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ABSTRACT 

 

Al 5xxx alloys are widely used in marine and offshore structures for their excellent 

balance of weight, strength, ductility, weldability, and corrosion resistance. However, they 

can become sensitized when exposed to elevated temperature for a long time, which is 

caused by the precipitation of intergranular β phase. β phase is anodic to Al matrix and can 

be selectively dissolved by corrosive solutions, such as sea water, and cause intergranular 

corrosion and stress corrosion cracking. 

In the present study, Al 5xxx alloys (Al 5083, Al 5456, Al 5050, Al 5052, and Al 

5154) were aged at constant temperatures (40, 50, 60, 70℃) and cyclic temperatures (40-

45, 30-70, 50-70℃) for as long as 57.5 months. The microstructure was investigated using 

electron backscatter diffraction (EBSD), scanning transmission electron microscopy 

(STEM), energy-dispersive X-ray spectroscopy (EDS), atom probe tomography (APT), 

and small angle neutron scattering (SANS). Experimental results reveal that a phase 

transformation process from GP zones to β’/β phases occurs for precipitates formed in both 

Al 5083 H131 and H116 aged at 70℃. The size of intergranular and intragranular β phase 

increase with aging time.  

In addition, a model based on local equilibrium of chemical potential and multiclass 

precipitates number evolution was adopted to predict the multiphase precipitation process 

in the Al-Mg binary system. The overall trend of precipitate radius and number density 

predicted by the model match well with experimental results. Moreover, the particle size
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distribution (PSD) of different Mg-rich precipitates demonstrates their different stages of 

precipitation. 

A classical nucleation-growth-coarsening theory for the description of intergranular 

precipitation is formulated, which adopts a collector plate mechanism, an equivalent 

average Mg concentration at the grain boundary, and a new coarsening expression. Three 

coarsening mechanisms, the modified LSW (Lifschitz-Slyozov-Wagner), the Kirchner 

mechanism, and a combination of these two mechanisms, are compared. Modeling results 

reveal that the Kirchner mechanism will break down when continuity ( 2RN ) is close to 

1. According to the new model, the coarsening mechanism still accounts for a small 

fraction (only 10%) in the final growth rate after aging at 70℃ for 40 months, which is 

confirmed by the precipitate size distribution data. Thickness and continuity results 

predicted by the new model agree well with experimental results obtained from scanning 

transmission electron microscopy (STEM) images of Al 5083 H131 alloys aged at 70℃ 

for different times. In addition, the new model is also applied to a high-temperature 180℃ 

situation, where precipitate coarsening is observed. 

ASTM G-67 Nitric Acid Mass Loss Test (NAMLT) results of Al 5050 H32, 5052 

H32, 5154 H32, 5083 H116, 5083 H131, and 5456 H116 alloys were obtained to evaluate 

the Degree of Sensitization (DoS). A linear relationship between continuity and mass loss 

was adopted to predict the mass loss of Al 5083 H116 and H131 aged at constant and 

cyclical temperature, and the modeling results agree well with experimental mass loss data. 
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CHAPTER 1 

 

INTRODUCTION 

 

Al 5xxx alloys, such as Al 5083 and Al 5456, have a good combination of strength, 

ductility, weldability, and corrosion resistance, therefore they have been increasingly used 

for structures of vehicles and ships throughout the United States Navy. [1,2] In addition, they 

are also widely used for the commercial ship and automobile manufacturing industries, 

because the replacement of steel using Al alloys decreases the weight of structures, thereby 

increasing speed, range, and fuel economy.[3] 

The precipitation of a second phase is widely used in some Al alloys (like Al 6xxx [4] 

and 7xxx [5] alloys) to enhance their mechanical properties [6,7] such as strength, hardness, 

and creep resistance. However, the appearance of the second phase can also result in 

detrimental effects to the performance of the alloy. For instance, the intergranular corrosion 

(IGC) and stress corrosion cracking (SCC) [8–10] of Al 5xxx alloy caused by the 

precipitation of β phase (Al3Mg2) at grain boundaries.[11] According to previous research, 

Al alloys containing more than 3 wt.% Mg can become unstable with time at moderately 

elevated service temperature due to the precipitation of Mg-rich β phase (Al3Mg2) at grain 

boundaries.[12]  β phase has a corrosion potential of around -1.29V (SCE), and it is anodic 

to Al matrix, which has a corrosion potential of -0.73V (SCE).[13] Therefore, intergranular
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β phase will be selectively dissolved when exposed to corrosive environments, such as sea 

water. [8,11]  

A substantial volume of research has been conducted on the precipitation behavior 

of Al-Mg alloys. For example, Searles et al. aged Al 5083 alloy at 150℃ for different times, 

and their results indicated that the fractional coverage of β phase increased with aging time 

when aging time was shorter than 189 hours.[8,14] While the thin β phase film started to 

coarsen and became discontinuous if aging time was longer than 189 hours. Goswami et 

al. investigated Al 5083 H131 alloy aged at 175℃ for 10 days, and β phase was observed 

on pre-existing Al6Mn-type pre-existing particles. [15] In addition, pipe diffusion through 

dislocations was applied to explain the fast growth of intergranular β phase. Sato and 

Kamio characterized precipitates formed in Al-14 wt.% Mg alloy aged at different 

temperatures (from room temperature to 90℃), and they found that GP zones and β” 

(Al3Mg) phase cannot form in the matrix when aging temperature is higher than 90 ℃. [16] 

However, these studies were conducted either at high temperatures (>100℃) or for Al-Mg 

alloys of high Mg concentrations (>10 wt.% Mg), which is very different from the real 

exposure environment of Navy ships and the normal compositional range of Al 5xxx alloys.  

 In the present study, Al 5xxx alloys (Al 5083 H131, H116, H321, and Al 5456 H116) 

were aged at low constant temperatures (40, 50, 60, and 70℃) as well as cyclic 

temperatures (30-45, 30-70, 30-45, and 30-50℃) which were selected based on the real 

temperature profiles measured from samples on the deck of a US navy ship traveling from 

San Diego to Panama City through the Panama Canal.[17] Moreover, the aging time for 

some of the samples is as long as 4.5 years. The objectives of this study are listed as follows: 
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(1) Characterize the sensitized samples using instruments, such as scanning 

transmission electron microscopy, energy dispersed X-ray spectroscopy, atom 

probe tomography, and small angle neutron scattering, to identify the type of 

different Mg-rich precipitates as well as their size and volume fraction; 

(2) Develop an intergranular β phase precipitation model to predict the nucleation, 

growth, and coarsening of β phase formed in Al 5xxx alloys aged at different 

temperatures; 

(3) Conduct intergranular corrosion tests for Al 5xxx alloys (Al 5083 H131, H116, 

H321 and Al 5456 H116) aged at different temperatures for different times to 

estimate their sensitization degrees; 

(4) Correlate the distribution of intergranular β phase (the continuity) with the 

ASTM G67 mass loss, and propose a primary model to predict the mass loss of 

Al 5xxx alloys aged at different temperatures for different times.   

 

 

 



CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

Aluminum is the most-used nonferrous metal, with an annual consumption of 25 

million tons. [18] The wide application of Al and Al alloys can be attributed to their 

advantageous properties, such as lightness, thermal conductivity, electrical conductivity, 

suitability for surface treatments, corrosion resistance, diversity of semiproducts, 

functional advantages of extruded and cast semiproducts, and ease of recycling. [18] 

 

2.2 Classification of Al alloys 

Al alloys are usually divided into two major categories: wrought Al alloy and casting 

Al alloy. Wrought Al alloy indicates alloys produced in ingot or billet form and further 

processed by techniques such as rolling, extruding, forging, drawing, or other 

metalworking to produce semiproducts. Casting Al alloys refers to alloys that are used in 

parts cast to final or near-final shape, and no further working or processing is needed. [19]   
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2.2.1 Wrought Al alloys 

For wrought alloys, the Aluminum Association has a four-digit system to identify 

different families. The first digit defines the major alloy element, the second digit defines 

variations in the original basic alloy, and the third and fourth digits designate the specific 

alloy within the series. [19] The detail classification  [20] of wrought Al alloys are shown as 

follows: 

 1xxx series alloys are unalloyed (pure) Al with a composition of Al≥99%, and the 

primary application of 1xxx alloys is in the electrical and chemical industries. 

 2xxx series alloys are based on copper as the main alloy element, and notably, 

magnesium is also added. 2xxx alloys are widely used in aircraft-related industries. 

 3xxx series alloys have manganese as the principal alloy element, and the general 

application of this alloy is architecture. 

 4xxx series alloys have silicon as the main alloy element, and they are widely used 

for welding rods and brazing sheets. 

 5xxx series alloys have magnesium as the principal alloy element, and are used in 

boat hulls, gangplanks, and other products exposed to marine environments. 

 6xxx series alloys have magnesium and silicon as the principal elements, which are 

widely used in architectural extrusions. 

 7xxx series alloys are based on zinc, and some other elements such as copper, 

magnesium, chromium, and zirconium may be added. 7xxx alloys are used for 

aircraft structural components and other high-strength applications. 

 8xxx series alloys includes tin, iron, and lithium compositions, which are less 

frequently used. 
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Among the above alloys, 2xxx, 6xxx, and 7xxx series are heat-treatable Al alloys, 

which can be strengthened by heating and then quenching, or rapid cooling; while 1xxx, 

3xxx, 4xxx, and 5xxx series alloys are non-heat-treatable Al alloys, and hardening effects 

of these alloys are induced by their alloy elements. Moreover, further strengthening of non-

heat-treatable alloy can be achieved by cold working. [19]  

 

2.2.1 Al 5xxx alloys 

Table 2.1 displays the composition of Al 5083 and Al 5456 alloys. [19,21] The addition 

of Mg to Al markedly increases the strength of Al without reducing the ductility. Mn plays 

the same role as Mg. As a matter of fact, increasing amounts of either Mg or Mn intensify 

the difficulty of fabrication and increase the tendency towards cracking during hot rolling, 

and the presence of trace Na will further intensify the effect. [19] The addition of Mn works 

in two different ways: (1) it makes the precipitation of Mg phase more general throughout 

the structure; (2) it reduces the amount of Mg addition needed to achieve the same amount 

of strength, which will in turn ensure the stability of the system. [19] Al 5xxx alloys are 

exceptionally tough and can absorb a lot of energy during fracture. Moreover, Al 5xxx 

alloys are readily welded by commercial procedures. [20]  

Al 5xxx alloys are widely used in offshore structures, warships, and marine platforms 

for their high corrosion resistance; [1] whereas, Al 5xxx alloys of Mg concentration higher 

than 3% are not recommended for service in which prolonged elevated temperature may 

be encountered, because of the decomposition of Al-Mg supersaturated solutions and the 

formation of anodic phases at the grain boundary, which leads to intergranular corrosion 

and stress corrosion cracking.  [11,14] 
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2.2.3 Different tempers of Al 5xxx alloys 

The basic tempers for Al alloys [20] are classified as follow: 

 F, as-fabricated, which means no special control over thermal conditions and strain-

hardening processes employed to achieve specific properties. 

 O, annealed, applied to wrought Al alloys that are annealed to obtain the lower 

strength temper for further workability. 

 H, strain-hardened, for wrought product only, and products strengthened by strain 

hardening, with or without supplementary thermal treatment to produce some 

reduction in strength. 

 W, solution heat-treated, applied to alloys that age spontaneously at room 

temperature over a duration of months or years after solution heat-treatment. 

 T, solution heat-treated, applied to alloys decomposed within a few weeks after 

solution heat treatment. 

Al 5xxx alloys are strength-hardened alloys, and H tempers are used for these alloys. 

The first number following the letter (H) indicates the specific sequence of basic operations: 

(1) H1 means strain-hardened only, and no supplementary thermal treatments were applied 

to the alloys; (2) H2 means strain-hardened and partially annealed, and this applied to 

products that are strain-hardened more than the desired amount, and the final amount was 

achieved by partial annealing; (3) H3 means strain-hardened and stabilized, which applied 

to alloys that strain hardened and whose mechanical properties are stabilized by a low-

temperature thermal treatment. The second digit after H stands for the degree of strain 

hardening. The numeral 8 indicates tempers with ultimate tensile strength equivalent to 

that achieved by about 75% cold reduction following full annealing. And numerals 1 to 7 
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stand for tempers between 0 and 8. [20] The temper 9 designates a temper whose minimum 

ultimate tensile strength is 10 MPa or more, higher than that of the temper 8. The 

correspondence mechanical properties of Al 5083 and Al 5456 alloys are listed in Table. 

2.2. [19] 

 

2.3 Al-Mg binary phase diagram 

In Al 5xxx alloy, the principal alloy element is Mg, and the precipitates formed at 

the grain boundary are Mg-rich precipitates. Thus, it is necessary to refer to the binary Al-

Mg phase diagram, which provides the information on saturated Mg concentration at 

different temperatures. Fig. 2.1 shows the phase diagram of the Al-Mg binary system based 

on experimental results and calculations. [22] In the present study, Al 5083 and Al 5456 

alloys are investigated, and Mg concentration of these two alloys are listed in Table 2.1. 

Fig. 2.1 reveals that, at 100℃, the saturated concentration of Mg within the matrix is 

around 1.5 wt.%, which is much lower than the Mg concentration in Al 5083 and Al 5456 

alloys. Henceforth, when exposed to elevated temperature for a long time, extra Mg will 

diffuse out of the matrix and preferentially nucleate at heterogeneous sites such as 

dislocations, pre-existing particles, and grain boundaries.[15,23] The equilibrium form of 

Mg-rich precipitates at low temperature (lower than 400℃) is β phase, which has a 

stoichiometry of Al3Mg2, [24] while metastable phases of β will form before the precipitation 

of β phase, which will be discussed in the next section.  
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2.4 Precipitation of β phase in Al-Mg alloy 

2.4.1 Precipitation sequences in Al-Mg alloy 

The decomposition of Al-Mg binary alloy has been investigated by many research 

groups. Small angle neutron scattering (SANS) is a powerful technique to provide 

information such as size and number density of precipitates in a bulk sample of centimeter 

scale [25]. Roth and Raynal [26] aged two types of Al-Mg (7% and 11.5% Mg) alloys at 

different temperatures (room temperature for 1 year and 40℃ for 3 months plus room 

temperature for 9 months). SANS results of these samples indicated that Mg-rich (20-25%) 

zones are able to form in Al-11.5% Mg alloys. Further research [27] by the same authors 

revealed that GP zones of 19Å in radius were identified in the Al-11.5% Mg alloy aged at 

0℃ for 9 months, and Mg concentration in the GP zone was estimated to be 19%. Gault et 

al.[28] investigated the precipitation in polycrystalline and single-crystalline Al-Mg alloys 

by means of ultrasonic velocity testing, and their results revealed that the formation of GP 

zones in low temperatures caused an increase of ultrasonic velocities. In contrast, the β’ 

and β phase formed at high temperatures decrease the ultrasonic velocities. Moreover, 

TEM and ultrasonic measurements indicated that two modes of GP zone exist. A 

calorimetric study was conducted by Nozato and Ishihara [29] to examine the precipitation 

process in Al-Mg (7.6-12.5 at.%) alloys, and a four-stage precipitation process was 

proposed to explain the specific heat versus temperature results below 50℃. The 

temperature limits for the formation of GP zones and β” phase can be affected by the 

concentration of Mg. [29] GP zones were reported to form in the as-quenched Al-10.5 at.% 

Mg alloy annealed at 450℃. In addition, the formation of β’ and β phase was associated 

with a micro hardness change during the aging process. [29] 
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Kojima et al. [30] investigated Al-10 %Mg casting alloys aged in a natural 

environment for more than 13 years. Their results revealed that the elongation of the 

solution treated (430℃ for 10 hours and 490℃ for 8 hours) sample is more than 20%, 

while the elongation of the natural aged sample (room temperature for 13 years) decreased 

to only 1-2 % due to the precipitation of Mg-rich precipitate. TEM results indicated that 

the formation of GP zones will cause Ashby-Brown contrast, and the size of GP zones is 

around 10 nm. The structure of GP zones, (which turns out to be β” phase) is L12, with Al 

and Mg atoms alternatively aligning in three-dimensional periodicity along the [100] 

direction. After heating at 150℃ for 500 s, GP zones are reverted completely. Al-Mg alloys 

(5 wt.% and 10 wt.%) were aged at temperature ranges from -30 to 100℃ by Sato et al., [31] 

and the aged samples were investigated using mechanical tests, electrical resistivity 

measurements, and high-resolution TEM. An apparent increase in micro hardness was 

observed in the Al-10wt.% Mg alloy sample, while no change in micro hardness occurred 

to the Al-5wt.% Mg alloy sample. Both alloys showed an increase in electrical resistivity 

at the beginning of aging. TEM results demonstrate that GP zone of modulated structure 

developed into GP zones having the L12 structure in Al-10wt.% Mg alloy. No GP zones 

were found in the Al-5wt.% Mg alloy. The limit temperature for GP zone formation was 

reported to be 25 and 46℃ for Al-5wt.% Mg and Al-10wt.% Mg alloy, respectively, based 

on electrical resistivity measurements.  

Osamura and Ogura [32] aged three types of Al-Mg (5.1at.%, 10.8at.%, and 14.8at.% 

Mg) alloy at different temperatures (from 30℃ to 180℃), and electrical resistivity 

measurements and differential scanning calorimetric (DSC) measurements were conducted 

to investigate the precipitation behavior of Mg-rich precipitate. Based on their research, 
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GP zones were believed to form at the early stage of aging, while β” phase grew remarkably 

fast at the late stage of aging. In addition, they proposed a metastable phase diagram for 

the Al-Mg binary system aged at low temperatures. Sato and Kamio [16] investigated Al-

Mg alloys (10wt.%, 14wt.%, 20.1at.%, and 30at.% Mg) aged at different temperatures 

(room temperature, 60, 80, and 90℃) for as long as 153 months, and their DSC and 

HRTEM results confirm the presence of GP zones and β” phase. From the results of these 

studies, the equilibrium precipitation sequence  [32] in Al-Mg alloy is established as first, 

the supersaturated solid solution-GP zone- β”- β’- β phase, where GP zones (short-range 

ordered Al3Mg) have a modulated structure [31] under the TEM, and they have the same 

structure as the Al matrix. However, the Mg concentration in GP zones is much higher than 

that of the matrix. β” phase (short-range ordered Al3Mg, a=0.408 nm) has an L12 structure 

in which Al and Mg atoms are alternatively aligned along the [100] directions. [32] The 

superlattice reflections of the ordered structure in the selected area diffraction pattern 

(SADP) make it very easy to identify, as shown in Fig. 2.2. [33] β’ phase, Al3Mg2, is reported 

to have a hexagonal (a=1.002nm, c=1.636 nm) structure and is semicoherent with the 

matrix. [34] As shown in Fig. 2.3, the shape of β’ phase turns out to be needle-like or rod-

like, with size ranging from a few hundred nanometer to several microns , and it lies along 

the <110> direction. The equilibrium β phase, Al3Mg2, is of fcc structure (a=2.824nm) with 

a unit cell containing 1186 atoms. [35] Fig. 2.4 displays a rod-like β phase formed in Al 5083 

alloy, and the corresponding SADP is also provided. [36] However, the precipitation 

sequence can be slightly changed if aging temperature or Mg content is different. Nozato 

and Ishihara [29] reported that GP zone and β” will not form in the matrix if the aging 

temperature is higher than 90℃. Sato and Kamio [16] found that β” phase will form directly 
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in the matrix of Al-Mg alloy of Mg content higher than 20 at.%, which is consistent with 

the results of Osamura and Ogura [32]. 

 

2.4.2 Precipitation at the grain boundary of Al 5083 alloy 

Because of the critical role in intergranular corrosion (IGC), intergranular β phase in 

Al 5xxx alloys has been extensively characterized and modeled. Goswami et al. [36] aged 

Al 5083 alloy sample at 175℃ for 10 days, and β phase particle of thickness 50-190nm 

were observed to form at the grain boundary. Dislocation-assisted pipe diffusion effects 

were applied to explain the enhanced growth rate of β phase. Further research [15] by the 

same research group was conducted by aging  Al 5083 alloy at 100℃ for as long as 3 

months, and their results show that β phase starts to nucleate at the grain boundary after 14 

days, and the grain boundary was fully covered by β phase after aging time increased to 45 

days. Zhu et al. [23] reported that intergranular β phase is able to form at 70℃ as long as 

sufficient aging time (12 months) is given. Their results revealed that intergranular β phase 

formed at the grain boundary of Al 5083 H131 aged at 175 ℃ for 15 days is much thicker 

than that of the sample aged at 70℃ for 12 months. In situ TEM results by D’Antuono et 

al. [37] shows that β phase is more easily precipitated on low-angle grain boundaries, while 

contrary conclusions were reported by Zhao et al. [38] and Yan et al. [39]. Grain boundaries 

of plane orientation {110} and {100} are believed to be immune to the precipitation of β 

phase. [38,39] In addition, coincident site lattice (CSL) grain boundaries can also affect the 

precipitation of intergranular β phase. [39] 
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2.4.3 Effects of alloy elements on the precipitation of Al-Mg alloys 

Micro-alloying is an effective way to improve the microstructures, mechanical 

properties, and corrosion resistance of Al-Mg alloys. For example, Carroll et al. [40] 

reported that Zn addition to sensitized Al 5083 alloy led to the formation of a discontinuous 

intergranular τ-phase (Mg32(Al,Zn)49), which precluded the formation of intergranular β 

phase. Further research by Meng et al. [41] shows that Zn addition also helped to keep the 

precipitate inside the grain matrix and decrease the corrosion potential of the matrix. Sc 

combined with Zr served as a potent grain refiner for casting Al-Mg alloys. [42] In addition, 

fine AlSc3 precipitates are able to inhibit the recrystallization of deformed Al-Mg alloys 

annealed at high temperature, and obtain a suitable strengthening effect. [43] Cu was found 

to improve the yield strength of Al-Mg-Cu alloy aged at 180℃. [44] Moreover, Guinier-

Preston-Bagaryatasky (GPB) zones are believed to play a critical role in hardening during 

early stage aging, while S” phase contributes to the precipitation hardening in later 

stages. [45] Even though addition of Cu helps to improve the corrosion resistance of Al-Mg 

alloy, the mechanism behind this is still unknown. [44] The effect of trace addition of Ag on 

the precipitation behavior of Al-Mg alloy was investigated by Kubota et al., [46] and their 

results indicate that Ag facilitates the nucleation of intragranular β” phase. 

 

2.4.4 Effects of cold working on the precipitation of Al-Mg alloys 

The effect of mechanical treatment on the properties of Al 5xxx alloys has been 

investigated by many research groups. Tran and Riba [47] processed the surface of 

sensitized Al 5456 H116 using an ultrasonic impact treatment (UIT) method, and scanning 

electron microscope (SEM) results revealed that a deformed layer of thickness ranging 
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from 10 to 18 μm formed on the surface. Voids and tearing were observed in the 

deformation layer, and there is a delamination layer between the UIT surface and the matrix. 

Nanograins ranging in size from 2 to 200 nm were found in the deformation layer, and β 

phase became discontinuous in this layer. Zhang et al. [48] performed cold rolling, 

cryorolling, equal channel angular pressing (ECAP), and high-pressure torsion on the same 

Al 5083 alloy samples, and microhardness of the processed samples was increased. In 

addition, EBSD results indicated that the fraction of high-angle grain boundaries (HAGB) 

increases with the number of ECAP passes, while cryorolling leads to a lower fraction of 

HAGB compared with the original sample. By combining ASTM G67 mass loss results 

with grain size and the fraction of HAGB, they concluded that the fraction of HAGB plays 

a more critical role for ASTM G67 mass loss results when grain size is smaller than 1μm. [48]  

 

2.5 Modeling of intergranular precipitation 

2.5.1 Zener’s model 

Zener [49] proposed that precipitate thickening was only controlled by solute diffusion 

within the grain matrix, and that precipitates formed a continuous film at the grain 

boundary through the whole aging process. Therefore, based on a mass balance of solute, 

the thickness of precipitate can be calculated using the concentration of solute at different 

places within the grain matrix. Since this method assumes a continuous film at the grain 

boundary, the thickness of precipitates is much smaller than experimental results involving 

discontinuous precipitates. Goswami and Holtz [15,36] adopted the model developed by 

Zener to estimate the thickness of β phase formed at the grain boundary of Al 5xxx alloy.  
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2.5.2 The collector plate model 

Aaron and Aaronson [50] first developed a model for grain boundary precipitation. By 

realizing the rapid lengthening and thickening rates of allotriomorphs cannot be explained 

by a volume diffusion mechanism [51] alone, they accounted for the role of grain boundary 

short circuit diffusion using a collector plate mechanism. In their model, thickening of θ 

phase (CuAl2) was controlled by diffusion of Cu at the interface of α:θ, and lengthening 

was controlled by diffusion from the bulk to the grain boundary and then to the advancing 

edge of θ phase. Their theory was successfully applied to Cu-Al alloys. 

Based on the theory of diffusion along grain boundaries developed by Fisher [52] and 

Shewmon, [53] and the theory of the surface morphology change resulting from diffusion 

developed by Mullins [54] and Nichols and Mullins, [55] Brailsford and Aaron [56] put 

forward a theory to solve simultaneously the lengthening and thickening rate of θ phase at 

the grain boundary of Cu-Al alloys. In their research, an equation was used to describe the 

shape of θ phase, and a corresponding mass balance of Cu was taken into account. The 

model was solved numerically, and the results agreed well with experimental observation. 

Faulkner and Caislery [57] combined the approaches of Aaron and Aaronson for grain 

boundary precipitation in Nimonic PE16. In order to avoid the complicated mathematical 

approach of solving lengthening and thickening simultaneously, they assumed a constant 

aspect ratio throughout the early stage of growth, which led to a rough assessment of overall 

size of precipitates as a function of time and temperature. 

Carolan and Faulkner [58] modified the previous collector plate mechanism-based 

theory and applied it to the precipitation of M23C6 precipitation at the grain boundary of 

austenitic steel. They adopted a time-dependent collector plate and took into account 
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different precipitation morphologies such as cap, faceted, disc, and conical shapes. The 

model accurately predicted the growth of M23C6 of different shapes. 

Faulkner and Jiang [59] developed a combined model, in which they took into 

consideration the solute segregation, nucleation of grain boundary precipitates, and their 

growth and coarsening, and the model realistically predicted the influence of heat treatment 

on the behavior of grain boundary precipitation. They further modified the model [60,61] by 

determining the influence of heat treatment on the width of precipitate-free zones and the 

growth rate and dispersion of the precipitates at the grain boundaries as well as the critical 

time for coarsening initiation and the size and dispersion of precipitates during coarsening. 

Hass [62] applied this model to predict growth of grain boundary precipitate in Al 6xxx and 

7xxx alloys.  

 

2.5.3 Speight and Hyot’s model  

Considering the effects of incubation times and frequency factors, Zeldovich [63] and 

Russell [64,65] developed a method for treating nucleation kinetics at grain boundaries. After 

Slyozov’s work [66] on the coarsening of precipitates situated at grain boundaries, 

Kirchner [67] derived an expression for the steady-state coarsening of intergranular 

precipitates using the same method as Wagner, [68] and Speight’s growth equation [69] was 

also employed in this model. In order to develop a more rigorous theory to describe the 

volume fraction dependence of the coarsening rate constant and the distribution of particle 

size, Ardell [70] modified Speight’s precipitate growth law [69] by considering ln(r’/r) as a 

variable. Moreover, he used an expression for the mean-free distance between two nearest 

precipitates derived by Bansal and Ardell, [71] and related it to the volume fraction of 
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precipitates. The model was solved using the same method employed by Lifshitz and 

Slyozov. [72] Their results revealed that the average particle size increases in proportion to 

the one-fourth power of time at high-angle grain boundaries when aging time is long 

enough. Furthermore, they also considered the coarsening that happened at low-angle grain 

boundaries. 

Hoyt [73] developed a new precipitate growth rate, instead of adopting Speight’s 

growth law. He assumed that solute atoms diffused along the grain boundary as well as 

through the bulk material during the coarsening stage. The model was solved by employing 

an asymptotic method attributed to Marqusee and Ross, [74] and the result showed that the 

average precipitate size varies in proportion to the one-third power of time, and the bulk 

and grain boundary diffusivity of solute atoms influences the coarsening rate constant. 

However, there is a high risk that the solute atom conservation equation will break down 

if the solute flux between the grain boundary and matrix is too high, which can be easily 

caused by choosing the wrong magnitude of solute diffusivity in the grain matrix. 

 

2.5.4 Molecular dynamic, phase field, and kinetic Monte Carlo model  

Recently, molecular dynamic (MD), [75,76] phase field model (PFM), [77,78] and kinetic 

Monte Carlo (KMC) [79,80] methods have been widely used to simulate the precipitation 

behavior at grain boundaries. These methods can provide detailed information, such as 

equilibrium shape, concentration gradient, and size distribution of the precipitates. By 

taking into account the diffusion of solute atoms along the interfaces, Amirouche and 

Plapp [81] found the steady-state growth rate of the growing precipitate front was highly 

influenced by the relative magnitudes of the solute diffusion coefficients at different places 
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(grain bulk, boundary, and the matrix-precipitate interface). In addition, they also found 

the hypothesis of local equilibrium at interfaces was invalid for the discontinuous 

precipitation situation. Clouet et al. [82] employed a KMC method developed by Soisson [83] 

to simulate the precipitation behavior within the grain matrix and at the grain boundary. 

Their results showed that the KMC method is very useful to predict the heterogeneous 

nucleation behavior in multicomponent alloys. MD, PFM, and KMC are powerful tools for 

simulation at the nanoscale. 

 

2.6 Modeling of intragranular precipitation 

2.6.1 The Classical nucleation, growth, and coarsening theory 

For heat-treatable alloy, the precipitation of a second phase in the matrix is usually 

used to enhance the mechanical property, such as strength, hardness, and creep 

resistance. [84] Various kinds of models have been applied to simulate the precipitation 

process. Among all the existing models, the classical nucleation and growth theories 

provide an easy and reliable method to predict the evolution of chemical composition, size 

distribution, volume fraction, and number density of precipitates. In addition, the solute 

concentration in the matrix can also be obtained based on the mass conservation of solute 

atoms. Based on different stages of the precipitation process, the classical nucleation and 

growth theory can be divided into three different stages, which are nucleation, growth, and 

coarsening. [85]  

During the nucleation stage, clusters of radii larger than the critical radius will 

nucleate in the matrix of the alloy. The expression used to describe the nucleation rate was 

proposed by Volmer and Weber, [86] improved by Becker and Doring [87] and Zeldovich, [63] 
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and further modified by Kampmann and Wagner, [88] and the final form is written as 

follows: 
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where N is the number of available nucleation sites, Z is the Zeldovich factor  
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where, γ is the interfacial energy matrix-precipitate, 
P

atv  is the atomic volume, and R* is the 

critical radius. β* is the condensation rate of the solute atoms to a cluster of critical radius 

R*, [64] which equals to  
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where D is the diffuse on coefficient of the solute atom, C is the solute concentration in the 

matrix, and a0 is the lattice parameter. *G is the energy required for nucleation of 

precipitates of critical radius R*. The critical radius can be calculated from the relative bulk 

Gibbs free energy change and interfacial energy change caused by the nucleation process. 

The incubation time, τ0, is given as: 
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Once the nuclei form, the precipitate will start to grow. In binary Al alloy, the growth 

of precipitate is usually controlled by the diffusion of solute atoms. For spherical 

precipitates, if the solute is dilute, the precipitate growth rate [49] can be expressed as 

follows: 
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where Xi is the solute concentration at the precipitate-matrix interface and XP is the solute 

concentration of the precipitate.  

The Gibbs-Thomson effect  [89–91] caused by the interface curvature of precipitates has 

a large effect on the interfacial solute concentration Xi. The Gibbs-Thomson expression is 

given as follows: 
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where X∞ is the precipitate concentration of infinite radius. During the late stage of 

precipitation, the matrix will become deplete of solute atoms, when the total volume of 

precipitate will not change any more. However, precipitates of small radius will dissolve 

(see Eq.(2.5)), and the larger ones continue to grow at the expense of these small ones.  



21 

 

The above stage is called the coarsening stage. Lifshitz and Slyozov [72] and 

Wagner [92] simultaneously investigate this phenomenon and obtained the precipitate 

growth rate during the coarsening stage as follows: 
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where R0 equals to )()2( kTv p

a . While in the real precipitation process, the nucleation, 

growth, and coarsening stages usually overlap with each other. Therefore, the final growth 

rate and number changing rate will be modified to take account of the overlap effect of 

these three stages.  

The classical nucleation and growth model has been widely used to predict the 

precipitation behavior in Al 2xxx, Al 6xxx, and Al 7xxx alloys, and the results agree well 

with the experimental results. [93] Moreover, the precipitation model can be coupled with 

other models to predict the mechanical property of alloys. For example, Deschamps and 

Brechet combined the classical nucleation and growth model with a structural hardening 

model to predict the yield strength of Al-Zn-Mg alloy. [94] Bardel et al. coupled the 

nucleation and growth model with a work-hardening model, which enabled them to predict 

the isotropic and kinematic hardening behavior. [95]  

Myhr and Grong [96] developed a multiclass approach based on the classical growth 

theory and a control volume method to simulate the precipitation behavior in Al-Mg-Si 

alloy. Perez et al. [85] compared the mean radius method with the multiclass methods 

(including the Euler-like and Lagrange-like method) and found that the multiclass method 

is essential in modeling some complex multistep heat treatment processes. In both the 



22 

 

Euler-like and Lagrange-like approach, the new-forming precipitates were put into the 

class of radius R*, and the precipitate growth rate was used to describe the radius evolution 

versus aging time.  

The multiclass model has been applied to predict the precipitation behavior in Al 

3xxx alloy and Fe-based alloy. In order to simulate the evolution of multiple precipitates 

in a multiphase multicomponent system, a model [97] was developed based on the 

thermodynamic extremum principle [98], and it has been successfully applied to complex 

precipitation processes in Al alloy [99] and Fe alloy [100]. Chen et al. [101] develop a 

precipitate growth rate equation for precipitation in multicomponent systems by 

considering the cross-diffusion and high supersaturation. This method was further 

improved by Rettig and Singer [102] to describe the precipitation process for 

multicomponent, multiphase, and multiparticle scenarios. A similar method was adopted 

by Rougier et al.  [103] to simulate γ’ phase precipitation in Ni-based alloy. 

 

2.6.2 Phase field model 

Phase field method is another powerful way to simulate the development of 

microstructure in Al alloys. Unlike the classical nucleation and growth theory, which 

assumed a sharp interface between the precipitates and the matrix, the interface in the phase 

field method is assumed to be of a certain thickness, and within the interface, the precipitate 

transforms gradually to matrix. The detailed governing equations of PFM can be found in 

Ref.  [104]. 

One advantages of PFM is that it can predict the morphology of the precipitate. Han 

et al. [105] simulate the precipitation of multivariant β-Mg17Al12 phase during the aging of 
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Mg-Al alloy, and in their model they considered the interface anisotropy and the elastic 

strain energy. In addition, a special meshing method was adopted to deal with the 

precipitate orientation and elastic strain energy calculation. Their modeling results revealed 

that the simulated precipitates have a lath shape with lozenge-shaped ends if the effects of 

interface anisotropy and the elastic strain energy were both considered. Furthermore, PFM 

can be employed to obtain the three-dimensional morphology and stress filed around the 

precipitate. Gao et al. [106] simulated the precipitation process in Mg-Y-Nd alloy aged at 

150-250℃ for different times using PFM, and they found that the equilibrium shape of β1 

phase is a disk with certain habit plane with the matrix. Moreover, they investigated the 

elastic interaction energy between a nucleating β’ phase and the stress field surrounding a 

β1 disk, which leads to the finding that both the normal and shear components of the 

coherency stress tensor are concentrated near the rim of the β1 disk where the nucleation 

and growth of β’ phase are most favored by the elastic interaction.   

 

2.6.3 Kinetic Monte Carlo 

Kinetic Monte Carlo (KMC) is another useful method to simulate precipitates formed 

in Al alloys. Even though KMC simulation is limited to small samples, of tens of 

nanometers, it can provide detailed information of size and structure of early stage 

precipitates. The KMC approach is based on the principal that the diffusion of solute atoms 

is a random process which can be simulated by the generation of random numbers and the 

lattice structure of the material. Review on KMC can be found in Ref.  [107] and  [108].  

Slabanja and Wahnstrom [79] combined the KMC with the first principle method to 

simulate the precipitation process in Al-Mg alloy aged at high and low temperatures. Their 
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results demonstrate that small L12 ordered clusters or modulated structures are observed in 

the sample aged at low temperature, and these clusters became larger and more well-

defined for longer aging time; while in the high temperature aged sample, highly ordered 

and well-defined clusters are observed.  

Sha and Gerezo [109] employed the KMC approach to simulate the GPI zone 

formation in Al-Zn-Mg-Cu (7050) alloy aged at 121℃ for 1500 min. The modeling reveals 

that GPI zones have formed during the aging process, and cluster coalescence is the major 

mechanism for the growth of large clusters, which is in good agreement with experimental 

observations. The number density, size, and chemistry of GPI zones obtained from the 

simulation agrees well with 3D APT experimental results.  

In addition, as KMC is relatively accurate for predicting the nucleation density of 

solute cluster, and it can be coupled with PFM to predict precipitation for a large sample 

size. Molnar et al. [110] aged Fe-Cu alloy at 700℃, and KMC approach was applied to 

simulate the early nucleation and growth stage. The PFM was subsequently used to 

simulate the coarsening of precipitates, and the modeling results closely follow the LSW 

temporal law in the same regime. However, the coarsening rate increases with the 

increasing volume fraction of precipitates.  

 

2.7 Corrosion of Al and Al 5xxx alloys 

2.7.1 Electrochemistry of Al 

The standard electrode potential of Al is -1.66V, which is highly negative, indicating 

Al should be very unstable in a moist environment. [18] However, Al has been reported to 

have excellent corrosion resistance, which can be attributed to the formation of a thin oxide 
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film (several nm thick) on the surface. The thin oxide film is very stable in natural 

environments, and can reform immediately when damaged. [111] The structure of the oxide 

film can be affected by the composition of the material, the crystal structure of the material, 

and the micro defects of the material.  

The Pourbaix diagram of Al is shown in Fig. 2.5. [17,18] In the pH range of 3.9-8.6, a 

passive oxide film will form on the surface of Al, while in a more acidic or basic 

environment, Al will dissolve. The corresponding reactions [18,111] are listed as follows: 

In the passive regime, the film formation reaction can be expressed as 

 

   e66HOAlO3H2Al 322
 (2.8) 

 

In the acidic regime, the dissolution of Al matrix is expressed as 

 

 
2

3 3H2AlH62Al  
 (2.9) 

 

and the dissolution of the passive film is expressed as 

 

 O3H2Al6HOAl 2

3

32    (2.10) 

 

In the alkaline environment, the dissolution of Al matrix is written as 

 

   3e4HAlOO2HAl 22  (2.11) 
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and the dissolution of the passivation film in basic environment is written as 

   2HAlO2OHOAl 2232
 (2.12) 

 

Pure Aluminum is not strong, and it does not find any major applications in the 

industry. Therefore, alloying elements, such as Cu, Si, Mn, Mg, are added to improve the 

mechanical properties. [19] As mentioned above, the main alloying elements in Al 5xxx 

alloys are Mg and Mn. [19] The corrosion properties of Al 5xxx alloys have been extensively 

investigated recently, which will be reviewed in the next section. The corrosion of Al 5xxx 

alloy can often be classified as pitting corrosion, exfoliation corrosion, intergranular 

corrosion, and stress corrosion cracking.  

 

2.7.2 Pitting of Al 5xxx alloys 

Pitting corrosion is a kind of localized corrosion, which is characterized by the 

formation of irregularly shaped cavities on the surface of the metal. [111,112] As shown in 

Fig. 2.6, [18] Al is prone to pitting in media with a pH close to neutral, such as sea water, 

moist air, and natural water films. Pitting is usually more dangerous than uniform corrosion, 

since it is difficult to detect. The initiation of pitting starts from the localized breaks in the 

passive film caused by absorbing chloride ions. [111] Most of the pits will stop after a few 

days because of repassivation. Only a small fraction of the pits will continue to grow. In 

these pits, the dissolution of Al and hydrolysis of Al3+ will happen, which will decrease the 

pH of the solution in the pit. Moreover, in order to keep the electroneutrality of the solution, 

chloride ions will diffuse into the pit, which will make the solution more conductive and 
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aggressive. If the anode is stable, the above process will keep proceeding and dig a cavity 

on the surface of the Al alloys. [111,112]  

Trueba and Trasatti [113] investigated the pitting corrosion behavior of Al 5083 H111 

and Al 5754 H111 in neutral NaCl solution using single-cycle polarization. 

Electrochemical parameters, such as pitting potential, repassivation potential, and pit 

transition potential were determined in deaerated and naturally aerated NaCl solutions. 

Their results revealed that the potential difference of pitting and transition can be used to 

predict the propensity towards localized pitting corrosion of Al alloys in a specific 

corrosive environment. Guan et al. [114] investigated the pitting behavior of Al-5wt.%Mg 

alloy aged at 150℃ for different times, and their results demonstrated that metastable 

pitting was closely associated with nanoscale β phase, the size of which increases with 

aging time. Moreover, the current transient caused by dissolution of β phase has been 

recorded in sensitized samples. In addition, their results showed that wavelet analysis can 

be used to differentiate the metastable pitting behavior with the overlapped current 

transients and the small microstructural changes for samples aged for a long time.  

Pitting corrosion has been reported to happen preferentially around intermetallic 

particles in Al alloys. The corrosion potential of pre-existing particles and matrix of Al 

alloys has been investigated by Birbilis and Buchheit, [115] and are listed in Table 2.3. The 

intermetallic particles are usually noble compared to Al matrix. Therefore, a galvanic cell 

will form when a pre-existing particle and matrix are exposed to water. The larger the 

potential difference of these two phases, the easier it is for pitting corrosion to occur. 

Furthermore, when Al alloys are exposed to elevated temperature, precipitates, such as β 

phase in Al 5xxx alloys, will form in the matrix, on pre-existing particles, and at grain 
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boundaries. These precipitates may have lower electrochemical potential than the matrix, 

and they will preferentially be etched during pitting. For example, the corrosion potential 

of Al3Mg2 and Mg2Si are -1.12 V (SCE) and -1.36 V(SCE), respectively, which are lower 

than that of the matrix (-0.68 VSCE).    

 

2.7.3 Exfoliation of Al 5xxx alloys 

Exfoliation corrosion is a type of selective corrosion that propagates along a large 

number of planes in the same direction of rolling and extrusions, and the corrosion products 

will accumulate at the grain boundary and exert pressure between the grains, which will 

finally result in a lifting and leafing effect. Exfoliation corrosion has been observed in Al 

2xxx, 5xxx, and 7xxx series alloys exhibiting a long-grained structure parallel to the 

direction of rolling. [18]  

Sun et al. [116] investigated the exfoliation corrosion of extruded Al 2024 alloy by 

comparing the corrosion behavior of this alloy exposed to industrial, coastal-industrial, and 

laboratory-accelerated testing environments. Their results revealed that the coastal 

atmosphere leads to more severe corrosion than the industrial environment. The thinner 

coarse grain structure suffered more severe corrosion than the thicker coarse-grain structure 

after 20 years’ of exposure. A small amount of S and a relatively larger amount of Al and 

O are found in the corrosion products. Furthermore, the existence of 
2

4SO is believed to 

hinder the exfoliation corrosion of Al 2xxx alloy.  

Chen and Lai [117] investigated the reversing sensitization of naturally exfoliated Al 

5456 H116 alloy. In their study, Al 5456 H116 alloy that was in service for around 20 years 

was heat treated to 250℃ for different times, and the microstructure results obtained from 
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SEM revealed that precipitates at the grain boundary had become discontinuous. In 

addition, the ASTM G67 mass loss test also decreased from 65 mg/cm2 to 5 mg/cm2 after 

being exposed at 250℃. Based on the experimental results, they concluded that by 

exposing the sensitized sample at 250℃ for 10 to 30 minutes, the exfoliation corrosion can 

be significantly reduced without affecting the mechanical behavior.  

 

2.7.4 Intergranular corrosion of Al 5xxx alloys 

Intergranular corrosion (IGC) is a selective dissolution of grain boundary area of 

crystalline materials which is anodic to the matrix. In Al 5083 and Al 5456 alloys, Mg is 

supersaturated at room temperature, and will diffuse to the grain boundary to form Mg-rich 

precipitates when exposed to elevated temperature for a relatively long time. [11] The Mg-

rich phase, which is also called β phase, has a more negative corrosion potential than the 

matrix and will be selectively dissolved in sea water. [8,115]  

The initiation of IGC occurs at exposed metal surface where the passivation film or 

the near-surface deformation layer (NSDL) is broken. [118] The pre-existing particle, such 

as Al6Mn, plays a critical role in the chemical breakdown of the oxide layer, while the 

NSDL can be removed by rapid cathodic dissolution. The anodic dissolution of β phase 

generates metal cations, and the hydrolysis of cations as well as absorption of chloride ions 

that will subsequently facilitate the dissolution of β phase. [119] The chain of pits finally 

leads to a network of corroded grain boundaries, while the stable penetration of IGC is 

affected by the chemistry and the potential distribution of fissure tip. If the migration and 

diffusion of cations and anions provides a suitable chemistry environment, and the potential 

distribution inside the fissure is appropriate, stable IGC propagation will be expected. On 
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the contrary, once the chemistry and the potential distribution do not support fissure tip 

dissolution, IGC propagation will stop. [119] 

The degree of sensitization (DoS) of Al 5xxx alloys can be quantified using the nitric 

acid mass loss test (NAMLT) as stated in ASTM G67. [17] The β phase dissolves two orders 

of magnitude faster than Al matrix in the 70 vol.% nitric acid at 30℃. The selected 

dissolving of intergranular β phase network causes the fall-off of grains and the mass loss 

of the sample bulk. Based on ASTM G67, the IGC susceptibility of Al 5xxx alloys can be 

classified as resistant (DoS<15 mg/cm2), intermediate (DoS<25 mg/cm2), and susceptible 

(DoS>25 mg/cm2). [17] In addition, a phosphoric acid etching method is also used to 

quantify the IGC susceptibility of Al 5xxx alloys. The concentration of phosphoric acid 

varies from 10 vol.% to 40 vol.%, according to previous research. [12] However, the size of 

β phase obtained from the etched microstructure is much larger than the results obtained 

from TEM. Therefore, less aggressive etchants such as ammonium persulfate and liquid 

Ga were adopted to evaluate the IGC behavior of Al 5xxx alloys. [120] 

The IGC susceptibility of Al 5xxx alloys is defined by the difference between the 

breakdown potentials of the anodic grain boundary zones and the alloy matrix. [119] In 

neutral chloride solutions, the breakdown potential of Al 5xxx alloys is associated with the 

spreading of IGC to nearby β phase and the onset breakdown potential of β phase. Jain et 

al. [121] built an electrochemical framework to describe the range of potential over which 

Al 5083 is susceptible to IGC in solutions of different NaCl concentrations. Their work 

demonstrates that IGC will spread on the sample surface if an applied potential is located 

between the breakdown potential of sensitized Al 5083 alloys and the breakdown potential 

of β phase. This finding was substantiated by the corrosion experiments of highly sensitized 
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Al 5083 H131 in 0.6M NaCl solution with different applied potentials. In this research, a 

large area of IGC spreading was only observed at the highest applied potential (-0.73 VSCE) 

situation. However, this electrochemical framework only works for the IGC spreading on 

the surface, and the propagation of IGC in the bulk needs to consider the local chemistry 

and potential of the fissure tips. [119]  

 

2.7.5 Stress corrosion cracking of Al 5xxx alloys 

Stress corrosion cracking (SCC) is the brittle failure at relatively low constant tensile 

stress of an alloy exposed to a corrosive environment. Based on the definition, a critical 

environment, a susceptible alloy, and some component of tensile stress are three important 

conditions for the initiation of SCC.[121] Even though these three factors are not usually 

present together, time and service conditions may conspire to produce the necessary 

combinations that result in the final failures. SCC is normally associated with static tensile 

stress, which is different from the cyclic tensile stress for corrosion fatigue. [122]  

Extensive experimental and theoretical research has been conducted to investigate 

the mechanism of SCC, and several mechanisms have been proposed to explain SCC, such 

as hydrogen embrittlement, absorption-induced cleavage, surface mobility, film rupture, 

and film-induced cleavage. [123] Among these mechanisms, hydrogen embrittlement has 

been widely accepted to be the control mechanism for Al-Mg alloy. The hydrogen 

embrittlement mechanism is based on the assumption that hydrogen atoms are able to 

weaken interatomic bonds in the plane strain region at the crack tip (see Fig. 2.7). [123] 

Searles et al. [8] investigated the SCC behavior of Al 5083 alloy by means of an 

electrochemistry method, constant-extension-rate testing, and TEM analysis. Their results 
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demonstrate that β phase is more active than the matrix, and it can spontaneously passivate 

up to -0.94 VSCE. The breakdown potential of β phase is not sensitive to variation in solution 

pH. The ductility measured by constant extension rate testing can be largely affected by 

the extent of β phase precipitation at grain boundaries. When aged at 150℃, the total strain 

to failure in 3.5 pct NaCl increases first and then decreases, and the minimum value is 

achieved at 189 hours. Furthermore, when the polarization potential is located in the 

passive regime of β phase, the SCC resistance for the sensitized samples is restored. Jones 

et al. [10] investigated the SCC of Al 5083 alloy aged at 175℃ for different times. 

According to their results, the precipitation of intergranular β phase increased SCC by a 

factor of 350. They also found that H atoms played a critical role in the crack growth of Al 

5083 alloy. H was reduced by the dissolution of anodic β phase, and the cracks propagated 

along the grain boundaries where β phase was totally dissolved in Al 5083 H321. More 

information of SCC of Al 5xxx alloys can be found in Ref. [123].  
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Table 2.1 Composition (wt.%) of Al 5083 and Al 5456 alloys. 

 Al Mg Mn Fe Cr Si Zn Ti Cu 

Al 5083 Bal. 4.0-4.9 0.4-1.0 0.4 0.05-0.25 0.4-0.7 0.25 0.15 0.1 

Al 5456 Bal. 4.7-5.5 0.5-1.0 0.4 0.05-0.2 0.25 0.25 0.2 0.1 

 

 

 

 

Table. 2.2 Typical mechanical properties of Al 5083 and Al 5456 wrought alloys. 

Properties 

Al 5083 Al 5456 

O H321, H116 H131 H321, H116 H112 

Density/ g/cm3 2.66 2.66 2.66 2.66 2.66 

Ultimate tensile strength/(MPa) 290 315 310 350 310 

Tensile yield strength/(MPa) 145 230 255 255 165 

Elongation 22 16 8 16 22 

Hardness(500 kg, 10 mm 

ball)/HB 
   90  

Ultimate shearing strength /MPa 170   205  

Fatigue endurance 

(5×108cycles)/MPa 
 160    

Modulus of elasticity/GPa 71 71 71 71 71 
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Table 2.3 Corrosion potentials for intermetallic compounds common in aluminum alloys. 

Stoichiometry 

Corrosion potential (mVSCE) in NaCl solutions 

0.01 M 0.1M 0.6M 

Al6Mn -839 -779 -913 

Mg2Si -1355 -1538 -1536 

Al3Mg2 -1124 -1013 -1162 

Al12Mn3Si -890 -810 -858 

Al3Fe -493 -539 -566 

Al -679 -823 -849 

Mg -1601 -1586 -1688 
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Figure 2.1 Al-Mg binary phase diagram. 

 

 

 

Figure 2.2 TEM image of β” phase (Al3Mg, L12), and the corresponding selected area 

diffraction pattern. 
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Figure 2.3 TEM results for an Al-Mg (16 at.%) binary alloy sample (a) TEM image of β’ 

phase (Al3Mg2, hcp), and (b) the selected area diffraction pattern of (a). 

 

 

 

 

Figure 2.4 TEM results of Al 5083 H131 aged at 175℃ for 10 days (a) DF, (b) BF-STEM 

image of β phase, and (c) selected area diffraction pattern of β phase. 
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Figure 2.5 Potential versus pH diagram for aluminum (activity of Al = 10-6). 

 

 

 

Figure 2.6 Schematic diagram for mechanism of pitting corrosion of Al. 
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Figure 2.7 Schematic diagram for role of H played in the intergranular stress corrosion 

cracking of Al 5083 H131 alloy. 

 

 

 



CHAPTER 3 

 

EXPERIMENTAL PROCEDURES 

 

3.1 Materials 

3.1.1 As-received alloys 

Seven types of commercial alloys were investigated in the present study. Al 5083 

alloys of temper H131 and H116 were supplied by Alcoa Inc., Al 5083 H321 and Al 5456 

H116 were supplied by Pierce Aluminum Inc., and Al 5050, 5052, and 5154 of H32 temper 

were supplied by CHALCO. As stated above, Mg concentration plays a critical role in the 

sensitization of Al 5xxx alloy. In this study, Mg concentration in Al 5083 alloys is 4.85 

wt.%, and in Al 5456 is 5.2 wt.%. The Mg content is 1.5±0.4 wt.% in 5050-H32, 2.5±0.3 

wt.% in 5052-H32, and 3.5±0.4wt.% in 5154-H32. In addition, a sample cutting from a 

real navy ship in service for more than 10 years is also characterized in this research. 

 

 3.1.2 Sample cutting 

 The as-received milled plates were cut into different sizes based on the requirements 

of different tests. For ASTM G67 tests, the samples were cut along the rolling direction as 

shown in Fig. 3.1. [17] The final size of the test coupon is 51 mm (in length direction)×7 

mm (in transverse direction)×26 mm (in short transverse direction). An extra 1mm in all
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dimensions was added to account for the subsequent polishing. The sample size for SEM 

and TEM characterization is 10 mm×10mm×10mm, and the sample size for SANS test is 

17 mm (in length direction)×17mm (in short transverse direction)×5mm (in transverse 

direction).  

 

3.1.3 Sample heat treatment 

In order to mimic the natural sensitization process of Al 5xxx alloys, Al alloy samples 

(including ASTM G67 test samples, SEM & TEM samples, and SANS samples) were put 

into ovens of constant and cyclic temperatures. The aging temperatures were determined 

from the real temperature profile of a naval ship that started from San Diego, CA and 

traveled to Panama City, FL via the Panama Canal. Fig. 3.2 shows the detailed temperature 

profile provided by the Naval Surface Warfare Center (NSWC). [17] During the measuring 

period, the temperature of the samples mounted on the deck (including vertical and 

horizontal samples) ranges from 40 ̊F (4.5℃) to 150 ̊F (65.5℃). However, temperatures 

below 40℃ have little effect on the sensitization of Al 5xxx alloys. Therefore, the constant 

temperatures for the aging experiments were set to be 40, 50, 60, and 70℃. Four ovens 

(VWR digital mini incubator) were used to carry out the constant aging experiments, as 

shown in Fig. 3.3. The temperatures of the ovens were monitored using thermometers.  

In order to simulate the temperature change during an entire day, cyclic aging 

experiments were also set up. The highest temperature during a whole day appeared during 

the 4 hours in the middle of the day, and the hottest temperature during this period is around 

40℃ for spring. Thus, cyclic aging experiments with a temperature range 40-45℃ and a 

period of 6 hours were conducted to simulate the sensitization behavior of Al 5xxx in spring. 
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However, the highest temperature of the ship between January and April was 65.5℃ in the 

tropical areas. It is reasonable to expect even higher temperature during the summer in 

some regions. Thus, a temperature range of 50-70℃ was adopted to model the extreme 

peak temperature for the ship, and the period of the short-cycle experiments is also 6 hours. 

Furthermore, in order to simulate the temperature of a ship serviced in both cold and 

tropical regions, extra long-cycle experiments of temperature ranging from 30-70℃ and a 

period of 12 hours were also conducted. Fig. 3.4 shows the real temperature, the fitting 

temperature, and the temperature in the oven for the long-cycle 30-70℃ aging experiments.  

The cyclic temperatures were controlled using a feedback circuit operated by 

LabView. The preset temperature profile was programmed using LabView on the control 

computer, the temperature of the oven was measured using a thermocouple, and the 

temperature signal was then transferred to an electronic signal using specific equipment 

(NI USBTCO-1, National Instrument). [17] By comparing the preset temperature with the 

temperature of the oven, the controller switches on and off the power of the oven, which 

ensures the temperature profile is cyclic versus time. The tolerance of the controller is 

0.5℃. The overall cyclic aging temperatures are shown in Fig. 3.5. The as-quenched 

samples for SANS experiments were obtained by solutionizing the alloys at 450℃ for 3 

hours and quenching them in water immediately. 

 

3.2 Sample preparation 

3.2.1 Samples for SEM/EBSD 

SEM samples aged at different temperatures (both constant and cyclic) for different 

times were mounted using epoxy, where the epoxy to hardener ratio is 10:4. To achieve 
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enough hardness for polishing, the epoxy resin and hardener needs to be mixed sufficiently 

before pouring into the mold where the sample is located. In addition, another 24 hours are 

needed for the mixture to become solid. The polishing step started with SiC polishing 

papers (P240 and P600). Then UltraPol polishing cloth with 9 μm suspension of alumina 

and Trident polishing cloth with 3 μm suspension alumina were used in sequential order. 

The samples were finished by ChemoMet with 50 nm colloidal silica suspension for 4 

hours. The surface of the sample was cleaned using a cotton ball and dried using 

compressed air every time before moving to the next step. In order to reveal the grain 

boundary under SEM, the sample was immersed into 70 vol.% HNO3 at 30℃ for 1 min.  

 

3.2.2 Samples for S/TEM 

STEM samples were prepared by first cutting a 3 mm-disc using a disc punch. The 

discs were then ground and polished to a thickness of less than 10 μm by a dimple grinder. 

An argon ion mill operating at 5 keV with an incidence angle of 15 deg was used to thin 

the sample to achieve electron transparency. Final cleaning was performed at 1keV with 

an incidence angle of 10 deg using the same ion mill. 

 

3.2.3 Samples for atom probe tomography 

APT needle-shaped samples were prepared by top-down and cross-sectional FIB lift-

out methods [124] using a FEI Nova 200 dual beam SEM/focused ion beam (FIB). The lift-

out section was subsequently mounted on a microtip array post that was annularly milled 

(30 kV) and cleaned with a 5-kV ion beam to make needle-shaped specimens suitable for 

field evaporation. 
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3.2.4 Samples for small angle neutron scattering 

The size of the SANS sample is 12×12×1 mm. Both sides of the sample surface 

(10×10 mm) were ground using SiC polishing paper, and finished with 1200 grit. The as-

quenched (AQ) sample was aged at 450℃ for 3 hours, and quenched in cold water.  

 

3.2.5 Samples for atom force microscopy 

AFM was able to obtain the tomography of a sample in nanoscale, therefore an extra 

step was needed to get rid of the scratches introduced during the polishing steps. The 

sample was first processed in the same procedure of the SEM EBSD sample, and a SEM 

ion mill was subsequently used to further improve the surface condition. The parameters 

for the ion mill process are listed in Table. 3.1. 

 

3.2.6 Samples for ASTM G67 mass loss test 

The susceptibility of the Al 5xxx alloys mentioned above to IGC was investigated 

following the ASTM G67 mass loss test protocol. The sensitized samples were polished 

(finished using 240/P280 SiC polishing paper) and then soaked in NaOH solution (5wt.%, 

80℃) for 1 minute, followed by a water rinse and drying by compressed air. Subsequently, 

the dried samples were immersed in nitric acid (70 wt.%) at room temperature for 30 

seconds.  
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3.3 Characterization techniques 

3.3.1 SEM and EBSD 

The microstructure of Al 5xxx samples was obtained using an FEI NovaNano SEM 

equipped with a field emission gun. The high voltage is 30 kV, and the spot size is 4.0. The 

electron backscatter diffraction (EBSD) results were collected using a FEI Quanta 600 

SEM equipped with a field emission gun electron source (FEG) and an EBSD detector. To 

obtain the geometrical necessary dislocation (GND) density, a scanning step size of 0.5 μm 

was adopted. The acquired EBSD datasets were processed using the TSL-OIMTM 

software (EDAX Inc., USA). 

 

3.3.2 S/TEM 

A Hitachi HF-3300 scanning electron transmission microscopy (S/TEM) (300 kV) 

equipped with a Bruker SDD-EDS detector, a JEOL JEM-2200FS (200 kV) probe-

corrected STEM equipped with a Bruker X-Flash detector, a JEOL 2800 STEM/TEM 

equipped with an ultrafast EDS system (dual high counts SDD-EDS detectors), and an FEI 

Talos F200X S/TEM were used to characterize the microstructure of the Al 5083 and 5456 

alloy. The acquired EDS results were processed using the NSS 3.2 software (Thermo Fisher 

Scientific Inc.) to obtain maps, line scan results, and quantification results.  

 

3.3.3 Small angle neutron scattering 

SANS is a powerful technique which is able to provide microstructural information, 

in a nondestructive way, on structural inhomogeneities and compositional fluctuation 

present in alloys. In this study, SANS was performed at Oak Ridge National Laboratory 
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(ORNL) High Flux Isotope Reactor (HFIR) General Purpose Small Angle Neutron 

Scattering (GP-SANS) instrument. [125] The wavelength (obtained by a mechanical velocity 

selector) of the incident neutron beam is λ=0.472 nm with a spread of 15%. The data were 

collected using the 1 m square 8 mm diameter linear gas tube helium detector array, which 

was offset from the center in the y-axis (0.665m) in order to measure a larger scattering 

vector (q) range. The scattering vector magnitude equals (4πsinφ/λ), where 2φ is the 

scattering angle. The overall range of q is from 0.007 Å-1 to 0.7 Å-1. The data were 

measured at two sample-to-detector distances (1.129m and 7.829m), where the shorter 

sample to detector distance (1.129m) is suitable to measure precipitates of small size 

(around 1 nm). The data collection times were 1800 s, and all SANS measurements were 

conducted at room temperature. 

The SANS raw data were reduced to absolute scattering intensities  dqd )(  after 

correction for transmission, background, and thickness using the package of routines 

developed at  HIFR operating in the Wavemetrics Igor Pro software environment.  Data 

obtained in the q range of 0.05~0.7 Å-1 were scaled to the match the data acquired from the 

q range of 0.007~0.1 Å-1 to generate the combined curves.  

Based on the two-phase model of isolated particles in a homogeneous matrix, [25] the 

SANS cross-section was calculated as 
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where   is the difference in scattering length densities of precipitate and matrix, n(R)dR 

stands for the number density of precipitates between R and R+dR, V(R) is the volume of 
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precipitates, and F(q, R) is the form factor. Moreover, the item, kcq-4, is added in 

consideration of the effect of sharp interfaces between larger inhomogeneities and matrix. 

A background, c, caused by scattering of compositional fluctuations is also added. 

For random orientated precipitates, F(q, R) for ellipsoids can be calculated as 

follow [25]: 
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where Fs(q, R) is the form factor for spherical particles of radius R. The particle size 

distribution, n(R), is described by log-normal distribution functions: 
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where n0 is the number density, σ is the width of the distribution, and Ra is the average 

radius of the precipitate. The volume fraction of precipitates can be calculated as: 
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3.3.4 Atom probe tomography 

Atom probe tomography (APT) analyses were performed using CAMECA 

Instruments LEAP 4000 XHR (see Fig. 3.7). The LEAP was operated in voltage-pulse 

mode with a specimen temperature of 50 K, a pulse repetition rate of 200 kHz, a 20% pulse 

fraction, and a 0.3% to 5% detection rate. The resulting data were reconstructed and 

analyzed using commercial CAMECA IVAS software. 

Fig. 3.8 shows the main components and the principle of operation of atom probe 

tomography. [126] Atoms are ionized and field-evaporated from the apex of the 

cryogenically cooled (20-70 K) needle-shaped specimen by a high-voltage pulse 

superimposed on a standing voltage. The elemental identities of these ions are determined 

from the mass-to-charge ratios. The mass/charge ratio can be calculated from the 

acceleration voltage V, ion flight time t, and the sample-detector distance d, as (constVt2/d2). 

The x and y coordinates of each field-evaporated atom are derived from the highly 

magnified impact position, x1 and y1, on the position-sensitive single atom detector. The z 

coordinate is determined by the order in which the atom was detected. The final 3D images 

of the internal structure of materials were reconstructed from thousands of slices, each 

containing a few atoms with known elemental identity and coordinate information. [127]  

 

3.3.5 Atomic force microscopy 

The surface tomography of the sample was examined using the JPK NanoWizard 

atomic force microscope operating in contact and intermittent contact modes. Fig. 3.9 is a 
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schematic diagram of AFM imaging mechanism. [128] The basic idea of AFM operation is 

that the local attractive or repulsive force between the tip and the sample is converted into 

a bending, or deflection of the cantilever. The detection system uses a laser beam that is 

reflected from the back of the cantilever onto a quadrant photodiode detector. The optical 

lever principle makes it possible to measure the deflection of a cantilever, which is 

subsequently used to reconstruct the tomography of the sample. [129]  

Based on different force between the tip and the sample, AFM can work in different 

modes, such as the force modulation mode, contact mode, intermittent contact mode, and 

noncontact mode. For the contact mode, the tip never leaves the surface, which is very 

helpful for high resolution imaging. Even though the vertical force can be controlled in this 

mode, the lateral force as the tip moves over the surface may cause detrimental effects on 

the sample. While for the intermittent mode, the tip does not contact the sample for most 

of the time, which can effectively decrease the harmful effect of lateral forces. This mode 

is good for imaging relatively rough surfaces. [130]  

 

3.4 Thickness and continuity of β phase detection 

The average thickness and continuity of β phase was obtained from STEM images. 

The shape of β phase is usually allotriomorphic. The thickness of β phase was measured 

using Gatan Digital Micrograph software, which was able to give an accuracy in the 

nanoscale range. The thickness of one precipitate was obtained by measuring the maximum 

thickness of the precipitate. The final thickness of the sample was obtained by calculating 

the average value of all measurements. The continuity results of β phase were obtained 

using a different method. A series of equal-spaced (two to three times of thickness for 
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intergranular precipitates) parallel lines were drawn in the vertical direction using Gatan 

Digital Micrograph, and the number of lines intersect with β phase was counted as Nβ. For 

certain STEM images, the continuity result was obtained as Nβ/Ntot, where Ntot is the total 

number of lines in the STEM image. [17] The average continuity of multiple images 

(usually >30) was the final continuity result. 

 

3.5 Intergranular corrosion evaluation 

3.5.1 ASTM G67 mass loss tests  

ASTM G67 mass loss test, which is also called nitric acid mass loss test (NAMLT), 

is a standard method for measuring the susceptibility to intergranular corrosion of Al 5xxx 

alloys. The NAMLT method involved immersing the prepared specimens (aged at different 

temperatures for different times) in concentrated HNO3 at 30℃ (water bath) for 24 hours, 

and determining the mass loss per unit area. The experiments were repeated once.  

 

3.5.2 Nitric acid and phosphoric acid etching experiments 

In order to investigate the corrosion resistant properties of different grain boundaries, 

an Al 5083 H131 sample was etched in 70 vol.% HNO3 at 30℃ for 1, 3, and 5 min. SEM 

was used to obtain images of different grain boundaries etched form different times. The 

etching experiments for AFM examination were performed on two Al 5083 H131 alloy 

samples aged at 70℃ for 30 months. Both HNO3 (70 vol.%) and H3PO4 (10 vol.%) were 

used to etch the sample surface. The etching time for nitric acid was 15 seconds, and the 

etching time for phosphoric acid was 2 minutes. 
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Table 3.1 Parameters of Fischione ion mill used for AFM sample preparation 

Parameters Value 

Chamber pressure 7-10 Torr 

Beam energy 5 keV 

Beam current 10 mA 

Beam angle 9 deg 

Etching time 30 min 
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Figure 3.1 Schematic diagram showing the as-received Al 5083 alloy plates and samples 

for ASTM G67 mass loss tests. 

 

 

 

Figure 3.2 Deck temperature of a real US navy ship in sea atmosphere. 
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Figure 3.3 Ovens used for constant and cyclic aging experiments. 

 

 

 

Figure 3.4 Real temperature of the deck and the corresponding fitting temperature, and the 

temperature in the oven for the 30-70℃ long-cycle aging experiments. 
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Figure 3.5 The short-cycle and long-cycle time-temperature relationships for the long-term 

aging experiments simulating daily cyclic outdoor thermal exposure to sunlight (the period 

is 6 hours for the 40-45, 50-70℃ aging experiments, and 12 hours for the 30-70℃ aging 

experiments). 

 

 

Figure 3.6 Two tanks for the detectors of general purpose small angle neutron scattering 

beam lines. 
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Figure 3.7 Image of the CAMECA Instruments LEAP 4000 XHR.  

 

 

 

Figure 3.8 Schematic diagram of main components and the principle of operation for atom 

probe tomography. 
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Figure 3.9 Schematic diagram for the imaging mechanism of atomic force microscopy. 

 

 

 



CHAPTER 4 

 

MICROSTRUCTURE CHARACTERIZATION OF  

Al 5XXX ALLOYS 

 

4.1 EBSD results of Al 5xxx alloys 

Fig. 4.1(a) and (b) show the inverse pole figure maps of Al 5083 H131 and Al 5083 

H116, respectively. Most grains of Al 5083 H131 exhibited a lamellar structure which was 

elongated along the rolling direction (RD) (see Fig. 4.1(a)). The average width of the grain 

along the normal direction (ND) is about 16 μm, and the average aspect ratio of the grain 

is ~25. Furthermore, some subgrain boundaries (highlighted by an arrow in Fig. 4.1(a)) 

have already formed in the elongated grain matrix of Al 5083 H131.  As shown in Fig. 

4.1(b), some coarse grains of Al 5083 H116 are also elongated along the RD, and the size 

of the largest grain is about 700 μm in length and 200 μm in width. In addition, some 

equiaxed grains are also observed in Al 5083 H116, as highlighted in Fig. 4.1(b). Most 

coarse grains in Al 5083 H116 share the orientation of (101). Fig. 4.1(c) demonstrates the 

grain size (in diameter) distribution of Al 5083 H131 and H116. The average diameter of 

Al 5083 H131 is 9.1 μm, which is smaller than that (17 μm) of Al 5083 H116. The grain 

boundary misorientation angle results are presented in Fig. 4.1(d). The fraction of low-

angle grain boundary (LAGB, 2̊<θ<15̊, θ is the grain boundary misorientation angle) for 

Al 5083 H131 is 0.84, which is slightly larger than that (0.77) of Al 5083 H116.
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Fig. 4.2 (a) and (b) shows the geometrically necessary dislocation (GND) density 

mapping results for (a) Al 5083 H131 and (b) H116. Compared with the grain matrix, the 

grain boundary regions (highlighted by arrows) have a relatively higher GND density in 

both alloys, which is consistent with a previous study found in Ref. [131]. The average 

GND density for Al 5083 H131 and H116 are 5.33×1013 m-2 and 3.28×1013 m-2, 

respectively. 

The typical EBSD result of as-received Al 5456 H116 is shown in Fig. 4.3(a). All 

grains are elongated along the rolling direction, and the average aspect ratio of the grains 

is 0.12. Fig. 4.3(b) shows the grain width ranges from 5 μm to 68 μm, and the average grain 

width is 13.3 μm. The grain boundary misorientation result is shown in Fig. 4.3(c), which 

reveals that most (~58%) of the grain boundaries are low-angle grain boundaries. Based on 

our previous research, [132,133] Al 5456 H116 has smaller grain width, more high-angle grain 

boundaries, and higher mass loss compared with Al 5083 H116 aged at the same 

temperature for the same time. 

 

4.2 AFM results of Al 5xxx alloys 

Fig. 4.4 (a) and (b) are the vertical trace images of grain boundaries (as highlighted 

by arrows) in Al 5083 H131 aged at 70℃ for 30 months. The distance between two grain 

boundaries in Fig. 4.4(b) is around 3μm, which is constant with our transmission electron 

microscopy (TEM) results. [23] Furthermore, pre-existing particles of ellipsoid shape are 

also observed within the grain matrix. The size of pre-existing particles is around several 

hundred nm. Fig. 4.4(c) is the height trace image of the area within the dash frame in Fig. 

4.4(b). A line scan is conducted across the grain boundary. The height distribution 
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information reveals that the grain boundary area is 4nm lower than the matrix on both sides, 

indicating Mg-rich precipitates are more easily etched away by the Argon ion mill. The 

thickness extracted from the height distribution data is 95nm, as shown in Fig. 4.4(c), 

which is larger than the value reported by Zhu. [23] The possible explanation is that 

dislocations induce pipe diffusion effects that facilitate the diffusion process. Moreover, 

the aging time is longer than that in Ref. [23]. Fig. 4.4(d) is the 3D image of Fig. 4.4(c), 

and the tomography of this area reveals that the pre-existing particle at the grain boundary 

is of the highest height.  

Fig. 4.5 (a) and (b) are vertical and horizontal trace images of two grain boundaries 

in Al 5456 H116 aged for 18 months at 50℃. The thickness of the grain boundary is around 

10 nm, which is much smaller than the value in Fig. 4.4(c). Discontinuous precipitates were 

observed in Fig. 4.5 (a), (b) and (c). Small intragranular precipitates, as indicated in Fig 

4.5. (b) and (c), were found to form in the Al 5456 H116 sample, and the size of the 

precipitates is around 5 nm. Intragranular Mg-rich phases, such as GP zones, β’’, and β’ 

phase, have been observed to form within the matrix of Al 5456 H116 aged at 70℃ for 30 

months. Therefore, these intragranular precipitates identified by the AFM could be the 

prime phase of β. 

Fig. 4.6 is the AFM image of a grain boundary in Al 5083 H131 aged at 70℃ for 30 

months using the tapping mode. Compared with the contact mode, the tapping mode is able 

to obtain more accurate tomography information of a surface, and save AFM tips as well.  

The length of the grain boundary if Fig. 4.6 (a) is 30 μm, and the line scan along the grain 

boundary (marked by number “1” in Fig. 4.6(a)) reveals that the height of the grain 

boundary is different, indicating the etching rate of β phase by ion mill could be different 
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even for the same grain boundary. In addition, another line scan across the matrix of Al 

5083 H131 aged at 70℃ for 30 months (indicated by number “2”) shows that there are two 

pits of 2 nm in depth. The pits could also be caused from Mg-rich phase etched away by 

ion mill. Fig. 4.6(b) is the 3D image of Fig. 4.6(a), which clearly shows the tomography of 

the matrix, the grain boundary area, and the pre-existing particles. 

 

4.3 STEM results of Al 5xxx alloys 

 4.3.1 STEM results of intragranular Mg-rich precipitates formed in Al 5xxx alloys 

The bright field (BF) STEM images of as-received Al 5083 H131 and H116 are 

shown in Fig. 4.7 (a) and (c). In the matrix of H131 and H116, rod-like and plate-like pre-

existing particles (indicated by “×”) are observed, which could be Al6(Mn,Cr,Fe)-type pre-

existing particles as reported  [15,23] previously. Dislocation networks (highlighted by 

arrows) are also found in the matrix of both alloys. Two high-resolution TEM images of 

Al 5083 H131 and H116 are shown in Fig. 4.7 (b) and (d), and the inserted fast Fourier 

transform (FFT) patterns reveal no precipitates in the matrix. 

Fig. 4.8 (a) is the BF-STEM image of Al 5083 H131 aged at 70℃ for 1.5 months. 

No obvious difference can be observed compared with the as-received H131 sample (Fig. 

4.7(a)). Additional EDS maps (Fig. 4.8(b)) reveal that precipitates have already formed on 

pre-existing particles. The thin lamellar precipitate formed on the end of the needle-shaped 

pre-existing particle (rich in Mn and Fe) is rich in Mg and Si (indicated by arrows), which 

could be an Mg2Si-type [134,135] precipitate. The plate-shaped pre-existing particle (rich in 

Cr, indicated by a dash cycle) worked as a heterogeneous nucleation site for the globular 

Mg-rich precipitate (13.5 at.% Mg). EDS maps of the 9 months’ sample (Fig. 4.8(d)) 
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demonstrate that larger Mg-rich precipitates have formed on the Al6(Mn,Fe,Cr)-type pre-

existing particles. Furthermore, some tiny Mg-rich precipitates (highlighted by arrows in 

Fig.4.8 (d)) also nucleate without the help of pre-existing particles. When aging time 

increases to 18 months, precipitates with a darker contrast than the matrix can be observed 

in the dark field (DF) image (Fig. 4.8(e)) (highlighted by arrows). The nucleation sites for 

these precipitates are subgrain boundaries, and EDS maps (Fig. 4.8(f)) illustrate that these 

precipitates are rich in Mg. Fig. 4.8(g) shows the DF image of the 30 months’ sample. The 

size of these intragranular precipitates is even larger, and no subgrain boundaries or pre-

existing particles are found to associate with the nucleation of these Mg-rich (Fig. 4.8(f)) 

precipitates. In addition, no Si-rich precipitates are identified in the 9, 18, and 30 months’ 

samples. The average aspect ratio of precipitates is 0.3 (see Table 4.1). The average size of 

Mg-rich precipitates of different aging times is determined from STEM images and EDS 

mapping results, Table 4.1. 

Fig. 4.9 (a) and (b) are the STEM BF image and the corresponding EDS maps of Al 

5083 H116 aged at 70℃ for 3 months. Mg-rich precipitates are only detected on the end 

of an Al6Mn-type pre-existing particle. Large teeth-like Al6(Mn,Fe,Cr)-type and 

(Mn,Fe,Cr,Si)-rich (highlighted by arrows) [136] pre-existing particles were found in Al 

5083 H116 aged at 70℃ for 9 months, as shown in Fig. 4.9 (c) and (d). In addition, only 

one Mg-rich precipitate (indicated by a cycle) is observed near the pre-existing particles. 

While in the 18 months’ sample (Fig. 4.9(e) and (f)), more precipitates were found to form 

on pre-existing particles and grain boundaries, as well as within the matrix. Moreover, 

intragranular Mg-rich precipitates were found on dislocations, as highlighted by arrows in 

Fig. 4.9(e). The size of the intergranular precipitates is obviously larger than that of the 
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intragranular ones, which could be attributed to the “collector plate” effect of grain 

boundaries; see Ref. [137]. Even larger (see Table 4.1) Mg-rich precipitates are found in 

the 30 months’ sample, as shown in Fig. 4.9(g) and (h). The size and aspect ratio results of 

precipitates formed in Al 5083 H116 are summarized in Table 4.1. Fig. 4.10 shows the 

precipitate size distribution of Al 5083 H116 aged at 70℃ for 18 months. The experimental 

results fit very well (Rsquare=0.9966) using a cumulative log-normal distribution.  

The STEM images and EDS maps of Al 5083 H116 aged at 50℃ for different times 

are shown in in Fig. 4.11. Mg-rich precipitates were not able to be identified in the 9 months’ 

sample (see Fig. 4.11 (a) and (b)), but Mg-rich precipitates were observed on pre-existing 

particles in the 24 months’ sample, as shown in Fig. 4.11 (c) and (d) (indicated by a dash 

cycle). After aging at 50℃ for 41 months (see Fig. 4.11 (e) and (f)), the size of Mg-rich 

precipitates formed in Al 5083 H116 is only 13.5 nm (Table 4.1). 

Mg concentration, as shown by previous studies, [23,137] plays an important role in the 

sensitization behavior of Al-Mg alloys. STEM-EDS measurements give average Mg 

concentrations in Al 5456 H116 of 5.2wt.%, which is within the normal range (4.7-5.5 

wt.%) of commercial Al 5456. [21] For Al 5456 H116 aged at 70℃ for 1.5 months, a thin 

layer (3nm) of Mg-rich precipitate (see Appendix A.1 for EDS line scan results) was 

observed to form at matrix-pre-existing particle interfaces as shown by the inserted image 

in Fig. 4.12 (a). The particle in Fig. 4.12(a) (highlighted by a yellow arrow) is rich in Mn 

and Fe (see Appendix A.1 for EDS line scan results), which is an Al6(Mn)-type pre-existing 

particle, as reported in previous research. [23,36] Fig. 4.12 (b) and (c) are BF-STEM images 

of Al 5456 H116 aged at 70℃ for 9 and 18 months, respectively. Mg-rich precipitates 

(indicated by arrows) are found to form on pre-existing particles as shown by inserted EDS 
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mapping results of Mg. In addition, no Mg-rich precipitates were observed within the 

matrix of Al 5456 samples aged for 1.5, 9, and 18 months. Fig. 4.12(d) is the BF STEM 

image of Al 5456 aged at 70℃ for 30 months, where it is shown that thicker Mg-rich 

precipitates form on pre-existing particles. Moreover, continuous Mg-rich precipitate is 

found to form at the grain boundary, and the thickness of the intergranular precipitate is 

about 14 nm.  

For Al 5456 H116 aged at 70℃ for 30 months, some fine-scale precipitates are also 

observed within the Al matrix as shown in Fig. 4.13(a). Most of the precipitates are 

elliptical and randomly distributed. Fig. 4.13(b) shows the size distribution of intragranular 

Mg-rich precipitates within the grain matrix of Al 5456 H116 aged at 70℃ for 30 months. 

The total size distribution fits a log-normal distribution as shown by the inserted image of 

cumulative fitting result (R-square=0.996) in Fig. 4.13(b), and the average precipitate size 

is 16.4 nm (in radius), which is much larger than the reported size of GP zones [27] (1.9 nm, 

Al-11.5%Mg, aged at 0℃ for 9 months) and β” phase  [31] (4 nm, Al -10 wt.% Mg aged at 

room temperature for 550 hours) formed in Al-Mg alloy. Additionally, as shown in Fig. 

4.13(a), the distance between these precipitates is larger than 50 nm, which is also larger 

than the reported distance between GP zones (12.5 nm in Ref. [16] and 5.6 nm in 

Ref. [138]). Both of the reported values of size and inter-distance of GP zones and β” 

phases are smaller than our measurement of Mg-rich precipitates (including GP zone, β”, 

and β’ phase), which was attributed to the coarsening process of β phase as stated by T. 

Sato et al. [16]. 

Fig. 4.14(a) shows the TEM image of four intragranular precipitates, and Fig. 4.14(b) 

is the high-resolution TEM image of precipitate 2, as shown in the square frame in Fig. 
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4.14(a). The fast Fourier transformation (FFT) results of Al matrix and the area in the 

square frame in Fig. 4.14(b) are inserted in Fig. 4.14(a) and (c), respectively. Two different 

sets of reflections, one from the precipitate (highlighted by cycles), and the other one from 

the matrix surrounding the precipitate ((200), indicated by an arrow) are identified for the 

area in the square frame of Fig. 4.14(b). It turns out that the precipitate has the same 

structure of Al matrix. EDS mapping (see Appendix.A.2) and line scan (inserted image in 

Fig.14(c)) results reveal that the precipitate is rich in Mg. In Al-Mg alloy, GP zones are 

reported to form as a result of the aggregation of Mg atoms and have the same structure of 

Al matrix, and based on the FFT and EDS line scan results, precipitate 2 in Fig. 4.14(a) 

could be a GP zone. As highlighted by two solid lines in Fig. 4.14(b), a misorientation 

angle, 23.2̊, is observed between the (111) direction of Al matrix and the (200) direction 

of the matrix surrounded the Mg-rich precipitates. Because of the different lattice spacing 

of the (111) and (200) direction, a dislocation is found at the interface of these two matrix 

locations of different orientations (as indicated by the mismatch of lattice numbers in Fig. 

4.14(b)). Fig. 4.14(c) is the inverse FFT (IFFT) (mask was applied to keep the reflections 

of the precipitate and Al matrix) result of the area within the frame in Fig. 4.14(b), and two 

dislocations, as highlighted by the symbol “┴”, are observed. Fig. 4.14(d) is the TEM image 

of another precipitate. Fig. 4.14(e) shows a high-resolution image of the area in Fig. 4.14(d), 

and the FFT results of Al matrix and the precipitate (indicated by a frame in Fig. 4.14(e)) 

are shown in Fig. 4.14(f). FFT result indicates that the precipitate has the same structure as 

Al matrix except one extra refection (highlighted by an arrow), which could be caused by 

extra misoriented planes. Therefore, the precipitate in Fig. 4.14(e) could also be a GP zone. 
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Fig. 4.15(a) and (b) are the high-angle annular dark field (HAADF) STEM images 

and the corresponding EDS mapping results of a grain boundary obtained using a JEM 

2800. For comparison, the same grain boundary was re-examined by FEI Talos F200X 

S/TEM, and the HAADF and EDS mapping results are shown in Fig. 4.15(d) and (e). Mg-

rich precipitates were observed to form at the grain boundary as well as on Al6(Mn-Fe-Cr) 

type [23,36] pre-existing particles as revealed by EDS mapping results in Fig. 4.15(b) and (d). 

EDS line scan results show Mg concentrations of precipitates formed at the grain boundary 

and pre-existing particles (as highlighted by arrows in Fig. 4.15(a)) is close to 37 wt.% (see 

Fig. 4.15(c) and (f)), indicating β phase [23] particles have already formed at these places. 

In addition, EDS mapping reveals that 5 Mg-rich precipitates (as indicated by numbers) 

nucleate within the grain matrix, and the Mg concentrations of these precipitates are listed 

in Table 4.2.  Raynal and Roth [27] reported that GP zones were found in Al-11.5% Mg 

alloy aged at 0℃ for 9 months using small angle neutron scattering, and the Mg 

concentration of GP zones was suggested to be 19%. In the decomposition process, GP 

zones will be replaced by β’’ phase (Al3Mg) with 22.86 wt.% Mg. [16,32,139] After aging at 

175℃ for 15 days, β’ phase (Mg concentration 27 wt.%) [23] was observed at the grain 

boundary of Al 5083 H131. As shown in Table 4.2 (see Appendix A.3 for EDS line scan 

results), both the peak and the average (average over the size of the precipitate) Mg 

concentration of precipitates 2 and 4 are less than 19%, which could be GP zones. The 

average Mg concentrations of precipitates 1 and 5 is very close to 27 wt.%, which could 

be β’ phase. The average Mg concentration of precipitate 3 is close to 22.86 wt.%, 

indicating it could be β” phase.  



65 

 

Fig. 4.16 shows STEM images and EDS results of a sample obtained from a navy 

ship in service for more than 10 years. Precipitates are found to form on pre-existing 

particles (Fig. 4.16(a)), at the triple junction of grain boundaries (Fig. 4.16(b)), and at grain 

boundaries (Fig. 4.16(c)). The thickness of precipitates at the grain boundary is around 5 

nm, and the grain boundaries do not appear to be fully covered by precipitates, even though 

the ASTM G67 mass loss is high, as discussed later in the text. Fig. 4.16(d) is the STEM 

image of two intergranular precipitates, and the corresponding EDS line scan  results for 

one precipitate (highlighted by an arrow in Fig. 4.16(f)) are shown in Fig. 4.16(e). The Mg 

concentration of the precipitate is about 24.3 wt.%, which is consistent with β” phase. Thus, 

the precipitate in Fig. 4.16(d) could be β” phase. To further identify whether Mg-rich 

precipitates form within the grain matrix of the navy ship sample or not, high-resolution 

STEM images were obtained, and one of them is shown in Fig. 4.16(f). No modulated 

structure, lattice distortion or strain field [16] caused by aggregation of Mg atoms was 

observed within the grain matrix, suggesting that no GP zones had formed. Moreover, there 

are no superlattice spots appearing in the FFT pattern (inserted in Fig. 4.16(f)), which 

confirms no β’’ phase is present. 

Mg-rich precipitates were observed to nucleate heterogeneously on pre-existing 

particles or at grain boundaries of Al 5456 H116 alloy samples aged for 1.5, 9, 18, and 30 

months, while intragranular Mg-rich precipitates were only found in the matrix of the 30-

month sample. In the navy ship sample, Mg-rich precipitates are observed at heterogeneous 

nucleation sites such as triple junctions of grain boundaries, grain boundaries, and pre-

existing particles. This could be explained by the relatively lower activation energy needed 

for heterogeneous nucleation. For the case of grain boundary nucleation, the nucleation 
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barrier,
 hetG , can be estimated from the homogenous nucleation barrier,

 homG , using the 

following equation: 

 

 )(hom SGGhet

 
 (4.1) 

 

where    2cos1cos2)(
2

 S , and θ is the contact angle. [84] Based on STEM 

results, [137] the value of θ is around 20 deg, and the corresponding S(θ) is calculated to be 

0.005, indicating the energy barrier for nucleation at the grain boundary is only 0.5% of 

that for homogeneous nucleation. Therefore, Mg-rich precipitates prefer to form on 

heterogeneous nucleation sites. 

In Fig. 4.14(c), a GP zone was found around dislocations. Dislocations could 

possibly play two different roles in the precipitation of Mg-rich phases. First of all, 

dislocations work as segregation sites for Mg atoms. Three-dimensional atom probe results 

by D. Blavette et al. [140] show that oversized solute atoms tend to segregate to the dilated 

part of the dislocations (close to the dislocation core below the dislocation line), and the 

undersize solute atoms are likely to migrate toward the compressed regions above the 

dislocation line. Therefore, solute-enriched regions form around the dislocation. 

Furthermore, some solute atoms segregated around the dislocation line will continue to 

diffuse towards the dislocation core under the driving force produced by strain field caused 

by dislocation itself. [140] In this case, a solute-enriched area will form at dislocation cores. 

In the present study, a Mg solute atom on the substitutional site is 12% (rAl=1.43Å, 

rMg=1.60Å) larger than an Al atom, which can cause lattice distortion. This kind of 

distortion can be released when Mg atoms segregate near dislocation lines. In addition, 
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dislocation cores can also serve as fast paths for solute atoms. Zhu [23] and Goswami [36] 

have already observed the dislocation-assisted pipe diffusion phenomenon in commercial 

Al 5083 alloy.  

The aging temperature (environmental temperature) for the navy ship sample 

typically ranges from 5℃ to 70℃ during a day of outdoor exposure to sunlight. [17] The 

nucleation rate in the navy ship sample can be calculated using the standard Becker-

Döring [87] nucleation equation 
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(4.2) 

 

where N is the number of nucleation sites per unit volume, Z is the Zeldovich factor, [63] 

and β* [64] is the condensation rate of the solute atoms. The fitted aging temperature (with 

a periodicity of 12 hours) for the navy ship sample was given in Ref. [131], and the other 

parameters used in Eq. (4.2) can be obtained from Table 1 in Ref. [141]. The average 

nucleation rate for the navy ship sample during an aging cycle is only 21% of that in the 

Al 5456 H116 alloy aged at 70℃. Moreover, the diffusivity of Mg atoms at 70℃ is 20 

times faster than that at 45℃, [17] based on the diffusion activation energy [137] of Mg in Al. 

Therefore, both the radius and the total volume fraction of Mg-rich precipitates in the navy 

ship sample are smaller than those of the Al 5456 H116 alloy sample (aged at 70℃ for 30 

months).  

Osamura and Ogura[32]  identified the formation of GP zones in Al-Mg (4.64 wt.%) 

alloy by means of calorimetry and electrical resistivity measurements. Nozato and 

Ishihara [29]  reported that GP zones were able to form in Al-Mg (7.6 at.%) alloy. However, 
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other researchers [37]  have suggested GP zones can only form within Al alloys of higher 

Mg concentration (>13%). Our EDS results (from both Talos and the JEM) combined with 

TEM images indicate that GP zones and β” phase are able to form in Al 5456 H116 alloys 

(5.2 wt.%) aged at 70℃ for 30 months. Two different β phase precipitation sequences have 

been reported in previous research. [16,32] For Al alloys of Mg concentration close to 10 

at.%, [31,32] GP zones nucleate first, then transform into β’’ and β’ phase gradually.  

However, β’’ phase will form directly within the grain matrix of Al alloys of Mg 

concentration higher than 20 at.% during the aging process. [16,32] In the present study, GP 

zones, β”, and β’ phase are observed in Al 5456 alloy aged at 70℃ for 30 months, 

indicating that it follows a precipitation sequence similar to the first type.  

Considerable previous research reported that Mg-rich phases (including GP zones 

and β” phase) tend to distribute periodically along certain directions ([200] and [220]) 

within the grain matrix, [16,31] and two mechanisms, homogeneous nucleation and spinodal 

decomposition mechanisms, [16,27,31] were applied to explain this phenomenon. However, 

Mg-rich precipitates in Al 5456 H116 alloy aged at 70℃ for 30 months were not found to 

distribute along certain directions. One possible explanation is that Al-Mg alloys used in 

previous research were cast alloys without further mechanical work, while Al 5456 H116 

is a wrought alloy which has more dislocations. Consequently, Mg-rich phases in Al 5456 

will preferentially nucleate on sites like dislocations (as shown in Fig. 4.14), which have 

low energy barriers [84] and are widely distributed within the grain matrix [23,36]. The 

nucleation precipitates associated with dislocations have also been observed previously in 

Al 6xxx [142] and 7xxx [143] alloys. 
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4.3.2 STEM results of intergranular Mg-rich precipitates formed in Al 5xxx alloys 

As shown in Fig 4.17, experimental results of intergranular Mg-rich precipitates for 

Al 5083 aged at 70℃ for different times were obtained using TEM. Fig. 4.17(a) and (b) 

are DF-STEM images, and the dark precipitates observed at the grain boundary indicate 

the enrichment of Mg. In Fig. 4.17(c), (d), and (f), EDS mapping and EDS line scan results 

of the corresponding area clearly reveal that the grain boundary is rich in Mg. Fig. 4.17(e) 

shows the presence of β phase using a selected area diffraction pattern. The thickness and 

continuity of intergranular precipitates increases with aging time. 

Fig. 4.18(a) to (b) illustrates that intergranular precipitates formed within Al 5083 

H116 aged at 50℃ for 41 months and 70℃ for 18 months. It is noticeable that the grain 

boundary of Al 5083 H116 is still discontinuous after exposure at 50℃ for 41 months. In 

addition, discontinuous intergranular precipitates were also observed at the grain boundary 

of Al 5083 H116 aged at 70℃ for 30 months 

The experimental continuity results of Al 5083 H131 aged at 30-70˚C for different 

times were obtained from STEM images as shown in Fig. 4.19. A thin layer of precipitates 

was found at the grain boundary of Al 5083 H116 sample aged for 6 months (see Fig. 4.19 

(a)). Thicker and discontinuous precipitates were observed in the 8 months’ sample, as 

shown in Fig. 4.19 (b). When aging time increases to 10 months, the intergranular 

precipitates become continuous, Fig. 4.19 (c).  

 

4.4 APT results of Al 5083 H116 

Mg-rich precipitates were very difficult to reveal using STEM-EDS for Al 5083 

H116 aged at 50℃ for 9 and 24 months, and thus APT was applied as a complementary 
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technique due to the enhanced chemical sensitivity of APT compared to STEM-EDS. Fig. 

4.20(a) displays a 3D reconstruction of an analyzed volume containing ̴11×107 atoms from 

the Al 5083 H116 sample aged at 50℃ for 24 months, and the results (Fig. 4.20(a)) indicate 

this sample consists of two phases and a phase boundary. The 3D atom maps of all elements 

in the material are displayed in Fig. 4.20(a). The top region of the APT needle is rich in Al 

and Mg, which is the matrix of Al 5083 H116 alloy. While the bottom region of the APT 

needle is composed of Al, Mn, Fe, and Cr with a composition that corresponds to 

Al6(Mn,Fe,Cr)-type pre-existing particle as observed in STEM EDS results above. Fig. 

4.20(b) and (c) illustrates the 3D morphology of Mg-rich precipitates, which were 

delineated by 10 at.% Mg isoconcentration surfaces. Moreover, a 5 at.% Mn 

isoconcentration surface was added to highlight the position of pre-existing particle-matrix 

interface. Mg-rich precipitates were found in the matrix as well as on the pre-existing 

particle. Six Mg-rich precipitates of oblate ellipsoid morphology are observed in the matrix, 

and the magnified views of three precipitates are shown in Fig. 4.20 (d). The size of these 

precipitates ranges from 2.5 to 6.5 nm (in radius). However, the morphology of precipitates 

formed on the pre-existing particle are lamellar (see Fig. 4.20 (e)). The thickness of these 

lamellar precipitates is less than 2 nm, and the length of them varies from 1 nm to 15 nm. 

The number density of precipitates formed on the pre-existing particle is almost five times 

that for precipitates nucleated in the matrix, which could be attributed to the lower energy 

barrier needed for heterogeneous nucleation. [84] 

Fig. 4.21 (a) illustrates the line scan results of an Mg-rich precipitate formed in the 

matrix, as shown in Fig. 4.20(d) (indicated by an arrow). Mg concentration of the 

precipitate is around 18.3 at.%, which is even lower than the reported concentration of GP 



71 

 

zones (19 at.%). [27] Therefore, these precipitates could be GP zones. Mg concentration of 

one of the lamellar precipitates (see Fig. 4.20(b) and (e)) formed on the pre-existing particle 

is shown in Fig. 4.21 (b), and a higher Mg concentration, 24.8 at.% (average along the 

thickness direction), is detected. β” phase is reported to have a stoichiometry of Al3Mg, [32] 

which is very close to the Mg concentration (24.8 at.%) of precipitates in Fig. 4.20(e). Thus, 

precipitates formed on pre-existing particles are most likely to be β” phases. 

 

4.5 Small angle neutron scattering results of Al 5xxx alloys 

Fig. 4.22 displays the scattering cross-section of Al 5083 H131 and H116 alloys in 

the as-quenched and differently aged states. For both Al 5083 H131 and H116, the as-

quenched sample shows the lowest scattering intensity, and the scattering intensity 

decreases with increasing scattering vector (q). After aging at 70℃ for 1.5 months, a 

considerable increase in scattering intensity was observed for the Al 5083 H131 alloy 

sample. A further increase in scattering intensity was identified for Al 5083 H131 aged at 

70℃ for 9 months. However, the scattering intensity of Al 5083 H131 alloy starts to 

decrease beyond 9 months in spite of the increase in aging time (18 and 30 months). In 

addition, the scattering intensity of the 30 months’ sample is even slightly lower than that 

of the 1.5 months’ sample. The scattering intensity results of Al 5083 H116 alloy aged at 

70℃ also experienced similar kinetics as Al 5083 H131 samples (increases first and then 

decreases), whereas the highest scattering results were achieved at 18 months, which is 9 

months later than the Al 5083 H131 sample. The SANS results of the Al 5083 H116 sample 

aged at 50℃ are shown in Fig. 4.22 (c). Even though the scattering intensity increase is 
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not large, a clear increasing trend can still be observed from 9 months to 41 months (see 

the inserted image in Fig. 4.22 (c)). 

Fig. 4.23 compares the SANS results for the AQ, navy ship sample, and Al 5456 

H116 sample aged at 70℃ for 30 months. For q<0.02 Å-1, there is little change in scattering 

intensity for these three samples. The scattering intensity of the 30 months sample is larger 

than that of the navy ship sample and the AQ sample for 0.02<q<0.09 Å-1. When 

0.09<q<0.8 Å-1, only the navy ship sample has scattering intensity observable above 

background. 

The SANS experimental results were fitted using the two-phase model of isolated 

particles in a homogeneous matrix [25]. The difference in scattering length densities  is 

given by 
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(4.3) 

 

where ηp and ηm are the average scattering length density of the precipitate and the matrix, 

b is the scattering length of individual elements, x is the atomic fraction, and the atomic 

volume is denoted by v. The coherent scattering length of Al and Mg are 0.3449×10-12 cm 

and 0.5375×10-12 cm, respectively [144]. During the fitting of SANS results, a constant   

was assumed at first. However, the scattering intensities of Al 5083 H131 (70℃) keep 

increasing with aging time, as shown by the dashed lines in Fig. 4.22 (a). Therefore, a 

variable   must be applied to explain the decrease in scatting intensities of Al 5083 

H131 and H116 aged at 70℃. 
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The Mg concentration of precipitates in Al 5083 H131 and H116 aged at different 

temperatures for different times obtained from STEM-EDS and APT are shown in Fig. 

4.23. Mg concentrations of the precipitates are found to increase with aging time. For 

example, when aged at 70℃, the average Mg concentration (shown as diamonds in Fig. 

4.23) of precipitates in the 1.5 months’ Al 5083 H131 alloy sample is only 14.1 at.% , while 

it increases to 32.3 at.% in the 30 months’ sample. The concentrations of Mg for GP zones, 

β”, β’, and β phases are shown in Table 4.3. The increase of average Mg concentration 

indicates the phase transformation from GP zones to β’/β phase. The corresponding 

scattering length density, η, calculated using Eq. (4.3), is also listed in Table 4.3. From GP 

zone to β” phase,   increases, while from β” phase to β’ and β phase it decreases. 

STEM and APT, as complementary techniques, provide valuable information for the 

quantitative analysis of SANS results. Based on STEM and APT results, the shape of the 

Mg-rich precipitate is ellipsoid, with two semimajor axes of length R, and one semiminor 

axis of length (uR), where u is the aspect ratio. The values of u for Al 5083 H131 and H116 

are 0.3 and 0.5, respectively. The aspect ratio is equal to 0.6 for Al 5456 H116 30 months’ 

sample, and 0.23 for the navy ship sample based on statistical results from STEM images. 

The modeling results of SANS (solid lines) are shown in Fig. 4.22 (for Al 5083 H131 

and H116) and 4.23 (for Al 5456 H116 and the navy ship sample), which agree well with 

experimental results. The χ2-test results of the navy ship sample are also inserted in Fig. 

4.23, indicating a good agreement (∑χ2=1.3) between the experimental and modeling 

results. Moreover, the scattering intensity results of the AQ samples (both Al 5083 H131, 

H116, and Al 5456 H116) show a linear relationship with q-4, which is also known as the 

Porod law. [145] This relationship could be explained by scattering caused by the sharp 
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interface between Al6Mn-type pre-existing particles and the matrix. The results of SANS 

experiments are summarized in Table 4.4. Both radius and volume fraction of Mg-rich 

precipitates increase with aging time, which is consistent with the STEM results. In 

addition, for Al 5083 H131 and H116 aged at 70℃ for 30 months, the precipitate radius in 

Al 5083 H131 is larger than that in the H116 sample. Despite the relatively long aging time 

(41 months) at 50℃, the average radius of precipitates is much smaller than that of Al 5083 

H116 aged at 70℃ for 30 months. The number density of precipitates decreases with aging 

time, suggesting coarsening happens in both alloys, Table 4.4. 

The volume fraction distribution of precipitates obtained from SANS is shown in Fig. 

4.25. The total precipitate volume fraction in Al 5456 H116 30 months’ sample is 1.39%, 

which is much larger than that (0.36%) of the navy ship sample. In addition, the average 

precipitate radius in the Al 5456 H116 30 months’ sample is 18.5 nm, whereas the size of 

precipitates formed in the navy ship sample (at the triple junction of grain boundaries, grain 

boundaries, and on pre-existing particles) is only 13 nm, as shown in the inserted image of 

Fig. 4.25. The average precipitate radii obtained from STEM images are also shown in the 

inserted image of Fig. 4.25. The average radius obtained from SANS is slightly larger than 

that obtained from STEM for both Al 5456 H116 30 months’ sample (16.4 nm) and the 

navy ship sample (12 nm); the difference can be due to the low Z-contrast of Al and Mg 

atoms, which makes it hard to identify the Mg-rich phase of low Mg concentration formed 

at the edge of each precipitate for STEM.  
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Table 4.1 Size (nm) and aspect ratio of Mg-rich precipitates formed in Al 5083 H131 and 

H116 alloys aged at different temperatures for different times as measured using STEM. 

Aging time Al 5083 H131 (70℃) Al 5083 H116 (70℃) Al 5083 H116 (50℃) 

1.5 mo 6.4±2.6   

3 mo  6.8±3.1  

9 mo 16.6±5.5 10.1±4.8  

18 mo 21.1±6.2 11.8±4.1  

24 mo   8.2±1.8 

30 mo 25.2±8.3 18.6±5.2  

41 mo   13.5 ± 3.7 

Aspect ratio 0.3 0.5 0.5 

 

 

 

Table 4.2 Average and peak Mg concentration of intragranular precipitates in Fig. 4.15(a) 

and (d). 

 
Mg concentration (Talos) Mg concentration (JEM) 

Average (wt.%) Peak (wt.%) Average (wt.%) Peak (wt.%) 

1 29.5±3.7 33.9 26.7±4.9 31.8 

2 15.6±1.5 17.7 14.9±1.86 17.8 

3 25.0±3.7 33.0 23.4±3.3 30.8 

4 10.6±0.7 12.3 10.4±1.1 12.2 

5 27.8±2.7 32.4 24.8±6.4 32.3 
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Table 4.3 Mg concentration and scattering length density of different phases in Al 5083 

alloy. 

 
Mg concentration (at.%) Scattering length density, η (×1010 cm-2) 

matrix 5.25 2.14 

GP zone 15 2.23 

β”(Al3Mg, L12) 25 2.31 

β’(Al3Mg2, 

hcp) 
40 2.18 

β (Al3Mg2, fcc) 40 2.18 

 

 

 

Table 4.4 Radius, number density, and volume fraction of Mg-rich precipitates obtained 

from SANS. 

 Aging 

time/(month) 
Radius (nm) 

Number 

density (/m3) 

Volume fraction 

(%) 

Al 5083 H131-

70℃ 

1.5 7.5±2.5 1.9E21 0.06±0.015 

9 10±3.3 8.4E20 0.1±0.03 

18 15.5±5.1 4.0E20 0.28±0.08 

30 21.5±6.3 3.1E20 0.6±0.15 

Al 5083 H116-

70℃ 

3 6.8±2.1 1.6E21 0.034±0.01 

9 11.0±2.6 7.5E20 0.1±0.035 

18 13.8±3 3.1E20 0.13±0.04 

30 17.5±4 2.3E20 0.27±0.08 

Al 5083 H116-

50℃ 

9 7±1.8 8.7E20 0.02±0.005 

24 8.5±2.3 4.0E20 0.027±0.01 

41 13±3.1 2.2E20 0.091±0.029 
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Figure 4.1 EBSD inverse pole figure (IPF) maps of (a) Al 5083 H131 and (b) Al 5083 

H116, (c) grain size distribution of Al 5083 H131 and Al 5083 H116, and (d) grain 

boundary misorientation of Al 5083 H131 and Al 5083 H116. 
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Figure 4.2 Geometrically necessary dislocation density maps of as-received (a) Al 5083 

H131 and (b) Al 5083 H116 alloy. 

 

 

 

Figure 4.3 EBSD inverse pole figure (IPF) maps of (a) Al 5456 H116, (b) grain size 

distribution of Al 5456 H116 obtained from the intercept per line method, and (c) grain 

boundary misorientation angle distribution results of Al 5456 H116. 
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Figure 4.4 AFM results of Al 5083 H131 aged at 70℃ for 30 months (a) and (b) vertical 

trace image, (c) height trace image of the area within the dash frame in (b) and the height 

distribution along the line scan, (d) 3D image of (c). 
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Figure 4.5 AFM results of Al 5456 H116 aged at 50℃ for 18 months (a) vertical and (b) 

horizontal trace image, (c) and (d) vertical and 3D image of a triple junction of three grain 

boundaries.  
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Figure. 4.6 AFM results of Al 5083 H131 aged at 70℃ for 30 months (a) height trace 

image (tapping mode) of a grain boundary and height distribution along line scan 1 and 2, 

(b) 3D image of (a). 
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Figure 4.7 BF-STEM images of the as received (a) Al 5083 H131 and (c) Al 5083 H116 

sample. High resolution TEM images of (b) Al 5083 H131 and (d) Al 5083 H116, and the 

corresponding fast Fourier transform (FFT) patterns (inserted). 

 

 



83 

 

 

Figure 4.8 BF-STEM images of Al 5083 H131 aged at 70℃ for (a) 1.5 months, and DF-

STEM image of Al 5083 H131 aged at 70℃ for (c) 9 months, (e) 18 months, and (g) 30 

months, and the corresponding EDS maps for the (b) 1.5 months, (d) 9 months, (f) 18 

months, and (h) 30 months samples. 
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Figure 4.9 BF-STEM images of Al 5083 H116 aged at 70℃ for (a) 3 months and (c) 9 

months, and the DF-STEM images of Al 5083 H116 aged at 70℃ for (e) 18 months and 

(g) 30 months, and the corresponding EDS maps for the (b) 3 months, (d) 9 months (the 

area within the dash frame of (c)), (f) 18 months, and (h) 30 months samples. 
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Figure 4.10 Size distribution and the cumulative log-normal fitting of Mg-rich precipitates 

formed in Al 5083 H116 alloy aged at 70℃ for 18 months.  
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Figure 4.11 BF-STEM images of Al 5083 H116 aged at 50℃ for (a) 9 months, (c) 24 

months, and (e) 41 months, and the corresponding EDS maps for the (b) 9 months, (d) 24 

months, and (f) 41 months sample. 

 

 

 



87 

 

 

Figure 4.12 BF-STEM images of Al 5456 H116 aged at 70℃ for (a) 1.5 months, (b) 9 

months, (c) 18 months, and (d) 30 months. Fig. (a) is obtained using Hitachi HF-3300 

S/TEM, and Fig. (b)-(d) are obtained using JEM 2800. The inserted image in (a) is a high-

angle annular dark-field (HAADF) image of the area within the square frame, and the 

corresponding STEM-EDS line scan results (indicated by the arrow in the frame) are shown 

in Appendix A.1. EDS mapping results of Mg for (b), (c), and (d) have been inserted, and 

the position of Mg rich precipitates and the grain boundary has been highlighted by arrows.  

 

 

 

 

Figure 4.13 STEM results of precipitates formed in Al 5456 H116 aged at 70℃ for 30 

months (a) HAADF-STEM image of the grain matrix obtained from JEM 2800, and (b) 

size distribution of intragranular Mg rich precipitates in Al 5456 H116 aged at 70℃ for 30 

months. 
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Figure 4.14 TEM results of Al 5456 H116 aged at 70℃ for 30 months (a) TEM image of 

4 intragranular Mg-rich precipitates formed in the matrix obtained from JEM 2800, the 

inserted image is the FFT of Al matrix, (b) High resolution TEM image of precipitate 2 as 

highlighted in (a), (c) Inverse FFT results of the area within the frame of (b), the inserted 

images are the EDS line scan results across the precipitate as highlighted by the arrow in 

(b) and the FFT of the Mg-rich precipitate, (d) TEM image of some other Mg-rich 

precipitates formed in the matrix of Al 5456 H116 aged at 70℃ for 30 months, (e) TEM 

image of the precipitate within the frame of (d), and (f) the FFT results of Al matrix the 

area within the frame in (e). 
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Figure 4.15 STEM and EDS results of Al 5456 H116 aged at 70℃ for 30 months (a) 

HAADF-STEM image of a grain boundary obtained from JEM 2800, (b) EDS mapping 

results of (a) obtained from the ultrafast EDS system of JEM 2800, (c) EDS line scan results 

across the grain boundary as indicated by arrows in (a). (d) HAADF-STEM image of the 

same area in (a) obtained from FEI Talos F200X, (e) EDS mapping results of (d) obtained 

from Talos, and (f) EDS line scan results across the pre-existing particle as indicated by 

arrows in (a). There are 5 intragranular precipitates identified by numbers in (a) and (d), 

and the corresponding EDS line scan results obtained from JEM ultrafast EDS system and 

FEI Talos F200X are shown in Fig. Appendix A.3. 
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Figure 4.16 HAADF-STEM images of Mg-rich precipitates formed (a) at pre-existing 

particle, (b) triple junction of grain boundaries, (c) grain boundary of the navy ship sample, 

(d) HAADF-STEM image of two precipitates formed at the grain boundary of the navy 

ship sample, inserted images shows the FFT of the precipitate within the frame of (d), (e) 

EDS line scan results of the precipitate in (d) (as highlighted by an arrow), and (f) high 

resolution STEM image and the corresponding FFT pattern of the Navy ship sample. All 

the images are obtained using the JEM-2200FS S/TEM. 
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Figure 4.17 DF-STEM image of β phase formed at the grain boundary of Al 5083 aged for 

different times (a) 1 month, (b) 1.5months, (c) 3 months, (d) 12 months, (e) 20 months and 

(f) 30 months. 
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Figure 4.18 STEM results of Al 5083 H116 (a) DF-STEM image of Al 5083 H116 aged 

at (d) 50℃ for 41 months, (b) 70℃ for 18 months and (c) 30 months. 

 

 

 

 

Figure 4.19 DF-STEM image of Al 5083 H131 aged at 30-70℃ for (a) 6 months, (b) 8 

months, and (c) 10 months. 
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Figure 4.20 APT results of Al 5083 H116 aged at 50℃ for 24 months (a) APT atom maps 

for all elements, Mn, Fe, Cr, Mg, and Al (b) A magnified region of the APT needle with a 

5 at. % Mn isosurface (yellow) defining the matrix/precipitate interface and 10 at.% Mg 

isosurfaces (purple) showing Mg rich precipitates within the matrix and at the 

matrix/precipitate interface. Al and Fe atoms are also displayed.  The blue arrow indicates 

the region of the 1D line profile shown in Figure 4.21(b). (c) A 90° rotation of (b).  (d) A 

magnified view of the Mg precipitates within the Al-Mg matrix.  The blue arrow indicates 

the direction of the 1D line profile shown in Figure 4.21(a). (e) A magnified and rotated 

view of the matrix/precipitate interface showing the Mg rich precipitates formation on the 

interface.  A blue x indicates the z-direction of the 1D line profile shown in Figure 4.21(b). 
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Figure 4.21 APT line scan results of Mg-rich precipitates formed (a) in the matrix 

(identified by an arrow in Figure 4.20(d)) and (b) on the matrix-pre-existing particle 

interface (highlighted by an arrow in Figure 4.20(e)) of Al 5083 H116 aged at 50℃ for 24 

months. 
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Figure 4.22 SANS results of Al 5083 H131 alloy aged at (a) 70℃ and Al 5083 H116 aged 

at (b) 70℃ and (c) 50℃ for different times. 
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Figure 4.23 The SANS results for the as quenched, navy ship sample, and Al 5456 H116 

aged at 70℃ for 30 months, the solid lines are the fitting results using Eq. (3.1), and the 

inserted image shows the χ2-test result of the navy ship sample.  

 

 

 

 
Figure 4.24 Statistical results of Mg concentration obtained from STEM EDS and APT for 

precipitates formed in Al 5083 H131 and H116 aged at different temperatures for different 

times. 
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Figure 4.25 The volume fraction distribution results of the navy ship sample and the Al 

5456 H116 aged at 70℃ for 30 months. The inserted image shows the average radii of 

intragranular precipitates obtained from STEM images and SANS fitting. 

 

 



CHAPTER 5 

 

MODELING OF Mg-RICH PRECIPITATES FORMED  

IN LOW TEMPERATURE SENSITIZED  

Al 5XXX ALLOYS 

 

Based on STEM, APT, and SANS results above, Mg-rich precipitates are observed 

to form within Al matrix and at grain boundaries. In the present chapter, the nucleation, 

growth, and coarsening of intragranular and intergranular Mg-rich precipitates will be 

modeled using classical nucleation theory, mean field precipitate growth theory, and 

modified precipitate coarsening theory.  

 

5.1 Modeling of intragranular precipitates formed in Al 5803 alloys 

The precipitation process of Mg-rich precipitates in Al 5083 alloys is simplified as 

the precipitation of multiple phases (GP zone, β”, β’, and β phase) in a binary system (Al-

Mg) scenario. By introducing the local equilibrium of chemical potential, Chen et al. 

modified the classical nucleation and growth theory to describe the precipitation behavior 

in a multicomponent system. [101] In the present study, this method was used to predict the 

evolution of Mg-rich phases in Al 5083 alloys. For simplification, several assumptions 

were made, as follows: (1) Mg concentrations in GP zones, β”, β’, and β phase are constant; 
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(2) the aspect ratio of GP zones, β”, β’, and β phase is the same for each alloy. By 

introducing the local equilibrium of chemical potential, Chen et al. modified the classical 

nucleation and growth theory to describe the precipitation behavior in a multicomponent 

system. [101]  

 

5.1.1 Nucleation 

For a spherical precipitate, the total Gibbs free energy change during nucleation is 

illustrated as 

 

 AGVG iiv  ,  
(5.1) 

 

where ivG , is the driving force for nucleation of precipitate i (stands for GP zone, β”, β’, 

or β phase), V is the volume of the precipitate, A is the surface area of the precipitate, and 

γi is the interfacial energy of matrix and precipitate i. 

By differentiating Eq.(5.1), the critical radius, 


iR  , needed for precipitate i to achieve 

stable growth is given as  
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 (5.2) 

 

The critical thermodynamic barrier for nucleation is then derived as  
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The overall nucleation rate can be calculated by the Kampmann and Wagner’s [88] 

equation, 
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where N is the number of nucleation sites per unit volume, fV is the volume fraction of all 

precipitates, and Zi is the Zeldovich factor for precipitate i 
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where iatv ,  is the atomic volume and k is Boltzmann constant. 


i  is the condensation rate 

of the solute atoms to a cluster of critical radius 


iR  
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where mX  is the average Mg concentration in the matrix, D is the solute diffusion 

coefficient in the matrix, and a0 is the lattice parameter. The incubation time for precipitate 

i is given as  
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5.1.2 Growth  

At the interface of precipitate-matrix, a local equilibrium was assumed as follows: 

 

 
ii IP    (5.8) 

 

where 
iP and 

iI stand for the chemical potential of Mg in the precipitate and matrix at the 

interface. Considering of the Gibbs-Thomson [146] effect, 
iP  can be rewrote as  

 

 

i

iati
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v

i

,2
   (5.9) 

 

where i is the chemical potential for precipitate i of infinite radius, γi is the interfacial 

energy of matrix-precipitate i, and Ri is the radius of precipitate i. The flux of Mg, Ji, to 

certain precipitate i can be expressed using the growth rate, υi, as follows 

 

  
ii PIii XXJ   (5.10) 

 

where 
iIX is the Mg concentration at the interface on the matrix side, and 

iPX is the Mg 

concentration in precipitate i at the interface. While the flux of Mg can also be calculated  
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using the diffusivity of Mg, D, in the matrix 

 

 
ii XDJ   (5.11) 

 

where iX  is the concentration gradient of Mg close to the interface on the matrix side. 

Combined Eq. (5.10) and (5.11) yields 

 

   iIPi XDXX
ii

  (5.12) 

 

iX  can be estimated using the following equation 
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where di is the effective diffusion distance, which can be obtained as follows 
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In the above equation, εi is a factor which equals (Ωi/Wi), Ωi is the dimensionless 

supersaturation, which is calculated as  
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Wi can be calculated from Ωi using the following equation 

 

     iiiii WerfcWWW  232 exp22   (5.16) 

 

Insert Eq. (5.13) and (5.14) into Eq. (5.12), we can obtain 
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Meanwhile, the diffusion coefficient of Mg, D, can be related to the chemical 

potential as follows 
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where M is the atomic mobility of Mg. Submitting Eq. (5.18) into Eq. (5.11), we can obtain 
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Combine Eqs. (5.10), (5.14), and (5.19),  
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In consideration of the ellipsoid shape of the precipitates, Eq. (5.20) can be modified 

to 
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where u is the aspect ratio, and Fshape is the shape factor  
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The final growth rate of precipitate i is given as  
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The evolution of precipitate size distribution was described using the Euler-like 

approach developed by Myhr and Grong [96] and Perez et al. [85] The Euler-like approach is 

based on the discretization of the particle size distribution of precipitate i into size classes 

(indexed using j). For precipitate i, the number of new nuclei during the time step Δt is 

given by 
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The new nuclei were put into the size class j of radius 


jikTR ,, , which is calculated as 
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The item  jiZ ,1   was added to ensure the stable growth of the new nuclei. Based 

on the mass balance of Mg in class j, the new population of class j at time (t+Δt) can be 

calculated using the control volume approach 

 

     

    t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

tt

ji

NN
R

t

NN
R

t
NN

1,,,,,

,1,1,1,1,,,

IndxIndx

IndxIndx























 (5.26) 

 

where 
t

jiN ,  stands for number of precipitate i in class j at time t, ΔR is the  width of a size 

class, and )(Indx x is a function defined as follows: 
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The overall number of precipitates i is obtained from the definition as  
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and the average radius of precipitate i is given as   
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The volume fraction of precipitate i 
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The average Mg concentration of the matrix is deduced from the solute mass balance 

principle: 

 

 
i

iiVmm XfXX ,,0  (5.31) 

 

5.1.3 Parameters for the model 

The chemical potential of the matrix and the precipitates (GP zones, β”, β’, and β 

phase), and the driving force for nucleation were calculated using the CALPHAD approach, 

which was based on the principle of minimizing the Gibbs free energy in the system. [147] 

The thermodynamic calculation of the Al-Mg system, including β”, β’, and β phase, has 

been performed in previous studies, [22,148–150] and the parameters used in the present 
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research are listed in Appendix A.2. Nozato and Ishihara [29] proposed that GP zones have 

a short-range ordered Al3Mg structure, which was verified by Sato and Kamio [16] using 

high-resolution TEM. The fraction of the ordered Al3Mg structure was assumed to be 50%, 

the average Mg concentration in GP zones was assumed to be 15 at.%, and the detailed 

calculation was shown in Appendix A.2. 

The interfacial energy, γi, is a vital physical parameter for the nucleation and 

coarsening process of the predictive model. Sonderegger and Kozeschnik [151] developed 

an analytical approach to estimate the interfacial energy based on the broken-bond model, 

which has been proven to be effective in both steel [152] and Al alloy [99]. According to their 

model, the interfacial energy is calculated as  
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where ns is the atom number density (per unit area) at the interface, which is equal to 

 2

0

324 a  for fcc structure.  zs,eff is the effective number of broken bonds, NA is Avogadro’s 

constant, and zL,eff is the effective coordination number. The mean value of effLeffs zz ,, for 

fcc is 0.3004 [151]. iH  is the enthalpy of solution for precipitate i. The calculated values of 

γi  are listed in Table 5.1.  

The model was numerically solved using the standard simulation language 

MATLAB R2014a. The width of size class, ΔR, is set to be 0.5 nm. The standards for 

choosing the value of Δt, the cut-off values of size distributions, and the creation of new 
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size class can be find in Ref. [85]. The values of the other parameters in the model can be 

found in Table. 5.1. 

 

5.1.4 Modeling results 

Fig. 5.1 presents the modeling results of nucleation density, precipitate radius, 

volume fraction, and Mg concentration in the matrix versus aging time. The modeling 

results of number density versus aging time (Fig. 5.1) agree well with experimental results. 

In Al 5083 H131 aged at 70℃, GP zones nucleate first, followed by β”, β’, and β  phase. 

From GP zone to β phase, the maximum number density decreases, which could be 

attributed to the depletion of nucleation sites and increasing energy barriers for nucleation. 

Metastable phases, GP zone, β” and β’ phase, start to dissolve at 1, 4.5, and 8 months, 

respectively. The precipitate population of GP zones dominates at 1.5 months, and β” phase 

is the main precipitate at 9 months. While after 14 months (18 and 30 months), β’ and β 

phases are predominant phases in the matrix. Al 5083 H116 aged at 70℃ shares the same 

precipitation sequence with Al 5083 H131, while the number densities of GP zones, β” and 

β’ phase are less. In addition, β’ and β phases become the main precipitates after 20 months. 

Even fewer precipitates are observed in Al 5083 H116 aged at 50℃, and the ultimate 

prevail phases are GP zones and β” phase after 41 months.  

Fig. 5.1 also demonstrates the modeling and experimental results of precipitate radius 

at different aging time. During the nucleation stage, the precipitate radius changes slowly 

with time, and after that the precipitate starts to grow fast with aging time. The modeling 

results agree well with the experimental results for both Al 5083 H131 and H116 alloys. 

The radius of GP zone is minimum at the beginning of aging (for both Alloys), while it 
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reaches its maximum among the four types of precipitates at the end of the aging (30 

months for 70℃, and 41 months for 50℃), which can be explained by the coarsening of 

GP zones (see Fig. 5.1 precipitate number density N). In addition, after aging at 70℃ for 

30 months, the radius of GP zone in Al 5083 H131 is slightly larger than that in Al 5083 

H116. While the radius of GP zone in Al 5083 H116 aged at 70℃ for 30 months is much 

larger than that of the same alloy aged at 50℃ for 41 months. 

The volume fraction (Fig. 5.1, fV) of precipitates is observed to increase continuously 

with aging time with a good agreement between simulation results and experimental results 

for both Al 5083 H131 (70℃) and H116 (50 and 70℃) alloys. On the contrary, the average 

Mg concentration in the matrix (Fig. 5.1, mX ) decreases continuously with aging time.  

The comparison of experimental and modeling results of precipitates’ size 

distributions are displayed in Fig. 5.2. For Al 5083 H131 aged at 70℃ (Fig. 5.2 (a)), the 

increase of average radius and decrease of maximum precipitate numbers occur 

simultaneously from 1.5 to 30 months, which corresponds to a mixed growth/coarsening 

regime within an increasing influence of coarsening effects. The modeling results match 

well with SANS results. Moreover, the broadening of particle size distribution (PSD) of 

GP zone, β”, β’, and β phase was also observed. Perez et al. [85] found that the broadening 

of PSD will generate enough small particle size classes and ensure the beginning of 

coarsening stage. As a matter of fact, the PSD of GP zones at 30 months is firmly close to 

the standard LSW (Lifshitz-Slyosov-Wagner) [72,92] distribution (see Fig. 5.2 (a) 30 

months), indicating the precipitation of GP zones occurs in the pure coarsening stage.  

The PSD results of Al 5083 H116 aged at 70℃ for different times are shown in Fig. 

5.2 (b), and the kinetics is quite similar to that of the Al 5083 H131 sample. However, there 
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is a slowing of coarsening compared with that of Al 5083 H131. For example, small size 

classes of GP zones formed during the nucleation stage have not been fully dissolved and 

resulted in a spike on the PSD plot of GP zones (see Fig. 5.2 (b) 18 months). An obvious 

shift between the PSD and the standard LSW distribution of GP zones can be observed 

(Fig. 5.2 (b) 30 months), indicating coarsening is not the only phenomenon. What’s more, 

the population of β’ phase rather than β phase is the largest in the 30 months’ sample of Al 

5083 H116 aged at 70℃.  For 5083 H116 aged at a lower temperature (50℃), the 

precipitate number density and radius are much smaller (Fig. 5.2 (c)). Moreover, a large 

retardation of the growth and coarsening stages is also identified.  From 3 to 24 months, 

even though the number of GP zone keeps decreasing, the shape of the GP zone PSD does 

not change too much. While in the 41 months’ sample, the overall PSD of GP zones 

consists of a crest resulting from the growth of precipitates of relatively larger radius (larger 

than the critical radius), and a spike caused by the dissolving of smaller precipitates 

(smaller than the critical radius). Therefore, the large deviation between the theoretical 

LSW distribution and the PSD of GP zones (Fig. 5.2 (c) 30 months) can be attributed to 

the fact that GP zones are still in the growth and coarsening stage. The corresponding 

dominant phase in the 41 months’ sample is β” phase. 

 

5.1.5 Discussions 

5.1.5.1 Effect of different tempers  

For Al 5xxx alloys, H1 is a strain-hardened only temper, and the second digit of the 

temper represents the strain-hardened extent. [153] Therefore Al 5083 H131 (3/8 of full 

hardness) experiences more cold working than Al 5083 H116 (1/8 of full hardness), [153] 
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which was confirmed by the hardness of these two alloys. In addition, EBSD reveals that 

GND density (Fig. 4.2) of Al 5083 H131 is 1.6 times that in Al 5083 H116. STEM (Fig. 

4.8, Table 4.1) and SANS (Fig. 4.9, Table 4.4) results show that fewer Mg-rich precipitates 

are formed in Al 5083 H116 than in H131, and the radii of these precipitates are smaller at 

the same aging states (for instance, 70℃ for 9, 18, and 30 months). Moreover, the modeling 

results (Fig. 5.1 and Fig. 5.2) show that there is a retardation of coarsening stage in Al 5083 

H116 compared with H131 alloy. 

The precipitation of Mg-rich precipitates (GP zone, β”, β’, and β phase) is a diffusion-

controlled process, and Mg is the diffusion rate limiting element. Dislocations have been 

reported to be favorable nucleation sites for precipitation and potentially provide rapid 

diffusion paths for solute atoms. [84] On the one hand, the higher dislocation density in Al 

5083 H131 provides more heterogeneous nucleation sites, leading to the higher precipitate 

number density in Al 5083 H131. On the other hand, the pipe diffusion effect [154] of 

dislocation can highly facilitate the growth of β’ phase, which has been observed in 

previous studies [15,23]. Hart [155] proposed a simple way to estimate the effective diffusion 

coefficient, Deff, caused by dislocations, as follows 

 

 
ddbulkdeff DfDfD  )1(
 

(5.33) 

 

where fd is the fraction of dislocation, Dbulk and Dd are the diffusion coefficients of Mg in 

the Al matrix and dislocation cores. fd can be calculated from dislocation density and the 

area of dislocation core. Taking the dislocation along the {111} plane as an example, the 

radius of the dislocation core ranges from 0.35 to 1.4 nm. [143] Atomic simulation reveals 
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that the activation energy of a Mg atom in the dislocation core is about 75% [156] that in the 

bulk (Q=-112.499kJ, see Table 5.1). The GND density (5.33×1013 m-2 for H131, and 

3.28×1013 m-2 for H116) is used to roughly estimate the relative dislocation density ratio. 

Based on Eq. (5.33), Deff  of H131 to that of H116 is about 1.5 at 70℃. Henceforth, a 

relatively slower precipitate growth rate (Eq. (5.23)) as well as a smaller precipitate radius 

will be expected in Al 5083 H116.  

Moreover, the growth driving force (
iIm   ) related to the Gibbs-Thomson effect 

is also of great importance. Fewer and smaller precipitates in Al 5083 H116 lead to a higher 

average matrix concentration (see mX  results in Fig. 5.1 (a) and (b)), indicating a larger 

μm. Combining Eq. (5.9) and (5.23), one finds a smaller Ri value is needed to make υi 

negative. Consequently, only precipitates smaller than Ri can dissolve, which leads to the 

spike in the PSD plot of GP zones at 18 months.  

 

5.1.5.2 Effects of different aging temperatures 

For Al 5083 H116, different aging temperatures lead to a large difference in the 

precipitation behavior (see Table 4.1, Table 4.4, Fig. 5.1 and 5.2). A higher aging 

temperature means more atoms are able to overcome the energy barrier for nucleation, thus 

more precipitates are found in the 70℃ aged Al 5083 H116 sample. Moreover, the 

diffusion coefficient of Mg atoms at 70℃ is 10 times that at 50℃ (Q=-112.499kJ). 

Therefore, the smaller precipitate size and the retardation of the growth and coarsening 

stage can be explained in the same way above (different temper effects), whereas a higher 

temperature may cause recrystallization of cold-worked alloy and the reduction of 

dislocations. Oguocha et al. [157] aged Al 5083 H116 alloys at different temperatures, and 
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found that obvious recrystallization happened at temperatures higher than 175℃. 

Henceforth, 70℃ is not high enough to cause recrystallization and a large decrease in 

dislocation density.  

   

5.1.5.3 Different nucleation sites 

STEM and EDS results reveal that Mg-rich precipitates first form on heterogeneous 

sites such as the surface of pre-existing particles, dislocations, and grain boundaries. The 

relatively low active energy for nucleation of these sites is used to explain the 

preference. [158] APT results show that the shape of precipitates on the surface of pre-

existing particle is different from that in the matrix. Considering β” phase is coherent with 

Al matrix, [16] one possible reason for this difference is that the diffusion coefficient of Mg 

at the β” phase-matrix interface is close to that of Mg in the matrix, when an elongated 

precipitate shape will be expected. [137] 

 

5.1.5.4 Phase transformation sequence 

The precipitate sequence of Mg-rich precipitates is affected by aging temperature, 

Mg concentration in the matrix, and aging time. β’ and β phase are reported to form at high 

temperatures (>150℃), [34] while given enough aging time (12 months) β’ and β phase were 

also observed to form at 70℃ in Al 5083 alloy [23]. Moreover, TEM and differential 

scanning calorimetry (DSC) [16,32] results indicated that GP zones will form before the 

appearance of β” phase in a matrix of relatively low Mg concentration (<14 wt.%), and 

both GP zones and β” phase [16] can formed below 80℃. In the present study, the Mg 

concentration is 5.25 at.%, the aging temperature is 50 and 70℃, and the aging time is as 
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long as 41 and 30 months, respectively. Therefore, GP zones, β”, β’, and β phase are able 

to form in Al 5083 alloy. In reality, the presence of GP zones and β” phase in Al 5083 

H116 sample aged at 50℃ have been confirmed by APT results.  

In order to fit the SANS results, the value of  was assumed to be variable based 

on the concentration change of Mg-rich precipitates. Furthermore, in the modeling part, a 

multiphase (GP zone, β”, β’, and β phase) precipitation process was assumed. Fig. 5.3 is 

the difference of scattering length density obtained from SANS fitting and calculation 

based on the volume fraction of each phase, using the following equation: 

 

 222

 
i

miVi
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(5.34) 

 

Both experimental and model results of  show a decreasing trend for Al 5083 

alloys aged at 70℃. For Al 5083 H116 alloy aged at 50℃, the value of  does not change 

too much from 9 to 41 months. In Fig. 5.3, the modeling results are always larger than the 

experimental results, and one possible explanation is that the volume of Mg-rich 

precipitates is underestimated when fitting to the overall SANS results. In spite of this 

difference, the assumption of phase transformation from supersaturated solid solution-GP 

zone- β”- β’- β phase in Al 5083 alloy aged at 50 and 70℃ is reasonable. 

 

5.1.5.5 The multiphase binary Al-Mg system model 

In order to deal with the phase transformation (from GP zone to β phase) process in 

Al 5083 alloys aged at 70 and 50℃, the local equilibrium of Mg chemical potential at the 

interface of precipitate i-matrix is assumed. This assumption was introduced by Chen et 
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al. [101] to handle the continuous tie-lines shifting problem caused by the cross-diffusion in 

multicomponent systems. In the present study, Al 5083 alloys were simplified as an Al-

Mg binary system, and no cross-diffusion phenomenon needs to be considered, while the 

local equilibrium assumption is still a good method to account for different Mg 

concentrations at different interfaces of precipitate i-matrix. Svoboda  [96,158] developed a 

model to describe spherical precipitates formed in multicomponent multiphase systems, 

and in this model growth of precipitates, change of precipitate concentration, different type 

of solute atoms, and different nucleation sites are considered. In addition, an Euler-like 

multiclass method was adopted to predict the number evolution of precipitates. In fact, if 

the precipitate concentration is assumed to be constant in Svoboda’s model, the precipitate 

growth mechanism will become the same as the model in the present study.  

The model in this study predicts the dissolution of metastable phases, the growth of 

precipitates, the increase of overall precipitate volume, and the depletion of Mg in the 

matrix as well as Svoboda and Chen’s model did. However, the radius of GP zone in Al 

5083 H131 does not decrease even after 30 months, which is different from the results in 

Ref.  [100] and  [102].  In these two studies, the aging temperature is very high (>500℃), 

the precipitation and diffusion process was so fast that the matrix became deplete of solute 

atoms very quickly. Under this condition, the solute concentration in the matrix is even 

lower than solute concentration at the largest precipitate-matrix interface. Thus, all 

precipitates will start to dissolve and the radius of precipitate will decrease too. Fig. 5.4 

displays the PSD of GP zones and β” phase versus their growth rates (υi) for different radius 

class of Al 5083 H131 aged at 70℃ for 30 months. The turning point is the place where 
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growth rate turns from negative to positive (radius from small to large). Therefore, there is 

still a large number of GP zones and β” phase can grow. 

 

5.2 Modeling of intergranular precipitates formed in Al 5803 alloys 

Both Fisher [52] and Shewmon [53] had investigated and obtained a solution to the 

problem of diffusion within the grain matrix and along the grain boundary. By referring to 

their solution method, our analysis is based on assumptions, as follow: (1) the flux of solute 

within the grain is everywhere normal to the grain boundary, (2) the concentration of Mg 

at the clean grain boundary and matrix-precipitates interface is the same and written as Cαβ, 

(3) the Mg-rich precipitates formed at grain boundaries are treated as β phase (Al3Mg2), 

and their concentration is Cβ. 

 

5.2.1 Shape of intergranular precipitates  

The most common precipitate morphology formed at the grain boundary of Al 5xxx 

alloy is that of the allotriomorphs. In previous research, [56,137] the shape of intergranular 

precipitate was assumed to be  
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(5.35) 

 

where tanm , and ψ is the contact angle of the precipitate, which is equal to θ(R). R is 

the half-length of precipitate, as shown in Fig. 5.5. Depending on different values of χ, Eq. 

(5.35) is able to represent an ellipse as well as a sphere, and the detailed relationship 

between χ and the precipitate shape can be found in Ref. [137].  
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Based on Eq. (5.35), the half-volume of the precipitate, M, is given as (Eq. (33) in 

Ref. [137]) 
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And half the surface area of the precipitate, SA, can be obtained as [159] 
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where  
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where e is the eccentricity of the ellipse, and a, b, and zd can be found in Fig. 5.5. 

 

5.2.2 Flow to the grain boundary 

By considering only the half-space 20 hz   (h is grain size), the concentration of 

Mg in the grain matrix satisfied Fick’s second law,  
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where Dm is the volume-diffusion coefficient in the grain matrix.  

Fig. 5.6 is a typical TEM image of Al 5083, and the image shows the grain size is 

about 1μm. In the early stage of aging, the diffusion distance of Mg within the grain matrix 

(for example, after aging at 70 ºC for one month), is only 4 nm, which is far less than the 

grain size. Therefore, the diffusion system can be treated as a semi-infinite bulk case, and 

the appropriate boundary conditions for the concentration C(z,t) are  
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where Cα is Mg concentration inside the grain before aging, and Cαβ is Mg concentration 

at the grain boundary. According to the boundary conditions listed above, the Mg 

concentration profile inside the grain is, therefore, 

 

 
)

2
(),(

tD

z
)erf(-CCCtzC

m

αβ   (5.45) 

 

The value of solute flux to the grain boundary can be written as 
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In this study, Al 5083 was aged at 70 ºC for as long as 30 months. Fig. 5.7 presents 

an EDS line scan and the corresponding concentration profile of Mg within the grain matrix 

of Al 5083 aged at 70 ºC for 30 months. An obvious Mg deplete zone, about 150 nm in 

width, can be found on each side of the grain boundary in Fig.5.7 (b). Moreover, from the 

symmetry of the Mg concentration profile, the grain size is estimated to be 0.6 μm, 

indicating the diffusion distance is almost 50 percent of the grain size. Thus, at the end of 

aging, the diffusion system is finite, and the appropriate boundary conditions for 

intermediate and long-term exposures are shown as follows:  
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Therefore, the Mg concentration profile inside the grain for long-term aging of Al 

5083 alloy at low temperatures is obtained as 
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and the corresponding value of Mg flux to the grain boundary is  
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However, this equation does not work well for short diffusion distances. Therefore, 

for long-term aging of Al 5083 alloy, the concentration profile of Mg inside the grain needs 

to be described using two different expressions. 
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5.2.3 Mg concentration along the grain boundary 

Brailsford and Aaron [56] investigated the time-dependent grain boundary 

concentration by considering the solute flux diffused to the grain boundary. To solve the 

unsteady state diffusion equation along the grain boundary, a further approximation,

0 tCb , was made to make up the limited number of boundary conditions. In this research, 

a collector plate-based equivalent Mg concentration at grain boundary, CRx, will be 

established according to the solute mass balance. 
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(5.52) 

where J is the solute flux to the grain boundary, Rc is the radius of the collector plate, δeff 

is the effective thickness of grain boundary, Db is the solute diffusivity within the grain 

boundary, and ri is the distance to the center of the precipitate within the collector plate 

surface (see Fig. 5.5), where the concentration gradient of solute atoms is 
irrdr

dC



. 

Integrating the above equation along the grain boundary from R to Rx (see Fig. 5.5) gives 
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where CR is the Mg concentration immediately adjacent to the surface of intergranular 

precipitate. The value of CR is determined by the Gibbs-Thomson [89,90,146] equation as 
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Ceq is the Mg concentration in the grain boundary away from the influence of Mg-

rich precipitates, which is equal to Cαβ in this study. γ is the interfacial energy matrix-

precipitate, and 
P

atv  is the atomic volume.  KR is equivalent curvature of the precipitate, [84] 

and it is given as 
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Therefore, the average Mg concentration at precipitate-free grain boundary area can 

be calculated as: 
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After some algebra, 
xRC is obtained as 
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(5.58) 

 

5.2.4 Nucleation of intergranular precipitates 

In classical nucleation theory, precipitates will nucleate within the supersaturated 

matrix, and based on the ideal solution model, the driving force for nucleation can be 

written as 

 

 
















eq

R

P

at C

C

v

kT
g xln

 

(5.59) 

where Ceq is the equilibrium solute concentration of the grain boundary. From the driving 

force, [160] a critical nucleation radius was derived as  
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The corresponding activation energy for nucleation is 
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By introducing incubation time τ0 for nucleation, Kampmann and Wagner [88] 

modified the standard Becker-Döring [87] nucleation theory, leading to the follow 

expression for the nucleation rate per unit area 
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where N0het is the number of nucleation sites per unit volume at the grain boundary, and Z 

is the Zeldovich factor [63] 
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β* is the condensation rate of the solute atoms to a cluster of critical radius R*. Russell [64] 

proposed an expression involving the diffusion coefficient Db, the lattice parameter a0, and 

the average solute concentration at grain boundaries. β* is expressed as: 
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The incubation time is given as 
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For the complex structure of grain boundary, N0het is difficult to obtain directly. 

However, it can be estimated from the nucleation site per unit volume within the grain 

matrix, N0hom, [84] which is 
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where, δeff is the effective thickness of grain boundary, and 
 homG  is the activation energy 

for homogeneous nucleation. 

For precipitation within the grain matrix, the volume fraction of the precipitates 

calculated from the classical nucleation theory is less than 1 percent at the very beginning 

of the coarsening process. [85] However, TEM results showed that grain boundaries of Al 

5xxx alloys will be fully covered by Mg-rich precipitates if aging temperature is high 

enough and aging time is long enough. [137] For heterogeneous nucleation at grain 

boundaries, precipitates nucleate within a narrow area with a width δeff. Therefore, all 

potential nucleation sites will be utilized gradually. Considering this effect, the available 

nucleation sites per unit volume will be modified accordingly with time. 

Fig. 5.8 shows the average size of precipitates in comparison with the effective grain 

boundary thickness at different times. At t2, this thickness of the β phase is equal to δeff. 

When aging time, t, is shorter than t2, the bulk of the precipitate is located within the grain 

boundary area, therefore the available volume for the nucleation of new precipitates is 

given as 
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(5.67) 

 

where N is the number of precipitates within the grain boundary per unit area, and V is half 

the volume of precipitates. The volume of grain boundary per unit area is given as (1m2× 

δeff), which will be simplified as δeff hereafter.  

For a long aging time (t>t2), the thickness of Mg-rich precipitates is larger than δeff. 

In this case, the available volume for the formation of new arriving precipitates is 
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where V’ is half the volume of the precipitate within the grain boundary, and 
2

R is equal 

to [ )2( effzr  ](see Fig. 5.8). From Eqs. (5.67) and (5.68), the fraction of the available 

boundary volume is written as 
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Then, the nucleation rate can be modified as 
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The collector plate mechanism was first put forward by Aaron and Aaronson, [50] and 

modified by Carolan and Faulkner, [58] which proved to be an effective method in 

heterogeneous precipitation. For a variable collector plate, the area, A , is equal to 
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(5.72) 

 

while the collector plate mechanism also assumed that one precipitate corresponds to one 

collector plate. Henceforth, when grain boundary nucleation density is relatively high, the 

collector plate area is given by 
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where N is the number of nuclei per unit area at grain boundary. The final collector plate 

area should equal the smaller value of the above two expressions, which can be written as 
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5.2.5 Growth and coarsening theory of intergranular precipitates 

In the first stage of precipitation, nucleation and growth are considered 

simultaneously. The increasing nucleation density is caused by the formation of new 
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precipitates, and the variation of the mean precipitate radius includes two parts: the growth 

of the existing precipitates and the arrival of new precipitates. Based on the mass 

conservation of Mg, we can obtain 
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leading to the growth rate equation 
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where Cβ is the Mg concentration of the precipitate, and V* is the volume of the new-

forming precipitates. Wagner and Kampmann [88] pointed out that the new-arriving 

precipitates can grow only if their radius is slightly larger than the critical nucleation radius. 

Thus, a numerical factor η was used to account for this effect. The value of η is taken as 

1.05. [94] 

In the late stage of precipitation, nucleation rate will decrease progressively because 

of the desaturation of solute atoms as well as the depletion of the nucleation sites. 

Precipitate growth and coarsening will take place within the grain boundary. Three 

intergranular coarsening mechanisms will be discussed. 

 

5.2.5.1 Kirchner’s coarsening mechanism [67] for grain boundary precipitates 

Based on Speight’s results [69] of the growth rate of intergranular precipitate, 

Kirchner [67] derived a distribution function for precipitates at the grain boundary by 
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considering Wagner’s continuity theory. [68] The volume change rate versus time with 

respect to the steady state distribution function (the coarsening stage) was obtained as 

follows: 
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in which PAPV ffA 23 . The detailed derivation of Eq. (5.77) can be found in Appendix 

A.3. 

 

5.2.5.2 (Lifchitz-Slyosov-Wagner) LSW Coarsening mechanism [68,72] 

By adopting the growth mechanism developed by Zener, [49] coupled with  solving 

the continuity and solute mass balance equations, Lifchitz and Slyosov [72]  and Wagner [68] 

simultaneously derived the mean radius evolution equations for the coarsening stage 

(referred as the LSW law). The LSW equation is widely used to describe the coarsening 

process of precipitate within the grain matrix. By assuming Mg diffusion only takes place 

within the grain boundary area, and the solute flux between the grain matrix and the grain 

boundary can be ignored, the classical LSW theory can be modified for the case of 

intergranular precipitate coarsening, as shown in Appendix A.4. 
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Considering the solute concentration difference, the pure coarsening rate is written 

as 

 

 
)(9

4





CC

Df

dt

dV bPA

Lc 


 
(5.79) 

  

5.2.5.3 The new coarsening model 

Ardell [70] found the particle size distribution function of intergranular precipitates 

can be totally different for different volume fractions (equals to NπR2 in this study) of 

precipitates at grain boundaries. In the limiting case, (NπR2)=0, the steady-state particle 

size distribution function is of the same form as that derived by Kirchner. [67] However, 

when (NπR2)=1, the famous LSW particle size distribution function can be used. In fact, 

these two distribution functions indicate two different coarsening mechanisms. In this 

study, we assume that in the entire coarsening process, the control mechanism will transfer 

continuously from the Kirchner mechanism to the LSW mechanism, which can be written 

as  
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where fL stands for the fraction of the LSW mechanism, which can be extracted from the 

relationship between (Rmax/R) (Rmax is the maximum allowable particle size in the 

distribution of particle size) and the volume fraction of grain boundary precipitates (NπR2), 

as shown in Fig. 5.9. According to Ardell’s research, [70] there is no explicit expression 
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between (Rmax/R) and (NπR2), thus an equation is fitted and shown in Fig. 5.9. After 

adaptation to the range of fL (from 0 to 1), the final expression of fL is 
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In order to transfer continuously from the growth stage to the coarsening stage, 

Deschamps and Bréchet [94] and Perez et al. [85] introduced a coarsening fraction, fc, based 

on the mean radius and critical radius of the precipitates to weight the pure growth and 

pure coarsening behavior. Perrard et al. [161] calculated the coarsening fraction from the 

ratio between the current volume fraction and the Gibbs-Thomson effect corrected 

equilibrium volume fraction of precipitates. In this study, the coarsening fraction is defined 

as the ratio of solute flux caused by the coarsening mechanism to the total solute flux to 

the precipitate, which is given as follows: 
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Combining Eqs.(5.77), (5.79), and (5.82), the overall volume change rate of 

precipitate in the growth and coarsening stages can be obtained as: 
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In the pure coarsening stage, the solute mass balance in a unit area of grain boundary 

can be given by (assuming the value of fPV does not change within the time interval t ) 
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(5.84) 

 

Differentiation of Eq. (5.84) and use of the pure coarsening theory (Eqs. (5.77) and 

(5.79)) yields the precipitate number density evolution during the pure coarsening stage: 
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The volume growth rate of precipitates can be also derived from Eq. (5.36), and with 

the aid of Eq. (5.83), we can obtain 
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After some algebra, we can have the precipitate growth rate in the length direction 

as 
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(5.87) 

 

As stated by Deschamps and Brechet, [94] the transition from nucleation and growth 

stage to growth and coarsening stage is determined by the relative value of the rate of 
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decrease in the precipitate number density caused by coarsening and nucleation. According 

to this criterion, the number of precipitates is given as 
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(5.88) 

 

Combining Eqs. (5.76), (5.82), (5.85), and (5.88), it is apparent that the value of fc 

must be larger than 0.5 before coarsening can really start (dN/dt<0). In other words, when 

fc is smaller than 0.5, precipitate growth will dominate regardless of the nonzero value of 

fc. For intergranular precipitation, there is a long period between the precipitation stage and 

the coarsening stage, therefore the precipitate number evolution rate is equal to the number 

change rate during the coarsening stage, as shown in Eq. (5.88). 

 

5.2.6 Numerical solution 

Similarly, a first-order explicit finite difference approximation method is used to 

perform the integration as well as the differentiation process in this study. In Eq. (5.87), 

the value of dtdfPV  can be calculated as follows: 
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Given a start value of N, R, and t, half the length of the precipitate, R, and the 

nucleation number density, N, can be integrated by using an inverted form of Eq. (5.89) 



134 

 

with an adaptive time step. Using Eq. (35) in Ref. [137], half the thickness, S, of the 

precipitate is  
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(5.90) 

 

During the numerical solving process, the area of the collector plate changes as a 

result of the nucleation and the coarsening mechanism. In order to avoid an overlap effect, 

we adopt the smaller value of Eqs. (5.72) and (5.73). In terms of the transition from short-

term concentration profile to a long-term concentration profile of Mg within the matrix, 

the same criterion in Ref. [137] ( %202 tDm of the grain size) will be used. In addition, 

the results of R and t of the former stage will used as the initial values for the next stage. 

The time interval in the numerical solving process is chosen to be 1 second, yielding a 

reasonable result compared with experimental results without consuming too much 

computational time.  

Parameters used for the numerical solving of the model are listed in Table 5.2. Part 

of the parameters, such as diffusion coefficient of Mg at different places (Dm, Db, Ds), 

contact angle (ψ), grain size (h), Mg concentration (Cα, Cβ, Cαβ) etc. can be found in Fig. 

5.10, Fig. 5.11, and Ref. [137]. The precipitates-matrix interfacial energy, γ, will be slightly 

adapted to fit the experimental data. According to previous research, [162,163] the retained 

value of 0.07 J·m-2 is in a reasonable range, varying from 0.04 to 0.4 J·m-2.  The effective 

thickness of the grain boundary is assumed to be 0.5 nm. [164,165] 
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5.2.7 Results and discussions 

Inserting the above parameters into the model, the thickness and continuity results 

can be calculated using the numerical method. As shown in Fig. 5.12, the modeling results 

match generally well with the experimental results obtained from TEM images of 

Ref. [137]. Moreover, before 12 months, the modeling results of thickness and continuity 

are larger than the value obtained from the model in Ref. [137], and after 12 months these 

two values become smaller. One possible explanation for this phenomenon is that the 

number of nucleation is fixed (3.2×1013/m2) for the whole nucleation stage in the previous 

research. [137] However, the nucleation density in the present study increases gradually from 

0 to 4.5×1013/m2. In other words, at the beginning of nucleation, there are more collector 

plates at the grain boundary in the previous model, [137] therefore solute flux arriving at 

each collector plate will decrease when the total Mg atom flux does not change (the total 

solute flux will not change if the aging temperature is the same). Consequently, the growth 

rate of precipitates will decrease, and finally smaller precipitates will form. However, 

because of a higher ultimate nucleation density in this study (4.5×1013/m2), the growth rate 

as well as the average size of precipitates will eventually become smaller than that in 

Ref. [137] after 12 months, as shown in Fig. 5.12. Moreover, thickness calculated from the 

Kirchner mechanism will become gradually larger than the results of the LSW mechanism, 

which will be discussed in detail later. 

Fig. 5.13 shows the evolution of intergranular precipitate density for the total 

nucleation-growth-coarsening sequence. Because of the relatively low aging temperature 

(70℃), the nucleation really starts after 106 s, and the LSW coarsening mechanism finally 

leads to a higher nucleation density than the Kirchner model and our new model (see Fig. 
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5.13). For the model using the Kirchner coarsening mechanism, the coarsening fraction is 

much smaller than that of the LSW model as indicated in Fig. 5.14. In addition, the value 

of fc for both the LSW and Kirchner mechanism is less than 5 % before 5×106 s (about 2 

months), indicating the precipitate growth rate is much larger than the coarsening rate. 

Based on these two facts, the overall growth rate (calculated from Eq. (5.83)) of the 

Kirchner model is higher than the LSW model.  Thus, the precipitate size of the Kirchner 

model tends to be larger than the LSW model. As we assumed above, all the nucleation 

happens within a layer of 0.5nm, and a larger average grain size results in a lower 

nucleation density (N).  

In the growth and coarsening regime, the total nucleation number is constant for both 

the LSW and the Kirchner model. However, when the continuity ( 2RN ) becomes close 

to 1, the precipitate number density in the Kirchner model decreases sharply. Further 

examination reveals that the sudden change in the total number of precipitates was caused 

by the break down of Eq. (5.77). In Speight’s model, [69] the concentration in the grain 

boundary at a distance (L), CL, was treated as a constant. This simplification is reasonable 

when L is much larger than the radius of precipitates. However, when R is close to L, Eq. 

(8) in Ref. [69] will break down, as well as for the growth mechanism used in Kirchner’s 

model. [67]  As shown in Fig. 5.13, when the aging time approaches 1×108 s, the value of 

[1/ln(Rc/R)] enlarges 3×104 times, as well as for the coarsening rate. Henceforth, the 

number density changing rate of the coarsening stage goes below 0 as the aging time 

approaches 1×108 s (see Eq. (5.88)).  

The coarsening fraction value of different mechanisms is shown in Fig. 5.14. In order 

to verify the validation of the coarsening fraction expression (Eq. (5.82)), the classical 
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intragranular precipitate nucleation, growth, and coarsening model was adopted in this 

study. Parameters listed in Table 1 of Ref. [137] were used to obtain the final precipitate 

radius, density, and the transformation fraction. The coarsening fraction values were shown 

in the inserted diagram of Fig. 5.14. Perez et al. [85] pointed out that the expression of 

coarsening fraction proposed by Deschamps and Brechet [94] was unable to predict the 

dissolution of precipitates (when R<R*). Instead, they developed a more general expression, 

as follows: 
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(5.91) 

 

Both Eq. (5.91) and the expression derived by Dechamps and Brechet work well for 

the general case of intragranular precipitation, with the exception of some special cases 

like Al3Sc precipitation in Al-0.12% Sc alloy. [162] The coarsening fraction obtained from 

our new expression is close to the existing two expressions. Moreover, a small peak, as 

indicated by a small arrow in Fig. 5.14, was observed when the aging time was as long as 

103 seconds. Combining the nucleation density versus time result (Fig. 5.13) and Eq. (12) 

in Ref. [166], it is easy to find that the nucleation rate reaches a maximum at 103 seconds. 

Henceforth, the solute flux coming to the surface will decrease, and ultimately lead to the 

small peak of coarsening fraction. In other words, our coarsening expression is also valid 

in the nucleation and growth stage.  
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The coarsening fraction of the LSW mechanism can be as large as 10%, which is 

much larger than that (0.8%) of the Kirchner mechanism. This can be attributed to the 

different growth rate adopted in these two mechanisms 
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If we assume the solute gradient at the surface of the precipitate is the same for Eqs. 

(5.92) and (5.93), and the final ratio of these two growth rates (Kirchner/LSW) can be 

estimated as δeff /R (the value of fPA is around 3 in this study), as a result, the final 

coarsening rate of the Kirchner mechanism is far less than that of the LSW mechanism. 

For the limiting case,   02 RN , ln(Rc/R) can be treated as a constant, and 

Kirchner’s coarsening rate and particle size distribution function is obtained. Fig. 5.14 

shows that a relatively small value of ln(Rc/R) leads to a slightly larger coarsening fraction, 

but the values are not far different from the variable case except at the place where it starts 

to break down (around 38.5 months). Ardell [70] pointed out that the volume fraction 

dependence of the particle size distribution will be sacrificed once ln(Rc/R) is simplified as 

a constant, which is not necessary. When   12 RN , the grain boundary will be fully 

covered by precipitates, indicating the precipitate growth equation developed by Zener [49] 

is valid. Thus the final coarsening rate equation and particle distribution function is of the 

same form as the well-known LSW mechanism for such conditions.  
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Aiming at deriving a more rigorous coarsening rate, Ardell [70] adopted an incomplete 

gamma equation to describe the relationship between interprecipitate spacing and the 

volume fraction of intergranular precipitates. However, because of the limitations of the 

incomplete gamma equation, there is a large deviation from the real case when   12 RN . 

In fact, Ardell’s coarsening mechanism is firmly close to Kirchner’s results by a factor of 

around 1.23. In our new model, the Kirchner coarsening mechanism will transfer 

continuously to the LSW mechanism with the aid of a factor fL. It is apparent that fL changes 

most rapidly when   2.02 RN , as shown in Fig. 5.9, and after that fL changes relatively 

little. Consequently, the thickness, continuity, and coarsening fraction results of the new 

model are close to the LSW mechanism, while the nucleation density result, which happens 

at the early stage of precipitation, is closer to the Kirchner mechanism model prediction.  

Fig. 5.7 is a typical BF-STEM image of intergranular precipitates formed at the grain 

boundary of Al 5083 H131 aged at 70℃ for 30 months. The grain boundary was fully 

covered by a continuous precipitate film. Moreover, as we mentioned in previous 

research, [137] Mg concentration within the grain matrix is still high enough to support the 

further growth of β phase. Therefore, precipitate growth will dominate during the whole 

aging process of Al 5083 H131 before it becomes fully sensitized.  

Fig. 5.15 shows the intergranular precipitate size distribution results predicted by the 

general steady-state particle size distribution expression derived in Ref. [70]. As shown in 

Fig. 5.15(a), for Al 5083 H131 alloy aged at 70℃ for 1 month, the precipitate size 

distribution results obtained from the general expression are far different from those 

predicted by the Kirchner and the LSW mechanism. In addition, comparing Fig. 5.15(a) 

and (b), the total precipitate number illustrates an increase largely because the nucleation 
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stage starts at around 106 s (2 months). Hereafter, the total number of precipitates is stable 

(see Fig. 5.15(b)) regardless of aging time, indicating the coarsening mechanism only 

accounts for a small fraction in the final growth rate at low exposure temperatures. In 

addition, the critical radius (R*) and average radius (R) increases with aging time, and so 

does the ratio of R to R*(see the inserted diagram in Fig. 5.15(b)). Based on Deschamps 

and Brechet [94] and Perez et al.’s [85]  criterion, the coarsening stage will start before 40 

months, which is not satisfactory in our study. As a matter of fact, a previous study [85]  

revealed that the criterion R/R*≈1 is only a necessary condition, but not a sufficient 

condition to establish the start of the coarsening stage. Instead, the precipitate size 

distribution results are more effective in predicting the inception of coarsening. Since the 

coarsening of larger precipitates is at the expense of the smaller ones, there must be enough 

small particles to initiate coarsening. In this study, the precipitate size distribution pattern 

does not change too much from 10 to 40 months, as shown in Fig. 5.15(b), suggesting 

coarsening is not prevalent even at the end of aging.  

MgZn2 precipitates are the main hardening particles formed in Al 7xxx alloys, [167,168] 

and the size and distribution of intergranular MgZn2 strongly influence the properties of 

the alloy. [169,170] Considerable research has been reported on the characterization and 

modeling of MgZn2 precipitates. [60–62,171,172] In order to examine the performance of the 

new model at high temperature, the evolution of MgZn2 precipitates at grain boundary will 

be predicted and compared with existing experimental and modeling results. Parameters 

used for the modeling are extracted from Table 2 in Ref. [60]. Fig. 5.16 (a) and (b) shows 

the radius and interparticle spacing of intergranular MgZn2 during isothermal heat 

treatment at 180℃. The new model gives a good description of both the interparticle 
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spacing and radius of MgZn2. In addition, the prediction results using Jiang [60,61] and 

Yi’s [137] models are also shown in Fig. 5.16. Even though the radius of intergranular 

precipitates obtained from the model in Ref. [137] agrees reasonably well with 

experimental results (when N=2.147×1014), as shown in Fig. 5.16(a), the model fails to 

predict the increase of interparticle spacing (see Fig. 5.16(b)) because the coarsening effect 

is not considered. Thus, the new model works both for the low and high aging temperature 

scenarios, whereas the existing model does not. Moreover, when coupled with the 

nucleation and growth model in this study, the combined coarsening mechanism performs 

a better prediction than the LSW and Kirchner coarsening mechanism at 180℃. 

Moreover, the nucleation density result versus time is given in Fig. 5.16 (c). An 

obvious decrease in the nucleation density was observed after the nucleation and growth 

stage, suggesting coarsening did take place at the end of aging. Further evidence can be 

obtained from the size distribution results of precipitates, as shown in Fig. 5.16 (d). Instead 

of locating within a narrow range (aged for 0.5 hour), the precipitate size distribution was 

highly enlarged (aged for 10 hours) and enough small precipitates were generated for 

coarsening to occur. At 180℃, the rate controlling element, Mg, in Al 7xxx alloy (Al 7150) 

is not supersaturated (only 2.4wt. %), thus the grain matrix will become depleted in Mg 

very quickly, which leads to the end of growth and inception of coarsening.  Both 

Jiang [60,61] and Hass’s [173] model adopted the Kirchner coarsening mechanism, which is 

reasonable for their cases because of the low Mg atom flux to the grain boundary. Moreover, 

TEM results in their work revealed that precipitates only occupied a small part of the grain 

boundary (R/Rc is small), thus the coarsening mechanism will not break down either. 
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An equivalent average Mg concentration at the grain boundary was derived in this 

study. In fact, several attempts have been made to obtain Mg concentration profiles along 

the grain boundary by Hoyt, [73] Chaix et al. [174] and Brailsford and Aaron. [56] However, it 

appears that further assumptions are needed to obtain enough boundary conditions to solve 

the steady-state diffusion equation. The assumption we adopted,   0
 cRr

rC , comes 

from the collector plate mechanism assumption that the solute flux arriving at the collector 

plate only contributes to the growth of precipitate in that collector plate. This treatment is 

indeed the same as the assumption of Brailsford and Aaron, [56] who obtained the Mg 

concentration along the grain boundary by solving a modified Bessel function. The 

evolution of nucleation density, thickness and continuity of β phase predicted using the 

equivalent average Mg concentration was consistent with the experimental results, 

consequently our treatment is reasonable. 
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Table 5.1 Parameters used in the model of intragranular precipitates. 

Parameters  
unit value 

Reference source 

N 
m-3 6.02×1028 

 [141] 

k 
J·K-1 1.38×10-23 

 

T 
̊C 50 & 70 

 

zoneGPatv ,  m3 1.65×10-29 
 [35] 

",atv  m3 1.70×10-29 
 [35] 

',atv  m3 1.93×10-29 
 [35] 

,atv  m3 1.93×10-29 
 [35] 

a0 m 4.04×10-10 
 [85] 

M 
m2·s-1 5.7×10-5exp(-112499/RCT) 

 [175] 

γGPzone J·m-2 0.09 
 

γβ” J·m-2 0.15 
 

γβ’ J·m-2 0.25 
 

γβ J·m-2 0.6 
 

X0,m at.% 5.25 
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Table 5.2 Parameters for the modeling of intergranular precipitates. 

Parameters Unit Value Source 

References k J/K 1.3806488×10-23  

T ºC 70  

ψ ° 20.5  [137] 

γ J/ m2 0.07  [162,163] 

Cα wt.% 4.85  

Cβ wt.% 2.9  [137] 

Cαβ wt.% 32  

h m 1×10-6  

Dm m2/s 1.49×10-5exp(-120500/RT)  [176,177] 

Db m2/s 0.65×10-4exp(-110500/RT)  [58,59] 

Ds m2/s 0.45×10-4exp(-105750/RT)  [56] 

δeff m 0.5×10-9  [164,165] 

P

at
 

m3 1.6×10-29  [85] 

a0 m 4.04×10-10  [85] 

N0hom #/m3 6.02×1028  [85] 
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Figure 5.1 Evolution of the number density N, average radius R , volume fraction fv, and 

average Mg concentration mX in the matrix as a function of aging time for (a) Al 5083 

H131 (70̊C) and H116 ((b) 70 and (c) 50̊C) alloys and the corresponding STEM, SANS, 

and APT experimental results. 
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Figure 5.2 Experimental and modeling results of particle size distribution of precipitates 

formed in (a) Al 5083 H131 aged at 70℃ and Al 5083 H116 aged at (b) 70℃ and (c) 50℃. 
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Figure 5.3 Comparison of scattering length difference for Mg-rich precipitates formed in 

Al 5083 H131 and H116 aged at 50 and 70℃ obtained from SANS fitting and calculation 

of modeling results. 

 

 

 

 

 

Figure 5.4 Comparison of growth rate (left side) and PSD (right side) of GP zones and β” 

phases formed in Al 5083 H131 aged at 70℃ for 30 months. 
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Figure 5.5 Schematic of β phase (the solid line) formed at the grain boundary, showing the 

half-thickness [z(r=0)], half-length (R), radius of collector plate (Rc), semi-major axis (a), 

semi-minor axis (b) of the ellipse (the dashed line). The coordinate of any point on the 

ellipse is given as [r, z(r)], and θ(r) is the angle between r and the tangent line of point [r, 

z(r)]. Op and Oe are the origin of β phase and the ellipse respectively. zd is the difference 

between b and [z(r=0)]. Rx and ri are the distance to the center of the precipitate within the 

collector plate surface, and Rc>Rx>ri>R. 

 

 

 

 

Figure 5.6 TEM image showing grain size measurements in Al 5083. 

 

 



149 

 

 

Figure 5.7 TEM and EDS results of Al 5083 aged at 70℃ for 30 months (a) TEM image 

of β phase formed at the grain boundary and, (b) EDS line scan results obtained across the 

β phase as indicated by the dark arrow in (a). 

 

 

 

 

Figure 5.8 Diagram of the relative dimension of grain boundary and intergranular 

precipitate at different times. 
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Figure 5.9 Illustrating the dependence of Rmax/R on (NπR2). 

 

 

 

 

Figure 5.10 EDS line scan results of Cαβ . 
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Figure 5.11 Contact angle of β phase at grain boundaries. 

 

 

 

 

Figure 5.12 Comparison of experimental and modeling results of thickness (a) and 

continuity (b) of β phase at the grain boundary of Al 5083 H131 aged at 70℃ for different 

times. 
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Figure 5.13 Nucleation density of intergranular β phase predicted by the LSW and 

Kirchner model (left y axis), and the value of [1/(lnRc/R)] at different time (right y axis). 

 

 

 

 

Figure 5.14 Coarsening fraction value (fc) of the LSW model and the Kirchner model 

(including variable and constant ln(Rc/R)), inserted diagram is the coarsening fraction of 

intragranular precipitate using different expression  for coarsening. 
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Figure 5.15 Particle size distribution of intergranular β phase (a) at 1 month obtained from 

the LSW, Kirchner and the new model, and (b) particle size distribution of intergranular β 

phase at 10, 20, 30, and 40 months, and the corresponding critical (R*) and average (R) 

radius of precipitate predicted by the new model. 
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Figure 5.16 Experimental and modeling results of radius (a) and inter-particle spacing (b), 

and the evolution of nucleation density (c) and the particle size distribution (d) of 

intergranular precipitates formed in Al 7150 alloy aging at 180℃. 

 

 

 



CHAPTER 6 

 

INTERGRANULAR CORROSION OF Al 5XXX ALLOYS 

 

In this chapter, the intergranular corrosion behavior of Al 5xxx alloys was 

investigated using SEM, AFM, and ASTM G67 mass loss test. In addition, a preliminary 

model based on continuity of intergranular precipitates was developed to predict mass loss.  

 

6.1 Etching of intergranular precipitates 

6.1.1 SEM results of intergranular precipitates etching experiments  

In order to explore the IGC behavior, Al 5083 H131 sample aged at 70℃ for 12 

months was etched using HNO3 at room temperature for 1, 3 and 5 minutes. Each time, 

after etching, the sample will be dried and observed under SEM. Fig. 6.1 (a) is the SEM 

image of sample etched for 1 minute. Only two grain boundaries can be observed, and the 

distance between these two grain boundaries is about 40 μm. When etching time increases 

to 3 minutes (see Fig. 6.1 (b)), more grain boundaries become apparent, and the smallest 

distance between two grain boundaries is only 3 μm. Even more grain boundaries can be 

observed when etching time is as long as 5 minutes, as shown in Fig. 6.1 (c). And the 

distances between these boundaries are smaller than 5 μm. Based on the results of the 

etching experiments, one can conclude that some grain boundaries are less corrosion 

resistant than other grain boundaries. 



156 

 

6.1.2 AFM results of intergranular precipitate etching experiments 

Fig. 6.2 (a) to (c) are AFM images of grain boundaries of Al 5083 H131 (aged at 70℃ for 

30 months) etched by HNO3 (70 vol.%) for 2 minutes. Three types of grain boundaries are 

shown in Fig. 6.2 (a), (b), and (c), respectively. In Fig. 6.2(a), the boundary is continuous, 

and the width and depth of the boundary is 100 nm and 8 nm, as shown by the height line 

scan across the grain boundary. For the grain boundary in Fig. 6.2(b), only a small part is 

etched by the phosphoric acid, and the width and depth of the grain boundary is only 40 

nm and 1.5 nm. The grain boundary in Fig. 6.2(c) is different from the two grain boundaries 

in Fig. 6.2(a) and (b). The width of the grain boundary is 100 nm, but it is discontinuous 

and the etching depth is only 5 nm. 

 

6.2 NAMLT of constant thermal exposed sample 

For Al 5xxx alloys, the degree of sensitization caused by intergranular corrosion was 

obtained from ASTM G67 nitric acid mass loss test (NAMLT) results. Fig. 6.3(a) presents 

the results of NAMLT for Al 5050, 5052, 5083, and 5154 alloys. The final mass loss of Al 

5050, 5052, and 5154 alloys aged at 70℃ for 31 months is still less than 5 mg/cm2, which 

is attributed to the low Mg concentration in them (1.4wt.% for Al 5050, 2.5 wt.% for Al 

5052, and 3.5wt.% for Al 5154). However, there is still an obvious increase in mass loss 

versus aging time, as shown by the inserted image in Fig. 6.3(a), indicating sensitization 

occurs gradually in these alloys. For Al 5083 (4.85 wt.% Mg) H32, mass loss increases 

rapidly in the first 9 months, and then reaches a plateau around 50 mg/cm2 after that. Fig. 

6.3 (b), (c), and (d) show the mass loss versus time relationship of Al 5083 H131, H116, 

and Al 5456 H116 aged at different temperatures (40, 50, 60, and 70℃). Before they 
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become fully sensitized, the mass loss for elevated temperature exposure is higher than that 

for a low-temperature exposure as shown in Fig. 6.3(b), (c), and (d). For all the three types 

of alloys (Al 5083 H131, H116 and Al 5456 H116), mass loss increases with time at the 

early aging stage, and a plateau (around 50 mg/cm2) is reached eventually, as shown by the 

NAMLT results at 60 and 70℃ for all three alloys. Moreover, when aging time is as long 

as 57.5 months, the mass loss of Al 5083 H131 and Al 5456 H116 will also increase to a 

similar plateau level of 50 mg/cm2 in spite of a relatively lower exposure temperature 

(50℃). The mass loss of Al 5083 H116 is only 15.6 mg/cm2 (40℃) and 42.1mg/cm2 (50℃) 

after 57.5 months of exposure, revealing this alloy provided exceptional resistance to 

intergranular corrosion. As stated by Zhu et al., [178] for the same aging temperature and 

aging time, the mass loss sequence for these three alloys is Al 5456 H116>Al 5083 

H131>Al 5083H116. 

 

6.3 NAMLT of cyclic thermal exposed sample 

In order to simulate the daily outdoor cyclic thermal exposure of Al 5xxx alloys due 

to sunlight, three different cyclic aging experiments were set up. The mass loss results of 

the cyclic aging experiments are given in Fig. 6.4. For all the three cyclic aging temperature 

profiles, NAMLT results increase with aging time, and there is also a mass loss plateau 

(approximately 50 mg/cm2) for the 30-70℃ and 50-70℃ aging case. Furthermore, for the 

same aging time, mass loss for the 50-70℃ is slightly larger than that of the 30-70℃ 

experiments, and the 40-45℃ experiments showed low mass loss values. 
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6.4 ASTM G67 mass loss prediction model 

The continuity versus time results of Al 5083 H116 (Fig. 6.5(a)) and H131 (Fig. 

6.5(b)) aged at constant temperatures were obtained from the model in Chapter 5. For the 

70℃ aging experiments, the continuity of Al 5083 H131 and H116 increases rapidly with 

time at the early stages of aging. This could result from the combined effects of collector 

plate growth as well as the high Mg concentration gradient adjacent to the grain boundary 

at the beginning of aging. Thereafter, the continuity growth rate decreases as a result of 

constant area collector plates and the smaller Mg concentration gradients within the grain 

matrix. When aging temperature decreases to 60℃, the slope of the continuity versus time 

plot at the early stage of aging also decreases because of the reduced Mg diffusivity at the 

lower temperature, which leads to a slower collector plate growth rate as well as less Mg 

flux coming from the matrix. The same trend was also observed in the 40 and 50℃ results 

for both types of alloys. 

In order to apply the β phase growth model to the cyclic aging experiments, a minor 

modification was made. As stated in Chapter 5, at the early stage of aging, the collector 

plate varies with time, and the area of the collector plate is given as 

 

 tDtDA bb  4)2( 2 
 

(6.1) 

 

where Db is the diffusion coefficient of Mg at the grain boundary, and t is aging time. For 

cyclical aging, temperature change will lead to a variation of the diffusion coefficient Db. 

This variation can cause an error for the numerical solving process. Therefore the Euler 
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equation is used to calculate the collector plate area A  for the case of cyclical thermal 

exposure: 

 

 t
dt

Ad
tAttA  )()(

 
(6.2) 

 

where dtAd /can be obtained from Eq. (6.1). The rest of the numerical solution process 

is the same as for the constant temperature case. 

 

6.5 Results and discussion 

Fig. 6.6 shows the continuity results of the cyclic aging experiments obtained from 

the modified model in Chapter 5. As shown in Fig. 6.6(a), the continuity increases rapidly 

at the early stages of aging and then the precipitate growth rate decreases slowly, which 

resembles the results of constant-temperature aging experiments. However, further 

examination reveals that there is a slight difference between the cyclical and constant 

thermal exposure continuity results. The detailed shape of the cyclic time-continuity plot 

(Al 5083 H116) of the 30-70℃ experiment is shown as an inserted image in Fig. 6.6(a). 

Within 24 hours (2 aging cycles), the continuity initially has a fast growth rate, and it is 

followed by a relatively slow growth rate before it increases its growth rate again. The 

variation in growth rate can be attributed to the cyclic aging temperature. For one aging 

cycle (0 to 12 hours), the aging temperature increases from 30℃ to 70℃ (in 6 hours) 

gradually, and drops down gradually to 30℃ (12th hour) again. Correspondingly, the rate 

of increase of continuity will increase from minimum to maximum because of the 

temperature-controlled Mg diffusion rate, which changes with time. Additionally, the 
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amount of continuity increase for two consecutive aging cycles is shown in the inserted 

image of Fig. 6.6(a). The data show that the early aging cycles experience a faster growth 

rate (by 0.8×10-5) than the latter aging cycles (0.55×10-4). As a matter of fact, the cyclical 

time-continuity plot is more similar to the actual natural outdoor exposure than the constant 

aging situation. Fig. 6.6(b) shows the continuity prediction results of Al 5083 H131 aged 

at different cyclical temperature profiles for 30 months, which shows the same trend as that 

for Al 5083 H116, except for larger final continuity values. The experimental continuity 

results were obtained from STEM images as shown in Fig. 4.19 (Al 5083 H131 aged at 30-

70℃ for different times), and the modeling results presented in Fig. 6.6 agree well with 

experimental results. 

The relationship between ASTM G-67 mass loss and the continuity of intergranular 

β phase has been explored by many researchers. Lim et al. [179] and Jain et al. [121] obtained 

the continuity of intergranular β phase from SEM images of Al 5083 H131 aged at 100℃ 

for different times and etched by phosphoric acid at 50℃ for 30 seconds. Their results 

indicate that larger NAMLT results are accompanied with a higher continuity of β phase at 

grain boundaries. In addition, the penetration rate in different directions (longitudinal, 

transverse, and short transverse) are found to be different. Steiner and Agnew [180,181] 

developed a mass loss prediction model for isothermal and nonisothermal cases based on 

a modified JMAK model and an assumption that there is a linear relationship between 

continuity and mass loss. Derrick [182] developed a mass loss prediction model based on 

three corrosion rates (corrosion rate of β phase, corrosion rate of clean grain boundary, and 

corrosion rate of intermediate material). Fig. 6.7 shows the relationship between mass loss 

and continuity of Al 5083 H131 aged at 70℃ for different times (for the unsensitized Al 
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5083 H131, mass loss is 3±1 mg/cm2, and continuity is 0). Considering the limited number 

of continuity results as well as the noisy mass loss data, it is not reliable to predict a new 

relationship between mass loss and continuity. Thus, we adopted the same assumption in 

Ref. [179] and  [121] that continuity is linearly related to mass, and the R-squared value of 

the linear fit is 0.9 as shown in Fig. 6.7. 

Fig. 6.8 shows the modeling results of ASTM G-67 mass loss together with the 

experimental results for Al 5083 H116 and H131 aged at constant temperature for different 

times. The modeling results (3D surface) match well with the experimental results (see 

cubes of different colors in Fig. 6.8). As shown in Fig. 6.8 (a), the red part of the surface 

represents mass loss larger than 30 mg/cm2. From 55 to 70℃, increasing the aging 

temperature shortens the aging time needed to reach 30 mg/cm2. The mass loss for the 40 

and 50℃ aging experiments is still lower than 30 mg/cm2 after 30 months.  The modeling 

results of Al 5083 H131 (Fig. 6.8(b)) show the same trend as that of Al 5083 H116. 

However, for Al 5083 H131 only the mass loss for the 40℃ experiment is smaller than 30 

mg/cm2. Comparing Fig. 6.8 (a) and (b), it is obvious that there are larger red areas (mass 

loss> 30 mg/cm2) but smaller blue and purple (mass loss <15 mg/cm2) areas for Al 5083 

H131 than for Al 5083 H116. These data show it is easier for Al 5083 H131 to become 

sensitized (based on the 30 mg/cm2 mass loss standard), which means Al 5083 H116 is 

more corrosion resistant.  

The mass losses of cyclic aging experiments of Al 5083 H116 and H131 are 

presented in Fig. 6.9 (a) and (b), respectively.  For Al 5083 H116 (Fig. 6.9(a)) aged at 50-

70℃ and 30-70℃, mass loss of these two experiments increases sharply during the first 

10 months, and after that, mass loss increases at a slower rate. The modeled mass loss for 
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the 50-70℃ experiment is slightly higher than that of the 30-70℃ experiment, but the 

difference between them decreases with time. When aged at 50-70℃ and 30-70℃, the 

modeled mass loss for Al 5083 H131 also increased rapidly at first, as shown in Fig.6.9 (b). 

But it only takes 5 months before the rate of mass increase slows, indicating Al 5083 H131 

is more susceptible to sensitization than Al 5083 H116 when exposed to the same cyclical 

temperature profile. Moreover, the modeled mass loss of the 50-70℃ and 30-70℃ cyclical 

experiments reaches the same level at 30 months, revealing less time is needed for the Al 

5083 H131 to reach the mass loss plateau. The modeled mass loss of these two alloys agrees 

well with the experimental mass loss.  

Table 6.1 shows the time needed to reach ASTM G-67 mass loss levels of 25 and 40 

mg/cm2. For the same degree of sensitization, Al 5083 H116 requires more time than Al 

5083 H131 if the aging temperature is the same. The longest predicted time to a 

sensitization level of 40 mg/cm2 is 177.4 months for Al 5083 H116 aged at 40℃. 

Mg concentration is reported to have a significant effect on the DoS of Al 5xxx 

alloys. [11,178,183] Dix et al. [11] investigated the stress corrosion behavior of Al alloys of 

different Mg concentrations, which led to a conclusion that Al alloys with a relatively high 

Mg concentration (>3%) are not recommended for use at elevated temperature (> 65.6℃) 

for a prolonged period of time. Recently, Gupta et al. [183] performed research on Al alloys 

of different Mg concentrations (varying from 3.36 wt.% to 8.85 wt.%), and their results 

revealed that if Mg concentration is higher than 4.01 wt.%, mass loss will increase 

monotonically with Mg concentration. In the present study, 6 alloys (Al 5050 H32, 5052 

H32, 5154 H32, 5083 H131, 5083 H116, and Al 5456 H116) were examined. Mg 

concentrations for Al 5050, 5052, and 5154 are 1.4wt.%, 2.5wt.% and 3.5wt.%, 
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respectively, [184] and the mass loss for all the three alloys is smaller than 5 mg/cm2 after 

31 months of exposure to 70℃, which is consistent with Gupta et al.’s results [183] that Al 

alloys with low Mg concentrations (3.36 wt.%) are to some extent immune to sensitization. 

However, a sensitization trend was observed for Al 5154 H32 (3.1-3.9 wt.% Mg) aged at 

70℃, and given an even longer aging time (> 30 months), it is possible that this alloy will 

become sensitized as stated by Dix et al. [11] Moreover, compared with Al 5050, 5052, and 

5154, a sharp increase in mass loss was observed for Al 5083 H32 aged at the same 

temperature for the same time, which can be attributed to the higher Mg concentration of 

Al 5083 (4.85wt.%). 

The effect of temperature on the sensitization of Al 5xxx alloys has been reported in 

previous research. As the growth of intergranular β phase results from Mg atoms diffusing 

from the matrix, a higher aging temperature will lead to greater Mg diffusivity as well as 

faster β phase growth. [137] However, the driving force for Mg atom diffusion is also 

temperature dependent. Mg saturation concentration within the matrix will increase with 

increasing temperature as shown by the equilibrium phase diagram for Al-Mg alloy, [11] 

therefore less Mg will be available if aging temperature increases. For Al 5083 and Al 5456, 

when aging temperature increases from 40℃ to 70℃, the results of NAMLT also increase 

until they become fully sensitized. EDS line scan results [137] show that there is still enough 

Mg for further growth of β phase after aging at 70℃ for 30 months. The low mass loss of 

Al 5050, 5052, and 5154 alloy can be attributed to a low thermodynamic diffusion driving 

force for Mg atoms diffusions.  

In order to investigate the effect of grain size on the sensitization behavior of Al 5083 

Alloy, Sikora et al. [185] compared the sensitization behavior of nanocrystalline Al 5083 
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alloy (grain size:80-200 nm) and traditional commercial Al 5083 alloy, and associated 

ASTM G-67 mass loss results indicated that the nanocrystalline Al 5083 alloy is more 

susceptible to IGC. However, Kus et al. [186] reported that nanocrystalline Al 5083 alloy 

was not susceptible to IGC as determined from the results of NAMLT. Further research by 

Birbilis et al. [48] and A.J. Davenport et al. [12] reveals that mass loss is not only related to 

grain size, but is also affected by the fraction of high-angle grain boundaries (HAGB). 

According to previous research, [133] the grain thicknesses of Al 5083 H131, H116, and Al 

5456 H116 used in this study are 21.3, 32.5, and 13.8 μm as obtained from EBSD. Fig. 

6.10 shows the grain boundary misorientation angle distribution, where high-angle is 

defined as misorientation that is larger than 15 degrees, low-angle is defined as 

misorientation that is smaller than 5 degrees, and medium angle misorientation is selected 

for the range between 5 and 15 degrees. For Al 5456 H116, the fraction of HAGB is larger 

than it is for Al 5083 H116 and H131, and its grain size is the smallest among the three 

alloys. For Al 5083 H116, even though it has a slightly larger fraction of HAGB (0.19) 

compared with that of Al 5083 H131 (0.14), it has a larger grain size, which contributes to 

low DoS.  
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Table 6.1 Predicted time needed to different levels or degrees of sensitization for Al 5083 

H116 and H131. 

Aging 

temperature/(̊C) 

Time to 25 mg/cm2   (month) Time to 40 mg/cm2  (month) 

5083H116 5083H131 5083H116 5083H131 

40 103.8 44.1 177.4 73.1 

50 31.5 9.6 54.1 29.7 

60 8.1 5.3 28.5 17.2 

70 3.3 1.8 12.6 11.7 

40-45 50.5 30.7 76.1 38.8 

30-70 7.1 3.8 16.3 14.5 

50-70 5.3 2.6 13.9 12.6 
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Figure 6.1 SEM image of Al 5083 H131 (aged at 343 K for 12 months) etched by HNO3 

for (a) 1 min, (b) 3 min, and (c) 5 min. 
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Figure 6.2 Height trace image of grain boundaries (Al 5083 H131 aged at 70℃ for 30 

months) etched using 10 vol.% H3PO4 for 2 minutes and the corresponding height 

distribution results. 
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Figure 6.3 Results of ASTM G-67 nitric acid mass loss tests for (a) Al 5050, Al 5052, Al 

5154, and Al 5083 H32, (b) Al 5083 H131, (c) Al 5083 H116, and (d) Al 5456 H116 aged 

at different temperatures (40, 50, 60, and 70℃) for a long time. 
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Figure 6.4 Mass loss of Al 5083 H116 aged at cyclic temperatures (40-45, 30-70, and 50-

70̊C) for different times. 

 

 

 

 

Figure 6.5 Experimental and modeling continuity results for (a) Al 5083 H116 and (b) Al 

5083 H131 aged at constant temperatures (40, 50, 60, and 70℃) for different times. 
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Figure 6.6 Experimental and modeling continuity results of Al 5083 H116 aged at different 

cyclic temperatures (40-45, 30-70, and 50-70̊C) for different times. 

 

 

 

 

Figure 6.7 Experimental continuity results versus ASTM G-67 mass loss of Al 5083 H131 

aged at 70 °C for different times. 
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Figure 6.8 Experimental and modeling mass loss of (a) Al 5083 H116 and (b) Al 5083 

H131 aged at constant temperatures (40, 50, 60, and 70℃) for different times. 
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Figure 6.9 Experimental and modeling mass loss of (a) Al 5083 H1116 and (b) H131 aged 

at cyclic temperature (40-45, 30-70, and 50-70℃) for different times. 

 

 

 

 

Figure 6.10 Grain boundary misorientation angle distribution of Al 5083 H116, H131 and 

Al 5456 H116. 

 

 

 

 

 

 



CHAPTER 7 

 

CONCLUSIONS 

 

In this work, Al 5xxx alloys were aged at different temperatures for different times, 

and their microstructures were characterized by different techniques, such as SEM, EBSD, 

STEM, EDS, APT, and SANS. In addition, both an intragranular and intergranular 

precipitation model were developed to predict the nucleation density and size of Mg-rich 

precipitates. Moreover, ASTM G67 mass loss tests were conducted to evaluate the 

sensitized degrees for Al 5xxx alloys of different aging states. A summary of 

accomplishments and conclusions drawn from this work are described below: 

1. EBSD results show that Al 5083 H131 has smaller grain size and higher GND 

density than that of Al 5083 H116. STEM and SANS results reveal that both size 

and concentration of Mg-rich precipitates formed in Al 5083 H131 and H116 aged 

at 70℃ increase with aging time, while the precipitate number density decreases 

with time. Mg concentration of precipitate increases with aging time, indicating a 

phase transformation from GP zones to β’/β phases occurs in Al 5083 aged at 70℃. 

APT results of Al 5083 H116 aged at 50℃ for 24 months demonstrate that ellipsoid 

GP zones and laminar β” phases have formed in the matrix and at the matrix-pre-

existing particle interface, respectively. 
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2. Al 5083 alloy of temper H131 has more and larger precipitates than Al 5083 H116 

when aged at 70℃ for the same time, and the phase transformation from GP zones 

to β phase in H131 is faster than that in Al 5083 H116, which is explained by the 

higher dislocation density in Al 5083 H131. 

3. A higher aging temperature leads to more and larger precipitates, and much faster 

phase transformation in Al 5083 H116. 

4. Mg-rich precipitates are found to form heterogeneously on pre-existing particles 

and grain boundaries in Al 5456 H116 sample aged at 70℃ for 1.5, 9, 18, and 30 

months. Mg-rich precipitates are found on pre-existing particles of Al 5456 H116 

samples aged for 1.5, 9, and 18 months. GP zones, β’’ and β’ phases are observed 

to form within the matrix of Al 5456 H116 aged at 70℃ for 30 months. The average 

radius of Mg-rich precipitates is 18.5 nm, and their total volume fraction is 1.39% 

for Al 5456 aged at 70℃ for 30 months. β’ phase is found to form at the grain 

boundaries of the navy ship sample, and no intragranular Mg-rich precipitates are 

observed using STEM. Continuity results of intergranular precipitates combined 

with ASTM G-67 mass loss data reveal that continuity is more critical to IGC of Al 

5456 H116 alloy than thickness of intergranular precipitates. 

5. The overall nucleation, growth, and coarsening of Mg-rich precipitates predicted 

by the model agree well with experimental results. In addition, the dissolution of 

metastable phases (GP zones and β” phases) was also observed in the modeling 

results. The PSD results of different precipitates were able to reveal the phase 

transformation stages of different aging states. 
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6. A collector plate-based nucleation, growth, and coarsening model was developed 

to predict the evolution of thickness and continuity of intergranular precipitates. In 

this model, an equivalent average Mg concentration at the grain boundary was 

derived, and three modified coarsening mechanisms, the classical LSW and 

Kirchner’s coarsening mechanism and a mechanism combining these two 

mechanisms, were adopted. The modeling results match generally well with 

experimental results extracted from STEM images of Al 5083 H131 alloys aged 

70℃ for different times. In addition, the Kirchner mechanism model will break 

down when the value of Rc/R is close to 1. Both the coarsening fraction value (about 

10%) and the precipitate size distribution obtained from the new model indicate 

that coarsening is not dominant at the grain boundary even though the aging time 

is as long as 40 months at 70℃. Moreover, the model was also applied to a high 

temperature (180℃), and the modeling results agree well with previous results. 

Coarsening of intergranular precipitates was observed at high temperature. 

7. For Al 5083 H116, H131 and Al 5456 H116, ASTM G-67 mass loss will increase 

with aging time as well as aging temperature until they become fully sensitized. 

5083 H116 is found to be more corrosion resistant than Al 5083 H131 for both the 

isothermal and the nonisothermal aging experiments. 

8. For Al 5050 H32, 5052 H32, and 5154 H32 alloy, ASTM G-67 mass loss levels 

increase very slowly when aged at 50 and 60℃. However, a more rapid 

sensitization trend was observed for these three alloys when aged at 70℃. 

9. Mass loss of Al 5050 H32, 5052 H32, 5154 H32 and Al 5083 H32 indicated that 

Mg concentration plays a critical role in the sensitization of Al 5xxx alloys. In 
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addition, for Al 5083 H131 and H116, DoS could be affected by grain size and 

fraction of HAGB. 

10. A collector plate mechanism-based β phase nucleation, growth and coarsening 

model was used to predict the continuity of intergranular β phase, and the mass loss 

was assumed to be linearly related to continuity. The modeling results fit well with 

the experimental results for both the isothermal and nonisothermal cases.  

 

 

 

 



APPENDIX  

 

A.l STEM EDS results for Al 5456 H116 

Fig. A.1 is the EDS line scan results of precipitates formed at the interface of the pre-

existing particle and matrix, as shown in Fig. 4.12 (a). Fig. A.2 is the EDS maps of elements 

Al, Mg, and Si for precipitate in Fig. 4.14(b). Fig. A.3 is the EDS line scan results for 

precipitates in Fig. 4.15 (a), and these precipitates are highlighted by number “1”, “2”, “3”, 

“4”, and “5”. 

 

A.2 Calculation of chemical potential for Mg-rich precipitates  

The matrix of Al 5083 alloys (simplified as Al-Mg binary system) is treated as 

substitutional solution, [147] and the Gibbs free energy is expressed as  
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where 
fcc

AlG0
 and 

fcc

MgG0
 stand for the molar Gibbs free energy of pure Al and Mg, [187] RC 

is the gas constant, and Li is the ith binary interaction parameter (see Table A1). 
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β” phase (Al3Mg) is reported to have a L12-type structure,  and its molar Gibbs 

energy can be calculated using the following equation: [188] 
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where )(4

3
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MgAl YG  is the Gibbs free energy for one of the sublatttice structures (Al3Mg, 

Al2Mg2, AlMg3), and 
s

MgY is calculated from the sublattice fraction of Mg. 
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s
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MgAl XYG  is calculated based on the average fraction of Mg in Al3Mg, which is 

0.25.  

β’ and β phases are stoichiometric compounds, and their Gibbs free energies [149] are 

given as  
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where ai and bi are the number of Al and Mg atom in the stoichiometric compounds, Ai and 

Bi are the formation enthalpy and entropy of the compound.  

The Gibbs free energy of GP zone is calculated based on Eqs. (A.1) and (A.2) 
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where MgAlf
3

is the fraction of Al3Mg in GP zone, and GMgX ,  can be calculated based on the 

mass balance of Mg within GP zones. 

 

A.3 Modified Kirchner’s coarsening mechanism 

In order to obtain the growth behavior of precipitates at grain boundaries, Kirchner [67] 

adopted the growth mechanism derived by Speight, [69] and followed Wagner’s [68] method 

to couple solve the continuity, solute mass balance, and precipitates growth equation. In 

the paper, the continuity equation is given as 
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where f is the precipitate distribution function, R is equal to dtdR , and the total number 

of precipitates is 
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During the coarsening stage, the number change of precipitates is mainly caused by 

the disappearing of precipitates of radius approach zero, which can be written as   
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The total volume of the precipitates can be calculated as  
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The modified growth mechanism of Speight is [69]  

 

 

    

















RRkTRRRff

CvD

dt

dR

cPAPV

P

ateffb 11

ln9

2
22



 

(A.10) 

 

where 
R

1
 is the average value of 

R

1
. Differentiate Eq. (A.11), the critical radius, R*, of 

precipitates (the radius at which precipitates neither grow nor dissolve) is obtained as 
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An unitless variable, ρ, is defined to stand for the radius of precipitates 
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(A.12) 

 

The distribution function f(R,t) is rewritten as a product of a time-dependent function, 

gB(t), a time-independent function, hB(t), and ρ3 
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and  
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Using Eqs.(A.9),(A.12), and (A.13), gB is expressed as  
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Submit Eqs.(A.10), (A.12), and (A.13) into the right side of Eq. (A.8) yields 
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And insertion of Eqs.(A.12), (A.13), and (A.15) into the left side of Eq.(A.8) gives 
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The final growth rate of critical radius is obtained as  
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where  
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Assume the distribution function f(R,t) is valid from the very beginning (t=0), 

integration of Eq. (A.18) leads to  
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If we write  
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and  

 

  RRB cln
 

(A.23) 

 

Eqs. (A.18) and (A.20) will become the same form as the Eqs. (A.19) and (A.21) in 

Kirchner’s paper, [67] therefore the solution of these equations will be the same, which will 

not be discussed here. And the ultimate precipitate growth rate is given as  
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Multiply both sides of Eq. (A.24) by (fPVR2), the volume growth rate of precipitate can be 

given as  

 



184 

 

 

    R

D

kTRRACC

Cf

dt

dV b

c

P

ateffPV

Kc ln128

27






 

 

(A.25) 

 

A.4 Modified Lifshitz-Slyosov-Wagner (LSW) coarsening mechanism 

If grain boundaries are almost fully covered by intergranular precipitates, the 

coarsening behavior of these precipitates can be described using the modified classical 

LSW theory as follow: [72] 
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where eqR CC
x
 , and   eq

P

atPVPA CvkTff 32    

The dimensionless format of Eq. (A.26) is 
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where 0crc RR , cTtt '
, 00 crR , bcrc DRT 3

0 and  0x . 0 is the initial 

supersaturation. The continuity equation is  
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where ),( 3 tf c  is the volume distribution function of intergranular precipitates within a 

factor of fPV, and dtdv cp

3  is the precipitate growth rate. Based on the solute mass 

balance, we can obtain 

 

 qqQ  000  
(A.29) 

 

where Q0 is the total supersaturation, and q0 is the volume of the solute initially in the 

precipitate. And the volume of solute, q, in precipitates at certain time, t, is obtained as 
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Insert Eq.(A.30) into Eq. (A.29), and after some algebra, we can obtain 
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where 
0
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Q
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The canonical form of Eqs. (A27), (A28), and (A.31) are given respectively as 
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where )(33 txz c , )(ln 3 tx , 
33 ),(),( cc dtfzdtz   .The asymptotic solution of the 

above equations are very similar to the classical LSW model, which can be found in 

Ref. [72]. Finally, the number of precipitates per unit volume is shown as 
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where R is the average radius of precipitates. Therefore 
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Table A.1 Thermodynamic parameters for Al-Mg binary system. 

Phase Thermodynamic value 

Matrix  [149] TL 149.215930 
, TL 66.010141  , 6732 L  

Al3Mg  [150] TAlMg 45185.0500 
, AlMg

ssl

MgAlG 44

22 
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MgAlAlMg

ssl

MgAl GG
33
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33
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ssl
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0
33
 AlMgMgAl GG
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sslssl

rec

ssl

AlMg

ssl

MgAl

ssl

MgAl

dis LLGGGL 4

0

4444

0 45.15.1
3223


 

sslssl
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ssl

MgAl

dis LGGL 4
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44

1 442
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4444
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β’[20]  gJH /3.1'    

β  [149] TGGG hcp

Mg

fcc

AlMgAl 238.10580338589140 000

89140
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Figure A.1 EDS line scan results across the interface as indicated by the dark arrow in Fig. 

4.12 (a). 

 

 

 

 

Figure A.2 EDS mapping results of the precipitate in Fig. 4.14(b). 
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Figure A.3 EDS line scan results of intragranular precipitates in Fig. 4.15. (a) and (d) 

(identified by number (a)1, (b)2, (c)3, (d)4, and (e)5) obtained from JEM 2800 ultrafast 

EDS system and FEI Talos F200X STEM. 
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