natural and effective tool for visualizing curvatures and surfaces as 
they evolve during a level set solution. Level sets and direct vol
ume rendering share an implicit surface representation on a com
mon underlying grid. Because curvature-based volume rendering 
requires no pre-processing, it permits direct inspection of interme
diate smoothing results, without an intervening meshing step. To 
visualize the spatial and temporal structure of total curvature on the 
evolving surface, we use two one-dimensional transfer functions. 
One assigns surface color as a function of total curvature; the other 
assigns opacity as a function of data value.

Figure 10: Six snapshots of anisotropic surface smoothing

Figure 10 shows volume renderings of six instances during the 
anisotropic smoothing of an isosurface from MRI data. All ren
dering parameters are fixed; only the volume dataset is changing. 
Noise in the original surface (top-left picture) is seen as randomly 
distributed high curvature points on the surface. As the surface 
evolves, most of the high curvature points fade away, while the 
rest coalesce into prominent creases. This is predicted by mathe
matical analysis of the anisotropic diffusion equations [Perona and 
Malik 1990], Our visualization experiment verifies this property, 
as well as illuminating other features of the process. For instance, 
as the surface smoothly evolves, the network of creases undergoes 
discrete changes in connectivity. An interesting research topic sug
gested by these visualizations is steering the energy function in or
der to create or maintain a particular topology in the crease network.
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Figure 9: Curvature-based non-photorcalistic volume rendering. The two small images depict the contribution of thickness-controlled con
tours (top) and ridge and valley emphasis (bottom). The large images show the combination of the two effects.

7 Visualizing Isosurface Uncertainty

If a grayscale image is thought of as a height field on which a fluid 
is flowing down ward,,/fovt’/iw cunmure is the curvature of the path 
of the flow, as viewed from above [ter Haar Romeny et al. 19911. 
In three dimensions, flowlinc curvature Ky characterizes the degree 
to which an isosurfacc changes its orientation as a function of small 
changes in isovalue. With zero flowlinc curvature, adjacent isosur- 
faccs arc parallel. Like the principal curvatures, flowlinc curvature 
is a differential invariant. However, instead of describing change 
within a single isosurfacc, it describes change between isosurfaccs. 
It can be computed from VnT (Equation 2):

Ky =  |Vn (nn ) |F ;
K'l 0 a l ' 0 0 0
0 K-, CT, 0 0 0
0 0 0 0 0 1

=  \ / o f  +  C7£ .

To our knowledge, flowlinc curvature has not been used in vol
ume visualization. Wc propose that flowlinc curvature can be used 
to visualize the uncertainty of material boundaries as modeled by 
isosurfacc extraction. The physical shape of a boundary between 
two materials is a fixed and intrinsic property of the object being 
sampled in the volume dataset. At locations where small changes 
in isovalue produce large changes in isosurfacc orientation, the iso
surfacc is probably a poor model of the material boundary. On the 
other hand, where the shape of an isosurfacc is robust against small 
isovalue changes, wc can be more certain of its geometric accu
racy. By colormapping flowlinc curvature onto volume rendered 
surfaces, wc can qualitatively indicate uncertainty of surface shape. 
Regions of especially high flowlinc curvature arc visually flagged 
as suspect.

One common material boundary that can be hard to extract via 
isosurfacing is the surface of bone in CT data. Figure 11 shows 
six pscudo-isosurfacc volume renderings of a thumb. Each is ren
dered with a univariate opacity function changing from transparent 
to fully opaque over a narrow range of data values, effectively cre
ating a threshold at the specified isovalue. Flowlinc curvature is 
eolormapped onto the surfaces through a single transfer function 
common to all the renderings. The (anatomically erroneous) holes 
on the bone surface arc consistently lined by high flowlinc curva
ture, and the sites of hole formation can largely be predicted by 
flowlinc curvature patterns at lower isovalucs. There arc, however, 
locations with high surface curvature and low flowline curvature.

Figure 11: CT isosurfaccs at values 1055, 1095, 1175, 1255, 1335, 
and 1405, eolormapped by flowlinc curvature. Circle indicates site 
of high surface curvature and low flowlinc curvature.

such as the (circled) lower edge of the top bone in the second im
age. Because there is no single isovalue for which the resulting 
isosurfacc has consistently low flowlinc curvature, these visualiza
tions illustrate how hard it is to find a CT isovalue which represents 
the bone surface with high certainty.

8 Discussion, Future Work

Wc have demonstrated that curvature plays a valuable role in cre
ating informative volume visualizations. Our method conforms to 
a standard post-classification volume rendering pipeline: the color 
and opacity assignments at cach raycast sample arc generated from 
transfer functions, on the basis of locally computed quantities, such 
as gradient and curvature. Rhcingans and Ebert [20011 have de
scribed how this approach engenders the difficult task of transfer 
function creation and modification. However, as noted in Scc
tion 5.2, wc seek to control this complexity by enforcing separabil
ity of the transfer function into simpler, intuitive components. The 
conceptual orthogonality of the various NPR effects maps to or
thogonality between the corresponding transfer function domains.

Biological surfaces tend to be somewhat noisy, and as a result.
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where the surface curvature is very low. as on the scalp or the top 
of the skull, it is hard to measure curvature accurately. Adaptive 
methods which measure derivatives over a larger area in such cir
cumstances could help, as could proper application of scale-space 
methods [terH aar Romeny eta l. 1991]. As mentioned in Section 4. 
more analysis is needed to determine the precise relationship be
tween the characteristics of the convolution filters, and the quality 
of curvature measurements produced. Finally, ourproof-of-concept 
raycaster does not exploit graphics hardware, and is far from inter
active. Previous work on hardware-based convolution [Hadwiger 
et al. 2001] and hardware-based NPR [Lum and Ma 2002; Nagy 
et al. 2002], however, suggests the exciting possibility of high- 
quality curvature measurements at interactive rates.
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Every rendered image in this paper can be regenerated 
exactly with open-source software and public datasets; see 
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