
F r e d : A n A r c h i t e c t u r e f o r a S e l f - T i m e d D e c o u p l e d C o m p u t e r

William F. Richardson
Computer Science Department

University of Utah
Salt Lake City, UT 84112
w i l l r i c h @ c s .U ta h .e d u

Abstract

Decoupled computer architectures provide an effec
tive means o f exploiting instruction level parallelism. Self
timed micropipeline systems are inherently decoupled due
to the elastic nature o fth e basic FIFO structure, and may
be ideally su ited fo r constructing decoupled computer
architectures. F red is a self-tim ed decoupled, p ipelined
com puter arch itec ture based on m icrop ipelines. We
present the architecture o f Fred, with specific details on a
micropipelined implementation that includes support fo r
multiple functional units and out-oforder instruction com
pletion due to the s e l f timed decoupling.

1. Introduction

As com puter systems have grown in size and com
plexity, the difficulty in synchronizing the system compo
nents has also grown. For example, simply distributing the
clock signal throughout a large synchronous system can be
a major source o f complication. Clock skew is a serious
concern in a large system , and is becom ing significant
even w ithin a single chip. A t the chip level, more and
more o f the power budget is being used to distribute the
clock signal, while designing the clock distribution net
work can take a significant portion of the design time.

These symptoms have led to an increased interest in
asynchronous designs. General asynchronous circuits do
not use a global clock for synchronization, but instead rely
on the behavior and arrangement o f the circuit elements to
keep the signals proceeding in the correct sequence. How
ever, these circuits can be very difficult to design and
debug w ithou t som e add itional struc tu re to help the
designer deal with the complexity. While there are many
different asynchronous methodologies, one of the simplest
to design, test, and debug is the self-timed micropipeline
approach described by Sutherland [19], w hich avoids
clock-related timing problems by enforcing a simple com
m unication protocol betw een circuit elem ents. This is
quite different from traditional synchronous signaling con
ventions where signal events occur at specific times and

Erik Brunvand
Computer Science Department

University of Utah
Salt Lake City, UT 84112

e lb @ c s . U ta h . edu

must remain asserted for specific time intervals. In self
tim ed system s it is im p o rtan t only th a t the co rrec t
sequence o f signals be maintained. The timing o f these
signals is an issue of performance that can be handled sep
arately.

Experience has shown the difficulty o f writing paral
lel programs, yet most sequential programs have an (argu
a b ly) s ig n i f i c a n t a m o u n t o f in s t r u c t io n - l e v e l
parallelism [13.23]1. One way o f exploiting this parallel
ism is by decoupling the memory access portion o f an
instruction stream from the execution portion [7,24,5], By
performing the two operations independently, peaks and
valleys in each may be smoothed, resulting in an overall
performance gain.

Although decoupled architectures have been proposed
and built using a traditional synchronous design style, a
self-timed approach seems to offer many advantages. Typ
ically the independent com ponents o f the m achine are
decoupled through a FIFO queue of some sort. As long as
the machine components are all subject to the same system
clock, connecting the components through the FIFOs is
subject to only the usual problems of clock skew and dis
tribution. If, however, the components are running at dif
ferent rates or on separate clocks the FIFO must serve as a
synchronizing element and thus presents even more seri
ous problems.

The micropipeline approach is based on simple, self
timed, elastic, FIFO queues, which suggests that decou
pled computer architectures may be implemented much
more easily in a self-timed micropipeline form than with a
clocked design. Because the FIFOs are self-timed, syn
chronization o f the decoupled elements is handled natu
rally as a part o f the FIFO comm unication. The elastic
nature o f a micropipeline FIFO allows the decoupled units
to run at data-dependent speeds; producing or consuming
data as fast as possible for the given program and data.
Because the data are passed around in self-tim ed FIFO
queues, and the decoupled processing elements are run
n ing at th e ir ow n ra te , the degree o f deco u p lin g is

1. N icolau claim s there is lots o f parallelism available. Wall claim s
there's some, but not much.

C o p y r ig h t 1 9 9 6 T E E E R e p r o d u c t io n w i t h o u t p e rm is s io n is p r o h ib i t e d

mailto:willrich@cs.Utah.edu
mailto:elb@cs.Utah.edu

increased in this type of system organization, without the
overhead of a global controller keeping track o f the state
o f the decoupled components. This should allow increased
performance due to the increased decoupling and poten
tially faster local control of the components, however it
also means that exception handling must be considered
carefully. Bccausc cach o f the elements is running at its
own rate, and data arc possibly being transmitted through
FIFO queues when the exception is signaled, care must be
taken to make sure that the machine can proccss an excep
tion in a functionally prccisc way without losing state that
might be in the proccss of being modified by a different
component.

Fred~ is a self-timed decoupled, pipelined processor
architecture based on m icropipelines. Wc present the
architecture of Fred, with specific details on a micropipe
lined im plem entation that includes support for out-of
order instruction completion due to the decoupling, and a
model for functionally prccisc exception processing.

2. Asynchronous Processors

In spite o f the possible advantages, there have been
veiy few asynchronous processors reported in the litera
ture. Early work in asynchronous computer architecture
includes the Macromodule project during the early 7 0s at
W ashington University [3] and the self-tim ed dataflow
m achines b u ilt at the U niversity o f U tah in the late
70's [4],

A lthough these projects were successful in many
ways, asynchronous processor design did not progress
much, perhaps bccausc the circuit concepts were a little
too far ahead of the available technology. With the advent
o f easily available custom ASIC technology, either as
VLSI or FPGAs, asynchronous processor design is begin
ning to attract renewed attention. Some recent processor
projects include the following:

2.1 The CalTech Asynchronous Microprocessor

The first asynchronous VLSI processor was built by
A lain M artin 's group at CalTcch [I I] , It is completely
asynchronous, using (mostly) delay-insensitive circuits
and dual-ra il data encoding. The processor as im ple
mented has a small 16-bit instruction set, uses a simple
two-stage fetch-execute pipeline, is not decoupled, and
docs not handle exceptions. It has been fabricated both in
CMOS and GaAs [20],

2. Fred is not an acronym, and it doesn't mean anything. It's just a name,
like "SPARC" or “Alpha."

2.2 The NSR

The NSR (Non-Synchronous RISC) processor [2,15]
is structured as a five-stage pipeline where cach pipe stage
operates concurrently and communicates over self-timed
data channels in the style o f micropipelines. Branches,
jum ps, and memory acccsscs arc also decoupled through
the use of additional FIFO queues which can hide the exe
cution latency o f these instructions. The NSR was built
using FPGAs. It is pipelined and decoupled, but doesn 't
handle exceptions. It is a simple 16-bit processor with only
sixteen instructions, since it was built partially as an exer
cise in using FPGAs for rapid prototyping o f self-timed
circuits [I],

2.3 The Amulet

A group at M anchester has built a self-timed micro
pipelined VLSI implementation o f the ARM processor [6]
which is an extremely power-efficient commercial micro
processor. The Amulet is a real processor in the sense that
it mimics the behavior of an existing commercial proces
sor and it handles simple exceptions. It is more deeply
pipelined than the synchronous ARM, but it is not decou
pled (although it docs allow instruction prefetching), and
its prccisc exception model is a simple one. The Amulet
has been designed and fabricated. The performance of the
first-generation design is w ithin a factor o f two o f the
commercial version [14], Future versions o f Amulet arc
cxpcctcd to elose this gap.

2.4 The Counterflow Pipeline Processor

This is an innovative architecture proposed by a group
at Sun Microsystems Labs [18], It derives its name from
its fundamental feature, that instructions and results flow
in opposite directions in a pipeline and interact as they
pass. The nature of the Counterflow Pipeline is such that it
supports in a veiy natural way a form of hardware register
renaming, extensive data forwarding, and speculative exe
cution across control flow changes. It should also be able
to support exception processing.

A self-timed micropipeline-style implementation of
the CFPP has been proposed. The CFPP is deeply pipe
lined and partially decoupled, w ith m em ory acccsscs
launched and completed at different stages in the pipeline.
It can handle exceptions, and a self-timed implementation
which mimics a commercial RISC processor's instruction
set has been simulated. The potential o f this architecture is
intriguing, but still unknown.

3. The Fred Architecture

The Fred architecture is based roughly on the NSR

C o p y r ig h t 1 9 9 6 T E E E R e p r o d u c t io n w i t h o u t p e rm is s io n is p r o h ib i t e d

u 5E s
cft ̂
St

Figure 1. Fred block diagram
Black lines are primary data paths; gray lines are control paths.

All data and control paths are pipelined queues.

Data Memory

architecture developed at the University o f Utah [2,15], As
such it consists o f several decoupled independent pro
cesses connected by FIFO queues o f various lengths, an
approach which we believe offers a number of advantages
over a clocked synchronous organization. The Fred archi
tecture specifies the instruction set and the general layout
and behavior of the processor. Other extensions to the Fred
a rch itec tu re may be m ade. New instructions may be
added, and additional functional units may be incorpo
rated. The existing functional units may be rearranged,
combined, or replaced. The details o f the exception han
dling mechanism is not specified by the architecture, but
some means must be provided.

A pro to type o f Fred has been im plem ented in a
detailed VIIDL model. Figure 1 shows the overall organi
zation. Each box in the figure is a self-timed process com
m unicating via dedicated data paths rather than buses.
Each of these data paths, shown as wires in Figure 1, may
be pipelined to any desired depth w ithout affecting the
results o f the computation. Because Fred uses self-timed
micropipelines [19] in which pipeline stages communicate
locally only with neighboring stages in order to pass data,
there is no extra control circuitry involved in adding addi
tional pipeline stages. Because buses are not used, the cor

responding resource contention is avoided.
M ultiple independent functional units allow several

instructions to be in progress at a given time. Because the
machine organization is self-timed, the functional units
may take as long or short a time as necessary to complete
their function. One of the performance advantages o f a
self-timed organization is directly related to this ability to
finish an instruction as soon as possible, without waiting
for the nex t d iscre te c lock cycle . It also a llow s the
machine to be upgraded incrementally by replacing func
tional units w ith higher perform ance circuits after the
machine is built with no global consequences or retiming.
The perform ance benefits o f the improved circuits are
realized by having the acknowledgment produced more
quickly and thus the instruction that uses that circuit fin
ishes faster.

The VIIDL version chooses particular implementa
tions for each of the main pieces of Fred. For example, the
Dispatch unit is organized so as to dynamically reorder
instructions for issue, allowing instructions to be issued
out o f order, and to complete in yet a different order. This
is of particular interest in a self-timed processor where the
multiple functional units might take varying amounts of
time to compute a result. An individual functional unit

C o p y r ig h t 1 9 9 6 T E E E R e p r o d u c t io n w i t h o u t p e rm is s io n is p r o h ib i t e d

might even take different amounts o f time to compute a
result based on the data, which will lead naturally to out of
order instruction com pletion. The VIIDL prototype is
fully operational, and includes a functionally precise
exception m odel [16]. The tim ing and configuration
param eters can be adjusted for each com ponent o f the
design.

4. Instruction Set

Choosing an instruction set for a RISC processor can
be a complex task [9,8,10], Rather than attempt to design a
new instruction set from scratch, an instruction set from an
existing commercial RISC processor was adapted. Much
o f the Fred instruction set is taken d irectly from the
Motorola 88100 instruction set [12], However, Fred does
not implement all the 88100 instructions, and several o f
Fred’s instructions do not correspond to any instructions
of the 88100. The instructions, and the functional units
that execute them, are shown in Figure 2.

Functional Unit Instructions

Dispatch
doit, rtc, sync, trap.

Mega!

Logic
and, clr, ext, cxtu, ffl),

f fl, mak, mask, or,
rot, set, xor

Arithcmctic
add, addu, cmp, div,
divu, mul, sub, subu

Memory Id, Ida, st, xmcm

Branch
bit, blc, bnc, beq, bgc,
bgt, bbO, b b l, br, Idbr

Control
gctcr, mvbr, mvpc,

putcr

Figure 2. Fred instruction se t

5. Instruction Dispatch

Instruction Dispatch is, in some sense, the main con
trol unit for the Fred processor. It is responsible for keep
in g tra c k o f th e P ro g ra m C o u n te r , f e tc h in g new
instructions, issuing instructions to the rest of the proces
sor, and monitoring the instruction stream to watch for
data hazards. Instructions are fetched and issued to the rest
o f the m achine as quickly as possible. Instructions are
issued as soon as all dependencies are satisfied, without
further regard to program order Because different func
tional units may take different amounts of time to com
plete, individual instructions may complete in a different
order than which they were issued.

Deadlocking the processor is theoretically possible.
B ecause bo th the R I Q ueue and B ranch Q ueue (see
below) are filled and emptied via two separate instruc
tions, it is possible to issue an incorrect number of these

instructions so that the producer/consumer relationship of
the queues is violated. Fred’s dispatch logic w ill detect
these cases, and take an exception before an instruction
sequence is issued that would result in deadlock. Obvi
ously, there is no way to handle such an exception except
by aborting the current user program. Deadlock is only
possible due to programmer error, and Fred can detect and
abort the illegal instruction sequence before it takes effect.

5.1 The Instruction W indow

An Instruction Window (IW) is used to buffer incom
ing in s tru c tio n s and to tra c k th e s ta tu s o f is su ed
instructions [22], A register scoreboard is used to avoid all
data hazards. The IW is a set of internal registers located
in the Dispatch unit which tracks the state of all current
instructions. Each slot in the IW contains inform ation
about each instruction such as its opcode, address, current
status, and various other parameters. As each instruction is
fetched, it is placed into the IW. New instructions may
continue to be added to the IW independently, as long as
there is room for them. The scoreboard is also maintained
in the Dispatch unit, and is cleared when results arrive at
the Register File.

Instructions are issued from the IW when all their data
dependencies are satisfied (including WAW dependen
cies). Issuing an instruction does not remove it from the
IW. Instead, instructions are removed from the IW only
after they have com pleted successfully . Each issued
instruction is assigned a tag which uniquely distinguishes
it from all other current instructions. When an instruction
completes, it uses this tag to report its status to back to the
IW. The status is usually an indication that the instruction
completed successfully, but is also used to report excep
tions. Instructions signal completion as soon as the func
tional unit w hich processes them has generated a valid
result, even though that result may not yet have reached its
final destination. When an instruction is unsuccessful, it
returns an exception status to the IW, which then begins
exception processing. Instructions which can never cause
exceptions do not have to report their status, and can be
removed from the IW when they are dispatched. Because
instructions may com plete out-of-order, recoverab le
exceptions can cause unforeseen WAW hazards. The
In struction W indow contains enough info rm ation to
resolve these issues.

The Dispatch unit uses the Instruction Window and
scoreboard to determine when to issue new instructions to
the rest of the machine. When instruction issue occurs, the
required operands are requested from the Register File
(possibly through a FIFO), and the instruction is issued to
the Execute unit (also possibly through a FIFO).

C o p y r ig h t 1 9 9 6 T E E E R e p r o d u c t io n w i t h o u t p e rm is s io n is p r o h ib i t e d

5.2 E xceptions 7. Branch Decoupling

The exception model seen by the programmer is not
tha t o f a single po in t w here the exception occurred.
Instead, the Instruction Window holds a set o f instructions
which were in progress when the exception occurred. The
hardware guarantees that this set (unless empty) will con
sist only of instructions which either faulted or which had
been fetched bu t no t ye t issued w hen the exception
occurred. The instructions in this set are a subset o f a
sequential portion o f the dynamic program instructions,
where the missing elements are those instructions which
com pleted successfully out o f order, and w hich do not
need to be re-issued. Because die total state o f the proces
sor is not available at one known time (such as on a clock
tick), the details o f the exception handling are somewhat
complicated, but no more so than for a synchronous pro
cessor that is deeply pipelined and may issue or complete
instructions out o f order. This is described in more detail
elsewhere [16].

6. R1 Queue

There are 32 general registers in the Fred architecture.
Registers r2 through r3 1 are normal general-purpose regis
ters, but rO and r l have special meaning. Register rO may
be used as the destination of an instruction, but will always
contain zero. Register r l is not really a register at all but
provides read access to a data memory pipeline similar to
that used in the WM machine [24], Specifying r l as the
destination o f an instruction inserts the result into the pipe
line. Each use o f r l as a source for an instruction retrieves
one word from the R l Queue. For example, the instruction
a d d r 2 , r l , r l would fetch two words from the R l
Queue, add them together, and place the sum in register r2.
Likewise, assuming that sequential access to register r l
w ould re su lt in va lues A , B , and C, the in s tru c tio n
s t r l , r l , r l would w rite the value C into memory
location A +B. Data from any o f the functional units may
be queued into the R l Queue, and loads from memory can
also be queued. It may be possible to subsume some o f the
memory latency by queuing loaded data in the R l Queue
in advance o f its use. This is sim ilar to having as many
load delay slots as desired and allowed by the program
structure. Note also that the program receives different
information each time it performs a read access on register
r l , thus achieving a form o f register renaming directly in
the R l Queue. Instructions which write to the R l Queue
are forced to complete in-order, to provide deterministic
behavior.

Flow control instructions are significantly affected by
the degree o f decoupling in Fred. By decoupling the
branch instructions into an address generating part and a
sequence change part, we gain the ability to prefetch
instructions effectively. Fred does not require any special
external memory system, but it can provide prefetching
information which may be used by an intelligent cache or
prefetch unit. This information is generated by the Branch
unit when branch target addresses are computed, and is
always correct.

The in s tru c tio n s fo r b o th ab so lu te and re la tiv e
branches compute a 32-bit value which will replace the
program counter i f the branch is taken, but the branch is
not taken immediately. Instead, the branch target value is
computed by the Branch unit and passed back to the Dis
patch unit, along with a condition bit indicating whether
the branch should be taken or not. These data are con
sum ed by the D ispatch un it w hen a subsequent doit
instruction is encountered, and the branch is either taken
or not taken at that time. Although this action is similar to
the synchronous concept o f squashing instructions, Fred
does not convert the doit instructions into NO-OPs, but
instead removes diem completely from the main processor
pipeline.

Any number o f instructions (including zero) may be
placed between the branch target computation and die doit
instruction. From the programmer's view, these instruc
tions do not have to be common to both branches, nor
must they be undone if the branch goes in an unexpected
way. The only requirement for these instructions is that
they not be needed to determ ine the d irec tion o f the
branch. The branch instruction can be placed in the current
block as soon as it is possible to compute the direction.
The doit instruction should come only when the branch
m ust be taken, allowing maximum time for instruction
prefetching, as shown in Figure 3. Because the doit is con
sumed entirely within the Dispatch Unit, it will take effect
as soon as the branch target data is available, allowing
instructions past the branch point to be loaded into the IW
before the prior instructions have com pleted (or even
issued). This lets the IW act as an instruction prefetch
buffer, but it is always correct, never speculative. The doit
instruction does not have to be explicitly specified. To pre
vent extra instruction fetches, the doit instruction can be
encoded implicitly by a single bit available in the opcode
o f other instructions. The doit is im plicit in Figure 3B.
F igu re 4 show s an exam ple , based on the code in
Figure 3B. Note that instructions may continue to be
issued out-of-order, even w ith respect to the delay slot
instructions. Note also that the doit may be consumed
independently o f the instruction which encodes it.

C o p y r ig h t 1 9 9 6 T E E E R e p r o d u c t io n w i t h o u t p e rm is s io n is p r o h ib i t e d

lo o p :
a d d u r 3 , r 3 , 3
m u l r 9 , r 2 , r 3
a d d u r 2 , r 9 , 2
s u b u r 8 , r 8 , 1
b g t r 8 , l o o p
d o i t

A. Simple ordering

l o o p :
s u b u r 8 , r 8 , 1
b g t r 8 , l o o p
a d d u r 3 , r 3 , 3
m u l r 9 , r 2 , r 3
a d d u . d r 2 , r 9 , 2

B. Reordered, with implicit doit

Figure 3. Two ways of ordering the
same program segment

Tag Status Instruction Loop #

1 Issued subu r8,r8,l 1
2 - bgt r8,loop 1
3 Issued addu r3,r3,3 1
4 - mul r9,r2,r3 1
5 - addu.d r2,r9,2 1

A. Branch target not yet available

Tag Status Instruction Loop #

4 Issued mul r9,r2,r3 1
5 - addu r2,r9,2 1
6 Issued subu r8,r8,l 2

7 - bgt r8,loop 2

8 Issued addu r3,r3,3 2

9 - mul r9,r2,r3 2

10 - addu.d r2,r9,r2 2

B. Branch target consumed

Figure 4. Branch prefetching in the IW

This tw o-part branch m odel allow s for a variable
number o f delay slots by allowing an arbitrary number of
instructions to be executed between the computation o f the
branch target and its use. It also allows other interesting
behaviors such as achieving the effect o f loop unrolling

without increasing code size. This can be accomplished by
computing several branch targets at one time and putting

-1
them in the branch queue before executing the loop code .

8. Independent Functional Units

The Distributor is responsible for routing instructions
to their proper functional unit. It takes incoming instruc
tions and operands, matches them up where needed, and
routes instructions to appropriate functional units. There
are five independent functional units in the prototype
im plem entation o f Fred: Logic, A rithm etic, M emory,
Branch, Control. Each functional unit is responsible for a
particular type o f instruction shown in Figure 2. The Dis
tributor and its associated functional units collectively
make up the Execute unit.

The Memory unit is treated as just another functional
unit. The only difference is that the M emory unit some
times produces data that is written to the data memory
rather than the Register File.

Each o f the functional units may produce results that
are written back to the register file directly, or which are
made available through the RI Queue. In addition to reus
ing a result within single functional unit, in many proces
sors a re su lt m ay be fo rw arded d irec tly to ano ther
functional unit without passing through a register, so that
pipeline delays involved in writing to the register file are
avoided. Forwarding results between independent func
tional units requires either a common shared bus as in
Tomasulo's algorithm [21], or dedicated data paths as used
in the DEC Alpha [17] and other high-performance pro
cessors. Fred does not forward results directly between
functional units, because o f the com plexity involved.
However, reusing the last result o f a computation within a
single functional unit is certainly possible. Trace data sug
gests that such reuse may provide a measurable perfor
mance increase, but it is highly dependent on the compiler
technology.

9. Register File

The Register File responds to requests from the Dis
patch unit for operands which it delivers through a FIFO
to the Execute un it. These operands are paired w ith
instructions and passed to the appropriate functional unit.
Because the operands are requested in the same order as
instructions are issued, there is no matching required to
determine which operands should be paired with which
instructions. They emerge from the FIFO queues in the
correct sequence.

3. This is not true loop unrolling since the registers are not recolored, but
it could be useful.

C o p y r ig h t 1 9 9 6 T E E E R e p r o d u c t io n w i t h o u t p e rm is s io n is p r o h ib i t e d

On the incoming side, the Register File accepts results
from each functional unit that produces data. These results
are accepted independently from each functional unit and
are not multiplexed onto a common bus. Data hazards are
prevented by the scoreboard and the Dispatch unit, which
will not issue an instruction until all its data dependencies
are satisfied, so there will never be conflicts for a register
destination. The Register File clears the associated score
board b it w hen resu lts arrive at a particu lar register.
Instraction results may also be written into the R l Queue
as described earlier, but there is no actual register associ
ated with the R l Queue. Instead, the Dispatch unit clears
the scoreboard bit for reg ister r l w hen the producing
instruction completes successfully.

10. Results

Several benchmarks have been run through the Fred
simulator. Although the benchmarks are not particularly
large, representative results may still be obtained because
eveiy signal transition is timed. The benchmarks used are
shown in Figure 5.

Program name
Dynamic

instruction
count

Description

ackermann 1660 recursion
cat 7109 copy stdin to stdout, for "cat.c”

cbubblc 13300 bubble sort on 50 integers
cquick 5680 quicksort on 50 integers

ctowers 3095 towers o f Hanoii, 4 rings
dhry 1710 dhrystone v. 2.1, 3 loops
fact 2858 10 factorial, computed 5 times
grcp 13668 search for "p rin tf’ in cat.c source

heapsort 2465 heapsort on 16 integers
mergesort 1857 mergesort on 16 integers

mod 4582 test o f 10 modulo operations
muldiv 1669 test o f multiply and divide

Pi 13883 compute 10 digits o f K
queens 8181 solve 5 queens problem

Figure 5. B enchm ark p ro g ram s

All of the benchmarks are written in C. The code was
compiled for the Motorola 88100 using either the GNU C
co m p ile r (v. 2 .4 .5) or the G reen I l i l ls co m p ile r (v.
1.8.5nil6), and then translated into Fred's assembly lan
guage using a custom post-processor. All possible optimi
zation flags were used, to little effect. Both com pilers
produced very poor code, using only a few o f the available
registers, making many memory references, and leaving
many obvious optimizations undone. This is entirely due
to the fact that the compiler is not targeted specifically for
Fred, and has nothing to do with any shortcomings of the
Fred architecture.

Two major parameters o f the Fred simulator were var-

FIFO Length

Figure 6. A verage p erfo rm ance vs. IW size

ied, and each o f the 14 benchmarks was executed under
each configuration. First, the number o f IW slots was var
ied between 2 and 16. Second, the number o f latch stages
in each FIFO queue was varied from 0 to 8. W ith zero
stages, there is no storage in the FIFO queue at all, and
each request/acknowledge pair between functional units is
directly connected. Although there are many FIFO queues
in the Fred processor they were not varied independently,
since general performance trends were o f more interest
than tweaking the queues for maximum performance on a
given benchmark.

The average performance is more dependent on the
length of the FIFO queues than on the size o f the Instruc
tion Window. There was no appreciable difference in per
formance for IW sizes greater than 3 slots. Figure 6 shows
the relationship between performance and queue length
for various IW sizes. Because the Dispatch Unit searches
the IW for executable instructions in a parallel manner, the
main factor affecting performance is the time it takes to
complete an instruction. As long as the IW is large enough
to issue instructions efficiently, it only affects performance
in terms of saving state during exception handling.

10.1 Instruction Window Usage

Figure 7 shows how the average IW usage varied with
queue length and IW size. With longer queue lengths the
time needed for each issued instruction to com plete is
longer, giving more time for the IW to be loaded with
instructions, so the usage increases. As the number o f IW
slots increased the average IW usage also went up, but this
is to be expected since there are more slots available.
Regardless o f the configuration, the average IW usage is
still no greater than 2.5 slots. The relatively high usage
seen when the queue length is zero is due to the inability to
dispatch more than one instruction at a time. Because there

C o p y r ig h t 1 9 9 6 T E E E R e p r o d u c t io n w i t h o u t p e rm is s io n is p r o h ib i t e d

Figure 7. A verage IW s lo t u sag e

is no storage in the queues, there is essentially no pipelin
ing except for those instructions which can be sent to sepa
rate functional units.

10.2 Instruction Completion

Only those instructions which m ight possibly fail
must report their completion to the Dispatch Unit. This
enables a significant speedup in performance, since there
is less com m unication w ith the In struction Window.
Instructions which will always complete successfully may
be removed from the IW as soon as they have dispatchcd,
providing a corresponding decrease in the average IW
usage. Figure 8 and Figure 9 tabulate the differences for
an optimal queue length o f 1 and an IW size o f 4 slots. On
average, intelligent completion increases the performance
by about 12%, while decreasing IW usage by about 20%.

Benchmark
MIPS Percent

reportingForced Optional Increase

ackermann 151.82 173.45 14.2% 24.1%
cat 152.77 178.18 16.6% 13.3%

cbubblc 146.80 164.34 11.9% 31.8%
cquick 152.22 173.49 14.0% 25.2%
ctowcrs 157.19 176.96 12.6% 34.9%

dliry 148.87 164.69 10.6% 42.1%
fact 143.65 167.12 16.3% 9.9%
grep 146.48 168.27 14.9% 20.1%

hcapsort 152.54 172.82 13.3% 28.0%
mergesort 148.14 168.91 14.0% 24.2%

mod 148.87 165.66 11.3% 36.0%
muldiv 152.08 170.53 12.1% 33.9%

P' 145.58 163.43 12.3% 29.3%
queens 148.40 171.19 15.4% 16.6%

average 149.67 169.93 13.5% 26.4%

Figure 8. C om pletion signalling and
p erfo rm ance

Benchmark
IW slot usage
with forced
completion

IW slot usage
with optional
completion

Reduction

ackermann 2.00 1.42 29.0%
cat 1.82 1.15 36.8%

cbubble 2.11 1.71 19.0%
cquick 2.17 1.65 24.0%
ctowers 2.20 1.70 22.7%

dliry 2.09 1.71 18.2%
fact 1.80 1.16 35.6%
grep 1.89 1.35 28.6%

hcapsort 2.08 1.63 21.6%
mergesort 2.04 1.55 24.0%

mod 2.24 1.82 18.8%
muldiv 2.20 1.70 22.7%

P' 2.21 1.77 19.9%
queens 1.93 1.39 28.0%

average 2.06 1.56 24.9%

Figure 9. C om pletion signalling and
IW s lo t u sag e

10.3 Branch Decoupling

As mentioned earlier, Fred’s decoupled branch mech
anism allows for a variable number o f delay slots but the
compiler used for the benchmarks generates code for the
Motorola 88100 processor, a synchronous RISC processor
which has only a single delay slot. This allows only one
instruction to be placed betw een the branch instruction
and the first instruction at the target address. The instruc
tions generated by the 88100 compiler are translated into
Fred’s instruction set, and a very simple peephole optimi
za tion is perform ed to separate the branch and d o it
instructions as far as possible within a basic block. Despite
these handicaps, the average number o f useful delay slot
instructions is greater than one. With a compiler targeted
specifically for Fred, the separation should be m uch
greater. The time available for instruction prefetching is
directly related to the separation between the branch target
calculation and the doit, and would also benefit from such
a compiler. The dynamic separation results are shown in
Figure 10.

11. Conclusions

The current prototype o f Fred is in the form o f a
detailed VIIDL model. This model is completely func
tional including the out-of-order instruction completion
and functionally precise exceptions. Benchmark results
seem to bear out the premise that a self-timed implementa
tion is a natural match for decoupled computer architec
tures. The ability to allow different parts o f the machine to
proceed at their own rate and the natural use o f self-timed
FIFO queues enhances the decoupling due to the architec-

C o p y r ig h t 1 9 9 6 T E E E R e p r o d u c t io n w i t h o u t p e rm is s io n is p r o h ib i t e d

Benchmark Separation

ackermann 1.52
cat 1.82

cbubble 0.81
cquick 1.59
ctowers 1.67

dhry 1.56
fact 0.84
grep 1.14

heapsort 1.54
mergesort 1.14

mod 2.03
muldiv 2.66

pi 1.89
queens 0.88

average 1.51

Figure 10. D ynam ic b ranch /do it sep a ra tio n

tiirc. As general processor designs (both synchronous and
asynchronous) grow more complex and the degree o f con
currency and decoupling increases, the features and tech
n iques found in the Fred a rch itec tu re— functionally
precise interrupts, decoupled branches, intelligent pre
fetching, decoupled memory access, etc.— may gain in
importance.

12. References

[1] F.rik Brunvand. Using FPGAs to prototype a self-timed
computer. In International Workshop on Field Programma
ble Logic and Applications, Vienna University of Technol
ogy, September 1992.

[2] F.rik Brunvand. Tbe NSR processor. In Proceedings o f the
26th Annual Hawaii International Conference on System
Sciences, pages 428-435, Maui, I lawaii, January 1993.

[3] Wesley A. Clark and Charles A. Molnar. Macromodular
system design. Technical Report 23, Computer Systems
Laboratory, Washington University, April 1973.

[4] A.L. Davis. Tbe architecture and system method for DDM1:
A recursively structured data-driven machine. In 5th Annual
Symposium on Computer Architecture, April 1978.

[5] Matthew Farrens, Pius Ng, and Phil Nico. A comparison of
superscalar and decoupled access/execute architectures. In
Proceedings o f ihe 26th Annual ACM /IEEE International
Symposium on Microarchitecture, Austin, Texas, December
1993. IF.F.F,ACM.

[6] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V.
Woods. A micropipelined ARM. In Proceedings o f the VII
B a n ff Workshop: Asynchronous Hardware D esign, Banff,
Canada, August 1993.

[7] J. R. Goodman, J. Hsieb, K. Liou, A. R. Pleszkun, P. B.
Schechter, and II. C. Young. PIPE: A VLSI decoupled
architecture. In 12th Annual International Symposium on
Computer Architecture, pages 20-27. IF.FF. Computer Soci
ety, June 1985.

[8] Thomas R. Gross, John L. Hennessy, Stephen A. Przybyl-
ski, and Christopher Rowen. Measurement and evaluation
of the MIPS architecture and processor. A C M Transactions
on Computer Systems, 6(3):229-257, August 1988.

[9] John Hennessy, Norman Jouppi, Forest Baskett, Thomas

Gross, and John Gill. Hardware/software tradeoffs for
increased performance. In Proceedings o f the Symposium
on Architectural Support fo r Programming Languages and
Operating Systems, pages 2-11. ACM, April 1982.

[10] Manolis G. II. Katevenis. R educed Instruction Set Com
puter Architectures fo r VLSI. MIT Press, 1985.

[11] Alain Martin, Steven Burns, T.K. Lee, Drazen Borkovic,
and Pieter Hazewindus. Tbe design of an asynchronous
microprocessor. In Proc. CalTech C onference on VLSI,
1989.

[12] Motorola. MC88100 RISC Microprocessor U sers Manual.
Prentice I lall, F.nglewood Cliffs, New Jersey 07632, second
edition, 1990.

[13] Alexandru Nicolau and Joseph A. Fisher. Measuring the
parallelism available for very long instruction word archi
tectures. IEEE Transactions on Computers, C-33(l I):I IO
NS, November 1984.

[14] Nigel Charles Paver. The Design and Implementation o f an
Asynchronous Microprocessor. PhD thesis, University of
Manchester, 1994. h t t p : //w w w . c s . m an . a c . u k /
a m u l e t / p u b l i c a t i o n s / t h e s i s /
p a v e r9 4 _ p h d .h tm l.

[15] William F. Richardson and F.rik Brunvand. The NSR pro
cessor prototype. Technical Report UUCS-92-029, Univer
sity ofUtah, August 1992. f t p : / / f t p . c s . u t a h . e d u /
te c h re p o r ts /1 9 9 2 /U U C S -9 2 -0 2 9 . p s . Z.

[16] William F. Richardson and F.rik Brunvand. Precise excep
tion handling for a self-timed processor. In 1995 Interna
tional Conference on Computer Design: VLSI in Computers
& Processors, pages 32-37, Los Alamitos, CA, October
1995. IF.FF. Computer Society Press.

[17] James F„ Smith and Shlomo Weiss. Powerpc 601 and alpha
21064: A tale of two RISCs. IEEE Computer, 27(6):46-58,
June 1994.

[18] Robert F. Sproull and Ivan F„ Sutherland. Counterflow pipe
line processor architecture. Technical Report SMLI TR-94-
25, Sun Microsystems Laboratories, Inc., M/S 29-01, 2550
Garcia Avenue, Mountain View, CA 94043, April 1994.
h t t p : / / w w w . s u n . c o m / s m l i / t e c h n i c a l -
r e p o r t s /1 9 9 4 / s m l i_ t r - 9 4 - 2 5 .p s .

[19] Ivan Sutherland. Micropipelines. Communications o f the
ACM, 32(6):720-738, 1989.

[20] Jose A. Tierno, Alain J. Martin, Drazen Borkovic, and
Tak Kwan Lee. A 100-MIPS GaAs asynchronous micropro
cessor. IEEE D esign & Test o f Computers, 11 (2):43—49,
Summer 1994.

[21] R. M. Tomasulo. An efficient algorithm for exploiting mul
tiple arithmetic units. IB M Journal o f Research and D evel
opment, 11:25-33, January 1967.

[22] II. C. Tomg and Martin Day. Interrupt handling for out-of
order execution processors. IEEE Transactions on Comput
ers, 42(1): 122-127, January 1993.

[23] David W. Wall. Limits of instruction-level parallelism.
WRL Technical Note TN-15, Digital Western Research
Laboratory, 100 Hamilton Avenue, Palo Alto, CA 94301,
December 1990. f t p : / / g a t e k e e p e r . d e c . c o m /
p u b / D E C / W R L / r e s e a r c h - r e p o r t s / W R L - T N -
15 .p s .

[24] Wm. A. Wulf. Tbe WM computer architecture. Computer
Architecture News, 16(1), March 1988.

C o p y r ig h t 1 9 9 6 T E E E R e p r o d u c t io n w i t h o u t p e rm is s io n is p r o h ib i t e d

ftp://ftp.cs.utah.edu/
http://www.sun.com/smli/technical-
ftp://gatekeeper.dec.com/

