
SCENE LABELING WITH SUPERVISED 
CONTEXTUAL MODELS

by

Mojtaba Seyedhosseini

A dissertation submitted to the faculty of 
The University of Utah 

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering 

The University of Utah 

August 2014



Copyright ©  Mojtaba Seyedhosseini 2014 

All Rights Reserved



The  U n i v e r s i t y  o f  Ut a h  G r a d u a t e  S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Mojtaba Seyedhosseini

has been approved by the following supervisory committee members:

Tolga Tasdizen Chair 06/03/2014
Date Approved

Behrouz Farhang Member 06/23/2014
Date Approved

Rong-Rong Chen Member 06/23/2014
Date Approved

Sarang Joshi Member
Date Approved

Guido Gerig Member
Date Approved

and by _________________ Gianluca Lazzi_________________  , Chair of

the Department of ______ Electrical and Computer Engineering

and by David B. Kieda, Dean of The Graduate School.



ABSTRACT

Scene labeling is the problem of assigning an object label to each pixel of a 

given image. It is the primary step towards image understanding and unifies object 

recognition and image segmentation in a single framework. A perfect scene labeling 

framework detects and densely labels every region and every object that exists in 

an image. This task is of substantial importance in a wide range of applications in 

computer vision. Contextual information plays an important role in scene labeling 

frameworks. A contextual model utilizes the relationships among the objects in 

a scene to facilitate object detection and image segmentation. Using contextual 

information in an effective way is one of the main questions that should be answered 

in any scene labeling framework.

In this dissertation, we develop two scene labeling frameworks that rely heavily 

on contextual information to improve the performance over state-of-the-art methods. 

The first model, called the multiclass multiscale contextual model (MCMS), uses 

contextual information from multiple objects and at different scales for learning 

discriminative models in a supervised setting. The MCMS model incorporates cross­

object and interobject information into one probabilistic framework, and thus is able 

to capture geometrical relationships and dependencies among multiple objects in 

addition to local information from each single object present in an image. The second 

model, called the contextual hierarchical model (CHM), learns contextual information 

in a hierarchy for scene labeling. At each level of the hierarchy, a classifier is trained 

based on downsampled input images and outputs of previous levels. The CHM then 

incorporates the resulting multiresolution contextual information into a classifier 

to segment the input image at original resolution. This training strategy allows 

for optimization of a joint posterior probability at multiple resolutions through the 

hierarchy. We demonstrate the performance of CHM on different challenging tasks



such as outdoor scene labeling and edge detection in natural images and membrane 

detection in electron microscopy images.

We also introduce two novel classification methods. WNS-AdaBoost speeds up 

the training of AdaBoost by providing a compact representation of a training set. 

Disjunctive normal random forest (DNRF) is an ensemble method that is able to 

learn complex decision boundaries and achieves low generalization error by optimizing 

a single objective function for each weak classifier in the ensemble.

Finally, a segmentation framework is introduced that exploits both shape infor­

mation and regional statistics to segment irregularly shaped intracellular structures 

such as mitochondria in electron microscopy images.

iv



CONTENTS

A B S T R A C T ...............................................................................................................  iii 

A C K N O W L E D G M E N T S ......................................................................................  vii 

C H A P T E R S  

1..... IN T R O D U C T IO N ........................................................................................... 1
1.1 Neural Circuit Reconstruction....................................................................  3
1.2 Classifiers........................................................................................................  4
1.3 Intracellular Component Segmentation....................................................  4
1.4 Contributions.................................................................................................  5
1.5 Software........................................................................................................... 7
1.6 Overview........................................................................................................  7

2. M U LTICLASS M U LTISCALE SERIES C O N T E X T U A L  M O D E L 9
2.1 Introduction.................................................................................................... 9
2.2 Multiscale Contextual M odel......................................................................  14
2.3 Multiclass Multiscale Contextual M o d e l.................................................. 18
2.4 Experimental Results ....................................................................................  23

2.4.1 Datasets.................................................................................................  23
2.4.2 Multiscale contextual model (horse segmentation) ....................... 24
2.4.3 Multiscale contextual model (membrane detection) ....................... 25
2.4.4 MCMS contextual model (mitochondria segmentation) ................ 29
2.4.5 MCMS contextual model (mitochondria and synapse segmentation) 31
2.4.6 Results discussion ...............................................................................  31

2.5 Conclusion ......................................................................................................  34

3. C O N T E X T U A L  H IE R A R C H IC A L  M O D E L ......................................  36
3.1 Introduction.................................................................................................... 36

3.1.1 Graphical models .................................................................................. 36
3.1.2 Convolutional networks ......................................................................  37
3.1.3 Cascaded classifiers .............................................................................  38
3.1.4 Edge detection......................................................................................  39

3.2 Contextual Hierarchical Model .................................................................. 40
3.2.1 Bottom-up s te p .................................................................................... 40
3.2.2 Top-down step ......................................................................................  42
3.2.3 Probabilistic interpretation...............................................................  44
3.2.4 Classifier selection...............................................................................  45
3.2.5 Logistic disjunctive normal network architecture...........................  46



3.2.6 Feature selection.................................................................................. 48
3.3 Experimental Results....................................................................................  49

3.3.1 Scene labeling......................................................................................  49
3.3.2 Edge detection......................................................................................  55
3.3.3 Biomedical image segmentation......................................................... 59
3.3.4 Mouse neuropil dataset......................................................................  60
3.3.5 Drosophila VNC dataset....................................................................  61

3.4 Conclusion......................................................................................................  64

4. FAST A D A B O O S T  T R A IN IN G  U SIN G  W E IG H T E D  
N O V E L T Y  SELECTIO N  .............................................................................  65
4.1 Introduction .................................................................................................... 65
4.2 Weighted Novelty Selection........................................................................  67
4.3 WNS-AdaBoost.............................................................................................  70
4.4 Experimental Results ....................................................................................  72

4.4.1 Poker hand classification....................................................................  72
4.4.2 Texture segmentation ......................................................................... 73

4.5 Conclusions .................................................................................................... 75

5. D ISJU N C TIV E  N O R M A L  R A N D O M  F O R E S T S ...........................  78
5.1 Introduction .................................................................................................... 78
5.2 Disjunctive Normal Random Forests ......................................................... 81

5.2.1 Disjunctive normal decision tree ......................................................  82
5.2.2 Decision tree to random forest ...........................................................  85

5.3 Multiclass D N R F........................................................................................... 86
5.4 Experimental Results....................................................................................  88

5.4.1 Binary classification.............................................................................  88
5.4.2 Multiclass classification ......................................................................  91

5.5 Conclusion ......................................................................................................  92

6. SE G M E N TA TIO N  OF M IT O C H O N D R IA  IN E LE C TR O N  
M IC R O S C O P Y  IM A G E S U SIN G  A L G E B R A IC  C U R V E S .........  95
6.1 Introduction .................................................................................................... 95
6.2 Mitochondria Segmentation ......................................................................... 98

6.2.1 Curve fitting ........................................................................................  98
6.2.2 Feature extraction ...............................................................................  99
6.2.3 Classifier training.................................................................................. 100
6.2.4 Automatic pixel labelling....................................................................  100

6.3 Experimental Results....................................................................................  100
6.4 Conclusion ......................................................................................................  103

A P P E N D IX : D E R IV A T IO N  OF G R A D IE N T  F O R  D N R F .................. 104 

R E F E R E N C E S .......................................................................................................... 105

vi



ACKNOWLEDGMENTS

I would like to express my gratitude to my adviser, Tolga Tasdizen, for his 

invaluable support and encouragement. His immense knowledge and inspiration 

helped me to overcome many difficulties during my research. He taught me how I 

should keep my eyes on the big picture while I am working on the details of a problem. 

I could not have asked for a better adviser, both personally and scientifically. I also 

thank my other committee members, Behrouz Farhang, Guido Gerig, Sarang Joshi, 

and Rong-Rong Chen, for their helpful comments on my proposal that shaped the 

structure of this dissertation.

Many thanks go to the Scientific Computing and Imaging Institute for providing 

a comfortable research environment and powerful computing resources. Specifically, 

I thank the support team members for their generous help.

I am also grateful to other members in our research team with whom I have 

interacted during my PhD. In particular, I would like to acknowledge Antonio Paiva, 

Elizabeth Jurrus, Luke Hogrebe, Ting Liu, Cory Jones, Mehdi Sajjadi, and Paul 

Rosen, who helped me at different points with helpful comments and scientific dis­

cussions.

I want to thank our collaborators at the NCMIR Institute who helped me with 

the biological part of this research. Particularly, I thank Mark Ellisman, Rick Giuly, 

Alex Perez, Jeffrey Bush, and David Lee for their feedback and discussions about the 

methods developed in this dissertation.

For my friends, thank you all for the fun and memorable moments that you created 

for me during these years. I’ll surely miss the bbqs and movie nights that we had 

together.

To my parents who are an endless source of love and encouragement. Their support 

was the most important thing that kept me on track. It is to them that I dedicate this



work. My deepest appreciation goes to my sister and my brothers for their spiritual 

support. None of this would have been possible without their encouragement.

Finally, I would like to acknowledge my funding support. This research was 

supported by NIH 1R01NS075314-01(TT,MHE) and NSF IIS-1149299 (TT).

viii



CHAPTER 1

INTRODUCTION

The main focus of this dissertation is the development of frameworks that use 

contextual information in a supervised setting for scene labeling. Scene labeling, i.e., 

assigning an object label to each image pixel, is a fundamental problem in computer 

vision and is commonly used as the primary step for a wide range of applications [1]. 

It integrates the problems of detection and segmentation in a single framework [2]. 

For instance, in a dataset of horse images, scene labeling can be thought of as the 

task of labeling each pixel as part of a horse or nonhorse, i.e., background. In more 

complicated cases such as outdoor scene images, it might require multiple labels, 

e.g., buildings, cars, roads, sky, etc. This general definition can also be extended 

to the edge detection problem where each pixel is classified as edge or nonedge in a 

binary-decision framework.

Pixels cannot be labeled based only on a small region around them. For example, 

it is almost impossible to distinguish a pixel belonging to the sky from a pixel 

belonging to the sea by looking only at a small patch around them. Therefore, 

a scene labeling framework needs to take into account short-range and long-range 

contextual information. Contextual information has been widely used to resolve 

ambiguities in high-level problems in computer vision such as image segmentation [3], 

object detection [4], and scene understanding [5,6]. Contextual information can refer 

to either interobject configuration, e.g., a segmented horse’s body may suggest the 

position of its legs [3], or intraobject dependencies, e.g., the existence of a keyboard in 

an image implies that there is very likely a mouse near it [4]. From the Bayesian point 

of view, contextual information can be interpreted as the probability image map of 

an object, which carries prior information in the maximum a posteriori (MAP) pixel



2

classification problem.

An important question about any scene labeling method is how it takes contextual 

information into account. The main challenge is to pool contextual information 

from a large neighborhood while keeping the complexity tractable [2]. A common 

approach is to use a series of cascaded classifiers [3, 5-7]. In this architecture, 

each classifier is sequentially trained using the outputs of the previous classifiers as 

inputs. This gradually increases the area of influence and allows later classifiers in 

the series to obtain contextual information from larger neighborhood areas. However, 

the performance of series architecture can be improved by using more informative 

contextual information. In this dissertation, we introduce two contextual models, 

which are able to learn cross-object and interobject contextual information in an 

effective manner. They exploit contextual information at multiple resolutions/scales 

in a probabilistic framework. The proposed methods outperform state-of-the-art 

methods on different applications and can be used as the first step towards scene 

understanding. Some results of our contextual models are shown in Fig. 1.1.

n i " r

Input Image Results of proposed methods Groundtruth

Figure 1.1: Results of proposed contextual models on different applications. First 
row: Scene labeling (Stanford background dataset [8]). Second row: Horse 
segmentation (Weizmann dataset [9]). Third row: Edge detection (Berkeley 
dataset [10]). See Chapters 2, 3 for details.



3

1.1 Neural Circuit Reconstruction
Our models are motivated by the problem of reconstruction of the connectome, 

i.e., the map of connectivity of all neurons in the mammalian nervous system [11], 

which is a challenge facing neuroscientists [7]. Electron microscopy (EM) is an image 

acquisition technique that can generate high resolution images with enough details 

for this problem [12]. The sheer size of a typical EM dataset, often approaching 

tens of terabytes [13], makes manual analysis infeasible [14]. The only complete 

reconstruction of a nervous system has been performed for the nematode C. elegans, 

which contains 302 neurons and about 6000 synapses [15,16]. The manual labeling 

of this small organism is reported to take more than a decade [14]. EM acquisition 

techniques can be used to obtain much larger datasets containing several orders of 

magnitude more neurons than the C. elegans. These datasets might contain thousands 

of neurons with millions of synapses [14,17]. Hence, automated segmentation methods 

are required to process and segment these images.

Fully automatic reconstruction of the connectome remains a challenging problem 

because of the noisy texture, irregular shapes, complex structures, and the large 

variations in the physical topologies of cells [18,19]. Moreover, different structures 

have similar local appearances, which makes it difficult for the automatic method to 

detect and segment them consistently. A  robust segmentation method must overcome 

these issues.

The connectome problem can be formulated in a scene labeling framework where 

each pixel has to be labeled as an object of interest. For example, for membrane detec­

tion each pixel in the image is labelled as membrane or nonmembrane. Our proposed 

models make a wide use of contextual information to overcome the aforementioned 

challenges. The proposed methods surpass both the accuracy and computational 

efficiency of state-of-the-art methods and facilitate the analyzing and interpretation 

of the EM images data, paving the way for understanding neurodegenerative diseases 

at the microscopic level.



4

1.2 Classifiers
We also develop two novel supervised learning/classification methods that can be 

applied to general machine learning problems as well as in our contextual models. 

In the first method, a new AdaBoost learning framework, called WNS-AdaBoost, is 

proposed that significantly speeds up the learning process of AdaBoost. For this 

purpose, we introduce a novel sampling strategy, weighted novelty selection (WNS), 

and combine it with AdaBoost to obtain the WNS-AdaBoost framework. WNS is a 

sampling method that reduces the number of data points by selecting representative 

points from the dataset. It also determines a corresponding weight for each of these 

selected points that shows the importance of that point and aims at preserving the 

distribution of the original data. By reducing the number of training samples, the 

proposed framework significantly reduces the training time. The output of the WNS 

algorithm is then used by AdaBoost, or any of its variants, to learn a discriminative 

model. This is achieved by training AdaBoost on the representative set of data 

points and initializing the weight distribution with the weights obtained from WNS 

after normalization.

In the second method, we propose a new classifier, called the disjunctive normal 

decision tree, which allows the linear discriminants at each node of a decision tree to 

be at any arbitrary orientation. The main advantage of our approach is that it learns 

all the weak learners of the decision tree in a unified framework. To be clear, unlike 

conventional decision trees and their variants that learn the splitting function at each 

node independently, our approach allows weak learners of different nodes to interact 

with each other during the training because it minimizes a single global objective 

function. We will employ this new decision tree to build a new random forest, called 

disjunctive normal random forests (DNRF), which outperforms conventional random 

forests.

1.3 Intracellular Component Segmentation
In addition to the neural circuit map, neuroscientists are interested in the mor­

phology and distribution of intracellular components. For example, abnormal mi­

tochondria morphology can be seen in Parkinson’s disease-related genes [20], or



5

geometrical properties of mitochondria can be used to distinguish cancer cells from 

normal cells [21]. Moreover, an accurate mitochondria segmentation would improve 

cell segmentation results by distinguishing mitochondria membranes from other cell 

membranes [22]. The texture and physical topologies of intracellular components are 

highly variable [18] (Fig. 1.2). Even though our contextual model, i.e., multiclass 

multiscale contextual model (MCMS), is able to segment mitochondria, its compu­

tational complexity is dominated by the complexity of membrane detection, which is 

higher than the complexity of mitochondria segmentation. Moreover, manual labeling 

of membranes is more expensive compared to manual labeling of mitochondria and is 

unnecessary when the main target is mitochondria. Finally, our contextual models do 

not take shape information into account, but the shape information is an important 

clue to mitochondria identity. To address these problems, we propose a specific 

segmentation framework for mitochondria in EM images. We take advantage of the 

power of algebraic curves in finding ambiguous edges in cluttered backgrounds to 

estimate the boundary of mitochondria and extract informative shape and textural 

features from images. The regional features, i.e., textural features from image regions, 

are more robust and informative compared to pixel features.

1.4 Contributions
The following list outlines the specific contributions of this dissertation:

1. Develop a scene labeling framework that is able to use contextual information

Figure 1.2: Mitochondria (red outlines) appear in different shapes and intensities 
in EM images. This variety and the existence of other similar structures make 
segmentation a difficult task.



6

at multiple scale and from multiple objects. The main advantage of the MCMS 

model is its ability to pool contextual information from a large neighborhood 

area in a series architecture without increasing the computational complexity. 

Moreover, this model is able to leverage contextual information from multiple 

objects in a single framework. This is discussed in more detail in Chapter 2 and 

[23,24].

2. Develop a scene labeling framework that is able to learn contextual information 

at multiple resolutions by minimizing a joint posterior distribution. The contex­

tual hierarchical model (CHM) improves the performance of MCMS by learning 

contextual information at multiple resolutions in a supervised framework. The 

multiresolution processing of context enables CHM to reach the state-of-the-art 

performance on different applications. More detail on this method is covered in 

Chapter 3 and [25].

3. Develop a classification method that speeds up the training of AdaBoost. The 

goal of this work is to provide a compact representation of training data for 

the AdaBoost classifier to speed up the training process. This approach can be 

used as a preprocessing step for any AdaBoost based classifier. See Chapter 4 

and [26] for more details.

4. Develop a classification method that improves the performance of the conven­

tional random forest by minimizing a single objective function for each tree in 

the forest. Conventional random forests are prone to overfitting in the presence 

of noise. Moreover, they only learn axis-aligned discriminants at each node. Our 

DNRF increases the generalization performance of random forests by allowing 

communication between different nodes in each tree. The unified optimization 

in DNRF allows the discriminants to be at arbitrary orientations. The details 

of this formulation and optimization can be found in Chapter 5.

5. Develop a mitochondria segmentation method that combines both textural and 

shape information in a single framework. Even though MCMS and CHM can 

be used for mitochondria segmentation, they do not take shape information



7

into account. We propose a segmentation method that uses algebraic curves to 

extract shape information. This method is more robust to shape variance in 

the presence of noise. See Chapter 6 and [27] for more details and segmentation 

results.

1.5 Software
Following the reproducible research instructions [28], we have made the codes 

for MCMS and CHM public to make it easier for other researchers to understand 

our methods. The MCMS method is implemented in C ++  and uses OpenCV [29] 

and Boost libraries [30]. It is a memory efficient code and can be trained on large 

datasets using a machine with 4 GB of memory. The code is available at http: 

/ / www.sci.utah.edu/~mseyed/Mojtaba_Seyedhosseini/MS.html. The CHM code 

is mainly implemented in MATLAB, and the time consuming parts are implemented 

in C with a MATLAB wrapper. The code is available at h ttp ://w w w .sci.u tah . 

edu/~mseyed/Mojtaba_Seyedhosseini/CHM.html.

1.6 Overview
Chapter 2 gives an overview of the series classifier idea and its probabilistic 

interpretation. Then, the importance of context sampling is discussed, and the 

multiscale contextual model is introduced. Next, the idea of a multiscale contextual 

model is expanded to the multiclass case, and the multiclass multiscale contextual 

model (MCMS) is proposed. The effectiveness of proposed models is shown on real 

datasets.

Chapter 3 discusses the general problem of scene labeling and gives an overview of 

existing methods for this problem. Then, the CHM is introduced, and its probabilistic 

formulation is derived. Next, we show that CHM optimizes a joint posterior function 

at multiple resolutions in a greedy way. We illustrate that CHM outperforms state- 

of-the-art methods on different datasets and for different applications.

In Chapter 4, we introduce the weighted novelty selection (WNS) as a clustering 

method. Then, we show how it can be used as a preprocessing step to give a compact 

representation of a training set. Next, we show how the combination of WNS and 

AdaBoost speeds up the training process with a minimal loss of accuracy. The

http://www.sci.utah.edu/~mseyed/Mojtaba_Seyedhosseini/MS.html
http://www.sci.utah


8

performance of WNS-AdaBoost is shown for two applications.

Chapter 5 gives an overview of conventional random forests and their limitations. 

Then, disjunctive normal decision trees (DNDTs) are introduced as building blocks 

of disjunctive normal random forests (DNRFs). We show that unlike conventional 

random forests, DNRFs are able to learn non-axis-aligned discriminants by optimizing 

a single objective function. The superior performance of DNRFs is shown on several 

binary and multiclass classification datasets.

Finally, Chapter 6 describes the specific segmentation method designed for mito­

chondria segmentation. First, we discuss the algebraic curves and their robustness to 

the noise. Then, we show how they can be used to extract meaningful features for 

segmenting mitochondria. The performance of the proposed method is illustrated on 

two EM datasets.



CHAPTER 2

MULTICLASS MULTISCALE SERIES 
CONTEXTUAL MODEL

Contextual information has been widely used as a rich source of information to 

segment multiple objects in an image. A contextual model utilizes the relation­

ships between the objects in a scene to facilitate object detection and segmentation. 

However, using contextual information from different objects in an effective way for 

object segmentation remains a difficult problem. In this chapter, we introduce a 

novel framework, called the multiclass multiscale (MCMS) series contextual model, 

which uses contextual information from multiple objects and at different scales for 

learning discriminative models in a supervised setting. The MCMS model incorpo­

rates cross-object and interobject information into one probabilistic framework and 

thus is able to capture geometrical relationships and dependencies among multiple 

objects in addition to local information from each single object present in an image. 

We demonstrate that our MCMS model improves object segmentation performance 

in electron microscopy images and provides a coherent segmentation of multiple 

objects. By speeding up the segmentation process, the proposed method can allow 

neurobiologists to move beyond individual specimens and analyze populations paving 

the way for understanding neurodegenerative diseases at the microscopic level.

2.1 Introduction
Shape contexts are extremely rich descriptors [31] that have been used widely 

for solving high-level vision problems. Contextual information is interpreted as in­

traobject configurations and interobject relationships [3]. These attributes play an 

important role in scene understanding [32-34]. For example, the existence of a 

keyboard in an image suggests that there is very likely a mouse near it [4]. To be



10

precise, by contextual information we refer to the probability map of the target object 

that can be used as prior information together with the original image information 

to solve the maximum aposteriori (MAP) scene labeling problem.

There have been many methods that employ context for solving vision problems 

such as image segmentation or image classification. Markov random fields (MRF) [35] 

are one of the earliest and most widespread approaches. Lafferty et al. [36] showed 

that better results for discrimination problems can be obtained by modeling the condi­

tional probability of labels given an observation sequence directly. This nongenerative 

approach is called the conditional random field (CRF). He et al. [37] generalized the 

CRF approach for the pixel classification problem by learning features at different 

scales of the image. Jain et al. [18] showed MRF and CRF algorithms perform about 

the same as simple thresholding in pixel classification for binary-like images. They 

proposed a new single-scale version of the convolutional neural network [38] strategy 

for restoring membranes in electron microscopic (EM) images. Compared to other 

methods, convolutional networks take advantage of context information from larger 

regions, but need many hidden layers. In their model the back propagation has 

to go over multiple hidden layers for the training, which makes the training step 

computationally expensive. Tu and Bai [3] proposed the auto-context algorithm, 

which integrates the original image features together with the contextual information 

by learning a series of classifiers. Similar to CRF, auto-context targets the posterior 

distribution directly without splitting it to likelihood and prior distributions. The 

advantage of auto-context over convolutional networks is its easier training due to 

treating each classifier in the series one at a time in sequential order. Although they 

used probabilistic boosting tree as classifier (PBT), auto-context is not restricted to 

any particular classifier, and different type of classifiers can be used. Jurrus et al. [7] 

employed artificial neural networks (ANN) in a series classifier structure, which learns 

a set of convolutional filters from the data instead of applying large filter banks to 

the input image.

Even though all the aforementioned approaches use contextual information to­

gether with the input image information to improve the accuracy of the achieved 

segmentation, they do not take contextual information from multiple objects into



11

account and thus are not able to capture dependencies between the objects. Torralba 

et al. [4] introduced boosted random field (BRF), which uses boosting to learn 

the graph structure of CRFs for multiclass object detection and region labeling. 

Desai et al. [39] proposed a discriminative model for multiclass object recognition 

that can learn intraclass relationships between different categories. The cascaded 

classification model [5] is a scene understanding framework that combines object 

detection, multiclass segmentation, and 3D reconstruction. Choi et al. [40] introduced 

a tree-based context model, which exploits dependencies among objects together with 

local features to improve the object detection accuracy.

While contextual models have been shown to be successful in several computer 

vision tasks, we propose a more effective way of extracting information from the 

context image, i.e., the classifier output. We develop a novel framework that exploits 

contextual information from different scales and different objects to learn a discrim­

inative model for object segmentation. To our knowledge, multiclass and multiscale 

contextual information have not been previously used in a unified framework for 

object segmentation. The combination of multiclass and multiscale schemes enables 

our method to make extensive use of contextual information and thus improves the 

segmentation accuracy.

We employ the series architecture in [7] and modify it in two important ways to 

provide more informative contextual information to the classifiers:

• multiscale contextual model: We apply a series of simple linear filters to the 

context image consecutively to generate a scale-space representation of the 

context and give the classifier access to samples of the scale space. The samples 

of the coarser scales are more informative and robust against noise due to 

the averaging. Therefore, this framework provides more information from the 

context for the classifier in a similar number of features.

• multiclass contextual model: We also introduce the multiclass series architecture 

by allowing the classifier for each object type access to the contextual informa­

tion from each object type of the previous stage. This flow of cross-object 

information is achieved by feeding neighborhoods from the output of each 

classifier in the current stage to each classifier in the next stage. The proposed



12

multiclass framework is able to capture geometric relationships of objects and 

their dependencies which can be an important clue to their identity. For 

instance, the existence of mitochondria, i.e., the objects with green boundary 

in Fig. 2.1, at a certain position in an electron microscopy image is a strong 

evidence that the existence of synapses, i.e., the objects with yellow boundary 

in Fig. 2.1, is unlikely. Synapses are more likely in certain configurations and 

distances to cell membranes, i.e., the red objects in Fig. 2.1.

We introduce a novel and powerful segmentation framework by employing multi­

scale and multiclass contextual model in a series classifier architecture. The multiclass 

multiscale (MCMS) series contextual model is able to leverage both the cross-object 

and the interobject contextual information at multiple scales to give a coherent 

segmentation of multiple objects present in an image. The rich contextual information 

that the MCMS model extracts from the image helps the later classifiers to correct 

the mistakes of the early stages and thus improves the overall performance.

Our model is motivated by the problem of reconstruction of the connectome, i.e., 

the map of connectivity of all neurons in the mammalian nervous system [11], which 

is a challenge facing neuroscientists [7]. Electron microscopy (EM) is an image acqui­

sition technique that can generate high resolution images with enough details for this 

problem [12]. However, the reconstruction of the connectome remains a challenging 

problem because of the noisy texture, irregular shapes, complex structures, and the 

large variations in the physical topologies of cells [18,19]. Moreover, the sheer size of 

a typical EM dataset, often approaching tens of terabytes [13], makes manual analysis 

infeasible [14]. Hence, automated segmentation methods are required.

General segmentation methods that have been proposed for natural image datasets 

yield poor results when applied to EM images [19]. Jain et al. [41] showed that 

multiscale normalized cut [42], boosted edge learning [43] and global probability 

boundary [44], which result in outstanding segmentation performance on natural 

images, perform poorly on EM datasets. Therefore, a powerful method for segmenting 

specific structures in EM images is required.

Many unsupervised techniques have been proposed to address this problem. Vu 

and Manjunath [45] proposed a graph-cut method that minimizes an energy function



13

Figure 2.1: Different objects appear in certain configurations to each other. For 
example synapses, i.e., objects with the yellow boundary, are close to the membrane, 
i.e., red objects, and usually overlap with them. Mitochondria, i.e., objects with the 
green boundary, are far from membranes and never overlap with synapses. Using this 
information can improve the segmentation results for each of these objects.

over the pixel intensity and flux of the gradient field for cell segmentation. However, 

their model might be confused by the complex intracellular structures and requires 

user interaction to correct segmentation errors. The contour propagation model [46] 

that minimizes an energy function for contour tracing of cell membranes can also 

get stuck in local minima due to complex intracellular structures. Kumar et al. [47] 

introduced a set of so-called Radon-like features (RLF), which take into account both 

texture and geometric information and overcome the problem of complex intracellular



14

structures but only achieve modest accuracy levels due to the lack of a supervised 

classification scheme.

Several supervised methods also have been proposed for object segmentation in 

EM images such as convolutional neural networks [18] and series of artificial neural 

networks (ANN) [7] for membrane detection or [19,22] for mitochondria segmentation 

or [48,49] for synapse segmentation. However, these frameworks target only one object 

of interest and to our knowledge, they do not use intraclass information to give a 

coherent segmentation of multiple objects. One of the advantages of our proposed 

model is that it can segment multiple objects simultaneously. We show that the 

coherent segmentation improves the segmentation accuracy.

2.2 Multiscale Contextual Model
Let X  =  ( x ( i , j )) be the input image that comes with a ground truth Y  =  (y ( i , j )) 

where y ( i , j ) E { — 1,1} is the class label for pixel (i, j ). The training set is T  =  

{ (X k,Yk); k =  1 , . . . ,M }  where M  denotes the number of training images. Given an 

input image X , the MAP estimation of Y  for each pixel is given by

yMAP( i , j )  =  arg max p  (y (i , j  ) |X ) (2-l)
y(i,j)

The local Markovianity assumption can be used to obtain a typical approximation 

of (2.1)

yMAP(^ j )  =  arg max P (y (^ j)|XN(i,j)) (2.2)
y(i,j)

where N(i, j ) denotes all the pixels in the neighborhood of pixel (i, j ). N(i, j ) can be 

any arbitrary neighborhood lattice like 4-connected or 8-connected or sparse stencil [7] 

neighbors. This approximation decreases the computational complexity by giving the 

classifier access to a limited number of neighborhood pixels instead of the entire input 

image.

In auto-context [3] and series-ANN [7], a classifier is trained based on the neigh­

borhood features at each pixel. We call the output image of this classifier the context 

image, i.e., C  =  (c( i , j )). The next classifier is trained not only on the neighborhood



15

features of X  but also on the neighborhood features of C . The MAP estimation 

formula for this classifier can be written as

ilMAP( i , j )  =  arg max P( V(i , j ) |XN(i,j),C N' (ij)) (2.3)
y(ij) ( )

where N '( i , j ) is the set of all neighborhood pixels of pixel ( i , j ) in the context image. 

Note that N and N  can be different neighborhood systems. The same procedure is 

repeated through several stages of the series classifier until convergence. It is worth 

mentioning that (2.3) is closely related to the CRF model; however, multiple models 

in series are learned, which is an important difference from standard CRF approaches. 

It has been previously shown that this approach outperforms iterations with the same 

model [3].

According to (2.3), context provides prior information to solve the MAP problem. 

Even though the local Markovianity assumption is reasonable and makes the problem 

tractable, it still results in a significant loss of information from global context. 

However, it is not practical to sample every pixel in a very large neighborhood area 

of the context due to computational complexity problem and overfitting. Previous 

approaches [3, 7] have used a sparse sampling approach to cover large context areas. 

However, single pixel contextual information in the finest scale conveys only partial 

information about its neighborhood pixels in a sparse sampling strategy, while each 

pixel in the coarser scales contains more information about its surrounding area due 

to averaging filters used. In other words, while it is reasonable to sample context at 

the finest level a few pixels away, sampling context at the finest scale tens to hundreds 

of pixels away is error prone and presents a nonoptimal summary of its local area. 

Conceptually, sampling from scale space representation increases the effective size of 

the neighborhood while keeping the number of samples small.

Fig. 2.2 illustrates the multiscale contextual model. In this model, a scale-space 

representation of the context image is created by applying a series of Gaussian filters. 

This results in a series feature maps with lower resolutions that are robust against 

the small variations in the location of features as well as noise. Unlike the auto­

context structure that uses a sparse sampling approach to take samples from the 

context image, the multiscale contextual model uses the samples of the scale space



16

scale space
Figure 2.2: Illustration of the multiscale contextual model. Each context image is 
sampled at different scales (green squares). The blue squares represent the center 
pixel, and the red squares show the selected locations at original scale.

representation of context. Fig. 2.3 shows the single-scale sampling strategy (Fig. 2.3a) 

versus the multiscale sampling strategy (Fig. 2.3b). In Fig. 2.3b the classifier can 

have as an input the center 3 x 3 patch at the original scale and a summary of eight 

surrounding 3 x 3 patches at a coarser scale (The green circles denote the summaries 

of dashed squares). The green circles in Fig. 2.3b are more informative and less 

noisy compared to their equivalent red circles in Fig. 2.3a. The summaries become

fo O ojfo O O j'O  o  o] 
jo O oijo O oijo O Oi 
lO__o_ o i lo_ o  o i lo__o _ o i 
ro o o ] o o o ro o o ]  
jo O Oi O •  O jo O Oi 
lQ _Q J3I o _o _ °  lQ__o _ o i 
>0 O ojfo o ojfo o o] 
jo O oijo O  oijo O Oi 
LQ_Q QUQ-Q O k Q -Q  Q 1

context image 
(b)

Figure 2.3: Sampling strategy of context: (a) Sampling at a single scale, (b) 
sampling at multiple scales. Green circles belong to a coarser scale and illustrate 
the summary of pixels in dashed squares. Green samples at the coarser scale are 
more informative than corresponding red samples at the original scale.

o o o o o o o o o
o o o o o o o o o
o o o o o o o o o
o o o o o o o o o
o o o o • o o o o
o o o o o o o o o
o o o o o o o o o
o o o o o o o o o
o o o o o o o o o

context image 
(a)



17

more informative as the number of scales increases. For example, in the second 

scale the summary is computed over 3 x 3 neighborhood of the first scale image, 

which is equivalent to 5 x 5 neighborhood of the original image. In practice, we use 

Gaussian averaging filters to create the summary (green circles). Other methods like 

maximum pooling can be used instead of Gaussian averaging [50]. The number of 

scales and Gaussian filter size are set according to the characteristics of the particular 

application. The size of the filter and number of scales should increase for larger 

objects.

From a mathematical point of view, (2.3) can be rewritten as

ijMAP ( i ,j )  =  arg max p  (y (i , j)\XN (i,j ) ,Cv0 (i)j) (0)> 
y(i,j)

CN (i,j )(1) , - - - , c n; (i,j )(0) (2.4)

where C (0 ),C (1 ),... ,C (l) denote the scale space representation of the context and 

N0(i,j), N[ ( i , j ), . . . ,  N (i , j )  are corresponding neighborhood structures. Unlike (2.3) 

that uses the context in a single scale, (2.4) takes the advantage of multiscale contex­

tual information. Even though in (2.4) we still use the Markov assumption, the size 

of the neighborhood is larger and thus we lose less information compared to (2.3).

The series multiscale contextual model updates the (2.4) iteratively:

yMAP(i ,j )  =  arg max P (y ( i , j ) \X N(i,j),C N (i?')(0),
y(i,j) o( ,j)

C^ (i ;j )(1) , . . . ,C vV; (i,j )(l)) (2.5)

where C k(0) ,Ck(1), . . . , C k(l) are the scale space representation of the output of 

classifier stage k, k =  1 , . . . , K - 1 and yM+Ap (i, j )  denotes the output of the stage k+1. 

In turn, the k +  1’st classifier output as defined in (2.5) creates the context for the 

k +  2’nd classifier. For k =  0, no prior information is used, and the model only uses the 

input image for training. The model repeats (2.5) until the performance improvement 

between two consecutive stages becomes small. It must be emphasized that despite 

the iterative form of 2.5, multiple models are learned in the series separately and in 

sequential order, which is an important difference from standard CRF models.



18

2.3 Multiclass Multiscale Contextual Model
While our multiscale contextual model extracts a set of rich features from the 

context image of each object, it is unable to take into account the contextual informa­

tion from multiple objects. We propose the multiclass multiscale (MCMS) contextual 

model as a remedy to this problem as it is designed to leverage both the multiscale 

and the multiclass contextual information. The proposed method can successfully 

capture long distance dependencies between objects and across different categories.

The multiclass contextual model is illustrated in Fig. 2.4. In this figure, each 

classifier is a binary classifier, which is trained to segment only one object of interest. 

In other words, each classifier treats the pixels belonging to the object of interest as 

positive samples and all the other pixels including the background pixels as negative 

samples. The multiclass architecture allows the classifier of each object type access 

to the contextual information from each object type of the previous stage. This 

flow of information is achieved by feeding neighborhoods from the output of each 

classifier, i.e., the context image, in stage k to each classifier in stage k +  1. The 

multiclass feature pooling scheme is shown in Fig. 2.5. It extracts samples from 

the neighborhood of center pixel in all the context images from the previous stage. 

The extracted samples are used together with input image samples as the input to 

classifier. The same feature vectors are used for all the classifiers. Nonetheless, each 

classifier is trained to segment a specific object. In other words, although the input 

feature vectors are the same, the target labels are different for each classifier. The 

propagation of contextual information among different categories enables the model 

to learn the geometrical relationships and object dependencies implicitly.

We describe the effectiveness of the multiclass model with a synthetic example. 

Consider the input image and the corresponding groundtruth images in Fig. 2.6a. 

Two pixel classifiers are trained for the square and the disk classes separately. The 

outputs of these classifiers are shown in Fig. 2.6b. The results are not perfect, and 

each classifier misclassifies some pixels of the other object as positive samples due 

to the noise and similarity between the textures. The single-class model that uses 

only the contextual information from the same object is not able to correct the wrong 

classified pixels completely (Fig. 2.6c). By using the contextual information from both



19

Figure 2.4: Illustration of the multiclass contextual model. Each classifier is a 
binary classifier that is trained for a specific object (a, b, and c are objects). Each 
classifier takes advantage of the context images of all objects from the previous stage. 
Superscripts show object type, and subscripts show the classifier number in the series. 
Generalization to cases with more classes is straightforward.

of the objects, the multiclass model will classify most of the previously misclassified 

pixels correctly as shown in Fig. 2.6d. For example, the second stage square classifier 

exploits the information that those misclassified pixels from the previous stage are 

classified as disk by the first disk classifier and thus is able to correct them in the 

second stage. In this example we have two objects but this can be extended to any 

arbitrary number of objects.

The mathematical formulation of the multiclass contextual model for each classi­

fier is obtained by incorporating the cross-contextual information in (2.3):

yMAP( i ,j )  =  arg max P(y ( i , j )|XN(i,j), C  
y(i,j)

a
N' (i,j),

cb Cc ) 
CN N (i,j ),CN' (i,j)) (2.6)

where Ca,C b,C c denote the context images of different objects. We assume three 

objects in (2.6) for the sake of simplicity, but the extension to more objects is 

straightforward.

By combining multiclass and multiscale contextual models, the powerful MCMS 

model is obtained, which is able to extract contextual information from large area and



20

-

----------
"■

0
---------- ----------

1 1

Figure 2.5: The multiclass feature pooling scheme. The neighborhood samples of the 
center pixel (blue circle) in the context image “a,” i.e., red circles, are used together 
with the neighborhood samples in the context images “b” and “c,” i.e., green circles, 
to form the feature vector. The same feature vector together with the features of 
input image is used for all the classifiers. In the MCMS model the samples are pooled 
at multiple scales as well. The multiscale sampling is not shown in this figure for the 
sake of clarity.

through different objects. The MCMS model is designed to make an extensive use of 

contextual information. This architecture allows the classifiers in the series to correct 

the errors of the previous stages by using the information from other classes and thus 

improves the segmentation performance. The update equation of the MCMS model 

can be derived by combining (2.3) and (2.4)

) =  arg max P (,!/(*, j ) |X N(.,j), 

C j ^ C k  (tJ) (o) .Cf ,  W )(o),
~ia,k
yK<i,jy

~ic , k
X ( i  , j>'
c k

■■■•CN;<i .j>('>,Ck<i,j >(')” C^ k(i.j)(()) (2.7)

where Ca’ k(0 ),C a ’ k( ! ) , . . . , C a ’ k(l) are the scale space representation of the output of



21

Train image Square groundtruth Disk groundtruth

Test image Stage1 (square) Stage1 (disk)

Test image

Test image

Stage2 (square)

□  □  

□  □
Stage2 (square)

Stage2 (disk)

Stage2 (disk)

Figure 2.6: A synthetic example that shows the effectiveness of the multiclass 
contextual model. (a) The input image and corresponding groundtruth images, (b) 
the outputs of the first stage classifiers, (c) the outputs of the second stage classifiers 
in the single-class model, and (d) the outputs of the second stage classifiers in the 
multiclass model. The multiclass model is more successful in removing the parts of 
the other object compared to the single-class model.



22

classifier stage k for object “a,” k =  1 , . . . , K  — 1 and yMtAP’ t t j )  denotes the output of 

the stage k +  1 for object “a.” Similar equations are updated for objects “b” and “c.” 

Each of these update equations are related to a row of classifiers in Fig. 2.4. The main 

difference between (2.5) and (2.7) is that the former only pools contextual information 

from a single object, while the latter takes advantage of contextual information from 

multiple objects. The overall training algorithm for the MCMS contextual model is 

described in Algorithm 1.

A lgorithm  1 Training algorithm for the MCMS model
R equire: A set of training images together with their binary groundtruth images for 

different objects, T  =  { ( X i,Yis),i  =  1 , . . . , M , s  =  1 , . . . , N obj }.
• For each input image X i, generate non-informative probability maps, CS’°,s  =

1 . . . . , N obj , with uniform distribution.
• k =  0

repeat
for j  =  1 : Nobj do

• Construct a new training set Tj =  { ( ( X i,C]S'k),Yj ),i  =  1 , . . . , M , s  =
1. . . . ,Nobj } .
• Train a classifier, f j , on features extracted from the input images and scale 

space representation of the context images (maximize equation (2.7) to obtain 
classifier parameters).

end for
for j  =  1 : Nobj do

• Use the trained classifier f j  to generate new context images Cj,k+1 (equa­
tion (2.7)).

end for
• k =  k +  1

until convergence (improvement is negligible between two consecutive stages)

The time complexity of the MCMS model is almost the same as the multiscale 

since the classifiers of each stage can be trained in parallel. Although this model has 

many parameters, the training is not complicated because the classifiers are trained 

separately through the stages and among the objects.



23

2.4 Experimental Results
We perform experimental studies to evaluate the performance of both multiscale 

and MCMS contextual models. We show the effectiveness of the multiscale contextual 

model for membrane detection in EM images and horse segmentation in a general 

computer vision dataset. We then show how membrane detection results can be used 

in the MCMS model to improve mitochondria and synapse segmentation results.

2.4.1 Datasets

We used three different datasets in our experiments:

2.4.1.1 W eizm ann horse dataset

The Weizmann dataset [9] contains 328 gray scale horse images with corresponding 

foreground/ background truth maps. Similar to Tu et al. [3], we used half of the 

images for training, and the remaining images were used for testing. There is only 

one object category, i.e., horse, in this dataset and thus we could only use it to test 

the multiscale contextual model.

2.4.1.2 M ouse neuropil dataset

This dataset is a stack of 400 images from the mouse neuropil acquired using serial 

block face scanning electron microscopy (SBFSEM [12]). Each image is 4096 by 4096 

pixels, and the resolution is 10 x 10 x 50 nm/pixel. To evaluate the segmentation 

performance, a subset of 70 images of size 700 by 700 pixels were selected. An expert 

anatomist annotated membranes and mitochondria in this subset with different labels. 

From those 70 images, 14 images were randomly selected and used for training, and 

the 56 remaining images were used for testing.

2.4.1.3 D rosophila V N C  dataset

This dataset contains 30 images from Drosophila first instar larva ventral nerve 

cord (VNC) [51,52] acquired using serial-section transmission electron microscopy 

(ssTEM [17,53]). It has a resolution of 4 x 4 x 50 nm/pixel, and each 2D section is 

512 by 512 pixels. For this dataset, an expert annotated membranes, mitochondria, 

and synapses with different labels. We used 15 images for training and 15 images for 

testing.



24

The results presented in this chapter were generated using a HPDL980 server 

containing 160 2.40 GHz Intel CPUs and 750G of memory. The horse dataset requires 

19G of memory during training, while the mouse neuropil and Drosophila VNC 

datasets require 13G and 14G of memory, respectively. It took about 6, 5, and 3 

days per stage to train the multiscale contextual model on the horse, mouse neuropil, 

and Drosophila VNC datasets, respectively. As mentioned before, the training time of 

the MCMS model is almost the same as the multiscale contextual model. Unlike the 

training, our model is relatively fast at the test time. Applying the classifiers weights 

on each input image takes less than 1 minute. Details regarding the parameters for 

each experiment are described in detail in the following sections.

2.4.2 M ultiscale contextual m odel (horse segm entation)

In this experiment, we test the multiscale contextual model for horse segmentation. 

We used MLP-ANNs [54,55] as the classifier in the series architecture, as in [7]. Each 

classifier in the series has one hidden layer with 30 nodes. Back-propagation was used 

to learn the weight vector and biases [54,55].

Input image feature vectors were computed on a 31 x 31 sparse stencil [7] centered 

on each pixel. The size of the feature vector is 57. The context features were computed 

using 5 x 5 patches at five scales (one at original resolution and four at coarser scales). 

We used a Gaussian filter of size 7 x 7 to generate the scale space.
The average F — value =  2xPr-ect̂ o».xifccaii  ̂ threshold 0.5 for different methods°  Precision  ̂Recall

is shown in Fig. 2.7(a). As we expected, the performance increases with the number 

of scales. The test F-value at stage 5 for multiscale contextual model with 5 scales is 

87.3%. This result outperforms the auto-context result which is 84% [3]. It must be 

emphasized that the improvement from the first stage to the last stage in our method 

is 25.2%, while the improvement in the auto-context method is almost 5%. It is worth 

noting that we use a simple stencil to generate the input image feature vector instead 

of applying large filter banks to the input image as in [3], and our first stage F-value 

(62.1%) is less than auto-context first stage F-value (79%), but our last stage result 

F-value is higher. This shows that multiscale contextual model can compensate for 

the bad result of the first stage and improves the performance in later stages by using 

context in an effective manner. The precision-recall curves of the last stage results



25

(a) (b)

Figure 2.7: Horse segmentation experiment on the Weizmann horse dataset. (a) 
The test F-value at different stages of the series for different methods with different 
number of scales. (b) The precision-recall curves for test images and for different 
methods (the last stage of the series). Using more scales improves the results.

for the test set are shown in Fig. 2.7(b).

Fig. 2.8 shows some examples of our test images and their segmentation results 

using different methods with different number of scales. As we can see, the multiscale 

contextual model outperforms the single-scale contextual model in removing the side 

effects of the cluttered background and filling the body of horses. For example, in the 

middle column, the rider is removed by the multiscale contextual model with 5 scales. 

Fig. 2.9 shows two examples of test images and the corresponding segmentation results 

at different stages of the multiscale contextual model. The converges of the model 

can be seen qualitatively in the results.

2.4.3 M ultiscale contextual m odel (m em brane detection )

In this experiment, we show the performance of the multiscale contextual model 

for membrane detection on the mouse neuropil dataset. We used the same architecture 

as the previous experiment except that each MLP-ANN in the series had one hidden 

layer with 10 nodes.

This dataset is very imbalanced since the number of positive samples, i.e., mem­

brane pixels, is much less than the negative samples, i.e., nonmembrane pixels. To 

provide a relatively balanced dataset and optimize the MLP-ANN performance, 5.5



26

V i yj

Figure 2.8: Test results for the horse segmentation experiment. (a) Input images, 
(b) single-scale contextual model [7], (c) multiscale contextual model with 4 scales, 
(d) multiscale contextual model with 5 scales, (e) groundtruth images. The multiscale 
contextual model is successful in removing the side effects of the cluttered background 
and filling the body of horses.

Input Stage1 Stage2 Stage3 Stage4 Stage5

H H n

Figure 2.9: Test results for the horse segmentation experiment. The first column 
shows the input image and the remaining columns show the output at different stages 
of multiscale contextual model.



27

million samples were randomly selected from the training set to contain | positive 

and | negative examples, as in [7]. Input image feature vectors were computed on a

11 x 11 stencil. Context features were computed on 5 x 5 patches at four scales (one 

at original resolution and three at coarser scales). The classifier then gets as input 

the 5 x 5 patch at the original resolution (CN'^ j )(0) in (2.4)) and 5 x 5 patches at 

three coarser scales (CN>̂  j)(1) in (2.4)). We used a Gaussian filter of size 5 x 5 to 

generate the scale space.

We compared the performance of our methods with the RLF [47] and gPb-OWT- 

UCM (global probability of boundary followed by the oriented watershed transform 

and ultrametric contour maps) [44]. The average F-value for different stages of multi­

scale contextual and MCMS models is shown in Fig. 2.10(a). The performance of the 

multiscale contextual model is 2.65% better than using a single-scale context [7]. The 

precision-recall curves for pixel-wise membrane detection are shown in Fig. 2.10(b).

Fig. 2.11 shows five examples of our test images and corresponding membrane 

detection results for different methods. As shown in our results, the multiscale 

contextual model outperforms the methods in [7,44,47], and it is more successful 

in removing undesired parts from inside cells.

(a) (b)

Figure 2.10: Membrane detection experiment on the mouse neuropil dataset. (a) 
The test F-value at different stages of the series for different methods. The F-value 
for the RLF and gPb-OWT-UCM methods are 0.59 and 0.46, respectively. (b) The 
precision-recall curves for test images and for different methods (the last stage of the 
series).



28

Figure 2.11: Test results for the membrane detection experiment (mouse neuropil 
dataset). (a) Input images, (b) gPb-OWT-UCM method [44], (c) RLF method [47], 
(d) single-scale contextual model [7], (e) multiscale contextual model, (f) groundtruth 
images. The multiscale contextual model is more successful in removing undesired 
parts from inside cells than the algorithms proposed in [7,44,47]. For gPb-OWT- 
UCM method, the best threshold was picked, and the edges were dilated to the true 
membrane thickness.



29

2.4.4 M C M S  contextual m odel (m itochondria  segm entation)

In this section, we show that MCMS model outperforms the multiscale contex­

tual model in mitochondria segmentation for the mouse neuropil dataset. For this 

dataset, the labels are only available for membrane and mitochondria, so Nobj =  2 

in Algorithm 1. We used MLP-ANNs with 10 hidden nodes for both membrane and 

mitochondria classifiers.

Input image feature vectors were computed on 11 x 11 and 15 x 15 stencils for 

membrane and mitochondria classifiers, respectively. For both of the categories, the 

context features were computed on 5 x 5 patches at four scales. To compare the 

performance, we used the same mitochondria classifiers with the same parameter 

settings in the multiscale contextual model. The average F-value at different stages 

and for different methods is shown in Fig. 2.12(a). The performance of the MCMS 

model is 2.42% better than the multiscale contextual model. The precision-recall 

curves for pixel-wise mitochondria segmentation are shown in Fig. 2.12(b). Fig. 2.13 

shows five test examples and corresponding mitochondria segmentation results for 

different methods. The MCMS model is more successful in correcting both false 

positive and false negative errors compared to the multiscale contextual and RLF 

models.

(a) (b)

Figure 2.12: Mitochondria segmentation experiment on the mouse neuropil dataset. 
(a) The test F-value at different stages of the series for different methods. (b) The 
precision-recall curves for test images and for different methods (the last stage of the 
series).



30

Figure 2.13: Test results for the mitochondria segmentation experiment (mouse 
neuropil dataset). (a) Input images, (b) RLF method [47], (c) multiscale contextual 
model, (d) MCMS contextual model, (e) groundtruth images. The MCMS contextual 
model is more successful in correcting both false positive and false negative errors 
compared to other methods. Some of the improvements are marked with red 
rectangles.



31

2.4.5 M C M S contextual m odel (m itochondria  and synapse
segm entation)

In this experiment, we test the MCMS model performance on the Drosophila VNC 

dataset with three object categories: membrane, mitochondria, and synapse. We used 

MLP-ANNs with 10 hidden nodes as classifier in the series.

Input image features were computed on 11 x 11, 15 x 15, and 15 x 15 for membrane, 

mitochondria, and synapse classifiers, respectively. Similar to previous experiments, 

context features were computed on 5 x 5 patches at four scales. To compare with 

the multiscale contextual model, we used classifiers with the same parameter settings 

for mitochondria and synapse segmentation. Fig. 2.14 shows five test samples and 

corresponding mitochondria segmentation results for different methods. The MCMS 

model gives cleaner results compared to other methods. Fig. 2.15 shows synapse 

segmentation results for five test samples. The MCMS model is more successful 

in correcting false positive errors compared to the multiscale contextual model. It 

must be emphasized that in this experiment we target four elements of synapses, i.e., 

synapstic cleft, postsynaptic density, T-band, and vesicles, simultaneously, which is 

a challenging task even for expert anatomists. That explains why the results are not 

as good as the membrane and mitochondria segmentation results.

The average F-value for the test set at different stages is shown in Fig. 2.16. The 

MCMS model outperforms the multiscale contextual model with 2.9% and 2.92% in 

mitochondria and synapse segmentation, respectively. The F-value of RLF method 

for mitochondria segmentation is 60%, which is about 7% worse than the MCMS 

model.

2.4.6 Results discussion

In all of the above experiments, our goal was to study the effect of using rich 

contextual information in segmentation performance. We only used the samples of 

input images on a stencil structure as input image features. The overall performance 

can be improved by applying filter banks to input images and extract more informative 

features like what Tu et al. [3] did for horse segmentation. We previously showed [23] 

extracting Radon-like features from input images can improve the membrane detec­

tion results.



32

Figure 2.14: Test results for the mitochondria segmentation experiment (Drosophila 
VNC dataset). (a) Input images, (b) RLF method [47], (c) multiscale contextual 
model, (d) MCMS contextual model, (e) groundtruth images. The MCMS contextual 
model gives cleaner results compared to other methods. Some of the improvements 
are marked with red rectangles.

We noticed that in the MCMS model if a dataset is highly imbalanced, then the 

effect of small classes on big classes is negligible. For example, the mitochondria 

contextual information in section 2.4.4 and the synapse and mitochondria contex­

tual information in section 2.4.5 did not improve the membrane detection results. 

Nonetheless, big classes or same-size classes can improve the segmentation results 

of small classes as we showed in the experiments. In the mouse neuropil dataset



33

Figure 2.15: Test results for the synapse segmentation experiment (Drosophila VNC 
dataset). (a) Input images, (b) multiscale contextual model, (c) MCMS contextual 
model, (d) groundtruth images. The MCMS contextual model is more successful in 
correcting false-positives errors than the multiscale contextual model. Some of the 
improvements are marked with red rectangles.

the mitochondria class is 2.5 times smaller than the membrane class, and in the 

Drosophila VNC dataset the mitochondria and synapse classes are 4.5 and 6 times 

smaller than the membrane class, respectively.

In general image segmentation applications, other powerful techniques such as 

graph cuts and level sets can be applied to the results of the MCMS model to improve 

the segmentation accuracy. In segmentation of EM images, the final segmentation 

results can be improved further by applying appropriate postprocessing techniques. 

For example, Andres et al. [56] propose a hierarchical method that uses overseg­

mented images obtained from membrane detection results and applies a classifier to 

merge regions. Funke et al. [57] and Liu et al. [58] use a tree structure to merge



34

(a) (b)

Figure 2.16: Mitochondria and synapse segmentation experiment on the Drosophila 
VNC dataset. (a) The test F-value at different stages of the series for different 
methods (mitochondria segmentation). (b) The test F-value at different stages of the 
series for different methods (synapse segmentation).

oversegmented regions for cell segmentation. These postprocessing approaches can 

improve Rand error [59] for membrane detection. However, in our proposed method 

we target the pixel error, and our method can be used for general computer vision 

datasets. The mitochondria and synapse segmentation results also can be improved 

by applying morphological postprocessing, which removes tiny false positive errors. 

Our goal in the experiment section was to validate the multiscale and the MCMS 

contextual models, and study of postprocessing approaches are beyond the scope of 

this study.

2.5 Conclusion
We develop a supervised segmentation framework that exploits contextual in­

formation from multiple objects and at different scales for learning discriminative 

models. Our multiclass multiscale (MCMS) contextual model enables an implicit 

learning of geometrical relationships and dependencies among multiple objects present 

in an image. We applied our method to object segmentation in EM images. Results 

indicate that using multiscale and cross-object contextual information can improve 

the segmentation results for each of the components present in EM images, such as 

membrane, mitochondria, and synapse. It is worth noting that the proposed method



35

is not restricted to this application and can be used in other image segmentation 

problems.

Even though our model has hundreds of parameters to learn, the complexity 

remains tractable since classifiers are trained one at a time separately. Our model 

can specially be useful in segmentation of imbalanced datasets where only a few 

samples of a particular object/class are available. In these datasets, large classes 

can improve the segmentation results of the small classes by providing informative 

contextual information.

We conclude by discussing a possible extension of the MCMS model presented in 

this chapter. Our feature extraction model only exploits pixel intensities from input 

images and probabilities from context images. While this reduces the computational 

complexity and keeps the model simple, more complex features extracted from both 

input and context images can improve the results.



CHAPTER 3

CONTEXTUAL HIERARCHICAL MODEL

In this chapter, we introduce a new contextual framework, called contextual hierar­

chical model (CHM), which learns contextual information in a hierarchical framework 

for scene labeling. At each level of the hierarchy, a classifier is trained based on down­

sampled input images and outputs of previous levels. Our model then incorporates 

the resulting multiresolution contextual information into a classifier to segment the 

input image at original resolution. This training strategy allows for optimization 

of a joint posterior probability at multiple resolutions through the hierarchy. The 

contextual hierarchical model is purely based on the input image patches and does 

not make use of any fragments or shape examples. Hence, it is applicable to a variety 

of problems such as object segmentation and edge detection.

Unlike MCMS, which extract multiscale contextual information in an unsupervised 

way, CHM learns multiscale contextual information in a supervised setting. This 

enables CHM to pool more discriminative contextual information at test time and thus 

improve the performance. We demonstrate that CHM outperforms state-of-the-art 

methods on Stanford background and Weizmann horse datasets. It also outperforms 

state-of-the-art edge detection methods on the NYU depth dataset and achieves state- 

of-the-art results on the Berkeley segmentation dataset (BSDS 500).

3.1 Introduction
3.1.1 Graphical m odels

There have been many methods that employ graphical models to take advantage 

of contextual information for scene labeling. Markov Random Fields (MRF) [8,60-62] 

and Conditional Random Fields (CRF) [37,63] are the most popular approaches. He 

et al. [37] used CRF to capture contextual information at multiple scales. Larlus and



37

Jurie [60] used MRF on top of a bag-of-words based object model to ensure consistency 

of labeling. Gould et al. [8] defined an energy function over scene appearance and 

geometry and then developed an efficient inference technique for MRFs to minimize 

that energy. Kumar and Koller [61] formulated the energy minimization as an integer 

programming problem and proposed a linear programming relaxation to solve it. 

Tighe and Lazebnik [62] proposed an MRF-based superpixel matching that can be 

easily scaled to large datasets. Ladicky et al. [63] introduced a hierarchical CRF, 

which is able to combine features extracted from pixels and segments. For inference, 

they used a graph-cut [64] based method to find the MAP solution. Ren et al. [65] 

used a superpixel MRF together with a segmentation tree for RGB-D scene labeling.

Many graphical methods rely on presegmentation to superpixels [62,65] or multiple 

segment candidates [61,66]. More powerful region-based features can be extracted 

from superpixels compared to pixels. Moreover, presegmentation to superpixels im­

proves the computational efficiency of these models. However, it is known that super­

pixels might not adhere to the image boundaries [67] and thus can decrease labeling 

accuracy [65]. This motivated approaches using multiple segments as hypotheses. 

However, these methods can be problematic when dealing with cluttered images [63]. 

This motivated methods with hierarchical segmentation [63,68].

Unlike previously cited approaches, our proposed method does not make use of 

any presegmentations or exemplars and works directly on image pixels. This allows 

our model to be applied to different problems without any modifications. Moreover, 

inference is simpler in our CHM compared to graphical models. It only requires the 

evaluation of classifier function and does not require searching the label space as in 

CRFs [69].

3.1.2 C onvolutional networks

Deep learning is a very active area of research and has been widely used in the com­

puter vision field. Convolutional networks (ConvNet) [70] are one of the most popular 

deep architectures. They were initially proposed for character recognition [70], but 

later applied successfully to image classification [71,72] and object detection [73,74]. 

They have also been used for biological image segmentation [18,75,76] and scene la­

beling [2,69]. Jain et al. used ConvNets to restore membranes in electron microscopic



38

(EM) images. Turaga et al. [75] used ConvNets to minimize the Rand index [59] in­

stead of pixel error to improve the segmentation of EM images. Ciresan et al. trained 

a very large ConvNet with four convolutional layers followed by two fully connected 

layers. This method was used in the winning entry of the International Symposium on 

Biomedical Imaging (ISBI) neuronal segmentation challenge [77]. Grangier et al. [69] 

trained a ConvNet by iteratively adding new layers for scene parsing. Farabet et al. [2] 

proposed a multiscale ConvNet for scene parsing. Their framework contains multiple 

copies of a single network that are applied to a scale-space pyramid of input images. 

They performed some postprocessing methods to clean up the outputs generated by 

the ConvNet.

ConvNets can cover large contextual area compared to other methods, but they 

need several hidden layers with many free parameters. Training the ConvNets is 

computationally expensive and might take months or even years on CPUs [76]. Hence, 

GPU implementations, which speed up the training process, are usually needed in 

practice. Unlike ConvNets, our CHM can be trained on CPUs in a reasonable time. 

Moreover, we will show that CHM outperforms the ConvNets proposed in [2,18,76].

3.1.3 Cascaded classifiers

The idea of using multiple classifiers to model context has been proven successful 

to solve different computer vision problems. Fink and Perona [32] proposed the 

mutual boosting framework, which takes advantage of multiple detectors in a boosting 

architecture for object detection. Torralba et al. [4] proposed the boosted random field 

(BRF), which uses boosting to learn the graph structure of CRFs, for object detection 

and segmentation. Heitz et al. [5] proposed a different architecture to combine mul­

tiple classifiers, called the cascaded classifier model, for holistic scene understanding. 

Their model combines several classifiers tuned for some specific subtasks to improve 

the performance on all subtasks. Li et al. [6] introduced a feedback-enabled cascaded 

classification model, which jointly optimizes several subtasks in a two-layer cascade 

of classifiers. In a more related work, Tu and Bai [3] introduced the auto-context 

algorithm, which integrates both image features and contextual information to learn 

a series of classifiers for image segmentation. A filter bank is used to extract the



39

image features and the output of each classifier is used as the contextual information 

for the next classifier in the series. Jurrus et al. [7] also trained a series of artificial 

neural networks (ANN) [54], which learns a set of convolutional filters from the data 

instead of applying fixed filter banks to the input image. Their series architecture 

was improved by employing a multiscale representation of context during training [23]. 

The advantage of the cascaded classifier model over ConvNets is its easier training 

due to treating each classifier in the series one at a time.

We also introduce a segmentation framework that takes advantage of both input 

image features and contextual information. Similar to the auto-context algorithm, 

we use a filter bank to extract input image features. But we use a hierarchical 

architecture to capture contextual information at different resolutions. Moreover, 

this multiresolution contextual information is learned in a supervised framework, 

which makes it more discriminative compared to the above-mentioned methods. From 

the Bayesian point of view, CHM optimizes a joint posterior probability at multiple 

resolutions simultaneously. To our knowledge, supervised multiresolution contextual 

information has not previously been used in a scene labeling framework.

3.1.4 Edge detection

There is a large body of work in the area of edge detection. Many unsupervised 

techniques have been proposed for edge detection [44,78-80]. Seminal Canny edge 

detector [79] is one of the earliest, and gPb [78] is one of the latest among these 

approaches. More recently, supervised techniques have been explored to improve 

the edge detection performance [43,81-85]. Martin et al. [84] computed gradients 

for brightness, color, and texture channels on a circular disc located at each pixel. 

They then combined these hand-crafted features and used them as input to a logistic 

regression classifier for predicting edges. Dollar et al. [43] extracted tens of thousands 

of features at each pixel and then used a probabilistic boosting tree (PBT) [86] to 

find edges. Mairal et al. [85] proposed to learn discriminative sparse dictionaries to 

distinguish between “patches centered on an edge pixel” and “patches centered on a 

non-edge pixel.” Ren and Bo [82] used gradients over learned sparse codes instead of 

hand designed gradients of [84] to achieve state-of-the-art performance. Lim et al. [81]



40

defined a set of sketch tokens by clustering the patches extracted from groundtruth 

images. Then, they trained a random forest to detect those tokens at test time. 

Finally, Dollar and Zitnick [83] made use of different edge patterns, e.g., T-junctions 

and Y-junctions, present in images and used a structured random forest to learn those 

patterns. Their method is fast and generalizes well between different datasets.

We also approach the edge detection problem as a labeling problem. Our CHM 

is trained to distinguish between “patches centered on an edge pixel” and “patches 

centered on a non-edge pixel.” We will show that CHM achieves near state-of-the-art 

performance on the Berkeley dataset [10] and outperforms state-of-the-art meth­

ods [82,83] on the NYU depth dataset. Moreover, we will demonstrate that general­

ization performance of CHM across different datasets is better compared to [82,83].

3.2 Contextual Hierarchical Model
The contextual hierarchical model (CHM) is illustrated in Fig. 3.1. First, a mul­

tiresolution representation of the input image is obtained by applying downsampling 

sequentially. Next, a series of classifiers are trained at different resolutions from 

the finest resolution to the coarsest resolution. At each resolution, the classifier is 

trained based on the outputs of the previous classifiers in the hierarchy and the input 

image at that resolution. Finally, the outputs of these classifiers are used to train 

a new classifier at original resolution. This classifier exploits the rich contextual 

information from multiple resolutions. The whole training process targets a joint 

posterior probability at multiple resolutions (see section 3.2.3). We describe different 

steps of the model separately in the following subsections.

3.2.1 B ottom -up  step

Let X  =  (x(m,n))  be the 2D input image with a corresponding ground truth

Y =  (y(m, n)) where y(m, n) E {0,1}  is the class label for pixel (m, n). For notational 

simplicity, we use 1D vectors X  =  (x1, x2, . . . , x n) and Y  =  (y1,y2, . . . , y n) to denote 

the input image and corresponding ground truth, respectively. The training dataset 

then contains K  input images, X  =  { X 1, X 2, . . . , X K}, and corresponding ground



41

Figure 3.1: Illustration of the contextual hierarchical model. The blue classifiers 
are learned during the bottom-up step and the red classifier is learned during the 
top-down step. In the bottom-up step, each classifier takes the outputs of lower 
classifiers as well as the input image as input. The height of the hierarchy, L, is three 
in this model, but it can be extended to any arbitrary number.

truth images, Y  =  {Y1,Y2, . . . , Y k j . 1 We also define the $(•,/) operator, which 

performs down-sampling I times by averaging the pixels in each 2 x 2 window, and 

the r (•,/) operator, which performs max-pooling I times by finding the maximum 

pixel value in each 2 x 2 window. Each classifier in the hierarchy has some internal 

parameters 9l, which are learned during training

9\ =  argmax p ( r ( Y ,i -  i) | $ ( x , i  -  i),
01

r ( Y 1 ,i -  1 ) , . . . , r ( Y l-1, 1 ); ex) (3.1 )

1Unless specified otherwise, upper case symbols, e.g., X , Y , denote a particular vector, lower 
case symbols, e.g., x, y, denote the elements of a vector, and bold-face symbols, e.g., X  , Y , denote 
a set of vectors.



42

where Y 1, . . . ,  Y 1 1 are the outputs of classifiers at the lower levels of the hierarchy. 

The classifier output of each level is obtained using inference

Y l =  argmax P (Y | $ ( X , l  -  1),
Y

r ( Y \ i  — 1 ) , . . . , r ( Y 1-1, 1 ) ; d,) (3.2)

Each classifier in the I’th level of the hierarchy takes outputs of all lower level 

classifiers, i.e., Y 1 , . . . , Y l-1, which provide multiresolution contextual information. 

For I =  1, no prior information is used, and the classifier parameters, 01, are learned 

only based on the input image.

It is worth mentioning that classifiers at higher levels of the hierarchy have access 

to contextual information from larger areas because they are trained on downsampled 

images.

3.2.2 Top-dow n step

Unlike the bottom-up step where multiple classifiers are learned, only one classifier 

is trained in the top-down step. Once all the classifiers are learned in the bottom-up 

step, a top-down path is used to feed coarser resolution contextual information into 

a classifier, which is trained at the finest resolution. We define H(-,l) operator that 

performs upsampling i times by duplicating each pixel. For a hierarchical model with 

L levels, the classifier is trained based on the input image and the outputs of stages 

1 to L obtained in the bottom-up step. The internal parameters of the classifier, $, 

are learned using the following

$ =  argmax P  (Y  | X , Y 1, f t ( Y 2, 1) , . . . ,
£

f t ( YL,L — 1); $) (3.3)

The output of this classifier can be obtained using the following for inference

Z  =  argmax P  (Y | X ,Y 1, ft(Y2, 1) , . . . ,
Y

ft(YL,L — 1); $) (3.4)

The top-down classifier takes advantage of prior information from multiple resolutions. 

This multiresolution prior is an efficient mixture of both local and global information



43

since it is drawn from different scales. In a related work, Seyedhosseini et al. [23] 

proposed a multiscale contextual model that exploits contextual information from 

multiple scales. The advantage of the model proposed here is that the context 

images are learned at different scales in a supervised framework, while the multiscale 

contextual model uses simple filtering to create context images at different scales. 

This allows CHM to optimize a joint posterior at different scales. The overall learn­

ing and inference algorithms for the contextual hierarchical model are described in 

Algorithm 2 and Algorithm 3, respectively.

A lgorithm  2 Learning algorithm for the CHM.
Input: A set of training images together with their binary groundtruth images, S =  

{ ( X i,Yi),i =  1 , . . . , K }  and the height of the hierarchy, L.
O utput: ©  =  { 0 i , . . . ,  §L, / } .

• Learn the first classifier, d1, using equation (3.1) without any prior information 
and only based on the input image features.

• Compute the output of first classifier, Y 1, using equation (3.2). 
for l =  2 to L do

• Learn the I’th classifier, Q1, using equation (3.1).
• Compute output of the I’th classifier, Y 1, using equation (3.2). 

end for
• Learn the top-down classifier, / ,  using equation 3.3.

A lgorithm  3 Inference algorithm for the CHM.
Input: An input image X , ©, L .
O utput: Z.

• Compute the output of first classifier, Y 1, using equation (3.2). 
for l =  2 to L do

• Compute output of the I’th bottom-up classifier, Y l, using equation (3.2). 
end for

• Compute output of the top-down classifier, Z, using equation (3.4).



44

3.2.3 Probabilistic interpretation

Given the training set X , containing T =  K  x n samples and corresponding labels 

Y , a common approach is to find the optimal solution by solving the maximum 

aposteriori (MAP) equation

log n  p (Yt I Xt; 0 )  (3.5)
t

There are two common strategies to solve this optimization. The first strategy, i.e., 

the generative approach, decomposes the posterior to likelihood, P ( X t | Yt), and prior, 

P (Yt). The second strategy, i.e., the discriminative approach, targets the posterior 

distribution directly. Our hierarchical model falls into the second category. However, 

it differs from other approaches in a sense that it optimizes a joint posterior at multiple 

resolutions, i.e.,

log n  P  (Yt, r(Yt, 0) , . . . ,  r ( Y t , L -  1 ) I Xt; 0 ) =
t

^  log P  (Yt, r(Yt, 0 ) , . . . ,  r(Yt,L -  1) I Xt; 0 )  (3.6)
t

where r  is the maxpooling operator and L is the number of levels in the hierarchy. 

Using P(A, B  | C ) =  P(A | B, C)P( B  | C ), (3.6) can be rewritten as

^  log ( p (Yt | Xt, r(Yt, 0 ) , . . . ,  r(Yt,L -  1); 0 )  x
t

p (r(Y t,L  -  1) | Xt, r(Yt, 0 ) , . . . ,  r(Yt,L -  2); 0 ) x 

•••x P  (r(Yt, 0) | Xt; 0 )

^  log P(Yt | Xt, r(Yt, 0 ) , . . . ,  r(Yt,L -  1); 0 )  +
t

Top-down: J2(X,Y ;©)

EE logp(r(Yt, i )  | Xt, r(Yt, 0) , . . . ,  r(Yt,i -  1 ); 0 ) (3.7)
1 t

Bottom-up: Ji(X,Y ;©)

Note that the optimization problems nicely splits down to two subproblems, i.e., 

J i(X , Y ; 0 )  and J2(X, Y ; 0 )  , which are solved during bottom-up and top-down steps, 

respectively.



45

In practice, the optimization is done in a greedy way. The output of the classifier 

at level l, Y 1, is used as an approximation of the groundtruth at that resolution, 

r(Y, l — 1). Therefore, the following optimization problems are solved during training

B ottom -u p :

m^x J1(X , Y ; ©) =

max log P  (r (Y„ l )  | X . Y , 1, . . . , ^ ) ;  ©)  (3.8)
I t

Top-dow n:

max J2(X , Y ; ©) =
©

m©x S  log P  (Yt I ^ V . .  YtL; © ) (3.9)
t

This greedy approach makes the training simple and tractable. It is noteworthy that 

each of the terms of the outer summation in J1 is corresponding to one level of the 

hierarchy. Due to the greedy optimization, a second stage of CHM can improve the 

results. In the second stage, the top-down classifier of the previous stage is used as 

the first classifier in the bottom-up step.

3.2.4 Classifier selection

Even though our problem formulation is general and not restricted to any specific 

type of classifier, in practice we need a fast and accurate classifier that is robust against 

overfitting. Among off-the-shelf classifiers, we consider artificial neural networks 

(ANN), support vector machines (SVM), and random forests (RF). ANNs are slow 

at training time due to the computational cost of backpropagation. SVMs offer 

good generalization performance, but choosing the kernel function and the kernel 

parameters can be time consuming since they need to be adopted for each classifier 

in the CHM. Furthermore, SVMs are not intrinsically probabilistic and thus are 

not completely suitable for our CHM model. Random forests provide an unbiased 

estimate of testing error, but they are prone to overfitting in the presence of noise. 

In section 3.3.1.1 we show that overfitting can disrupt learning in the CHM model.

We adopt logistic disjunctive normal networks (LDNN) [25] as the classifier in 

CHM. LDNN is a powerful classifier, which consists of one adaptive layer implemented 

by logistic sigmoid functions followed by two fixed layers of logical units that compute



46

conjunctions and disjunctions, respectively. LDNN allows an intuitive initialization 

using k-means clustering and outperforms neural networks, SVMs, and random forests 

on several standard datasets [25]. Finally, LDNNs are fast to train due to the 

single adaptive layer, which makes them suitable for the CHM architecture. Later in 

Chapter 5, we will show that the same formulation can be applied to decision trees 

and random forests to fine tune the parameters and improve the performance.

3.2.5 Logistic disjunctive norm al network architecture

Any Boolean function b : B n ^  B where B =  {0,1}  can be written as a 

disjunction of conjunctions, which is also known as the disjunctive normal form [87]. 

Now consider the binary classification problem f  : R n ^  B. Let X+ =  {X  e R n : 

f  (X ) =  1} and X -  =  {X  e R n : f  (X ) =  0}. One possibility for expressing f  in 

disjunctive normal form is to approximate X+ as the union of axis aligned hypercubes 

in R k. We first define the box function

h« '  w = { o, (3-10>
where L e R, U e R  and L <  U. Then the disjunctive normal form can be rewritten 

as

/ ( X ) =  y ( A  ( x ) )  (3.11)

where x  denotes the j ’th element of the vector X . This formulation is also known as 

a fuzzy min-max neural network [88]. The most important drawback of this model 

is its limitation to axis aligned decision boundaries, which can significantly increase 

the number of conjunctions necessary for a good approximation. We propose to 

construct a significantly more efficient approximation in disjunctive normal form by 

approximating X+ as the union of convex sets, which are defined as the intersection 

of arbitrary half-spaces in R n. By using hyperplanes to define the half-spaces, we get 

the approximation

/ ( X  ) =  y ( A  hij ( X ) )  (3.12)

qi(X)
where the half-spaces are defined as

h (X ) =  I  1, ^ fc=! wijkxk +  bij — 0 (3 13)
hij (X ) 1 0, otherwise ( 3 3 )



47

Our next step is to replace equation (3.12) with a differentiable approximation. 

First, a conjunction of binary variables /\j hij (X ) can be replaced by their product 

H j h j  ( X ). Then, using De Morgan’s laws we can replace the disjunction of binary 

variables V i qi (X ) with —I A i—q (X ), which in turn can be replaced by the expression 

1 - n i( 1 - qi(X )). Finally, we can approximate the half-spaces hij (X ) with the logistic 

sigmoid function

= i +  e -T .k ^ i jk X k + b i j  (3-14)

This gives in the differentiable disjunctive normal form approximation to f

f ( X  ) = 1  -  n  -  n  <X)) ( a - ! )

9i(X)

This formulation can be interpreted as a 3-layer network. The input vector, i.e., X , 

is mapped to the first layer by sigmoid functions in (3.14). The first layer consists 

of N groups of nodes with M  nodes each. The nodes in each group are connected 

to a single node in the second layer. Each node in the second layer implements the 

logical negations of the conjunctions gi( X ) in (3.15). The output layer is a single 

node, which implements the disjunction using De Morgan’s law. We will refer to such 

a network as a N x M  LDNN. Notice that the only parameters of the network are the 

weights, wijk, and biases, bij , of the connections between the inputs and the first layer 

of sigmoid functions. This is an advantage of using parameterless functions, i.e., the 

products, for representing the conjunctions.

Given a set of training examples T  of pairs (X, y) where y denotes the desired 

binary class corresponding to X  and a classifier f  ( X ), the quadratic error over the 

training set is

E (f, T ) =  £  (y -  f  ( X) )2 (3.16)
(X,y)eT

The gradient of the error function with respect to the parameter wijk in the LDNN 

architecture, evaluated for the training pair (X, y), is 

d E
=  - 2 ( y  -  f (X))  n < l  -  ft-(A'))

dwijk ,.J r=i
9i (X)(1  -  Vij( X )) xk (3.17)



48

Similarly the gradient of the error function with respect to the bias term b j is

dE
=  “ 2(y — f ( X )) J^[(l — gr(X))

j  r=i
g ,(X  )(1 — C j ( X )) (3.18)

The parameters of the LDNN can be learned by minimizing (3.16) using the gradient 

descent algorithm and (3.17) and (3.18).

Finally, the disjunctive normal form used in the the LDNN permits a very simple 

and intuitive initialization of the model parameters. Since each conjunction is a 

convex set in R n and X+ is approximated as the union of N such conjunctions, we 

can view the convex sets generated by the conjunctions as subclusters of X+. To 

initialize a model with N conjunctions and M  sigmoid functions per conjunction, we

• Use the k-means algorithm to partition X+ into N clusters. Let C+)i be the 

centroid of the i’th cluster.

• Use the k-means algorithm to partition X _ into M  clusters. Let C_ j  be the 

centroid of the j ’th cluster.

• Initialize the weight vectors W j as the unit length vectors from the negative to 

the positive centroids. In other words, let V j =  C+  ̂— C - j  and let Wij =

• Initialize the bias terms b j such that the sigmoid functions C j (X ) take the value

0.5 at the midpoints of the lines connecting the positive and negative cluster 

centroids. In other words, let b j = <  W j , 0.5(C+)i +  C _ j ) > where < ■, ■ > 

denotes the inner product of vectors.

3.2.6 Feature selection

In this section, we describe the set of features extracted from input and context 

images in CHM. The features that we extract from input images include Haar fea­

tures [89] and histogram of oriented gradients (HOG) features [90]. These features are 

efficient to compute and somewhat complementary to each other [3]. For color images, 

Haar and HOG features are computed for each channel separately. We also use dense 

SIFT flow features [91] computed at each pixel. In addition, we apply a set of Gabor



49

filters with different parameters and Canny edge detector to obtain more features. 

Beside these appearance features, we also use position and its higher moments (up 

to 2nd order), which are known to be informative for scene labeling [65,68]. Finally, 

we use a 15 x 15 sparse stencil structure, which contains 57 samples, to sample the 

neighborhood around each pixel. In summary, we extract 647 features from color 

images and 457 features from gray scale images.

Context features are obtained from the outputs of classifiers in the hierarchy. 

We used a 15 x 15 stencil to sample context images around each pixel. We also 

tried larger and more dense sampling structures, e.g., 21 x 21 patch, but they had 

negligible impact on the performance. We do not extract any other features beside 

the neighborhood samples from context images.

3.3 Experimental Results
We perform experimental studies to evaluate the performance of CHM on three 

different applications: Scene labeling, edge detection, and biomedical image segmen­

tation. The diversity among these applications shows the broad applicability of our 

method. In all the applications, we used a set of nearly identical parameters, including 

the number of levels in CHM and the features parameters. Following the reproducible 

research instructions [28], we maintain a web page containing the source codes and 

scripts used to generate the results in this section.2

3.3.1 Scene labeling

We show the performance of CHM on a binary scene labeling dataset, i.e., Weiz- 

mann dataset [9], as well as an outdoor scene labeling dataset with multiple classes,

i.e., Stanford background dataset [8].

3.3.1.1 W eizm ann dataset

The Weizmann dataset [9] contains 328 gray scale horse images with corresponding 

foreground-background truth maps. Similar to Tu et al. [3], we used half of the images 

for training and the remaining images were used for testing. The task is to segment 

horses in each image. We used the features described in section 6.2.2. Note that we

2http://www.sci.utah.edu/~mseyed/Mojtaba_Seyedhosseini/CHM.html

http://www.sci.utah.edu/~mseyed/Mojtaba_Seyedhosseini/CHM.html


50

do not use location information for this dataset since horses are mostly centered in 

the images, which would create an unfair advantage.

We used a 24 x 24 LDNN as the classifier in a CHM with two stages and 5 levels 

per stage. To improve the generalization performance, we adopted the dropout idea. 

Hinton et al. [92] showed that removing 50% of the hidden nodes in a neural network 

during the training can improve the performance on the test data. Using the same 

idea, we randomly removed half of the nodes in the second layer and half of the nodes 

per group in the first layer at each iteration during the training. At test time, we 

used the LDNN that contains all of the nodes with their outputs square rooted to 

compensate for the fact that half of them were active during the training time.

For comparison, we trained a CHM with random forest as the classifier. To 

avoid overfitting, only ^  of samples were used to train 100 trees in the random 

forest. We also trained a multiscale series of artificial neural networks (MSANN) 

as in [23]. Three metrics were used to evaluate the segmentation accuracy: Pixel 

accuracy, F-value =  2xvrecisl<m̂ reĉ 1 anc[ G-mean= V recall x TN R  where TN R  =J ’ precision+recau ’ v
------- trv,e nl 9af ve— . Unlike F-value, G-mean is symmetric with respect to positivetrue negative+false positive t o  r r

and negative classes. In Table 3.1 we compare the performance of CHM with some 

state-of-the-art methods. CHM outperforms other state-of-the-art methods. It is 

worth noting that CHM does not make use of fragments, and it is based purely on 

discriminative classifiers that use neighborhood information.

The CHM-LDNN outperforms the state-of-the-art methods while the CHM-RF

Table 3.1: Testing performance of different methods on the Weizmann horse dataset.

Method F-value G-mean Pixel accuracy

KSSVM [93] — — 94.60%

TWM [94] — — 94.70%

Auto-context [3] 84% — —

Levin & Weiss [95] — — 95.2%

MSANN [23] 87.58% 92.76% 94.34%

CHM-RF 83.15% 90.20% 92.33%

CHM-LDNN 89.89% 94.39% 95.37%



51

performs worse than those methods. The training and testing F-value of the classifiers 

trained at the original resolution in the CHM, i.e., the classifiers at the bottom of 

hierarchy, for both LDNN and random forest are shown in Fig. 3.2. It shows how 

overfitting propagates through the stages of the CHM when the random forest is used 

as the classifier. The overfitting disrupts the learning process because there are too 

few mistakes in the training set compared to the testing set as we go through the 

stages. For example, the overfitting in the first stage does not permit the second 

stage to learn the typical mistakes from the first stage that will be encountered at 

testing time. We tried random forests with different parameters to overcome this 

problem but were unsuccessful. Fig. 3.3 shows four examples of our test images and 

their segmentation results using different methods. The CHM-LDNN outperforms 

the other methods in filling the body of horses.

3.3.1.2 Stanford background dataset

The Stanford background dataset [8] contains 715 images of urban and rural 

scenes, collected from other public datasets such that each image is approximately 

240 x 320 pixels and contains at least one foreground object. This dataset is composed 

of eight classes, one foreground and seven other classes, and the groundtruth images,

Figure 3.2: F-value of the classifiers trained at the original resolution in the CHM 
with LDNN and random forest. The overfitting in the random forest makes it useless 
in the CHM architecture.



52

nj

_Q

o

"O

Figure 3.3: Test results of the Weizmann horse dataset. (a) Input image, (b) 
MSANN [23], (c) CHM-RF, (d) CHM-LDNN, (e) ground truth images. The CHM- 
LDNN is more successful in completing the body of horses.

obtained from Amazon Mechanical Turk, are included in the dataset. We followed 

the standard evaluation procedure for this dataset, which is performing 5-fold cross­

validation with the dataset randomly split into 572 training images and 143 test 

images.

We trained eight CHMs in a one-versus-all architecture. To take advantage of 

intraclass contextual information, we allowed CHMs to communicate with each other 

at three upper levels of the hierarchy. At those levels, classifiers get samples of 

context images of other classes as well as their own class. The performance of CHM 

with and without intraclass connection is reported in Table 3.2. Our CHM achieves 

state-of-the-art performance in terms of pixel accuracy. Due to the absence of any 

global constraint for label consistency, CHM performs worse than [2,65] in terms of

-1
1
K '

1h '

H i

>



53

Table 3.2: Testing performance of different methods on Stanford background 
dataset [8]: Pixelwise accuracy, class-average accuracy, and computation time.

Method Pixel Acc. Class Acc. CT (sec.)

Region-based Energy [8] 76.4% — 10 -  600

Selecting Regions [61] 79.4% — 600
Stacked Hierarchical 

Labeling [68] 76.9% 66.2% 12

Superparsing [62] 77.5% — 10
Recursive Neural 

Networks [96] 78.1% — —

Pylon Model [97] 81.9% 72.4% 60

Ren et al. [65] 82.9% 74.5% —

Singlescale ConvNet [2] 66% 56.5% 0.35

Multiscale ConvNet [2] 78.8% 72.4% 0.6
Multiscale ConvNet+ 

CRF on gPb [2] 81.4% 76.0% 60.5

CHM 82.30% 73.70% 60
CHM with Intra-class 

Connection 82.95% 74.32% 65

class-average accuracy. Similar to [2], we computed superpixels [98] for each image 

and then assign the most common label, based on CHM output, to each superpixel. 

Unlike [2], this approach had negligible impact on the performance and improved the 

pixel accuracy only to 83%. This shows CHM is a powerful pixel classifier. In our 

experiment, inference took about 65 seconds for each image (half of it was spent on 

computing the features). A few test samples of the Stanford background dataset, 

and corresponding CHM results are shown in Fig. 3.4. Using intraclass connection 

improves the label consistency in the results.

The 8-class confusion matrix of CHM is shown in Fig. 3.5. The hard classes 

are mountain, water, and foreground. This is consistent with the reported results 

in [65,68]. Even though the performance of CHM is similar to [65] for most of the 

classes, it performs significantly better on the foreground category compared to [65] 

achieving 74.1% vs 63%.



54

Legend: M  Sky ■  Tree Road Grass Water Building Foreground

Figure 3.4: Test samples of scene labeling on Stanford background dataset [8]. First 
row: Input image, second row: CHM, third row: CHM with intraclass connection, 
Fourth row: Groundtruth. Using intraclass contextual information improves the 
performance.

1 

2

3

4

5

6

7

8

Figure 3.5: The confusion matrix of CHM results on the Stanford background 
dataset [8]. The overall class-average accuracy is 74.32%.



55

3.3.2 Edge detection

In this section we show the performance of CHM on two edge detection datasets: 

BSDS 500 [10] and NYU Depth (v2) [99]. We used the popular evaluation framework 

available in the gPb package [78] to compare CHM performance with other meth­

ods. The evaluation framework computes three metrics: F-value computed with a 

fixed threshold for the entire dataset (ODS), F-value computed with per-image best 

thresholds (OIS), and the average precision (AP).

We trained a CHM with 5 levels for both datasets. Similar to [81,83], we adopted 

a multiscale strategy to compute edge maps. That is, at test time, we ran the trained 

CHM on the original, as well as double and half resolution versions of each input 

image. We then resized the results to the original image resolution and averaged 

them to obtain the edge map. We also used the standard nonmaximal suppression, 

suggested in [78,81-83], to obtain thinned edges.

3.3.2.1 BSDS 500 dataset

Berkeley segmentation dataset and benchmarks (BSDS 500) [10,78] is an extension 

of BSDS 300 dataset and used widely for the evaluation of edge detection techniques. 

It contains 200 training, 100 validation, and 200 testing images of resolution 321 x 481 

pixels (roughly). The human annotations for each image is included in the dataset. 

The evaluation metrics are reported in Table 3.3. The precision-recall curves for 

CHM and four other methods are shown in Fig. 3.6. Note that CHM achieves high 

precision and recall at both ends of the precision-recall curve. While CHM performs

Table 3.3: Testing performance of different methods on BSDS 500 dataset [10]. CHM 
achieves near state-of-the-art performance in terms of ODS and OIS and improves 
over other methods significantly in terms of AP.

Method ODS OIS AP

gPb-OWT-UCM [78] 0.726 0.760 0.727

Sketch Tokens [81] 0.728 0.746 0.780

SCG [82] 0.739 0.758 0.773

SE [83] 0.741 0.760 0.780

CHM 0.735 0.751 0.804



56

0.9 

0.8 

0.7 

c  0.6

i

0.3 

0.2 

0.i 

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Recall

Figure 3.6: Precision-recall curves of CHM in comparison with other methods for 
BSDS 500 dataset [10].

about the same as SCG [82] and SE [83] in terms od ODS and OIS, it achieves 

state-of-the-art performance in terms of AP. It must be emphasized that unlike 

gPb [78] and SCG [82], our CHM does not include any globalization step and only 

relies on the local patch information. In addition, our CHM is a general patch-based 

model and unlike gPb [78], SCG [82], and SE [83] can be used in general scene 

labeling frameworks. Finally we will show in section 3.3.2.3 that the cross-dataset 

generalization performance of CHM is significantly better than other learning-based 

approaches, i.e., sketch tokens [81], SCG [82], and SE [83]. A few test examples of 

BSDS 500 dataset and corresponding edge detection results are shown in Fig. 3.7. As 

shown in our results, CHM captures finer details such as upper stairs in the first row, 

steeples in the second row, and wheels in the third row.

3.3.2.2 N Y U  depth dataset (v2)

The NYU depth dataset (v2) [99] is an RGB-D dataset containing 1449 pairs of 

RGB and depth images of resolution 480 x 640 pixels, with corresponding groundtruth 

semantic segmentations. We used the scripts provided by the authors of [82] to adopt 

this dataset for edge detection.3 They used 60% of the images for training (869

3The scripts are available at http://homes.cs.washington.edu/~xren/research/nips2012/ 
sparse_contour_gradients_v1.1.zip

http://homes.cs.washington.edu/~xren/research/nips2012/


57

Figure 3.7: Test samples of edge detection on BSDS 500 [10] dataset. (a) Input 
image, (b) gPb-OWT-UCM [78], (c) Sketch tokens [81], (d) SCG [82], (e) SE [83], (f) 
CHM, (g) Groundtruth. CHM is able to capture finer details like upper stairs in the 
first row, steeples in the second row, and wheels in the third row.



58

images) and the remaining 40% for testing (580 images). The images were also 

resized to 240 x 320 resolution. We evaluated the performance of CHM using RGB 

and RGBD modalities. For the depth channel, we computed the same set of features 

that we extract from the RGB color channels. In Table 3.4, we compare CHM with 

SCG [82] and SE [83]. CHM performs significantly better than other methods and 

reaches an F-value of 0.649 for RGB and 0.678 for RGBD. The precision-recall curves 

are shown in Fig. 3.8 and qualitative comparisons are shown in Fig. 3.9.

Table 3.4: Testing performance of different methods on NYU depth dataset [99] 
using RGB (top), and RGBD (bottom) modalities. CHM achieves state-of-the-art 
performance for both cases.

Method ODS OIS AP

SCG [82] (RGB) 0.557 0.569 0.438

SE [83] (RGB) 0.596 0.608 0.541

CHM (RGB) 0.649 0.661 0.625

SCG [82] (RGBD) 0.621 0.632 0.534

SE [83] (RGBD) 0.636 0.647 0.601

CHM (RGBD) 0.678 0.690 0.665

CHM (RGBD)
0.1 SE (RGBD) -  Dollar,Zitnick (2013).... :........ -

------SCG (RGBD) -  Ren,Bo (2012)
0 1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Recall

Figure 3.8: Precision-recall curves of different methods for NYU depth dataset [99] 
using RGB (solid lines) and RGBD(dashed lines) modalities.



59

k ^ s 'M

0
J

-0
L

P l l

r ~  
t  -  ■ ■

S E H I

r >

1 3 3

W m

j

i p f

||S j g p i

^  *

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.9: Test samples of edge detection on NYU depth (v2) dataset [99]. (a) 
Input image, (b) Depth image, (c) SCG (RGB) [82], (d) SCG (RGBD) [82], (e) SE 
(RGB) [83], (f) SE (RGBD) [83], (g) CHM (RGB), and (h) CHM (RGBD).

3.3.2.3 Cross-dataset generalization

Inspired by the work of Dollar and Zitnick [83], we performed a set of experiments 

to examine the generalization performance of CHM in comparison to other learning- 

based methods. We used the trained CHM on BSDS 500 dataset and ran it on NYU 

depth dataset for RGB modality. The authors of sketch tokens [81], SCG [82], and 

SE [83] have provided their models for BSDS 500 dataset, so we could run the same 

experiment for their methods. The performance metrics for different methods are 

reported in Table 3.5 and corresponding precision-recall curves are shown in Fig. 3.10.

CHM performs significantly better than other methods. Note that all methods 

perform about the same on BSDS 500 dataset (Table 3.3). We believe this asserts 

that our CHM can be used as a general edge detection technique.

3.3.3 B iom edical image segm entation

In the last set of experiments, we applied CHM to the membrane detection problem 

in electron microscopy (EM) images. This is a challenging problem because of the



60

Table 3.5: Testing performance of different methods on NYU depth dataset [99] 
using BSDS 500 dataset [10] for training. CHM outperforms other learning-based 
approaches significantly.

Method ODS OIS AP

Sketch Tokens [81] 0.567 0.581 0.490

SCG [82] 0.568 0.579 0.441

SE [83] 0.552 0.566 0.462

CHM 0.595 0.606 0.528

Figure 3.10: Precision-recall curves of different methods for NYU depth dataset [99] 
using BSDS 500 dataset [10] for training. Cross-dataset generalization performance 
of CHM is better compared to other methods.

noisy texture, complex intracellular structures, and similar local appearances among 

different objects [18,19]. In these experiments, we used a CHM with 2 stages and

5 levels per stage. A 24 x 24 LDNN was used as the classifier. In addition to the 

feature set described in section 6.2.2, we included Radon-like features (RLF) [47], 

which proved to be informative for membrane detection.

3.3.4 M ouse neuropil dataset

This dataset is a stack of 70 images from the mouse neuropil acquired using 

serial block face scanning electron microscopy (SBFSEM [12]). It has a resolution of

10 x 10 x 50 nm/pixel and each 2D image is 700 by 700 pixels. An expert anatomist



61

annotated membranes, i.e., cell boundaries, in these images. From those 70 images, 

14 images were randomly selected and used for training and the 56 remaining images 

were used for testing. The task is to detect membranes in each 2D  section.

Since the task is detecting the boundary of cells, we compared our method with 

two general boundary detection methods, gPb-OWT-UCM (global probability of 

boundary followed by the oriented watershed transform and ultrametric contour 

maps) [44] and boosted edge learning (BEL) [43]. The testing results for different 

methods are given in Table 3.6. The CHM-LDNN outperforms the other methods 

with a notably large margin.

A few examples of the test images and corresponding membrane detection results 

using different methods are shown in Fig. 3.11. As shown in our results, the CHM 

outperforms MSANN in removing undesired parts from the background and closing 

some gaps.

3.3.5 D rosophila V N C  dataset

This dataset contains 30 images from Drosophila first instar larva ventral nerve 

cord (VNC) [51,52] acquired using serial-section transmission electron microscopy 

(ssTEM [17,53]). Each image is 512 by 512 pixels and the resolution is 4 x 4 x 50 

nm/pixel. The membranes are marked by a human expert in each image. We used 15 

images for training and 15 images for testing. The testing performance for different 

methods are reported in Table 3.6. It can be seen that the CHM outperforms the 

other methods in terms of pixel error. A few test samples and membrane detection

Table 3.6: Testing performance of different methods for the mouse neuropil and 
Drosophila VNC datasets.

Mouse neuropil Drosophila VNC

Method F-value G-mean F-value G-mean
gPb-OWT 
-UCM [44] 45.68% 64.75% 49.90% 69.57%

BEL [43] 71.68% 84.46% 70.21% 84.20%

MSANN [23] 81.99% 90.48% 78.89% 88.74%

CHM 86.00% 92.48% 80.72% 90.02%



62

Figure 3.11: Test results of the mouse neuropil dataset. (a) Input image, (b) 
gPb-OWT-UCM [44], (c) BEL [43], (d) MSANN [23], (e) CHM-LDNN, (f) ground 
truth images. The CHM is more successful in removing undesired parts and closing 
small gaps. Some of the improvements are marked with red rectangles. For gPb- 
OWT-UCM method, the best threshold was picked and the edges were dilated to the 
true membrane thickness.

results for different methods are shown in Fig. 3.12.

The same dataset was used as the training set for the ISBI 2012 EM challenge [77]. 

The participants were asked to submit the results on a different test set (the same 

size as the training set) to the challenge server. We trained the same model on the 

whole 30 images and submitted the results for the testing volume to the challenge 

server [77]. The pixel error ( 1 - F-value) of different methods are reported in Table 3.7. 

CHM achieved pixel error of 0.063, which is better than the human error, i.e., how 

much a second human labeling differed from the first one. It also outperformed the 

convolutional networks proposed in [76] and [18]. It is noteworthy that CHM is 

significantly faster than deep neural networks (DNN) [76] at training. While DNN 

needs 85 hours on GPU for training, CHM only needs 30 hours on CPU.



63

Figure 3.12: Test results of the Drosophila VNC dataset (second row). (a) Input 
image, (b) gPb-OWT-UCM [44], (c) BEL [43], (d) MSANN [23], (e) CHM, (f) ground 
truth images. The CHM is more successful in removing undesired parts and closing 
small gaps. Some of the improvements are marked with red rectangles. For gPb- 
OWT-UCM method, the best threshold was picked and the edges were dilated to the 
true membrane thickness.



64

Table 3.7: Pixel error ( 1 - F-value) and training time (hours) of different methods 
on ISBI challenge [77] test set. Numbers are available on the challenge leader board.

Method 1 -  F-value Training Time

Laptev et al. [100] 0.067 -

Convolutional Networks [18] 0.067 -

Human 0.066 -

Deep Neural Networks [76] 0.065 85 (GPU )

CHM 0.063 30 (CPU )

3.4 Conclusion
We develop a discriminative learning scheme for scene labeling, called CHM, which 

takes advantage of contextual information at multiple resolutions in a hierarchy. The 

main advantage of CHM is its ability to optimize a posterior probability at multiple 

resolutions. To our knowledge, this is the first time that a posterior at multiple 

resolutions is optimized for scene labeling. CHM performs this optimization efficiently 

in a greedy manner. To achieve this goal, CHM trains several classifiers at multiple 

resolutions and leverages the obtained results for learning a classifier at the original 

resolution. We applied our model to several challenging datasets for scene labeling, 

edge detection, and biomedical image segmentation. Results indicate that CHM 

achieves state-of-the-art performance on all of these applications.

An important characteristic of CHM is that it is only based on patch information 

and does not make use of any exemplars or shape models. This enables CHM to serve 

as a general labeling method with high accuracy. The other advantage of CHM is its 

simple training. Even though our model needs to learn hundreds of parameters, the 

training remains tractable since classifiers are trained one at a time separately.

We conclude by discussing a possible extension of the CHM. Even though CHM is 

able to model global contextual information within a scene, it can be prone to error 

due to absence of any global constrains. Therefore, CHM can be used as a first step 

in a scene labeling pipeline. Postprocessing such as CRF proposed in [2] can be used 

to enforce label consistency and global constraints



CHAPTER 4

FAST ADABOOST TRAINING USING 
WEIGHTED NOVELTY SELECTION

Training time can be a bottleneck in our contextual models. A fast classifier that 

can be trained on large datasets would reduce the computational complexity of our 

contextual models. Moreover, it can be useful for general classification problems. In 

this chapter, a new AdaBoost learning framework, called WNS-AdaBoost, is proposed 

for training discriminative models. The proposed approach significantly speeds up 

the learning process of adaptive boosting (AdaBoost) by reducing the number of 

data points. For this purpose, we introduce the weighted novelty selection (WNS) 

sampling strategy and combine it with AdaBoost to obtain an efficient and fast 

learning algorithm. WNS selects a representative subset of data thereby reducing the 

number of data points onto which AdaBoost is applied. In addition, WNS associates 

a weight with each selected data point such that the weighted subset approximates 

the distribution of all the training data. This ensures that AdaBoost can trained 

efficiently and with minimal loss of accuracy. The performance of WNS-AdaBoost is 

first demonstrated in a classification task. Then, WNS is employed in a probabilistic 

boosting-tree (PBT) structure for image segmentation. Results in these two appli­

cations show that the training time using WNS-AdaBoost is greatly reduced at the 

cost of only a few percent in accuracy.

4.1 Introduction
Boosting is a general learning concept to train a single strong learner by combining 

a set of weak learners [101]. Based on this concept, many methods have been proposed 

in the literature to solve several problems, such as classification [86], clustering [102], 

recognition [103], etc. The first practical polynomial-time boosting algorithm was



66

developed by Schapire in 1990 [104]. And, in 1995, Freund and Schapire proposed 

AdaBoost [105]. AdaBoost learns a strong classifier by linearly combining a set of 

weak classifiers. In order to focus the learning on the most difficult samples, it uses a 

sample weighting strategy. After the addition of each weak classifier, a sample weight 

is updated indicating the importance of the sample for classification by subsequent 

weak classifiers. The weights of the misclassified samples are increased, and the 

weights of correctly classified samples are decreased to lead the new weak classifiers 

to focus on the more difficult samples. Despite the simplicity of the method, AdaBoost 

has been shown to achieve good bounds on its training and generalization error [106].

Following the success of AdaBoost, several related approaches have been proposed. 

These include Gentle AdaBoost (GAB) [107], FloatBoost [103], robust alternating 

AdaBoost (RAAB) [108], Modest AdaBoost [109], AdaTree [110], and probabilistic 

boosting tree (PBT) [86], among others. GAB uses Newton’s algorithm instead of 

greedy steps for optimization, thereby improving generalization performance [107]. 

FloatBoost also improves the generalization performance by backtracing and pruning 

previously learnt weak classifiers deemed irrelevant. RAAB and modest AdaBoost use 

modified loss functions to reduce the effect of outliers in the optimization. AdaTree 

and PBT both use a tree structure and implement AdaBoost as the classifier on the 

nodes. The advantage of using a tree structure is that by focusing the training of 

AdaBoost on simpler subproblems, training of the classifiers is simpler and requires 

less iterations. This makes AdaTree and PBT particularly useful for learning with 

larger datasets. Another significant advantage of PBT is that it provides an approach 

for learning the posterior distribution, which is useful in vision problems.

Although the AdaBoost learning algorithm is considered to be computationally 

efficient, training can be time consuming in some cases. An obvious example, is 

that of learning from large datasets, and this issue can aggravated depending on the 

learning complexity of the weak classifier. Convergence of the learning algorithm can 

also be slow for problems with a very complex decision boundary. In those problems 

the first weak classifiers influence the reweighting process, making it difficult for later 

weak classifiers to focus exclusively on the harder examples. As mentioned earlier, 

AdaTree and PBT are helpful in these cases because the strong classifier is obtained



67

by combining simpler AdaBoost classifiers and because classifiers in lower levels of the 

tree learn from subsets of the original data [86,110]. The tree structure is also helpful 

in the testing phase because the classification of some samples can be obtained without 

fully traversing the tree. Another approach for fast training proposed in the literature 

involves resampling the original data according to the distribution weights [111].

In this chapter, we propose a new learning framework which speeds up the training 

of AdaBoost and any other boosting based algorithms, including all of the aforemen­

tioned methods. For this purpose, we introduce a novel sampling strategy, weighted 

novelty selection (WNS), and combine it with AdaBoost to obtain the WNS-AdaBoost 

framework (Figure 4.1). WNS is a sampling method that reduces the number of 

data points by selecting representative points from the dataset. It also determines a 

corresponding weight for each of these selected points, which shows the importance of 

that point and aims at preserving the distribution of the original data. By reducing 

the number of training samples, the proposed framework significantly reduces the 

training time. The output of the WNS algorithm is then used by AdaBoost, or any of 

its variants, to learn a discriminative model. This is achieved by training AdaBoost 

on the representative set of data points and initializing the weight distribution with 

the weights obtained from WNS after normalization.

4.2 Weighted Novelty Selection
Weighted novelty selection is the preprocessing sampling method in the WNS- 

AdaBoost framework. The main idea is to provide the boosting algorithm with a 

concise summary of the training dataset such that the learning algorithm can quickly 

and efficiently train the classifier. WNS achieves this by selecting representative 

points from the training dataset and by deriving a corresponding set of weights such

Figure 4.1: Illustration of the WNS-AdaBoost training model. X  is the set of input 
data points, X R and W denote the representative set and corresponding weights, and 
H and A represent the set of weak classifiers and corresponding combination factor 
that determine the classifier.



68

that the two pieces of information summarize the original data distribution.

WNS was inspired by Platt’s work on resource-allocating networks [112]. Platt 

introduced a criterion to decide whether a given input point should be added to a 

growing radial basis function neural network in order to minimize network error. The 

point was added if the distance to the other points already in the network was larger 

than a threshold and the network error was above another threshold. Fundamentally, 

Platt’s criterion aims to select a reduced set of data points that preserves the data 

structure relevant to the reduction of the modeling error.

Similarly, WNS picks a data point as a representative point if the smallest distance 

to all previous representative points is larger than a threshold 8. Hence, 8 is a 

parameter that indirectly controls the number of representative points. Smaller 8 

increases the number of representative points and vice versa. This procedure ensures 

that enough points are picked to cover the whole space while keeping the number of 

them to a minimum.

The set of representative points provides a limited characterization, however, 

because it does not accurately reflect the density of the input data points. For 

example, in a classification problem with classes separated by a low density region, 

one wants to place the decision boundary between the two classes to minimize the 

error. However, the representative set alone would fail to properly provide this 

information, unless the clusters are clearly separated and the separation is larger than 

8/2. Hence, to more accurately capture the structure of the original training dataset, 

WNS associates a weight to each representative point. This weight corresponds to the 

number of input data points assigned to a representative data point, which captures 

information about the data distribution. Intuitively, since the weight states how 

many data points are summarized by a representative point, one can think that 

representative points with larger weights correspond to areas with higher density and 

thus are more relevant.

The WNS sampling strategy is quite simple and follows directly the ideas described 

above. Consider a set of N input data points X  =  ( x i ,x 2, . . .  , x N}, and denote the 

representative set by X R =  ( x j } and the corresponding set of weights by W  =  (w j}, 

j  =  1, 2 , . . . .  In addition, denote by IX =  ( j 1, . . .  , j N}  the indices of the representative



69

points in X R for each x i E X , such that x i E X  is represented by xj. E X R.

Accordingly, the WNS sampling algorithm proceeds as follows:

1. Initialization: set X R =  {x i } ,  W  =  {1 }, IX =  {1, 0 , . . . ,  0}, and Y  =  0;

2. For each x i E X  \ X R,

(a) Compute the distance of x  to all x{ E X R, d(xj, x{);

(b) Find n =  argmin d(x^x{);
i

(c) If d(xj, x^) > 8,

Add the point to X R and set the corresponding weight in W to 1; 

else if d(xi, x^) < 8/2,

Set j i =  n and +  1;

else

Add xi to Y.

3. For each xi E Y,

(a) Compute the distance of x i to all x{ E X R, d(xi, x{);

(b) Find n =  argmin d(xi, x{);

(c) Set j i =  n and =  wn +  1.

Note that even though the algorithm depicted here uses distances, the algorithm 

can be readily adapted to use similarities. This can be obtained simply by inverting 

the inequality comparisons. For dissimilarities, the distance metric can be relaxed 

to a semimetric (which does not verify the triangle inequality) without affecting the 

outcome.

Computationally, the WNS sampling algorithm is fast and efficient since the 

algorithm proceeds in a single pass through the data. The computational complexity 

is O (N M ), where N is the number of points in the original dataset and M  is the 

number of points in the representative set. Although in theory it is possible for 

the computationally complexity to be O (N 2), this corresponds to the limiting case 

8 ^  0, in which case the representative set equals the input data. Typically, M  is



70

much smaller than N . An additional advantage is that the WNS algorithm can be 

easily parallelized.

It is noteworthy that WNS is conceptually similar to the weighted Nystrom 

approach proposed for kernel methods by Zhang and Kwok [113]. Both methods 

provide a weighted sampling strategy for summarizing the dataset. The weighting 

have slightly different roles, however. In weighted Nystrom, the weights are utilized to 

approximate the computation on large kernel systems by compressing the kernel ma­

trix and expanding the eigendecomposition. In contrast, WNS explicitly summarizes 

the data distribution and passes that information directly to the boosting algorithm 

using the weight data distribution.
Clearly, many density-preserving data characterization methods exist in the liter­

ature, including mixture models [114,115], mean shift [116], vector quantization [117], 

etc. However, these methods have typically several data-dependent parameters that 

need to be carefully set. In comparison, WNS has only one parameter, 8, which is 

largely independent of the data if the data range is normalized. Moreover, WNS 

makes no assumptions on the data distribution.

We propose to employ WNS to speed up AdaBoost. In this regard, WNS is applied 

to each of the classes to reduce the number of points in them. Afterward, the selected 

points and corresponding weights are passed to AdaBoost. In addition to reducing 

the number of points, which can speed up any boosting algorithm, in this framework 

AdaBoost can take the advantage of the corresponding weights. In other words, not 

only the reduction of the number of data points improves the speed of the AdaBoost 

but also the corresponding weights help to keep the performance of the AdaBoost at 

reasonable rate. So unlike to the usual method that the weights are the same for all 

the input points, this time each input point has its specific weight which shows how 

important it is.

4.3 WNS-AdaBoost
The AdaBoost algorithm learns a strong classifier by linearly combining (simpler) 

weak classifiers according to,

H (x) =  ^  at ht(x) (4.1)
t



71

where ht(x) denotes a weak classifier. Different weak classifiers can be used in this 

framework. The key contribution of AdaBoost is to use a distribution, i.e., a set of 

weights, over the training samples. These weights are updated adaptively at each 

iteration of AdaBoost and play an important role in determining the combination 

factor for each weak classifier, i.e., (a t} in (4.1).

At each iteration, AdaBoost selects the weak classifier that minimizes the weighted 

error,

et =  ^ 2  Wi[ht(xi) =  y] (4.2)
i

where wj is the sample weight and yj denotes the desired output for input xj . This 

error is calculated with respect to the weights wj on which the weak classifier is 

trained. The vote weight of each classifier is computed using this error

a, =  -  H — ) (4.3)
2 Q

Accordingly, the weights are updated with

wt+i =  w lexp j-a ty jh tix i))  ^  ^

where wj denotes the weight of training sample xj at iteration t and Zt is a nor­

malization factor, which is chosen so that wt+1 will be a probability distribution. 

This update rule increases the weights of the samples which are difficult to classify 

and decreases the weights of the samples that are easy to classify, so the next weak 

classifier focuses on the more difficult samples.

Typically, the weights are initialized uniformly because prior knowledge about the 

importance of the training samples is not available. Put differently, AdaBoost is left 

to infer the distribution of the samples solely based on their relative amount. In the 

proposed method, however, WNS is used to explicitly capture and summarize the data 

distribution using a reduced number of training samples. This information is they 

transferred to AdaBoost by setting the weights according to the values obtained from 

WNS. Hence, the weights are no longer initialized uniformly, and each representative 

point has its own weight which can be different from the other points. Using this 

strategy, instead of a large number of training points with the same weights, AdaBoost



72

is given a smaller number of training points together with prior information about 

the importance of them. To summarize, WNS speeds up AdaBoost in the training 

stage by reducing the number of training samples and maintains also the performance 

of AdaBoost at a good level by providing prior information about the importance of 

the selected representative points.

Given a training set X  =  {x 1,...,x N} and the corresponding labels L =  { l1,...,lN},

li E { - 1 ,1 } ,  the WNS-AdaBoost training algorithm proceeds as follows:

1. Separate the classes and make two sets: X 1 =  {x i |li =  - 1 } ,  X 2 =  {x i|li = 1 } .

2. Choose a 8 and run WNS for X 1 and X 2. The output of WNS, i.e., represen­

tative points and weights for each class are X 1 ^  (X R,W 1) , X 2 ^  (X R,W 2).

3. Construct a new training set X R =  { X R,X R} and W  =  {W 1,W 2}.

4. Normalize W so it will be a probability distribution.

5. Use X R, W to train AdaBoost classifier.

Although we described the WNS-AdaBoost for training the AdaBoost, one can 

notice that it can be used also in other AdaBoost based frameworks, e.g., PBT, 

AdaTree, etc. This generalization can be described by considering the WNS as a 

preprocessing step. In other words, WNS gets the training set and provides a new 

training set with corresponding weights.

4.4 Experimental Results
We illustrate the performance of WNS-AdaBoost in terms of accuracy and speed 

on two different problems: Poker hand classification and texture segmentation. In the 

first experiment we verify the effectiveness of WNS-AdaBoost in a simple AdaBoost 

structure, while in the second experiment we show its performance in the probabilistic 

boosting tree (PBT) framework.

4.4.1 Poker hand classification

The poker hand dataset is available from the UCI Machine Learning Reposi­

tory [118]. The dataset contains 25010 data points for training and 1000000 data



73

points for testing distributed over 11 classes. This dataset was used in a two-class 

form where the first class represents the hands that are not a recognized poker hand, 

and the second class contains the poker hands from one pair to royal flush. The size 

of the feature vector is ten, i.e., suit and rank for each card. A decision tree with 7 

nodes was used as the weak classifier and boosting was run for 600 iterations.

Table 4.1 shows the classifier training time and its accuracy for different parameter 

values of 8. As we can see by using 8 =  3 the WNS-AdaBoost is more than two times 

faster than the conventional AdaBoost algorithm while its accuracy is 4% less than 

the AdaBoost. As 8 decreases the performance improves at the cost of speed, e.g., 

WNS-AdaBoost with parameter 8 =  2.7 performs almost the same as AdaBoost while 

it is 1.3 times faster than AdaBoost.

4.4.2 Texture segm entation

In order to show that proposed method is not restricted to regular AdaBoost algo­

rithm and can be used in any AdaBoost based classifier, we adopted the probabilistic 

boosting tree (PBT) [86] together with WNS-AdaBoost for texture segmentation. 

The PBT learns a discriminative model in a hierarchical structure. At each level of 

the hierarchy, PBT learns some AdaBoost classifiers and use them to split data to 

smaller groups. The details can be found in [86]. In our experiment the depth of the 

tree in PBT is two, and we used a decision tree with five nodes as our weak classifier.

The dataset used in this experiment contains 20 star images generated from five 

different textures for foreground and four different textures for background using 

textures from Brodatz database [119]. Eight of these images were used for training

Table 4.1: Training time and performance for the “poker hand” dataset.

Method s

No. of 
training 
samples

Time for 
applying
WNS (s)

Training
time

Training
error

Testing
error Speedup

WNS-
AdaBoost 3 13396 8.85 135s 13% 20% 2.23

WNS-
AdaBoost 2.7 18278 10.05 236.10s 11% 17% 1.3

AdaBoost — 25010 — 320.19s 10.3% 16% —



74

and the remaining 12 images were used for testing. The input feature vector to the 

PBT classifier was formed by sampling the input image at every pixel using an 11 x 11 

stencil (Fig. 4.2). The size of the feature vector is 41.

The classifier training time for PBT and WNS-PBT with different parameter 

values of 8 is shown in Table 4.2. One can notice that there is a trade-off between the 

accuracy and the speed of the classifier. In other words, we can make the classifier 

faster at the cost of accuracy. In this experiment it seems that 8 =  .7 is a reasonable 

choice that makes the classifier much faster at the cost of few percents decreasing in 

the accuracy. The ROC curves for training and testing images are shown in Fig. 4.3. 

The accuracy performance of WNS-PBT is close to the PBT while it is much faster. 

It must be emphasized that speedup in this experiment is much higher compared to 

the previous experiment due to the size of the dataset, so WNS-AdaBoost is more 

useful for the large dataset cases. The segmentation results on some test images for 

WNS-PBT and PBT are shown in Fig. 4.4. The results for WNS-PBT with 8 =  0.7 

and PBT are shown in the third and fourth columns. The results are really close 

while the WNS-PBT method is 444 times faster than PBT in training.

Figure 4.2: The stencil which is used to sample the input image.

Table 4.2: Training time for the “texture segmentation” experiment.

Method S
No. of training 

samples
Time for applying

WNS (s)'
Training

time Speedup

WNS-PBT 1 1808 108.62 5.82s 38351

WNS-PBT 0.7 27206 11186.96 502.64s 444

PBT - 524288 - 62hours -



75

(a)

(b)

Figure 4.3: ROC curves for the texture segmentation experiment. (a) training, (b) 
testing.

4.5 Conclusions
We introduced a new framework WNS-AdaBoost for efficient learning of dis­

criminative boosting models. The WNS-AdaBoost framework efficiently selects a 

reduced set of representative training points, thus reducing the overall computational 

complexity for training and increasing the speed of the training process. Moreover, 

by returning the weights for each of representative point, WNS provides a compact 

representation of the distribution of the training data in a way that is naturally 

amenable to AdaBoost. The combination of these two characteristics ensure faster 

training and with minimal loss of accuracy.

The improvement in training speed is achieved potentially at the expense of a small 

reduction in accuracy. This behavior is regulated by the sampling parameter 8. If 8 

is increased from zero, the size of the representative training set given to AdaBoost is 

reduced, thereby increasing the training speed but decreasing the accuracy because of



76

Input WNS-PBT (8 =  1) WNS-PBT (8 =  .7) PBT

★ I ★
•% v  * t * ■ f  y

★

* *
Figure 4.4: Test results for the texture segmentation experiment. The first column 
shows the input image and the remaining columns show the output of WNS-PBT 
with 8 = 1 , WNS-PBT with 8 =  0.7, and PBT classifiers respectively.

the increasingly crude representation of the data. Conversely, as 8 tends to zero, WNS 

outputs the original training data, which is equivalent to the direct use of AdaBoost. 

Still, the experiments show that by appropriately choosing 8 , it is possible to achieve 

large improvements in training speed with negligible loss of accuracy.

It must be emphasized that the WNS-AdaBoost framework extends beyond Ad- 

aBoost alone to any other AdaBoost-based classifier. As an example, this generality 

was explicitly demonstrated in the application of the framework to the PBT classifier. 

Additionally, it is noted that although the algorithm was described here only for the



77

two-class case for ease of presentation, the framework is not restricted to this case 

and can be generalized to multiclass problems in a straightforward way.



CHAPTER 5

DISJUNCTIVE NORMAL RANDOM  
FORESTS

We develop a novel supervised learning/classification method, called disjunctive 

normal random forest (DNRF). A DNRF is an ensemble of randomly trained dis­

junctive normal decision trees (DNDT). To construct a DNDT, we formulate each 

decision tree in the random forest as a disjunction of rules, which are conjunctions 

of Boolean functions. We then approximate this disjunction of conjunctions with 

a differentiable function and approach the learning process as a risk minimization 

problem that incorporates the classification error into a single global objective func­

tion. The minimization problem is solved using gradient descent. DNRFs are able to 

learn complex decision boundaries and achieve low generalization error. We present 

experimental results demonstrating the improved performance of DNDTs and DNRFs 

over conventional decision trees and random forests. We also show the superior 

performance of DNRFs over state-of-the-art classification methods on benchmark 

datasets.

5.1 Introduction
Random forests became popular with Breiman’s seminal paper [120] in 2001 due 

to their ease of use and good classification accuracy. The main idea of random forest 

classification is to grow an ensemble of decision trees such that the correlation between 

the trees remains as low as possible. This is achieved by injecting randomness into the 

forest using a different set of training samples for each tree. These sets are obtained by 

sampling the original training set with replacement, i.e., bagging. Another source of 

randomness in random forests is the subset of features randomly selected to consider at 

each node as the splitting function. This parameter can directly control the correlation



79

between the trees and also affects the accuracy performance of each individual tree. 

At test time, each tree in the random forest casts a unique vote for the given input 

and the most popular class among the trees is selected as the predicted label for that 

input. Random forests have been shown to be effective in many applications like 

image segmentation/classification [121,122], object detection [123], and biomedical 

image analysis [100,124].

Random forests have certain advantages over other widely used classification algo­

rithms. For instance, support vector machines (SVM) [125] offer good generalization 

performance due to the fact that they guarantee maximum margin, but choosing the 

kernel function and the kernel parameters can be time consuming. Boosting [101] 

is another popular classification approach, which trains a single strong classifier by 

combining multiple weak classifiers. However, convergence of the learning algorithm 

can be slow for problems with complex decision boundaries. Artificial neural networks 

(ANN) [54] are powerful but slow at training due to the computational cost of 

backpropagation [126]. In addition to all the aforementioned shortcomings of ANNs, 

SVMs, and boosting methods, these techniques do not naturally handle multiclass 

problems [127-129]. On the other hand, random forests are fast to train and handle 

multiclass problems intrinsically [130]. Moreover, they perform consistently well for 

high dimensional problems [131].

The weak learner used at each node of the decision trees plays an important 

role in the behavior and performance of random forests. The conventional random 

forest exploits axis-aligned decision stumps, which partition the feature space with 

orthogonal hyperplanes. While this type of partitioning can be suitable for certain 

types of datasets, it results in overfitting and produces “blocky artifacts” in general 

datasets [130]. It has been shown that using linear discriminants that can be at any 

arbitrary orientation to the axes improves the performance of random forests [132]. 

Nonlinear weak learners like conic sections have also been proved successful in in­

creasing the accuracy and generalization performance of random forests [130].

A lot of work has been put into improving the random forest, through the use of 

more powerful node models and less correlated trees. Rodriguez et al. [133] used PCA 

to make a linear combination of features at each node. Bernard et al. [134] focused



80

on the number of features randomly selected at each node of the tree. They showed 

that using a random number of features, which can be different at each node, can 

improve the performance. Tripoliti et al. [135] improved the prediction peformance of 

random forests by modifying the node split function as well as the voting procedure 

in the forest.

In this chapter, we propose a novel approach for learning linear discriminants of 

arbitrary orientation at each node of a decision tree. However, the main advantage 

of our approach over the above-mentioned methods such as [132] and [133] is that it 

learns all the weak learners of the decision tree in a unified framework. To be clear, 

unlike conventional decision trees and their variants that learn the splitting function 

at each node independently, our approach allows weak learners of different nodes 

to interact with each other during the training because it minimizes a single global 

objective function. To achieve this goal, we formulate each decision tree as a single 

disjunction of conjunctions [87] and approximate it with a differentiable function. 

Next, we use this approximation in a quadratic error cost to construct a single unified 

objective function. Finally, we minimize this objective function using the gradient 

descent rule to update the parameters of the discriminants in the decision tree. We 

call this type of decision tree a disjunctive normal decision tree (DNDT). It is worth 

mentioning that this formulation is closely related to the formulation of LDNN in 

Chapter 3 but the number of groups and discriminants per group are determined 

automatically by decision tree.

Many researchers have proposed converting decision trees into a differentiable form 

and performing some global parameter tuning to make a smooth decision boundary 

with high generalization performance. For example [136-139] propose to convert 

decision trees into artificial neural networks (ANN) and use back-propagation to fine 

tune the weights and improve the performance. These methods speed up the training 

of ANNs by using decision trees to initialize the weights of ANNs. However, it would 

be hard to generalize these methods to random forest framework due to the slowness 

of back-propagation. Our approach is different from these methods in the sense 

that unlike the neural networks that have at least two layers of adaptive weights, 

our disjunctive normal form has only one adaptive layer and thus is faster than



81

back-propagation. Moreover, we will show that DNDTs outperform ANNs.

Fuzzy/soft decision trees are another technique that have been developed to 

improve the performance of decision trees. Olaru and Wehenkel [140] build a decision 

tree by introducing a third state at each node. The samples which fall in the third 

state go to both children nodes. Using this strategy, a sample might contribute to the 

final decision through multiple paths. Irsoy et al. [141] also propose a soft decision 

tree that uses a gate function to redirect each sample to all the children with a 

certain probability. This strategy results in more accurate and simpler trees. The 

fundamental difference of our approach with soft decision trees is that we propose a 

global objective function and learn all the splits simultaneously. We will show that 

DNDTs outperform soft decision trees.

We follow the idea of random forests and use DNDTs as building blocks of a new 

random forest, called a disjunctive normal random forest (DNRF). While DNRFs 

have all the advantages of conventional random forests, they outperform them due 

to their stronger building blocks, i.e., DNDTs. Fig. 5.1 demonstrates the superior 

performance of DNRF over conventional random forest with artificial examples. We 

observe that conventional random forest results in box-like decision boundaries and 

overfits to the training data, while DNRF produces a smooth boundary with lower 

generalization error. In the results section, we show that, similar to random forests, 

DNRFs are able to handle multiclass classification problems, but with improved 

accuracy. We also show that DNRFs outperform state-the-art algorithms such as 

space partitioning method [142] and multiclass boosting [143].

5.2 Disjunctive Normal Random Forests
The disjunctive normal random forest (DNRF) is a forest of simpler structures 

called disjunctive normal decision trees (DNDT). DNDT is a special form of decision 

tree in which different nodes interact with each other during training and are learned 

simultaneously. In this section, we first describe DNDTs and then show how they 

can be used in constructing a DNRF. For the sake of simplicity, we consider only the 

binary classification problem in this section. In the next section, we show how DNRF 

can be generalized to multiclass problems.



82

Figure 5.1: Comparison of DNRF (left panel) with random forest (right panel) 
on the banana dataset [144] (upper panel) and two-spiral dataset (lower panel). 
DNRF results in a smoother decision boundary and, unlike random forests, does 
not overtrain.

Notation:Unless specified otherwise, we denote vectors with lower case bold 

symbols, e.g., w k, elements of vectors with lower case symbols, e.g., wkj , and sets 

with calligraphic symbols, e.g., S .

5.2.1 D isjunctive norm al decision tree

A decision tree is a set of “rules” organized hierarchically in a tree-like graph [130]. 

An example is shown in Fig. 5.2. The goal is to predict the label of an input data 

point based on these rules. During the training, a “split function/rule” is learned 

at each node of the decision tree. This split function is a binary function, which



83

Figure 5.2: An example of a decision tree. Nonleaf nodes are denoted with circles 
and leaf nodes are denoted with squares. A split function is learned at each nonleaf 
node. Each leaf node represents a class label, “+ ” for class “1” and “—” for class “0.” 
The first, second, and third positive leaf nodes are colored in red, green, and blue, 
respectively.

determines whether incoming data points are sent to the left or right child node. The 

split function of node k for a d dimensional data point x  can be written as follows:

f k(x, wk) =  1I (x)Twk > 0)  : Rd+1 x Rd+1 ^  {0, 1} (5.1)

where w k is an axis-aligned line (it only has two nonzero elements: the bias and 

a 1 for the chosen splitting axis), which is learned during the training. H(-) is the 

binary indicator function and $ (x )  is [01, . . . ,  0d+1]T =  [x1, . . . , x d, 1]T. We drop w k 

and use f k (x) instead of f k(x, w k) for notational simplicity. Each decision tree can 

be written as a disjunction of conjunctions, which is also known as the disjunctive 

normal form [87]:

h(x) =  V ( A f j (x) A - f j ( x )) (5.2)
i=1 \j€Ri j€Li )

where n is the number of positive leaf nodes, Ri denotes the set of nodes visited from 

the root to the ith positive leaf node for which the right child is taken on the path, and 

similarly Li denotes the set of visited nodes for which the left child is taken on the



84

same path. For example, for the tree given in Fig. 5.2, n =  3, R 1 =  {2 }, L 1 =  {1 }, 

R2 =  {1 }, L2 =  {3 }, R3 =  {1, 3}, L3 =  {4 }, and h(x) can be written as

h(x) =  (—f 1(x) A f 2(x)) V ( f i (x) A - f 3(x))

V ( f 1(x) A f 3(x) A — f 4(x)) (5.3)

The data point x  is classified in class “0” if h(x) =  0 and is classified in class “1” if 

h(x) =  1.

5.2.1.1 The differentiable disjunctive norm al form

Once the decision tree is initialized in the conventional manner, we would like to 

modify (5.2) to be able to fine tune it with gradient descent. The first step is to 

replace (5.2) with a differentiable approximation. First, any conjunction of binary 

variables /\i bi can be replaced by their product i bi. Also, using De Morgan’s laws 

we can replace the disjunction of binary variables \f i bi with —I A i —b i , which in turn 

can be replaced by the expression 1 — i (1 — bi). Note that we use (1 — bi) to compute 

—bi. Finally, we can approximate the split function with the logistic sigmoid function:

fk (x, w k) = --------- . (5.4)
1 +  e-  £ j+1 wkj<Pj

This gives in the differentiable disjunctive normal form approximation of h

h (x )= 1 —n [1— n ( f  (x, wj ) n (1 —f  (x, wj ))]

gi(x)
n

= 1 —n (1 —gi(x)) (5.5)
i—1

For the example in Fig. 5.2 the approximation of h can be written as

h(x) =  1— ( 1 — f  2 (x) ( 1 — .̂ 1 (x )) )

X ( 1 — ./1 (x) ( 1 — f 3 (x)) )

X ( 1 — .̂ 1 (x) .3 (x) ( 1 — .4 (x )) )  (5.6)

The next step is to update the weights w k to improve the performance of the 

classifier. Unlike decision trees for which weights at each node are learned separately,



85

the disjunctive normal form allows us to update all weights simultaneously; therefore, 

the obtained decision boundary will be smoother and the generalization performance 

will be higher compared to decision tree.

Given a set of training samples S =  { (x m,ym); m =  1 , . . . , M }  where ym E {0,1}  

denotes the desired binary class corresponding to x m, M  denotes the number of 

training samples and a disjunctive normal classifier h(x), the quadratic error over the 

training set is

This error function can be minimized using gradient descent. The gradient of the error 

function with respect to the parameter wkj in the disjunctive normal form, evaluated 

for the training pair (x,y), is

The derivation of (5.8) is given in A. At test time, the weights found by gradient 

descent are used in (5.5) followed by thresholding to predict the label for a new data 

point.

Random forests are an ensemble of randomly trained decision trees [120]. The 

randomness comes from the fact that each tree is trained using a random subset of 

training samples. Moreover, at each node of tree a random subset of input features 

are used to learn the split function. The main idea is to make the decision trees 

as independent as possible. This improves the robustness and generalization of the 

ensemble.

Using the same idea, we can use an ensemble of DNDT to generate a DNRF. DNRF 

takes advantage of more powerful DNDTs compared to the conventional random forest

(5.7)

(5.8)

5.2.2 Decision tree to  random  forest



86

and thus results in better performance. The overall training algorithm for the DNRF 

is given in Algorithm 4. Note that in the first step a conventional random forest is 

trained, which allows DNRFs to take advantage of the randomness existing in the 

random forest.

A lgorithm  4 Training algorithm for the DNRF.
Input: Training data, S =  ( ( xm,ym); m =  1 , . . . , M } ,  number of trees, N , ratio of 

training samples per tree, r, and number of features per node, F .
O utput: A set of weights, (W t,t  =  1 , . . . , N } .

• Train a conventional random forest with parameters N , r, F . 
for t = 1  to N do

• p ^  Number of nodes which are visited to reach positive leaf nodes in tree t.
• Convert tree t to disjunctive normal form using equation (5.5).
• Compute updated weights, w i , . . . , w p, using gardient descent (equa­

tion (5.8)).

• Wt ^  ( w i , . . . ,  wp}. 
end for

At test time, the predicted label for a given data point x  can be computed as 

follows:

v = 11 (̂ 2 2 > °-5) > y  j  (5-9)
where N denotes the number of trees in DNRF and ht(x) is computed using the 

weights W t obtained from the training in (5.5).

5.3 Multiclass DNRF
The concept of DNDT can be extended to multiclass problems. In this case, given 

a single decision tree, instead of binary leaf nodes, i.e., “+ ” and “—” leaf nodes, there 

are leaf nodes with labels 1 , . . . , C ,  where C is the number of classes. Each tree can 

be represented with C disjunctive normal functions of type (5.2):

hc(x) =  V ( A  fj (x) A -fj w p  c= 1,...,C (5.10)
j=i \jeRc jeLc J

where nc denotes the number of leaf nodes with label c and Rc, Lic are similar to the 

binary case for the leaf nodes with label c. Each of these hc(x) then can be converted



87

to the differentiable form of (5.5). Finally, the weights of each of these functions can 

be updated using (5.8). Note that, each hc(x) is updated independently and thus, 

the update process can be done in parallel. At test time, the label of an input data 

point x  can be predicted as follows:

Note that, in the above equation the updated weights from the training are used to

initial weights, the final updated weights, i.e., w ?, can be different since the gradient 

descent is run for different classes separately.

Similar to the binary case, the multiclass DNDT can be used in a forest structure. 

The training algorithm for multiclass DNRF is described in Algorithm 5. At test

A lgorithm  5 Training algorithm for the multiclass DNRF.
Input: Training data, S =  { ( xm,ym); m =  1 , . . . , M } ,  number of trees, N , ratio of 

training samples per tree, r, and number of features per node, F .
O utput: A set of weights, {W tc, t =  1 , . . . , N ,  c =  1 , . . . , C } .

• C ^  Number of classes.
• Train a conventional random forest with parameters N, r, F.

for t = 1  to N do 
for c = 1  to C do

• p ^  Number of nodes which are visited to reach leaf nodes with label c in 
tree t.

• Form hi(x) in equation (5.12).
• Compute updated weights, w ? , . . . , w p , by updating hl(x) using gradient 

descent (equation (5.8)).

end for 
end for

time, the label for a given data point is computed using voting among all trees:

y =  argmax hl (x) (5.11)
i

no
hl (x) =  1 - J I [1 -  I I  (fj(x , w?) x J ]  (1 -  f j (x, w?))] (5.12)

compute hc(x). It must be emphasized that although different classes share same

(5.13)



88

A comparison of DNRF against random forest on the four-spiral dataset is shown 

in Fig. 5.3. The superior performance of DNRF can be seen in the areas where 

the spirals end. Furthermore, the decision boundaries are more equidistant to the 

different classes.

5.4 Experimental Results
We performed experimental studies to evaluate the performance of DNDTs and 

DNRFs in comparison to different classification techniques. The experiments were 

performed on both binary and multiclass classification problems. We used six datasets 

for the binary case and four datasets for the multiclass case from the UCI reposi­

tory [145] and LIBSVM datasets [146]. Before training, the data were normalized by 

subtracting the mean of each dimension and dividing by the standard deviation of 

that dimension.

5.4.1 Binary classification

The six datasets tested for binary classification were Ionosphere (Mtr =  234, 

Mte =  117, d =  33), Wisconsin breast cancer (Mtr =  380, Mte =  189, d =  30), 

German credit (Mtr =  667, Mte =  333, d =  24), PIMA Diabetes (Mtr =  513, 

Mte =  255, d =  8), Hearts (Mtr =  180, Mte =  90, d =  13), and IJCNN (Mtr =  49990, 

Mte =  91701, d =  22), where Mtr is the number of training samples, Mte is the

Figure 5.3: Comparison of DNRF (left panel) with conventional random forest (right 
panel) on the four-spiral dataset. DNRF is robust against overfitting and results in 
better testing performance.



89

number of testing samples, and d is the number of features. We used | of the samples 

for training (10% of these samples were used for validation) and | of the samples for 

testing.

We compared the performance of DNDT with decision trees, ANNs, and soft 

decision trees [141]. The test errors are reported in Table 5.1. DNDT outperforms 

decision trees with a large margin. It also outperforms both ANNs and soft decision 

trees. These results assert that the superior performance of DNDT comes from both 

nonorthogonal splits in a tree structure, as opposed to the decision tree, and unified 

learning of all the learners, as opposed to the soft decision tree. For soft decision 

trees, we used the code publicly available by the authors of [141]. The training times 

of different methods for each dataset are given in Table 5.2. While DNDT is slower 

than decision trees, it is faster compared to soft decision trees and ANNs. It is worth 

mentioning that each epoch of update in DNDT is nearly 4 times faster than the 

back-propagation in ANNs due to the simpler structure of the disjunctive normal 

form compared to ANN. This simplicity comes from the fact that there is only one 

set of parameters, w k, in the differentiable disjunctive normal form (equation 5.5), 

while in ANNs there are at least two sets of parameters, i.e., weights from the input 

layer to the hidden layer and weights from the hidden layer to the output layer. The 

time complexities of decision trees and DNDTs at test time are similar.

We also compared the performance of DNRF with SVMs, boosted trees, oblique 

random forests (ORF) [132], rotation forests [133], and random forests. For SVMs, 

we used RBF kernel and the parameters of kernel were found using the search code

Table 5.1: Test errors of different methods for six binary datasets.

Ionosphere
Wisconsin

breast
cancer

German
credit

PIMA
diabetes Hearts IJCNN

Decision Tree 12.48% 6.08% 32.73% 31.59% 27.62% 4.79%

ANN 12.10% 2.28% 26.96% 22.11% 20.26% 2.02%
Soft Decision 

Tree [141] 11.97% 2.12% 25.53% 20.78% 13.33% 2.27%

DNDT 7.15% 1.89% 24.44% 20.56% 13.11% 1.94%



90

Table 5.2: Training time (seconds) of different methods for six binary datasets.

Ionosphere
Wisconsin

breast
cancer

German
credit

PIMA
diabetes Hearts IJCNN

Decision Tree 0.009 0.009 0.010 0.008 0.022 0.500

ANN 0.395 0.854 0.746 0.356 0.956 1860.81
Soft Decision 

Tree [141] 0.267 0.657 1.858 0.410 0.073 34958.626

DNDT 0.036 0.033 0.228 0.095 0.031 535.36

available in the LIBSVM library [146]. For boosted trees, we used the code publicly 

available by the authors of [147]. We also used the publicly available R package 

“obliqueRF” provided by the authors of [132] to run ORF on the binary datasets. 

Their code supports three different node models: ridge regression, SVM, and logistic 

regression. For rotation forest, we used the publicly available code provided as part 

of Weka by the authors of [133]. For all the datasets we used F  =  \fd as the number 

of features per node in the random forest and used 10% of the training set as the 

validation set to fine tune the number of trees, N . The same validation set was 

used to control the number of epochs and tune the step size in the gradient descent 

algorithm for the DNRF. We ran each classifier 50 times, except for SVMs, which 

give deterministic results, for each dataset, and the average testing errors for different 

methods are reported in Table 5.3. The standard deviations are given in parentheses. 

DNRFs outperform SVMs, boosted trees, random forests, rotation forests, and ORFs. 

These results again assert that the main advantage of DNRFs come from both the 

nonorthogonal splits, as opposed to random forests, and the unified learning of all 

splits, as opposed to ORFs and rotation forests.

Similar to [148], we examined the effect of noise features and tree size on the 

performance of random forests and DNRFs. In the first experiment, we incrementally 

added noise/random features to the German credit dataset. Fig. 5.4 shows the test 

errors for different number of noise features. As the number of noise features increases, 

the chance that relevant features are selected at each node decreases. While this 

degrades the performance of random forests, DNRFs remain stable due to the unified



91

Table 5.3: Test errors of different methods for six binary datasets (average over 50 
iterations). The standard deviations are given in parentheses.

Ionosphere
Wisconsin

breast
cancer

German
credit

PIMA
diabetes Hearts IJCNN

SVM
4.27%

( - )
1.59%

( - )
26.12%

( - )
22.35%

( - )
21.11%

( - )
1.31%

( - )
Boosted 

Trees [147]
5.16%
(0.9)

2.38%
(0.42)

24.29%
(0.96)

23.29%
(0.99)

15.00%
(1.68)

1.39%
(0.05)

ORF-ridge [132]
5.69%
(0.56)

1.63%
(0.21)

25.10%
(0.94)

23.25%
(0.85)

15.07%
(0.90)

1.68%
(0.02)

ORF-svm [132]
4.32%
(0.50)

1.58%
(0.07)

24.23%
(0.56)

23.25%
(0.81)

13.18%
(0.9)

1.87%
(0.04)

ORF-log [132]
4.50%
(0.62)

1.74%
(0.26)

25.23%
(0.82)

22.43%
(1.26)

15.27%
(0.99)

1.62%
(0.05)

Rotation 
Forest [133]

5.04%
(1.35)

1.82%
(0.76)

25.23%
(1.22)

21.63%
(1.42)

19.05%
(2.56)

2.14%
(0.24)

Random 
Forest [120]

6.99%
(0.94)

2.15%
(0.41)

24.71%
(0.82)

23.92%
(0.64)

15.11%
(1.14)

2.00%
(0.04)

DNRF
3.38%
(0.57)

0.53%
(~  o)

22.91%
(0.37)

19.41%
(0.42)

12.22% 
(~  o)

1.14%
(0.01)

learning strategy. Optimizing all the nodes together decreases the effect of nodes that 

contain only noise features. In the second experiment, we incrementally decreased 

the tree size by increasing the minimum node size. We stop splitting the nodes that 

contain less than samples than the minimum node size. Fig. 5.5 shows the test errors 

on the German credit dataset for different values of minimum node size. DNRF is 

less sensitive to the size of tree compared to random forest. This can be seen as the 

effectiveness of the unified learning strategy which gives more degrees of freedom to 

DNRF.

5.4.2 M ulticlass classification

The four datasets tested for multiclass classification were Pendigit (Mtr =  7494, 

Mte =  3498, d = 1 6 ,  C =  10), Optdigit (Mtr =  3823, Mte =  1797, d =  62, C =  10), 

Landsat (Mtr =  4435, Mte =  2000, d = 3 6 ,  C =  6), and Letter (Mtr =  16000, 

Mte =  4000, d = 1 6 ,  C =  26), where Mtr is the number of training samples, Mte is



92

Figure 5.4: The robustness of random forest and DNRF on problems with increasing 
number of noise/random variables. The dataset, i.e., German credit dataset, has 24 
features and an increasing number of noise variables were added. Each experiment 
was run 50 times, and the error bars illustrate the standard deviations. For all the 
experiments, random forest used F  =  y/d as the number of features per node.

the number of testing samples, d is the number of features, and C is the number of 

classes. Similar to binary case, we used F  =  \/d as the number of features per node 

in the random forest and used 10% of the training set as the validation set to fine 

tune the number of trees, N , and the ratio of training samples per tree, r.

We ran the experiments 20 times for each dataset and the average testing errors 

are reported in Table 5.4. DNRF outperforms random forests and state-of-the-art 

algorithms [142] and [143] in all cases.

5.5 Conclusion
We introduced a new learning scheme for random forests, called DNRF, based 

on the disjunctive normal form of decision trees. Unlike conventional random forests 

with orthogonal axis-aligned splits, DNRFs can learn arbitrary non-axis-aligned splits. 

Moreover, DNRFs allow different nodes of a decision tree interact with each other 

during training in a unified optimization framework. We showed that DNRFs outper-



93

Figure 5.5: The effect of tree size, i.e., tree depth, on the performance of random 
forest and DNRF. The depth of tree was controlled by the minimum node size. 
Smaller node size results in deeper trees. Each model was run 50 times, and the 
error bars represent standard deviations. The German credit dataset was used in this 
experiment.

Table 5.4: Test errors of different methods on four UCI datasets (multiclass classi­
fication).

Pendigit Optdigit Landsat Letter

GD-MCBoost [143] 7.06% 7.68% 13.35% 40.35%

Space Partitioning [142] 4.32% 4.23% 13.95% 13.08%

Random Forest [120] 3.87% 3.22% 10.49% 4.70%

DNRF 2.17% 2.30% 9.63% 2.05%

form conventional random forests on binary and multiclass benchmark datasets. Our 

results are also better than oblique random forests [132] which learns nonorthogonal 

learners at each node.

It must be emphasized that optimizing all the individual trees together in DNRF 

would increase the correlation between the trees and increasing the correlation de­

creases the forest performance [120]. Hence, treating each tree individually, as men­



94

tioned in Algorithm 5, is crucial to the performance of DNRF. The initialization 

is also important to the performance of DNRF. If the DNRF is initialized with a 

random tree, it performs poorly. The reason is that the cost function is not convex 

and gradient descent might get stuck in a local minima.

DNRFs can handle categorical data similar to conventional random forests. After 

a conventional RF is trained, the same optimization approach can be applied to 

construct a DNRF. However, DNRFs do not handle missing values in the current 

format. One possible solution is to assign zero weight to the missing features in the 

paths containing samples with missing values, but this is a topic of future research.

Finally, even though we described DNRF for the cases that weak learners are 

linear, the DNRF formulation can be extended to any differentiable nonlinear weak 

learners theoretically. The performance, advantages, and disadvantages of nonlinear 

DNRFs can be a topic of future research.



CHAPTER 6

SEGMENTATION OF MITOCHONDRIA 
IN ELECTRON MICROSCOPY IMAGES 

USING ALGEBRAIC CURVES

High-resolution microscopy techniques have been used to generate large volumes 

of data with enough details for understanding the complex structure of the nervous 

system. However, automatic techniques are required to segment cells and intracellular 

structures in these multiterabyte datasets and make anatomical analysis possible 

on a large scale. We propose a fully automated method that exploits both shape 

information and regional statistics to segment irregularly shaped intracellular struc­

tures such as mitochondria in electron microscopy (EM) images. The main idea 

is to use algebraic curves to extract shape features together with texture features 

from inside and outside of mitochondria. Then, these powerful features are used to 

learn a random forest classifier, which can predict mitochondria locations precisely. 

Finally, the algebraic curves together with regional information are used to segment 

the mitochondria at the predicted locations. We demonstrate that our method 

outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM 

images.

6.1 Introduction
The morphology and distribution of intracellular components is of substantial 

biological importance for neuroscientists. For example, abnormal mitochondria mor­

phology can be seen in Parkinson’s disease-related genes [20], or geometrical properties 

of mitochondria can be used to distinguish cancer cells from normal cells [21]. In 

addition, an accurate mitochondria segmentation would improve cell segmentation 

results by distinguishing mitochondria membranes from other cell membranes [22].



96

Electron microscopy (EM) imaging techniques generate nanoscale images that contain 

enough details for study of intracellular components, such as mitochondria. However, 

the sheer size of a typical EM dataset, often approaching ten of terabytes [13], makes 

manual analysis infeasible [14]. Hence, automated image analysis is required. How­

ever, fully automatic analysis of EM datasets is challenging because numerous intra­

cellular components exhibit irregular shapes and have similar local appearances [19]. 

Moreover, the texture and physical topologies of intracellular components are highly 

variable [18](Fig. 6.1). Therefore, a robust automated method must overcome these 

issues to segment complex intracellular objects such as mitochondria.

General segmentation methods which have been proposed for natural image datasets 

yield poor results when applied to EM images [19]. Jain et al. [41] showed that 

global probability boundary [44] and boosted edge learning [43], which result in 

outstanding segmentation performance on natural images, perform poorly on EM 

datasets. Therefore, a successful method for segmenting specific structures such as 

mitochondria must be optimized for EM images.

There are several segmentation methods that handle EM images specifically. Vu 

and Manjunath [45] proposed a graph-cut method that minimizes an energy function 

over the pixel intensity and flux of the gradient field for cell segmentation. However,

Figure 6.1: Mitochondria (objects with red boundary) appear in different shapes 
and different local intensities in EM images. The variety in shape and the existence 
of other similar intracellular components make segmentation a challenging task.



97

their model might be confused by the complex intracellular structures and requires 

user interaction to correct segmentation errors. The contour propagation model [46] 

that minimizes an energy function for contour tracing of cell membranes can also 

get stuck in local minima due to complex intracellular structures. In [149], textural 

information is used to train a Gentle-boost classifier for mitochondria segmentation 

of the lateral part of the rat’s brain. In other previous work [21], texton-based region 

features are used with different classification methods to segment mitochondria in 

MNT-1 cells. Even though these methods make extensive use of textural information, 

they ignore the shape information. In [150], ray features were proposed to capture 

shape information for detection of irregular shapes, such as mitochondria, but they 

only rely on geometric information of shapes and ignore texture information. Radon 

like features [47] are another set of features designed to take both texture and geo­

metric information into account and can be tuned to segment different objects in EM 

images.

More powerful mitochondria segmentation methods working on 3D volumes have 

been proposed recently. Lucchi et al. [151] solved a graph partitioning problem 

by learning a classifier based on the textural and shape information to segment 

mitochondria. Giuly et al. [22] proposed a multistep approach that exploits a patch 

classifier followed by a contour pair classification and level sets. We also propose 

a multistep approach that combines textural and shape information to provide a 

high-accuracy mitochondria segmentation. As a first step, we extract patches with 

different sizes from the input image and fit algebraic curves, i.e., polynomials of 

different degrees, to each patch. Next, shape and texture features are extracted 

based on the fitted polynomials from each patch. The extracted features are then 

used to train a classifier that predicts if a patch belongs to a mitochondrion or not. 

Finally, in the patches containing mitochondria, based on the classifier decision, we 

use the connected component of the center pixel bounded by the fitted polynomial to 

segment the mitochondria.

Algebraic curves, i.e., the zero set of polynomials in two variables, are suitable 

for modelling complicated shapes [152]. Moreover, they take advantage of all data 

in an image patch and thus are able to find weak edges embedded in noise [153].



98

The power of algebraic curves in finding ambiguous edges in cluttered backgrounds 

can be used to estimate the boundary of mitochondria and extract informative shape 

and textural features from images. The regional features, i.e., textural features from 

image regions, are more robust and informative compared to pixel features. We use 

the extracted features in a supervised model to increase the accuracy of segmentation.

6.2 Mitochondria Segmentation
Our proposed method is composed of four steps: Curve fitting, feature extraction, 

classifier training, and automatic pixel labelling.

6.2.1 Curve fitting

A dth degree polynomial can be represented by f  (x ,y)  =  0<i+m<d almxlym. 

Given an n x  n image patch P(x, y), we fit a polynomial to the patch by minimizing 

the cost function E:

E =  (wl( fd{x i , y j ) + ( ^ ^ . V / ( ^ )  -  l )2)) (6.1). . wij i,3=l J

where V P (xi, y j ) denotes the gradient vector at pixel (xi , y j ), V f  (xi, y j ) is the gra­

dient vector of polynomial f  at (xi ,yj ), and wij is the length of V P (x i,yj-). This 

minimization problem can be solved using linear least squares [153].

In (6.1), the f j ( x i,yj-) term determines the zero level set of the fitted polynomial, 

i.e., f ( x , y ) =  0, and the ( VP(-Xi’ŷ  .V/ (xj ,  yj) — l ) 2 term forces the V f ( x , y )  to have 

the same direction as VP(x,  y) with unit magnitude at each point. The effect of large 

gradients in noisy areas is damped by this unit magnitude constraint. Finally, the w2j 

term increases the influence of pixels with large gradient magnitude. These pixels are 

most likely on the target contour and have larger gradient magnitudes compared to 

noisy pixels. The above-mentioned properties make this fitting strategy appropriate 

for noisy EM images with complex regional textures. In addition, this fitting strategy 

is rotation and scale invariant and thus is suitable for shape representation. Fig. 6.2 

shows the fitted polynomials to two patches with mitochondria and two patches 

without mitochondria in them.



99

Figure 6.2: Curve fitting samples. (a) Two patches with mitochondria (two left 
columns) and two patches without mitochondria (two right columns) in them, (b) 
fitted polynomials of degree 4 to the patches in (a), and (c) the zero level sets overlayed 
on the input patches.

6.2.2 Feature extraction

We use zero level sets of the fitted polynomials (Fig. 6.2(c)) to extract both shape 

and textural features from each patch. The zero level set divides each patch to 

two disjoint regions: inside, i.e., f  (x,y) > 0 and outside, i.e., f  (x,y) < 0. Each 

polynomial thus forms a hypothesis of existence of a mitochondrion in the patch. 

The inside region and the zero level set curve exhibit similar features among the 

patches with mitochondria (two left columns in Fig. 6.2) which are different from 

features of the patches without mitochondria (two right columns in Fig. 6.2). The 

textural features are extracted from inside of the zero level set curve and include 

Hu’s invariant moments, mean, variance, skewness, kurtosis, and entropy of the pixel 

intensities. The shape features are extracted from the zero level set curve itself. They 

contain Hu’s invariant moments of the curve and the average intensity of pixels on 

the curve. We also use the ratio of the inner area to the curve length as another 

shape feature. The combination of the textural and shape features provide a rich set 

of features that can be used to detect mitochondria in an image.



100

6.2.3 Classifier training

The extracted features from each patch are used to train a binary random forest 

classifier that predicts whether that patch belongs to a mitochondrion or not. In 

practice, we extract many patches with different sizes at different locations and fit 

polynomials of different degrees to each of them. It is worth noting that we use 

different patch sizes due to different sizes of mitochondria and fit polynomials of 

different degree due to different shape complexities of mitochondria. The shape 

and textural features are then extracted from each patch. To train the classifier, 

the patches that their centers are close to centers of mitochondria are considered 

as positive samples and the remaining patches are considered as negative samples. 

The centers of mitochondria are the center of mass of connected components in 

groundtruth images. The classifier indeed tests the hypothesis that made by the 

polynomials. It must me emphasized that many of them will be false because there 

are few mitochondria in each image.

6.2.4 A utom atic pixel labelling

For a given input image, overlapping patches with different sizes are extracted. 

Next, polynomials of different degrees are fitted to each patch and the shape and 

textural features are computed for each patch. These features are then passed to 

the random forest classifier. If a patch is classified as positive by the random forest 

classifier, all the connected pixels of the center pixel in that patch are marked as 

mitochondria in the input image. The connected pixels of the center pixel are found 

in a certain threshold around the intensity of the center pixel. To add more certainty 

to the labelling process, we only mark the connected pixels inside the zero level set 

curve as mitochondria and consider the remaining pixels as background.

The segmentation accuracy can be improved by applying morphological postpro­

cessing. We apply the morphological dilation followed by the region filling to fill holes 

in the segmented mitochondria. This results in a clean segmented image.

6.3 Experimental Results
We test the performance of our proposed method on two different sets of EM im­

ages: mouse neuropil and Drosophila first instar larva ventral nerve cord (VNC) [52].



101

The mouse neuropil dataset contains 40 images of size 700 x 700. It has a pixel 

resolution of 10 x 10 nm/pixel. 14 of these images were used for training and the 

remaining images were used for testing. The Drosophila VNC datset contains 30 

images of size 512 x 512 with 4 x 4 nm/pixel resolution. 15 of these images were used 

for training and the remaining images were used for testing. The groundtruth images 

of mitochondria were annotated by a neuroanatomist.

For both of the datasets, we extracted patches with four different sizes, 48 x 48, 

64 x 64, 88 x 88, 104 x 104, and fit polynomials of two different degrees, 2 and 4. The 

discussed features in section 6.2.2 were then extracted and a random forest classifier 

with 100 trees were trained.

We compared the accuracy of our proposed method with a patch-based pixel 

classifier, radon-like features method [47], and the MCMS model. An artificial neural 

networks classifier with 10 hidden nodes was used as the pixel classifier. For the pixel 

classifier,RLF method, and the MCMS model, the best threshold was found using the 

training results. Table 6.1 shows the segmentation accuracy of different methods for 

the testing set in the mouse neuropil dataset. It can be observed that our proposed 

method has better performance than the pixel classifier and RLF method, a 14.9% 

and 2.4% improvement in the testing F-value compared to the pixel classifier and the 

RLF method, respectively. It is worth noting that even though the MCMS model 

performs better than the proposed method, its computational complexity id higher. 

Moreover, it needs membrane labels as well as the mitochondria label for training.

For the Drosophila VNC dataset, we compared our proposed method with Giuly 

et al. [22] method in addition to the pixel classifier, RLF method, and the MCMS 

model. This dataset is more difficult and the quality of images is lower than the mouse

Table 6.1: Testing performance of different methods for the mouse neuropil dataset.
Method Precision Recall Fvalue

Pixel classifier 67.18% 68.05% 67.61%

RLF [47] 78.07% 82.31% 80.14%

MCMS 83.17% 85.04% 84.09%

Proposed method 82.51% 82.47% 82.49%



102

neuropil dataset. While the performance of RLF method was close to the performance 

of our proposed method for the mouse neuropil dataset, our method outperformed 

the RLF method with more than 20% in the testing F-value for this dataset. One 

of the advantages of our method is that it is robust against the texture and noise 

in the EM images and thus performs reasonably even for low quality datasets like 

Drosophila VNC dataset. Note that the proposed method outperforms MCMS model 

on this dataset. The segmentation accuracy results are shown in Table 6.2. Fig. 6.3 

shows the segmentation results of mitochondria for two test images from the mouse 

neuropil and the Drosophila VNC dataset.

Table 6.2: Testing performance of different methods for the Drosophila VNC dataset.

Method Precision Recall Fvalue

Pixel classifier 31.29% 60.44%) 41.24%

RLF [47] 46.12% 57.67%o 51.25%)

Giuly et.al. [22] 64.22% 57.01% 60.40%

MCMS 57.51% 82.42%o 67.32%o

Proposed method 78.57%) 68.08%) 72.95%

(a) Input (b) Pixel (d) Giuly (e) Proposed (f) Ground-
image classifier (c) RLF [47] et.al. [22] method truth

Figure 6.3: Test results for the mitochondria segmentation. First row: mouse 
neuropil daaset, second row: Drosophila VNC dataset.



103

6.4 Conclusion
We introduced a mitochondria segmentation framework using algebraic curves. 

The main idea of our method is to use the power of algebraic curves to extract 

both shape and textural features from input images. The algebraic curves use all the 

information in a window and are robust against noise and texture. Moreover, algebraic 

curves enable our method to use regional features that are more informative compared 

to pixel-wise features. We use the extracted feature to train a random forest that 

detects mitochondria in input images. Finally, we apply an automatic pixel labelling 

approach by finding connected components of the center pixels in the patches that 

the classifier classifies them as positive samples.



APPENDIX

DERIVATION OF GRADIENT FOR DNRF

In this section we show the derivation of equation (5.8). The gradient for the 

training pair (x,y) can be computed using the chain rule for differentiation:

J ^ = d E ^ r dhdgl dfl _ 
dwkj dh I dgi Qfj dwuj

Each of the derivatives on the right hand side can be computed as follows:

=  - 2  ( y - h ( x ) ) ,
d h

yi r=i

if j  e Ri 

if j  e Li , 

otherwise

Y l r=  f r ( x ) n reLt (1 -  f r (x))
r l 1

-  I ! reRl f r (x) n  r=  (1 -  f r (x))l r L̂l
0

^ L  =  x , f , ( x ) ( l - f , ( x ) ) .

By multiplying these derivatives the gradient in (5.8) is obtained.



REFERENCES

[1] S. Z. Li, Markov Random Field Modeling in Computer Vision. New 
York: Springer-Verlag, 1995.

[2] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical 
features for scene labeling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, 
no. 8, pp. 1925-1929, 2013.

[3] Z. Tu and X. Bai, “Auto-context and its application to high-level vision tasks 
and 3d brain image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., 
vol. 32, no. 10, pp. 1744-1757, 2010.

[4] A. Torralba, K. P. Murphy, and W. T. Freeman, “Contextual models for object 
detection using boosted random fields,” Proc. Neural Inform. Process. Syst., 
2004.

[5] G. Heitz, S. Gould, A. Saxena, and D. Koller, “Cascaded classification models: 
Combining models for holistic scene understanding,” Proc. Neural Inform. 
Process. Syst., pp. 641-648, 2008.

[6] C. Li, A. Kowdle, A. Saxena, and T. Chen, “Toward holistic scene understand­
ing: Feedback enabled cascaded classification models,” IEEE Trans. Pattern 
Anal. Mach. Intell., vol. 34, no. 7, pp. 1394-1408, 2012.

[7] E. Jurrus, A. R. C. Paiva, S. Watanabe, J. R. Anderson, B. W. Jones, R. T. 
Whitaker, E. M. Jorgensen, R. E. Marc, and T. Tasdizen, “Detection of 
neuron membranes in electron microscopy images using a serial neural network 
architecture,” Medical Image Anal., vol. 14, no. 6, pp. 770-783, 2010.

[8] S. Gould, R. Fulton, and D. Koller, “Decomposing a scene into geometric and 
semantically consistent regions,” in Proc. Int. Conf. Comput. Vision. IEEE,
2009, pp. 1-8.

[9] E. Borenstein, E. Sharon, and S. Ullman, “Combining top-down and bottom-up 
segmentation,” Proc. Comput. Vision and Pattern Recognition Workshop, 2004.

[10] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented 
natural images and its application to evaluating segmentation algorithms and 
measuring ecological statistics,” in Proc. Int. Conf. Comput. Vision, vol. 2, July 
2001, pp. 416-423.

[11] O. Sporns, G. Tononi, and R. Ktter, “The human connectome: a structural 
description of the human brain,” PLoS Comput. Biol., vol. 1, p. e42, 2005.



106

[12] W. Denk and H. Horstmann, “Serial block-face scanning electron microscopy 
to reconstruct three-dimensional tissue nanostructure,” PLoS Biol., vol. 2, p. 
e329, 2004.

[13] J. Anderson, B. Jones, C. Watt, M. Shaw, J.-H. Yang, D. DeMill, J. Lauritzen, 
Y. Lin, K. Rapp, D. Mastronarde, P. Koshevoy, B. Grimm, T. Tasdizen, 
R. Whitaker, and R. Marc, “Exploring the retinal connectome,” Mol. Vision, 
no. 17, pp. 355-379, 2011.

[14] K. L. Briggman and W. Denk, “Towards neural circuit reconstruction with 
volume electron microscopy techniques,” Curr. Opin. Neurobio., vol. 16, no. 5, 
pp. 562-570, 2006.

[15] D. H. Hall and R. Russell, “The posterior nervous system of the nematode 
caenorhabditis elegans: serial reconstruction of identified neurons and complete 
pattern of synaptic interactions,” J. Neurosci., vol. 11, no. 1, pp. 1-22, 1991.

[16] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, “The structure of 
the nervous system of the nematode caenorhabditis elegans,” Philos. Trans. R. 
Soc., B, vol. 314, no. 1165, pp. 1-340, 1986.

[17] J. R. Anderson, B. W. Jones, J.-H. Yang, M. V. Shaw, C. B. Watt, P. Koshevoy, 
J. Spaltenstein, E. Jurrus, K. UV, R. T. Whitaker, D. Mastronarde, T. Tasdizen, 
and R. E. Marc, “A computational framework for ultrastructural mapping of 
neural circuitry,” PLoS Biol., vol. 7, no. 3, p. e1000074, 03 2009.

[18] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. L. Briggman, 
M. N. Helmstaedter, W. Denk, and H. S.Seung, “Supervised learning of image 
restoration with convolutional networks,” Proc. Int. Conf. Comput. Vision, pp. 
1-8, 2007.

[19] A. Lucchi, K. Smith, R. Achanta, V. Lepetit, and P. Fua, “A fully automated 
approach to segmentation of irregularly shaped cellular structures in em im­
ages,” in Proc. Medical Image Computing and Comput. Assisted Intervention, 
2010, pp. 463-471.

[20] D. Cho, T. Nakamura, and S. Lipton, “Mitochondrial dynamics in cell death 
and neurodegeneration,” Cell. Mol. Life Sci., vol. 67, no. 20, pp. 3435-3447,
2010.

[21] R. Narasimha, H. Ouyang, A. Gray, S. W. McLaughlin, and S. Subramaniam, 
“Automatic joint classification and segmentation of whole cell 3d images,” 
Pattern Recogn., vol. 42, no. 6, pp. 1067-1079, 2009. [Online]. Available: 
http://dx.doi.org/10.1016Zj.patcog.2008.08.009

[22] R. Giuly, M. Martone, and M. Ellisman, “Method: automatic segmentation 
of mitochondria utilizing patch classification, contour pair classification, and 
automatically seeded level sets,” BM C Bioinformatics, vol. 13, no. 1, p. 29, 
2012. [Online]. Available: http://www.biomedcentral.com/1471-2105/13/29

http://dx.doi.org/10.1016Zj.patcog.2008.08.009
http://www.biomedcentral.com/1471-2105/13/29


107

[23] M. Seyedhosseini, R. Kumar, E. Jurrus, R. Guily, M. Ellisman, H. Pfister, 
and T. Tasdizen, “Detection of neuron membranes in electron microscopy 
images using multi-scale context and radon-like features,” Proc. Medical Image 
Computing and Comput. Assisted Intervention, 2011.

[24] M. Seyedhosseini and T. Tasdizen, “Multi-class multi-scale series contextual 
model for image segmentation,” IEEE Trans. Image Process., vol. 22, no. 11, 
pp. 4486-4496, 2013.

[25] M. Seyedhosseini, M. Sajjadi, and T. Tasdizen, “Image segmentation with 
cascaded hierarchical models and logistic disjunctive normal networks,” in Proc. 
Int. Conf. Comput. Vision, 2013.

[26] M. Seyedhosseini, A. Paiva, and T. Tasdizen, “Fast AdaBoost training using 
weighted novelty selection,” in Proc. IEEE Intl. Joint Conf. Neural Networks, 
San Jose, CA, USA, August 2011, pp. 1245-1250.

[27] M. Seyedhosseini, M. Ellisman, and T. Tasdizen, “Segmentation of mitochon­
dria in electron microscopy images using algebraic curves,” in Proc. Int. Symp. 
Biomedical Imaging, 2013, pp. 860-863.

[28] P. Vandewalle, J. Kovacevic, and M. Vetterli, “Reproducible research,” http: 
/ /reproducibleresearch.net/index.php/Main_Page.

[29] G. Bradski, Dr. Dobb’s J. Software Tools, 2000, software available at http: 
/ / www.opencv.org.

[30] “Boost c+ +  library,” 2000, software available at http://www.boost.org.

[31] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition 
using shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 4, 
pp. 509-522, 2002.

[32] M. Fink and P. Perona, “Mutual boosting for contextual inference,” Proc. 
Neural Inform. Process. Syst., 2004.

[33] A. Singhal, J. Luo, and W. Zhu, “Probabilistic spatial context models for scene 
content understanding,” Proc. Comput. Vision and Pattern Recognition, vol. 1, 
pp. 235-241, 2003.

[34] K. Murphy, A. Torralba, and W. T. Freeman, “Using the forest to see the trees: 
A graphical model relating features, objects, and scenes,” Proc. Neural Inform. 
Process. Syst., 2003.

[35] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the 
bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell., 
vol. 6, no. 6, pp. 721-741, 1984.

[36] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Prob­
abilistic models for segmenting and labeling sequence data,” Proc. Int. Conf. 
Mach. Learning, pp. 282-289, 2001.

http://www.opencv.org
http://www.boost.org


108

[37] X. He, R. Zemel, and M. Carreira-Perpinan, “Multiscale conditional random 
fields for image labeling,” Proc. Comput. Vision and Pattern Recognition, vol. 2, 
pp. 695-702, 2004.

[38] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object 
recognition with invariance to pose and lighting,” Proc. Comput. Vision and 
Pattern Recognition, vol. 2, pp. 97 -104, 2004.

[39] C. Desai, D. Ramanan, and C. Fowlkes, “Discriminative models for multi-class 
object layout,” Proc. Int. Conf. Comput. Vision, 2009.

[40] M. J. Choi, A. Torralba, and A. S. Willsky, “A tree-based context model for 
object recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 2, 
pp. 240-252, 2012.

[41] V. Jain, B. Bollmann, M. Richardson, D. Berger, M. Helmstaedter, K. Brig- 
gman, W. Denk, J. Bowden, J. Mendenhall, W. Abraham, K. Harris, 
N. Kasthuri, K. Hayworth, R. Schalek, J. Tapia, J. Lichtman, and H. Seung, 
“Boundary learning by optimization with topological constraints,” Proc. Com- 
put. Vision and Pattern Recognition, pp. 2488 -2495, 2010.

[42] T. Cour, F. Benezit, and J. Shi, “Spectral segmentation with multiscale graph 
decomposition,” Proc. Comput. Vision and Pattern Recognition, vol. 2, pp. 
1124-1131, 2005.

[43] P. Dollar, Z. Tu, and S. Belongie, “Supervised learning of edges and object 
boundaries,” Proc. Comput. Vision and Pattern Recognition, 2006.

[44] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “From contours to regions: an 
empirical evaluation,” Proc. Comput. Vision and Pattern Recognition, vol. 0, 
pp. 2294-2301, 2009.

[45] N. Vu and B. S. Manjunath, “Graph cut segmentation of neuronal structures 
from transmission electron micrographs,” in Proc. ICIP, 2008, pp. 725-728.

[46] J. H. Macke, N. Maack, R. Gupta, W. Denk, B. Schlkopf, and A. Borst, 
“Contour-propagation algorithms for semi-automated reconstruction of neural 
processes,” J. Neurosci. Methods, vol. 167, no. 2, pp. 349-357, 2008.

[47] R. Kumar, A. Va andzquez Reina, and H. Pfister, “Radon-like features and their 
application to connectomics,” in Proc. Comput. Vision and Pattern Recognition 
Workshop, June 2010, pp. 186-193.

[48] C. Becker, K. Ali, G. Knott, and P. Fua, “Learning context cues for synapse 
segmentation in em volumes,” Proc. Medical Image Computing and Comput. 
Assisted Intervention, 2012.

[49] A. Kreshuk, C. N. Straehle, C. Sommer, U. Kothe, G. Knott, and F. A. 
Hamprecht, “Automated segmentation of synapses in 3d em data,” in Proc. 
Int. Symp. Biomedical Imaging, 2011, pp. 220-223.



109

[50] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and 
applications in vision,” Proc. ISCAS, pp. 253-256, 2010.

[51] A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng, J. Pulokas, 
P. Tomancak, and V. Hartenstein, “An integrated micro- and macroarchi- 
tectural analysis of the Drosophila brain by computer-assisted serial section 
electron microscopy,” PLoS Biol., vol. 8, no. 10, p. e1000502, 10 2010.

[52] A. Cardona, S. Saalfeld, J. Schindelin, I. Arganda-Carreras, S. Preibisch, 
M. Longair, P. Tomancak, V. Hartenstein, and R. J. Douglas, “Trakem2 
software for neural circuit reconstruction,” PLoS One, vol. 7, no. 6, p. e38011,
06 2012.

[53] D. B. Chklovskii, S. Vitaladevuni, and L. K. Scheffer, “Semi-automated recon­
struction of neural circuits using electron microscopy,” Curr. Opin. Neurobio., 
vol. 20, no. 5, pp. 667 -  675, 2010.

[54] S. Haykin, Neural networks - a comprehensive foundation, 2nd ed. Upper 
Saddle River: Prentice-Hall, 1999.

[55] J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural and adaptive systems: 
fundamentals through simulations. New York: Wiley, 2000.

[56] B. Andres, U. Kothe, M. Helmstaedter, W. Denk, and F. A. Hamprecht, “Seg­
mentation of sbfsem volume data of neural tissue by hierarchical classification,” 
in Proc. DAGM  symp. Pattern Recognition, 2008, pp. 142-152.

[57] J. Funke, B. Andres, F. A. Hamprecht, A. Cardona, and M. Cook, “Efficient 
automatic 3D-reconstruction of branching neurons from EM data,” in Proc. 
Comput. Vision and Pattern Recognition, 2012.

[58] T. Liu, E. Jurrus, M. Seyedhosseini, M. Ellisman, and T. Tasdizen, “Watershed 
merge tree classification for electron microscopy image segmentation,” Proc. 
Int. Conf. Pattern Recognition, 2012.

[59] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” J. 
Am. Stat. Assoc., vol. 66, no. 336, pp. 846-850, 1971.

[60] D. Larlus and F. Jurie, “Combining appearance models and markov random 
fields for category level object segmentation,” in Proc. Comput. Vision and 
Pattern Recognition. IEEE, 2008, pp. 1-7.

[61] M. P. Kumar and D. Koller, “Efficiently selecting regions for scene understand­
ing,” in Proc. Comput. Vision and Pattern Recognition. IEEE, 2010, pp. 
3217-3224.

[62] J. Tighe and S. Lazebnik, “Superparsing: scalable nonparametric image parsing 
with superpixels,” in Proc. European Conf. Comput. Vision. Springer, 2010, 
pp. 352-365.



110

[63] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr, “Associative hierarchical crfs for 
object class image segmentation,” in Proc. Int. Conf. Comput. Vision. IEEE,
2009, pp. 739-746.

[64] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max- 
flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. 
Mach. Intell., vol. 26, no. 9, pp. 1124-1137, 2004.

[65] X. Ren, L. Bo, and D. Fox, “Rgb-(d) scene labeling: Features and algorithms,” 
in Proc. Comput. Vision and Pattern Recognition, 2012, pp. 2759-2766.

[66] P. Kohli, P. H. Torr et al., “Robust higher order potentials for enforcing label 
consistency,” Int. J. Comput. Vision, vol. 82, no. 3, pp. 302-324, 2009.

[67] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Siisstrunk, “Slic 
superpixels compared to state-of-the-art superpixel methods,” IEEE Trans. 
Pattern Anal. Mach. Intell., pp. 2274-2282, 2012.

[68] D. Munoz, J. A. Bagnell, and M. Hebert, “Stacked hierarchical labeling,” in 
Proc. European Conf. Comput. Vision. Springer, 2010, pp. 57-70.

[69] D. Grangier, L. Bottou, and R. Collobert, “Deep convolutional networks for 
scene parsing,” in Proc. Int. Conf. Mach. learning, 2009.

[70] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning 
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 
1998.

[71] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep 
convolutional neural networks,” in Proc. Neural Inform. Process. Syst., 2012, 
pp. 1106-1114.

[72] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks 
for image classification,” in Proc. Comput. Vision and Pattern Recognition,
2012, pp. 3642-3649.

[73] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object 
detection,” in Proc. Neural Inform. Process. Syst., 2013, pp. 2553-2561.

[74] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best 
multi-stage architecture for object recognition?” in Proc. Int. Conf. Comput. 
Vision, 2009, pp. 2146-2153.

[75] S. C. Turaga, K. L. Briggman, M. Helmstaedter, W. Denk, and H. S. Seung, 
“Maximin affinity learning of image segmentation,” Proc. Neural Inform. Pro­
cess. Syst., 2009.

[76] D. Ciresan, A. Giusti, J. Schmidhuber et al., “Deep neural networks segment 
neuronal membranes in electron microscopy images,” in Proc. Neural Inform. 
Process. Syst., 2012, pp. 2852-2860.



111

[77] I. Arganda-Carreras, S. Seung, A. Cardona, and J. Schindelin, “ISBI2012 
segmentation of neuronal structures in em stacks,” http://brainiac2.mit.edu/ 
isbi_challenge/, 2012.

[78] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and 
hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., 
vol. 33, no. 5, pp. 898-916, 2011.

[79] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern 
Anal. Mach. Intell., no. 6, pp. 679-698, 1986.

[80] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic 
diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp. 629-639, 
jul. 1990.

[81] J. J. Lim, C. L. Zitnick, and P. Dollar, “Sketch tokens: a learned mid-level 
representation for contour and object detection,” in Proc. Comput. Vision and 
Pattern Recognition, 2013.

[82] R. Xiaofeng and L. Bo, “Discriminatively trained sparse code gradients for 
contour detection,” in Proc. Neural Inform. Process. Syst., 2012, pp. 593-601.

[83] P. Dollar and C. L. Zitnick, “Structured forests for fast edge detection,” in Proc. 
Int. Conf. Comput. Vision, 2013.

[84] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural 
image boundaries using local brightness, color, and texture cues,” IEEE Trans. 
Pattern Anal. Mach. Intell., vol. 26, no. 5, pp. 530-549, 2004.

[85] J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce, “Discriminative 
sparse image models for class-specific edge detection and image interpretation,” 
in Proc. European Conf. Comput. Vision. Springer, 2008, pp. 43-56.

[86] Z. Tu, “Probabilistic boosting-tree: learning discriminative models for classifi­
cation, recognition, and clustering,” Proc. Int. Conf. Comput. Vision, vol. 2, 
pp. 1589-1596, 2005.

[87] M. Hazewinkel, Encyclopaedia of Mathematics, Supplement III. Springer, 2001, 
vol. 13.

[88] P. K. Simpson, “Fuzzy min-max neural networks. i. classification,” IEEE Trans. 
Neural Netw., vol. 3, no. 5, pp. 776-786, 1992.

[89] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. comput. 
vision, vol. 57, no. 2, pp. 137-154, 2004.

[90] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” 
Proc. Comput. Vision and Pattern Recognition, vol. 1, pp. 886-893, 2005.

[91] C. Liu, J. Yuen, and A. Torralba, “Sift flow: Dense correspondence across scenes 
and its applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, 
pp. 978-994, 2011.

http://brainiac2.mit.edu/


112

[92] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut- 
dinov, “Improving neural networks by preventing co-adaptation of feature 
detectors,” arXiv preprint arXiv:1207.0580, 2012.

[93] L. Bertelli, T. Yu, D. Vu, and B. Gokturk, “Kernelized structural svm learning 
for supervised object segmentation,” in Proc. Comput. Vision and Pattern 
Recognition, 2011.

[94] D. Kuettel and V. Ferrari, “Figure-ground segmentation by transferring window 
masks,” in Proc. Comput. Vision and Pattern Recognition, 2012.

[95] A. Levin and Y. Weiss, “Learning to combine bottom-up and top-down seg­
mentation,” in Proc. European Conf. Comput. Vision, 2006.

[96] R. Socher, C. C. Lin, A. Ng, and C. Manning, “Parsing natural scenes and 
natural language with recursive neural networks,” in Proc. Int. Conf. Mach. 
Learning, 2011, pp. 129-136.

[97] V. Lempitsky, A. Vedaldi, and A. Zisserman, “A pylon model for semantic 
segmentation,” Proc. Neural Inform. Process. Syst., 2011.

[98] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image seg­
mentation,” Int. J. Comput. Vision, vol. 59, no. 2, pp. 167-181, 2004.

[99] N. Silberman and R. Fergus, “Indoor scene segmentation using a structured 
light sensor,” in Proc. Int. Conf. Comput. Vision Workshops. IEEE, 2011, pp. 
601-608.

100] D. Laptev, A. Vezhnevets, S. Dwivedi, and J. Buhmann, “Anisotropic sstem im­
age segmentation using dense correspondence across sections,” in Proc. Medical 
Image Computing and Comput. Assisted Intervention, 2012, pp. 323-330.

101] M. Kearns and L. Valiant, “Cryptographic limitations on learning boolean 
formulae and finite automata,” J. Assoc. Comput. Mach., vol. 41, no. 1, pp. 
67-95, 1994.

102] A. Demiriz, K. Bennett, and J. Shawe-Taylor, “Linear programming boosting 
via column generation,” J. Mach. Learning Research, vol. 46, pp. 225-254, 2002.

103| S. Li and Z. Zhang, “Floatboost learning and statistical face detection,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1112 -1123, Sep. 2004.

104] R. E. Schapire, “The strength of weak learnability,” Machine Learning, vol. 5, 
no. 2, pp. 197-227, 1990.

105] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line 
learning and an application to boosting,” European Conf. Comput. Learning 
Theory, pp. 23-37, 1995.

106] R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence­
rated predictions,” Proc. Ann. Conf. Comput. Learning Theory, pp. 80-91, 
1998.



113

107] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a 
statistical view of boosting,” Ann. Stat., vol. 28, no. 2, pp. 337-407, 2000.

108] H. Allende-Cid, R. Salas, H. Allende, and R. anculef, “Robust alternating ad­
aboost,” in Progress Pattern Recog., Image Anal. and Applicat., vol. 4756/2007, 
2007, pp. 427-436.

109] A. Vezhnevets and V. Vezhnevets, “ ‘modest adaboost’ -  teaching adaboost to 
generalize better,” in Proc. Int. Conf. Comput. Graphics and Vision, 2005.

110] E. Grossmann, “Adatree: Boosting a weak classifier into a decision tree,” in 
Proc. Comput. Vision and Pattern Recognition Workshop, 2004.

111] H. chuan Wang and L. ming Zhang, “A novel fast training algorithm for 
adaboost,” J. Fudan University, vol. 1, 2004.

112] J. Platt, “Resource-allocating network for function interpolation,” Neural Com­
putation, vol. 3, no. 2, pp. 213-225, 1991.

113] K. Zhang and J. T. Kwok, “Density-weighted nystrm method for computing 
large kernel eigensystems,” Neural Computation, vol. 21, no. 1, pp. 121-146,
2009.

114] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed. Wiley 
Interscience, 2000.

115] K. Zhang and J. T. Kwok, “Simplifying mixture models through function 
approximation,” IEEE Trans. Neural Netw., vol. 21, no. 4, pp. 644-658, Apr.
2010.

116] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature 
space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 
603-619, May 2002.

117] A. Gersho and R. M. Gray, Vector Quantization and signal compression. 
Kluwer Academic Publishers, 1992.

118] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010. [Online]. 
Available: http://archive.ics.uci.edu/ml

119] P. Brodatz, Textures: A Photographic Album for Artists and Designers. New 
York: Dover, 1966.

120] L. Breiman, “Random forests,” Mach. learning, vol. 45, no. 1, pp. 5-32, 2001.

121] F. Schroff, A. Criminisi, and A. Zisserman, “Object class segmentation using 
random forests,” in Proc. British Mach. Vision Conf., 2008.

[122] A. Bosch, A. Zisserman, and X. Muoz, “Image classification using random 
forests and ferns,” in Proc. Int. Conf. Comput. Vision. IEEE, 2007, pp. 1-8.

http://archive.ics.uci.edu/ml


114

[123] P. Kontschieder, S. R. Bulo, A. Criminisi, P. Kohli, M. Pelillo, and H. Bischof, 
“Context-sensitive decision forests for object detection,” in Proc. Neural Inform. 
Process. Syst., 2012, pp. 440-448.

[124] A. Criminisi, J. Shotton, D. Robertson, and E. Konukoglu, “Regression forests 
for efficient anatomy detection and localization in ct studies,” in Medical 
Computer Vision. Recognition Techniques and Applications in Medical Imaging. 
Springer, 2011, pp. 106-117.

[125] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. learning, vol. 20, 
no. 3, pp. 273-297, 1995.

[126] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture,” 
Proc. Neural Inform. Process. Syst., 1990.

[127] G. Ou and Y. L. Murphey, “Multi-class pattern classification using neural 
networks,” Pattern Recognit., vol. 40, no. 1, pp. 4-18, 2007.

[128] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support 
vector machines,” IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, 2002.

[129] A. Torralba, K. Murphy, and W. Freeman, “Sharing visual features for multi­
class and multiview object detection,” IEEE Trans. Pattern Anal. Mach. Intell., 
vol. 29, no. 5, pp. 854-869, 2007.

[130] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests: A unified frame­
work for classification, regression, density estimation, manifold learning and 
semi-supervised learning,” Foundations and Trends@ in Computer Graphics 
and Vision, vol. 7, no. 2-3, pp. 81-227, 2011.

[131] R. Caruana, N. Karampatziakis, and A. Yessenalina, “An empirical evaluation 
of supervised learning in high dimensions,” in Proc. Int. Conf. Mach. learning. 
ACM, 2008, pp. 96-103.

[132] B. H. Menze, B. M. Kelm, D. N. Splitthoff, U. Koethe, and F. A. Hamprecht, 
“On oblique random forests,” in Mach. Learning and Knowledge Discovery in 
Databases. Springer, 2011, pp. 453-469.

[133] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A new 
classifier ensemble method,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, 
no. 10, pp. 1619-1630, 2006.

[134] S. Bernard, L. Heutte, and S. Adam, “Forest-rk: A new random forest induction 
method,” in Advanced Intell. Comput. Theories Applicat. With Aspects of 
Artificial Intell. Springer, 2008, pp. 430-437.

[135] E. E. Tripoliti, D. I. Fotiadis, and G. Manis, “Modifications of the construction 
and voting mechanisms of the random forests algorithm,” Data Knowl. Eng., 
vol. 87, no. 0, pp. 41 -  65, 2013.



115

136] K. J. Cios and N. Liu, “A machine learning method for generation of a neural 
network architecture: A continuous id3 algorithm,” IEEE Trans. Neural Netw., 
vol. 3, no. 2, pp. 280-291, 1992.

137] I. Ivanova and M. Kubat, “Initialization of neural networks by means of decision 
trees,” Knowledge-Based Systems, vol. 8, no. 6, pp. 333-344, 1995.

138] A. Banerjee, “Initializing neural networks using decision trees,” 1997.

139] R. Setiono and W. K. Leow, “On mapping decision trees and neural networks,” 
Knowledge-Based Systems, vol. 12, no. 3, pp. 95-99, 1999.

140] C. Olaru and L. Wehenkel, “A complete fuzzy decision tree technique,” Fuzzy 
sets and systems, vol. 138, no. 2, pp. 221-254, 2003.

141] O. Irsoy, O. T. Yildiz, and E. Alpaydin, “Soft decision trees,” in Proc. Int. 
Conf. Pattern Recognition. IEEE, 2012, pp. 1819-1822.

142] J. Wang and V. Saligrama, “Local supervised learning through space partition­
ing,” in Proc. Neural Inform. Process. Syst., 2012, pp. 91-99.

143] M. J. Saberian and N. Vasconcelos, “Multiclass boosting: Theory and algo­
rithms,” in Proc. Neural Inform. Process. Syst., 2011, pp. 2124-2132.

144] G. Ratsch, T. Onoda, and K.-R. Muller, “Soft margins for adaboost,” in Mach. 
Learning, 2000, pp. 287-320.

145] A. Frank and A. Asuncion, “UCI machine learning repository,” http://archive. 
ics.uci.edu/ml, 2010.

146] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” 
ACM  Trans. on Intelligent Syst. and Technology, vol. 2, pp. 27:1-27:27, 2011, 
software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

147] R. Sznitman, C. J. Becker, F. Fleuret, and P. Fua, “Fast Object Detection with 
Entropy-Driven Evaluation,” in Proc. Comput. Vision and Pattern Recognition,
2013.

148] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 
ser. Springer Series in Statistics. New York: Springer, 2001.

149] S. Vitaladevuni, Y. Mishchenko, A. Genkin, D. Chklovskii, and K. Harris, 
“Mitochondria detection in electron microscopy images,” Workshop Microscopic 
Image Anal. Appl. Biol, 2008.

150] K. Smith, A. Carleton, and V. Lepetit, “Fast ray features for learning irregular 
shapes,” Proc. Int. Conf. Comput. Vision, 2009.

151| A. Lucchi, K. Smith, R. Achanta, G. Knott, and P. Fua, “Supervoxel-based 
segmentation of mitochondria in em image stacks with learned shape features,” 
IEEE Tran. on Medical Imaging, vol. 31, no. 2, pp. 474 -486, 2012.

http://archive
http://www.csie.ntu.edu.tw/~cjlin/libsvm


116

[152] T. Tasdizen, J. P. Tarel, and D. B. Cooper, “Algebraic curves that work better,” 
Proc. Comput. Vision and Pattern Recognition, vol. 2, pp. 35-41, 1999.

[153] T. Tasdizen and D. B. Cooper, “Boundary estimation from intensity/color 
images with algebraic curve models,” Proc. Int. Conf. Pattern Recognition, 
vol. 1, pp. 225 -228, 2000.


