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ABSTRACT 

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an 

adult-onset fatal disease in which the upper and lower motor neurons of the body 

progressively degenerate. Efforts to understand the pathophysiology of ALS over the past 

two decades have shown that mutations in genes involved in a wide variety of cellular 

processes can cause ALS. Patients who develop ALS and have a family history of the 

disease are termed familial ALS (FALS) and represent 10% of ALS cases. However, 

similar genetic mutations occur in patients with no family history of ALS, which suggests 

genetic factors also play a role in sporadic ALS (SALS).  

Studies that utilize low-resolution single nucleotide variant (SNV) and 

microsatellite assays have identified over 30 ALS-associated genes. However, only 68% 

of FALS and 11% of SALS cases have an identifiable genetic cause. The identification of 

the genetic factors responsible for these unexplained ALS cases has been challenging 

because of the technological limitations of SNV and microsatellite assays. The increasing 

availability of next-generation sequencing (NGS) allows for the potential identification of 

such elusive disease-causing genetic variants.   

The aim of this dissertation is to better understand ALS genetic risk factors using 

NGS technology and computational methods. The first chapter will review ALS and the 

importance of genetic factors in its pathogenesis. The analyses presented in Chapter 2 try 

to determine whether NGS approaches can identify known and potentially novel ALS 
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genetic risk loci in individual FALS patients. Next, efforts to better understand the 

importance of known ALS risk loci in SALS pathogenesis will be covered in Chapter 3. 

Chapter 4 will focus on attempts to find novel ALS risk genes in a cohort of SALS 

patients. Chapter 5 will focus on the results of functional studies aimed at validating 

TP73 as an ALS candidate risk gene. Lastly, Chapter 6 will be focused on determining 

whether SALS can be caused by deleterious genetic variation shared between distantly 

related patients. The results of these studies will help to push the understanding of ALS 

pathogenesis forward towards the ultimate goal of a cure.
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CHAPTER 1 

INTRODUCTION 

Next-Generation Sequencing Technology  

 The process in which the exact nucleotide sequence of a molecule of 

deoxyribonucleic acid (DNA) is determined is called DNA sequencing. DNA sequencing 

differs from genotyping methods, which includes single nucleotide polymorphism (SNP) 

and microsatellite assays, in that genotyping only determines the alleles an individual 

possesses at a set of preselected loci. DNA sequencing allows researchers and clinicians 

to determine nearly all of the mutations or genetic variants individuals possess without 

ascertainment bias. Traditional methods of DNA sequencing, such as Sanger sequencing, 

are highly accurate in determining the nucleotide state at each base in a DNA sequence. 

However, traditional methods of DNA sequencing are expensive and cannot be 

efficiently scaled to sequence multiple loci in the number of individuals needed to answer 

biologically relevant questions (1). Next-generation sequencing (NGS) technology, such 

as Illumina sequencing, has greatly increased feasibility of whole-genome and exome 

(the protein-coding portion of the genome) sequencing by increasing the scalability and 

speed of sequencing for a fraction of the cost of traditional sequencing (1). As a result, 

researchers can now utilize NGS technology to answer many unsolved biological 

questions.  
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Limitations of SNP and Microsatellite 

Genotype-Phenotype Associations 

Much of the genomic research and investigation of genetic variation in humans 

over the past decade has been performed by utilizing SNP arrays (2), which are designed 

to assay SNPs that have a high (>1%) minor allele frequency (MAF) in the general 

population (3). The degree to which a variant negatively affects fitness is inversely 

proportional to its frequency (4) (Figure 1.1). Therefore, genotype-phenotype 

associations identified by SNP arrays consist largely of common variants of small effect 

size (5). This has limited the ability to identify genotype-phenotype associations with 

appreciable effect sizes as evidenced by the low rate of reproducibility and inability of 

known variants to fully account for the heritability of particular traits (5-7). Rare genetic 

polymorphisms account for the majority of human interindividual genetic diversity (8). 

As a result, the identification of rare variants that have a large effect on fitness will 

require NGS to capture rare genetic variation. 

Clinical Presentation and Epidemiology  

of Amyotrophic Lateral Sclerosis 

 Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor 

neuron disease with a prevalence of 3.9 cases per 100,000 individuals in the United States 

(9). ALS is an incurable and fatal adult-onset condition in which the upper motor neurons 

of the motor cortex and the lower motor neurons of the spinal cord progressively 

degenerate (10). This leads to a gradual increase in the symptoms of upper motor neuron 

(muscle weakness, spasticity, abnormal reflexes) and lower motor neuron (muscle 

fasciculation and paralysis) dysfunction. ALS was likely first described in 1848 (11), but 
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was not formally defined and recognized as it is today until 1869 (12). It is also known as 

Lou Gehrig's disease after the famous baseball player who was afflicted by it. 

Progression can be highly variable but typically occurs over 3-5 years on average, 

culminating in paralysis, respiratory failure, and death (10, 13). The average age of ALS 

onset is 46 for individuals with a family history of the disease and 56 for those without a 

family history of ALS (14). The symptoms typically manifest first in the limbs; however, 

one-third of cases have a bulbar presentation resulting in difficulties with speech and 

swallowing (15). There is no current treatment for ALS, but riluzole can prolong median 

survival by 2-3 months (16).  

 While ALS is typically considered an isolated motor neuron disease, many 

patients experience cognitive impairment as well. This typically manifests in the form of 

frontotemporal dementia (FTD)—which is focal atrophy of the frontal and anterior 

temporal lobes of the brain—and results in impaired executive function, personality 

change, and impaired language abilities (17). A subset (15%) of individuals that 

experience adult motor neuron disease (of which ALS accounts for 75% of cases) also 

experience FTD, suggesting that there is an overlap in pathophysiology between the two 

disorders (17).  

ALS patients that have a first- or second-degree affected family member are 

termed familial ALS (FALS) and represent 10% of ALS cases (13). The familial nature 

of FALS highlights the importance of genetic risk factors in the pathogenesis of the 

disease. A majority (90%) of ALS cases occur sporadically (SALS) with no previous 

family history (13). An SALS twin study of patients with no family history of ALS in 

non-twin relatives has estimated that 60% of SALS risk is genetically determined (18). 
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Furthermore, a number of the ALS genetic risk factors identified in FALS cases have 

been found in SALS cases (13), which suggests genetic factors are also important in the 

pathogenesis of SALS. A substantial proportion of SALS cases are thought to be a result 

of genetic de novo mutations (19). However, it is also possible that SALS could be 

caused by inherited genetic risk factors, but did not manifest as FALS due to incomplete 

penetrance or early death/misdiagnosis of carrier family members.  

Amyotrophic Lateral Sclerosis Molecular Pathology 

Linkage studies and genome-wide association studies (GWAS) have identified 

genetic variants in over 30 genes to be associated with ALS. Nearly all ALS-causing 

mutations act in a genetically dominant fashion (20). SOD1 was the first gene identified, 

via linkage analysis, to be strongly associated with autosomal dominant inheritance of 

ALS (21). It is responsible for 12% of FALS and 1% of SALS cases (22).  The protein 

product of SOD1 (superoxide dismutase 1) is involved in free radical scavenging in cells 

(20). Mutations in SOD1 cause the protein to misfold and are targeted for degradation. 

However, the misfolded protein is able to escape degradation by forming protease-

resistant aggregates (23)—which leads to toxic effects on the cellular protein degradation 

system (24), activates the unfolded protein stress response, initiates axonal retraction, and 

causes eventual neuronal death (20, 25). These pieces of evidence, in combination with 

the discovery of mutations in other genes involved in protein degradation—such as 

UBQLN2 (26), SQSTM1 (27), and VCP (28)—suggested ALS occurred as a result of 

failure of the proteasome (20).  

However, the discovery of mutations in genes involved in RNA processing and 

the effects of toxic RNA products has changed the view that ALS results purely from 
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proteostasis dysfunction. For instance, mutations of both TARDBP (29) and FUS (30) 

have been discovered to be associated with ALS pathogenesis. TARDBP and FUS both 

encode for proteins involved in RNA processing. It is believed that mutant copies of 

these proteins result in cytoplasmic protein/RNA aggregates and toxic RNA species, 

leading to cellular dysfunction and death (20). The association of hexanucleotide (G4C2) 

repeat expansions in the first intron of C9orf72 with ALS further solidified the notion that 

ALS can also result from ribonucleopathies (31, 32). Normal copies of C9orf72 contain 

fewer than 30 G4C2 repeats, while mutant copies carry tens to thousands of these repeats 

(31-33). C9orf72 accounts for a substantial amount of FALS cases (>40%) and 7% of 

SALS cases (13). It was recently discovered that mutant copies of C9orf72 cause disease 

by impairing its transcription, leading to abortive transcripts with toxic properties that 

sequester other proteins that can bind to them (34). Interestingly, pathological C9orf72 

hexanucleotide repeat expansions are also thought to account for 25% of patients with 

isolated FTD and may possibly explain the overlap between ALS and FTD (35). 

However, the exact mechanism by which this occurs is poorly understood.  

In light of both proteopathies and ribonucleopathies being responsible for ALS 

pathogenesis, it is thought that aggregation of these defective species causes cellular 

stress and subsequent motor neuron death (20). The association of genes that encode for 

proteins involved in cytoskeleton arrangement, axonal transport, and neuronal excitation 

with ALS has further complicated such a model (20). The identification of other genetic 

causes of ALS will help reconcile how these different causes of ALS converge on a 

clinically similar phenotype. It will also help to determine if there is a central molecular 

pathway involved in ALS pathogenesis that can be targeted for therapy. 
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The Genetic Landscape of Amyotrophic Lateral Sclerosis 

Despite the many efforts to search for ALS causing genetic variants, the complete 

understanding of how genetic factors give rise to ALS is incomplete. For instance, a 

significant percentage of FALS (32%) and of SALS (72%-89%) cases have no 

identifiable genetic cause (13, 36) (Figure 1.2). Most of the studies aimed at identifying 

ALS risk loci largely depended on low-resolution SNP and microsatellite arrays, which 

cannot directly assay low-frequency and high-effect size variants. As a result, the 

discovery of additional disease-causing variants might have been missed in previous 

investigations. Recent studies that have employed NGS approaches have been successful 

in identifying a number of novel ALS risk loci (19, 37). The success of these approaches 

suggests that further ALS genetic studies that utilize NGS technology can identify novel 

ALS risk loci.  

The role genetic factors have in ALS pathogenesis is also incompletely 

understood because it is unclear what proportion of cases are caused by known genetic 

risk loci. More specifically, there are inconsistent results in the number of SALS cases 

that have an identifiable genetic cause. The first attempt at estimating the amount of risk 

known genetic factors contribute towards SALS found that such factors only caused 2.8% 

of cases (38). This was determined by calculating the percentage of SALS patients who 

had a coding mutation in at least one of five ALS-associated genes (38). A more recent 

study found that ALS risk loci are responsible for causing 27.8% of SALS cases (36). 

This estimate was calculated by finding what proportion of SALS patients had a rare 

(minor allele frequency <1%) coding mutation in a panel of 17 ALS-associated genes 

(36). The majority of these types of studies follow a similar protocol where variant 



 7 

presence or rarity is used to determine variant pathogenicity. However, variant rarity is 

not a sufficient criterion of variant pathogenicity as the majority of rare, nonsynonymous 

variants are not likely to be pathogenic (39). More accurate estimates of the proportion of 

SALS patients with an identifiable genetic cause should be achievable by incorporating 

direct estimates of variant pathogenicity instead of variant rarity alone.  

The considerable gaps in our understanding of ALS pathogenesis underscore the 

importance of applying NGS methods to discover risk loci that have not been detected by 

previous methods. The subsequent chapters of this dissertation will focus on expanding 

the knowledge of how genetic factors play a role in ALS pathogenesis by utilizing NGS 

technology and computational methods. The results of a limited sample size FALS NGS 

study aimed at identifying ALS risk loci will be presented in Chapter 2. Chapter 3 will 

focus on obtaining a better understanding of what proportion of SALS is caused by 

known genetic risk loci by using direct predictions of variant pathogenicity. The findings 

presented in Chapter 4 were generated from efforts made to identify novel ALS risk loci 

in an SALS patient cohort. Chapter 5 will outline the results of functional experiments 

aimed at determining whether TP73, a candidate ALS risk gene found in Chapter 4, is 

involved in ALS pathogenesis. Lastly, the focus of Chapter 6 is on determining whether 

shared deleterious variants between distantly related patients can give rise to ALS. The 

findings of these studies will help to better understand the pathogenic mechanisms of 

ALS and lead the way to potential therapeutics. 
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Figure 1.1 The allele frequency of a variant is typically inversely proportional to the 
effect size or penetrance it has on a phenotype. Genotype-phenotype associations using 
genotyping arrays largely find common, low effect size variants. In contrast, NGS 
approaches have the ability to detect rare variants with large effect sizes. Adapted by 
permission from Macmillan Publishers Ltd: Nature Reviews Genetics, McCarthy et al. 
2008; 9(5):356-369, copyright 2008. 
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Figure 1.2 The percentage of familial and sporadic ALS cases caused by ALS-associated 
genes. The size of each bar is proportional to the percentage of cases the gene causes. The 
number inside each circle is the percentage of ALS cases with an identifiable genetic 
cause. Adapted by permission from Macmillan Publishers Ltd on behalf of Cancer 
Research UK: Nature Neuroscience, Renton et al. 2014; 17(1):17-23, copyright 2014.
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CHAPTER 2 

THE IDENTIFICATION OF AMYOTROPHIC LATERAL 

SCLEROSIS GENETIC RISK FACTORS IN SMALL  

SAMPLE SIZE NEXT-GENERATION  

SEQUENCING STUDIES 

Introduction 

 The use of NGS technology and genomic information in the healthcare setting is 

likely to radically change how physicians make clinical decisions in a variety of different 

contexts. For example, the drug vemurafenib can be used to treat melanoma tumors with 

positive genomic tests for the BRAF:p.V600E mutation, which results in improved 

patient survival rates (1). However, the use of genome sequencing results by clinicians 

can be extremely challenging due to sheer amount of data yielded by NGS. Whole-exome 

sequencing results from a single individual can return thousands of genetic variants to be 

interpreted (2). As a result, methods that prioritize variants based on their probable 

functional consequences are required to reasonably interpret NGS data. Methods, such as 

VAAST (3), are able to prioritize variants by determining whether any genes in the 

genome are more burdened by deleterious variation in patients versus healthy control 

individuals. However, these methods are underpowered to find significant gene 

associations to properly prioritize variants in studies consisting of one or a few patients. 

PHEVOR is a method that analyzes patient phenotypic information to prioritize variants 
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that likely give rise to the disease of interest (4). When used in conjunction with the 

predictions of variant pathogenicity that come from VAAST, genetic risk variants can be 

identified in small sample size sequencing studies (4). When applied to NGS data from 

individual ALS patients and small ALS kindreds, such an approach should be able to 

identify both known and novel ALS genetic risk loci.   

 A majority of ALS risk loci have been identified by low-resolution linkage 

analysis and GWAS based on common SNP arrays. However, these risk factors only 

account for 68% of FALS cases (5), which suggests there are unidentified risk loci. NGS 

approaches allow for the detection of rare variants that are likely to have a large impact 

on phenotypic traits and diseases. DNA has been collected from a number of FALS 

patients seen at the University of Utah. The focus of this chapter is aimed at analyzing 

these DNA samples to determine whether NGS approaches are useful in identifying 

known and novel ALS risk factors in limited sample size studies. The approaches and 

results of these efforts can serve as a model for future researchers and clinicians to 

interpret genomic data from similar cohorts. Furthermore, any novel candidate risk loci 

identified from these studies serve as intriguing targets for subsequent functional studies 

to determine their role in ALS pathogenesis. 

Materials and Methods 

 Dr. Summer Gibson (Department of Neurology; University of Utah) has collected 

DNA samples from FALS probands and their family members seen at the University of 

Utah motor neuron disease clinic. Individuals were selected for genetic study based on 

whether there was an already known genetic cause for their disease. Six unrelated FALS 

samples were selected for analysis. Additionally, an unaffected mother and affected son 
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pair were selected for analysis. This pair is considered an FALS pedigree due to their 

family history and the mother having two affected sons. Two female siblings with ALS 

were also selected for analysis. Another five individuals affected by primary lateral 

sclerosis (PLS), which is a subtype of ALS where only the upper motor neurons are 

affected, were also selected. In total, 15 individuals (9 FALS, 1 unaffected family 

member, and 5 PLS samples) from 13 different families were selected for sequencing.  

 These samples were whole-exome sequenced (6) by using the Agilent 

SureSelectXT Human All Exon V5+UTR exome capture kit and the Illumina HiSeq 125 

base-pair paired-end sequencing platform (7). These samples were sequenced to a depth 

of 60-80X coverage. Raw sequenced reads that were obtained from the sequencer in 

FASTQ format were aligned to the Genome Reference Consortium human genome 37 

(GRCh37) using the Burrows-Wheeler Aligner MEM algorithm (8, 9). These aligned 

reads were then processed with the SAMtools software (10) to generate aligned, 

coordinate sorted BAM files. Optical and PCR read duplicates were marked and removed 

from further analyses using Picard Tools (http://broadinstitute.github.io/picard/) to 

eliminate any potential biases resulting from duplicate reads. Single nucleotide variant 

(SNV) genotypes were called using the Genome Analysis Toolkit (GATK) v3.0+ variant 

pipeline (11-13) (Figure 2.1). Genome and variant quality were assessed via FastQC 

software, GATK’s variant quality score recalibration (VQSR) metrics, and principal 

components analysis (PCA). 

Obtained genotype calls were processed through the VAAST pipeline (14) to 

prioritize genes in each individual (or family, where applicable) that possess potentially 

pathogenic variants. VAAST is a tool that combines variant frequency information and 
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amino acid substitution scores to determine whether any genes in the genome are 

significantly more affected, or burdened, by deleterious variation in cases versus controls 

(3, 15). The VAAST pipeline first annotates variants from each patient to determine which 

variants have a potential functional impact (silent, missense, nonsense, splice-site 

variants, etc.) on a gene. Variants were then selected for further analysis based on which 

were possessed by affected and unaffected individuals, where applicable. Lastly, VAAST 

was performed on each individual or intersected family dataset to determine which genes 

are negatively impacted by genetic variation. A background file containing variant 

population frequencies derived from the 1000 Genomes Project (16), the NHLBI Exome 

Sequencing Project, and the Complete Genomics diversity panel was used as a control 

dataset.  

The VAAST ranked list of genes negatively impacted by deleterious variation for 

each patient or family was then analyzed by PHEVOR (4). This was done to select genes 

that will likely give rise to ALS when impacted by harmful variation. PHEVOR does this 

by first collecting genes previously shown to be associated with a phenotype as provided 

by the Human Phenotype Ontology (HPO) (17). PHEVOR then traverses multiple gene 

ontologies—such as the Gene Ontology, Mammalian Phenotype Ontology, and the 

Disease Ontology—using genes from the HPO gene list to find ontology nodes, and the 

genes contained in them, likely to be associated with the phenotype in question. This 

leads to the potential identification of genes previously associated with the phenotype in 

question and novel disease-causing gene candidates. These results are combined with 

variant prioritization results (such as from VAAST) to find and rank genes according to 

the degree that they are likely damaged and associated with the phenotype in question. 
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PHEVOR—using the HPO terms “Abnormality of the motor neurons,” 

“Atrophy/Degeneration involving motor neurons,” “Frontotemporal dementia,” and 

“Amyotrophic lateral sclerosis”—was applied to the VAAST results of each studied 

individual/family to generate an initial candidate gene list. A literature search was then 

performed on the top 20 gene candidates to identify a potential cause of disease for the 

individual/family in question. 

Results and Discussion 

 SOD1 was ranked as the top gene in the combined VAAST and PHEVOR analysis 

for FALS sample S27 (Table 2.1), who was selected as a validation control because they 

possessed a pathogenic SOD1:p.His44Arg variant (18). Not surprisingly, the C9orf72 

repeat expansion was not detected in sample S26 (the only C9orf72 sample selected for 

sequencing) due to the inability of Illumina short-read sequencing to detect such repeats.  

The top-ranking gene for patient S1 was FIG4 (Table 2.1), which has been 

previously shown to be causative for ALS (19). However, the particular variant 

(FIG4:p.Thr34Met) this patient possesses has not been previously described before 

within the context of ALS pathogenesis. 

 The eighth ranked gene for patient S4 was CPEB2 (Table 2.1). CPEB2 is thought 

to bind and regulate the translation of specific mRNAs (20), which is a common 

characteristic of ALS risk genes (21). The protein encoded by CPEB2 has two RNA-

recognition motifs and a prion-like domain that predisposes this protein to aggregation 

(22). These characteristics are also very common to ALS risk genes (22), which makes 

CPEB2 a very intriguing ALS disease gene candidate.  

 Patient S5 possessed a TP53INP2:p.Trp71Cys variant that is only seen in one 
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other individual in the Exome Aggregation Consortium (ExAC), giving it a global allele 

frequency of 9.083*10-6 (Table 2.1). TP53INP2 is thought to be critical to autophagy 

processes in mammalian cells by acting as a scaffold protein at the autophagosome 

membrane (23), which is one of the cellular processes disrupted in ALS (21). Further, 

TP53INP2 transgenic models have shown that muscle-specific expression of this gene 

has a role in muscle wasting (24), which is a key feature of ALS. 

 Patient S10 showed HTRA2 as a possible disease causing gene candidate (Table 

2.1). Intraneuronal inclusions of HTRA2, which is a serine protease that promotes 

apoptosis, have been reported within the context of ALS (25).  

 A variant in SETX, which is a DNA/RNA helicase known to cause ALS (26), was 

listed as possible disease gene candidate for patient S11 (Table 2.1). 

 The top-ranking gene for patient S12 was the gene CSF1R (colony stimulating 

factor 1 receptor) (Table 2.1). The protein product of this gene is the receptor for colony 

stimulating factor 1 and is critical in many processes including microglial proliferation 

and differentiation in the brain (27). Missense mutations of CSF1R have been previously 

shown to be causative for a disorder known as autosomal dominant diffuse 

leukoencephalopathy with spheroids (27). This disease shares many of the same clinical 

features as ALS including frontotemporal dementia, muscle weakness, and fasciculations 

(28). Interestingly, this patient showed signs that could be suggestive of 

leukoencephalopathy on MRI. This result highlights how diseases with similar signs and 

symptoms as ALS can potentially confound ALS genetic studies. 

 The analysis uncovered that FALS sample S14 possessed an SOD1:p.Ile114Thr 

(18) variant and an ANG:p.Lys41Ile (29) variant (Table 2.1), which are both known to be 
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pathogenic for ALS. Furthermore, this individual has a PSEN1:p.Val94Leu variant, 

which occurs at the same amino acid position as a known early-onset Alzheimer risk 

variant (30). However, the amino acid change itself was different. Future work will have 

to be performed to determine if these multiple pathogenic mutations work together to 

cause poorer clinical outcomes. 

 ACTRT2, which is an actin associated protein thought to be involved in 

cytoskeleton organization (31), was the 10th ranked gene in sample S17 (Table 2.1). A 

region that includes ACTRT2 has been previously associated with ALS (32).  

 A gene named EHMT1 was the 14th ranked gene for Patient S25 (Table 2.1). 

EHMT1 is a histone methyltransferase that is part of the E2F6 complex, which acts to 

repress transcription of specific gene targets (33). EHMT1 was previously described as an 

ALS candidate gene in an experiment involving exome-sequencing of an ALS mother-

father-proband trio pedigree (34). Table 2.1 summarizes the gene candidates explained 

above. 

While a number of candidate risk genes were identified from this analysis, there 

were some shortcomings and areas that require improvement. The analysis was only 

limited to SNPs because no normal healthy control samples were available to be jointly 

called with the FALS samples. Insertion and deletion genotype calls for a sample can 

vary between variant calling runs, which can lead to false positives in analyses like 

VAAST. Joint variant calling with publicly available exome or whole genome sequencing 

datasets could be incorporated into the analysis to allow for the use of indel information. 

There was also a lack of genotype information from related individuals of the probands in 

question, which would allow for variant filtering and reduction of false positive genes. 
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Further sequencing of these individuals would allow for more accurate results.  

Despite these shortcomings, a known or novel candidate risk gene was identified 

in 10 of the 13 (76.9%) FALS and PLS individuals/families from the combined VAAST 

and PHEVOR analysis. These results suggest that NGS technology, when combined with 

proper variant prioritization methods, can be very useful in identifying disease risk loci in 

small patient cohorts. The results also show NGS and variant prioritization methods can 

help clinicians sift through large genomic datasets to identify potentially actionable 

targets. Functional tests that rapidly determine if a candidate risk variant affects normal 

gene function will likely be needed for NGS testing to be useful in the clinical setting. 

Future work will be required to functionally validate if and how these novel candidate 

risk genes affect ALS pathogenesis.  
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Figure 2.1 A diagram of the Genome Analysis Toolkit (GATK) pipeline version 3.0+. 
BWA and Picard Tools were used to perform the read mapping and duplicate marking 
steps, respectively. Used with permission from the Broad Institute, 
http://www.broadinstitute.org/gatk/. 
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Table 2.1 The most interesting disease gene candidates for each sample or family after 
the VAAST/PHEVOR analysis and literature search. The nucleotide changes responsible 
for each candidate gene are listed in the variant column. Variant coordinates correspond 
to the GRCh37 reference genome.  
 

Sample Gene Variant dbSNP ID Variant 
PHEVOR 

rank/VAAST 
p-value 

S1 FIG4 6:110036315 C>T rs375691683 Thr34Met 1/0.00895 

S4 CPEB2 4:15004505 G>A None Gly70Ser 8/0.000899 

S5 TP53INP2 20:33297128 G>C rs200318321 Trp71Cys 6/0.000899 

S10 HTRA2 2:74757348 T>C rs150047108 Leu72Pro 16/0.0119 

S11 SETX 9:135218103 A>C rs145438764 Leu158Val 15/0.038 

S12 CSF1R 5:149447846 C>A None Val520Phe 1/0.000899 

S14 SOD1 21:33039672 T>C rs121912441 Ile114Thr 1/0.000899 

S14 PSEN1 14:73637697 G>T rs63750831 Val94Leu 2/0.00279 

S14 ANG 14:21161845 A>T rs121909536  Lys41Ile 10/0.00334 

S17 ACTRT2 1:2939276 G>T rs369911854 Trp342Cys 10/0.000899 

S25 EHMT1 9:140622895 G>A rs144871446 Arg215Gln 14/0.00613 

S27 SOD1 21:33036161 A>G rs121912435 His44Arg 1/0.000899 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 23 

References 
 

1. Chapman PB, et al. (2011) Improved survival with vemurafenib in melanoma 
with BRAF V600E mutation. N Engl J Med 364(26):2507-2516. 

2. Lek M, et al. (2016) Analysis of protein-coding genetic variation in 60,706 
humans. Nature 536(7616):285-291. 

3. Hu H, et al. (2013) VAAST 2.0: Improved variant classification and disease-gene 
identification using a conservation-controlled amino acid substitution matrix. 
Genet Epidemiol 37(6):622-634. 

4. Singleton MV, et al. (2014) Phevor combines multiple biomedical ontologies for 
accurate identification of disease-causing alleles in single individuals and small 
nuclear families. Am J Hum Genet 94(4):599-610. 

5. Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral 
sclerosis genetics. Nat Neurosci 17(1):17-23. 

6. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: Ten years of 
next-generation sequencing technologies. Nat Rev Genet 17(6):333-351. 

7. Bentley DR, et al. (2008) Accurate whole human genome sequencing using 
reversible terminator chemistry. Nature 456(7218):53-59. 

8. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with 
BWA-MEM. ArXiv e-prints. 1303:3997. 

9. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25(14):1754-1760. 

10. Li H, et al. (2009) The Sequence Alignment/Map format and SAMtools. 
Bioinformatics 25(16):2078-2079. 

11. DePristo MA, et al. (2011) A framework for variation discovery and genotyping 
using next-generation DNA sequencing data. Nat Genet 43(5):491-498. 

12. McKenna A, et al. (2010) The Genome Analysis Toolkit: A MapReduce 
framework for analyzing next-generation DNA sequencing data. Genome Res 
20(9):1297-1303. 

13. Van der Auwera GA, et al. (2013) From FastQ data to high confidence variant 
calls: The Genome Analysis Toolkit best practices pipeline. Curr Protoc 
Bioinformatics 43(11.10):1-33. 

14. Kennedy B, et al. (2014) Using VAAST to Identify Disease-Associated Variants 
in Next-Generation Sequencing Data. Curr Protoc Hum Genet 81:6 14 11-25. 



 24 

15. Yandell M, et al. (2011) A probabilistic disease-gene finder for personal genomes. 
Genome Res 21(9):1529-1542. 

16. 1000 Genomes Project Consortium, et al. (2012) An integrated map of genetic 
variation from 1,092 human genomes. Nature 491(7422):56-65. 

17. Kohler S, et al. (2014) The Human Phenotype Ontology project: Linking 
molecular biology and disease through phenotype data. Nucleic Acids Res 
42(Database issue):D966-974. 

18. Rosen DR, et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are 
associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59-62. 

19. Chow CY, et al. (2009) Deleterious variants of FIG4, a phosphoinositide 
phosphatase, in patients with ALS. Am J Hum Genet 84(1):85-88. 

20. Kurihara Y, et al. (2003) CPEB2, a novel putative translational regulator in mouse 
haploid germ cells. Biol Reprod 69(1):261-268. 

21. Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral 
sclerosis. Nat Rev Neurosci 14(4):248-264. 

22. King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding 
proteins with prion-like domains in neurodegenerative disease. Brain Res 
1462:61-80. 

23. Nowak J, et al. (2009) The TP53INP2 protein is required for autophagy in 
mammalian cells. Mol Biol Cell 20(3):870-881. 

24. Sala D, et al. (2014) Autophagy-regulating TP53INP2 mediates muscle wasting 
and is repressed in diabetes. J Clin Invest 124(5):1914-1927. 

25. Kawamoto Y, et al. (2010) HtrA2/Omi-immunoreactive intraneuronal inclusions 
in the anterior horn of patients with sporadic and Cu/Zn superoxide dismutase 
(SOD1) mutant amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 
36(4):331-344. 

26. Chen YZ, et al. (2004) DNA/RNA helicase gene mutations in a form of juvenile 
amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74(6):1128-1135. 

27. Rademakers R, et al. (2012) Mutations in the colony stimulating factor 1 receptor 
(CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat 
Genet 44(2):200-205. 

28. Sundal C, Wszolek Z (1993) Adult-Onset Leukoencephalopathy with Axonal 
Spheroids and Pigmented Glia. GeneReviews(R), eds Pagon RA, et al. (University 
of Washington, Seattle, WA). 



 25 

29. Greenway MJ, et al. (2006) ANG mutations segregate with familial and 'sporadic' 
amyotrophic lateral sclerosis. Nat Genet 38(4):411-413. 

30. Jacquier M, et al. (2000) Presenilin mutations in colombian familial and sporadic 
AD sample. Neurobiol Aging 21:176. 

31. Heid H, et al. (2002) Novel actin-related proteins Arp-T1 and Arp-T2 as 
components of the cytoskeletal calyx of the mammalian sperm head. Exp Cell Res 
279(2):177-187. 

32. Mok K, et al. (2013) Homozygosity analysis in amyotrophic lateral sclerosis. Eur 
J Hum Genet 21(12):1429-1435. 

33. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y (2002) A complex 
with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 
cells. Science 296(5570):1132-1136. 

34. Chesi A, et al. (2013) Exome sequencing to identify de novo mutations in 
sporadic ALS trios. Nat Neurosci 16(7):851-855. 

 



CHAPTER 3 

THE EVOLVING GENETIC RISK FOR SPORADIC 

AMYOTROPHIC LATERAL SCLEROSIS 

 The following chapter is a manuscript co-authored by Summer B. Gibson, 

Spyridoula Tsetsou, Julie E. Feusier, Karla P. Figueroa, Mark B. Bromberg, Lynn B. 

Jorde, Stefan M. Pulst.  

 Summer B. Gibson and I contributed equally to this work and are listed as co-first 

authors. I was responsible for writing the manuscript and performing the statistical 

analyses within it. This manuscript was accepted for publication to Neurology on March 

17th, 2017 and was published on July 18th, 2017. The research article can be found in 

Gibson and Downie et al. (2017) The evolving genetic risk for sporadic ALS Neurology 

18;89(3):226-233 and is available at http://www.neurology.org/content/89/3/226. 

Neurology has given me permission to include the text of the manuscript and has 

confirmed that no formal license is required from their publisher. 



 

 

27 

Abstract 

Objective 

To estimate the genetic risk conferred by known amyotrophic lateral sclerosis 

(ALS)–associated genes to the pathogenesis of sporadic ALS (SALS) using variant allele 

frequencies combined with predicted variant pathogenicity.  

Methods 

Whole exome sequencing and repeat expansion PCR of C9orf72 and ATXN2 were 

performed on 87 patients of European ancestry with SALS seen at the University of Utah. 

DNA variants that change the protein coding sequence of 31 ALS-associated genes were 

annotated to determine which were rare and deleterious as predicted by MetaSVM. The 

percentage of patients with SALS with a rare and deleterious variant or repeat expansion 

in an ALS-associated gene was calculated. An odds ratio analysis was performed 

comparing the burden of ALS-associated genes in patients with SALS vs 324 normal 

controls.  

Results 

Nineteen rare nonsynonymous variants in an ALS-associated gene, 2 of which 

were found in 2 different individuals, were identified in 21 patients with SALS. Further, 

5 deleterious C9orf72 and 2 ATXN2 repeat expansions were identified. A total of 17.2% 

of patients with SALS had a rare and deleterious variant or repeat expansion in an ALS-

associated gene. The genetic burden of ALS-associated genes in patients with SALS as 

predicted by MetaSVM was significantly higher than in normal controls. 
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Conclusions 

 Previous analyses have identified SALS-predisposing variants only in terms of 

their rarity in normal control populations. By incorporating variant pathogenicity as well 

as variant frequency, we demonstrated that the genetic risk contributed by these genes for 

SALS is substantially lower than previous estimates. 

Introduction 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of 

the upper and lower motor neurons, which eventually leads to death within an average of 

3–5 years1 after symptom onset. ALS is classified as familial (FALS) when a clear family 

history of ALS exists and sporadic (SALS) when it does not. No clinical features reliably 

distinguish FALS from SALS. Genetic research on ALS has largely been focused on 

FALS, which represents 10% of ALS cases.1 Most FALS is inherited in autosomal 

dominant fashion. However, this transmission pattern can be complicated by the early 

death of unrecognized affected family members due to non-ALS causes, misdiagnoses in 

older affected individuals, small family sizes, incomplete penetrance of genetic risk 

factors, and the development of disorders associated with ALS, such as frontotemporal 

dementia (FTD). Thus, sporadic and familial forms of ALS can be difficult to distinguish, 

and much remains unknown about the roles of genetic factors in FALS and especially in 

SALS. The discovery of the pathogenic (G4C2)n hexanucleotide repeat expansion of 

C9orf72 in a large percentage of FALS and SALS patients,2-4 as well as the identification 

of other ALS genes in patients with SALS,5, 6 has highlighted the importance of genetic 

risk factors in SALS pathogenesis. The significance of genetics in SALS is further 

supported by ALS genome-wide association studies, which estimate the heritability of 
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ALS to be at least 21.0%.7   

With the growing affordability and avail-ability of next-generation sequencing 

technologies, along with the advent of specific treatments for certain genetic forms of 

ALS,8 it is increasingly important to understand the genetic factors in causing SALS. 

Currently, there is considerable variation in estimates of the percentage of SALS cases 

caused by genetic variants, ranging from 11%5 to 28%9 in populations of European 

ancestry. This variation is due largely to differences in estimation methods. In one large 

study9, the percentage was derived by calculating the portion of SALS cases with a rare 

(minor allele frequency [MAF] <0.01), protein-altering variant in a set of known ALS 

genes. Using variant rarity as the main criterion for pathogenicity may have inflated the 

risk estimate as the majority of rare nonsynonymous variants are not thought to be 

pathogenic.10  

In this study, we sought to better estimate the percentage of SALS cases that have 

an identifiable genetic factor likely responsible for disease pathogenesis. To address this, 

a joint approach utilizing both allele frequency and variant pathogenicity prediction was 

used to determine the percentage of SALS cases that possess a potentially deleterious 

genetic variant in an ALS-associated gene. 

Methods 

Standard protocol approvals, registrations, and patient consents 

The sample collection and study design we performed was approved by the 

University of Utah Institutional Review Board. Written informed consent for disease-

specific genetic studies was obtained from each patient who participated in this study.  
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Participants 

 Patients with ALS diagnosed at the University of Utah from 2011 to 2013 were 

invited to participate in genetic studies. All participants were seen by neuromuscular 

specialists and diagnosed with probable or definite ALS according to revised El Escorial 

criteria.11 These patients were followed longitudinally in our motor neuron disease clinic. 

Patients with SALS were identified as having no self-reported family history of ALS, 

probable ALS, or FTD. In total, 96 patients with SALS were enrolled in this study. DNA 

was obtained from whole blood of each participant using the Gentra Puregene Blood Kit 

(Qiagen, Venlo, Netherlands). 

Identification of deleterious ATXN2 and C9orf72 repeat expansions 

ATXN2 CAG repeat size was determined by fluorescent PCR amplification. 

Repeat lengths between 29 and 33 were considered to be of intermediate length and 

deleterious.12 The detection of C9orf72 GGGGCC repeat expansions was performed by 

using previously established repeat primed-PCR and amplicon length analysis criteria.13 

Whole exome sequencing 

 Patient DNA was exome enriched by the SeqCap EZ Exome Enrichment Kit v3.0 

(Roche [Basel, Switzerland] NimbleGen) and sequenced by the Illumina (San Diego, 

CA) HiSeq platform to generate 101-bp, paired-end reads that covered target regions to 

an average depth ranging from 41X to 224X per sample. Reads were then aligned to the 

GRCh37 reference genome using BWA-MEM v0.7.12. Picard Tools v1.130 was used to 

perform indexing, coordinate sorting, and duplicate read marking of all aligned genomic 

reads. Variant calling and quality filtering were performed using Genome Analysis 

Toolkit’s (v3.3-0) HaplotypeCaller and variant quality score recalibration (VQSR) 
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methods.14 In order to properly power VQSR filtering, 99 CEU (Utah residents [CEPH] 

with northern and western European ancestry) and 92 GBR (British in England and 

Scotland) individuals from the 1000 Genomes Project15 with exome sequencing data 

were included in the genotyping steps. 

Quality control 

 Utah’s population is outbred and genetically resembles other populations of 

northern European ancestry.15-17 As a result, we focused our analysis on patients with 

SALS who were of European ancestry in order to limit population stratification effects. 

Patient ancestry derived from genetic data is more reliable than self-reported ancestry, 

which has been used in previous ALS studies.9, 18 An Admixture19 analysis (K=3) was 

performed to determine the genetic ancestry of each patient with SALS. Any participants 

with less than 90% European ancestry were removed from further analysis. Next, 

principal components analysis (PCA) was performed using smartpca20 to remove poor-

quality samples. Any sample with an eigenvector value more than 6 SDs from the mean 

for the first 10 principal components was discarded. Finally, the sex of each patient with 

SALS was inferred by PLINK 1.921 and compared to the reported sex to identify sample 

identification errors. 

Variant annotation 

 SnpEff22 (v4.1) was used to identify protein-coding and splice-site altering 

genetic variants. These variants were then annotated with information from the database 

for nonsynonymous single nucleotide polymorphism functional predictions (dbNSFP; 

sites.google.com/site/jpopgen/dbNSFP) v2.9.23 dbNSFP contains 11 different in silico 

functional prediction methods that determine which single nucleotide variants (SNVs) are 
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likely to alter protein function. MetaSVM was chosen as the primary method to 

determine variant pathogenicity as it has been shown to have a better predictive ability 

than other methods.24 Insertion, deletion, and splice-site acceptor/donor variants were 

classified as deleterious. Variants were also annotated with European-specific MAF 

estimates from the Exome Aggregation Consortium (ExAC)25 by dbNSFP. A manual 

search of the Amyotrophic Lateral Sclerosis Online Database (ALSoD),26 the Single 

Nucleotide Polymorphism database (dbSNP),27 and the Human Gene Mutation Database 

(HGMD)28 was performed to identify known ALS pathogenic variants.   

Genetic risk analysis 

To determine the proportion of patients with SALS who have a potentially 

disease-causing variant in a SALS gene, all annotated rare (European MAF <0.001), 

protein-coding, and splice-site altering variants in 31 ALS-associated genes (ANG, 

CHCHD10, CHMP2B, DAO, DCTN1, ELP3, ERBB4, EWSR1, FIG4, FUS, GLE1, GRN, 

HNRNPA1, HNRNPA2B1, MATR3, NEFH, NEK1, OPTN, PFN1, SETX, SOD1, SPAST, 

SQSTM1, SS18L1, TAF15, TARDBP, TBK1, TUBA4A, UBQLN2, VAPB, VCP) were 

assessed. A MAF of 0.001 corresponds roughly to the European allele frequency of 

SOD1:p.Asp91Ala29, which is the most common known pathogenic variant we could 

identify in ALSoD. The proportion of patients with SALS who possessed a rare and 

deleterious variant, as determined by MetaSVM, in at least 1 of the 31 ALS-associated 

genes or had a deleterious repeat expansion in C9orf72 or ATXN2 was then calculated. 

The proportion of patients with SALS who possessed a rare variant, deleterious or not, or 

a repeat expansion in an ALS-associated gene was also calculated as a reference. All 

variants were assumed to act in a dominant fashion, like most ALS-causing variants.30 
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Odds ratio analysis 

 Genetic burden analysis determines if there is a difference in the amount of 

pathogenic variation, or burden, in a set of genes between cases and controls. To 

determine whether the combination of variant frequency and MetaSVM predictions 

identified variant pathogenicity better than variant frequency alone, we estimated the 

excess burden of ALS-associated genes in SALS cases vs healthy controls. To do so, 

whole exome sequence data from 714 individuals from 181 families of the Simons 

Simplex Collection (SSC)31 were analyzed. The SSC dataset contains exome sequence 

data from children with autism, an unaffected sibling, and their unaffected parents. These 

samples underwent joint variant calling with the SALS exomes using the same pipeline 

as described above. Admixture and PCA were performed as previously described on 362 

unaffected parents to select for high-quality controls of European ancestry. Variant calls 

were limited to exome capture regions with at least 53 coverage on average in both the 

SALS and SSC cohorts. The proportion of SSC controls with a rare and deleterious 

variant in at least 1 of the same 31 ALS-associated genes was calculated. An odds ratio 

(OR) analysis was then performed to determine whether the burden of ALS-associated 

genes is higher in patients with SALS than in normal controls. An OR analysis 

comparing the genetic burden when only variant frequency was utilized was also 

performed. The significance of this OR was determined by a one-tailed Fisher exact test. 

Results 

Patient cohort characteristics 

 The Admixture (Figure 3.1A) and PCA (Figure 3.1B) results showed that 9 of the 

96 patients with SALS possessed significant non-European ancestry or were genetic 



 

 

34 

outliers. No sex mismatches were detected in the data. The 87 patients with SALS of 

European ancestry were selected for analysis, and characteristics of these patients are 

detailed in Table 3.1. We selected 324 SSC parents as high-quality European controls 

because Admixture showed that 38 of the parents were likely non-European. 

Known ALS-associated genetic variants 

 We identified pathogenic C9orf72 hexanucleotide repeat expansions in 5 of 87 

patients with SALS (5.7%). Two patients with SALS (2.3%) possessed ALS-associated 

trinucleotide repeat expansions in ATXN2 (31 and 32 repeats in length, respectively). We 

compared the rare (European MAF <0.001) coding variants in 31 ALS-associated genes 

uncovered in the SALS cohort to known ALS risk variants contained in ALSoD, dbSNP, 

and HGMD. This comparison revealed only one known ALS-associated rare SNV 

(SOD1:p.Asp91Ala29), which was found in 2 heterozygous patients (Table 3.2). 

Potentially novel ALS variants 

 After examining the 31 ALS-associated genes in our patient cohort, we identified 

18 rare coding variants (European MAF <0.001) not previously described in ALS (Table 

3.2). Of these variants, 10 were not found in dbSNP (v141). Furthermore, 6 were novel, 

as they were not found in ExAC, the 1000 Genomes Project dataset,15 or the National 

Heart, Lung, and Blood Institute Exome Sequencing Project dataset. One novel single 

nucleotide frameshift insertion was found in SQSTM1 (chr5:179263453A>AT). A novel 

splice-site acceptor variant in NEK1 (chr4:170428944C>T) was found in 2 patients. 
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Genetic risk analysis 

Among the 31 ALS-associated genes, 19 rare variants were found in 21 patients. 

The FIG4:p.Leu643* variant was the only variant not Sanger-validated due to a lack of 

high-quality DNA. When combined with the 5 C9orf72 and 2 ATXN2 deleterious repeat 

expansions, 28 rare variants or repeat expansions were found in 25 patients across all 

ALS-associated genes. Three patients had 2 rare variants in an ALS gene. One patient 

had a GLE1:p.Met134Val (chr9:131277886A>G) variant in addition to a pathological 

C9orf72 repeat expansion. Another patient had a C9orf72 repeat expansion in addition to 

a rare SETX:p.Thr2507Ala (chr9:135140228T>C) missense variant. Finally, one patient 

possessed SPAST:p.Pro42His (chr2:32289025C>A) and ERBB4:p.Thr643Ile 

(chr2:212522497G>A) missense variants.  

These 28 rare variants were used to calculate the proportion of patients with 

SALS who have a rare mutation in at least one ALS-associated gene. A total of 25 

patients with SALS (28.7%) had at least one rare variant or pathogenic repeat expansion 

in an ALS gene when variant deleteriousness was not considered. However, only 4 of the 

17 SNVs annotated with MetaSVM were considered deleterious (Table 3.2). As a result, 

the proportion of patients with SALS with a rare and deleterious SNV or repeat 

expansion in an ALS-associated gene was 17.2% (15/87 patients; Figure 3.2). Variant 

predictions from 10 other methods were also used (Table 3S.1 at Neurology.org), which 

yielded proportions ranging between 14.9% and 21.8%. 

OR analysis 

	 The genetic burden of ALS-associated genes in patients with SALS was 

compared with the burden among 324 SSC controls. Using only rare variant frequency as 
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a criterion for assessing burden, patients with SALS had a modest increase in burden 

compared to controls (OR 1.90, p < 0.025; Table 3.3). However, when variant 

pathogenicity was added by incorporating MetaSVM results and variant frequency, 

SALS cases showed a much higher burden in ALS-associated genes compared to controls 

(OR 4.98, p < 9 ´ 10-5; Table 3.3). Other variant prediction methods in dbNSFP yielded 

similar findings, but the OR analysis using MetaSVM predictions resulted in the highest 

p value (Table 3S.2). 

Discussion 

 We report findings from a genomic analysis of 87 patients with SALS of 

European origin. In total, 28 rare variants were found in 33 ALS genes in our patient 

cohort. Only one non-repeat variant that has been previously described in ALS 

pathogenesis was observed (SOD1:p.Asp91Ala). This variant is known to cause 

autosomal recessive ALS and was predicted to be deleterious by MetaSVM. 

SOD1:p.Asp91Ala has also been suggested to act in a dominant fashion; however, few 

instances of this have been reported.32 In addition, we identified 18 rare variants in ALS-

associated genes that have not been described previously in patients with ALS. Of these 

18 variants, 5 either caused a protein loss of function or were predicted to be deleterious 

by MetaSVM. One is a frameshift variant in the ubiquitin-associated domain of SQSTM1. 

This change likely ablates SQSTM1’s ability to bind ubiquitinated substrates, which is 

often seen in SQSTM1 variants that cause ALS.33 NEK1:c.1750-1G>A is a novel loss of 

function SNV that ablates the splice acceptor site of intron 19, which is located 

approximately in the middle of the gene. NEK1:p.Gly646Arg is another damaging variant 

that was discovered in NEK1; however, it does not occur in a defined protein domain. 
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FUS:p.Gly465Glu is predicted to be damaging by MetaSVM and affects an amino acid 

one position upstream from previously reported SALS variant (FUS:p.Met464Ile).34 

ERBB4:p.Gly735Val is an SNV predicted to be deleterious and occurs in the tyrosine 

kinase domain of erbB-4. The tyrosine kinase function of erbB-4 is required for protein 

autophosphorylation and triggering downstream signaling cascades upon activation. A 

variant in the tyrosine kinase domain of erbB-4, which was identified from an FALS 

family, has been shown to reduce protein autophosphorylation and likely causes ALS.35 

Additional studies will determine the functional importance of these variants on cellular 

and molecular mechanisms. 

We have demonstrated that using variant pathogenicity predictions is more 

reliable than variant frequency alone to determine the proportion of patients with SALS 

whose disease is likely caused by a variant in an ALS-associated gene. The relative effect 

of ALS-associated genes is stronger when variant pathogenicity is considered instead of 

only variant rarity. This follows from the fact that an appreciable proportion of rare 

nonsynonymous variants are not predicted to be functionally damaging.10 Thus, only a 

subset of rare variants in ALS-associated genes are pathogenic.  

Our approach to estimating the genetic contribution of a large panel of known 

ALS-associated genes by directly predicting variant pathogenicity differs from earlier 

approaches. The first attempts at determining the proportion of genetically caused SALS 

cases did so by calculating the proportion of patients who had a protein-coding variant in 

a panel of 5–7 ALS-associated genes.18, 36-38 These analyses yielded estimates ranging 

from 2.8% to 11%, which are lower than our estimate of 17.2%. A more recent study, in 

which variant rarity (MAF <1%) was used as the sole criterion for pathogenicity in a 
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panel of 17 ALS-associated genes, concluded that genetic factors may cause 27.8% of 

SALS cases,9 a figure similar to our estimate when only variant rarity is considered 

(Table 3S.1). However, these variants (MAF <1%) are not significantly more common in 

our patients with SALS than in unaffected controls (OR 1.25, p > 0.25), suggesting that 

many of them are not pathogenic. The same 17 ALS-associated genes are significantly 

more burdened in patients with SALS than controls when variant rarity (MAF <1%) and 

pathogenicity (estimated by MetaSVM) are combined (OR 2.61, p < 0.02). These OR 

differences support our conclusion that variant frequency alone is not a sufficient 

predictor of SALS risk.  

Another analysis of 33 ALS-associated genes defined only novel and extremely 

rare variants (MAF ≈ 0.0002) as pathogenic and found that 14.5% of SALS cases could 

be attributed to genetic causes.39 In our sample, the genetic burden of ALS-associated 

genes in patients with SALS is less when pathogenicity is defined in the same way than 

when MetaSVM is integrated (OR 2.24, p < 0.01 vs OR 5.52, p < 2 ´ 10-4). These results 

demonstrate that direct predictions of variant pathogenicity are important for defining 

genetic risk in SALS and other genetic diseases.  

Our results also highlight that genetic factors play an important role in the disease, 

the clinical relevance of which will become even more important as genetic specific 

treatments become available. Further, exome or targeted sequencing of patients with 

SALS and their family members is likely warranted to provide adequate genetic 

counseling. In addition, our results suggest the distinction between SALS and FALS may 

be problematic as heritable risk factors are found in a significant proportion of patients 

with SALS. Future genetic investigations of patients with SALS are needed to broaden 
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the scope of SALS-associated loci. Studies with larger patient cohorts that incorporate 

measures of variant pathogenicity will also be needed to further pinpoint the proportion 

of SALS cases with an identifiable probable genetic cause of disease, especially as more 

ALS-associated genetic loci are discovered.  

Our study has several limitations. First, the size of the SALS cohort was limited, 

especially given the genetically heterogeneous nature of ALS. Second, because we 

focused on individuals of European ancestry, our findings may not be completely 

applicable to ALS found in other populations. Third, 13 of the 324 (4.0%) healthy control 

samples used in this study had at least one rare and deleterious variant in ALS-associated 

genes as predicted by MetaSVM (Table 3.3; Table 3S.3). The mean age of these 

individuals was 41.76 (SD 5.92) years, which is much lower than the average age at onset 

of SALS at 56 years of age.40 It is possible that some of the control individuals with these 

variants could develop ALS later in life. 
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Figure 3.1 Admixture and principal components analysis (PCA) plots show the ancestry 
and sample quality of the sporadic amyotrophic lateral sclerosis (SALS) cohort. (A) An 
Admixture plot where each bar represents a patient with SALS (in total 96 patients). The 
height of each colored bar represents the amount of ancestry each individual derives 
from. Blue = European (CEU), green = East Asian (CHB + JPT), and red = African 
(YRI). Individuals with less than 90% European ancestry (yellow bar) were removed 
from further analysis. The 9 patients with SALS with less than 90% European ancestry 
are indicated with a red asterisk. (B) PCA plot of all 96 individuals with 1,000 genomes 
data (CEU = Utah residents [CEPH] with northern and western European ancestry; CHB 
= Han Chinese in Beijing, China; JPT = Japanese in Tokyo, Japan; YRI = Yoruba in 
Ibadan, Nigeria). Shaded areas represent the area over which the kernel density of each 
respective 1000 genomes population spans. SALS samples are listed as purple circles. 
Arrows indicate non-European individuals who were removed from further analysis. 
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Figure 3.2 Percentage of sporadic amyotrophic lateral sclerosis (SALS) cases with an 
identifiable genetic variant likely responsible for disease. The percentage next to each 
gene indicates what percentage of SALS cases have a rare and pathogenic variant in that 
gene. A majority (82.8%) of SALS cases have no identifiable genetic variants potentially 
responsible for their disease. 
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Table 3.1 Detailed summary of the sporadic amyotrophic lateral sclerosis cohort before 
and after selecting for European patients. Abbreviation: ALSFRS-R = Amyotrophic 
Lateral Sclerosis Functional Rating Scale–revised. 
aSurvival data were available for 78 participants overall and for 72 analyzed. 
bRate of progression data were available for 76 participants overall and for 69 analyzed.

Variables Overall (n=96) Analyzed (n=87) 

Male sex, % (n) 61.5 (59) 62 (54) 

Bulbar onset, % (n) 28.1 (27) 27.6 (24) 

Age at onset, y, mean ± SD 58.7 ± 12.1 59.3 ± 11.6 

Age at onset, y, range 19–83 19–83 

Survival, y, mean ± SDa 2.9 ± 1.7 3 ± 1.8 

Survival, y, rangea 0.5–12 0.5–12 

Rate of progression, 
ALSFRS-R/y, mean ± SDb -13.1 ± 9.7 -12.4 ± 9.5

Rate of progression, 
ALSFRS-R/yr, rangeb -1 to -60 -1 to -60



Table 3.2 The 19 rare nonsynonymous variants found in the 31 amyotrophic lateral sclerosis–associated genes. Abbreviations: dbSNP 
= Single Nucleotide Polymorphism database; ExAC = Exome Aggregation Consortium; MAF = minor allele frequency; SALS = 
sporadic amyotrophic lateral sclerosis. 
aVariants that were considered to be deleterious by MetaSVM. Indel and splice-site variants were automatically considered 
deleterious. 

Chromosome:Position 
(GRCh37) 

dbSNP141 
ID Amino acid change Gene MetaSVM 

prediction 
ExAC 

European MAF 

No. of 
patients with 

SALS 
2:32289025 C>A p.Pro42His SPAST Tolerated 0.0 1 
2:74593484 T>A p.Ser883Cys DCTN1 Tolerated 4.50E-05 1 
2:212251806 T>C rs143251275 p.Thr1085Ala ERBB4 Tolerated 4.50E-05 1 
2:212483999 C>Aa p.Gly735Vala ERBB4a Damaginga 0.0a 1a 
2:212522497 G>A p.Thr643Ile ERBB4 Tolerated 0.0001049 1 
4:170400673 C>Ga p.Gly646Arga NEK1a Damaginga 4.54E-05a 1a 

4:170428944 C>Ta c.1750-1G>A (Splice
variant)a NEK1a NAa 0.0a 2a 

5:138629745 G>T p.Ala26Ser MATR3 Tolerated 0.0 1 
5:138652744 G>A rs201075828 p.Ala378Thr MATR3 Tolerated 0.0001978 1 

5:179263453 A>ATa p.Glu396fsa SQSTM1a NAa 0.0a 1a 
6:110106211 T>A p.Leu643* FIG4 Tolerated 0.0 1 
9:131277886 A>G p.Met134Val GLE1 Tolerated 4.65E-05 1 
9:135140228 T>C rs142303658 p.Thr2507Ala SETX Tolerated 7.49E-05 1 
9:135144866 G>A rs375949756 p.Pro2433Leu SETX Tolerated 1.57E-05 1 
9:135203159 G>C rs148604312 p.Gln1276Glu SETX Tolerated 0.0004495 1 
9:135203725 G>A rs139559547 p.Ser1087Phe SETX Tolerated 1.50E-05 1 
16:31195253 T>A rs372638663 p.Ser89Thr FUS Tolerated 3.00E-05 1 
16:31202284 G>Aa rs141684472a p.Gly465Glua FUSa Damaginga 0.0001352a 1a 
21:33039603 A>Ca rs80265967a p.Asp91Alaa SOD1a Damaginga 0.00087a 2a 
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Table 3.3 Odds ratio (OR) analyses comparing the genetic burden of amyotrophic lateral 
sclerosis (ALS)–associated genes of patients with sporadic ALS (SALS) vs controls. 
Abbreviations: CI = confidence interval; MAF = minor allele frequency; SSC = Simons 
Simplex Collection. 
The incorporation of MetaSVM predictions of deleteriousness shows a much higher 
genetic burden of ALS-associated genes in patients with SALS than by considering 
variant rarity alone. 

Variant 
prediction 

model 

No. of patients with SALS 
with a rare and deleterious 

mutation in an ALS-
associated gene/number 

without 

No. of SSC individuals 
with a rare and 

deleterious mutation in 
an ALS-associated 

gene/number without 

Odds 
Ratio 
(95% 
CI) 

p 
Value 

Rare 
(MAF 

<0.001) 
22/65 49/275 

1.90 
(1.07–
3.36) 

0.022 

Rare + 
MetaSVM 15/72 13/311 

4.98 
(2.27–
10.94) 

8.90 ´ 
10–5 
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Table 3S.1 Proportion of SALS cases with a rare and pathogenic variant for each method 
in dbNSFP. 

Variant prediction model 
Proportion of SALS patients with a rare and pathogenic 

variant or a pathogenic repeat expansion in an ALS-
associated gene 

Rare (MAF < 0.001) 28.7% 
MutationTaster 21.8% 

MutationAssessor 14.9% 
SIFT 20.7% 

Polyphen2 HVAR 17.2% 
Polyphen2 HDIV 19.5% 

FATHMM 19.5% 
MetaSVM 17.2% 
MetaLR 19.5% 

LRT 17.2% 
PROVEAN 14.9% 

CADD 19.5% 
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Table 3S.2 Genetic burden OR results for each variant prediction model in dbNSFP. 

Variant 
prediction 

model 

Number of SALS patients 
with a rare and pathogenic 

mutation in an ALS-
associated gene / number 

without 

Number of SSC 
individuals with a rare 

and pathogenic mutation 
in an ALS-associated 
gene / number without 

Odds 
Ratio 
(95% 
CI) 

p-
value 

Rare (MAF 
< 0.001) 22/65 49/275 

1.90 
(1.07-
3.36) 

0.022 

Rare + 
Mutation 

Taster 
18/69 33/291 

2.30 
(1.22-
4.33) 

0.009 

Rare + 
Mutation 
Assessor 

13/74 14/310 
3.89 

(1.75-
8.63) 

0.001 

Rare + 
SIFT 16/71 31/293 

2.13 
(1.11-
4.11) 

0.021 

Rare + 
Polyphen2 

HVAR 
14/73 31/293 

1.81 
(0.92-
3.58) 

0.066 

Rare + 
Polyphen2 

HDIV 
16/71 33/291 

1.99 
(1.04-
3.81) 

0.032 

Rare + 
FATHMM 16/71 22/302 

3.09 
(1.55-
6.19) 

0.002 

Rare + 
MetaSVM 15/72 13/311 

4.98 
(2.27-
10.94

) 

8.90 x 
10-5

Rare + 
MetaLR 16/71 17/307 

4.07 
(1.96-
8.44) 

2.40 x 
10-4

Rare + 
LRT 14/73 23/301 

2.51 
(1.23-
5.12) 

0.011 

Rare + 
PROVEAN 13/74 19/305 

2.82 
(1.33-
5.97) 

0.007 

Rare + 
CADD 16/71 27/297 

2.48 
(1.27-
4.85) 

0.008 



Table 3S.3 The rare coding variants in ALS-associated genes found in the SSC control cohort. 

Chromosome:Position 
(GRCh37) 

dbSNP141 
ID Amino acid Change Gene MetaSVM 

prediction 

ExAC 
European 

MAF 

Number of 
control 

individuals 
2:74594827 T>C p.Tyr727Cys DCTN1 Damaging 1 
2:74598791 G>C p.Ala173Gly DCTN1 Tolerated 1 

2:212248504 G>A p.His1255Tyr ERBB4 Tolerated 1 
2:212252671 C>T rs372352845 p.Gly1061Glu ERBB4 Tolerated 6.00E-05 1 
2:212530199 G>T rs200792124 p.Pro574Thr ERBB4 Tolerated 4.52E-05 1 
2:212537978 A>T rs141594820 p.Phe543Ile ERBB4 Tolerated 0.0002407 1 
2:212566740 T>C rs368860175 p.Ile481Val ERBB4 Tolerated 1.50E-05 1 
2:213403205 G>A rs201202926 p.Ala17Val ERBB4 Tolerated 0.0001054 1 

4:170458958 A>C c.1665+2T>G (splice
variant) NEK1 NA 1 

4:170476956 C>G p.Gly493Arg NEK1 Tolerated 1 
4:170483338 T>C p.Thr344Ala NEK1 Tolerated 0.0001917 1 
5:179250875 C>T p.Arg107Trp SQSTM1 Tolerated 3.10E-05 1 
5:179250908 C>T rs200152247 p.Pro118Ser SQSTM1 Tolerated 0.0002582 1 
6:110037748 C>T p.Ala89Val FIG4 Tolerated 4.50E-05 1 
6:110110877 T>G p.Leu726Trp FIG4 Tolerated 1 
6:110146434 T>C p.Met897Thr FIG4 Tolerated 1.50E-05 1 
7:26237018 C>A p.Ala73Ser HNRNPA2B1 Tolerated 1 
8:27967909 G>A rs144486746 p.Arg139His ELP3 Tolerated 8.99E-05 1 
9:35065261 G>T p.Pro188His VCP Damaging 1 
9:131285907 C>T rs146025848 p.Arg227Cys GLE1 Tolerated 0.0008836 1 
9:131285938 G>A rs139953543 p.Arg237Gln GLE1 Tolerated 3.03E-05 1 48 



Table 3S.3 Continued 

Chromosome:Position 
(GRCh37) 

dbSNP141 
ID Amino acid Change Gene MetaSVM 

prediction 

ExAC 
European 

MAF 

Number of 
control 

individuals 
9:131287520 G>A rs147943229 p.Arg316Gln GLE1 Tolerated 0.0008859 2 
9:135140000 A>T rs368269464 p.Phe2554Ile SETX Tolerated 0.0001049 1 
9:135171367 G>C rs142917412 p.Gln2000Glu SETX Tolerated 0.0002548 1 
9:135202358 A>T p.Ser1543Thr SETX Tolerated 1 
9:135202552 G>T rs143661911 p.Ala1478Glu SETX Tolerated 0.0005244 2 
9:135202889 A>G rs140147684 p.Ser1366Pro SETX Tolerated 0.0003896 1 
9:135205564 C>T p.Cys474Tyr SETX Damaging 1.53E-05 1 
9:135205882 G>A p.Ser368Phe SETX Tolerated 1 
9:135221659 T>C p.His126Arg SETX Damaging 7.50E-05 1 
10:13151192 C>A p.Pro24Thr OPTN Tolerated 1 
10:13158282 G>A p.Gly190Arg OPTN Tolerated 1 

10:13168019 G>T p.Glu408* OPTN not scored 
and excluded 1 

12:64879788 G>A p.Arg444Gln TBK1 Tolerated 4.52E-05 1 
12:109283278 C>T rs201583577 p.Arg115Trp DAO Damaging 0.0001199 1 
12:109288127 G>A rs200850756 p.Arg199Gln DAO Damaging 0.0002237 1 
16:31193926 C>T p.Ser44Phe FUS Damaging 1 

16:31193959 ATTC>A p.Ser57del FUS NA 0.0002098 1 
16:31196366 G>C p.Gln210His FUS Damaging 1 
16:31196412 G>A p.Gly226Ser FUS Damaging 9.81E-05 1 
16:31199667 G>A p.Arg274His FUS Tolerated 1 
16:31201423 C>T p.Arg377Trp FUS Tolerated 1.51E-05 1 
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Table 3S.3 Continued 

Chromosome:Position 
(GRCh37) 

dbSNP141 
ID Amino acid Change Gene MetaSVM 

prediction 

ExAC 
European 

MAF 

Number of 
control 

individuals 
17:42427038 G>A rs200019356 p.Val90Met GRN Tolerated 0.0003468 1 
17:42429444 G>T rs63750920 p.Gly414Val GRN Tolerated 1.51E-05 1 
17:42429835 G>A rs142926942 p.Val514Met GRN Tolerated 7.51E-05 1 
20:60736600 C>T rs144059766 p.Pro114Ser SS18L1 Tolerated 0.0002373 1 
20:60747782 G>A rs36106901 p.Ala321Thr SS18L1 Tolerated 0.000453 1 
20:60749659 G>C p.Ala375Pro SS18L1 Tolerated 1 
21:33032141 A>G p.Asn20Ser SOD1 Damaging 0.000152 1 

22:29881797 A>C rs148653339 p.Asn390Thr NEFH Damaging 0.0002549 1 
(homozygous) 
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CHAPTER 4 

THE DISCOVERY OF NOVEL CANDIDATE RISK 

GENES IN SPORADIC AMYOTROPHIC 

LATERAL SCLEROSIS 

Introduction 

 The results of Chapter 3 showed that a significant majority (82.8%) of SALS 

patients lack an identifiable disease causing variant. However, genetic factors have been 

estimated to account for 60% of SALS risk (1). These pieces of evidence suggest that 

additional genetic loci that contribute towards the development of ALS remain to be 

discovered. NGS studies aimed at discovering novel ALS risk loci are more likely to find 

such variants than previous methods because they can directly assay rare pathogenic 

alleles. The fact that a number of novel ALS risk loci have been identified by the few 

NGS studies performed to date (2-5) supports this hypothesis. These studies largely used 

burden methods to identify genes that are associated with ALS pathogenesis. Unlike 

GWAS, which tests individual variants for association, burden methods determine 

whether accumulated mutations in a gene are associated with disease. The aggregation of 

variants across a gene allows burden methods to achieve better statistical power for rare 

variant association testing than GWAS (6).  

However, a number of the NGS studies which utilized burden methods to find 

ALS risk genes had methodological flaws that could have impaired their results. For 
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instance, some studies did not control for population stratification between cases and 

controls (3, 5), which can lead to false positive gene associations due to allele frequency 

differences between populations (7). Furthermore, these same studies considered all rare 

variants as pathogenic instead of directly predicting their pathogenicity. Lastly, the MAF 

thresholds used by these studies is restrictive enough that variants known to be 

pathogenic for ALS would be incorrectly considered benign. All of these factors could 

cause false positive and false negative ALS risk gene associations. 

The aim of this chapter is to identify novel ALS risk loci by performing VAAST 

(8)  and PHEVOR (9) on the same sequenced SALS and SSC individuals analyzed in 

Chapter 3. To do so, multiple steps will be taken to address the methodological 

shortcomings of previous ALS burden testing studies. First, PCA will be performed to 

control for population stratification between SALS patients and healthy controls. Second, 

burden testing will be performed by VAAST, which directly estimates variant 

pathogenicity. Lastly, a variant frequency filtering threshold that is compatible with the 

maximum observed allele frequency of variants known to be pathogenic for ALS will be 

used. These measures could lead to the discovery of ALS risk genes missed by previous 

burden association tests. 

Materials and Methods 

 The exome sequencing results of 87 European SALS patients and 324 SSC 

control individuals from Chapter 3 were used for this analysis. ADMIXTURE (10) and 

smartpca (7, 11) were previously used to determine that these individuals were of 

European descent to control for population stratification effects. Genomic regions 

covered by less than five sequencing reads on average in the SALS and SSC cohorts were 
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omitted from further analysis to control for coverage differences between the two 

cohorts. Variants with an ExAC (12) European MAF greater than 0.001 were removed 

from further consideration to reduce false positive gene associations. This value 

corresponds approximately to the frequency of the most common allele known to cause 

ALS (13). To identify novel ALS risk genes, a VAAST (8) analysis was performed to 

compare the genetic burden of all genes across the genome of SALS patients to SSC 

control individuals. Insertion and deletion (indel) variants were not used in the VAAST 

analysis as indel frequency based filtering is difficult due to inconsistency in how they 

are reported between different datasets (14). Multiple test correction is required when 

using VAAST because it tests for an excess of burden in all genes in the genome. 

Bonferroni correction was used to account for multiple hypothesis testing. As a result, a 

p-value of 2.57 × 10-6 was required for a gene to be considered significantly burdened 

(alpha level = 0.05 and 19,492 genes tested).  

 The ranked list of burdened genes generated by VAAST was then processed by 

PHEVOR (9) to identify genes with similar characteristics to known ALS risk genes. The 

following Human Phenotype Ontology (15) terms were used by the PHEVOR analysis: 

amyotrophic lateral sclerosis (HP:0007354), abnormal motor neuron morphology 

(HP:0002450), motor neuron atrophy (HP:0007373), and frontotemporal dementia 

(HP:0002145). The reranked list of burdened genes from PHEVOR was then manually 

reviewed to identify both known and potentially novel ALS risk genes.  

Results and Discussion 

 No genes in the genomes of SALS patients were determined to be significantly 

more burdened by deleterious genetic variation than controls by VAAST. This result is not 
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surprising due to the genetic heterogeneous nature of ALS. A much larger sample cohort 

would likely be required for a gene to show a significant excess of burden on a genome-

wide level. However, two genes had burden levels that approached genome-wide 

significance. VAAST ranked THOP1 (p = 1.89 × 10-5; 95% Confidence interval (CI) = 

1.24 × 10-5–2.61 × 10-5) as the most burdened gene in the SALS patient cohort compared 

to the SSC control individuals (Figure 4.1). Two missense variants (chr19:2810761 C>T; 

THOP1:p.T589M and chr19:2805121 G>A; THOP1:p.V233M) from two different SALS 

patients were identified in THOP1. THOP1:p.V233M is a novel allele because it is not 

found in the ExAC database. THOP1:p.T589M is found at extremely low frequency 

(MAF = 4.72 × 10-5) in ExAC European individuals. 

TP73 was the other gene that possessed a nearly significant level of deleterious 

variation (p = 2.08 × 10-5; 95% CI = 1.39 × 10-5–2.83 × 10-5) in SALS patients (Figure 

4.1). Four different missense variants were found among five separate SALS patients 

(Table 4.1). All of these variants were found at very low frequency in ExAC European 

individuals (Table 4.1). DZIP1L had the next highest amount of genetic burden with a p-

value of 2.30 × 10-4 (95% CI = 1.65 × 10-4–3.00 × 10-4). 

ALS risk genes that have previously described and contained deleterious variation 

were identified once the VAAST burden results were processed by PHEVOR. For 

example, SOD1—which was the first gene to be associated with ALS (16)—was the fifth 

ranked gene by PHEVOR (Table 4.1). The SOD1:p.D91A (chr21:33039603 A>C) 

missense variant, which is known to cause ALS in a recessive (13) and dominant (17) 

manner, was found in two different SALS patients (Table 4.1). MAPT, which has been 

previously described to be associated with ALS (18), was the third ranked gene resulting 
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from the VAAST/PHEVOR analysis. A MAPT nonsynonymous variant (chr17:44101487 

G>A; MAPT:p.A743T) was found in a single SALS patient. This variant has not been 

previously associated with ALS. However, it is found at a very low frequency in 

European individuals in the ExAC database (MAF = 3.01 × 10-5).  

Two candidate ALS risk genes were also identified by the combined VAAST and 

PHEVOR analysis. The top ranked gene resulting from this analysis was MFN2 (VAAST 

p-value = 1.80 × 10-3; 95% CI = 1.29 × 10-3–2.36 × 10-3). Four missense variants found in 

MFN2 from four separate SALS patients were identified (Table 4.1). Two of these 

variants (chr1:12049301 G>A; MFN2:p.A26T and chr1:12062061 T>C; 

MFN2:p.V354A) were novel as they were not found in ExAC. One of the variants in 

MFN2 (chr1:12064096 T>G; MFN2:p.F403C) was found in a single Latino individual in 

ExAC, but not in any European individuals. MFN2 encodes for the Mitofusin-2 protein, 

which is important in maintaining proper mitochondrial dynamics, such as mitochondrial 

fusion (19). Loss of function of mitofusin-2 and mitofusin-1, which is a paralogue of 

mitofusin-2, leads to a complete lack of mitochondrial fusion and greatly reduced cellular 

respiration (20). Mutations in MFN2 have been previously shown to cause Charcot-

Marie-Tooth Neuropathy Type 2A (21), which is a hereditable axonal peripheral 

sensorimotor neuropathy characterized by motor and sensory loss mostly in the lower 

extremities (22). Dysfunction of mitofusin-2 has also been suspected to play a role in 

ALS pathogenesis because altered mitochondrial dynamics are seen in the disease (23). 

Interestingly, it has been reported that a patient with a mutation in MFN2 developed co-

occurring Charcot-Marie-Tooth Neuropathy Type 2A and ALS (24). These findings 

suggest MFN2 could be involved in the development of ALS. Functional studies will be 
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required to determine whether the MFN2 variants seen in our SALS patient cohort are 

deleterious.  

The other candidate ALS risk gene identified was TP73, which was the second 

ranked gene by the VAAST and PHEVOR analysis. In contrast, PHEVOR reduced the 

ranking of THOP1 to seventh despite being ranked higher than TP73 by VAAST. This 

suggests that TP73 is both burdened by deleterious variation and clinically relevant to 

neurodegenerative disease. Interestingly, mice that possess one tp73 null allele (tp73+/-) 

show neurodegenerative signs that are similar to those found in ALS (25). These pieces 

of evidence make TP73 a very attractive candidate for further study within the context of 

ALS. The next chapter (Chapter 5) of this dissertation will focus on experiments aimed at 

determining whether deleterious variants in TP73 are involved in ALS pathogenesis.  
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Figure 4.1 A Manhattan plot of the VAAST burden test results. Each dot shows the 
genomic position (x-axis) and VAAST p-value (y-axis) of each gene in the genome. The 
red line indicates the p-value threshold for genome-wide significance (p = 2.57 × 10-6). 
The only genes which possessed burden levels approaching genome-wide significance 
were THOP1 and TP73. 
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Table 4.1 The top five ranked genes from the PHEVOR analysis. The specific variants 
that are contributing genetic burden are listed next to each gene they occur in. All 
variants are listed according to their genomic position (Chromosome:GRCh37 position) 
and the nucleotide change they result in. TP73 was the only gene that was ranked high in 
both the VAAST and PHEVOR analyses. ExAC NFE MAF stands for Exome Aggregation 
Consortium non-Finnish European minor allele frequency. * indicates a variant was not 
found in non-Finnish Europeans but was found in one Latino individual from ExAC. † 
indicates a variant which was found in two different SALS patients.  
 

PHEVOR 
rank Gene VAAST rank/p-

value Variants ExAC NFE 
MAF 

1 MFN2 14/1.80 × 10-3 1:12049301 G>A 0.0 
   1:12062061 T>C 0.0 
   1:12064096 T>G 0.0* 
      1:12069725 G>A 1.35 × 10-4 
2 TP73 2/2.08 × 10-5 1:3640007 G>A 1.57 × 10-5 
   1:3647534 C>T 2.65 × 10-4 
   1:3647609 C>T 1.60 × 10-5 
      1:3649488 G>A† 3.78 × 10-4 

3 MAPT 1001/1.59 × 10-1 17:44101487 
G>A 3.01 × 10-5 

4 GRIA3 26/3.33 × 10-3 X:122387214 
T>C 4.17 × 10-5 

5 SOD1 396/4.71 × 10-2 21:33039603 
A>C† 8.70 × 10-4 
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CHAPTER 5 

TP73, A NOVEL AMYOTROPHIC LATERAL 

SCLEROSIS CANDIDATE RISK GENE 

Introduction 

 The TP73 (Tumor Protein P73) gene encodes for the p73 protein (1), which is part 

of the p53 family of tumor suppressor proteins. This protein family also includes p53 and 

p63 (2). The p53 family of proteins are transcription factors that modulate the expression 

of their target genes to facilitate a number of biological and developmental processes, 

such as cell-cycle arrest, apoptosis, and cellular differentiation (2). Many of the cellular 

hallmarks of tumorigenesis and cancer result from dysfunction of these processes (3). As 

a result, mutations that ablate the tumor suppressive function of p53 are commonly seen 

in a wide variety of cancers (4). The p73 protein is also mutated or deleted in some 

cancers, such as neuroblastoma (1). However, somatic mutations of p73 cause cancer to a 

much lesser degree than p53 (2).   

The p73 protein possess a NH2-terminal transactivation (TA) domain, a central 

DNA-binding domain, and an COOH-terminal oligomerization domain like the other 

members in the p53 protein family (5). The transactivation domain of p73 induces 

transcription once p73 has bound to a target gene via its DNA-binding domain (6). The 

oligomerization domain is responsible for forming active tetramers with other p73 

proteins and p53 family members (7).  
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Transcripts of TP73 and its family members are expressed in a wide variety of 

unique isoforms (6). At least three NH2-terminal and nine COOH-terminal alternative 

splicing events are known to occur (5). These different TP73 transcripts vary in the genes 

they target and how much they can induce expression, which suggests they are involved 

in different cellular processes (8).  For instance, the longest COOH-terminal splice 

isoform of TP73, p73α, possesses a sterile alpha motif (SAM) domain not found in other 

isoforms (6). SAM domains typically mediate protein-protein interactions and are 

thought to be involved in the regulation of cellular differentiation. This supports the 

notion that p73α has a unique role in development compared to other p73 isoforms (9).  

Alternative transcripts of TP73 can also be generated by utilizing an internal 

promoter in intron 3 that skips the first three exons of the gene. These transcripts result in 

an NH2-terminally truncated p73 protein (ΔN-p73) (5). Unlike full length NH2-terminal 

p73 proteins (TA-p73), ΔN-p73 isoforms are unable to directly induce the expression of 

gene targets because they lack a TA domain (2). The ΔN-p73 protein inhibits the tumor 

suppressive and apoptotic functions of TA-p73 and other p53 family members in a 

dominant-negative fashion (2). ΔN-p73 does this by binding and sequestering TA-p73, 

forming less active ΔN-p73/TA-p73 complexes, and outcompeting p53 and TA-p73 for 

target gene binding sites (2). ΔN-p73 is classified as an oncogene because it inhibits the 

proapoptotic and tumor suppressive functions of TA-p73 and p53 (2). The oncogenic role 

of ΔN-p73 has been shown in mouse embryonic fibroblasts (MEFs) that overexpress the 

gene. ΔN-p73 overexpressing MEFs show significantly increased growth rates (10). 

Furthermore, MEFs that coexpress ΔN-p73 and oncogenic Ras undergo cellular 

transformation (10). Conversely, TA-p73 is responsible for mediating E2F-1-induced 
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apoptosis in p53-/- MEFs (11). These pieces of evidence show that TA-p73 and ΔN-p73 

have opposing roles which must be properly regulated in order to maintain normal 

functioning cells. 

The complicated role TP73 (Trp73 in mice) plays in organism development and 

maintenance largely comes from animal models. Trp73-/- mice were one of first animal 

models used to test the developmental role of p73 (12). Trp73-/- mice were generated by 

deleting the DNA-binding domain of the protein, which is found in both TA-p73 and ΔN-

p73 (12). Unlike Trp53-/- mice, which develop spontaneous tumors (13), Trp73-/- mice 

develop a number of developmental abnormalities, including hippocampal dysgenesis, 

hydrocephalus, chronic infections, abnormal pheromone sensing capabilities, and other 

neuronal defects (12). Trp73 isoform specific knockout mice have further defined the 

specific developmental roles of TA-p73 and ΔN-p73. For instance, TA-p73-/- mice—

which were generated by deleting the exons that encode for the TA domain—develop 

spontaneous tumors, less severe hippocampal dysgenesis, and infertility. However, these 

mice lacked the central nervous system (CNS) atrophy seen in p73-/- mice (14, 15). In 

contrast, ΔN-p73-/- mice—which lack the ΔN-p73 specific exon 3’—do show signs of 

cortical atrophy and neurodegeneration like p73-/- mice (15, 16). Interestingly, aged (18 

months) Trp73+/- mice show signs that are reminiscent of those found in ALS, such as 

muscle weakness, motor cortex atrophy, and an abnormal reflex (17). However, the 

impact loss of functional p73 has on motor neurons was never directly studied in these 

animals. The primary p73 isoform found in developing neurons is ΔN-p73 and is required 

for neuronal resistance to apoptotic insults (18, 19). Together, these findings suggest that 

p73 is a critical neuronal survival and developmental factor that potentially has a role in 
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ALS pathogenesis.  

While the existing mouse data provide useful preliminary evidence that TP73 is a 

causal ALS gene, further mouse work would have several drawbacks and limitations. No 

Trp73+/- animals are readily available, which would require the retrieval of Trp73+/ 

embryonic cells to establish colonies. In addition, the ALS-like phenotype was only 

reported in aged (18 months) Trp73+/- mice (17). An alternative approach is to model 

ALS and TP73 function in zebrafish (Danio rerio), an organism well established at the 

University of Utah for studying human disease genes and whose rapid, economical 

breeding makes it particularly suitable for functional analysis of potential causal variants. 

Previous studies have established zebrafish as an ALS model. For instance, morpholino 

knockdown of the zebrafish FUS homolog, fus, leads to impaired locomotor ability and 

reduced spinal motor neuron axon length, which are consistent with an ALS-like 

phenotype (20). Interestingly, this phenotype could be rescued with coexpression of wild-

type (WT) human FUS, but not by with coexpression of the most common human ALS-

related FUS point mutations (20). A similar approach where zebrafish tp73 is genetically 

manipulated could serve as useful model to test what role p73 has in motor neuron 

function and development, especially since TP73 interacts with FUS (21).  

Zebrafish tp73 is highly expressed in the central nervous system like it is in 

humans and mice. As in the mouse, knockdown of tp73 in zebrafish (by morpholino 

technology) results in olfactory and telencephalon defects due to impaired neuronal 

development and survival (22), although the status of motor neurons and motor system 

function in tp73 knockdowns has not been addressed. However, morpholinos can have a 

number of off-target effects that complicate gene-specific studies (23). Thus, the exact 
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effects zebrafish tp73 knockout and patient specific mutations of TP73 have on motor 

neuron development and morphology can be addressed by CRISPR/Cas9. 

The results of Chapter 4 showed that at least five SALS patients seen at the 

University of Utah possessed a rare and potentially pathogenic variant in TP73. The 

established role TP73 has in neuronal survival and maturation, the development of ALS-

like symptoms in aged Trp73+/- mice, and the presence of deleterious TP73 variants in 

SALS patients all suggest that TP73 could be a ALS risk gene. The aim of this 

dissertation chapter is to determine if TP73 potentially has a role in the pathogenesis of 

ALS. To do so, I will determine whether more deleterious TP73 variants can be identified 

in other ALS patient cohorts. I also will determine the developmental and morphological 

effects loss of functional p73 has on motor neurons using a zebrafish (Danio rerio) 

animal model. The results of these investigations will help to elucidate whether p73 has a 

role in ALS pathogenesis.  

Materials and Methods 

Screening of ALS patients for deleterious TP73 variants 

If TP73 is involved in ALS pathogenesis, additional rare and deleterious variants 

should be discovered by screening additional ALS patients. The VAAST and PHEVOR 

analysis used in Chapter 4 only considered SNVs. As a result, it is possible that insertion 

and deletion variants in TP73 may exist in the 87 SALS exome-sequenced patient cohort 

studied in that chapter. These SALS patients were screened for rare (ExAC MAF < 

0.001) insertion and deletion variants that change the protein-coding sequencing of TP73. 

Nine individuals from the same SALS cohort were previously identified as non-European 

and were not assessed for TP73 variants of any kind. These nine SALS patients were 
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screened for all rare variants that change the normal TP73 amino acid sequence. Any 

additional TP73 variants identified among these patients, along with the five TP73 SNVs 

found in Chapter 4, were Sanger sequenced to validate their presence.  

Another University of Utah ALS cohort, which was whole-genome sequenced at 

an average coverage of 60X (analyzed in Chapter 6), was screened for rare TP73 coding 

variants. This cohort is comprised of 70 ALS patients and eight unaffected relatives. Of 

these 70 ALS patients, 26 were also found in the 96 patient SALS cohort and were 

removed from further analysis. In total, 44 additional ALS patients were screened for 

variants that alter the TP73 protein-coding sequence. Sanger sequencing was also used to 

validate any TP73 coding variants identified in this cohort.  

A large ALS cohort consisting of over 2,800 whole-exome sequenced patients 

(24) was used to search for additional rare SNVs, insertions, deletions, and splice-site 

altering variants in TP73 via the ALS Data Browser (ALSdb, http://alsdb.org). 

Information about the location and number of patients with a p73 variant is available 

through ALSdb. However, patient specific genotypes and DNA are not accessible. As a 

result, any coding variants in TP73 identified from this cohort could not be validated by 

Sanger sequencing.  

The effects of p73 loss of function on neuronal 

development and morphology 

 The CRISPR/Cas9 system was used to determine whether knockout of tp73 in 

zebrafish leads to an ALS-like phenotype. Zebrafish tp73 null alleles were created by 

developing guide RNA (gRNA) targeting sequences to tp73 exon 4 (5’- 

TGTATTGGAAGGGATGGCCGggg-3’; target site = uppercase and protospacer 
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adjacent motif = lowercase. Exon 4 of tp73 encodes for part of the DNA binding domain 

of zebrafish p73. While it is unclear if ΔN-p73 exists in zebrafish (25), all p73 isoforms 

possess the DNA-binding domain The tp73 CRISPR RNA and Cas9 protein were diluted 

to 450 ng/µl using DNase-free water and injected into one cell stage zebrafish embryos to 

generate tp73 mutant animals. Tg(hb9:Gal4-UAS:GFP) and mnx1:GFP transient 

transgenic embryos were used for these injections. The promoter sequences of the hb9 

and mxn1 genes were used to drive the expression of green fluorescent protein (GFP) 

specifically in motor neurons for visualization. The proportion of injected zebrafish that 

possessed a mutated copy of tp73 was determined by high resolution melting (HRM) 

analysis. 

 Injected tp73 mutant zebrafish were then assessed for motor neuron dysfunction. 

To do so, confocal microscopy images of GFP fluorescence in motor neurons were taken 

at 72 hr postfertilization (hpf). The primary axon length and number of motor neurons in 

tp73 mutant fish were compared to uninjected WT zebrafish to determine the impact loss 

of tp73 has on motor neurons. ImageJ and NeuronJ were utilized to quantify the number 

and primary axon length of motor neurons in tp73 and WT zebrafish. 

Results 

Discovery of additional rare TP73 coding sequence variants 

 One additional rare TP73 variant was identified in the 87 European SALS cohort 

upon searching for insertion and deletion variants. This variant (chr1:3646605 

CCATGAACAAGGTGCACGGGGG>C; TP73:p.PMNKVHGG413-420P) is a rare 

(ExAC European MAF = 1.17 × 10-4) 21 base pair and seven amino acid in-frame 

deletion in exon 11 (14 total exons) of TP73 (Figure 5.1). No additional TP73 variants 
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were uncovered when the nine non-European patients from the SALS cohort were 

screened. A single rare (ExAC European MAF = 4.86 × 10-5) missense SNV 

(chr1:3647559 G>A; TP73:p.A472T) was found in the 44 whole-genome sequenced 

University of Utah ALS patient cohort. In total, six unique variants that affect the protein-

coding sequence of TP73 were found in seven ALS patients out of the 140 screened 

patients (Table 5.1). Sanger sequencing confirmed the presence of all but one of the TP73 

coding sequence variants. More specifically, the presence of a rare TP73 SNV 

(chr1:3649488 G>A; TP73:p.V586M) was confirmed in only one of the two ALS 

patients it was first identified in (Figure 5.2).  

 An additional 17 rare SNVs that alter the TP73 coding sequence were found in the 

ALSdb patient cohort (24). Additionally, an in-frame deletion (chr1:3646679 AGTT>A; 

TP73:p.SS438-439T), which occurs in exon 11, was found in the ALSdb cohort. Between 

the University of Utah ALS and ALSdb cohorts, 24 different rare TP73 coding sequence 

variant sites were found. Four of the 24 TP73 coding sequence variants result in a 

synonymous substitution in TA-p73α (Ensembl transcript ID: ENST00000378295) and 

ΔN-p73α (ENST00000378288) (Figure 5.1 and Table 5.1). However, these variants cause 

nonsynonymous changes in some p73 isoforms, such as ΔN-p73γ (ENST00000378280). 

All of 22 of TP73 amino acid sequence altering SNVs were classified as deleterious by 

MetaSVM (26). A summary of all TP73 coding sequence variant sites can be found in 

Table 5.1 and Figure 5.1. 
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The effect of TP73 loss of function on motor 

neuron development and morphology 

 HRM analysis found the CRISPR/Cas9 system was working at high efficiency as 

nine out of 10 injected zebrafish possessed mutated copies of tp73 on average (Figure 

5.3). Sanger sequencing of multiple injected animals confirmed the presence of loss of 

function frame-shift mutations near the CRISPR/Cas9 cut site in exon 4 (data not shown). 

Dorsal mounting and confocal microscopy imaging of Tg(hb9:Gal4-UAS:GFP) zebrafish 

that had been injected with tp73 targeting CRISPR/Cas9 showed a significant reduction 

(p-value < 0.005) in the number spinal motor neurons present compared to uninjected and 

tyrosinase (tyr) CRISPR/Cas9 injected controls (Figures 5.4A and 5.4B). Lateral 

mounting of tp73 mutant mnx1:GFP zebrafish—which were generated by transient 

transgenesis—demonstrated a significant reduction (p-value < 0.05) in the primary axon 

length of spinal motor neurons (Figures 5.5A and 5.5B). The length of secondary axon 

branches of primary axons was also significantly (p-value < 0.05) reduced (Figure 5.5C). 

Interestingly, indirect TUNEL staining of tp73 mutant zebrafish showed significantly 

increased apoptosis (p-value < 0.05) of motor neurons compared to WT controls (Figures 

5.6A and 5.6B).  

Discussion 

The aim of this chapter was to determine if TP73 is involved in ALS 

pathogenesis. To do so, efforts were made to find if deleterious TP73 occur in the general 

ALS patient population. In total, 24 rare TP73 coding variants were found among ~2,900 

ALS patients, which is similar to the prevalence of many known ALS disease genes. 

Such a finding supports the hypothesis that TP73 is involved in the ALS disease process. 
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Next, experiments were performed in zebrafish to determine what role p73 has in motor 

neuron survival and development. The results of these efforts demonstrated that loss of 

p73 significantly reduced motor neuron survival and development. Such a finding also 

supports notion that TP73 is an ALS disease gene.  

Since SOD1 mutations were found to be associated with ALS in 1993 (27), 

impairment of a number of different cellular processes have been shown to play a role in 

the disease (28). However, transcription factors that drive cell survival and 

developmental pathways have not been previously implicated in ALS. Dysfunction of 

such factors in ALS would be expected as motor neuron death is a central component to 

the clinical manifestations of the disease. Our results—which show deleterious TP73 

protein-coding variants occur in an appreciable proportion of ALS patients and loss of 

tp73 impairs motor neuron survival and development in zebrafish—indicate TP73 is 

likely involved in ALS pathogenesis. This finding potentially contributes to the overall 

efforts aimed at narrowing the ALS missing heritability gap. Our data also provide 

evidence that neuronal survival factors could be an important piece to the incomplete 

puzzle of ALS molecular pathology. To definitively show whether p73 is involved in the 

ALS disease process, future work will be needed to determine whether patient specific 

variants can rescue the observed zebrafish motor neuron phenotype. Overall, these 

contributions will assist in understanding the ALS genetic risk landscape and help pave 

the way forward to an eventual a cure for the disease.  



Figure 5.1 A schematic of where the 24 rare (ExAC European MAF < 0.001) amino acid alerting-variants found across all studied 
ALS cohorts occur in the primary structure of TA-p73α. Eleven of these variants are found within the four functional domains of TA-
p73α. Six of the 24 TP73 variants were found in the University of Utah ALS patient cohorts. Four of the nonsynonymous SNVs are 
not found in p73α proteins, but do exist in p73γ isoforms due to splicing differences. 
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Figure 5.2 Sanger sequencing results of the seven TP73 variants found in the University 
of Utah ALS patient cohorts. Chr1:3649488 G>A was verified by Sanger sequencing in 
one of the two patients who were reported to have it by NGS. Pt. stands for patient. 
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Figure 5.3 A high resolution melting curve of the PCR products covering the tp73 exon 4 
site targeted by CRISPR/Cas9. Grey curves indicate the melting pattern of uninjected 
wild-type zebrafish. The blue and red curves indicate zebrafish that have been injected 
with the tp73 targeting CRISPR/Cas9. The leftward shift of the blue curves indicate 
zebrafish that have mutant copies of tp73. Only one injected zebrafish did not undergo 
mutagenesis (red curve). These results indicate CRISPR/Cas9 was able to induce tp73 
mutagenesis at high efficiency.  
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Figure 5.4 Loss of tp73 function is detrimental to the number of spinal motor neurons 
present in Tg(hb9:Gal4-UAS:GFP) zebrafish at 72 hpf. (A) Dorsal confocal microscopy 
images (taken at 10x; 5µm/step, 21 steps) of wild-type (WT) uninjected control, 
tyrosinase (tyr) CRISPR/Cas9 injected control, and tp73 CRISPR/Cas9 mutant zebrafish. 
A reduced number of GFP-positive motor neurons can be seen in tp73 zebrafish. (B) The 
number of GFP-positive motor neurons in tp73 zebrafish is significant lower (p-value < 
0.005) than both WT uninjected and injected tyrosinase control zebrafish. The number of 
zebrafish tested is listed under each respective bar. The error bars indicate the standard 
error of the mean. 

Uninjected (WT)
GFP

tyr injected control

tp73 injected mutant

Motor neuron quantification

A

B

*

* p<0.005



Figure 5.5 Loss of tp73 function negatively impacts axon development of spinal motor neurons in transient transgenic mnx1:GFP 
zebrafish. (A) Lateral confocal microscopy GFP images of three different WT and tp73 CRISPR/Cas9 mutant zebrafish. The spinal 
motor neuron axons of tp73 mutant zebrafish appear to be shorter and disordered in their arrangement. (B and C) The length of 
primary axons (B) and secondary axon branches (C) of spinal motor neurons in tp73 mutants is significantly lower (p-value < 0.05) 
compared to uninjected WT zebrafish.
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Figure 5.6 Loss of tp73 function results in increased motor neuron apoptosis in 
Tg(hb9:Gal4-UAS:GFP) zebrafish at 72 hpf. (A) Dorsal confocal microscopy images of 
wild-type (WT) uninjected control and tp73 CRISPR/Cas9 mutant zebrafish. Red 
rhodamine fluorescence is used to measure apoptosis. A yellow overlap of red and green 
GFP fluorescence indicates motor neurons undergoing apoptosis. (B) The number of 
apoptotic spinal motor neurons is significantly increased (p-value < 0.05) in tp73 mutants 
compared to uninjected controls.  
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Table 5.1 A summary of the 24 rare variants found among all studied ALS patients that 
alter the normal TP73 protein-coding sequence. The variants are listed according to their 
GRCh37 genomic position (Chromosome:Position) and the nucleotide change they cause.  
All amino acid positions are relative to TA-p73α (ENST00000378295). Four of the 
variants result in an amino acid substitution in only in some p73 isoforms, such as ΔN-
p73γ (ENST00000378280). † indicates the amino acid substitution that occurs in ΔN-
p73γ. 
 

Variant dbSNP141 
ID 

Amino acid 
change 

ExAC NFE 
MAF 

In Utah 
cohort? 

1:3598970 C>T  T14M 0.0 No 
1:3599719 T>G rs377512486 L54R 1.51 × 10-5 No 
1:3624333 C>T  T136M 1.54 × 10-5 No 
1:3638640 A>G  Q162R 0.0 No 
1:3640007 G>A  V236I 1.57 × 10-5 Yes 
1:3643770 T>C  I275T 0.0 No 
1:3644278 G>A  R310Q 2.68 × 10-4 No 
1:3644706 C>G rs202005425 S333R 2.77 × 10-4 No 
1:3645901 G>A rs200330726 R362Q 7.58 × 10-5 No 
1:3645954 T>G  L380V 0.0 No 
1:3645988 A>G  Q391R 1.52 × 10-5 No 
1:3645990 C>G  Q392E 0.0 No 

1:3646605 
CCATGAACAAGGTG

CACGGGGG>C 
 PMNKVHGG41

3-420P 1.17 × 10-4 Yes 

1:3646679 AGTT>A  SS438-439T 0.0 No 
1:3646683 C>T  S439L 0.0 No 
1:3646709 G>A  V448M 0.0 No 
1:3647534 C>T rs150268231 463N (R365W†) 2.65 × 10-4 Yes 
1:3647559 G>A rs369342367 A472T 4.86 × 10-5 Yes 
1:3647609 C>T  488H (R390C†) 1.60 × 10-5 Yes 
1:3648061 G>A  E507K 0.0 No 
1:3648063 G>A rs143515986 507E (V409I†) 1.51 × 10-5 No 
1:3648066 T>C rs143442213 508Y (F410L†) 1.36 × 10-4 No 
1:3649468 G>A rs376429700 R579H 2.17 × 10-4 No 
1:3649488 G>A rs138694448 V586M 3.78 × 10-4 Yes 
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CHAPTER 6 

HOW “SPORADIC” IS SPORADIC AMYOTROPHIC  

LATERAL SCLEROSIS? 

Introduction 

 The results of Chapter 3 demonstrated that heritable genetic factors are found in a 

significant proportion (17.2%) of SALS patients. The presence of genetic risk factors in 

SALS patients calls into question how appropriate the definitions of FALS and SALS are. 

Furthermore, it is unclear where these heritable ALS risk factors originate from. One 

possible mechanism could be through nonsynonymous de novo mutations, which are 

thought to play a role in SALS pathogenesis (1). In an ALS trio study, 38% of SALS 

patients had at least one identifiable de novo variant that altered the protein coding 

sequence of a gene (2). However, none of the de novo mutations identified in these 

patients occurred in a known ALS risk gene. As a result, it is unclear how important de 

novo mutations are in the development of ALS. Another mechanism by which ALS 

genetic risk factors could occur in SALS patients is through the inheritance of such 

variants, which went undetected in carrier family members due to incomplete penetrance, 

misdiagnosis, early death, or death to non-ALS causes. If such a mechanism occurred to a 

large extent, it would be expected that distantly related SALS patients would share an 

ALS genetic risk factor by descent. However, there have been no attempts to identify 

such events to date, which is likely due to the lack of genealogical data between distantly



 85 

related SALS patients. 

Genetic studies performed at the University of Utah have the unique ability to 

conduct such analyses because of resources like the Utah Population Database (UPDB). 

The UPDB contains genetic, medical, and genealogical records from over 9 million 

individuals from as far back at the late 18th century. The use of the UPDB has led to the 

discovery of a number of disease genes, such as APC as a cause of familial adenomatous 

polyposis (3). Distantly related patients can be identified through the UPDB. These 

related patients can then be consented to participate in genetic studies to identify regions 

of the genome that are identical by descent (IBD). Regions that are IBD between patients 

could potentially harbor a shared disease risk variant. As a result, the identification of 

genomic regions that are IBD focuses the search space for potentially pathogenic 

variants. Analyses that identify regions of the genome that are shared by distantly related 

patients can also help to understand how genetic risk factors occur in seemingly sporadic 

cases.  

Understanding the mechanisms by which genetic risk factors arise in SALS is 

critical to providing adequate healthcare and proper genetic counseling to patients and 

family members. The identification of shared segments of the genome between distantly 

related patients will help to better understand how these heritable risk factors arise in 

SALS. Furthermore, these shared genomic segments will allow for the potential 

discovery of novel ALS risk loci, which may account for the missing heritability seen in 

SALS (1, 4, 5). In this chapter, I will attempt to identify shared regions of the genome 

between distantly related ALS patients using the Shared Genomic Segments (SGS) 

analysis method—which is developed by the Nicola Camp Laboratory—and determine 
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whether they harbor any ALS risk variants. These efforts will help to elucidate whether 

SALS can be caused by the inheritance of previously unrecognized genetic risk factors or 

not.  

Methods 

 DNA was collected from 72 ALS patients and eight unaffected relatives by Dr. 

Summer Gibson (Department of Neurology, University of Utah). The collected DNA 

samples were Illumina whole-genome sequenced to an average coverage of 60X with 

150-bp paired-end reads by NantOmics as part of the Heritage 1K Project. Genomic reads 

from each sequenced individual were then aligned to the GRCh37 reference genome 

using the BWA-MEM aligner (6). The aligned genomic reads from all 80 individuals 

underwent joint variant calling with 95 long-lived individuals (longevity cohort) and 291 

European individuals (CEU (Utah Residents (CEPH) with Northern and Western 

European Ancestry) and GBR (British in England and Scotland)) from the 1000 Genomes 

Project (7) using the Genome Analysis Toolkit (GATK; v.3.4-46) best practices 

guidelines (8-10). Of the 95 individuals in the longevity cohort, 76 were determined to be 

unrelated (results not shown) by Dr. Deborah Neklason (Division of Genetic 

Epidemiology, University of Utah) and were used as healthy controls. The genotypic sex 

of each individual was imputed by PLINK2 (11) and compared to the reported sex to 

identify any sample identification errors. Furthermore, the genotypes of each sample 

were compared to each other to identify any unexpected relatedness that may be 

indicative of a sample labeling error using KING (12). The UPDB identified that 36 of 

the 72 patients with ALS are distantly related (6–14 degrees of separation) to at least one 

other sampled patient and form 19 distinct pedigrees. Variant calls from these 36 ALS 
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patients and 76 unrelated individuals from the longevity cohort were used for further 

analysis. The variants from these samples were intersected with biallelic SNPs from 99 

CEU, 103 CHB (Han Chinese in Bejing, China), 104 JPT (Japanese in Tokyo, Japan), 

108 YRI (Yoruba in Ibadan, Nigeria) samples from the 1000 Genomes Project (7). A 

FlashPCA (v1.2.5) principal components analysis (13) was performed on the intersected 

variant calls to identify any poor quality samples. An ADMIXUTRE (v1.3.0) analysis (14) 

was also performed to select for individuals with more than 80% European ancestry to 

avoid population stratification effects.  

 The distantly related ALS and longevity control cohort samples that passed all of 

the quality control steps were used for the SGS discovery analysis. To perform the SGS 

identification pipeline, SNP array genotype data—which was assayed by the Illumina 2.5 

Omni array platform—was first gathered from 283 Europeans (CEU, GBR, and FIN 

(Finnish in Finland)) belonging to the 1000 Genomes Project to be used as additional 

control information. Biallelic autosomal SNPs found on the Illumina OmniExpress 700K 

marker genotyping array were extracted from the ALS, longevity, and 1000 Genomes 

Project cohorts to select for common SNPs. Common SNPs were selected to avoid 

premature breaks of a shared segment that may be caused by rare variants or sequencing 

errors. These biallelic autosomal SNPs from the ALS, longevity, and 1000 Genomes 

Project were then intersected and merged to be analyzed by SGS.  

 The SGS method aims to find regions of the genome that are significantly shared 

between distantly related individuals by first identifying segments that are identical-by-

state (IBS). IBS is found by determining where in the genome the genotypes between 

samples are sequentially the same. SGS then calculates whether the length of an IBS 
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region is longer than what is expected for that part of the genome to determine whether 

the sharing of a segment is statistically significant (15). The expected length of a shared 

segment is established by simulating Mendelian inheritance with local recombination 

rates, which are based upon the linkage structure seen in a control cohort and the Rutgers 

linkage map (16). The thresholds for determining what is a significant shared segment 

between case individuals is determined by the use of a technique described by Lander and 

Kruglyak (17).  

 The normal control recombination structure of the genome was established using 

linkage disequilibrium statistics from the longevity cohort and the European 1000 

Genome Project individuals. An initial pass of 10,000 SGS simulations was performed 

for each of the distinct pedigrees formed by the ALS patients. SGS simulations are 

performed on each chromosome for each possible subset of patients that could possibly 

share a genomic segment. For instance, four sets of 10,000 SGS simulations are 

performed for each chromosome for a pedigree that consists of patients A, B, and C 

(subsets: A-B-C, A-B, A-C, B-C).  An additional 1 million simulations were performed 

on any chromosome from a subset that possessed a segment longer than the null 

distribution 99.98% of the time. Segments of the genome that were significantly shared 

or suggestive of sharing (false positive rate of 1 segment per genome) between distantly 

related individuals were identified using the threshold method described above. 

 Regions of the genome that were significant or suggestive of sharing were then 

investigated for potential disease causing variants. All variants in the ALS patient cohort 

were annotated for their functional impact on the genome, ExAC (18) non-Finnish 

European (NFE) MAF, and European 1000 Genomes Project MAF using Ensembl’s 
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Variant Effect Predictor (VEP; v83) (19). Vcfanno (20) was used to further annotate these 

variants with Genome Aggregation Database NFE MAF information. The Genome 

Aggregation Database (gnomAD) provides genome-wide allele frequency estimates by 

analyzing whole-genome sequencing data from 15,496 individuals 

(http://gnomad.broadinstitute.org/). A search was performed for rare variants, which are 

more likely to have a large effect size (21), shared by all individuals that possessed a 

region significant or suggestive of sharing. Alleles that could not be confidently emitted 

(no-calls) by the GATK HaplotypeCaller were considered to be the variant allele. Rare 

variants were defined as those with a gnomAD NFE MAF less than 0.001, an ExAC NFE 

MAF less than 0.001, and a European 1000 Genomes Project MAF less than 0.01. 

Variants that were multiallelic, occur at a frequency greater than 0.4—which is 

approximately the prevalence of pathogenic C9orf72 repeat expansions in FALS patients 

(1)—in the ALS cohort, were located in a low-complexity region (22), or were marked as 

low-quality by gnomAD were discarded to reduce the number of false positive candidate 

variants. The VEP annotations of any rare variant that met these filtering criteria were 

then used to determine their functional impact.  

Results 

 One sample labeling error was detected when the imputed genotypic sex of the 36 

distantly related ALS patients was compared to the reported sex. The imputed genotypic 

sex of patient 15-0022906 was determined to be male; however, they were reported to be 

female. Further, the KING relationship analysis found that patient 15-0022906 was 

genetically identical to patient 15-0022867, who was one of the eight unaffected 

individuals in the total ALS cohort. These results suggest that individual 15-0022867 was 
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sequenced twice at the expense of patient 15-0022906. As a result, patients 15-0022906 

and 15-0022912, who was a distant relative with ALS, were removed from further 

analysis. The principal components analysis showed that none of the distantly related 

ALS patients or longevity cohort individuals were genetic outliers (Figure 6.1). The 

ADMIXTURE results showed that these same individuals all had greater than 80% 

European ancestry (Figure 6.2). 

 The dataset used for the SGS analysis consisted of 559,941 autosomal SNP 

genotypes from 393 individuals once the three cohorts were intersected and merged. The 

control recombination structure of the genome was determined from linkage 

disequilibrium statistics generated from the 76 longevity cohort individuals and 283 

European 1000 Genomes samples. After an initial pass of 10,000 SGS simulations for 

each possible patient subset, 163 out of 770 (21.2%) total chromosomes possessed a 

segment that was longer than the null distribution 99.98% of the time. After performing 1 

million additional simulations on these segments and determining the p-value thresholds, 

46 regions from six patient subsets were found to be significant or suggestive for distant 

sharing. Two regions from two different patient subsets exceeded the significance 

threshold. However, one of these significant regions was likely a false positive because it 

was 39.3Mb in length and spanned a centromere. Two of the 45 regions suggestive of 

SGS were also likely false positives as they were 19.1Mb and 12.0Mb in length and 

occurred either in a centromere or telomere. These false positives were removed from 

further analysis, which left 43 significant or suggestive SGS regions for study (Table 

6.1). 

 The smallest genomic region that was significant or suggestive of sharing 
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between distantly related ALS patients was 0.29MB. In contrast, the largest segment was 

2.83 Mb in length. The average genomic length of regions that were significant or 

suggestive of distant sharing was 1.21Mb (standard deviation = 692kb) with a median 

length of 0.88Mb (Figure 6.3).   

 A 1.06Mb region at chr18:66544756-67600990 was the only segment found to be 

significantly shared, which involved three ALS patients (15-0022918, 15-0022895, and 

15-0022914). Three genes—CCDC102B, DOK6, and CD226—are found within this 

region. A missense variant in CD226 (chr18:67531642 T>C; CD226:p. S307G) was the 

only nonsynonymous variant possessed by all three ALS patients who shared this 

segment. However, this variant is found at a gnomAD NFE MAF of 0.46. Furthermore, 

no rare variants that met the necessary filtering criteria and were shared among the three 

distantly related ALS patients were found in the 1.06Mb region.  

Among all of the regions suggestive or significant for sharing between ALS 

patients, 326 unique genes were found. None of these genes were found in the ALS risk 

gene list in Chapter 3. No shared rare (MAF < 0.001) or semi-rare (ExAC NFE and 

gnomAD NFE MAF < 0.01) protein-coding sequence altering variants were found in any 

of the 326 genes. Two shared rare noncoding variants that met the filtering criteria were 

found among the 43 shared genomic segments. The first of these variants was chr14: 

40968670 C>T and was found in patients 15-0022891, 15-0022900, and 15-0022911. 

However, inspection of the genomic reads at this position showed only patient 15-

0022911 possessed this variant. The other passing noncoding variant was chr7:3983016 

C>CCCA and was found in patients 15-0022918, 15-0022895, 15-0022914. This variant 

is likely a false positive as the genomic reads supporting this variant also mapped to 
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another chromosome. Three semi-rare (MAF < 0.01) noncoding variants—which were 

shared by patients 15-0022869, 15-0022919, and 15-0022913—were found within a 67kb 

region of each other. These variants were chr4:41755833 GA>G, chr4:41821729 A>G, 

and chr4:41822967 C>T. Two long noncoding RNAs (lncRNAs), RP11-227F19.1 and 

RP11-227F19.2, are encoded in the 67kb region the three shared variants were located in. 

Furthermore, chr4: 41755833 GA>G is located 5kb upstream from PHOX2B, which is a 

transcription factor involved in the development of specific autonomic neuron 

populations (23). No other shared semi-rare variants were identified from this analysis. 

Discussion 

 The experiments performed in this chapter sought to determine whether SALS 

could be caused by inherited genetic factors not recognized in other family members. To 

accomplish this goal, SGS analyses were conducted to detect regions of the genome that 

were likely shared by distantly related ALS patients, which may harbor ALS risk 

variants. In total, 43 regions with suggestive or significant signs of distant sharing were 

identified between six different patient subsets. However, none of these regions contained 

any known ALS risk genes, which is the opposite finding expected if these regions 

played a role in disease pathogenesis. This result suggests that older unrecognized genetic 

risk factors do not play an extensive role in causing SALS. Instead, it is likely that de 

novo mutations or the inheritance of recently created variants are the mechanism by 

which genetic risk factors are found in SALS cases. While some efforts have been made 

to determine the significance of de novo mutations in SALS pathogenesis (2), additional 

studies with larger patient cohorts will be required to determine whether such a 

mechanism causes disease.    
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This chapter also sought to find novel ALS risk loci by searching for rare genetic 

variants in genomic regions shared by distantly related ALS patients. No rare or semi-rare 

variants that alter the normal protein-coding sequence of a gene were found among all 

individuals with a shared genomic segment. Furthermore, only three semi-rare noncoding 

variants—which were in close proximity (67kb) to each other—in one patient subset 

were found. The two lncRNAs found in this region have no described function. The one 

protein coding gene near this region, PHOX2B, is known to play a role in the 

development of a set of autonomic neurons. However, it has not been associated with a 

motor neuron disease before. No significant H3K27Ac marks are found in this 67kb 

region, which suggests these variants do not play a large role in regulating gene 

expression. The lack of shared rare variation in any of the 43 regions identified by SGS 

further supports the notion that the inheritance of older unrecognized genetic risk variants 

is not a major cause of SALS. However, these shared regions could harbor common, low-

effect size ALS risk variants which cause or modulate disease severity when inherited 

with other ALS risk factors. Large ALS genome-wide association studies based on 

whole-genome sequencing data will be required to detect such low-effect size variants.  

While these results suggest shared genetic variation between distantly related 

ALS patients is not a major cause of disease, there were technical limitations to this 

study. First, the limited sample size of some of the studied pedigrees prevented the 

identification of shared genomic segments. For instance, no regions were found to be 

significant or suggestive for sharing between patient subsets comprised of two 

individuals. In contrast, five of the six subsets with three patients had at least one 

segment suggestive or significant for distant sharing. This result suggests that SGS has 
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limited ability to detect shared genomic regions in small pedigrees. Sequencing additional 

affected family members from these small pedigrees will increase the power to detect 

shared genomic segments. The second limitation of this study was structural variants 

were not considered when searching for variants in shared genetic segments. The GATK 

HaplotypeCaller is limited in its ability to detect insertion or deletion variants that are 

tens to thousands of nucleotide bases long. Structural variants callers, such as LUMPY 

(24) and Wham (25), have the ability to detect such variants and could be used to search 

for structural variants in shared genomic segments. Lastly, the small number of extended 

ALS pedigrees used in this study limits the ability to definitively say what the inheritance 

pattern of genetic risk factors is for SALS. It is possible shared genomic segments do 

play a role SALS pathogenesis, but they weren’t observed in our limited patient sample. 

Larger ALS patient and family member cohorts will be achieved as more individuals are 

seen and sequenced in the motor neuron disease clinic at the University of Utah. These 

efforts will help to determine how genetic risk factors arise in SALS, which will 

subsequently help to better understand and eventually treat the disease.
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Figure 6.1 A principal components analysis comparing the genetic variance of the ALS, 
longevity, and selected 1000 Genomes Project samples. None of the sequenced samples 
were considered to be genetic outliers, which would be a sign of poor sample quality. 
One ALS sample appeared to have some East Asian admixture. 
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Figure 6.2 An admixture plot where each column represents an individual from the ALS 
or longevity cohort. The height of each color represents the amount of ancestry each 
individual has. Red represents European (CEU) ancestry, green represents East Asian 
(CHB +JPT) ancestry, and blue represents African (YRI) ancestry. The yellow bar 
indicates the European ancestry proportion cut-off (0.80) to be considered for SGS 
analysis. All ALS and longevity samples were determined to be largely of European 
ancestry. 
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Figure 6.3 A histogram showing the length distribution of all 43 genomic segments with 
significant or suggestive signs of sharing between distantly related ALS patients. The red 
dashed line shows the average genome segment length (1.21Mb). The blue dashed line 
represents the median shared genomic segment length (0.88Mb). 
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Table 6.1 The 43 genomic regions that were significant or suggestive of sharing between 
distantly related ALS individuals. The location of each segment is based on the GRCh37 
human reference genome (Chromosome:Start-Stop). The ALS patients that possess each 
SGS region are listed. The p-value indicates the frequency at which simulations find 
longer shared segments than the reported segment at the same genomic locus. * 
represents a region with a significant p-value.  
 

Shared 
segment 
location 

Segment length 
(base pairs) p-value Patients with shared segment 

1:45170013-
48003120 2833107 2.67 × 10-5 15-0022918,15-0022895,15-0022914 

1:111155596-
111929294 773698 7.03 × 10-5 15-0022928,15-0022894,15-0022930 

1:118936322-
120197684 1261362 3.27 × 10-5 15-0022918,15-0022895,15-0022914 

1:158425272-
159505296 1080024 9.90 × 10-5 15-0022891,15-0022900,15-0022911 

1:173117772-
175283118 2165346 9.60 × 10-5 15-0022869,15-0022919,15-0022913 

1:175849783-
177458169 1608386 1.07 × 10-4 15-0022918,15-0022895,15-0022914 

2:134657741-
136934448 2276707 9.60 × 10-5 15-0022918,15-0022895,15-0022914 

3:13055577-
13644175 588598 5.84 × 10-5 15-0022918,15-0022895,15-0022914 

3:106981728-
107765391 783663 4.16 × 10-5 15-0022918,15-0022895,15-0022914 

4:40491787-
41367088 875301 9.90 × 10-6 15-0022869,15-0022919,15-0022913 

4:41367090-
43148952 1781862 7.92 × 10-6 15-0022869,15-0022919,15-0022913 

4:45374306-
47382919 2008613 5.84 × 10-5 15-0022891,15-0022900,15-0022911 

4:57741416-
58314263 572847 6.73 × 10-5 15-0022891,15-0022900,15-0022911 

4:157235051-
158731018 1495967 1.01 × 10-4 15-0022869,15-0022919,15-0022913 

5:2627546-
2915300 287754 1.08 × 10-4 15-0022891,15-0022900,15-0022911 
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Table 6.1 Continued 
Shared 

segment 
location 

Segment length 
(base pairs) p-value Patients with shared segment 

5:23716351-
25717661 2001310 6.14 × 10-5 15-0022928,15-0022894,15-0022930 

5:27932381-
29516288 1583907 2.77 × 10-5 15-0022869,15-0022919,15-0022913 

5:81960141-
82889909 929768 6.44 × 10-5 15-0022869,15-0022919,15-0022913 

5:106149175-
107010200 861025 2.08 × 10-5 15-0022918,15-0022895,15-0022914 

5:135296363-
136793147 1496784 1.49 × 10-5 15-0022869,15-0022919,15-0022913 

5:150038266-
150673386 635120 5.05 × 10-5 15-0022869,15-0022919,15-0022913 

6:158216127-
159146870 930743 7.33 × 10-5 15-0022869,15-0022919,15-0022913 

7:3147021-
4022952 875931 3.86 × 10-5 15-0022918,15-0022895,15-0022914 

8:134681124-
135307547 626423 7.92 × 10-5 15-0022918,15-0022895,15-0022914 

8:134721708-
135907055 1185347 1.94 × 10-4 15-0022916,15-0022928,15-0022894 

9:3022593-
3838928 816335 4.06 × 10-5 15-0022891,15-0022900,15-0022911 

10:31860346-
33689742 1829396 7.92 × 10-6 15-0022918,15-0022895,15-0022914 

10:112186149-
112969626 783477 6.04 × 10-5 15-0022891,15-0022900,15-0022911 

10:122480688-
123032167 551479 6.53 × 10-5 15-0022869,15-0022919,15-0022913 

12:12042460-
12482447 439987 1.25 × 10-4 15-0022918,15-0022895,15-0022914 

12:121794778-
124013405 2218627 1.18 × 10-4 15-0022918,15-0022895,15-0022914 

12:129932797-
130232896 300099 1.34 × 10-4 15-0022869,15-0022919,15-0022913 

13:28240829-
28941059 700230 4.65 × 10-5 15-0022918,15-0022895,15-0022914 
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Table 6.1 Continued 
Shared 

segment 
location 

Segment length 
(base pairs) p-value Patients with shared segment 

14:40364645-
42952897 2588252 8.91 × 10-6 15-0022869,15-0022919,15-0022913 

14:40588542-
42719753 2131211 1.88 × 10-5 15-0022891,15-0022900,15-0022911 

14:63322348-
65245955 1923607 1.04 × 10-4 15-0022891,15-0022900,15-0022911 

14:98309638-
98991119 681481 1.16 × 10-4 15-0022891,15-0022900,15-0022911 

15:33702671-
34079431 376760 3.86 × 10-5 15-0022918,15-0022895,15-0022914 

18:43599356-
44252273 652917 5.84 × 10-5 15-0022891,15-0022900,15-0022911 

18:66544756-
67600990 1056234 4.95 × 10-6* 15-0022918,15-0022895,15-0022914 

18:68828003-
69394951 566948 1.29 × 10-4 15-0022869,15-0022919,15-0022913 

18:76687315-
77553172 865857 4.26 × 10-5 15-0022918,15-0022895,15-0022914 

19:7084748-
7758338 673590 3.56 × 10-5 15-0022869,15-0022919,15-0022913 
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CHAPTER 7 

CONCLUSIONS AND PERSPECTIVES 

 Just over a decade after ALS was formally defined by Charcot in 1869 (1), it was 

recognized that ALS had a familial component to its etiology (2, 3). This insight 

eventually led to the discovery of SOD1 as the first ALS risk gene in 1993 (4). Since 

then, a vast number of efforts have been made to determine the genetic risk landscape of 

ALS. These attempts have largely been in the form of low-resolution linkage studies and 

common variant genome-wide association studies. While such efforts have been 

successful in finding a number of ALS risk loci, a large proportion of the heritability seen 

in ALS is still unaccounted for. This missing heritability is likely due to rare and large-

effect size variants, which are not assayed by microsatellite and common SNP 

genotyping arrays. NGS methods have the ability to detect such rare variants. Until 

recently, the financial and computational demands needed to perform NGS made 

widespread adoption of the technology limited. However, the dramatic reduction in cost 

of NGS since the Human Genome Project (5) —from $2.7B to $1,000 for whole-genome 

sequencing (6)—has made investigations based of NGS technology feasible. The use of 

NGS within the context of ALS, and human genetics as a whole, heralds a new era of 

genetic discovery due the ability to assay rare and structural variation.  

 The studies performed in this dissertation attempt to better understand the genetic 

etiology of ALS using NGS approaches. In Chapter 2, efforts were made identify genes 
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and variants that potentially cause FALS in small sequencing studies. A candidate or 

known risk gene could be identified in a majority of cases in this study, which suggests 

the use of NGS approaches in the clinic could be useful in providing clinical decision 

making and genetic counseling. Furthermore, the candidate risk genes identified in 

Chapter 2 are interesting targets for functional testing to determine if they are involved in 

ALS pathogenesis. 

Chapter 3 of this dissertation attempts to define how large a role known SALS 

risk loci play in the disease using whole-exome sequencing. Despite numerous attempts 

to determine what proportion of SALS is caused by known genetic risk factors, no 

consensus had been reached likely due to methodological flaws. A number of NGS 

computational approaches were used and developed, including population stratification 

correction and direct predictions of variant pathogenicity, to correct for these flaws. The 

results of Chapter 3 showed that these measures were able to derive a more accurate 

estimation of the amount of risk conferred by known ALS risk loci to the pathogenesis of 

SALS. Furthermore, this chapter showed that known genetic risk factors do not 

completely account for the known heritability of SALS.  

Chapter 4 was aimed at closing the ALS missing heritability gap by identifying 

new ALS genetic risk loci. This was done by performing gene burden testing of the 

whole-exome sequenced cohort analyzed in Chapter 3. While burden testing has been 

employed in the past to identify ALS risk genes (7), these methods relied on allele 

frequency as the sole criterion of pathogenicity. Chapter 3 demonstrated that in silico 

predictions of variant pathogenicity capture ALS genetic risk better than variant 

frequency alone. To improve upon previous ALS risk gene discovery efforts, the VAAST 



 105 

method (8)—which incorporates variant frequency and direct predictions of variant 

pathogenicity—was used in combination with the gene ontology based PHEVOR tool (9). 

This analysis identified two novel ALS candidate risk genes, MFN2 and TP73, in ALS 

patients that appeared to be burdened by deleterious variation and relevant to the disease 

phenotype. Both genes would expand the understanding of the disease if they are indeed 

ALS risk genes. However, functional experimentation is required to determine the role of 

TP73 and MFN2 in ALS. 

The efforts made in Chapter 5 build upon that reasoning in order to determine 

whether TP73 is involved in ALS pathogenesis. To do so, this chapter first attempted to 

find whether TP73 variants were prevalent outside of the initial discovery cohort. 

Screening of over 2,800 ALS patients found 19 rare and deleterious variants in TP73 in 

addition to the five found in the initial discovery cohort. This result suggests that 

potentially pathogenic variation in TP73 is not limited to ALS patients seen at the 

University of Utah. Next, in vivo experiments were performed to determine whether 

TP73 has a role in the development and function of motor neurons. Loss of p73 function 

in zebrafish resulted in impaired motor neuron survival and development. Together, these 

findings strongly link TP73 to ALS pathogenesis. Future in vivo rescue studies will be 

required to determine if the specific TP73 variants found in patients cause ALS.  

The results from Chapter 3 also demonstrate a large proportion of SALS patients 

possess an ALS genetic risk factor. However, it is not clear how these genetic risk factors 

arise in SALS. Understanding how ALS genetic risk factors arise in SALS patients is 

critical to proper clinical decision making and genetic counseling. Multiple mechanisms 

have been proposed, including de novo mutations. However, it also possible genetic risk 
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factors could be transmitted through multiple generations and inherited by affected 

individuals, but were previously unrecognized due to incomplete penetrance and 

mortality due to non-ALS causes. It would be expected distantly related patients would 

share genomic segments that harbor ALS genetic risk factors if such a mechanism was 

common. Chapter 6 focuses on determining whether shared genomic segment analysis 

can identify ALS risk variants. None of the identified regions of the genome shared 

between distantly related ALS patients appear to contain large effect size variants that 

could cause ALS. This suggests the multigenerational transmission of unrecognized ALS 

genetic risk factors is not a common mechanism by which such variants are transmitted to 

SALS patients. Future studies will be required to determine the importance of other 

mechanisms by which ALS genetic risk factors are transmitted to SALS patients, such as 

de novo mutations.  

Despite many of the insights made by this dissertation, much remains unknown 

about the genetic etiology of ALS. This is partially due to small sample sizes and limited 

statistical power to detect the effects of risk variants in many of the performed studies. 

The overall rarity of ALS makes it difficult to assemble large patient cohorts. A 

substantial amount of effort will be required to extensively enroll new ALS patients into 

genetic studies. Furthermore, multicenter collaborations where multiple ALS cohorts are 

analyzed together by NGS approaches will likely be required to completely understand 

the genetic etiology of ALS. 

The studies performed in this dissertation demonstrate that WGS approaches can 

make insights into the genetic etiology of ALS that were previously impossible. 

Furthermore, this work has helped to better understand the importance both known and 
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novel ALS genetic risk loci to disease pathogenesis. The methods and approaches used in 

this dissertation serve as a model by which future WGS investigations can make 

important genetic discoveries. The insights into the genetic risk landscape of ALS made 

by this dissertation have also strengthened the ability to provide proper genetic 

counseling and clinical care to patients. Lastly, this work will contribute to the final goal 

of discovering a cure for the harrowing, debilitating, and fatal disease known as ALS.  
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