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Abstract 

This paper presents a partial scan metlwd for testing 
control sections of macromodule based self-timed circuits 
for stuck-at faults. In comparison with other proposed test 
methods for self-timed circuits, this technique offers bet­
ter fault coverage than methods using self-checking tech­
niques, and requires fewer storage elements to be made 
scannable thanful! scan approaches with similar fault cov­
erage. A new metlwd is proposed to test the sequential net­
work in this partial scan environment. Experimental data 
is presented to slww that highfault coverage is possible us­
ing this metlwd with only a subset of storage elements being 
made scannable. 

1 Introduction 

Asynchronous and self-timed circuits have recently 
been receiving renewed interest by circuit designers as an 
alternative to globally synchronous system organization. 
As the size and speed of systems grow, so do the problems 
related to the global clock signal. Asynchronous and self­
timed circuits that avoid timing problems by enforcing sim­
ple communication protocols between parts of the circuit 
can help avoid these problems. These types of systems can 
also allow simpler system composition, show increased ro­
bustness in the face of process and environmental varia­
tion, can exhibit much lower power consumption, and can 
even show increased performance when compared to glob­
ally synchronous systems in some cases. 

Testing asynchronous circuits, however, is a relatively 
new area. Despite the growing number of recent efforts 
in the specification and design of asynchronous circuits, 
testing these circuits has not been explored to any great 
degree. Traditionally, testing asynchronous circuilts has 
been considered a difficult problem, especially when com­
pared to the synchronous circuits, where significant ad­
vances have been made. Unfortunately, methods used to 
test synchronous circuits are not directly applicable to asyn­
chronous circuits. This is due, in large part, to the absence 
of the global clock signal in the asynchronous circuits. New 
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methods are required to adapt the rich knowledge about 
testing synchronous circuits to test asynchronous circuits. 
This is precisely the subject of this work: to adapt scan path 
technology to a class of asynchronous circuits. 

Asynchronous style control circuits can be classified 
broadly into two categories: centralized and distributed. In 
the centralized style the control is designed like conven­
tional state machines, where a single state machine controls 
the sequencing in the circuits. These machines are typically 
designed with restrictions on input and outputs and need 
proper adjustment of delays to handle an asynchronous en­
vironment. Many approaches have been proposed to design 
control circuits in this style [9, 20, 30, 32]. 

In the distributed style of design the control unit con­
sists of an interconnection of many smaller state machines 
(macromodules). These macro modules are typically de­
signed to follow certain protocols at their interfaces that 
obey delay-insensitive or speed-independent properties to 
make their composition simpler [3, 18,21,28]. Self-timed 
macro modular control circuits have been used in a wide va­
riety of academic research efforts [4, 19, 23], as well as 
in industrial research settings [2, 27], and it is this style 
of distributed self-timed control that we focus on in this 
work. Using these modules, distributed self-timed control 
can be built easily by connecting the modules directly into a 
control network. These modules also allow simple syntax­
directed translation from language descriptions into control 
networks [3, 18, 21]. In particular, the set of macromodules 
used by Brunvand [3, 5] and Sutherland [28] are the mod­
ules used to build the circuits which are the target of this pa­
per. The particular set of macromodules used is, however, 
not critical as the techniques we present could be applied to 
any similar set of control circuits. 

In this paper a partial scan method is proposed to test the 
control portion of macromodule based self-timed circuits 
for stuck-at faults. This method provides better fault cover­
age than methods using the self-checking property [12] of 
self-timed circuits which assumes that the circuit halts in 
response to faults. It also requires fewer storage elements 
to be made scannable than full scan methods while offering 
acceptable fault coverage. 
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Figure 1: Bundled Data Path Connection 

The paper is organized as follows. In the next section 
self-timed circuits and the overall design methodology wili 
be described briefly. Section 3 discusses the testability of 
macromodule based self-timed circuits. Section 4 reviews 
related work. Section 5 presents the proposed partial-scan 
method including the the overall architecture, modifica­
tions to the various modules, and the procedures used to test 
sequential logic consisting of XOR and C-elements. Sec­
tion 6 presents experimental results obtained on four exam­
ples. Finally, Section 7 offers some conclusions. 

2 Self-Timed Macromodule Circuits 

Self-timed circuits are a subset of a broad class of asyn­
chronous circuits. These circuits generate completion sig­
nals to indicate that they are finished with their process­
ing [26]. A signalling protocol used with the completion 
signalling allows self-timed systems to be composed of cir­
cuits which communicate using self-timed protocols. Self­
timed protocols are often defined in terms of a pair of sig­
nals, one to request or initiate an action, and another to ac­
knowledge that the requested action has been completed. 
One module, the sender, sends a request event (Req) to an­
other module, the receiver. Once the receiver has com­
pleted the requested action, it sends an acknowledge event 
(Ack) back to the sender to complete the transaction. 

The circuits used in our library use two-phase transition 
signaling for control and a bundled protocol for data paths. 
Two-phase transition signaling [26] uses transitions on sig­
nal wires to communicate the Req and Ack events described 
previously. Only the transitions are meaningful; a transi­
tion from low to high is the same as a transition from high 
to low and the particular state, high or low, of each wire is 
not important. 

A bundled data path uses a single set of control wires to 
indicate the validity of a bundle of data wires [28]. This 
requires that the data bundle and the control wires be con­
structed such that the value on the data bundle is stable 
at the receiver before a signal appears on the control wire 
and remains valid until Ack is received. modules connected 
with a bundled data path are shown in Figure 1. 

Our design method builds control circuits using a vari­
ety of modules which communicate using two-phase transi-
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Figure 2: Control Modules for Self-Timed Designs 

tion signals. These modules, described in more detail else­
where [5, 28], are shown symbolically in Figure 2. Other 
modules in the library, such as transition-controlled latches, 
and completion-sensing adders, are used to build self-timed 
data paths. 

The control modules include circuits that act as OR gates 
for transitions (implemented using an XOR) and AND 
gates for transitions (implemented using a C-element). A 
transition-OR gate will produce a transition at its output 
whenever there is a transition at either input. An AND re­
quires transitions at both inputs before producing a transi­
tion at the output. Also included are modules that steer tran­
sitions depending on a Boolean input signal (a Select mod­
ule) or alternate transitions on the output for each transition 
on the input (a Toggle module). A Call module allows mul­
tiple sender circuits to have access to a common receiver 
circuit by implementing a hardware subroutine call. The 
Call module requires that the multiple requests be mutually 
exclusive so that it need not perform arbitration. 

One way this module library is used is with an OCCAM 

based automatic circuit compilation system [3]. The soft­
ware constructs of OCCAM have been implemented using 
these library components and allow programs written in 
OCCAM to be translated automatically into self-timed cir­
cuits. An example of translation of a WHILE construct 
is shown in Figure 3. The OCCAM compiler has been 
used to build a number of systems ranging from a mem­
ory controller for standard DRAMs used in a self-timed 
environment [3], to a simple wormhole router designed 
for a mesh-connected multiprocessor array [3]. This li­
brary has also been used to build large circuits by hand, in­
cluding a self-timed microprocessor [4], using commercial 
schematic capture software from View logic . 

3 Testability of Macromodule based Self­
Timed Circuits 

Some of the problems associated with testing asyn­
chronous circuits in general and self-timed circuits in par­
ticular include: 
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Figure 3: Translation of WHILE construct into Circuit 

• Asynchronous and self-timed circuits are more sen­
sitive to races and hazards than synchronous cir­
cuits. This puts an additional requirement on the test 
methodology that test application must also be hazard 
and race free otherwise the test may be invalidalled. 

• Self-Timed circuits operate in an autonomous way, in 
the sense that once the control is passed from environ­
ment to the circuit, the operation is totally determined 
by the circuit. This is different than for synchronous 
circuits where an external clock dictates the operation 
of the circuit. This creates problems if one attempts 
to use an iterative array model for testing because the 
number of frames is not controllable. 

• Using our library module approach, control is dis­
tributed throughout the system and is not centralized 
in a single controller with a convenient state register 
for the scan path. Each self-timed module is in fact a 
tiny state machine in itself. This increases the com­
plexity of testing if functional testing of the entire cir­
cuit is desired. 

• Functional testability of a self-timed module depends 
on the way it is used in a circuit. In other words, it 
depends on the environment which interacts with the 
module. Certain circuit configurations lead to only a 
subset of input patterns ever being applied statically 
to the module. For example, C-elements are often 
used as a rendezvous for two forked processes. In this 
case, the only static values seen at the inputs to the 
C-element will be 11 and 00. The 10 and 01 cases 
will be seen only during the time that one process has 
finished and the other is still executing. In addition, 
other faults may be masked by functional test meth­
ods where the observability mechanism is only ob­
serving the primary output. A detailed discussion of 
these problems may be found in [15]. The percentage 
of detectable faults for each self-timed control module 
using only functional test and the self-checking prop­
erty is are shown in Table 1. 

II Module Fault Coverage 

Celement 60.0% 
Call2 60.2% 
Select 71.5% 
Toggle 90.0% 

Table 1: Fault Coverage of Modules using Self-Checking 
Functional Test Only 

4 Related Work 

Testing asynchronous circuits is a relatively new area. 
Very few attempts have been made to date. For test­
ing macromodule based self-timed circuits only two ap­
proaches have been reported in the literature that we know 
of. In [16] a functional approach is used for testing self­
timed macromodule circuits using the self-checking prop­
erty mentioned earlier. In this approach the SEL lines of 
the Select modules are made controllable thereby influenc­
ing the flow of control in the circuit. After selecting a par­
ticular path the input to that path is changed from low to 
high and then back. The observation mechanism consists 
of outputs also changing after waiting for sufficient amount 
of time. This approach targets faults only on module's in­
put and output. this approach has the following drawbacks 
when the faults inside the modules are also considered. 
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• In their approach modules are considered atomic: 
faults inside the modules are not targeted. Since the 
faults on the input and output of the module form a 
small percentage of the total faults in the control cir­
cuits the fault coverage offered by this method is low 
when faults inside the modules are also considered, as 
shown in Table 1. 

• The only observation mechanism is observing the out­
put. This is not sufficient because a great deal of fault 
masking may occur inside the circuit as described in 
the previous section. 

• Functional testing may result in high complexity when 
faults inside the modules are also considered. This is 
because certain faults inside the modules require state 
justification to activate them, which is not necessary 
for faults on the module input/output considered in 
[16]. State justification may be computationally com­
plex in the type of circuits considered in this paper, 
which contain a lot of state distributed in the circuit. 

• Loop structures can not be tested without adding extra 
observability to the circuit. Select modules are often 
used to build looping structures in the circuit as shown 
in Figure 3. When the loop body is executed in test 
mode the control stays in that loop and there is no way 
out. 



Otherresearchers [11, 13,24] have also proposed meth­
ods based on the self-checking property for circuits similar 
to ours. However all these approaches will suffer the same 
disadvantages described in previous section. Hazewin­
dus [11], for example, proposed adding control/observation 
points for each untestable fault. Clearly this is impractical 
in this type of circuit as the number of such faults is large. 

In [14] the authors propose a full scan approach where 
the scan path is instantiated on the req/ack lines of each of 
the control modules. Faults inside the modules were also 
considered. This method provides excellent fault coverage, 
but has high overhead. The overhead of our full scan ap­
proach is what initiated the partial scan work reported in 
this paper. 

Other efforts reported in literature do not directly deal 
with self-timed macro modular circuits, however some of 
them are still relevant. In [31] a full scan approach was pro­
posed for circuits generated using circuits generated from 
Signal Transition Graph (STG) descriptions. These circuits 
are essentially Huffman type asynchronous state machines. 
In their approach each storage element (C-element) is re­
placed by an SRL latch. This approach is not practical for 
macromodular circuits as the ratio of logic gates to latches 
is very low and thus it will result in high scan latch over­
heads. Even with a full scan path it may not be possible to 
test for all faults due to reconvergent fanout, which is very 
common in self-timed macromodular circuits. This will be 
explained in the next section. Full scan also implies longer 
scan chains, resulting in longer test application times, how­
ever this should be compared against the number of extra 
vectors in the partial scan where sequential testing may be 
required. 

5 Partial Scan Solution 

As described in the previous section, if the gate to latch 
ratio of the circuits is low, the overhead of full scan will be 
high. Also due to the structure of circuits it may not be pos­
sible to test the circuits for 100% fault coverage even with 
full scan. A partial scan solution which requires less over­
head but still offers acceptable fault coverage is described 
in this section. 

5.1 Selection of Scan Latches 

Present approaches for selection of scan latches are 
based upon testability analysis, test pattern generation, or 
structural analysis [6,7,10,17]. In our method a combined 
approach involving testability analysis and structural anal­
ysis has been followed for scan latch selection. This pro­
cess involves three stages: 
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Figure 4: Modified Select Module 

1. Analysis of Select and Toggle modules reveals that 
faults inside the Select and Toggle modules are diffi­
cult to test using functional test methods [15] so all the 
Select and Toggle elements are added to the scan path. 
This partitions the circuit into networks of XORs and 
C-elements (Call elements can be considered to be a 
network of XORs and C-elements). The C-elements 
are special sequential elements with only two states. 
These elements have been modified such that they can 
be tested in combinational way. This will be described 
in Section 5.3. 

2. In the second stage, the Call elements are analyzed to 
see if it is possible to justify values of the AS line inde­
pendent from the values of Rl and R2. This is required 
to test the faults which are described in [15], that are 
untestable using a functional test on Call elements. If 
this is not possible, extra transparent scannable latches 
are added to the circuit. These latches are added in 
such a way that delay incurred can be hidden. 

3. The last stage involves analysis of the circuit for loops 
that do not contain a scanable latch. In such cases a C­
element in the loop is made scannable. We have devel­
oped software to detect these conditions and to suggest 
which C-element to be made scannable such that many 
loops can be broken simultaneously. 

5.2 Modifications to Circuit Elements 

Each of the circuit modules in the library requires some 
modification to fit into the partial scan environment. Ex­
amples of the Select and C-element module are given here. 
Other minor modifications to the basic self-timed control 
modules are described in [15]. 
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Figure 5: Modified C-element 

5.2.1 Select Module 

The modified Select element is shown in Figure 4. The first 
modifkation involves the latches inside the Select module. 
Originally these latches were single stage gated latches. 
These latches have been modified to become master-slave 
latches. This is done to reduce correlation between suc­
cessive stages of the scan path which could restrict certain 
vectors from being scanned in. The CLR has also been re­
moved from the latches as these latches can be reset using 
the scorn path by putting the scan path in transparent mode 
from s:can path input to output. 

The second modification is made to the SEL line of the 
module. The SEL line is disabled during scan mode so that 
both latches receive input from the scan path rather than 
from their normal input. After the scanning is over and the 
circuit has stabilized the SEL line is enabled. This causes 
one of the latches to be enabled depending on value of SEL 
line which allows the ouput of the network under test to be 
captured into the the master latch. 

5.2.2 C-element 

The C-elements are in general not included in the scan path 
as described above. Instead they have been modified to be 
testabile in a combinational way. This modification is based 
on the observation that a C-element acts as an AND gate if 
its internal state is 0 and as an OR gate if its internal state is 
1. The~ state of a C-element is the state of feedback wire, so 
if we can control the state of feedback wire we can make it 
act like an AND gate or an OR gate. One way to do this is to 
add a MUX in the feedback wire controlled by a mode sig­
nal such that in test mode the value offeedback wire is de­
termined by the other input of the MUX. This approach was 
proposed in [29] however this method leaves the normal 
feedback input to the MUX untested and also adds one ex­
tra control signal. In our method an OR gate is introduced 
in the feedback line so only a 1 value can be controlled on 
the feedback line. For controlling a 0 value we use the sys­
tem clear signal, which is already present in the original C­
element design. This allows a fault on the feedback line to 
also be tested and requires one fewer control signal. The 
model for a modified C-element is shown in Figure 5. 
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5.3 Test Procedure 

Once the scan path is introduced, the test procedure uses 
this scan path to test the remaining parts of the control path 
which consists of XOR and C-elements. This section will 
first describe the scan path operation and then describe the 
procedures used to test networks of XOR and C elements. 

5.4 Scan Path Operation 

The circuit is put into scan mode by asserting Test] and 
Test2 control signals (shown in Figure 4). P] and P2 sig­
nals provide two phase non-overlapping clocks to the scan 
register to provide a race free operation. 

Once the circuit has settled based on the scan path in­
puts, its output is captured by deasserting the Test] signal 
which enables the SEL signal to the latches. Enabling the 
SEL causes one of the latches to be enabled depending on 
the value of SEL line which is input to the control part. The 
circuit output is now captured through the normal input of 
the latch. The circuit is then returned to scan mode and the 
output is scanned out. The faults on the SEL line are tested 
during the capture process by appropriately controlling its 
value. It is important to note that although the test appli­
cation is synchronous, the circuit operation remains asyn­
chronous. 

5.4.1 Testing XORtC Networks 

The network of XOR and C-elernents is tested in three 
steps: 

1. In the first step the C-elements are put into OR-mode 
by asserting the test signal to the C-elements. Thus in 
this step the network of XOR and C elements reduces 
to a network of XOR and OR gates. The tests for this 
network can be generated using any conventional test 
pattem generation software. 

2. Even though the first testing step covers most of the 
faults in the interconnection ofXOR and C-elements, 
about 40% of the faults inside the C-elements remain 
untested. These faults require the C-element to be put 
into AND-mode. The C-elements are put into AND 
mode by asserting the global clear signal, CLR. This 
signal is kept asserted during the scan-in operation 
(Note that the CLR signal does not go to the elements 
on the scan path). This is required because otherwise 
during the scan-in operation different inputs will ap­
pear at the input of the C-elements and the state of 
the C-elements at the end of the scan-in operation will 
be indeterminate. Once the scanning is over, CLR is 
deasserted and the signal values are allowed to flow 



Design Fault Coverage No. of Latches Scanned 
Self-checking Partial Scan ALSean Partial Scan 

Router 65.7% 98.2% 34 17 
IFstage 66.1% 97.4% 26 13 
GCD 74.6% 95.5% 11 7 
Division 67.5% 100.0% 7 6 

Table 2: Comparison of Fault Coverage and No. of 
scannable Latches 

through the network of XOR and C-elements. This 
operation does, however, raise the issue of races and 
hazards since the signal changes at the input to the net­
work propogate through the network in parallel. This 
puts additional requirements on the test generation for 
this test step that the tests should be hazard free. There 
are two alternatives. One is to generate the tests and 
then validate that the tests are hazard free. Second is 
to generate only hazard free tests, which will require a 
new test pattern generator. Presently the first approach 
is used to generate the tests. 

3. After the first two test steps all the faults in the C­
elements are tested except for the s-a-O fault on the 
feedback line! to the OR gate in Figure 5. In order 
to test for these faults the C-elements are put into OR 
mode and a 01 or 10 input is justified at the inputs of 
the C-element which is under test. The test input feed­
ing the OR gate is then deasserted. Now in a fault free 
case the output of the C-element will remain 1 while 
in faulty case the output will change to O. This fault 
behavior can be propagated to the output of the net­
work. The conditions for propagation are the same as 
in the first step where the C-elements are also put into 
OR mode. 

6 Experimental Results 

The method described in this paper was applied to four 
example self-timed macromodular control circuits. The re­
sults are listed in Table 2. The router circuit is a torus­
connected wormhole routing chip for message routing in a 
multiprocessor [3,8]. The circuit called IFstage is the in­
struction fetch unit of the NSR, a self-timed pipelinedRISC 
processor [4]. GCD is an implementation of Euclid's al­
gorithm and Division is a serial divider circuit. The self­
checking column in the Fault Coverage section refers the 
fault coverage obtained by a functional test method such 
as that described in [16]. This relys on the self-checking 
property that the circuit will halt in response to a class of 
faults. This coverage assumes that some additional observ­
ability mechanisms have been used to detect faults inside 
the loop body as mentioned in Section 4, otherwise the cov-
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erage may be even lower. The Partial Scan column refers 
to the fault coverage obtained by the method described in 
this paper. In the No. of Latches section, the ALScan col­
umn reports the number of latches that would have been 
made scannable if the full scan method proposed in [31] 
were adopted. The Partial Scan column gives the number of 
latches that were made scannable using our method, which 
includes latches inside select and toggles and also any ex­
tra latches added to the circuits as mentioned in the previous 
sections. 

The table clearly shows that our method provides bet­
ter fault coverage compared to the self-checking method 
of [16] for all the examples. It also shows that number of 
latches that need to made scannable is much smaller than 
the full scan approach of [31]. To make fair comparison 
with ALScan one should also consider that overhead due to 
the changes made to the C-elements in our circuits. How­
ever the circuit overhead added to the C-element in our 
method is also much smaller than that needed to make it 
fully scannable. The scannable C-element design reported 
for ALScan uses about 55 transistors whereas we use 20 in 
our design. Fewer scan latches also implies a smaller test 
application time. 

7 Conclusions 

We have described a partial scan methodology to test 
self-timed macromodule-based circuits. The proposed 
method provides good fault coverage using a stuck-at 
model while requiring that only a subset of the latches in the 
circuit be made scannable. This is a substantial improve­
ment over full scan techniques. The fault coverage is also 
much better than function-based testing that relys on the 
self-checking property of self-timed circuits. 

The technique requires minor modifications to those 
control modules that contain internal state such as Select 
and Toggle modules, and provides for a novel method for 
testing the resulting XOR and C-element networks that 
make up the bulk of the remaining control circuitry. Al­
though the scanning of tests is done using a test clock, the 
asynchronous nature of the circuit is unchanged in normal 
operation. 

The current technique is targeted specifically at the con­
trol portion of self-timed systems. We are currently work­
ing on extending the techniques to test the data path, and 
the timing -sensiti ve bundling delays that are included in the 
data path. 
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