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Abstract—In this paper, we present a new approach to the digitization 
and compression of a class of voiceband modem signals. Our approach, 
which we call baseband residual vector quantization (BRVQ), relies 
heavily upon the simple structure present in a modem signal. After the 
signal is converted to baseband, the magnitude sequence and the sequence 
of residuals obtained when the phase within each baud of the baseband 
signal is modeled by a straight line are separately vector quantized. In 
order to carry out these operations, we developed the new carrier- 
frequency estimation and baud-rate classification schemes described in 
the paper. Experimental results show that the performance of the BRVQ 
system at and below 16 kbits/s is better than that of a previously 
developed vector quantization scheme that has itself been shown to 
outperform traditional speech-compression techniques such as adaptive 
predictive coding, adaptive transform coding, and subband coding when 
these techniques are used to compress modem signals.

I. Introduction

I
T IS frequently necessary to digitize and store a waveform 
for subsequent analysis or retransmission. When this 
waveform is a modem signal, it should be encoded with 
sufficient fidelity that both the information sequence carried 
by the waveform and the important features of the waveform 
itself are adequately preserved. At the same time, it is 
desirable that the encoding be done with as few bits as possible 
in order to reduce the required memory or transmission 
capacity. One way to achieve an acceptable tradeoff between 

these two conflicting objectives is to design an encoder that is 
carefully matched to the structure of the class of waveforms to 
be encoded. To a degree, most waveform encoders incorpo­
rate information about the waveforms to be encoded and about 
how the resulting coded signals are to be used. On the other 
hand, an encoder whose structure is highly dependent upon the 
characteristics of a particular class of waveforms may not 
work well when applied to waveforms with significantly 
different characteristics. The choice between a coder strongly 
tuned to a particular class of waveforms and one that is more 
broadly applicable will depend upon the waveforms to be 
encoded, the required fidelity, the complexities of the alterna­
tives being considered, and many other elements of the 
specific problem to be addressed.

The objective that motivated the work described in this 
paper was to develop an efficient waveform coder that would 
encode with high fidelity any member of a specific set of 
voiceband data signals employing a wide range of modulation 
types, carrier frequencies, and bit rates. The technique we
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developed to meet this objective makes deliberate and exten­
sive use of the simple structure of data signals, and it probably 
will not work particularly well on other types of signals. In 
particular, we would not advocate its application to speech 
signals. It could, however, be incorporated along with an 
appropriate speech encoder into a larger system designed to 
handle a mixture of voice and data signals in the telephone 
network if the demands on performance justified the extra 
cost.

Compression of voiceband data signals has not attracted 
much attention until recently, and consequently the literature 
on this subject is quite limited. O ’Neal and Stroh [1] examined 
the performance of differential pulse code modulation 
(DPCM) applied to both speech and data signals. They showed 
that a DPCM system can be built that performs better than a 
PCM system for speech signals and is as good as PCM for data 
signals with raised cosine spectra. O ’Neal [2] later conducted 
an analytical study of the performance of delta modulation on 
various voiceband data signals. Transmission of data signals 
using companded delta modulation was evaluated by May et 
al. [3]. Their results showed that delta modulation performs at 
least as well as PCM operating at the same effective channel 
bit rate.

Petr [4] developed a new adaptive differential PCM 
(ADPCM) algorithm operating at 32 kbits/s for speech and 
voiceband data signals. His system, which he calls ADPCM 
with a dynamic locking quantizer (ADPCM-DLQ), was 
shown to perform nearly as well as a PCM coder operating at 
64 kbits/s.

Recently, Anderton [5], [6] developed a scheme known as 
adaptive baseband codebook vector quantization (ABCVQ). In 
this method, a sequence of passband vectors is first computed 
from a set of baseband codebooks using the estimated carrier 
frequency. A given bauded signal vector is encoded into that 
passband code vector which is closest to it in Euclidean 
distance. Optimal encoding requires the solution of a transcen­
dental equation for each element of the codebook, the 
computation of several inner products, and the determination 
of the distance to each code vector.

The solution of the transcendental equation must be ob­
tained numerically and is computationally expensive. A 
suboptimal solution that requires the computation of some 
trigonometric functions has been devised by Anderton [5]. 
Data encoding using this method requires (2 + 5 /k )L  
multiplies, (2 + 2 /k ) L  adds, and 6L /k  trigonometric 
function computations per sample where L  and k  are the size 
of the codebook and the dimension of the data vector, 
respectively. Different types of bauded signals are accommo­
dated in the ABCVQ algorithm by using four different 
codebooks in parallel, each of which is tuned to a specific 
subclass of bauded signals. Extensive simulations conducted 
by Anderton have shown that ABCVQ exhibits better perform­
ance, as measured by several different criteria, than that of 
adaptive predictive coding, adaptive transform coding, or 
subband coding at transmission rates of 16 kbits/s or less.

In this paper, we present an alternative algorithm for 
compressing voiceband data signals which we call baseband 
residual vector quantization (BRVQ). This algorithm takes
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advantage of the structure of bauded signals to improve the 
efficiency and reduce the complexity of the system as much as 
possible while still retaining its ability to handle modem 
signals employing a variety of modulation types and a wide 
range of parameter values.

After the signal is converted to baseband, the magnitude 
sequence and the sequence of residuals obtained when the 
phase within each baud of the baseband signal is modeled by a 
straight line are separately vector quantized. In order to carry 
out these operations, we developed the new carrier-frequency 
estimation and baud-rate classification schemes described later 
in the paper. Although the phase model does not directly take 
into account possible pulse shaping of the baseband signals, 
information about such pulse shaping will be contained in the 
residual sequence.

There are two reasons for quantizing the residuals rather 
than the phase itself. First, the residual usually has a smaller 
dynamic range than that of the phase sequence. As a result, a 
vector quantizer using a fixed number of bits will generally 
perform better with the residual than with the phase sequence. 
Second, since the residual sequence does not have as much 
structure as the phase sequence, the BRVQ algorithm is robust 
to variations in modulation types. In fact, we will show that it 
is possible to construct a single codebook that is adequate for 
the compression of several different types of modulation.

The BRVQ algorithm has several advantages. First, as 
noted above, it performs very well even when a single 
codebook is used for encoding several different types of 
voiceband data signal. Second, the system has very low 
sensitivity to errors in carrier-frequency estimation. Third, 
even when a single codebook is used, the BRVQ algorithm 
outperforms common speech-compression techniques when 
applied to voiceband data signals, and at the same time 
achieves a performance comparable to that of the more 
complicated ABCVQ method. In essence, the BRVQ scheme 
described in this paper is a conceptually simple algorithm that 
is robust to changes in signal type within a broad class of 
modem signals and to errors in the estimation of several of the 
parameters involved. The method is somewhat simpler than 
the ABCVQ algorithm, and it can be implemented to operate 
in real time using modern VLSI technology.

The rest of the paper is organized as follows. In Section II, 
we provide a more formal statement of the problem and 
introduce the baseband residual vector quantization algorithm. 
Experimental results demonstrating the ability of the BRVQ to 
perform well at low data rates are presented in Section III. 
This section also contains a discussion of several aspects of the 
BRVQ algorithm. Concluding remarks are contained in 
Section IV.

II. The Baseband Residual Vector Quantization 
Algorithm

Consider a voiceband data signal of the form

s ( 0  = Re (l)

where Re [•] denotes the real part, f c is the carrier frequency, 
6 is the initial phase of the carrier, and g ( t )  =  g /( t)  +  jgQ (t) 
is the equivalent information-bearing baseband signal. g i( t)  
and gQ(t) are referred to as the in-phase and quadrature 
components, respectively, of g ( t ) .  Equation (1) can also be 
written as

s ( t ) = A m ( t )  cos [2wfct +  p ( t )  +  0] (2)

where A  denotes the amplitude of the signal, m (t)  represents 
the pulse shape, and p ( t )  is the phase (the information-bearing 
signal) of s ( t ) .

The class of signals to be considered in this paper includes 
differentially encoded binary, quadrature, and octal phase- 
shift-keyed signals (DBPSK, DQPSK, DOPSK), coherent
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Fig. 1. Block diagram of the baseband residual vector quantization system, 

(a) Transmitter, (b) Receiver.

binary phase-shift-keyed signals (CBPSK), and continuous- 
phase frequency-shift-keyed (CFSK) signals, all with informa­
tion rates of 4800 bits/s or less. The signals were initially 
sampled at a rate of 8000 samples/s and quantized to 8 bits per 
sample, resulting in a data rate of 64 kbits/s. Our objective is 
to design a data compression algorithm that will work well for 
this class of signals when the transmitted data rate is reduced 
from 64 kbits/s to 16 kbits/s or less.

Fig. 1 is a block diagram of the system we propose as a 
solution to this problem. The carrier frequency of the received 
signal s ( t ) is first estimated using a novel approach to be 
described later, and then the corresponding baseband signal is 
obtained using a quantized version of this carrier-frequency 
estimate. If s ( t )  is given by (2), with 8 taken to be zero for 
convenience, the corresponding baseband signal sbb( t)  will be

sbb =  0.5 A m (t)e ~ A 2*(fc-fcq)t+p(W (3)

where f cq is the quantized estimate of the carrier frequency. 
This complex baseband signal is then sampled to create a 
sequence of vectors whose magnitudes and phases are vector 
quantized separately, the magnitudes directly and the phases 
with the help of a model.

The unwrapped phase within a single baud of the baseband 
signal can be approximately modeled as a straight line. In the 
system of Fig. 1, the starting value (the intercept) of the 
straight-line model is first obtained using linear regression 
within each baud interval. The intercepts are vector quantized 
and used together with the unquantized phase to yield the slope 
of the line. The quantized model parameters are then used to 
compute the residual signal, the difference between the actual 
phase and that given by the model. The resulting sequence is 
then vector quantized. The residual sequence contains infor­
mation about modeling errors, pulse shaping, and any other 
preprocessing performed on the baseband signals at the 
transmitter. Consequently, the reconstructed signal after 
quantization will retain most of the characteristics of the 
original pulse-shaped signal.



TRAN et al.: BRVQ ALGORITHM FOR VOICEBAND DATA SIGNALS 951

Since the modeling of the phase is done on a baud-by-baud 
basis, estimates of the baud rate and the baud boundaries of the 
input signal are required. In order to simplify the problem, we 
assume that the BRVQ system will encounter only a finite 
number of known and reasonably well-separated baud rates. 
This is a reasonable assumption when working with standard 
commercial modems, and it reduces the baud-rate estimation 
problem to a classification problem. We discuss our ap­
proaches to this classification problem and to the associated 
symbol synchronization problem in Section II-B.

The quantized magnitude and phase residual are encoded 
and sent to the channel along with the estimated carrier 
frequency, the baud rate estimate, the synchronization infor­
mation, and the quantized values of the parameters of the 
straight line model for the phase sequence. At the receiver, the 
quantized passband signal is obtained from the reconstructed 
baseband signal as illustrated in Fig. 1.

Our system employs four vector quantizers in parallel, one 
each for the magnitude, the phase residuals, and the two 
parameters of the straight-line model for the baseband phase. 
The four codebooks required can be designed using the Linde- 
Buzo-Gray (LBG) algorithm [7], a widely used procedure that 
is a generalization of an algorithm developed by Lloyd [8] for 
scalar quantization. The training sequences for designing the 
four codebooks were obtained by computing the magnitudes, 
the phase residuals, and the straight-line model parameters of 
the baseband equivalents of a long sequence of modem signals 
representative of the class of signals that the system will 
process during normal operation.

A . Carrier Frequency E stim ation
The process of converting the passband signal into its 

baseband equivalent requires knowledge of the carrier fre­
quency. In most practical situations, the carrier frequency is 
not known a p rio ri and must be etimated. The problem of 
estimating the frequency of a sinusoid embedded in noise has 
been studied by many researchers [9]—[13]. Because of the 
time-varying and possible discontinuous nature of the phase, 
the methods in [9]-[13] cannot be used without modification to 
estimate the carrier frequency of a bauded signal. In our 
approach, the carrier frequency is computed as the average of 
the derivative of the instantaneous phase [14] of the passband 
signal. Because of possible phase jumps, the estimates of the 
phase derivative at the baud boundaries are not necessarily 
related to the carrier frequency. Before the actual frequency 
estimate is computed, these aberrant estimates of the phase 
derivative are removed by examining the first differences of 
the phase derivative estimates. Carrier-frequency estimation is 
carried out on contiguous nonoverlapping segments of the 
signal, typically of about 0.25 s duration. The resulting 
estimates are uniformly scalar quantized, and these quantized 
values are employed for baseband signal generation and are 
also transmitted to the receiver.

Experimental results have shown that the estimated frequen­
cies obtained from our method are unbiased and have small 
variances. Moreover, our procedure has been shown to 
outperform several competing techniques [15]. Details of the 
carrier-frequency estimation algorithm may be found in [15], 
and thus are omitted here.

B. Baud-R ate E stim ation and  S ym bol Synchronization
As mentioned earlier, the unwrapped phase within each

baud is modeled as a straight line. This requires knowledge of 
the baud rate as well as the baud boundaries of the signals 
being transmitted. Since the type of transmitted signal, and 
therefore the baud rate, can change from time to time, it is 
important to estimate the baud rate in an adaptive fashion.

We have developed an accurate baud-rate estimation 
scheme for the class of bauded signals being studied. As stated 
earlier, our method assumes that the possible baud rates are

known, finite in number, and significantly different from one 
another. Signals with different baud rates will therefore have 
significantly different bandwidths. This assumption is valid for 
a large class of standard modem signals. In particular, this 
assumption holds for a large class of modem signals satisfying 
CCITT Recommendations V .22, V.23, V .26, and V .27 [21] 
and employing raised cosine pulse shaping [22]. We estimate 
the power density spectrum of the received signal using the 
Blackman-Tukey algorithm [16], and we take the bandwidth 
to be the width of the interval over which that spectrum lies 
above a threshold. We then map the bandwidth estimate into a 
corresponding baud rate.

Several experiments were conducted to evaluate the per­
formance of the baud-rate estimator. We used data signals of 
different modulation types (CFSK, CBPSK, DBPSK, 
DQPSK, and DOPSK), different baud rates, and different 
noise levels (probability of bit error up to 10-2), each of 
duration approximately 10 s. For each type of data signal, the 
baud rate was estimated using contiguous nonoverlapping 
segments varying from 0.125 to 1.00 s. In every case, the 
baud-rate estimate was correct.

We take advantage of the cyclostationarity property [17] of 
bauded signals to synchronize the symbols. Under the assump­
tions that the noise process is zero mean and white, that the 
information-bearing signal p ( t )  is zero mean and independent 
for different bauds, and that the pulse shape is such that its 
significant frequency components are less than the baud rate, 
one can easily show that the mean-squared value of the 
baseband signal g ( t )  consists of a dc term and a sinusoid of 
frequency 1 /T  Hz where 1 /7 ’ is the baud rate of the signal. 
This suggests the following approach for symbol synchroniza­
tion. First, a timing waveform w (t)  is generated by passing 
the baseband signal through a bandpass filter with passband 
centered at 1 /27’Hz, evaluating the magnitude squared value 
of the filter output, and then extracting the component of this 
sequence centered around l / T  Hz by passing it through 
another bandpass filter tuned to this frequency. That is,

w(0 = { [ M 0  * gi(t)]2 + [hi(t) * ge (0]2} * h2(t) (4)

where * denotes convolution, and h t( t )  and h2( t)  are the unit 
impulse responses of the bandpass filters with passbands 
centered at 1/27’ and 1 /7 ’, respectively. It can be shown [17] 
that w ( t ) is cyclostationary in the wide sense. That is, the 
mean timing waveforms E \w ( t) \  and E \ w { t  + r )w ( t) ]  are 
both periodic functions of t. To be specific, the mean timing 
waveform E[ w(f)] was shown in [17] to be a periodic function 
of t  whose period is T. As a result, the zero crossings of the 
mean timing waveform occur at a fixed time offset relative to 
the symbol edges when the signal is noise free. In the presence 
of noise, this is no longer true, and further processing of the 
timing waveform is required to yield accurate estimates of the 
baud boundaries.

The timing waveform w (0  is next passed through a hard 
limiter to yield a rectangular waveform with the same zero 
crossings as w (t) .  This hard-limited signal is then cross 
correlated with the desired clock signal for M  +  1 different 
lags, and the timing phase is chosen to be that lag for which the 
cross-correlation estimate is maximum. The desired clock 
signal c ( t )  is a hard-limited sinusoid with zero initial phase 
and frequency 1 /7’ Hz.

The algorithm is illustrated in Fig. 2. The a, are the cross­
correlation estimates for lags r, = iA t, 0 <  / <  M , A t  is the 
sampling interval, and M A t  is the smallest integer multiple of 
A t larger than or equal to the baud interval. Synchronization is 
performed on a block-by-block basis, with T0 the block length 
in seconds.

The system of Fig. 2 was simulated on a digital computer. 
Experiments were performed on noise-free and noisy signals 
(bit-error probability = 10_4) with different types of modula-
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s(t) =A  cos [2irfct+p(t)]

where f c is the carrier frequency and p { t )  is the phase of s ( t ) .  
Let the estimated carrier frequency be

fcq —fc &

We use linear regression to fit a straight line through the 
phase samples within each baud. The intercept a ( i )  (see Fig. 
1) of the straight line model is first computed and vector 
quantized. The slope of the model is then determined from the 
phase and the quantized intercept. Finally, the residual 
sequence is calculated as the difference between the phase 
sequence and the reconstructed straight line model and is then 
vector quantized.

III. Experimental Results 
A . D escription o f  R esults

In this section, we evaluate the BRVQ system using as 
performance criteria the signal-to-quantization-noise ratio 
(SQR), the equivalent change in signal-to-noise ratio (ASNR), 
and the critical data rate [18]. These performance measures 
are defined below.

The SQR is defined as

SQR= 10 logi,

1 N

w o - ^ c o ] 2
(9)

N

Fig. 2. Block diagram of the scheme used for detection of symbol edges.

tion at baud rates of 300, 600, 1200, and 1600. The 
parameters used were T0 ~  0.25 s and r, = ( i — 1) * 7V(M — 
1) where M  is the smallest integer greater than or equal to the 
number of samples per baud. Tests were conducted on a signal 
set of total duration 3360 s, and in every case the symbol edges 
were detected correctly.

C. Phase M odeling
In this section, we show that the phase sequence of the 

baseband equivalent of the bauded signal can be approximately 
modeled as a straight line within each baud. Our approach will 
be to fit the phase sequence with the appropriate straight lines 
and then to vector quantize the residuals (the modeling errors).

To derive our model, we initially consider a noise-free 
bauded signal without pulse shaping. Such a signal can be 
written in the form

where {x(/)},_  1Vand {.y(0}<«i, v denote the input and output 
signal sequences, respectively, of a data compression system. 
This is a commonly used performance criterion that has the 
great advantage of simplicity. Unfortunately, it is only loosely 
related to the bit-error rate achieved using the compressed 
waveform. Since we are particularly interested in preserving 
the information-bearing sequence imbedded in the input 
signal, we seek alternative criteria that measure this aspect of 
system performance more accurately.

To define the change in SNR, let P„ i and P ti  be the bit-error 
probabilities incurred when the input and processed signals, 
respectively, are demodulated. If we assume that the noise in 
the signals (including quantization noise) can be modeled as 
additive white Gaussian noise, we can determine the equiva­
lent signal-to-noise ratios (more precisely, the ratios of energy 
per bit to noise power spectral density) SNR, and SNR2 that 
correspond to the bit-error probabilities P b\ and respec­
tively. Then the change in SNR, ASNR is defined as [6], [18]

ASNR = SNR,-SNR2. (10)

(5)

(6)
where e is the estimation error. The baseband signal obtained 
by using f cq for demodulation is

sbb{t) = 0.5A {cos [2-iret-p(t)] + j  sin [2iret-p(t)]}. (7)
The phase of the baseband signal is easily found to be

p e(t)=p(t )-2iret .  (8)
Within a single baud interval, p ( t )  is a constant for PSK 
signals and is linear with a nonzero slope for FSK signals. In 
either case, the phase sequence is linear inside the baud 
interval.

Once pulse shaping and channel noise are introduced into 
the system, the above results are no longer valid. However, 
one can assume in this more general case that the deviations 
from the straight line model are small. Moreover, the phase 
residual will in this case .contain information about pulse 
shaping and channel noise.

Even though the Gaussian model may not be especially 
accurate, ASNR is nevertheless a useful alternative to AP b 
because of the steepness of the P b versus SNR curves.

The critical data rate is defined [6], [18] as the data- 
transmission rate at which a compression algorithm first 
introduces errors into a noise-free input signal of a given 
duration. Let N e be the number of bit errors in the compressed 
signals, CL a confidence level, and P b0 a given threshold for 
the bit-error probability. Then the duration of the modem 
signals is chosen such that when N e = 0, the bit-error 
probability of the quantized signal is less than Pbo with a 
confidence level of CL.

A disadvantage of using either ASNR or the critical data rate 
is the tedious process of compressing and demodulating 
signals of sufficient length to estimate the bit-error probabili­
ties of the signals involved. If the bit-error probability P b2 of 
the compressed signal is very small, the required signal 
duration will be unrealistically large. As a result, performance 
evaluation using these two criteria is usually done on signals 
with high bit-error probabilities. A detailed description of 
these performance measures can be found in [6], [18].

Several experiments with different quantizer parameters for 
data rates of approximately 16 kbits/s and below were 
conducted. The parameters used in all experiments other than 
those performed to obtain critical data rate are as shown in
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TABLE I
BRVQ PARAMETERS USED IN THE EXPERIMENTS

Quantizer
Number of 
Codewords

Vector
Dimension

Magnitude 128 20
Starting Value 512 4
Slope 128 4
Residual 512 10

TABLE II
SQR’s AND BIT RATES FOR DIFFERENT TYPES OF SIGNALS

INSIDE AND OUTSIDE THE TRAINING SEQUENCE
(UNCOMPRESSED BIT RATE = 64 kbits/s)

BRVQ ABCVQ
Inside Outside Inside

Training Training Training
Sequence Sequence Bit Rate Sequence Bit Rate

Signal (dB) (dB) (kbits/s) (dB) (kbits/s)

CFSK (1200 baud) 28.32 27.44 14.9 23.3 16.0
CBPSK (1200 baud) 16.41 16.21 14.9 13.6 16.0
DBPSK (1200 baud) 26.98 26.04 14.9 18.4 16.0
DQPSK (1200 baud) 20.67 20.10 14.9 19.4 16.0
DOPSK (1600 baud) 18.52 17.79 16.5 18.1 16.0

Table I. While no claim is made here that the values in Table I 
are optimal in any sense, they were selected after a great deal 
of experimentation. The required carrier-frequency and baud- 
rate estimates were updated every 1024 and 4096 samples, 
respectively, and 81920 samples outside the training sequence 
were used for each experiment. The codebook design and the 
quantization of the data were performed using the squared- 
error distortion measure.

The results of the first set of experiments using the SQR 
measure are shown in Table II. In these experiments, the 
codebooks were designed for each modulation type (1200 baud 
CFSK, 1200 baud CBPSK, 1200 baud DBPSK, 1200 baud 
DQPSK, 1600 baud DOPSK) separately using 81 920 samples 
of noise-free signal as the training sequence in each case. For 
the purpose of comparison, the SQR’s obtained from the 
ABCVQ [5] coder are also shown in Table II. In addition, 
some results obtained by encoding four of these signals using 
four common speech coders at 16 kbits/s are reproduced from
[6] as Table III.

Examining the results of Table II, we see that the BRVQ 
algorithm outperforms the ABCVQ system for all signals. For 
DQPSK and DOPSK signals, the performance of the two 
coders are comparable, the advantages to BRVQ being 1.27 
and 0.42 dB, respectively. For the other signals, the BRVQ 
algorithm performs from 3 to 8 dB better than the ABCVQ 
algorithm. Except for the DOPSK signal, the transmission rate 
of the BRVQ system is slightly less than that of the ABCVQ 
system. The results in Table III clearly demonstrate that both 
BRVQ and ABCVQ outperform several common speech 
coders when the waveforms to be compressed are modem 
signals.

When the modulation type is unknown or can change from 
time to time, the BRVQ algorithm can achieve the perform­
ance of the individually optimized codebooks by employing 
more than one codebook in parallel. There would, however, 
be a corresponding increase in the complexity of the al­
gorithm. To avoid this problem, we designed the BRVQ 
system to employ just one codebook for each of the four

TABLE III
SQR PERFORMANCE DATA FOR SPEECH CODERS AT 16 kbits/s

Algorithm
Signal APC ATC PCM SBC

CFSK (1200 baud) 15.8 15.3 12.9 16.0
DBPSK (1200 baud) 11.5 15.3 10.5 14.1
DQPSK (1200 baud) 13.5 15.3 10.5 13.9
DOPSK (1600 baud) 13.3 14.7 10.9 13.4

TABLEIV
SINGLE CODEBOOK PERFORMANCE OF THE BRVQ SYSTEM IN 

TERMS OF SQR

Inside Outside
Training Training

Signal
Baud
Rate

Sequence
(dB)

Sequence
(dB)

Bit Rate 
(kbits/s)

CFSK 300 18.79 11.3
CFSK 600 19.39 12.5
CFSK 1200 22.88 21.82 14.9
CBPSK 300 17.83 11.3
CBPSK 600 18.76 12.5
CBPSK 1200 14.84 12.51 14.9
DBPSK 300 17.91 11.3
DBPSK 600 18.87 12.5
DBPSK 1200 21.94 20.56 14.9
DQPSK 1200 17.45 16.94 14.9
DOPSK 1600 15.14 14.71 16.5

quantizers, regardless of signal type. The training sequence 
used for codebook design was a mixture of the five modulation 
types employed in the experiments of Table II (81920 samples 
of each type). The SQR values achieved using these composite 
codebooks for input signals inside and outside the training 
sequence are presented in Table IV.

Comparing the results of Tables II and IV, we see that when 
a single composite codebook is used in the BRVQ system, the 
performance as measured by SQR suffers by 3-6 dB relative to 
that achieved by individually optimized codebooks. However, 
the single-codebook performance of the BRVQ system is still 
comparable to that of the ABCVQ algorithm employing four 
parallel codebooks. It is important to point out that the BRVQ 
system performs very well on the 300 baud and 600 baud 
signals, even though none of these signals was included in the 
training sequence. These results demonstrate the robustness of 
the BRVQ system with respect to the various types of signals 
with different parameters. Moreover, the bit rates for these 
lower baud-rate signals are less than 16 kbits/s.

The low SQR obtained for the 1200 baud CBPSK signal is 
due to the process of low-pass filtering to obtain the complex 
baseband signal. The loss of fidelity is significant for the 
CBPSK signal because there was no pulse shaping performed 
on this signal. However, as we shall see, the increase in bit­
error probability due to this degradation is small.

The remainder of the experiments described in this paper 
were conducted using a single composite codebook for all 
signal types.

The performance of the BRVQ system in terms of the 
change in SNR for five types of modem signal is presented in 
Table V. These results are for input signals with P bx = 10-2 
and 10-4. The duration of the signals (outside the training 
sequence) is sufficient to estimate P b 2 within 5 percent with 90 
percent confidence if P bi is 10 2, and within 60 percent with 
90 percent confidence if P bl is 10-4. As a point of reference,
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TABLE V
PERFORMANCE EVALUATION OF THE BRVQ ALGORITHM IN TERMS OF CHANGE IN SNR

Signal

ASNR (dB)

ft o 
1

BRVQ
Pm = 10-4

i 
» II o

ABCVQ
Pm = 10-4

CFSK (1200 baud) -0.11 -0.072 0.13 -0.063
CBPSK (1200 baud) -0.93 -0.93 -1.02 -1.39
DBPSK (1200 baud) -0.87 -0.64 -0.84 -0.91
DQPSK (1200 baud) -1.08 -1.05 -0.91 -1.45
DOPSK (1600 baud) -1.93 -2.99 -1.83 -2.89

results obtained using the ABCVQ coder [5] for the same set 
of signals are also presented in Table V.

It can be seen from these results that the performance of the 
BRVQ system with one codebook is similar to that of an 
ABCVQ system that employs four parallel codebooks despite 
the fact that the data rate of the BRVQ system is 1.1 kbits/s 
lower than that of the ABCVQ system in four out of five test 
signals. Even though bit-error probabilities of 10“2 and 10 4 
are much higher than those encountered in practice, experi­
ments were performed using these values to avoid impracti­
cally large simulation times.

Experiments were performed to determine the critical data 
rates of the BRVQ system for five test signals outside the 
training sequence. In these experiments, the bits available at a 
given data rate are distributed among the different quantizers 
using the same percentages as those of Table I. Each signal 
was processed by the BRVQ algorithm at an initial data rate of 
18 kbits/s, and data rate was then gradually decreased until 
errors were first found in the demodulated signal. The total 
number of bits processed for each signal was 46 050. This 
length is sufficient to determine the critical data rate with 99 
percent confidence for a bit-error probability threshold P b0 of 
10 4. The critical data rates so obtained for each of the five 
types of signals are shown in Table VI.

These results show that the BRVQ algorithm has the 
potential to reduce the data rate substantially below 16 kbits/s 
for most of the modem signals being tested. As one would 
expect, the more complex the signals require larger codebooks 
to represent them and therefore have higher critical data rates.

Our experiments have shown that the injection of errors into 
the signals by the BRVQ system is a rather abrupt process as 
the data rate is decreased. As an example, CFSK signals 
exhibited no errors at 6.5 kbits/s, while at 6.25 kbits/s, the bit­
error probability was 1.2 x  10 3.

B. General Discussion
Most of the computational burden in the BRVQ algorithm is 

due to the four vector quantizers. If L \ ,  L 2, L 3 , and LA 
denote the number of elements in the codebooks designed for 
the phase residuals, the magnitude, and the starting values and 
slopes of the straight line model, respectively, and NS is the 
number of samples of the modem signal per baud, the four 
vector quantizers require L 1 + L2 +  (Z.3 + L 4)/N 5  multipli­
cations and about twice that many additions per sample when 
the squared-error distortion measure is used. In addition, a 
small amount of computation is required for estimating the 
straight line parameters using linear regression, and also for 
the passband-to-baseband conversion of the modem signals.

Most of the operations involved in estimating the side 
information can be performed using fast Fourier transforms, 
and can be performed separately from the vector quantization 
operations on a block-by-block basis. The system must also 
buffer the input data for the duration of the longest block used 
in the estimation of the system parameters. Despite being more 
complicated than the speech coders discussed earlier, the 
BRVQ algorithm can nevertheless be implemented efficiently

TABLE VI
PERFORMANCE EVALUATION OF THE BRVQ ALGORITHM IN TERMS OF 

CRITICAL DATA RATES

Signal Rc (kbits/s)

CFSK (1200 baud) 6.25
CBPSK (1200 baud) 7
DBPSK (1200 baud) 6
DQPSK (1200 baud) 14
DOPSK (1600 baud) 16.50

using current VLSI technology, and can operate in real time on 
voiceband data signals.

When a single codebook tuned to a specific type of input 
signal is used, the BRVQ and ABCVQ algorithms have about 
the same computational complexity, with the BRVQ algorithm 
faring slightly better. The results of Table II indicate that the 
BRVQ algorithm performs better than the ABCVQ algorithm 
when their computational complexities are similar. Further­
more, the performance of the BRVQ algorithm using a single 
codebook for different types of input signals is comparable to 
that of an ABCVQ algorithm that uses four parallel code­
books, and in this case, the complexity of the former is 
substantially lower than that of the latter.

All the vector quantizers employed in the current version of 
the BRVQ system are of the full-search type. System 
complexity could be reduced by employing tree-search vector 
quantizers at some cost in performance as compared to full- 
search vector quantizers of the same codebook size. Some 
preliminary experiments conducted using tree-search code­
books have shown that SQR performance degradation is on the 
order of 1-3 dB.

One drawback of the current version of the BRVQ 
algorithm is the nonuniform bit rate arising from the fact that 
baud-by-baud phase modeling requires different number of 
bits for different baud rates. We are currently investigating 
ways to encode signals at a uniform bit rate. One method that 
is being studied is the use of embedded codebooks [19] in 
which some of the codewords are used only if the bit rate can 
accommodate them.

Several other experiments were conducted to test the 
robustness of the BRVQ system against errors in estimating 
the parameters. These experiments, which are discussed in 
detail in [20], have indicated that the performance of the 
BRVQ system is very insensitive to carrier-frequency estima­
tion errors. This property is primarily due to the fact that the 
straight-line model of the baseband phase sequence compen­
sates for any error in carrier-frequency estimation.

Despite the fact that the baud-rate estimator and the symbol 
synchronizer described in the paper have been found to be 
extremely accurate in practice, the effects of errors in baud- 
rate estimation and symbol synchronization were investigated 
empirically by deliberately introducing such errors into the 
system. These experiments have shown that properly designed
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codebooks can reduce the effects of erroneous baud-rate 
estimation and symbol synchronization.

IV. Conclusions
In this paper, we have described the baseband residual 

vector quantization system, a scheme designed to compress a 
class of voiceband data signals. This class includes signals 
with different types of modulation and a range of information 
rates up to 4800 bits/s. Our scheme exploits the common 
structure in the baseband phase sequences of the different 
types of bauded signals being studied. In particular, we 
showed that a straight-line model for the baseband phase 
works well for signals with different types of modulation, and 
furthermore, that a single composite codebook suffices for the 
entire class of bauded signals under consideration. As a 
byproduct of this study, we have developed a new carrier- 
frequency estimation scheme for bauded signals and an 
algorithm that accurately estimates the baud rate of a given 
signal.

Experimental results have shown that the BRVQ system is 
successful in compressing a relatively broad class of voice­
band data signals at approximately 16 kbits/s. Performance 
evaluations using SQR, ASNR, and critical data rate have 
demonstrated that the BRVQ system works well with just a 
single composite codebook for each parameter being quan­
tized. Further, the experiments with critical data rate suggest 
that the BRVQ algorithm is capable of reducing the data rate 
significantly below 16 kbits/s for many of the signals that were 
considered in this paper.

We did not consider the effect of channel errors on the 
performance of the BRVQ algorithm in this paper. However, 
it may be noted that the errors introduced in the channel are 
not propagated in time. The user must be careful to transmit 
the side information (carrier frequency, baud rate, etc.) with 
sufficient redundancy since any errors in these parameters will 
affect a large block of data.
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