
A Partial Scan Methodology for Testing Self-Timed Circuits

Ajay Khoche Erik Brunvand
Department of Computer Science

University of Utah
Salt Lake City, UT, 84112

Abstract

This paper presents a partial scan metlwd for testing
control sections of macromodule based self-timed circuits
for stuck-at faults. In comparison with other proposed test
methods for self-timed circuits, this technique offers bet­
ter fault coverage than methods using self-checking tech­
niques, and requires fewer storage elements to be made
scannable thanful! scan approaches with similar fault cov­
erage. A new metlwd is proposed to test the sequential net­
work in this partial scan environment. Experimental data
is presented to slww that highfault coverage is possible us­
ing this metlwd with only a subset of storage elements being
made scannable.

1 Introduction

Asynchronous and self-timed circuits have recently
been receiving renewed interest by circuit designers as an
alternative to globally synchronous system organization.
As the size and speed of systems grow, so do the problems
related to the global clock signal. Asynchronous and self­
timed circuits that avoid timing problems by enforcing sim­
ple communication protocols between parts of the circuit
can help avoid these problems. These types of systems can
also allow simpler system composition, show increased ro­
bustness in the face of process and environmental varia­
tion, can exhibit much lower power consumption, and can
even show increased performance when compared to glob­
ally synchronous systems in some cases.

Testing asynchronous circuits, however, is a relatively
new area. Despite the growing number of recent efforts
in the specification and design of asynchronous circuits,
testing these circuits has not been explored to any great
degree. Traditionally, testing asynchronous circuilts has
been considered a difficult problem, especially when com­
pared to the synchronous circuits, where significant ad­
vances have been made. Unfortunately, methods used to
test synchronous circuits are not directly applicable to asyn­
chronous circuits. This is due, in large part, to the absence
of the global clock signal in the asynchronous circuits. New

0-8186-7000-2/95 $04.00 © 1995 IEEE
283

methods are required to adapt the rich knowledge about
testing synchronous circuits to test asynchronous circuits.
This is precisely the subject of this work: to adapt scan path
technology to a class of asynchronous circuits.

Asynchronous style control circuits can be classified
broadly into two categories: centralized and distributed. In
the centralized style the control is designed like conven­
tional state machines, where a single state machine controls
the sequencing in the circuits. These machines are typically
designed with restrictions on input and outputs and need
proper adjustment of delays to handle an asynchronous en­
vironment. Many approaches have been proposed to design
control circuits in this style [9, 20, 30, 32].

In the distributed style of design the control unit con­
sists of an interconnection of many smaller state machines
(macromodules). These macro modules are typically de­
signed to follow certain protocols at their interfaces that
obey delay-insensitive or speed-independent properties to
make their composition simpler [3, 18,21,28]. Self-timed
macro modular control circuits have been used in a wide va­
riety of academic research efforts [4, 19, 23], as well as
in industrial research settings [2, 27], and it is this style
of distributed self-timed control that we focus on in this
work. Using these modules, distributed self-timed control
can be built easily by connecting the modules directly into a
control network. These modules also allow simple syntax­
directed translation from language descriptions into control
networks [3, 18, 21]. In particular, the set of macromodules
used by Brunvand [3, 5] and Sutherland [28] are the mod­
ules used to build the circuits which are the target of this pa­
per. The particular set of macromodules used is, however,
not critical as the techniques we present could be applied to
any similar set of control circuits.

In this paper a partial scan method is proposed to test the
control portion of macromodule based self-timed circuits
for stuck-at faults. This method provides better fault cover­
age than methods using the self-checking property [12] of
self-timed circuits which assumes that the circuit halts in
response to faults. It also requires fewer storage elements
to be made scannable than full scan methods while offering
acceptable fault coverage.

Req

Sender Ack Receiver

Data '

Figure 1: Bundled Data Path Connection

The paper is organized as follows. In the next section
self-timed circuits and the overall design methodology wili
be described briefly. Section 3 discusses the testability of
macromodule based self-timed circuits. Section 4 reviews
related work. Section 5 presents the proposed partial-scan
method including the the overall architecture, modifica­
tions to the various modules, and the procedures used to test
sequential logic consisting of XOR and C-elements. Sec­
tion 6 presents experimental results obtained on four exam­
ples. Finally, Section 7 offers some conclusions.

2 Self-Timed Macromodule Circuits

Self-timed circuits are a subset of a broad class of asyn­
chronous circuits. These circuits generate completion sig­
nals to indicate that they are finished with their process­
ing [26]. A signalling protocol used with the completion
signalling allows self-timed systems to be composed of cir­
cuits which communicate using self-timed protocols. Self­
timed protocols are often defined in terms of a pair of sig­
nals, one to request or initiate an action, and another to ac­
knowledge that the requested action has been completed.
One module, the sender, sends a request event (Req) to an­
other module, the receiver. Once the receiver has com­
pleted the requested action, it sends an acknowledge event
(Ack) back to the sender to complete the transaction.

The circuits used in our library use two-phase transition
signaling for control and a bundled protocol for data paths.
Two-phase transition signaling [26] uses transitions on sig­
nal wires to communicate the Req and Ack events described
previously. Only the transitions are meaningful; a transi­
tion from low to high is the same as a transition from high
to low and the particular state, high or low, of each wire is
not important.

A bundled data path uses a single set of control wires to
indicate the validity of a bundle of data wires [28]. This
requires that the data bundle and the control wires be con­
structed such that the value on the data bundle is stable
at the receiver before a signal appears on the control wire
and remains valid until Ack is received. modules connected
with a bundled data path are shown in Figure 1.

Our design method builds control circuits using a vari­
ety of modules which communicate using two-phase transi-

284

:@UT ~UT :;f9UT R18 R1~ R1
Al RS Al. Al.

A~ ~ ~ al AS R2 all RS R2 sC UT CUT CUTR2~ 3
B B A2~ A2 ASA2

Me Me Me R3 -7 R3

~ ~UTF A3

:LEC
OUTT

E

4
-7 AS

Figure 2: Control Modules for Self-Timed Designs

tion signals. These modules, described in more detail else­
where [5, 28], are shown symbolically in Figure 2. Other
modules in the library, such as transition-controlled latches,
and completion-sensing adders, are used to build self-timed
data paths.

The control modules include circuits that act as OR gates
for transitions (implemented using an XOR) and AND
gates for transitions (implemented using a C-element). A
transition-OR gate will produce a transition at its output
whenever there is a transition at either input. An AND re­
quires transitions at both inputs before producing a transi­
tion at the output. Also included are modules that steer tran­
sitions depending on a Boolean input signal (a Select mod­
ule) or alternate transitions on the output for each transition
on the input (a Toggle module). A Call module allows mul­
tiple sender circuits to have access to a common receiver
circuit by implementing a hardware subroutine call. The
Call module requires that the multiple requests be mutually
exclusive so that it need not perform arbitration.

One way this module library is used is with an OCCAM

based automatic circuit compilation system [3]. The soft­
ware constructs of OCCAM have been implemented using
these library components and allow programs written in
OCCAM to be translated automatically into self-timed cir­
cuits. An example of translation of a WHILE construct
is shown in Figure 3. The OCCAM compiler has been
used to build a number of systems ranging from a mem­
ory controller for standard DRAMs used in a self-timed
environment [3], to a simple wormhole router designed
for a mesh-connected multiprocessor array [3]. This li­
brary has also been used to build large circuits by hand, in­
cluding a self-timed microprocessor [4], using commercial
schematic capture software from View logic .

3 Testability of Macromodule based Self­
Timed Circuits

Some of the problems associated with testing asyn­
chronous circuits in general and self-timed circuits in par­
ticular include:

REQ

(WHILE

COND

Figure 3: Translation of WHILE construct into Circuit

• Asynchronous and self-timed circuits are more sen­
sitive to races and hazards than synchronous cir­
cuits. This puts an additional requirement on the test
methodology that test application must also be hazard
and race free otherwise the test may be invalidalled.

• Self-Timed circuits operate in an autonomous way, in
the sense that once the control is passed from environ­
ment to the circuit, the operation is totally determined
by the circuit. This is different than for synchronous
circuits where an external clock dictates the operation
of the circuit. This creates problems if one attempts
to use an iterative array model for testing because the
number of frames is not controllable.

• Using our library module approach, control is dis­
tributed throughout the system and is not centralized
in a single controller with a convenient state register
for the scan path. Each self-timed module is in fact a
tiny state machine in itself. This increases the com­
plexity of testing if functional testing of the entire cir­
cuit is desired.

• Functional testability of a self-timed module depends
on the way it is used in a circuit. In other words, it
depends on the environment which interacts with the
module. Certain circuit configurations lead to only a
subset of input patterns ever being applied statically
to the module. For example, C-elements are often
used as a rendezvous for two forked processes. In this
case, the only static values seen at the inputs to the
C-element will be 11 and 00. The 10 and 01 cases
will be seen only during the time that one process has
finished and the other is still executing. In addition,
other faults may be masked by functional test meth­
ods where the observability mechanism is only ob­
serving the primary output. A detailed discussion of
these problems may be found in [15]. The percentage
of detectable faults for each self-timed control module
using only functional test and the self-checking prop­
erty is are shown in Table 1.

II Module Fault Coverage

Celement 60.0%
Call2 60.2%
Select 71.5%
Toggle 90.0%

Table 1: Fault Coverage of Modules using Self-Checking
Functional Test Only

4 Related Work

Testing asynchronous circuits is a relatively new area.
Very few attempts have been made to date. For test­
ing macromodule based self-timed circuits only two ap­
proaches have been reported in the literature that we know
of. In [16] a functional approach is used for testing self­
timed macromodule circuits using the self-checking prop­
erty mentioned earlier. In this approach the SEL lines of
the Select modules are made controllable thereby influenc­
ing the flow of control in the circuit. After selecting a par­
ticular path the input to that path is changed from low to
high and then back. The observation mechanism consists
of outputs also changing after waiting for sufficient amount
of time. This approach targets faults only on module's in­
put and output. this approach has the following drawbacks
when the faults inside the modules are also considered.

285

• In their approach modules are considered atomic:
faults inside the modules are not targeted. Since the
faults on the input and output of the module form a
small percentage of the total faults in the control cir­
cuits the fault coverage offered by this method is low
when faults inside the modules are also considered, as
shown in Table 1.

• The only observation mechanism is observing the out­
put. This is not sufficient because a great deal of fault
masking may occur inside the circuit as described in
the previous section.

• Functional testing may result in high complexity when
faults inside the modules are also considered. This is
because certain faults inside the modules require state
justification to activate them, which is not necessary
for faults on the module input/output considered in
[16]. State justification may be computationally com­
plex in the type of circuits considered in this paper,
which contain a lot of state distributed in the circuit.

• Loop structures can not be tested without adding extra
observability to the circuit. Select modules are often
used to build looping structures in the circuit as shown
in Figure 3. When the loop body is executed in test
mode the control stays in that loop and there is no way
out.

Otherresearchers [11, 13,24] have also proposed meth­
ods based on the self-checking property for circuits similar
to ours. However all these approaches will suffer the same
disadvantages described in previous section. Hazewin­
dus [11], for example, proposed adding control/observation
points for each untestable fault. Clearly this is impractical
in this type of circuit as the number of such faults is large.

In [14] the authors propose a full scan approach where
the scan path is instantiated on the req/ack lines of each of
the control modules. Faults inside the modules were also
considered. This method provides excellent fault coverage,
but has high overhead. The overhead of our full scan ap­
proach is what initiated the partial scan work reported in
this paper.

Other efforts reported in literature do not directly deal
with self-timed macro modular circuits, however some of
them are still relevant. In [31] a full scan approach was pro­
posed for circuits generated using circuits generated from
Signal Transition Graph (STG) descriptions. These circuits
are essentially Huffman type asynchronous state machines.
In their approach each storage element (C-element) is re­
placed by an SRL latch. This approach is not practical for
macromodular circuits as the ratio of logic gates to latches
is very low and thus it will result in high scan latch over­
heads. Even with a full scan path it may not be possible to
test for all faults due to reconvergent fanout, which is very
common in self-timed macromodular circuits. This will be
explained in the next section. Full scan also implies longer
scan chains, resulting in longer test application times, how­
ever this should be compared against the number of extra
vectors in the partial scan where sequential testing may be
required.

5 Partial Scan Solution

As described in the previous section, if the gate to latch
ratio of the circuits is low, the overhead of full scan will be
high. Also due to the structure of circuits it may not be pos­
sible to test the circuits for 100% fault coverage even with
full scan. A partial scan solution which requires less over­
head but still offers acceptable fault coverage is described
in this section.

5.1 Selection of Scan Latches

Present approaches for selection of scan latches are
based upon testability analysis, test pattern generation, or
structural analysis [6,7,10,17]. In our method a combined
approach involving testability analysis and structural anal­
ysis has been followed for scan latch selection. This pro­
cess involves three stages:

286

P1 p~

OUT..-

IN

OUTT

• TEST2

DIN

S I: BIN
SBL TBB'r1

Figure 4: Modified Select Module

1. Analysis of Select and Toggle modules reveals that
faults inside the Select and Toggle modules are diffi­
cult to test using functional test methods [15] so all the
Select and Toggle elements are added to the scan path.
This partitions the circuit into networks of XORs and
C-elements (Call elements can be considered to be a
network of XORs and C-elements). The C-elements
are special sequential elements with only two states.
These elements have been modified such that they can
be tested in combinational way. This will be described
in Section 5.3.

2. In the second stage, the Call elements are analyzed to
see if it is possible to justify values of the AS line inde­
pendent from the values of Rl and R2. This is required
to test the faults which are described in [15], that are
untestable using a functional test on Call elements. If
this is not possible, extra transparent scannable latches
are added to the circuit. These latches are added in
such a way that delay incurred can be hidden.

3. The last stage involves analysis of the circuit for loops
that do not contain a scanable latch. In such cases a C­
element in the loop is made scannable. We have devel­
oped software to detect these conditions and to suggest
which C-element to be made scannable such that many
loops can be broken simultaneously.

5.2 Modifications to Circuit Elements

Each of the circuit modules in the library requires some
modification to fit into the partial scan environment. Ex­
amples of the Select and C-element module are given here.
Other minor modifications to the basic self-timed control
modules are described in [15].

CLR

Figure 5: Modified C-element

5.2.1 Select Module

The modified Select element is shown in Figure 4. The first
modifkation involves the latches inside the Select module.
Originally these latches were single stage gated latches.
These latches have been modified to become master-slave
latches. This is done to reduce correlation between suc­
cessive stages of the scan path which could restrict certain
vectors from being scanned in. The CLR has also been re­
moved from the latches as these latches can be reset using
the scorn path by putting the scan path in transparent mode
from s:can path input to output.

The second modification is made to the SEL line of the
module. The SEL line is disabled during scan mode so that
both latches receive input from the scan path rather than
from their normal input. After the scanning is over and the
circuit has stabilized the SEL line is enabled. This causes
one of the latches to be enabled depending on value of SEL
line which allows the ouput of the network under test to be
captured into the the master latch.

5.2.2 C-element

The C-elements are in general not included in the scan path
as described above. Instead they have been modified to be
testabile in a combinational way. This modification is based
on the observation that a C-element acts as an AND gate if
its internal state is 0 and as an OR gate if its internal state is
1. The~ state of a C-element is the state of feedback wire, so
if we can control the state of feedback wire we can make it
act like an AND gate or an OR gate. One way to do this is to
add a MUX in the feedback wire controlled by a mode sig­
nal such that in test mode the value offeedback wire is de­
termined by the other input of the MUX. This approach was
proposed in [29] however this method leaves the normal
feedback input to the MUX untested and also adds one ex­
tra control signal. In our method an OR gate is introduced
in the feedback line so only a 1 value can be controlled on
the feedback line. For controlling a 0 value we use the sys­
tem clear signal, which is already present in the original C­
element design. This allows a fault on the feedback line to
also be tested and requires one fewer control signal. The
model for a modified C-element is shown in Figure 5.

287

5.3 Test Procedure

Once the scan path is introduced, the test procedure uses
this scan path to test the remaining parts of the control path
which consists of XOR and C-elements. This section will
first describe the scan path operation and then describe the
procedures used to test networks of XOR and C elements.

5.4 Scan Path Operation

The circuit is put into scan mode by asserting Test] and
Test2 control signals (shown in Figure 4). P] and P2 sig­
nals provide two phase non-overlapping clocks to the scan
register to provide a race free operation.

Once the circuit has settled based on the scan path in­
puts, its output is captured by deasserting the Test] signal
which enables the SEL signal to the latches. Enabling the
SEL causes one of the latches to be enabled depending on
the value of SEL line which is input to the control part. The
circuit output is now captured through the normal input of
the latch. The circuit is then returned to scan mode and the
output is scanned out. The faults on the SEL line are tested
during the capture process by appropriately controlling its
value. It is important to note that although the test appli­
cation is synchronous, the circuit operation remains asyn­
chronous.

5.4.1 Testing XORtC Networks

The network of XOR and C-elernents is tested in three
steps:

1. In the first step the C-elements are put into OR-mode
by asserting the test signal to the C-elements. Thus in
this step the network of XOR and C elements reduces
to a network of XOR and OR gates. The tests for this
network can be generated using any conventional test
pattem generation software.

2. Even though the first testing step covers most of the
faults in the interconnection ofXOR and C-elements,
about 40% of the faults inside the C-elements remain
untested. These faults require the C-element to be put
into AND-mode. The C-elements are put into AND
mode by asserting the global clear signal, CLR. This
signal is kept asserted during the scan-in operation
(Note that the CLR signal does not go to the elements
on the scan path). This is required because otherwise
during the scan-in operation different inputs will ap­
pear at the input of the C-elements and the state of
the C-elements at the end of the scan-in operation will
be indeterminate. Once the scanning is over, CLR is
deasserted and the signal values are allowed to flow

Design Fault Coverage No. of Latches Scanned
Self-checking Partial Scan ALSean Partial Scan

Router 65.7% 98.2% 34 17
IFstage 66.1% 97.4% 26 13
GCD 74.6% 95.5% 11 7
Division 67.5% 100.0% 7 6

Table 2: Comparison of Fault Coverage and No. of
scannable Latches

through the network of XOR and C-elements. This
operation does, however, raise the issue of races and
hazards since the signal changes at the input to the net­
work propogate through the network in parallel. This
puts additional requirements on the test generation for
this test step that the tests should be hazard free. There
are two alternatives. One is to generate the tests and
then validate that the tests are hazard free. Second is
to generate only hazard free tests, which will require a
new test pattern generator. Presently the first approach
is used to generate the tests.

3. After the first two test steps all the faults in the C­
elements are tested except for the s-a-O fault on the
feedback line! to the OR gate in Figure 5. In order
to test for these faults the C-elements are put into OR
mode and a 01 or 10 input is justified at the inputs of
the C-element which is under test. The test input feed­
ing the OR gate is then deasserted. Now in a fault free
case the output of the C-element will remain 1 while
in faulty case the output will change to O. This fault
behavior can be propagated to the output of the net­
work. The conditions for propagation are the same as
in the first step where the C-elements are also put into
OR mode.

6 Experimental Results

The method described in this paper was applied to four
example self-timed macromodular control circuits. The re­
sults are listed in Table 2. The router circuit is a torus­
connected wormhole routing chip for message routing in a
multiprocessor [3,8]. The circuit called IFstage is the in­
struction fetch unit of the NSR, a self-timed pipelinedRISC
processor [4]. GCD is an implementation of Euclid's al­
gorithm and Division is a serial divider circuit. The self­
checking column in the Fault Coverage section refers the
fault coverage obtained by a functional test method such
as that described in [16]. This relys on the self-checking
property that the circuit will halt in response to a class of
faults. This coverage assumes that some additional observ­
ability mechanisms have been used to detect faults inside
the loop body as mentioned in Section 4, otherwise the cov-

288

erage may be even lower. The Partial Scan column refers
to the fault coverage obtained by the method described in
this paper. In the No. of Latches section, the ALScan col­
umn reports the number of latches that would have been
made scannable if the full scan method proposed in [31]
were adopted. The Partial Scan column gives the number of
latches that were made scannable using our method, which
includes latches inside select and toggles and also any ex­
tra latches added to the circuits as mentioned in the previous
sections.

The table clearly shows that our method provides bet­
ter fault coverage compared to the self-checking method
of [16] for all the examples. It also shows that number of
latches that need to made scannable is much smaller than
the full scan approach of [31]. To make fair comparison
with ALScan one should also consider that overhead due to
the changes made to the C-elements in our circuits. How­
ever the circuit overhead added to the C-element in our
method is also much smaller than that needed to make it
fully scannable. The scannable C-element design reported
for ALScan uses about 55 transistors whereas we use 20 in
our design. Fewer scan latches also implies a smaller test
application time.

7 Conclusions

We have described a partial scan methodology to test
self-timed macromodule-based circuits. The proposed
method provides good fault coverage using a stuck-at
model while requiring that only a subset of the latches in the
circuit be made scannable. This is a substantial improve­
ment over full scan techniques. The fault coverage is also
much better than function-based testing that relys on the
self-checking property of self-timed circuits.

The technique requires minor modifications to those
control modules that contain internal state such as Select
and Toggle modules, and provides for a novel method for
testing the resulting XOR and C-element networks that
make up the bulk of the remaining control circuitry. Al­
though the scanning of tests is done using a test clock, the
asynchronous nature of the circuit is unchanged in normal
operation.

The current technique is targeted specifically at the con­
trol portion of self-timed systems. We are currently work­
ing on extending the techniques to test the data path, and
the timing -sensiti ve bundling delays that are included in the
data path.

References

[1] Miron Abramovici, Melvin A. Breuer, and Arthur D. Fried­
man. Digital Systems Testing and Testable Design. Com­
puter Science Press, 1990.

[2] K. V. Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij,
and A. Peeters. Asynchronous Circuits for Low Power: A
DCC Error Corrector. IEEE Design and Test of Computers,
slimmer 1994.

[3] EJrik Brunvand. Translating Concurrent Communicating
Programs into Asynchronous Circuits. PhD thesis, Carnegie
Mellon University, 1991.

[4] EJrik Brunvand. The NSR Processor. In Proceedings of the
26th International Conference on System Sciences, Maui,
Hawaii, January 1993.

[5] E. Brunvand and R. Sproull. Translating Concurrerut Pro­
grams into Delay-insensitive Circuits. In Proceedings of
International Conference on Computer Aided Design (IC­
C4.D) 1989.

[6] K. T. Cheng and V. D. Agrawal. A Partial Scan Method for
Sequential Circuits with Feedback. IEEE Transactions on
Computers,pages 544-548, 1992.

[7] V. Chickermane and J. H. Patel. A Fault Oriented Partial
Scan Design Approach. In International Test Symposium,
1991.

[8] William J. Dally and Charles L. Seitz. The Torus Routing
Chip. Distributed Computing, 1:187-196,1986.

[9] A. L. Davis B. Coates and K. Steven. Automatic Syruthesis
of Fast Compact Self-timed Control Circuits. In Proc. of the
Inp Working Conference on Asynchronous Design Method­
ologies, 1993.

[10] R. Gupta, R. Gupta and M. A. Breuer. BALLAST: A
Methodology for Partial Scan Design. In Fault Tolerant
Computing Symposium, 1989.

[11] Pieter Hazewindus. Testing Delay-Insensitive Circuits. PhD
thesis, California Institute of Technology, 1991.

[12] Henrik Hulgaard, Steven M. Bums, and Gaetano Borriello.
Testing Asynchronous Circuits: A Survey. Technical Report
UW-CSE-94-03-06, Department of Computer Science and
Engineering, Univ. of Washington, Seattle, 1994.

[13] Michiel Kamp. Testing Delay-insensitive Circuits: A Case
Study. Technical report, Eindhoven Institute of Technology,
September 1990.

[14] Ajay Khoche and Erik Brunvand. Testing Self-Timed Cir­
cuits Using Scan Paths. 5th NASA Symposium on VLSI De­
sign, Nov 1993.

[15] Ajay Khoche and Erik Brunvand. A partial scan methodolgy
for testing self-timed circuits. Technical Report UUCS-95-
001, Department of Computer Science, Univ. of Utah, Salt
Lake City, 1995.

[16] P. Kudva and V. Akella. Testing Two Phase Transition Based
Self-timed Circuits in a High Level Synthesis Envirorument.
High Level Synthesis workshop May 1994.

[17] H. K. T. Ma, S. Devadas, A. R. Newton, and A Sangiovanni
Vi,ncentelli. An Incomplete Scan Design Approach to Test
Generation for Sequential Machines. In International Test
Symposium, 1988.

289

[18] Alain J. Martin. Compiling Communicating Processes into
Delay-insensitive Circuits. Distributed Computing, 1(3),
1986.

[19] A. J. Martin, S. M. Bums, T. K. Lee, D. Borkovic, and P. J.
Hazewindus. The Design of an Asynchronous Microproces­
sor. Proc. of Advanced Research in VLSI, MIT Press, 1990.

[20] S. M. Nowick and D. Dill. Automatic Synthesis of Locally­
clocked Asynchronous Machines. In Proc. International
Con/. Computer-Aided Design (ICC AD), 1991.

[21] Cees Niessen, C.H. (Kees) van Berkel, Martin Rem, and
Ronald W.J.J. Saeijs. VLSI Programming and Silicon Com­
pilation; A Novel Approach from Philips Research. In
ICCD, Rye Brook, NY, October 1988.

[22] S. Pagey, G. Venkatesh, and S. Sherlekar. Issues in Fault
Modeling and Testing of Micropipelines. First Asian Test
Symposium, Hiroshima, Japan, Nov 1992.

[23] N. Paver. The Design and Implementation of an Asyn­
chronous Microproceesor. PhD Thesis, University of Man­
chaster, UK, 1994.

[24] Marly Roncken and Ronald Saeijs. Linear Test Times for
Delay-insensitive Circuits: A Compilation Strategy. Pro­
ceedings of IFIP Working Conference on Asynchronous De­
sign Methodologies, Manchester, UK, 1993. Elsevier Sci­
ence Publishers.

[25] Marly Roncken. Partial scan test for asynchronous cir­
cuits illustrated on a dcc error corrector. In Proceedings
of International Symposium on Advanced Research in Asyn­
chronous Circuits and Systems, 1994.

[26] C. L. Seitz. System Timing. In Mead and Conway, Intro­
duction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[27] R. Sproull, I. E. Sutherland, and C. E. Molnar. Counterflow
Pipeline Processor Architecture. IEEE Design and Test of
Computers, Fall 1994.

[28] Ivan Sutherland. Micropipelines. CACM, 32(6), 1989.

[29] C.A. Traver. A Testable Model for Stoppable Clock Asics.
In Proceedings of IEEE International ASIC Conj.,1991.

[30] S. H. Unger. Asynchronous Sequential Switching Circuits.
John Wiley & Sons Inc., 1969.

[31] Chin-Long Wey, Ming-Der Shieh, and P. David Fisher.
ASLCScan: A Scan Design Technique for Asynchronous
Sequential Logic Circuits. In International Conference
on Computer Design(ICCD), Cambridge, Mass., October
1993.

[32] K. Y. Yun D. Dill and S. M. Nowick. Synthesis of 3d
asynchronous state machines. In Proc. International Conj.
Computer-Aided Design (ICCAD), 1992.

