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Abstract 

Uintah is a component-based visual problem solving environ­
ment (PSE) designed to specifically address the unique prob­

lems inherent in running massively parallel scientific compu­

tations on terascale computing platforms. In particular, de­
velopment of the Uintah system is part of the C-SAFE [2] ef­

fort to study the interactions between hydrocarbon fires, struc­

tures and high-energy materials (explosives and propellants). 

In this paper we describe methods for generating meaning­

ful peiformance measurements for the Uintah PSE running on 

the SGI Origin 2000 multiprocessor architecture (these meth­
ods are applicable to many other applications.) These tech­

niques include utilizing the non-intrusive peiformance coun­
ters built into the RIOk and R12k processors, controlling pro­

cess placement, controlling memory layout, and utilization of 
a task graph approach to specifying and solving the problem. 

INTRODUCTION 

Computational scientists continue to push the capa­
bilities of current computer hardware to its limits in or­
der to simulate complex real world phenomena. These 
simulations necessitate the use of ever increasing com­
putational resources. C-SAFE's [2] Uintah PSE (Prob­
lem Solving Environment) is a massively parallel, com­
ponent based, problem solving environment designed to 
simulate large-scale scientific problems, while allowing 
the scientist to interactively visualize, steer, and verify 
his simulation results. The Uintah PSE is being devel­
oped specifically to study interactions between hydro­
carbon fire, structures, and high-energy materials (ex­
plosives and propellants). 

Solving a typical C-SAFE problem involves running 
multiple large-scale physically coupled simulations. For 
example, a f1uid-dynamics-based combustion model can 
be coupled with a particle-based solid mechanics simu­
lation to investigate the effects of fire on metal struc­
tures. Within the duration of the project, these models 
may employ representations involving 109 finite volume 

cells and 108 solid material points. In order to han­
dle the large number of operations necessary to process 
such immense datasets, we have designed the Uintah 
Parallelism Infrastructure (UPI). The UPI is the foun­
dation upon which the simulation components are built 
and handles the difficult task of balancing between sim­
plicity and efficiency. 

In this paper we begin by introducing our target plat­
form, the SGI Origin 2000. Due to fluctuations of mea­
surements on this platform, we spend some time detail­
ing various architectural barriers to repeatable measure­
ment and the ways we have addressed them. We then 
collect statistics for an example UPI computation in­
cluding cache utilization, cycle counts, and retired float­
ing point instruction counts. We collect similar statistics 
for the UPI data transport and scheduling mechanisms. 
This allows us to understand instantaneous resource uti­
lizations and bottlenecks at a fine granularity through­
out an entire distributed computation. We present the 
results of this instrumentation and summarize lessons 
learned to date about where the difficulties in irregular 
computations such as ours truly lie. 

INSTRUMENTING THE ORIGIN 2000 

The initial target platform of the Uintah PSE is "nir­
vana," the SGI Origin 2000 (02k) cluster at Los Alamos 
National Labs [1]. Despite the nondeterminism of per­
formance measurements on the 02k architecture [7], we 
have found it possible to perform meaningful and re­
peatable measurements of architectural events with the 
hardware performance counters built into the RlOk pro­
cessor. With careful attention to eliminating sources of 
nondeterminism we can, for example, repeatably mea­
sure cycle counts to an accuracy of a few cycles per ten 
million. 

The Origin 2000 [8] is a cache-coherent non-uniform 
memory access (ccNUMA) distributed shared memory 
architecture with up to 128 processors per shared ad­
dress space, and pure message passing between shared 
address spaces. Machines we measured use MIPS RlOk 
[5] and R12k processors, each of which has separate 32k 
2-way associative instruction and data caches. A node 
consists of exactly two processors, which share a unified 
second-level cache typically 4 or 8 megabytes in size, 



c c 

c c 

University of Utah Institutional Repository 
Author Manuscript 

cache coherency hardware and directory memory, and 
main memory of up to 4 gigabytes. A router connects 
two nodes to a CrayLink mesh. Routers are typically 
arranged on the vertices of a 4-cube (See figure 1). 

~ Router • Dual Processor Node 

- -----~?- - ---

Figure 1: A Typical 64-processor Origin 2000 

The R10k and R12k processor architectures include 
an event counter facility [10] that can be used to non­
intrusively measure statistics such as various kinds of 
cache misses, loads and stores, branch frequencies and 
mispredictions, elapsed cycles, various instruction counts, 
floating point progress cycles, TLB misses, cache write­
backs, and other interesting architectural events. Mea­
surements collected from these counters allow us to un­
derstand in some detail the cache behavior and memory 
pressures exerted by Uintah tasks and the UPI infras­
tructure itself. 

Our test machines run Irix 6.S.lOf, which manages 
resources as a symmetric multiprocessing UNIX envi­
ronment. The bulk of commonly reported difficulties 
collecting repeatable event counts stem from the non­
deterministic thread migration and memory placement 
policies natural to such an environment. 

For example, consider a do-nothing loop that occa­
sionally queries the identity of the processor on which it 
is running via the schedctl (SETHINTS, ... ) mech­
anism and prints a message any time execution moves to 
a new processor. This program will report many move­
ments per second with no predictable pattern, even on a 
completely unloaded system. The Irix scheduler makes 
thread movement decisions upon return from system calls. 
Though threads that do not make system calls will typ­
ically not migrate this often, distributed computations 
such as ours that use MPI or other interprocess com­
munication mechanisms must, by nature, make system 
calls. 

Mapping pages using mmap and examining their phys­
icallocation with the syssgi (SYS_PHYSP ... ) mech­
anism reveals that Irix allocates physical pages from the 
nodes of the 02k in a round-robin fashion. Allocations 
of multiple processes interleave, yielding unpredictable 
per-process physical page distribution. Post-mortem ex-

amination of process page mappings with the dlook 

tool reveals that physical pages are typically scattered 
among the nodes of a system in a haphazard fashion. 

Uncontrolled page placement in a non-uniform mem­
ory access architecture leads to memory access laten­
cies that vary wildly from one run of an application to 
the next. Uncontrolled thread movement leads to la­
tencies which vary wildly within a single run. Because 
RlOk and R12k processors have deep instruction issue 
windows and employ branch speculation, small varia­
tions in access latencies can have large effects on both 
instruction execution order and the speculative compo­
nents of the instruction stream. The effects of variable 
memory latencies thus can cause changes in cache evic­
tion decisions and can cause wildly varying patterns of 
competition for processor functional units. 

Because typical C-SAFE working sets dwarf caches, 
these behaviors result in unrepeatable event counts. Un­
less an application takes great care to precisely control 
its own physical page and thread placements, its timing 
results will provide limited incite. Fortunately, Irix pro­
vides mechanisms to achieve this control [4]. 

Controlling Thread Placement and Scheduling 

The Irix process scheduler supports a notion called 
"mustrun", which designates that a process is only al­
lowed to be scheduled on a specific processor. Nor­
mal users may designate processes as mustrun via the 
sysmp (MP..MUSTRUN, ... ) mechanism. Mustrun 
threads will run exclusively on the indicated processor, 
except in cases where the thread requests 110 to a device 
physically attached to another node. In this case the pro­
cess may execute on one of the processors of that other 
node while servicing the 110 request. Note that this does 
not occur for purely computational processes. 

Threads designated mustrun must still share their 
target processor with other user processes, unless that 
processor has been "isolated" with the mpadmin com­
mand. This command allows the superuser to designate 
a subset of a machine's processors as restricted to run­
ning only mustrun threads bound to those particular pro­
cessors. This allows us to, for example, eliminate cache 
effects of timesharing with other users' processes with­
out entirely sacrificing the convenience of a multiuser 
system. 

Irix also makes priority-based realtime scheduling 
policies available via the sched_setscheduler () 

mechanism. This facility allows designated processes 
to remove themselves from the normal UNIX timeshar­
ing scheduler and run uninterrupted until they voluntar­
ily yield control of the processor. By giving processes 
sufficiently high realtime priorities, it is possible to pre­
clude even most Irix kernel processes and device drivers 
from preempting a program. Of course, programs mak­
ing aggressive use of realtime scheduling classes must 
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carefully use Irix kernel services having lower priorities 
in order to avoid deadlock. 

Additionally, the mpadmin tool may be used to dis­
able the "clock scheduler" on particular processors, thus 
disabling timer interrupts and effectively making the nor­
mal timesharing scheduler on that processor nonpreemp­
tive. This mechanism used in conjunction with isolated 
processors and mustrun threads gives normal users simi­
lar benefits to realtime scheduling without requiring user 
programs to be specially privileged and without the dan­
ger of deadlock. 

Controlling Page Placement 

Irix provides dplace, a command-line tool that can 
be used to control thread placement and achieve per­
thread memory localization under the control of a "place­
ment file." The user specifies a collection of abstract 
"memories", each embodying a placement policy which 
may express place (a particular collection of "center" 
nodes on which to allocate), and notions of radius (dis­
tance in the NUMA interconnection graph from center 
nodes). The configuration file provides convenient syn­
tax to establish placement policies suitable for many al­
gorithm topologies. 

Like all convenient tools, dplace has its limita­
tions. Most important is the fact that thread counts and 
placement policies per thread are specified statically; a 
dynamic computation whose threads migrate to avoid 
data transfer or in which threads die and are dynamically 
created cannot be effectively controlled with dplace. 
There are no mechanisms to allow optimization of inter­
thread communication by topological awareness. Threads 
are named in the configuration file by the order in which 
they are created, which may require complex, fragile, 
unwritten cooperation between the dplace and appli­
cation to achieve a desired placement. 

The dplace tool is designed to improve the perfor­
mance of existing programs, which it effectively does. It 
is not suitable for use as the placement mechanism for a 
program designed to make very subtle and effective use 
of the machine or that has adaptive or dynamic behavior. 

The alternative to dplace is for an application to 
dynamically place memory pages by making C func­
tion calls to the Memory Management Control Inter­
face (MMCI). [3] MMCI allows the creation of policy 
modules, which embody the same notions as the ab­
stract memories of the dplace placement file. Policy 
modules (PMs) specify desired page placement, physi­
cal size, RW page migration and RO page replication. A 
user may bind a PM's page placement policy to a partic­
ular set of memory locality descriptors (MLDs). MLDs 
may be bound to particular nodes' memories, memories 
within a specified radius or a particular node, or may 
bind to memories in particular topologies on whatever 
nodes are available. Any number of policy modules may 

be created and bound to arbitrary spans of a shared vir­
tual address space. Policy modules may also be made 
the stack and text default policies, causing subsequent 
stack and code pages to be allocated according to a spec­
ified policy. 

Thus, threads bound to particular processors can use 
memory on their processors' nodes under direct pro­
gram control, and are free to access other nodes' mem­
ories as required. An adaptive algorithm with dynamic 
memory usage and placement requirements may thus be 
crafted to manage communication on the router mesh 
and achieve deterministic, scalable performance. 

Using the RIOk Event Counters 

In the case of the processor event counters, Irix again 
provides a convenient command-line front-end, called 
pe r f e x, to profile programs. The tool can collect counts 
from particular event counters (up to two at a time), or 
can multiplex measurements of all 32 possible events, 
two at a time, switching every clock interrupt. 

Multiplexing counters in this way leads to poor re­
peatability, especially for short running programs, or 
programs with nonhomogeneous behaviors, like adap­
tive distributed message-passing (in some sense event­
driven) simulations. Further, perfex can only collect 
statistics for an entire program run. Therefore it is nec­
essary to instrument programs at a much finer granular­
ity, under the control of the application, in order to learn 
meaningful things about their behavior. 

A program has access to the event counters itself 
via the PIOC_EVCTRS ioctls on a thread's entry in 
/proc. Though it is cumbersome, a process may spec­
ify a subset of events for the kernel to count. The ker­
nel will multiplex the processor's counters if more than 
two events are specified. The overhead of invoking the 
ioctls varies from about 300-500 instructions with some 
unavoidable variation, an average value of this over­
head can be subtracted from measurements, but some 
noise remains. Alternatively a "measurement thread" 
can measure counters on other threads in the program. 
U sing a lightweight memory-based synchronization mech­
anism between these two threads can enable virtually 
noiseless measurements of a thread. 

Unavoidable Problems 

Despite all of this sophistication, there are some un­
avoidable factors which contribute to measurement noise 
in Irix. Most notable is the apparent lack of an easy way 
to isolate a node's physical memory from the rest of the 
system. Even on a node with two isolated processors, 
Irix may allocate kernel data structures and user pro­
grams to that memory. Additionally, Irix makes heavy 
use of shared libraries. With shared libraries, the phys­
ical pages holding that library's code may be scattered 
throughout the system. Newer versions of the MIPSpro 
compiler appear not to include static versions of libc. 
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This can lead to nondeterministic instruction load times 
on i-cache misses, with all the subtle microarchitectural 
effects thereof. 

Getting Good Measurements 

We have found that using mustrun threads on iso­
lated processors is necessary in order to achieve repeat­
able results. System load must be light to ensure that 
remote accesses to an isolated node's memory are rare. 
Neither disabling the clock scheduler on the isolated 
processors nor placing threads in a realtime scheduling 
class appear to provide noticeable benefit (at least on un­
loaded systems). Scheduling threads this way in combi­
nation with explicitly specifying all of a program's data 
and stack page locations with the MMCI interface lead 
to repeatable measurements of events for cache-resident 
instruction sequences. We have not yet experimented 
with static linking and controlled text page placement as 
mechanisms for eliminating instruction cache miss ef­
fects, but we expect doing so to extend measurement de­
terminism to whole runs of non-event-driven programs. 

UPI ABSTRACTIONS 

The Uintah Parallelism Infrastructure exposes flex­
ibility in dynamic application structure by adopting an 
execution model based on software or "macro" dataflow. 
Computations are expressed as directed acyclic graphs 
of tasks, each of which produces some output and con­
sumes some input (which is in turn the output of some 
previous task). These inputs and outputs are specified 
for each patch in a structured grid. Tasks extend a UPI 
data structure called the task graph, which represents 
imminent computation. 

In natural agreement with the functional nature of its 
pure macro-dataflow execution model, the UPI presents 
developers with a global single-assignment memory ab­
straction, with automatic data lifetime management and 
storage reclamation. Storage is abstractly presented to 
the scientific programmer as a dictionary mapping names 
to values. The value associated with a name can be 
written only once, and once written is communicated by 
UPI to all tasks awaiting that value. Values are typically 
array-structured. 

Communication is scheduled by a local scheduling 
algorithm that approximates the true globally optimal 
communication schedule. Because of the flexibility of 
single-assignment semantics, the UPI is free to execute 
tasks close to data or move data to minimize future com­
munication. 

The UPI storage abstraction is sufficiently high-level 
that it can be efficiently mapped onto both message­
passing and share-memory communication mechanisms. 
Threads sharing a memory can access their input data 
directly; single-assignment dataflow semantics eliminate 
the need for any locking of values. The UPI is free 
to optimize allocation of physical memory to minimize 

remote memory accesses. Threads running in disjoint 
address spaces communicate by message-passing proto­
col, and the UPI is free to optimize such communication 
by message aggregation. Tasks need not be aware of the 
transports used to deliver their inputs and thus UPI has 
complete flexibility in control and data placement to op­
timize communication both between address spaces and 
within the shared ccNUMA memory hierarchy of the 
Origin 2000. Solving this optimization problem for C­
SAFE simulations is difficult and is a subject of ongoing 
investigation. 
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Figure 2: An Example UP! Task Graph 

Consider the task graph in Figure 2. Ovals repre­
sent tasks, each of which is a simple array program and 
easily treated by traditional compiler array optimiza­
tions. Edges represent named values stored by UPI. 
Solid edges have values defined at each material point 
(Particle Data) and dashed edges have values defined at 
each grid vertex (Grid Data). Variables denoted with a 
prime C) have been updated during the time step. The 
figure shows the slice of the actual Uintah Material Point 
Method (MPM) task graph concerned with advancing 
Newtonian material point motion on a single patch for a 
single timestep. 

The idea of the dataflow graph as an organizing struc­
ture for execution is well known. The SMARTS dataflow 
engine that underlies the POOMA [6] toolkit shares goals 
and philosophy with UPI. SISAL compilers used dataflow 
concepts at a much finer granularity to structure code 
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generation and execution. Dataflow is a simple, natu­
ral and efficient way of exposing parallelism and man­
aging computation, and is an intuitive way of reason­
ing about parallelism. What distinguishes implementa­
tions of dataflow ideas is that each caters to a particular 
higher-level presentation. SMARTS caters to POOMA's 
C++ implementation and stylistic template-based pre­
sentation. The SISAL compiler was of course devel­
oped to support the SISAL language. UPI is imple­
mented to support a presentation catering to C++ and 
Fortran based mixed particle/grid algorithms on a struc­
tured adaptive mesh. The primary algorithms of impor­
tance to C-SAFE are the Material Point Method (MPM), 
and Eulerian CFD algorithms. Separating the common 
dataflow-related elements from the impacts of higher­
level presentation is an interesting problem worth fur­
ther study. 

UINTAH TASK PERFORMANCE 

Let us consider an example problem of solid me­
chanics. We will compute the deformation of a solid 
bar under tension using the Material Point Method [9] 
(MPM). MPM is a technique that models a solid as a 
collection of material points each having mass, posi­
tion, momentum, a localized stress tensor and a consti­
tutive model that captures local material properties in 
order to compute force responses to material deforma­
tions. The properties of material points constitute the 
algorithm's state across timestep boundaries. Within a 
timestep, a regular grid is superimposed on the prob­
lem domain and point properties are interpolated to it 
for the purpose of computing gradients and divergences 
of quantities within the solid. A full presentation of this 
algorithm is beyond the scope of this paper, so we con­
centrate here on the subset of the MPM tasks directly 
relating to a simulation of a bar under tension. 

In particular, as seen in Figure 2, we focus on the 
following six tasks: 

Interpolate Material Points to Grid (M2G) takes 
material points' mass, momenta and positions as inputs 
and performs trilinear interpolation of mass and mo­
menta of particles in the cells surrounding each grid 
point. Produces interpolated mass and momentum at 
each grid point as output. 

Compute Stress Tensor (CST) takes as input grid 
mass and momentum, along with stress, position and 
constituent model state at each material point. Com­
putes a velocity gradient at each material point from 
surrounding grid velocities then applies a Compressible 
Mooney-Rivlin constitutive model to compute material 
strain rate and updated stress at each grid point. Pro­
duces as output stress and new constitutive model state 
at each material point. 

Compute Internal Force (CIF) takes as input stress 
at each material point and material point positions. Pro-

duces interpolated force due to stress at each grid point. 
Solve Equations of Motion (SEM) takes material 

points' mass and position, and internal force at grid points 
as inputs. Interpolates force at each material point to 
compute acceleration, then interpolates these back to the 
grid. Produces acceleration at each grid point. 

Integrate Acceleration (IA) takes acceleration and 
velocity at each grid point. Produces new velocity at 
each grid point. 

Interpolate Grid to Material Points (G2M) takes 
new gridpoint velocities and accelerations, new particle 
positions and masses and computes new particle masses, 
velocities and positions. 

The specific MPM problem we have used during 
our performance analysis consists of placing a bar under 
tension. MPM simulates this situation by decomposing 
the bar into a large number of individual particles that 
are, in this example problem, evenly dispersed through­
out the spatial domain. The spatial domain is itself de­
composed into a number of rectangular patches contain­
ing an equal number of particles. It is these patches 
which form the granularity at which tasks are applied 
to the data. In obtaining each performance metric, we 
use a constant number of patches (100) while perform­
ing eleven different runs varying the number of particles 
per patch from 8 to 7200. 

Determining Optimal Patch Size 

Choosing the correct patch size is important in min­
imizing the wall clock time used in executing this task 
graph. Consider the task of interpolating material points' 
momenta to the grid. The material points in a patch 
are examined once each, and their momentum contribu­
tions to their surrounding grid vertices are accumulated. 
Material points are examined once, then discarded, a 
process which does not benefit from the presence of a 
cache. The vertices of the grid, however, are accessed 
repeatedly. When the amount of the grid data in the 
patch grows larger than the cache, conflict misses begin 
to decrease cache efficiency for grid vertices and FLOP 
throughput drops off. We can see this effect occurring 
around 2000 particles per patch in Figure 3 as (we be­
lieve) conflict misses begin to occur in Ll cache. 

One must also consider effects of the dataflow sys­
tem. With a small patch size, the overheads of task 
data structure construction, task scheduling, data name 
lookup and communication dominate the amount of com­
putation per patch. Consider Figure 4. Here, we mea­
sure for one time step the numer cycles each processor 
spends executing task code and the amount of cycles 
each spends making scheduling decisions and perform­
ing data movement. These numbers sum to match the 
wall clock time each processor spent on the timestep. 
For very small patch sizes, processors can spend up to 
half their time in UPI. 
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Figure 4: Processor Utilization vs. Patch Size 

On the other hand, if patches are too large then there 
are not enough to expose sufficient parallelism to keep 
processors from stalling waiting for runnable tasks. For­
tunately, patch sizes which maximize Ll utilization tend, 
in our experience, to avoid both of these pitfalls. 

CONCLUSION 

The Uintah Parallelism Infrastructure is a high-perf­
ormance facility for building scalable scientific applica­
tions. Using careful placement of processors and mem­
ory, we can minimize variability in application execu­
tion. Furthermore, we utilize processor features to en­
able the application to measure its own performance, in 
situ. Using these measurements we can control schedul­
ing of tasks on the parallel machine. 

Currently we are running computational fluid dy­
namics (CFD) (specifically fire simulations) on up to 
128 processors. The CFD code began as a serial Fortran 
code and has now been restructured on top of the UPI 
to achieve this parallelism. We are also running MPM 
simulations on up to 1024 processors. 

Future Work 

U sing the techniques discussed in this paper we have 
identified important performance bottlenecks in the Uin­
tah PSE. In the future we will use this information to 
improve the overall performance and scaling of Uintah. 
In addition, we plan to extend these techniques to pro­
vide repeatable application performance for MPI-based 
applications. 
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