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Abstract
Cache hierarchies in future many-core processors are 

expected to grow in size and contribute a large fraction 
o f overall processor power and performance. In this pa­
per, we postulate a 3D chip design that stacks SRAM and 
DRAM upon processing cores and employs OS-based page 
coloring to minimize horizontal communication o f  cache 
data. We then propose a heterogeneous reeonfigurable 
cache design that takes advantage o f  the high density o f  
DRAM and the superior power/delay characteristics o f  
SRAM to efficiently meet the working set demands o f  each 
individual core. Finally, we analyze the communication 
patterns fo r  such a processor and show that a tree topology 
is an ideal fit that significantly reduces the power and la­
tency requirements o f  the on-chip network. The above pro­
posals are synergistic: each proposal is made more com­
pelling because o f  its combination with the other innova­
tions described in this paper. The proposed reeonfigurable 
cache model improves performance by up to 19% along 
with 48% savings in network power.

Keywords: multi-core processors, cache and memory 
hierarchy, non-uniform cache architecture (NUCA), page 
coloring, on-chip networks, SRAM/DRAM cache reconfig­
uration.

1. Introduction
The design of cache hierarchies for multi-core chips 

has received much attention in recent years (for example,
[5,8 ,10,18,38,48]). As process technologies continue to 
shrink, a single chip will accommodate many mega-bytes 
of cache storage and numerous processing cores. It is well 
known that the interconnects that exchange data between 
caches and cores represent a major bottleneck with regard 
to both power and performance. Modern Intel chips al­
ready accommodate up to 27 MB of cache space [29]; in­
terconnects have been attributed as much as 50% of total 
chip dynamic power [28]; on-chip networks for large tiled 
chips have been shown to consume as much as 36% of total 
chip power [23,44]; long on-chip wires and router pipeline
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delays can lead to cache access times of many tens of cy­
cles [12,36]. Not only will we require intelligent mech­
anisms to allocate cache space among cores, we will also 
have to optimize the interconnect that exchanges data be­
tween caches and cores. This paper makes an attempt at 
addressing both of these issues.

3D stacking of dies has been demonstrated as a feasi­
ble technology [46] and is already being commercially em­
ployed in some embedded domains [35,39]. In most com­
mercial examples, 3D is employed to stack DRAM mem­
ory upon CPU cores [35,39]. This is especially compelling 
because future multi-cores will make higher memory band­
width demands and the inter-die interconnect in a 3D chip 
can support large data bandwidths. Early projections for 
Intel’s Polaris 80-core prototype allude to the use of such 
3D stacking of DRAM to feed data to the 80 cores [42], 
Given the commercial viability of this technology, a few 
research groups have already begun to explore the archi­
tectural ramifications of being able to stack storage upon 
CPUs [21,24—27].

In this paper, we first postulate a physical processor 
design that is consistent with the above trends. We then 
take advantage of the following three key innovations to 
architect a cache hierarchy that greatly reduces latency and 
power: (i) we employ page coloring to localize data and 
computation, (ii) we propose the use of cache reconfigu­
ration to accommodate large working sets for some cores,
(iii) we identify a network topology that best matches the 
needs of data traffic and incurs low delay and power over­
heads.

The proposed processor employs three dies stacked 
upon each other (see Figure 1). The lowest die contains the 
processing cores (along with the corresponding L 1 caches). 
The second die is composed entirely of SRAM cache banks 
(forming a large shared L2 cache) and employs an on-chip 
network so that requests from the CPU can be routed to the 
correct bank. The third die is composed of DRAM banks 
that serve to augment the L2 cache space provided by the 
second SRAM die. It is also possible to stack many more 
DRAM dies upon these three dies to implement main mem­
ory [26], but we regard this as an orthogonal design choice 
and do not consider it further in this paper.

The L2 cache banks are organized as a non-uniform
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cache architecture (NUCA) [22], The request from the 
processing core is transmitted to the SRAM die through 
inter-die vias. From here, the request is propagated to the 
appropriate bank through the on-chip network and the la­
tency for the access is a function of the proximity of this 
bank to the processing core. Many recent papers have ex­
plored various mechanisms to reduce average access times 
in a NUCA cache [5 ,7 ,9 ,10 ,18 ,48], Most dynamic (D- 
NUCA) mechanisms can cause data to be placed anywhere 
on the chip, requiring search mechanisms to locate the data. 
We dis-regard these algorithms because of the complex­
ity/cost of search mechanisms and resort to a static-NUCA 
(S-NUCA) organization, where a given physical address 
maps to a unique bank in the cache (the physical address 
maps to a unique bank and set within that bank; the ways 
of the set may be distributed over multiple subarrays within 
that bank). To improve the proximity of storage and com­
putation, we employ page coloring to ensure that data is 
placed in “optimal” banks. The idea of employing page 
coloring to dictate data placement in a NUCA cache was 
proposed in a recent paper by Cho and Jin [11], Ideally, 
a low-overhead run-time mechanism would be required to 
estimate the usage of a page so that pages can be dynam­
ically migrated to their optimal locations [1], The design 
of such mechanisms is a non-trivial problem in itself and 
beyond the scope of this paper. For this work, we carry 
out an off-line analysis to identify pages that are private to 
each core and that are shared by multiple cores. Private 
pages are placed in the bank directly above the core and 
shared pages are placed in one of four central banks.

With the above page coloring mechanism in place, we 
expect high data locality and most cores will end up find­
ing their data in the L2 cache bank directly above. In a 
multi-programmed workload, each core may place differ­
ent demands on the L2 cache bank directly above. In a 
multi-threaded workload, the centrally located cache banks 
will experience higher pressure because they must accom­
modate shared data in addition to the data that is private 
to the corresponding cores. These varied demands on each 
cache bank can perhaps be handled by allowing a core to 
spill some of its pages into the adjacent banks. However, 
this not only increases the average latency to access that 
page, it also places a higher bandwidth demand on the 
inter-bank network, a trait we are striving to avoid (more 
on this in the next paragraph). Hence, we instead spill 
additional pages into the third dimension -  to the DRAM 
bank directly above the SRAM cache bank. Note that the 
DRAM bank and SRAM bank form a single large verti­
cal slice in the same L2 cache level. When the DRAM 
space is not employed, each SRAM cache bank accom­
modates 1 MB of cache space. If this space is exceeded, 
the DRAM bank directly above is activated. Since DRAM 
density is eight times SRAM density, this allows the cache 
space to increase to roughly 9 MB. While DRAM has 
poorer latency and power characteristics than SRAM, its

higher density allows a dramatic increase in cache space 
without the need for many more stacked dies (that in turn 
can worsen temperature characteristics). Further, we archi­
tect the combined SRAM-DRAM cache space in a manner 
that allows non-uniform latencies and attempts to service 
more requests from the faster SRAM die. DRAM bank 
access itself has much lower cost than traditional DRAM 
main memory access because the DRAM die is partitioned 
into many small banks and a single small DRAM bank is 
looked up at a time without traversing long wires on the 
DRAM die. This results in a heterogeneous reconfigurable 
cache space, an artifact made possible by 3D die stacking. 
A reasonable alternative would be the implementation of a 
3-level cache hierarchy with the top DRAM die serving as 
an independent L3 cache. A static design choice like that 
would possibly complicate cache coherence implementa­
tions, incur the latency to go through three levels for many 
accesses, and reduce the effective capacity of the L2 be­
cause of the need for L3 tags. We believe that the overall 
design is made simpler and faster by growing the size of 
the L2 cache bank on a need basis.

Finally, we examine the traffic patterns generated by the 
cache hierarchy described above. Most requests are ser­
viced by the local SRAM and DRAM cache banks and do 
not require long traversals on horizontal wires. Requests 
to shared pages are directed towards the centrally located 
banks. Requests are rarely sent to non-local non-central 
banks. Such a traffic pattern is an excellent fit for a tree 
network (illustrated in Figure 1). A tree network employs 
much fewer routers and links than the grid network typ­
ically employed in such settings. Routers and links are 
cumbersome structures and are known to consume large 
amounts of power and area [23,44] -  hence, a reduction 
in routers and links has many favorable implications. Tree 
networks perform very poorly with random traffic patterns, 
but the use of intelligent page coloring ensures that the traf­
fic pattern is not random and best fits the network topology. 
A tree network will likely work very poorly for previously 
proposed D-NUCA mechanisms that can place data in one 
of many possible banks and that require search mecha­
nisms. A tree network will also work poorly if highly pres­
sured cache banks spill data into neighboring banks, mak­
ing such a topology especially apt for the proposed design 
that spills data into the third dimension.

The contributions of the paper are:
• A synergistic combination of page coloring, cache re­

configuration, and on-chip network design that im­
proves performance by up to 62%.

• The design of a heterogeneous reconfigurable cache 
and policies to switch between configurations.

The paper is organized as follows. Section 2 provides 
basic background on recent innovations in multi-core cache 
design and related work. Section 3 describes our proposed 
cache architecture. Results are discussed in Section 4 and 
we draw conclusions in Section 5.
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2. Background and Related Work 3. Proposed Ideas
Most future large caches are expected to have NUCA 

architectures [22], A large shared L2 or L3 cache can ei­
ther be placed in a contiguous region or split into slices 
and associated with each core (tile). Early designs split 
the ways of a set across multiple banks, allowing a given 
block to have multiple possible residences. Policies were 
proposed to allow a block to gravitate towards a way/bank 
that minimized access time (D-NUCA [22]). However, this 
led to a non-trivial search problem: a request had to look in 
multiple banks to eventually locate data. A static-NUCA 
(S-NUCA) design instead places all ways of a set in a sin­
gle bank and distributes sets across banks. Given a block 
address, the request is sent to a unique bank, that may or 
may not be in close proximity. In a recent paper, Cho and 
Jin [11] show that intelligent page coloring can influence 
address index bits so that the block is mapped to a set and 
bank that optimizes access time. The work in this paper 
is built upon the page coloring concept to improve access 
times and eliminate search. Other papers that attempt to 
improve data placement with a D-NUCA approach include
[5 ,7 ,9 ,10 ,48], A number of papers also attempt to im­
prove multi-core cache organizations by managing data co­
operatively within a collection of private caches [8,15,38]. 
In these papers, if a core’s private cache cannot provide 
the necessary capacity, blocks are spilled into the private 
caches of neighboring cores.

Recent papers have also proposed innovative networks 
for large caches. Jin et al. [20] propose a halo network 
that best meets the needs of a single-core D-NUCA cache, 
where requests begin at a cache controller and radiate away 
as they perform the search. Beckmann and Wood [6 ] pro­
pose the use of transmission lines to support low-latency 
access to distant cache banks. Muralimanohar and Bala- 
subramonian [31] propose a hybrid network with different 
wiring and topologies for the address and data networks to 
improve access times. Guz et al. [17] propose the Naha- 
lal organization to better manage shared and private data 
between cores.

A number of recent papers have proposed cache hierar­
chy organizations in 3D. Li et al. [24] describe the network 
structures required for the efficient layout of a collection 
of cores and NUCA cache banks in 3D. Some bodies of 
work implement entire SRAM cache structures on separate 
dies [21,25,27]. Loh [26] proposes the changes required 
to the memory controller and DRAM architecture if sev­
eral DRAM dies are stacked upon the CPU die to imple­
ment main memory. Ours is the first body of work that 
proposes reconfiguration across dies and combines hetero­
geneous technologies within a single level of cache.

Prior work on reconfigurable caches has been restricted 
to a single 2D die and to relatively small caches [3,34,47]. 
Some prior work [19,33,43] logically splits large cache ca­
pacity across cores at run-time and can be viewed as a form 
of reconfiguration.

3.1. P ro p o se d  N U C A  O rg a n iz a tio n

We first describe the basic model for access to the L2 
cache in our proposed implementation. As shown in Fig­
ure 1, the bottom die contains 16 cores. The proposed 
ideas, including the tree topology for the on-chip network, 
will apply to larger systems as well. We assume 3.5 m m 2 
area for each core at 32 nm technology, based on a scaled 
version of Sun’s Rock core [41]. Each die is assumed to 
have an area of around 60 m m 2. Each core has its own 
private L I data and instruction caches. An L I miss causes 
a request to be sent to the L2 cache implemented on the 
dies above. The SRAM die placed directly upon the pro­
cessing die is partitioned into 16 banks (we will later de­
scribe the role of the DRAM die). Based on estimates from 
CACTI 6.0 [32], a 1 MB SRAM cache bank and its asso­
ciated router/controller have an area roughly equal to the 
area of one core. Each bank may itself be partitioned into 
multiple subarrays (as estimated by CACTI 6.0) to reduce 
latency and power. Each bank is associated with a small 
cache controller unit and a routing unit. On an LI miss, the 
core sends the request to the cache controller unit directly 
above through an inter-die via pillar. Studies [16,?] have 
shown that high bandwidth vias can be implemented and 
these vias have pitch values as low as 4 pm  [16].

The L2 cache is organized as a static-NUCA. Four bits 
of the physical address are used to map a data block to 
one of the 16 banks. As a result, no search mechanism is 
required -  the physical address directly specifies the bank 
that the request must be routed to. Once an L2 cache con­
troller receives a request from the core directly below, it 
examines these four bits and places the request on the on- 
chip network if destined for a remote bank. Once the re­
quest arrives at the destination bank, the cache subarrays 
in that bank are accessed (more details shortly) and data is 
returned to the requesting core by following the same path 
in the opposite direction. The L2 tag maintains a directory 
to ensure coherence among L I caches and this coherence- 
related traffic is also sent on the on-chip network.

It must be noted that the baseline model described so 
far is very similar to tiled multi-core architectures that are 
commonly assumed in many papers (for example, [48]). 
These are typically referred to as logically shared, but phys­
ically distributed L2 caches, where a slice of L2 cache is 
included in each tile. The key difference in our model is 
that this slice of L2 is separated into a second SRAM die.

3.2. P ag e  C o lo rin g

An S-NUCA organization by itself does not guarantee 
low access times for L2 requests. Low access times can be 
obtained by ensuring that the data requested by a core is of­
ten placed in the cache bank directly above. Page coloring 
is a well-established OS technique that exercises greater
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to access portion | 

of L2 in DRAM 
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pillar per sector:
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DRAM sectors

Die containing 16 
SRAM sectors
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(not shown: one 
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5x5 router 
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On-chip tree network 
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SRAM die to connect 
the 16 sectors

Die containing 16 cores

Figure 1. Stacked 3D processor layout. The bottom die contains the 16 cores, the second die contains 16 SRAM banks, 
and the top die contains 16 DRAM banks. Inter-die via pillars (one for each bank) are used to implement vertical connections 
between cores and DRAM/SRAM banks. Horizontal communication happens on the on-chip tree network (shown on the 
right) implemented on the second die. There are no horizontal connections between cores (banks) on the bottom (top) die.

control on the values assigned to bits of the physical ad­
dress. Traditionally, page coloring has been employed to 
eliminate the aliasing problem in large virtually indexed 
caches. In the context of an S-NUCA cache, page coloring 
can be employed to influence the four bits of the physical 
address that determine the bank within the NUCA cache. 
If the entire L2 cache size is 16 MB (each bank is 1 MB) 
and is 4-way set-associative with 64 byte line size, a 64-bit 
physical address has the following components: 6  bits of 
offset, 16 bits o f set index, and 42 bits of tag. If the page 
size is 4 KB, the 12 least significant bits are the page off­
set and the 52 most significant bits are the physical page 
number. The four most significant bits of the set index are 
also part of the physical page number. These four bits can 
be used to determine the bank number. Since the OS has 
control over the physical page number, it also has control 
over the bank number.

For pages that are accessed by only a single core, it is 
straightforward to color that page such that it maps to the 
bank directly above the core. For pages that are accessed 
by multiple cores, the page must ideally be placed in a bank 
that represents the center-of-gravity of all requests for that 
page. Creating such a mapping may require page migration 
mechanisms and hardware counters to monitor a page’s ac­
cess pattern and cache bank pressure. These are non-trivial 
policies that are beyond the scope of this work. For now, 
we assume that mechanisms can be developed to closely 
match the page allocation as computed by an off-line ora­
cle analysis. In other words, the optimal cache bank for a 
page is pre-computed based on the center-of-gravity of re­
quests for that page from various cores. As a result, shared

data in multi-threaded workloads tend to be placed in the 
four banks in the center of the chip. We also devise policies 
to map a shared instruction (code) page either in the cen­
tral shared bank or as replicated read-only pages in each 
bank. We evaluate the following three (oracle) page col­
oring schemes (also shown in Figure 2). Note that in all 
these schemes, private pages are always placed in the bank 
directly above; the differences are in how shared data and 
instruction pages are handled.

• Share4:D+I: In this scheme, we employ a policy that 
assigns both shared data and instruction pages to the 
central four banks. The shared bank is selected based 
on the proximity to the core that has maximum ac­
cesses to that page. If the program has a high degree 
of sharing, then we expect the central four banks to 
have increased pressure. This may cause the central 
banks to enable their additional DRAM cache space.

• Rp:I + Share4:D : In this scheme, we color all shared 
data pages so they are mapped to central banks. We 
replicate shared instruction pages and assign them to 
each accessing core. This causes the bank pressure to 
increase slightly for all private banks as the working 
set size of instruction pages is typically very small. 
This improves performance greatly as code pages are 
frequently accessed in the last-level cache (LLC) in 
commercial workloads.

• Sharel6:D+I: In order to uniformly utilize the avail­
able cache capacity, we color all shared pages (data 
and code) and distribute them evenly across all 16 
banks. This page coloring scheme does not optimize

265



□ □ □  □ □ □ 1□ □ □ ■
H B B D 1□ □ □ ■
□  B S D 1□ □ n ■

□ □ | | □  □ □ □ 1□ □ □ ■
5

□

>hare4:D+l

Shared Data + 
Code

Rp:l + S hare4 :D

I----- 1 Shared
1-----1 Data

S h a r e l 6 :D+l

I----- 1 Replicated
1-----1 Code

Figure 2. Page Coloring Schemes

for latency for shared pages, but attempts to maximize 
SRAM bank hit rates.

Note that the above schemes may require minimal OS 
and hardware support. These schemes rely upon detection 
of shared versus private pages and code versus data pages.

3.3. R eco n fig u rab le  S R A M /D R A M  C ach e

As described, the L2 cache is composed of 16 banks 
and organized as an S-NUCA. Each bank in the SRAM die 
has a capacity of 1 MB. If the threads in a core have large 
working sets, a capacity of 1 MB may result in a large miss 
rate. Further, centrally located banks must not only service 
the local needs of their corresponding cores, they must also 
accommodate shared pages. Therefore, the pressures on 
each individual bank may be very different. One possibil­
ity is to monitor bank miss rates and re-color some pages so 
they spill into neighboring banks and release the pressure 
in “popular” banks. Instead, we propose a reconfigurable 
cache that takes advantage of 3D stacking to seamlessly 
grow the size of a bank in the vertical dimension. This 
allows the size of each bank to grow independently with­
out impacting the capacity or access time of neighboring 
banks. Many proposals of 2D reconfigurable caches al­
ready exist in the literature: they allow low access times 
for small cache sizes but provide the flexibility to incor­
porate larger capacities at longer access times. The use of 
3D and NUCA makes the design of a reconfigurable cache 
especially attractive: (i) the spare capacity on the third die 
does not intrude with the layout of the second die, nor does 
it steal capacity from other neighboring caches (as is com­
monly done in 2D reconfigurable caches [3,47]), (ii) since 
the cache is already partitioned into NUCA banks, the in­
troduction of additional banks and delays does not greatly 
complicate the control logic, (iii) the use of a third dimen­
sion allows access time to grow less than linearly with ca­
pacity (another disadvantage of a 2D reconfigurable cache).

While growing the size of a bank, the third die can im­
plement SRAM subarrays identical to the second die, thus 
allowing the bank size to grow by a factor of two. But 
reconfiguration over homogeneous banks does not make

much sense: the added capacity comes at a trivial latency 
cost, so there is little motivation to employ the smaller 
cache configuration. Reconfiguration does make sense 
when employing heterogeneous technologies. In this case, 
we advocate the use of a third die that implements DRAM 
banks, thus allowing the bank size to grow by up to a factor 
of nine1. By stacking a single DRAM die (instead of eight 
SRAM dies), we provide high capacity while limiting the 
growth in temperature and cost, and improving yield. Since 
DRAM accesses are less efficient than SRAM accesses, dy­
namic reconfiguration allows us to avoid DRAM accesses 
when dealing with small working sets.
Organizing Tags and Data.

The SRAM bank is organized into three memory arrays: 
a tag array, a data array, and an adaptive array that can act 
as both tag and data arrays. As with most large L2s, the 
tags are first looked up and after the appropriate way is 
identified, the data subarray is accessed. Assuming that 
each block is 64 bytes and has a 32 bit tag (including direc­
tory state and assuming a 36-bit physical address space), 
the corresponding tag storage is 64 KB. The use of DRAM 
enables the total bank data storage to grow to 9 MB, re­
quiring a total 576 KB of tag storage. Since tags are ac­
cessed before data and since SRAM accesses are cheaper 
than DRAM accesses, it is beneficial to implement the tags 
in SRAM. As a result, 512 KB of SRAM storage that previ­
ously served as data sub array must now serve as tag subar­
ray. Compared to a typical data array, a tag array has addi­
tional logic to perform tag comparison. The data sub-array 
has more H-tree bandwidth for data transfer compared to 
its tag counterpart. To keep the reconfiguration simple, the 
proposed adaptive array encompasses the functionalities of 
both tag and data array.
Growing Associativity, Sets, Bloek-Size.

The increased capacity provided by DRAM can man­
ifest in three forms (and combinations thereof): (i) in­
creased associativity, (ii) increased number of sets, and (iii) 
increased block size.

1 Published reports claim a factor of eight difference in the densities of 
SRAM and DRAM [40],
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Configuration Access time (ns) Total Energy per access(nj) Area (m m 2)
Baseline SRAM 1 MB bank 3.13 0.699 2.07

Reconfigurable cache (ways) DRAM 6.71 1.4 3.23
Reconfigurabie cache (sets) DRAM 6.52 1.36 2.76

Reconfigurable cache (block size) DRAM 5.43 51.19 1.44

Table 1. Access time, energy, and area for various cache configurations at a 4 GHz clock derived from [32].

The first form of reconfiguration allows the bank to go 
from 4-way to 34-way set associative. 32 data ways are im­
plemented on the DRAM die and two of the original four 
data ways remain on the SRAM die after half the data sub­
arrays are converted to tag subarrays. Such an approach 
has the following advantages: (i) dirty lines in the two 
ways in the SRAM die need not be flushed upon every re­
configuration, (ii) every set in the bank can have two of 
its ways in relatively close proximity in SRAM. The pri­
mary disadvantage is the power and complexity overhead 
of implementing 34-way set-associativity. We can optimize 
the cache lookup further by moving the MRU block into 
the two SRAM ways on every access in the hope that this 
will reduce average access times. With this policy, a hit in 
DRAM space will require an SRAM and DRAM read and 
write. In our evaluations, we employ reconfiguration of the 
number of ways, but do not attempt the optimization where 
MRU blocks are moved into SRAM.

The second form of reconfiguration causes an increase 
in the number of sets from 2K to 16K (we will restrict 
ourselves to power-of-two number of sets, possibly lead­
ing to extra white space on the top die). When cache size 
is increased, nearly every dirty cache line will have to be 
flushed. When cache size is decreased, lines residing in 
the SRAM data subarrays need not be flushed. The large 
cache organization has a more favorable access time/power 
for a fraction of the sets that map to SRAM data subarrays. 
The page coloring mechanism could attempt to color criti­
cal pages so they reside in the sets that map to SRAM.

The third form of reconfiguration increases the block 
size from 64 bytes to 512 bytes (again, possibly resulting 
in white space). Note that this approach does not increase 
the tag space requirement, so 1 MB of data can be placed 
in SRAM, while 7 MB is placed in DRAM. This has the 
obvious disadvantage of placing higher pressure on the bus 
to main memory and also higher energy consumption for 
accesses. While re-configuring the number of sets or block 
size, care must be taken to not change the address bits used 
to determine the bank number for an address.

Thus, there are multiple mechanisms to reconfigure the 
cache. The differences are expected to be minor unless 
the application is highly sensitive to capacity ( 8  MB ver­
sus 8.5 MB) and memory bandwidth. While some mech­
anisms can escape flushing the entire cache, these savings 
are relatively minor if cache reconfiguration is performed 
infrequently. In our evaluations, we only focus on the first 
reconfiguration approach that changes the number of ways.

It is worth noting that banks in the DRAM die are laid

out very similar to banks in the SRAM die. Our estimates 
for DRAM delay, power, and area are based on CACTI-
6.0 and discussions with industrial teams. Table 1 summa­
rizes the delay, power, and area of the considered organiza­
tions. The DRAM banks can also be statically employed as 
a level-3 cache. However, this would significantly reduce 
the size of the SRAM L2 cache as 0.5 MB space on the 
second die would have to be designated as L3 tags. This 
may have a negative impact for several applications with 
moderate working-set sizes (not evaluated in this paper). 
It will also increase latencies for L3 and memory accesses 
because tags in multiple levels have to be sequentially nav­
igated.

Having described the specific implementation, the fol­
lowing additional advantages over prior 2D designs [3,47] 
are made clear: (i) a dramatic 8 x increase in capacity is 
possible at a minor delay overhead, (ii) only two configura­
tions are possible, enabling a simpler reconfiguration pol­
icy, (iii) each cache bank can reconfigure independently, 
thus avoiding a flush of the entire L2 all at one time. 
Reconfiguration Policies.

We next examine the design of a reconfiguration pol­
icy. The frequency of reconfiguration is a function of the 
overheads of a cache flush and cache warm-up. Up to 16K 
cache lines will have to be flushed or brought in upon every 
reconfiguration. While the fetch of new lines can be over­
lapped with execution, cache flush will likely have to stall 
all requests to that bank. A state-of-the-art memory system 
can handle a peak throughput of 10 GB/s [36]. A com­
plete flush will require a stall of roughly 100 K cycles. For 
this overhead to be minor, a reconfiguration is considered 
once every 10 M cycles. Reconfiguration policies are well- 
studied (for example, [2,4,13,14]). We design two simple 
policies that are heavily influenced by this prior work.

Every 10 M cycles, we examine the following two met­
rics for each cache bank: bank miss rate and usage. A 
high bank miss rate indicates the need to grow cache size, 
while low usage indicates the need to shrink cache size. 
It is important to pick a low enough threshold for usage, 
else the configurations can oscillate. Usage can be deter­
mined by maintaining a bit per cache block that is set upon 
access and re-set at the start of every 10 M cycle interval 
(this is assumed in our simulations). There also exist other 
complexity-effective mechanisms to estimate usage [33].

In an alternative policy, various statistics can be main­
tained per bank to determine if the application has moved 
to a new phase (a part of application execution with differ­
ent behavior and characteristics). If a substantial change
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in these statistics is detected over successive large time in­
tervals (epochs), a phase chase is signaled. Upon a phase 
change, we simply implement each of the two configura­
tion choices and measure instruction throughput to deter­
mine which configuration is better (referred to as explo­
ration). Each exploration step has to be long enough to 
amortize cache warm-up effects. The optimal organiza­
tion is employed until the next phase change is signaled. 
If phase changes are frequent, the epoch length is doubled 
in an attempt to capture application behavior at a coarser 
granularity and minimize the overheads of exploration.

Since these policies are strongly based on prior work 
(most notably [4]), and have been shown to be effective in 
other domains, we don’t focus our efforts on evaluating the 
relative merits o f each of these policies. Because of the 
large sizes of the caches and epochs, extremely long simu­
lations will be required to observe any interesting artifacts 
with regard to program phases. Our simulations model the 
first reconfiguration policy that chooses to grow or shrink 
cache size based on miss rate and usage, respectively. In 
practice, we believe that the second reconfiguration policy 
may be more effective because it avoids the overheads of 
having to keep track of cache line usage.

3.4. In te rc o n n e c t D esign

Most papers on NUCA designs or tiled multi-cores have 
employed grid topologies for the inter-bank network. Grid 
topologies provide high performance under heavy load and 
random traffic patterns. This was indeed the case for prior 
D-NUCA proposals where data could be placed in one 
of many possible banks and complex search mechanisms 
were required to locate data. However, with the 3D re- 
configurable cache hierarchy and the use of S-NUCA com­
bined with page coloring, the traffic patterns are typically 
very predictable. For multi-programmed workloads, most 
requests will be serviced without long horizontal transfers 
and for multi-threaded workloads, a number of requests 
will also be serviced by the four central banks. There will 
be almost no requests made to non-local and non-central 
banks. With such a traffic pattern, a grid topology is clearly 
overkill. Many studies have shown that on-chip routers are 
bulky units. They not only consume a non-trivial amount 
of area and power [23], commercial implementations also 
incur delay overheads of four [23] to eight [30] cycles. 
Hence, it is necessary that we find a minimal topology that 
can support the required traffic demands. Given the nature 
of the traffic pattern, where most horizontal transfers radi­
ate in/out of the central banks, we propose the use of a tree 
topology, as shown in Figure 1. This allows the use of four 
5x5 routers in the central banks and one 4x4 router as the 
root. In addition, the 1 2  leaf banks need buffers for incom­
ing flits and some control logic to handle flow control for 
the outgoing flits. Note that this network is only employed 
on the second die -  there are no horizontal links between 
banks on the first and third dies.

4.1. M eth o d o lo g y

We use a trace-driven platform simulator ManySim [49] 
for our performance simulations. ManySim simulates the 
platform resources with high accuracy, but abstracts the 
core to optimize for speed. The core is represented by a se­
quence of compute events (collected from a cycle-accurate 
core simulator) separated by memory accesses that are in­
jected into the platform model. ManySim contains a de­
tailed cache hierarchy model, a detailed coherence protocol 
implementation, an on-die interconnect model and a mem­
ory model that simulates the maximum sustainable band­
width specified in the configuration. All our simulation pa­
rameters are shown in Table 2.

CACT1-6.0 [32] is employed for estimating cache area, 
access latency, and power. We assume a 32nm process for 
our work. We derive network router power and area over­
heads from Orion [45], Each router pipeline is assumed to 
three stages and link latency is estimated to be three cy­
cles for the grid and tree topologies. We also incorporate a 
detailed network model into the ManySim infrastructure.

As an evaluation workload, we chose four key multi­
threaded commercial server workloads: TPC-C, TPC-E, 
SPECjbb, and SAP. The bus traces for these workloads 
were collected on a Xeon MP platform where 8  threads 
were running simultaneously with the last level cache dis­
abled. To simulate our 16-core system, we duplicate the 
8 -thread workload to run on 16 cores. This results in true 
application sharing only between each set of 8  cores. We 
do offset the address space of each 8 -thread trace such that 
there is no address duplication. Thus, our network laten­
cies for shared pages in the baseline are lower as we do 
not access the most distant bank, and we will likely see 
better improvements for a true 16-thread workload. We 
run these workloads for approximately 145 million mem­
ory references. Since we assume an oracle page-coloring 
mechanism, we annotate our traces off-line with the page 
color and append the page color bits to the address.

4.2. B ase lin e  O rg a n iz a tio n s

We consider three different baseline organizations with 
varying number of dies:
Base-No-PC: A chip with two dies: the bottom die has 16 
cores and the second die has 16 1 MB L2 SRAM cache 
banks organized as S-NUCA but with no explicit page col­
oring policy. All the banks have a roughly equal probability 
of servicing a core’s request. A grid topology is assumed 
for the inter-bank network.
Base-2x-No-PC: A chip with three dies: the bottom die 
has 16 cores and the second and third dies contain SRAM 
L2 cache banks organized as S-NUCA (no explicit page 
coloring policy). This organization simply offers twice the 
cache capacity as the previous baseline at the expense of an 
additional die.

4. Results
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16 Private M LC Cache banks Each 128KB 4-way 5-cyc 16 LLC SRAM NUCA Cache Banks 1MB 4-way. 13-cyc
SRAM Active power 0.3 W Page Size 4KB

16 DRAM sector Each SMB 32-way 30-cyc DRAM Active Power 0.42W
Core/Bank Area 3 .5m m ‘ Chip Footprint 56 rmn2

Process node 32nra Frequency 4 GHz

Table 2. Simulation Parameters
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Figure 3. Workload characterization: sharing trend 
in server workloads

Base-3-level: The DRAM die is used as an L3 UCA cache. 
The tags for the L3 cache are implemented on the SRAM 
die, forcing the SRAM L2 cache size to shrink to 0.5 MB. 
No page coloring is employed for the L2.

4.3. W o rk lo ad  C h a ra c te r iz a tio n

We first characterize the server workloads to understand 
their implications on our proposed techniques. Figure 3 
shows the percentage of shared pages in all the workloads. 
All workloads exhibit high degree of code page sharing. 
SPECjbb has poor data sharing characteristics and TPC- 
E and SAP have high data sharing charateristics. We also 
observed that when threads share code pages, the degree 
of sharing is usually high. This implies that the “Rp:I + 
Share4:D” model would have to replicate code pages in 
most cache banks. However, the working set size of code 
pages is very small compared to data pages (0 .6 % on av­
erage), but the relative access count of code pages is much 
higher (57% on average).

4.4. E v a lu a tio n  o f  P ag e  C o lo rin g  Schem es

In order to isolate the performance impact of page- 
coloring schemes, we study the effect of these schemes as 
a function of cache capacity. We use IPC and miss-ratio as 
the performance metrics. We assume a tree-network topol­
ogy and vary each cache bank’s capacity. All numbers are 
normalized against the 1 MB baseline bank that employs no 
page coloring (Base-No-PC), i.e., even private pages may 
be placed in remote banks.

Figure 4 shows the performance effect of various 
page-coloring schemes and Figure 5 shows the corre­
sponding miss rates. For cache banks smaller than

2MB, Share4:D+I and Rp:I+Share4:D perform worse than 
Share16:D+I and no page-coloring case. Since Share4:D+I 
and Rp:I+Share4:D map all shared pages to the central 
four banks, these banks suffer from high pressure and high 
miss rates due to less cache capacity. However, since 
Share16:D+I distributes shared pages across all banks, it 
does not suffer from bank pressure. We also observe that 
Share16:D+I performs slightly better (7%) than the base 
case (no page coloring) as it is able to optimize access la­
tency for private pages for small cache banks.

For a larger cache bank (8 MB), Rp:I+Share4:D per­
forms the best compared to all the other schemes. The over­
all performance improvement in Share4:D compared to no 
page-coloring (1MB) baseline is 50%. Rp:I+Share4:D has 
higher performance as it has lower access latency for all 
the code pages and does not suffer from high bank pres­
sure in spite of code replication overheads due to available 
cache capacity. We observe Share4:D+I and Share16:D+I 
to have comparable performance. We notice that perfor­
mance of Share16:D+I does not scale with cache capacity 
as much. Thus, when cache capacity is not a constraint, 
Rp:I+Share4:D delivers the best performance compared to 
other schemes and makes an ideal candidate for SRAM- 
DRAM cache.

With regards to workloads, SPECjbb always performs 
better than the baseline (with no page-coloring) irrespec­
tive of the page coloring scheme employed. Since SPECjbb 
has low degree of application sharing, it does not suffer 
from pressure on shared banks and performs better due 
to communication optimization enabled by page-coloring. 
However, SAP and TPC-E have poor performance due to 
high bank pressure for small sized banks as they have high 
degree of sharing. Figure 5 further affirms our observa­
tions and shows miss ratios for various schemes. Clearly, 
SPECjbb has low miss ratio compared to other workloads. 
As expected for most cases, Rp:I+Share4:D has higher 
miss-ratio due to additional conflicts introduced by code 
replication.

4.5. R e co n fig u rab le  S R A M -D R A M  C ach e

We next evaluate our SRAM-DRAM reconfigurable 
cache. If an SRAM bank encounters high bank pressure, 
it enables the DRAM bank directly above. The total avail­
able cache capacity in each combined SRAM-DRAM bank 
is 8.5 MB with 0.5 MB tag space. However, we assume 
the total per-bank capacity to be 8 MB to ease performance 
modeling. We compare our reconfigurable cache against 
Base-No-PC and Base-2x-No-PC. Figure 6  shows IPC for 
various configurations and baselines. When the reconfigu-
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Figure 4. Performance Evaluation of Page Coloring schemes as a function of Cache Capacity

Figure 5. Miss Ratio of Page Coloring schemes as a 
function of Cache Capacity Figure 6. Performance Evaluation of SRAM-DRAM 

cache

ration heuristics are enabled, the model is pre-pended with 
R , and with no dynamic reconfiguration (the DRAM banks 
are always enabled), the model is pre-pended with NR. We 
assume 1 0 0 , 0 0 0  cycles penalty for flushing the caches dur­
ing reconfiguration.

We observe that all workloads on average perform 45­
62% better than Base-No-PC when DRAM banks are 
switched on all the time and 20-35% better compared 
to Base-2x-No-PC depending upon the page-coloring 
scheme. When compared to Base-3-level, our NR cases 
perform 11-26% better depending upon the page coloring 
scheme. Our best case performance improvement with re­
configuration heuristic enabled when compared to Base-3- 
level is 19%.

With our reconfiguration heuristic, we observe that

DRAM banks are switched on all the time for central 
shared banks in the Rp:I+Share4:D case. The non-central 
banks in this model and occasionally in Share4:D+I have 
DRAM switched off due to low bank pressure. Amongst 
all the page-coloring schemes, Rp:I+Share4:D yields the 
best performance with and without reconfiguration heuris­
tic. Since we stall all cores during reconfiguration, the 
overheads of our heuristic lower the overall performance 
gain compared to the best case performance with DRAMs 
enabled all the time. However, we expect this overhead to 
reduce if the workloads run long enough to amortize the 
cost of reconfiguration.

Figure 7(a) illustrates the average percentage of time 
DRAM banks are switched off for each of the cache banks
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Figure 8. Average percentage of hits in SRAM/DRAM ways tor R-Rp:l+Share4:D and NR-Rp:l+Share4:D

for the Rp:I+Share4:D scheme. The DRAM banks are 
switched off most of the time for non-central banks but 
shared central banks have DRAM switched on all the time. 
Amongst various workloads, we found that due to low shar­
ing behavior in SPEC.JBB, we have high capacity pressure 
even on non-central banks for this workload. Thus, it has 
its DRAM turned on most of the time for all page-coloring 
schemes. SAP workload has multiple program phases lead­
ing to maximum number of reconfigurations compared to 
all the workloads. We show the overall bank access distri­
bution for different page coloring schemes in Figure 7(b). 
Share4:D+I and Rp:I+Share4:D have maximum accesses 
to shared banks (5,6,9,10) whereas Share16:D+I has ac­
cesses distributed evenly amongst all the banks.

Figures 8 (a) and 8 (b) show the average distribution of 
hits in SRAM and DRAM ways for all the cache banks 
for Rp:I+Share4:D schemes with and without reconfig­
uration, respectively. Without dynamic reconfiguration, 
the constant enabling of DRAM banks implies that sev­
eral L2 look-ups are serviced by the slower and energy- 
inefficient DRAM banks. Dynamic reconfiguration ensures 
that DRAM banks are looked up only when bank pressure 
is high (typically only in central banks). Even the 50% of

accesses to DRAM ways in these central banks can per­
haps be reduced if we employ some MRU-based heuristics 
to move blocks from DRAM to SRAM ways.

4.6. In te rc o n n e c t E v a lu a tio n

We find that our page-coloring schemes optimize the 
network traffic latency significantly enough that the type of 
network employed does not influence performance much. 
We expect the performance improvement to be more sig­
nificant in network topologies with greater number of cores 
and also where there is true sharing across all nodes. The 
tree topology performs 2 % better than the grid topology in 
our 16-core simulations with page-coloring enabled. With 
higher wire and router delays, we expect the performance 
impact to be more significant. The use of the tree network 
does lower overall router power overheads due to fewer 
routers. We observe a 48% reduction in overall network 
power, compared against a baseline with no page coloring 
and a grid topology.

The following statistics help explain the power improve­
ments. Figure 9 demonstrates the bank access distribution 
in a tree/grid network. Sibling  refers to a bank that is one 
hop away on the tree topology, local refers to the core's
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own bank, and D istant refers to communication with all 
other banks. We observe that the baseline with no page 
coloring sends most o f the requests to distant banks and 
Rp:I+Share4:D maximizes local requests due to code repli­
cation.

We also carried out an initial analysis of thermal be­
havior with Hotspot 4.1 [37] augmented with 3D param­
eters [26], Consistent with other papers on 3D stacking of 
SRAM and DRAM, we observed an increase in tempera­
ture of about 7 °C.

5. Conclusions
The central idea in this paper is the design of a cache that 

enables easy reconfigurability across multiple dies. This 
central idea is placed in the context of two related essential 
elements of large cache organization (OS-based page color­
ing and on-chip network design). OS-based page coloring 
not only introduces variation in bank working sets, it also 
enforces a very specific traffic pattern on the network. We 
take advantage of 3D technology to implement a heteroge­
neous reconfigurable cache that addresses the problem of 
variable working sets by selectively providing high capac­
ity at low cost. We advocate a tree topology for the on-chip 
network because (i) the use of page coloring and S-NUCA 
avoids search across all banks, (ii) page coloring forces re­
quests to be serviced by local nodes or radiate in/out of cen­
tral banks, and (iii) reconfiguration prevents a bank from 
having to spill its data into neighboring banks. The pro­
posed reconfigurable cache model improves performance 
by up to 19% over the best baseline, along with 48% sav­
ings in network power. Our results show that commercial 
workloads exercise variable pressures on cache banks after 
page coloring, requiring a dynamic enabling/disabling of 
DRAM space. The performance of these workloads is veiy 
sensitive to cache capacity and quick access to instruction 
(code) pages. This requires smart page coloring mecha­

nisms as well as the large L2 capacity afforded by dynamic 
enabling of DRAM banks.

As future work, we plan to improve our reconfigura­
tion heuristics by considering energy/power metrics. We 
also plan to evaluate other workloads including multi­
programmed and parallel emerging workloads. We will 
also consider ways to maximize SRAM access in our pro­
posed SRAM-DRAM cache.
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