
C luster-B ased In teractive V olum e
R endering w ith S im ian

Christiaan Gribble, Xavier Cavin,
Mark Hartner, & Charles Hansen

UUCS-03-017

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

September 3, 2003

A b s tr a c t

Commodity-based computer clusters offer a cost-effective alternative to traditional large-
scale, tightly coupled computers as a means to provide high-performance computational
and visualization services. The Center for the Simulation of Accidental Fires and Ex
plosions (C-SAFE) at the University of Utah employs such a cluster, and we have begun
to experiment with cluster-based visualization services. In particular, we seek to develop
an interactive volume rendering tool for navigating and visualizing large-scale scientific
datasets. Using Simian, an OpenGL volume renderer, we examine two approaches to
cluster-based interactive volume rendering: (1) a “cluster-aware” version of the applica
tion that makes explicit use of remote nodes through a message-passing interface, and (2)
the unmodified application running atop the Chromium clustered rendering framework.
This paper provides a detailed comparison of the two approaches by carefully considering
the key issues that arise when parallelizing Simian. These issues include the richness of
user interaction; the distribution of volumetric datasets and proxy geometry; and the degree
of interactivity provided by the image rendering and compositing schemes. The results of
each approach when visualizing two large-scale C-SAFE datasets are given, and we dis
cuss the relative advantages and disadvantages that were considered when developing our
cluster-based interactive volume rendering application.

C lu s te r -B a se d In terac tive V olum e R en d er in g w ith S im ian

Christiaan Gribble
SCI Institute

University of Utah

Xavier Cavin
Project Isa

Inria Lorraine

Mark Hartner
SCI Institute

University of Utah

Charles Hansen
SCI Institute

University of Utah

A bstract

Commodity-based computer clusters offer a cost-effective alterna
tive to traditional large-scale, tightly coupled computers as a means
to provide high-performance computational and visualization ser
vices. The Center for the Simulation of Accidental Fires and Explo
sions (C-SAFE) at the University of Utah employs such a cluster,
and we have begun to experiment with cluster-based visualization
services. In particular, we seek to develop an interactive volume
rendering tool for navigating and visualizing large-scale scientific
datasets. Using Simian, an OpenGL volume renderer, we exam
ine two approaches to cluster-based interactive volume rendering:
(1) a “cluster-aware” version of the application that makes explicit
use of remote nodes through a message-passing interface, and (2)
the unmodified application running atop the Chromium clustered
rendering framework. This paper provides a detailed comparison
of the two approaches by carefully considering the key issues that
arise when parallelizing Simian. These issues include the richness
of user interaction; the distribution of volumetric datasets and proxy
geometry; and the degree of interactivity provided by the image
rendering and compositing schemes. The results of each approach
when visualizing two large-scale C-SAFE datasets are given, and
we discuss the relative advantages and disadvantages that were con
sidered when developing our cluster-based interactive volume ren
dering application.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—3D Graphics;

Keywords: Cluster-based visualization, interactive volume ren
dering

1 Introduction

Over the past several years, explosive growth in the performance
of consumer computing hardware has lead to relatively inexpen
sive central processing units boasting clock speeds in the multi
gigahertz range. Similarly staggering growth has been demon
strated by consumer graphics hardware, which now offer pro
grammable graphics processing units capable of rasterizing mil
lions of triangles per second. These advancements have resulted
in affordable low-end desktop computers that rival traditional
workstation-class systems. Moreover, interconnection hardware
operating in the gigabit-per-second range continues to become more
affordable and more widely available. As a result, commodity-
based computer clusters now offer a cost-effective alternative to
traditional large-scale, tightly coupled computers as a means to pro
vide high-performance computational and visualization services.

The Center for the Simulation of Accidental Fires and Explo
sions (C-SAFE) at the University of Utah employs a commodity-
based cluster, and we have begun to experiment with cluster-based
visualization services. In particular, we seek to develop an inter
active volume rendering tool for navigating and visualizing large-
scale scientific datasets. Using Simian, the OpenGL volume ren-
derer shown in Figure 1, we examine two approaches to cluster-
based interactive volume rendering: (1) a “cluster-aware” version

Figure 1: Interactive volume rendering with Simian—Simian is a
scientific visualization tool that utilizes the texture processing capa
bilities of consumer graphics accelerators to produce direct volume
rendered images of scientific datasets. It provides a rich interface
that allows users to interact with volumetric datasets and explore
interesting features in real-time.

of the application that makes explicit use of remote nodes through
a message-passing interface (MPI), and (2) the unmodified applica
tion running atop the Chromium clustered rendering framework.

Section 2 provides background, including a brief introduction to
the C-SAFE fire-spread simulations in Section 2.1, the clustered
computing environment of C-SAFE in Section 2.2, direct volume
rendering with Simian in Section 2.3, and the Chromium clustered
rendering framework in Section 2.4. We then provide a detailed
comparison of the two approaches. In this comparison, which is
found in Section 3, we carefully consider the key features and open
issues of parallelizing Simian with each approach. This compar
ison includes an examination of the richness of user interaction;
the distribution of volumetric datasets and proxy geometry; and the
degree of interactivity provided by the image rendering and com
positing schemes. Section 4 presents the results of each approach
when visualizing two large-scale C-SAFE fire-spread datasets. In
Section 5, we discuss the relative advantages and disadvantages that
were considered when developing our cluster-based interactive vol
ume rendering application. Finally, we outline possible future work
in Section 6.

Component Device Driver

Network Intel elOOO 4.3.2 (June 2002)
Graphics GLX and kernel 1.0-2960 (May 2002)
AGP AGP4x with kernel AGPGART

Component Type

M otherboard Supermicro P4DC6+
(Intel 860 chipset)

CPU Dual Intel Xeon 1.70GHz
(256KB L2 cache)

M emory 2x512MB Corsair ECC RDRAM
Network card Intel Pro 1000/XT
Graphics board NVIDIA
GPU NVIDIA GeForce3 NV20

(64MB RAM)
H ard drive 18GB Seagate Cheetah U160

(15000 RPM)

Table 1: Hardware components of a single C-SAFE cluster node

2 Background

C-SAFE is an alliance between the University of Utah and the
Department of Energy Accelerated Strategic Computing Initiative.
The objective of C-SAFE is to develop a system comprised of a
problem-solving environment in which fundamental chemistry and
engineering physics are combined with non-linear solvers, opti
mization, computational steering, scientific visualization, and ex
perimental data verification. It focuses specifically on providing
state-of-the-art, science-based tools for the numerical simulation of
accidental fires and explosions, especially within the context of han
dling and storage of highly flammable materials.

Specifically, the project focuses on three distinct, sequential
steps that parallel the events in our physical problem: Ignition and
Fire Spread, Container Dynamics, and High Energy (HE) Transfor
mations. A fire or explosion is initiated by an ignition and, depend
ing upon the magnitude of heat generation and dissipative terms,
a perturbation by the ignition source either decays or grows into a
flame. This ignition may be followed by a spreading fire and possi
bly an explosion. The fire or explosion can cause the container of
HE material to undergo changes, perhaps rupture, and, simultane
ously or sequentially, the HE material itself can undergo transfor
mations that lead to an explosion. These computational steps are
integrated into a coupled fire and explosion system.

2.1 C-SAFE Fire-Spread Sim ulation
The focus of the C-SAFE Fire-Spread team is to develop compu
tational modules that realistically simulate the scenario in which a
missile, located within a pool of jet-fuel that catches fire, may ex
plode. The team studies large-scale fires using Large Eddies Sim
ulations (LES) that “evolve” the fire over time. These simulations
will help researchers answer important questions like: How quickly
do these fires spread? What temperatures do they reach? What
kinds of byproducts are produced?

The current LES codes include mixing, reaction, and radiation
models. These computational models produce very large, very
complex time-dependent datasets that are often difficult to analyze.
To aid in the understanding of the fire-spread simulation results, the
domain scientists use volume rendering to track the buoyant flow
activity from pool fires.

2.2 C-SAFE C lustered C om puting Envi
ronm ent

C-SAFE employs a 32-node visualization cluster composed of
commodity hardware components that are interconnected with a
high-speed network. Using the C-SAFE cluster, we have begun to
experiment with interactively volume rendering the C-SAFE fire-
spread datasets produced by the LES codes described above.

Table 2: Device drivers used on a single C-SAFE cluster node

The individual nodes of the cluster are comprised of dual Intel
Xeon 1.70GHz processors, 1GB of physical memory, an NVIDIA
GeForce3 NV20 graphics accelerator with 64MB of texture mem
ory, and an Intel Pro 1000/XT network interface card. The detailed
hardware configuration of a single cluster node can be seen in Ta
ble 1. The nodes are connected via an Extreme Networks 6816
Black Diamond switch and communicate using Gigabit Ethernet
over copper.

Each node runs the Linux kernel (version 2.4.20, November
2002) and the XFree86 X Window System (version 4.2.0, January
2002). Table 2 lists the specific device drivers used for the different
hardware components.

2.3 Interactive Volume R endering with
Sim ian

Simian is a scientific visualization tool that utilizes the texture pro
cessing capabilities of consumer graphics accelerators to produce
direct volume rendered images of scientific datasets [4]. The true
power of Simian is its rich user interface. Simian employs direct
manipulation widgets for defining multi-dimensional transfer func
tions; for probing, clipping, and classifying the data; and for shad
ing and coloring the resulting visualization [5]. As an example, the
clipping plane widget is shown in Figure 2.

Figure 2: Simian’s rich user interface—Direct manipulation wid
gets enable users to identify and explore the interesting features of
a dataset interactively. Here, the clipping plane widget reveals the
internal structure of a plume from a heptane fire dataset generated
by the C-SAFE LES codes.

Direct manipulation widgets are typically constructed from sim
ple geometric objects (such as spheres, cylinders, or cones), and
they are rendered as part of the visualization. Each part of a widget
controls some parameter of the visualization, and so they offer the
user a three-dimensional (3D) interface for setting and controlling
these parameters with relative ease [9]. Users are able to quickly
identify and explore the most relevant features of their data. The
result of this interface is a very powerful interactive visualization
tool that assists scientists and engineers in interpreting and analyz
ing their results.

A complete discussion of direct volume rendering using com
modity graphics hardware is given in [1]. For more on using multi
dimensional transfer functions in interactive volume visualization,
see [6]. All of the direct manipulation widgets provided by Simian
are described thoroughly in [5].

The size of a volumetric dataset that Simian can visualize in
teractively is largely dependent on the size of the texture memory
provided by the local graphics hardware. For typical commodity
graphics accelerators, the size of this memory ranges from 32MB to
128MB. However, even small scientific datasets can consume hun
dreds of megabytes, and these datasets are rapidly growing larger as
time progresses. Although Simian provides mechanisms for swap
ping smaller portions of a large dataset between the available tex
ture memory and the system's main memory (a process that is simi
lar to virtual memory paging), performance drops significantly and
interactivity disappears. Moreover, because the size of the tex
ture memory on commodity graphics hardware is not growing as
quickly as the size of scientific datasets, using the graphics acceler
ators of many nodes in a cluster-based system is necessary to inter
actively visualize large-scale datasets.

Naturally, cluster-based visualization introduces many chal
lenges that are of little or no concern when rendering a dataset on
a single node, and there are many techniques for dealing with the
problems that arise. Our goal is to create an interactive volume ren
dering tool that provides a full-featured interface for navigating and
visualizing large-scale scientific datasets.

2.4 Chrom ium C lustered R endering
Fram ew ork

Chromium is a system for manipulating streams of OpenGL graph
ics commands on commodity-based visualization clusters [2]. For
Linux-based systems like the C-SAFE cluster, Chromium is im
plemented as a set of shared-object libraries that export a large
subset of the OpenGL application programming interface (API).
Extensions for parallel synchronization are also included [3].
Chromium’s crappfaker libraries operate as the client-side stub in a
simple client-server model. The stub intercepts graphics calls made
by an OpenGL application, filters them through a user-defined
chain of stream processing units (SPUs) that may modify the com
mand stream, and finally redirects the stream to designated render
ing servers. The Chromium rendering servers, or crservers, pro
cess the OpenGL commands using the locally available graphics
hardware, the results of which may be delivered to a tiled display
wall, returned to the client for further processing, or composited
and displayed using specialized image composition hardware such
as Lightning-2 [10]. Depending on the particular system configura
tion, it is possible to implement a wide variety of parallel rendering
systems, including the common sort-first and sort-last architectures
[8]. For the details of the Chromium clustered rendering frame
work, see [2].

In principle, Chromium provides a very simple mechanism for
hiding the distributed nature of clustered rendering from OpenGL
applications. By simply loading the Chromium libraries rather than
the system’s native OpenGL implementation, graphics commands
can be processed by remote hardware without modifying the call

ing application. However, for the Simian volume rendering appli
cation, Chromium does not currently provide features that suffi
ciently mask the underlying distributed operation and still enable
the application to realize the extended functionality that we seek.
OpenGL applications may still require significant modifications to
effectively utilize a cluster’s resources, even when employing the
Chromium framework.

It was necessary to implement some OpenGL functionality that
was not supported by Chromium (beta release, April 2002). First,
we implemented the subset of OpenGL calls related to 3D tex
tures, including g lT exIm age3D , which is the workhorse of the
Simian volume rendering application. In addition, we also added
limited support for the NVIDIA G L _N V _texture_shader and
G L _N V _texture_shader2 extensions, implementing only those
particular features of the extensions that are explicitly used by
Simian.

3 C omparison of the C lustered Ren
dering A ppro a ch es

As noted in Section 2, there are a number of techniques for imple
menting parallel rendering algorithms on a cluster-based visualiza
tion system. One obvious solution is to simply modify the applica
tion to make explicit use of remote nodes through MPI. Another is
to employ a software package such as Chromium to hide the dis
tributed nature of the rendering from the application, potentially
allowing it to be used with minimal modification.1

In the sections that follow, we compare the relative strengths and
weaknesses of these two approaches for our application. We use a
cluster-aware version of Simian that is based the beta distribution of
Simian (version 1.0) and on the LAM/MPI implementation of MPI.
The unmodified application that runs atop Chromium is based on
the same distribution of Simian. Both of these applications employ
the hardware of the C-SAFE cluster, which was described in Sec
tion 2.2.

3.1 R ich n ess of U ser Interaction
Generating a volume rendered visualization that displays the fea
tures of interest is only possible with a good transfer function, so
the specification of transfer functions is therefore a very important
task. Unfortunately, specifying good transfer functions is also a
very difficult task. Kniss, et al., [5], have identified three reasons
why this task is so problematic: (1) the transfer function has a large
number of degrees of freedom in which users can get lost; (2) typ
ical interfaces for specifying the transfer function are neither con
strained nor guided by the datasets being visualized; and (3) transfer
functions do not include spatial position as a variable for defining
the assignment of color and opacity of dataset values. While multi
dimensional transfer functions, which are the type that Simian uses,
alleviate the third issue, they exacerbate the first and second prob
lems.

To address the first two issues, the direct manipulation widgets
introduced in [5] link user interaction in one domain with feedback
from another, offering insight into the way the domains are con
nected. This “dual-domain” interaction is the mechanism that is
employed by Simian for identifying and exploring the features of
interest.

1 Note that using Chromium to implement the communications layer of
a cluster-aware application is also possible; however, it has has not been
considered here. For the description and evaluation of a cluster-aware par
allel volume rendering system that utilizes Chromium’s connection-based
networking abstractions, see [2].

Simian's interface is therefore a key feature. The array of tools
that Simian provides and ease with which users can employ them to
interact with a dataset leads directly to better, more useful visual
izations, which in turn leads to better, more useful results. In order
for users to navigate and visualize large-scale scientific datasets ef
fectively, a parallel version of the tool must provide the rich and
easy-to-use interface of the current version. Simply stated, any par
allel implementation of Simian must support direct manipulation
widgets.

The success of Simian's dual-domain interaction relies heavily
on inter-widget communication. In a clustered environment, this
communication can be problematic because different nodes may
render the geometric primitives composing a single widget. Fur
thermore, responding to changes and updates to a given widget's
state is more difficult in a clustered environment. Handling the dis
tribution of widget geometry and providing a means to propagate
changes in widget state introduce new issues that must be consid
ered carefully in either approach.

Currently, the cluster-aware version of Simian does not attempt
to incorporate distributed direct manipulation widgets. While spec
ifying the node or nodes responsible for actually rendering the wid
gets would not be difficult, the application lacks the appropriate
infrastructure for notifying remote widgets of changes or updates
to any particular widget’s state.

The unmodified Simian running atop Chromium also does not
provide for distributed widgets. Although Chromium is capable
of automatically distributing the OpenGL commands that render
the widgets, the mechanism it provides is not aware that a partic
ular widget’s geometric primitives form a cohesive whole. Like
the cluster-aware Simian, Chromium is not able to correctly han
dle changes or updates to a widget’s state, and it currently lacks the
infrastructure to notify other widgets of such changes.

By making Simian’s display node responsible for rendering the
widgets and for responding to changes in their state, the interac
tion of Simian could be restored with either approach. Creating and
integrating a distributed events mechanism that can handle inter
widget communication is one option for the cluster-aware version.
Similarly, the Chromium Rendering Utility Toolkit, which is cur
rently under development, may support the functionality needed to
implement inter-widget communication in the second approach.

3.2 D istribution of Volumetric Data and
Proxy G eom etry

Currently, Simian handles datasets that are too large to load into
the available texture memory using the swapping facility as pre
viously described. Unfortunately, this mechanism for visualizing
large-scale datasets drastically reduces performance and noticeably
degrades the level of interactivity.

However, by dividing a large dataset into subvolumes that can
be distributed across multiple nodes, interactive performance can
be restored. This “divide-and-conquer” technique is used by our
cluster-aware version of Simian. A given dataset is first decom
posed into subvolumes, and then, because the application is ex
plicitly aware of the remote resources made available in the clus
tered environment, it distributes the subvolumes among the remote
nodes. Each node is responsible for rendering its subvolume(s) us
ing the locally available graphics hardware, and the individual re
sults are combined using a binary-swap compositing algorithm to
form the final image. If, by distributing these small subvolumes,
texture swapping can be reduced or eliminated, then the cluster-
aware version of Simian is able to restore interactive rates when
visualizing large-scale datasets.

In contrast, the unmodified version, which remains unaware of
remote nodes and the resources they offer, must rely on Chromium

Figure 3: Chromium SPU configuration—On the application node,
the crappfaker library loads the f e e d b a c k SPU, which provides
a limited degree of interaction, and the t i l e s o r t SPU, which
distributes OpenGL commands. Downstream, crservers use the
r e a d b a c k and p a c k SPUs to render and return partial results to
the client. Note that, while only one rendering node is shown, all
rendering nodes load these SPUs. Finally, the application node’s
crserver uses the r e n d e r SPU to combine the partial results and
form the final image.

to handle large datasets. Unfortunately, no SPUs that automatically
handle the distribution of subvolumes are currently available.

Chromium is capable of distributing the proxy geometry that
Simian uses to render a dataset, however. Using the SPU config
uration shown in Figure 3, the rendering nodes are assigned dis
joint extents, or tiles, of the total image space. As Chromium in
tercepts and buffers OpenGL commands, it updates an image space
bounding box that surrounds the geometry created by the current set
of outstanding commands. Then, when the stream is flushed, this
bounding box is tested against each server’s tile. If they intersect,
the entire command buffer is delivered to that server.

Using Chromium may reduce the amount of proxy geometry that
any given server is responsible for rendering, but the tile-sort mech
anism does not impact the unmodified application’s ability to visu
alize large-scale datasets interactively. There is no clear gain, either
in terms of the maximum dataset size or interactive performance,
over using the resources of a single node to produce the visualiza
tion. Lacking the ability to decompose a large-scale dataset into

256
128

32

glReadPixels X
nlDrawPix els —1- ..

I

” ■ '

_____________ _______

25S2 5122' 7682 10242

Number of pixels

Figure 4: Framebuffer performance—The OpenGL API provides
the g lR e a d P ix e l s and g lD r a w P ix e ls functions to manip
ulate rectangular areas of the framebuffer. This graph shows the
performance of reading and writing various sizes of 32-bit RGBA
framebuffers on a single cluster node.

smaller pieces and distribute them to remote nodes is a major draw
back for the Simian/Chromium combination.

An obvious way to overcome this limitation is to simply incorpo
rating the divide-and-conquer technique used by the cluster-aware
version of Simian into a Chromium SPU. While this solution would
overcome the immediate issue of subvolume creation and distribu
tion, other factors, such as the time and effort required to imple
ment the functionality or the flexibility of the resulting code, must
be considered carefully.

3.3 D egree of Interactivity P rovided by
the Im age R endering and C om posit
ing S ch em es

The performance degradation introduced by Simian's current swap
ping mechanism for handling large-scale datasets and the loss of in
teractivity that results provide the impetus for moving to a cluster-
based approach. The goal, then, is to restore the interactive perfor
mance for large-scale datasets.

As noted in the previous section, the cluster-aware Simian cre
ates and distributes subvolumes to reduce or eliminate the need for
texture swapping. It stands to reason that interactive performance
is a natural consequence of distributing the data across many nodes.
However, new subtleties arise that are of no concern when running
the application on a single node.

Because the dataset is distributed across the cluster, no one node
has rendered the entire volume. The result of any individual node
is simply an image of its portion of the dataset. These “subimages”
must be recombined before being displayed, and this new compo
sition phase introduces latencies that can impact the application's
performance.

First, the images must be read from each node's framebuffer.
This readback operation adds latency. The images must then be
transmitted to the compositing node or nodes, introducing com
munications latencies. Next, the partial images are composited by
alpha-blending the images on a pixel-by-pixel basis. The trans
mission and composition steps may be repeated a number of times
depending on the specific compositing algorithm that is employed.
Finally, the final image must be written to the display node's frame
buffer, which, like the readback operation, adds latency.

A number of image compositing algorithms have been proposed,
and we have chosen to implement the binary-swap scheme intro
duced in [7]. Both of the framebuffer operations discussed above
negatively impact the overall performance of this scheme. In fact,
their necessity will plague any parallel version of Simian that must
output the final image to a particular node's display. Figure 4 shows
the performance of reading and writing regions of the framebuffer
for the cluster's graphics hardware. However, the latencies result
ing from the transmission and combination of the partial images
currently bound the maximum attainable frame rate of the cluster-
aware application. Despite these latencies, the cluster-aware ver
sion of Simian is able to restore interactive performance (multiple
frames per second) for large-scale datasets.

There are a few points worth noting about the Simian/Chromium
combination despite the limitations described above. First, using
the t i l e s o r t SPU results in a much simpler compositing algo
rithm: at the end of a frame, the rendering nodes simply read the
contents of their framebuffers and transmit the partial images to
the display node. Because each server renders some disjoint sub
set of the total image space, each subimage can simply be written
to the appropriate portion of the display node's framebuffer. No
pixel-by-pixel operations are required, and the partial images are
only transmitted once per frame. A second, though obvious, point
is that this version of the parallel application also suffers from the
framebuffer readback and write operations. However, there may be
a significantly smaller number of these operations depending on the
particular cluster configuration. Finally, as we discuss in Section 4,
using the unmodified application with Chromium does not result in
interactive performance for the large-scale datasets that we seek to
visualize.

Given the straightforward compositing step that arises from the
t i l e s o r t SPU’s operation, handling large-scale dataset distribu
tion so that it permits a simple image space composition scheme
may be promising. As with implementing a “divide-and-conquer”
SPU, careful attention must be given to factors like the time and ef
fort required to implement new functionality or the resulting code’s
flexibility.

4 RESULTS

To examine the potential performance benefits of each approach,
we experimented with two C-SAFE fire-spread datasets simulat
ing a heptane pool Are, h300_0075 and h300_0130, that were pro
duced by the LES codes described in Section 2. Both of the original
datasets were 302x302x302 byte volumes storing scalar values as
u n s ig n e d c h a rs . Simian is capable of rendering volumes us
ing gradient and Hessian components in addition to scalar values.
Therefore, each of the fire-spread datasets was pre-processed to in
cluded these additional components and then padded to a power
of 2, resulting in two 512x512x512x3 byte volumes that store the
value, gradient, and Hessian components (“vgh”) as u n s ig n e d
c h a rs . 2

We first attempted to visualize both the original and vgh versions
of each fire-spread dataset using the stand-alone version of Simian
and a fairly powerful workstation. This workstation was equipped
with an Intel Xeon 2.66GHz processor, 1GB of physical memory,
and an NVIDIA GeForce4 Quadro4 900 XGL graphics accelera
tor with 128MB of texture memory. On this machine, Simian was
able to load and render the original datasets using the swapping
mechanisms described in Section 2. As expected, the need to swap
severely penalized the application’s performance, resulting in rates
of 0.55 frames per second. However, the OpenGL drivers could not

2For the remainder of this discussion, it is assumed that the number of
bytes consumed by a raw volumetric dataset is the given size multiplied by
three, accounting for each of the three, 1-byte components in a vgh dataset.

Rendering Num ber of h300_0075 h300_0130
Approach Nodes vgh dataset vgh dataset

Cluster-aware 8 0.52 0.58
Simian 16 1.47 2.15

32 2.87 3.44
Simian/Chromium 8 0.07 0.05

combination 16 0.05 0.04
32 0.03 0.02

Table 3: Average frame rates (in frames per second) using various
cluster configurations

Figure 5: Visualizations o f the C-SAFE vgh fire-spread datasets—
Here, two views of the h300_0075 dataset (top) and of the
h300_0I30 dataset (bottom) that were generated by the cluster-
aware version of Simian using 8 cluster nodes are shown.

properly handle the large-scale vgh datasets, crashing the applica
tion as result.

Having firmly established the need for a cluster-based approach,
we tested both the cluster-aware version and the Simian/Chromium
combination with the vgh datasets using 8, 16, and 32 of the C-
SAFE cluster nodes. The results are summarized in Table 3, and
Figure 5 shows two views of each vgh dataset rendered by the
cluster-aware version of Simian.

Note that, with 8 and 16 rendering nodes, the vgh subvolumes
distributed by the cluster-aware version are 256x256x256 bytes
and 256x256x128 bytes, respectively. These subvolumes exceed
the maximum “no-swap” volume size permitted by the cluster’s
graphics hardware (128x128x256 bytes), so in either of these con
figurations, even the cluster-aware Simian must invoke its texture
swapping facilities. However, with 16 rendering nodes, the swap
ping is much less frequent, resulting in reasonably interactive frame
rates. With 32 rendering nodes, the subvolume size is reduced to
128x128x256 bytes, so no texture swapping occurs and interactive
frame rates are restored.

As previously described, Chromium is not able to distribute sub
volumes among the rendering nodes. As a result, Simian must rely
on its texture swapping mechanism. When the application calls for

a new block to be swapped into texture memory, Chromium must
transmit the block to the appropriate rendering nodes. The result
ing delays impose severe performance penalties that grow with the
number of rendering nodes. This behavior is reflected in the low
frame rates given in Table 3.

5 Discussion

In the preceding sections, we have discussed the problems and open
issues that arise when considering two approaches to cluster-based
interactive volume rendering with Simian. We have also examined
the performance of each approach when visualizing large-scale C-
SAFE datasets. It is clear that each approach supports some features
that will contribute to Simian’s usefulness as a tool for navigating
and visualizing large-scale datasets in a clustered environment.

As a result of our initial experience with the C-SAFE clus
ter and Simian, we have identified several advantages of devel
oping cluster-aware visualization tools. First, these tools can ex
ploit application-specific knowledge to reduce overhead and en
hance performance and efficiency when running in a clustered en
vironment. It is often very difficult or extremely impractical to
account for application-specific attributes when developing lower-
level clustered rendering frameworks, and it may not be possible to
realize optimal performance with such packages. Second, cluster-
aware applications that are built upon open standards such as MPI
are readily ported to a wide variety of hardware and software plat
forms. While frameworks that mask the clustered environment may
provide certain advantages (noted below), using standard interfaces
allows an application’s components to be reused or combined in
new, more flexible ways. Third, cluster-aware applications are not
dependent upon the functionality provided by a clustered rendering
package. By their very nature, this fact is not true of applications
that utilize or incorporate such packages. Finally, because they do
not access remote resources via a lower-level framework, cluster-
aware applications can exploit the capabilities of the underlying
system directly. Adding new functionality to cluster-aware appli
cations may be easier for this reason as well.

Of course, building cluster-aware visualization tools is inher
ently more difficult than simply running an unmodified applica
tion atop a clustered rendering framework. The programmer must
consider and account for the clustered environment in which the
application is running. The application logic may become more
complex, possibly requiring greater programming effort or longer
development times. It is important to note, however, that the func
tionality of an application that relies on a clustered rendering frame
work may be severely limited by the functionality of the framework
itself.

Nevertheless, using clustered rendering frameworks such as
Chromium may offer certain advantages. The application can po
tentially utilize a cluster’s resources without being explicitly aware
of those resources. While such was not found to be the case with
Simian, many applications do fall into this category. Given such
an application, programmers may be able to focus their efforts on
developing new or more efficient rendering techniques without hav
ing to consider the complexities introduced by the clustered envi
ronment.

Despite the progression toward the full-featured interactive ap
plication that we seek, much more work is necessary. Moving to a
cluster-based version of Simian has introduced several new issues,
many of which have clear solutions using either approach. What
is much less clear, however, is: (1) the flexibility, reusability, and
portability of the resulting tools, and (2) the extent of the time and
effort required to implement the possible solutions. Although we
believe that building cluster-aware visualization tools will satisfy
the demands of (1) without exacerbating (2), a thorough discussion
of these topics is beyond the scope of this work. We note, how

ever, that sound software engineering principles demand flexible,
reusable, and portable software, and producing tools that satisfy
these demands should be the goal of development efforts under ei
ther approach. It is also clear that significant time and effort are
necessary to develop cluster-based visualization services, regard
less whether that effort is expended in developing a cluster-aware
application or a lower-level framework.

After carefully weighing these considerations, we have deter
mined that relying on a clustered rendering framework is currently
not sufficient for our purposes. Therefore, C-SAFE has chosen to
pursue further development of a cluster-aware version of the Simian
interactive volume rendering tool.

6 Future Work

Supporting user interaction via direct manipulation widgets in a
clustered environment will be the next step toward the application
that we seek. As noted, supporting this functionality will require
appropriate methods for controlling how and where the widgets are
rendered, as well as efficient mechanisms for distributing changes
in widget state among the participating nodes.

Enhancing the performance of our software-based image compo
sition scheme is also of interest. By exploiting the instruction-level
parallelism provided by Intel Xeon processors, we hope to reduce
the negative impact of the pixel-by-pixel alpha blending stage. Fur
ther increasing the size of the datasets that can be handled inter
actively, for example, by using multi-resolution volume rendering
techniques, is a topic of interest as well.

Acknow ledgments

This work was funded by grants from the Department of En
ergy (VIEWS 0F00584), the National Science Foundation (ASC
8920219, MRI 9977218, ACR 9978099), and the National
Institutes of Health National Center for Research Resources
(1P41RR12553-2).

The authors would like to thank Joe Kniss, Gordon Kindlmann,
and James Bigler, all of the Scientific Computing and Imaging In
stitute, for their contributions to this project. In addition, Wing
Yee, of the C-SAFE Fire-Spread team, deserves much thanks for
his valuable input.

Refer en c es

[1] M. Hadwiger et al. High-quality volume graphics on con
sumer pc hardware. IEEE Visualization 2002 Course Notes.

[2] G. Humphreys, Mike Houston, Yi-Ren Ng, Randall Frank,
Sean Ahern Peter Kirchner, and James T. Klosowski.
Chromium: A stream-processing framework for interactive
graphics on clusters. In Proceedings o f SIGGRAPH, 2002.

[3] H. Igehy, G. Stoll, and P. Hanrahan. The design of a parallel
graphics interface. In SIGGRAPH Computer Graphics, 1998.

[4] J. Kniss. Simian-volume rendering. h t t p : / / w w w . c s .
u t a h . e d u / ' j m k / s i m i a n , Accessed March 23, 2003.

[5] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume
rendering using multi-dimensional transfer functions and di
rect manipulation widgets. In Proceedings of IEEE Visualiza
tion, 2001.

[6] J. Kniss, G. Kindlmann, and C. Hansen. Multi-dimensional
transfer functions for interactive volume rendering. IEEE

Transactions on Visualization and Computer Graphics, pages
270-285, July 2002.

[7] K. Ma, J. Painter, C. Hansen, and M. Krogh. Parallel volume
rendering using binary-swap compositing. IEEE Computer
Graphics and Applications, 14(4):59-68, 1994.

[8] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting
classification of parallel rendering. IEEE Computer Graphics
and Applications, July 1994.

[9] James T. Purciful. Three-dimensional widgets for scientific
visualization and animation. Master’s thesis, Univeristy of
Utah, 1997.

[10] G. Stoll, M. Eldridge, D. Patterson, A. Webb, S. Berman,
R. Levy, C. Caywood, M. Taveira, S. Hunt, and P. Hanrahan.
Lightning-2: A high-performance display subsystem for PC
clusters. In SIGGRAPH Computer Graphics, 2001.

http://www.cs

