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Wc calculate the equation of state in 2 +  1 flavor QCD at finite temperature with physical strange quark 
mass and almost physical light quark masses using lattices with temporal extent N T =  8. Calculations 
have been performed with two different improved staggered fermion actions, the asqtad and p4 actions.
Overall, wc find good agreement between results obtained with these two 0 (a 2) improved staggered 
fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to 
quantify systematic errors in current studies of the equation of state. Wc also present results for 
observables that arc sensitive to dcconfining and chiral aspects of the QCD transition on N T =  6 and 8 
lattices. Wc find that dcconfincmcnt and chiral symmetry restoration happen in the same narrow 
temperature interval. In an appendix wc present a simple parametrization of the equation of state that 
can easily be used in hydrodynamic model calculations. In this parametrization wc include an estimate of 
current uncertainties in the lattice calculations which arise from cutoff and quark mass effects.
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I. INTRODUCTION

Determining the equation of state (EoS) of hot, strongly 
interacting matter is one o f the major challenges of strong 
interaction physics. The QCD EoS provides a fundamental
characterization of finite temperature QCD and is a critical 
input to the hydrodynamic modeling of the expansion of
dense matter formed in heavy ion collisions. In particular, 
the interpretation of recent results from the Relativistic 
Heavy Ion Collider (RHIC) on je t quenching, hydrody­
namic flow, and charmonium production [ 1 ] rely on an
accurate determination of the energy density and pressure
as a function of temperature as well as an understanding of 
both the deconfinement and chiral transitions.

For vanishing chemical potential, which is appropriate 
for experiments at RHIC and LHC, lattice calculations of 
the EoS [2-4] as well as the transition temperature [5-7] 
can be perform ed with an almost realistic quark mass 
spectrum. In addition, calculations at different values of 
the lattice cutoff allow for a systematic analysis of discre­
tization errors and will soon lead to a controlled continuum 
extrapolation of the EoS with physical quark masses.

Studies o f QCD thermodynamics are most advanced in 
lattice regularization schemes that use staggered fermions.

In this case, improved actions have been developed that 
elim inate 0 (a 2) discretization errors efficiently in the cal­
culation of bulk thermodynamic observables at high tem ­
perature as well as at nonvanishing chemical potential 
[8,9]. A t finite temperature, these cutoff effects are con­
trolled by the tem poral extent N r o f the lattice as this fixes 
the cutoff in units o f the temperature, a T  =  1 / N T. At tree 
level, which is relevant for the approach to the infinite 
temperature limit, the asqtad [10,11] and p4 [8,12] discre­
tization schemes have been found to give rise to only small 
deviations from the asymptotic ideal gas lim it already on 
lattices with temporal extent N T =  6. For N T =  8, the 
deviations from the continuum Stefan-Boltzmann value 
are at the 1% level [8]. At moderate values of the tem pera­
ture, one expects that genuine nonperturbative effects will 
contribute to the cutoff dependence, and as the relevant 
degrees of freedom change from partonic at high tem pera­
ture to hadronic at low temperature, other cutoff effects 
may become important. M ost notable in the case of stag­
gered fermions is the explicit breaking of staggered flavor 
(taste) symmetry that leads to 0 {cr )  distortion of the 
hadron spectrum and will influence the thermodynamics 
in the confined phase.
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To judge the im portance of different effects that contrib­
ute to the cutoff dependence of thermodynamic observ­
ables, we have performed calculations with two different 
staggered ferm ion actions which deal with these systematic 
effects in different ways. The asqtad and p4 actions com ­
bined with a Symanzik improved gauge action elim inate 
(D((aT)2) errors in thermodynamic observables at tree 
level. The asqtad action goes beyond tree-level improve­
ment through the introduction of nonperturbatively deter­
mined tadpole coefficients [3]. In the gauge part of the 
action, this requires introducing nonplanar loops in addi­
tion to the planar six link rectangle. Furthermore, both 
actions use so-called fat-links to reduce the influence of 
taste symmetry breaking terms inherent in staggered dis­
cretization schemes at nonzero values of the lattice spac­
ing. The asqtad and p4 schemes also differ in the way fat- 
links are introduced. In the asqtad action, fat-link coeffi­
cients have been adjusted so that tree-level coupling to all 
hard gluons has been suppressed without introducing fur­
ther 0 { a 2) errors. The p4 action, on the other hand, only 
uses a simple 3-link staple for fattening.

In this article, we report on detailed calculations of the 
thermodynamics of strongly interacting elementary parti­
cles performed in lattice-regularized QCD with a physical 
value of the strange quark mass and with two degenerate 
light quark masses being one tenth of the strange quark 
mass. To study the quark mass dependence of the thermo­
dynamic quantities, we have also performed calculations at 
a larger value of the light quark mass corresponding to one 
fifth of the strange quark mass. Combining with past results 
on QCD thermodynamics at vanishing as well as nonvaii- 
ishing values of the chemical potential on lattices with 
larger lattice spacing allows for an analysis of cutoff effects 
within both discretization schemes. In fact, a major ob­
stacle to quantifying cutoff effects in studies of the QCD 
equation of state is that they arise from  different sources 
which are strongly temperature dependent, and their rela­
tive im portance changes with temperature. This makes it 
difficult to deal with them in a unique way and perform a 
direct comparison between results obtained within differ­
ent discretization schemes. It is, therefore, very im portant 
to understand and control systematic errors reliably.

In the next section, we start with a discussion o f the basic 
setup for the calculation of the equation of state using the 
Q{a2) improved asqtad and p4 actions. We proceed with a 
presentation of results for the trace anomaly that character­
izes deviations from  the conformal limit, in which the 
energy density (e) equals 3 times the pressure (p ). In 
Sec. Ill, we give results on several bulk thermodynamic 
observables that can be derived from  the trace anomaly 
(e — 3 p ) / T 4 using standard thermodynamic relations. In 
Sec. IV, we analyze the temperature dependence of quark 
number susceptibilities, chiral condensates and the 
Polyakov loop expectation value and discuss in terms of 
them deconfiiiing and symmetry restoring features of the

QCD transition. We give our conclusions in Sec. V. 
Furthermore, we give a coherent discussion o f calculations 
of the QCD equation o f state with the asqtad and p4 actions 
in Appendix A. Appendix B summarizes results for renor­
malization constants needed to calculate the renorm alized 
Polyakov loop expectation value with the asqtad action. In 
Appendix C we provide a param etrization for the equation 
of state suitable for application to hydrodynam ical model­
ing of heavy ion collisions. All num erical results needed to 
calculate the bulk thermodynamic observables presented in 
this paper are given in Appendix D.

II. BASIC INPUT INTO THE CALCULATION OF 
THE QCD EQUATION OF STATE: TRACE 

ANOMALY

A. Calculational setup
This publication reports on a detailed study of the EoS of 

(2 + 1 )-flavor QCD on lattices with temporal extent N T =  
8. It extends earlier studies performed with the asqtad and 
p4 actions on lattices with temporal extent N T =  4 and 6 
[3,4]. The calculational fram ework for the analysis of the 
equation of state, the thermodynamic quantities that need 
to be calculated and the dependence of various parameters 
that appear in the gauge and fermion actions on the gauge 
coupling (3 =  6/ g 2 have been discussed in these previous 
publications. It is, however, cumbersome to collect from 
the earlier publications all the inform ation needed to fol­
low the discussion given here, as the calculational setup 
and the specific observables that need to be e valuated differ 
somewhat between the tadpole improved asqtad action [3] 
and the tree-level improved p4 action [4]. In Appendix A 
we, therefore, give a coherent discussion of the various 
calculations performed with the asqtad and p4 actions, 
summarize the necessary theoretical background provided 
previously in the literature and unify the different notations 
and normalizations used in the past by different groups 
working with different staggered discretization schemes. 
In Appendix D, we give details o f the simulation param e­
ters and the statistics collected in each of these 
calculations.

M ost of the finite temperature calculations presented 
here have been performed on lattices of size 323 X 8 using 
the Rational Hybrid M onte Carlo (RHMC) algorithm [ 13]. 
We combine these results with earlier calculations at N 7 =  
6. For the asqtad action we use both previous results using 
the inexact R algorithm [3] and new RHMC calculations on 
lattices of size 323 X 6, while the p4 results have all been 
obtained using the RHM C algorithm. For each finite tem­
perature calculation that entered our analysis of the equa­
tion of state, a corresponding “ zero tem perature" 
calculation has been performed, mostly on lattices of size 
324, at the same value of the gauge coupling and for the 
same set of bare quark mass values, i.e., at the same value 
of the cutoff.
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Following earlier calculations, we use a strange quark 
mass that is close to its physical value and two degenerate 
light quark masses that are chosen to be one tenth of the 
strange quark mass. This choice for the light quark masses 
corresponds to a light pseudoscalar Goldstone mass of 
about 220 M eV.1

All calculations have been performed on a line of con­
stant physics (LCP), i.e., as the temperature is increased the 
bare quark masses have been adjusted such that the values 
of hadron masses in physical units, evaluated at zero 
temperature, stay approximately constant. In practice, the 
LCP has been determined through the calculation of 
strange (m K or m Ss) and nonstrange (m„) meson masses 
in units of scales r„ that characterize the shape of the static 
quark potential.

=  1.65,
, dV gA r)\

r — =  1.0.
/  rdr

(D

A m ajor concern when comparing calculations per­
formed with two different discretizations of the QCD 
action is quantifying systematic errors. A natural way to 
make such a com parison is to simulate the two actions with 
a choice of parameters that give the same cutoff when 
expressed in physical units. The most extensive calcula­
tions done by us with the two actions are of the parameters 
?,i — r„/a that define the shape of the heavy quark poten­
tial. We therefore determine the cutoff scale and define a 
com m on temperature scale in units of r„, i.e., rnT  =  
rn/ a N T. Note that for the comparison of results obtained 
with different actions, an accurate value of r„ in physical 
units (1/M cV ) is not necessary as only r„T is needed.

The ratio r0/ rx has been determined in the two discre­
tization schemes consistently, as shown by the results 
r0/ r i  =  1.4636(60) (p4 [4]) and 1.474(7)(18) (asqtad 
f 14]). We emphasize that these determ inations of tem pera­
ture scale based on parameters f0 and f \  were performed 
prior to the current combined analysis o f thermodynamics 
with both the asqtad and p4 actions. Furthermore, this was 
done in completely independent calculations using data 
analysis strategies and fitting routines that have also been 
developed independently within the MILC [3] and RBC- 
Bielefeld [4] Collaborations.

To determ ine scales r0 and r, in physical units (MeV) 
we have related them to properties of the bottomonium 
spectrum. As our final input, we use the value r0 =
0.469(7) fm determined from the Y(2S -  15) splitting

'in  the staggered fermion formulation only one of the pseu­
doscalar states has a mass vanishing in the chiral limit. The other 
states have masses that are of O la2) bigger and vanish only in 
the continuum limit. At cutoff values corresponding to the 
transition region of our calculations on N r =  8 lattices, these 
non-Goldstone masses are of the order of 400 MeV for calcu­
lations with the asqtad action and about 500 MeV with the p4 
action.

[15,16] in calculations with the asqtad action. The same 
calculations show that the lattice scales obtained from r0 
and r\ are consistent with calculations of the pion and kaon 
decay constants as well as mass splittings between light 
hadronic states after extrapolations to the continuum limit 
and physical quark masses and agree with experimental 
results within errors of 3%. Note that all these observables, 
sometimes called gold-plated observables [17], have been 
calculated within the same discretization scheme at iden­
tical values of the cutoff as used in the finite temperature 
studies reported here. This consistency gives us confidence 
in using scales extracted from the heavy quark potential for 
both extrapolating results to the continuum limit and for 
converting them to physical units. The scale r$T is shown 
on top of the figures.

In Table I, we summarize the masses that characterize 
the LCP used for calculations with the p4 and asqtad 
actions. We find that the lines of constant physics are 
sim ilar in both calculations, but differ in details. In par­
ticular, the strange pseudoscalar mass m Ss on the LCP used 
for calculations with the asqtad action is 15% larger than 
the one used in the calculation with the p4-action. As the 
LCPs for asqtad and p4 actions had been fixed prior to this 
work in calculations on coarser lattices, we found it rea­
sonable to stay with this convention rather than readjusting 
the choice of LCPs for this work. This makes the com pari­
son of cut-off effects within a given discretization scheme 
easier. The difference in LCPs, however, should be kept in 
mind when comparing results obtained with different 
actions.

The statistics and details of the data needed to calculate 
the basic thermodynamic quantity, the trace anomaly, are 
summarized in Appendix D.

B. The trace anomaly

Along the LCP, i.e., for quark masses that are constant in 
physical units, and for sufficiently large volumes, tem pera­
ture is the only intensive param eter controlling the ther­
modynamics. Consequently, in our calculations there is 
only one independent bulk thermodynamic observable 
that needs to be calculated. All other thermodynamic 
quantities are then obtained as appropriate derivatives of 
the QCD partition functions with respect to the tem pera­
ture and by using standard thermodynamic relations.

TABLE I. The strange pseudoscalar mass m-ss = -^2m2K — m \  
in units of r0 and ratios of meson masses that characterize lines 
of constant physics for a fixed ratio of light and strange quark 
masses, m j m lf =  10. The errors are not statistical. They repre­
sent a range of values over the lines of constant physics.

p4-action asqtad action

1.59(5) 1.83(6)
m-ss/m K 1.33(1) 1.33(2)
mir/m K 0.435(2) 0.437(3)
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The quantity m ost convenient to calculate on the lattice 
is the trace anomaly in units o f the fourth power o f the 
temperature / T 4. This is given by the derivative of 
p / T 4 with respect to the temperature.

6 3p  =  T ^ - { p / T %  (2)a Ir4

Since the pressure is given by the logarithm o f the partition 
function, p / T  =  InZ, the calculation of the trace 
anomaly requires the evaluation of straightforward expec­
tation values.

Using Eq. (2), the pressure is obtained by integrating 
/T*  over the temperature,

=  f T d T 1 - ^ 0 ^ ( 7 ' ) .  (3)
T 4 T4 J T„ 7 °

Here T0 is an arbitrary temperature value that is usually 
chosen in the low-temperature regime where the pressure 
and other thermodynamical quantities are suppressed ex­
ponentially by Boltzmann factors associated with the light­
est hadronic states, i.e., the pions. We find it expedient to 
extrapolate to T0 =  0, in which lim it p / T q =  0. Energy (e) 
and entropy (s =  e +  p)  densities are then obtained by 
combining results for p / T 4 and (e — 3 p ) / T 4.

To calculate basic thermodynamic quantities such as 
energy density e, pressure p, and the trace anomaly, one 
needs to know several lattice /3-functions along the LCP at 
T  =  0 on which our calculations have been performed. We 
determine these /3-functions using the same parametriza- 
tions for the LCP as in the analysis of the EoS on lattices 
with temporal extent AL =  6 [3,4]. Also, the determination 
o f these /3-functions in the nonperturbative regime is car­
ried out on the same set o f zero temperature lattices used to

set the temperature scale. Further details are given in 
Appendix A.

In Fig. 1, we show results for / T 4 obtained with 
both the asqtad and p4 actions. The new AL =  8 results 
have been obtained on lattices of size 323 X 8, and the 
additional zero temperature calculations, needed to carry 
out the necessary vacuum subtractions, have been per­
form ed on 324 lattices. The AL =  6 results for the p4 action 
shown for comparison are taken from [4]. For the asqtad 
action, new AL =  6 RHMC results obtained on 323 X 6 
lattices are shown using full symbols while earlier results 
obtained on 123 X 6 lattices with the R  algorithm [3] are 
shown using open symbols. The data show good agreement 
for the trace anomaly calculated on lattices with aspect 
ratios A^/AL =  2 and 5.33 in a temperature region of 
about twice the transition temperature Tc. In this region 
simulations at aspect ratio 2 are on lattices which are close 
to “ spatially deconfined,” i.e. N s ~  ( l / a T c). We use as­
pect ratio N (J/AL =  4 in our finite temperature calculations 
and the same N a for the corresponding zero temperature 
calculations. Therefore, our highest temperatures, ~  3Tc, 
are well below the temperature for spatial deconfinement. 
Thus we expect that finite volume corrections are small 
throughout

We find that the results with asqtad and p4 formulations 
are in good agreement. In particular, both actions yield 
consistent results in the low-temperature range, in which 
0 M/// t 4 rises rapidly, and at high temperature, T  s  
300 McV. This is also the case for the cutoff dependence 
in these two regimes. At intermediate temperatures, 
200 M cV < 7 ; S 300 McV, the two actions show differ­
ences (Fig. 1 (right)). The maximum in / T 4 is shal­
lower for the asqtad action and shows a smaller cutoff 
dependence than results obtained with the p4 action. As 
(e -  3 p ) / T 4 is the basic input for the calculation o f all
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FIG. 1 (color online). The trace anomaly (e — 3p ) /T 4 calculated on lattices with temporal extent N T = 6, 8. The upper x-axis shows 
the temperature scale in units of the scale parameter ru which has been determined in studies of the static quark potential. The lower 
x-axis gives the temperature in units of MeV which has been obtained using for ru the value determined from the level splitting of 
bottomonium states, ru = 0.469 fm [16], The right-hand figure shows the region around the maximum of (e — 3p ) /T 4, which also is 
the temperature region where results obtained with the two different discretization schemes show the largest differences. Open symbols 
for the N r =  6 denote previous asqtad data obtained with the R algorithm [3], All other data have been obtained with an RHMC 
algorithm.
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other bulk thermodynamic observables, we discuss its 
structure in more detail in the following subsections.

EQUATION OF STATE AND QCD TRANSITION AT ...

1. The crossover region
In Fig. 2, we show results for the trace anomaly for both 

actions at T  <  300 M eV (about 1.5 times the transition 
tem perature2) and for /V7 =  6  and 8 lattices. In the region 
T  <  170 MeV, the curves shown are exponential fits. 
Above T  =  170 MeV, we divide the data into several 
intervals and perform quadratic interpolations. In each 
interval, these quadratic fits have been adjusted to match 
the value and slope at the boundary with the previous 
interval. These interpolating curves are then used to cal­
culate the pressure and other thermodynamic quantities 
using Eqs. (2) and (3).

The differences between the N r =  6  and 8 data in the 
transition region can well be accounted for by a shift o f the 
N r =  6  data by about 5 M eV towards smaller tempera­
tures. This reflects the cutoff dependence o f the transition 
temperature and may also subsume residual cutoff depen­
dencies of the zero temperature observables used to deter­
m ine the tem perature scale in the transition region. As will 
become clearer later, we find a cutoff dependence o f sim i­
lar magnitude in other observables.

Such a global shift o f scale for the N r =  6  data set also 
compensates for part o f the cutoff dependence seen at 
higher temperatures. It thus is natural to expect that cutoff 
effects in (e — 3 p ) / T 4 change sign at a temperature close 
to the peak in this quantity, which occurs at a temperature 
T  S  200 MeV. In the vicinity o f this peak, we find the 
largest difference between results obtained with the two 
actions. The cutoff dependence in (e — 3 p ) / T 4 with the p4 
action is about twice as large as with the asqtad action, and 
the peak height is about 15% smaller with the asqtad action 
than with the p4 action.

It is o f interest to compare how well the thermodynamics 
o f the low-temperature phase can be characterized by a 
resonance gas model. In thelow-temperature region, the 
hadron resonance gas has been observed [18] to give a 
good description o f bulk thermodynamics. It also is quite 
successful in characterizing the therm al conditions m et in

PHYSICAL REVIEW D 80, 014504 (2009) 
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FIG. 3 (color online). The trace anomaly at low temperatures 
calculated with the asqtad and p4 actions on lattices with 
temporal extent N T =  6 and 8. Open symbols for the N T =  6, 
asqtad data set denote data obtained with the R algorithm. All 
other data have been obtained with an RHMC algorithm. Solid 
lines show interpolation curves for the p4 action discussed in the 
text. The dashed and dashed-dotted curves give the trace anom­
aly calculated in a hadron resonance gas model with two differ­
ent cuts for the maximal mass, mlllax =  1.5 GcV (dashed-dotted) 
and 2.5 GeV (dashed).

heavy ion collisions at the chemical freeze-out tem pera­
ture, i.e., at the tem perature at which hadrons again form in 
the dense medium created in such collisions. In Fig. 3, we 
compare the results for (e — 3 p ) / T 4 to predictions o f the 
hadron resonance gas model [18],

3 p \
y*4 J

low — T

X K . i k m j T ) , (4)

where different particle species of mass m, have degener­
acy factors d t and 77, =  —1( + 1) for bosons (fermions). 
The particle masses have been taken from the particle data 
book [19]. Data in Fig. 3 show the Hadron Resonance Gas 
(HRG) model results including resonances up to mniax =  
1.5 GeV (lower curve) and 2.5 GeV (upper curve). We find 
that the N r =  8 results are closer to the resonance gas

FIG. 2 (color online). The trace anomaly calculated with the p4 (left) and asqtad (right) actions. Shown is a comparison of results 
obtained on lattices with temporal extent N T =  6 and 8. The curves show interpolations discussed in the text. Open symbols for the 
N t =  6, asqtad data set denote data obtained with the R algorithm. All other data have been obtained with an RHMC algorithm.
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model result and there is a tendency for the difference 
between the HRG model and lattice results to increase 
with decreasing temperature. This is not too surprising 
since the light meson sector is not well reproduced in 
current simulations. Qualitatively, the effects of staggered 
taste symmetry breaking and the use o f light quark masses 
that are heavier than their physical values are to under­
estimate the energy density and pressure. However, even in 
the absence o f any taste violations and for physical values 
o f the quark masses the light pseudoscalar particles give 
only a small contribution to the trace anomaly. Also, as can 
be seen from the two different resonance gas model calcu­
lations shown in Fig. 3, many heavy resonances contribute 
to the trace anomaly at temperatures close to the transition 
region. The large masses o f non-Golds tone pseudoscalars 
(see footnote 1) are thus only one aspect of the general 
distortion of the hadron spectrum at low temperatures that 
is induced by the finite lattice cutoff and may be respon­
sible for the observed differences between the current 
lattice results and HRG model calculations. W hether these 
finite cutoff effects explain the observed differences com ­
pletely or whether these are also due to deviations o f the 
QCD equation o f state from that o f a simple resonance gas 
m odel3 needs to be analyzed in more detail in future work.

2. Eigh-temperature region
At high temperatures (e — 3p ) / T 4 will eventually ap­

proach zero in proportion to g4(T) ~  1 / ln 2(7 /A )  [21]. In 
the data shown in Fig. 4 for the temperature range acces­
sible in our present analysis, i.e., T  3.57 f , the variation 
o f (e — 3 p ) / T 4 with temperature is, however, significantly 
stronger. Following the analysis performed in [4], we have 
fit the p4 data at T >  250 M cV to the ansatz

A. BAZAVOV et al. PHYSICAL REVIEW D 80, 014504 (2009)

v t4 Aih ig h -T
\ b 0g4

<h 
T 1

d 4
j'A ’ (5)

where the first term gives the leading-order perturbative 
result and the other terms parametrize nonperturbative 
corrections as inverse powers of T 1. We find that the N T =  
8 data do not extend to high enough temperatures to control 
the first term  in the ansatz given in Eq. (5). We thus 
performed fits to the p4 data sets with g 2 =  0 and the 
resulting fit4 parameters are summarized in Table II. We

'W e stress, however, that the entire discussion of thermody­
namics we present here is completely independent of any deter­
mination of a "transition temperature.” The temperature scale is 
completely fixed through determinations of the lattice scale 
performed at zero temperature.

3Note that the HRG fails to describe higher moments of charge 
fluctuations in the vicinity of the transition temperature [20].

4We note that a nonperturbative term proportional to 1 /T 4 
arises in the QCD equation of state from nonvanishing zero 
temperature condensates. In fact, our fit results for the coefficient 
d4 are quite consistent with commonly used values for the bag 
parameter. We find B =  (rf4/4 )1/4 =  (175-225) MeV.

FIG. 4 (color online). The trace anomaly at high temperatures 
calculated with the asqtad and p4 actions on lattices with 
temporal extent N T = 6 and 8. For the p4 action we also show 
results obtained on lattices with temporal extent N T = 4 [4], 
Open symbols for the N T = 6. asqtad data set denote data 
obtained with the R algorithm. All other data have been obtained 
with an RHMC algorithm. Solid curves show fits to the data 
based on Eq. (5). Fit parameters are given in Table II.

find that these parameters are stable under variation of the 
fit range and show no significant cutoff dependence be­
tween N t =  6 and 8 data. The fits for T  >  300 M cV 
(Table II) are shown in Fig. 4 together with the data 
obtained in the high-tem perature region. In our calcula­
tions with the asqtad action, we did not cover this high- 
temperature regime with a sufficient num ber of data points 
to perform independent fits. However, in Appendix C we 
use a modified version of Eq. (5) to parametrize the equa­
tion of state for both p4 and asqtad for use in hydrodynamic 
codes. It is evident from  Fig. 4 that results obtained with 
the asqtad action are in good agreement with the p4 results.

C. Cutoff dependence of gluon and quark condensates 
and continuum extrapolation of

In this section, we want to discuss in more detail the 
various gluonic and fermionic contributions to the trace 
anomaly and use them to analyze the difference found in 
calculations performed with the asqtad and p4 actions. For

TABLE II. Parameters of fits to (e — 3 p) /T 4 in the region T >  
300 MeV and T >  250 MeV using the ansatz given in Eq. (5) 
with g2 = 0. In addition to fit results for N r = 8. we also 
reanalyzed the N T = 6 data of [4] setting the constant term in 
the ansatz to zero (g2 = 0) and display again the fit result for the 
N r = 4 data given also in [4], The 4th and 7th columns give x 2 
per degree of freedom in the respective fit intervals.

N T d2 [GeV2] d4 [GeV4] * 2/dof d2 [GeV2] d4 [GeV4] 
T >  300 MeV T >  250 MeV

* 2/dof

4 0.101(6) 0.024(1) 1.23 0.137(15) 0.018(2) 7.38
6 0.26(5) 0.005(3) 1.16 0.23(2) 0.0086(16) 1.32
8 0.22(3) 0.008(4) 0.81 0.24(2) 0.0054(17) 0.66
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lionvanishing quark masses, the trace anomaly receives 
contributions that are proportional to the quark
mass and contain the quark condensates, and contributions 

that do not vanish in the chiral limit, i.e., from the 
gluon condensate,

= @ ^ / T 4 +  ® mf m/ T 4, (6)

with 0 ^  defined in Eqs. (A7) and (A l  8) in Appendix A 
(for more details see [4]).

In Fig. 5, we show separately the two contributions 
© g ^ / j 4 and 0 ^ / r 4. As seen already for 0 ^ / T 4 cutoff 
effects are generally smaller for the asqtad action than for 
the p4 action. By comparing our results obtained on lattices 
with temporal extent N T =  6 and 8, we estimate the overall 
cutoff dependence o f / T 4 in the vicinity o f its m axi­
mum to be about 15% in calculations with the p4 action 
and only half that size in calculations with the asqtad 
action.

W hile for the asqtad action only the gluonic term 
& ^ / T 4 shows some differences between the N T =  6 
and 8 calculations, in the p4 case the cutoff effects mainly 
arise from the fermionic contribution Q p ^ / T 4. Although 
they are large in this quantity, the quark condensates 
contribute less than 15% to the total trace anomaly. This 
contribution reduces to about 5% at T  ^  400 MeV. We 
therefore conclude that at all values of the temperature, 
the trace anomaly is strongly dominated by the gluon 
condensate contribution which, in turn, receives contribu­
tions from the quark sector through interactions.

As pointed out in [4], the cutoff dependence in 0 ^ / r 4, 
seen for the p4 action, mainly arises from the structure of 
the nonperturbative /3-functions that characterize the varia­
tion of bare quark masses along the LCP, i.e., R m. This 
function appears as a multiplicative factor in the fermion 
contribution defined in Eq. (A17) and approaches unity in 
the continuum limit. The influence of nonperturbative

contributions to this prefactor thus is shifted to smaller 
temperatures as the lattice spacing is reduced, i.e., N T is 
increased, thereby reducing the cutoff dependence of 
0 ^ / r 4 at high temperatures. Comparing results for N T =  
6 and 8 one finds, indeed, that results for / T 4 are more 
consistent for T  s  300 MeV. This suggests that the cutoff 
dependence should be drastically reduced in calculations 
on lattices with temporal extent N T =  12. To check this, we 
have performed calculations on 323 X 12 lattices at 
3/3-values. Our preliminary results indicate that results 
are indeed in good agreem ent with calculations on N T =
8 lattices performed at the same value of the temperature. 

As can be seen in the right-hand part of Fig. 5, results for 
Q p ^ / T 4 obtained with the asqtad action are systematically 
larger than the N T =  8 results obtained with the p4 action. 
This is particularly evident in the high-temperature region, 
T  S: 200 MeV. At these values of the temperature 
© ^ / r 4 is dominated by the contribution of the zero 
temperature strange quark condensate and the strange 
quark mass. The light quark contribution is suppressed 
by a factor m , / m s and the thermal contributions are small, 
relative to the vacuum contributions, due to the disappear­
ance of spontaneous symmetry at these temperatures. The 
difference in the p4 and asqtad results for 0 ^ / J 4 thus can 
be traced back to the differences in the param etrization of 
the LCPs used in calculations with these two different 
actions. As pointed out in Sec. II A, the strange pseudo­
scalar m Ss is about 15% heavier on the asqtad LCP than on 
the p4 LCP. Through the GMOR relation, this is related to a 
larger value o f the product m s(if> if>)s0. The difference seen 
in Fig. 5, however, drops out in the relative contribution of 
light and strange quark condensates to 0 ^ / r 4. In Fig- 6 
we show the ratio

Qf-.z _ 2m,((ij/i[/)i0 -  (ij/if/),?)

® F . s  m s ( ( i / f i f f ) s .o -  ’

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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FIG. 5 (color online). Gluon condensate and quark condensate contributions to the trace anomaly. Shown are results for the asqtad 
and p4 actions obtained on lattices of size N T = 4,6  and 8. Some results shown for the asqtad and p4 actions on lattices of size N T =  4,
6 have been taken from earlier calculations [3,4], Open symbols for the N T = 4 and 6 asqtad data sets denote data obtained with the R 
algorithm. All other data have been obtained with an RHMC algorithm.
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FIG. 6 (color online). The ratio of light and strange quark 
contributions to the fermionic part of the trace anomaly on 
lattices with temporal extent N T =  4, 6, and 8. Some results 
shown for the asqtad and p4 actions on lattices of size N T = 4, 6 
have been taken from earlier calculations [3,4], Open symbols 
for the N r = 4 and 6 asqtad data sets denote data obtained with 
the R algorithm. All other data have been obtained with an 
RHMC algorithm.

It is evident from this figure that results for agree
quite well in calculations perform ed with the asqtad and p4 
actions, rcspcctivcly. This ratio shows much less cutoff 
dcpcndcncc than the light and strange quark contributions 
separately. This is particularly evident in the ease of the p4 
action and supports the observation made before, that the 
cutoff dcpcndcncc seen in that ease mainly arises from the 
function Rm. This prcfactor drops out in the ratio
© F .//0 F ,-

As cxpcctcd, the contribution of the light quark conden­
sates is suppressed relative to the strange quark contribu­
tion bccausc both terms arc explicitly proportional to the 
light and strange quark masses, rcspcctivcly. However, the 
naive expectation, ^  2 m , /m s, only holds true
for T  s  300 MeV, i.e., for temperatures larger than 1.5 
times the transition temperature. In the transition region, 
the contribution arising from the light quark scctor rcachcs 
about 50% of the strange quark contribution.

To summarize, wc find that a straightforward 0 ( a 2) 
extrapolation of the tracc anomaly to the continuum limit 
is not yet appropriate bccausc the cutoff dcpcndcncc arises 
from different sources which need to be controlled. 
Nonetheless, current N T =  8 data show that estimates for 
0 ^ / J 4 in the tem perature regime [200 MeV, 300 MeV] 
overestimate the continuum value by not more than 15% 
and less than 5% for T  >  300 MeV. Furthermore, our 
analysis o f the quark contribution to the tracc anomaly 
suggests that this contribution is most sensitive to a proper 
determination of the LCP that corresponds to physical 
quark mass values in the continuum limit. Our results 
suggest that it will be possible to control the cutoff cffccts 
in the entire high-tcmpcraturc regime T  s  200 M eV 
through calculations on lattices with temporal extent N T =
12.

III. THERM ODYNAM ICS: PRESSURE, ENERGY  
AND ENTROPY DENSITY, VELOCITY OF SOUND

Wc calculatc the pressure and energy density from the 
tracc anomaly using Eqs. (2) and (3). To obtain the pressure 
from Eq. (3), wc need to fix the starting point for the 
integration. In the past, this has been done by choosing a 
low-tcmpcraturc value (T0 =* 100 M eV) where the pressure 
is assum ed to be sufficiently small to be set equal to zero 
due to the exponential Boltzmann suppression o f the states. 
One could also use the hadron rcsonancc gas value for the 
pressure at T0 =  100 M eV as the starting point for the 
integration. The two HRG model calculations in Fig. 3 
show that at this temperature the pressure is insensitive to 
the cxact value of the cutoff m max. Wc have used both 
approaches as well as linear interpolations between the 
temperatures at which wc calculated & MM/ T 4 to estimate 
systematic errors arising in the calculation of the pressure. 
The actual results for p / T 4 and other thcrmodynamic 
observables shown in the following have been obtained

PHYSICAL REVIEW D 80, 014504 (2009)
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FIG. 7 (color online). Energy density and 3 times the pressure calculated on lattices with temporal extent N T =  4, 6 [4], and 8 using 
the p4 action (left). The right-hand figure compares results obtained with the asqtad and p4 actions on the N T =  8 lattices. Crosses with 
error bars indicate the systematic error on the pressure that arises from different integration schemes as discussed in the text. The black 
bars at high temperatures indicate the systematic shift of data that would arise from matching to a hadron resonance gas at T = 
100 MeV. The band indicates the transition region 185 MeV <  T  <  195 MeV. It should be emphasized that these data have not been 
extrapolated to physical pion masses.
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by starting at T0 =  0, where we set p  =  0, and integrating 
the fits to 0 ^ / J 4 shown in Figs. 2 and 3. Differences 
arising from choosing T0 =  100 M cV or using linear inter­
polations are small and are included in our estimate of 
systematic errors. In Fig. 7, we show our final results for 
e / T 4 and 3p / T 4 obtained in this way. We reem phasize that 
® ^ / r 4 is what we calculate at a num ber of temperature 
values along the LCP on the lattice, and all other quantities 
are obtained by using fits to this data and then exploiting 
thermodynamic relations.

Choosing T0 =  100 M cV for the starting point of the 
integration, and adding the resonance gas pressure at this 
temperature to the lattice results, gives a global shift of the 
pressure (3p / T 4) and energy density ( e / J 4) curves by 0.8. 
This is indicated by the filled box in the upper-right-hand 
part o f Fig. 7. Differences in the results that arise from the 
different integration schemes used to calculate the pressure 
are of similar magnitude. Typical error bars indicating the 
magnitude of this systematic error on 3p / T 4 are shown in 
the right-hand part of Fig. 7 at T  =  275 M cV and T  =  
540 McV. In this figure, we also compare results obtained 
on the N t =  8 lattices with the p4 and asqtad actions. The 
agreement between the two data sets is good in the entire 
temperature range that is common. This is a consequence 
of the good agreement between the estimates of the trace 
anomaly, from which e / T 4 and p / T 4 are derived. The 
same discussion applies to the entropy density, s / T 3 =  
(e +  p ) / T 4, shown in Fig. 8 which is obtained by com bin­
ing the results for energy density and pressure. The com ­
parison o f bulk thermodynamic observables {p, e, s) 
calculated on N r =  8 lattices yields a consistent picture 
for the p4 and asqtad actions. To quantify systematic 
differences, we consider the combination

where O t ( 0 2) are estimates with the p4 (asqtad) action. 
We find that the relative difference in the pressure A p  for 
temperatures above the crossover region, T  s  200 McV, is 
less than 5%. This is also the case for energy and entropy 
density for T  s  230 M cV with the maximal relative dif-

0.4 0.6 0.8 1 1.2

FIG. 8 (color online). The entropy density obtained on lattices 
with temporal extent N, = 6 [3.4J and 8. The band indicates the 
transition region 185 MeV <  T  <  195 MeV.

ference increasing to 10% at T  — 200 McV. This is a 
consequence of the difference in the height of the peak in 
(e -  3p ) / T 4 as shown in Fig. 1. Estimates of systematic 
differences in the low-temperature regime are less reliable 
as all observables become small rapidly. Nonetheless, the 
relative differences obtained using the interpolating curves 
shown in Figs. 7 and 8 are less than 15% for T  S
150 McV. We also find that the cutoff errors between 
a T  =  1 /6  and 1/8  lattices are similar for the p4 action,
i.e., about 15% at low temperatures and 5% for T  s  
200 McV. For calculations with the asqtad action, statisti­
cally significant cutoff dependence is seen only in the 
difference (e -  3p ) / T 4.

We conclude that cutoff effects in p / T 4, e / T 4 and s / T 3 
are under control in the high-tem perature regime T  s  
200 McV. Estimates of the continuum limit obtained by 
extrapolating data from N T =  6 and 8 lattices differ from 
the values on N T =  8 lattices by at most 5%. These results 
imply that residual 0{a2g2) errors are small with both p4 
and asqtad actions.

We note that at high temperatures the results for the 
pressure presented here are 20-25%  larger than those 
reported in [2]. These latter results have been obtained 
on lattices with temporal extent N r =  4 and 6 using the 
stout-link action. As this action is not 0{a2) improved, it 
has large cutoff effects at high temperatures. This has been 
demonstrated in the infinite temperature ideal gas limit, 
where the cutoff corrections can be calculated analytically. 
For the stout-link action on the coarse N T =  4 and 6 
lattices the lattice Stefan-Boltzmann limits are a factor of 
1.75 and 1.51 higher than the continuum value. In Ref. [2] 
it has been attempted to correct for these large cutoff 
effects by dividing the numerical simulation results at finite 
temperatures by these factors obtained in the infinite tem ­
perature limit. We point out that such a procedure in pure 
SU{N)  gauge theories tends to overestimate the actual

FIG. 9 (color online). Pressure divided by energy density 
(p /e)  and the square of the velocity of sound (<~) calculated 
on lattices with temporal extent AL =  6 (p4. [4]) and AL =  8 
using the p4 as well as the asqtad action. Lines without data 
points give the square of the velocity of sound calculated analyti­
cally from Eq. (9) using the interpolating curves for e /T 4 and 
p / T 4. The dashed-dotted line at low temperatures gives the 
result for p /e  from a hadron resonance gas (HRG) calculation 
using tnmax =  2.5 GeV.
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cutoff dependence [211, and this could explain the differ­
ence we note above.

Finally, we discuss the calculation of the velocity of 
sound from the basic bulk thermodynamic observables 
discussed above. The basic quantity is the ratio of pressure 
and energy density p / e  shown in Fig. 9, which is obtained 
from the ratio of the interpolating curves for (e — 3p ) / T 4 
and p / T 4. On comparing results from N r =  6 and 8 latti­
ces with the p4 action, we note that a decrease in the 
maximal value of (e — 3p ) / T 4 with N r results in a weaker 
temperature dependence of p / e  at the dip (corresponding 
to the peak in the trace anomaly), somewhat larger values 
in the transition region and a slower rise with temperature 
after the dip.

From the interpolating curves, it is also straightforward 
to derive the velocity of sound.

dp
de

c d{p/e)  | p  
de e

(9)

Again, note that the velocity of sound is not an independent 
quantity but is fixed by the results for 0 ^ / T 4. The 
determination of c; is sensitive to the details of the inter­
polation used to fit the data for 0 ^ / T 4 obtained at a 
discrete set of temperature values. In fact, it was this 
sensitivity that motivated us to use a smooth curve with a 
continuous first derivative for the interpolation of / T 4 
in the entire temperature range. We consider the spread in 
the curves obtained from the p4 and asqtad calculations as 
indicative of the uncertainty in the current determination of 
the velocity of sound from the QCD equation of state (see 
also Appendix C).

IV. DECONFINEM ENT AND CHIRAL SYMMETRY 
RESTORATION

In the previous sections, we discussed the thermody­
namics of QCD with almost physical values of the quark 
masses. Data in Figs. 7 and 8 show that the transition from 
low to high temperatures occurs in a narrow temperature 
range: T  E  [180 MeV, 200 MeV]. This represents a cross­
over and not a true phase transition caused by a singularity 
(nonanalyticity) in the QCD partition function. We expect 
such a singularity to exist in the chiral limit. For QCD with 
a physical value of the strange quark mass, it is not yet 
settled whether a true phase transition occurs only at 
strictly zero light quark masses (m/ =  mcrh =  0) or at 
small but nonzero value (m/ = m„h >  0). In the latter 
case, the second-order phase transition will belong to the 
universality class of a three-dimensional Ising model, 
while in the former case, it is expected to belong to the 
universality class of three-dimensional, 0(4)  symmetric 
spin models.5 For light quark masses mt <  mail different

5For the discussion of deconfining and chiral symmetry re­
storing aspects of the QCD transition in this article it does not 
matter whether meril is nonzero or zero.

observables that are defined through derivatives of the 
QCD partition function with respect to either the light 
quark mass or a temperaturelike variable will give unam­
biguous signals for the occurrence and location of the 
phase transition. For mt >  mcrit, in the absence of a singu­
larity, the determination of a pseudocritical temperature 
that characterizes the crossover may depend on the observ­
able used for its determination. It then becomes a quanti­
tative question as to what extent different observables 
remain sensitive to the singular part of the free energy 
density / sing that controls thermodynamics in the vicinity 
of the phase transition temperature at mcrh. We write the 
free energy as

f  = -  L  i0gz  =  / sing(r, fn) + f Kg(T, mt1). (10)

with the reduced mass and temperature variables,

T — T.
m = \mt — m crjt | and t

( i i )

Note that in the definition of the reduced temperature t. its 
dependence on the light quark chemical potential j i t in the 
vicinity of the critical point (t, m) =  (0, 0) is taken into 
account.6 To leading order, the reduced temperature de­
pends quadratically on /x/, while it is linear in the tem­
perature itself.

Derivatives of the free energy with respect to quark 
masses define the light and strange quark chiral conden­
sates.

T dlnZ
11 V dm,-,

I. s. ( 12)

while derivatives with respect to temperature give the bulk 
thermodynamic quantities discussed in the previous sec­
tions. Here mt refers to one of the degenerate light up or 
down quark masses, and the condensates defined in 
Eq. (12) are one-flavor condensates. The derivative of the 
chiral condensate with respect to the quark mass defines 
the chiral susceptibilities Xm.q ~  d2lnZ/dm~.  The diver­
gence of Xm.q at Tc in the chiral limit is an unambiguous 
signal of the chiral phase transition. In addition, the fluc­
tuations of Goldstone modes also induce divergences in the 
chiral limit for T  <  Tc [221. Thus Xm.q i°  the chiral limit is 
finite only for T > Tc.

In the vicinity of Tc. where thermodynamics is domi­
nated by the singular part of the partition function, n 
derivatives with respect to temperature T  are equivalent 
to 2n derivatives with respect to the light quark chemical 
potential. Second derivatives with respect to light and 
strange quark chemical potentials define quark number 
susceptibilities.

’We suppress here a possible but small coupling to the strange 
quark chemical potential.
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I, s. (13)

Also, here q = I refers to either the light up or down quark 
chemical potential, i.e., Xi defines the fluctuations of a 
single light quark flavor. One therefore expects the quark 
number susceptibilities to exhibit a temperature depen­
dence similar to that found for the energy density and the 
ffourth-ordcr cumulant c4 ~  d4 lnZ/d(fjiq/ T ) 4 to behave 
like a specific heat cv [20]. Also, the position of the peak in 
the fourth-order cumulant is sensitive to the crossover 
region seen, for example, in the temperature dependence 
o f e / T 4.

At m =  0, the temperature dependence of all the ob­
servables discussed above is sensitive to the location of Tc. 
Near Tc, their temperature dependence reflects the singular 
structure of the partition function,

regular

Xw.l ~  t r (f°r T  ^  Tc), C4 ~  C y  ~  A + t

(14)

regular
(15)

where a,  /3, y  are critical exponents of the relevant uni­
versality class and A+ arc proportionality constants that 
may differ below and above Tc. The specific heat, and thus 
c4, diverge at a generic second-order phase transition, for 
example, those in the Ising universality class, whereas 
these quantities only develop a pronounced peak in 0{N)  
symmetric models for which the critical exponent a  ex­
hibits unconventional behavior and is negative.

In the following subsections, we will focus on the tem­
perature dependence of the chiral condensate and the quark 
number susceptibilities (Eq. (14)), which in the chiral limit 
probe the chiral symmetry restoring and dcconfining fea­
tures of the QCD phase transition. In particular, we will 
discuss the extent to which the temperature dependence of 
these quantities remains correlated away from m =  0.

PHYSICAL REVIEW D 80, 014504 (2009)

A. Deconfinement

The bulk thermodynamic observables p / T 4, e / T 4, and 
s / T 3 discussed in the previous sections arc sensitive to the 
change from hadronic to quark-gluon degrees of freedom 
that occur during the QCD transition; they thus reflect the 
dcconfining features of this transition. The rapid increase 
of the energy density, for instance, reflects the liberation of 
light quark degrees of freedom; the energy density in­
creases from values close to that of a pion gas to almost 
the value of an ideal gas of masslcss quarks and gluons. In a 
similar vein, the temperature dependence of quark number 
susceptibilities gives information on thermal fluctuations 
of the degrees of freedom that carry a net number of light or 
strange quarks, i.e., Xq ~  (N2), with N  denoting the net 
number of quarks carrying the charge q. Quark number 
susceptibilities change rapidly in the transition region as 
the carriers of charge, strangeness or baryon number arc 
heavy hadrons at low temperatures but much lighter quarks 
at high temperatures. In the continuum and infinite tem­
perature limit, these susceptibilities approach the value for 
an ideal masslcss one-flavor quark gas, i.e., 
limj ^ ^ X q / T 2 =  1. At low temperatures, however, they 
reflect the fluctuations of hadrons carrying net light quark 
(up or down) or strangeness quantum numbers. In the zero 
temperature limit, Xs /T 2 receives contributions only from 
the lightest hadronic state that carries strangeness, 
X s /T 2 ~  cxp( ink jT) ,  while X t / T 2 is sensitive to pions, 
X i /T 2 ~  exp(—nin/T).  Note that X i /T 2 is directly sensi­
tive to the singular staicture of the QCD partition function 
in the chiral limit.

In Fig. 10, we show results for the temperature depen­
dence of the light and strange quark number susceptibili­
ties. For the 0 { a 2) improved p4 and asqtad actions, 
deviations from the continuum result arc already small in 
calculations on lattices with temporal extent N T =  8. The 
continuum ideal gas value, x q/ T 2 =  1, is thus a good 
guide for the expected behavior of x i / T 2 in the high- 
tcmpcraturc limit. As can be seen from the figure, cutoff 
effects arc indeed small at high temperature. In fact, we 
observe that above the transition, in particular, for tcm-

0.6
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FIG. 10 (color online). The light (left) and strange (right) quark num ber susceptibilities calculated on lattices w ith tem poral extent 
N t =  6 and 8. The N T =  6 results for the p4 action are taken from  [4J. The band corresponds to a tem perature interval 185 MeV <  
r  <  195 MeV.
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peratures up to about 1.5 times the transition temperature, 
differences between results obtained with the asqtad and p4 
actions are larger than the cutoff effects seen for each of 
these actions separately. This is similar to what has been 
found in calculations of the energy density discussed in the 
previous section.

The rise of X i / T 2 in the transition region is compatible 
with the rapid rise of the energy density. The strange quark 
number susceptibility, on the other hand, rises more slowly 
in the transition region. The astonishingly strong correla­
tion between energy density and light quark number sus­
ceptibility is evident from the ratio e/ {T2Xi) shown in 
Fig. 11 (left). The ratio e / {T2Xi) varies in the transition 
region by about 15%. This is in contrast to the ratio 
e/{T2Xs) which starts to increase with decreasing tempera­
ture already at T =* 250 McV and rises by about 50% in the 
transition region. In fact, unlike e/ {T2Xi), the ratio 
e/{T2x s) will diverge in the zero temperature limit as Xs 
goes to zero faster than e since it is not sensitive to the light 
quark degrees of freedom that contribute to the energy 
density. This lack of sensitivity of X s /T 2 t0 singular 
structure of the QCD partition function suggests that X s /T 2 
is not a good quantity to use to define the pseudocritical 
temperature.

The difference in light and strange quark masses plays 
an important role in the overall magnitude of quark number 
fluctuations up to almost twice the transition temperature. 
This is seen in Fig. 11 (right), where we show the ratio 
X s / X i -  At T s  300 McV the ratio X s / X i  comes close to 
the infinite temperature ideal gas value X s / X i = -̂ 
Deviations from this may be understood as a thermal effect 
that arises even in a lioninteracting gas from just the 
differences in quark masses. However, as has been dis­
cussed in [201, this clearly is not possible in the transition 
region, 200 McV -&T ■& 300 McV where, upon cooling, 
strangeness fluctuations decrease strongly relative to light 
quark fluctuations as T  decreases. At the transition tem­
perature, Xs/Xi  is 011ly about 1 /2  and shows a tendency to 
go over smoothly into values extracted from the HRG 
model. In the low-temperature hadronic region, the ratio

X s / Xi drops exponentially as strangeness fluctuations are 
predominantly carried by heavy kaons whereas the light 
quark fluctuations are carried by light pions.

B. Chiral symmetry restoration

In the limit of vanishing quark masses, the chiral con­
densate (tpip)/ introduced in Eq. (12) is an order parameter 
for spontaneous symmetry breaking; it stays nonzero at 
low temperature and vanishes above a critical temperature 
Tc. Chiral symmetry is broken spontaneously for T < T C.

At zero quark mass, the chiral condensate needs to be 
renormalized only multiplicatively. At nonzero values of 
the quark mass, an additional renormalization is necessary 
to eliminate singularities that are proportional to mq/ a 2. 
An appropriate observable that takes care of the additive 
renormalizations is obtained by subtracting a fraction, 
proportional to n i i /m v, of the strange quark condensate 
from the light quark condensate. To remove the multi­
plicative renormalization factor we divide this difference 
at finite temperature by the corresponding zero temperature 
difference, calculated at the same value of the lattice cut­
off, i.e..

A ,AT)  =
( ' P ' P ) i .t  ~  7’■ r i ' P ' P )h . T

(16)
/ s.O

This observable has a sensible chiral limit and is an order 
parameter for chiral symmetry breaking. It is unity at low 
temperatures and vanishes at Tc for mi =  0. For the quark 
mass values used in our study of bulk thermodynamics, i.e., 
m/ = 0.]ms, its temperature dependence is shown in 
Fig. 12. It is evident that A /,V(T) varies rapidly in the 
same temperature range as the bulk thermodynamic ob­
servables and the light quark number susceptibility. Based 
on this agreement we conclude that the onset of liberation 
of light quark and gluon degrees of freedom (deconfine­
ment) and chiral symmetry restoration occur in the same 
temperature range in QCD with almost physical values of 
the quark masses, i.e., in a region of the QCD phase

FIG. 11 (color online). The ratio of energy density and quark number susceptibilities (left) and the ratio o f strange and light quark 
number susceptibilities (right) calculated on lattices with temporal extent N T =  8. For the energy densities the interpolating curves 
shown in Fig. 7 have been used. Curves in the right-hand figure show results for a hadron resonance gas including resonance up to 
,wmax =  L5 GeV (upper branch) and 2.5 GeV (lower branch), respectively.
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FIG. 12 (color online). The subtracted chiral condensate normalized to the corresponding zero temperature value (right). In the right- 
hand figure data for N7 = 6 calculations have been shifted by —7 MeV (asqtad) and —5 MeV (p4).

diagram where the transition is not a true phase transition 
but rather a rapid crossover.

Cutoff cffccts in the chiral condensate as well as in bulk 
thcrmodynamic observables arc visible when comparing 
calculations performed with a given action at two different 
values of the latticc cutoff, e.g., N T =  6 and 8. These cutoff 
cffccts can to a large extent be absorbed in a common shift 
of the temperature scalc. This is easily seen by comparing 
the left and right panels in Fig. 12. A global shift of the 
temperature scalc used for the N T =  6 data sets by 5 MeV 
for the p4 and by 7 MeV for the asqtad action makes the 
N t =  6 and 8 data sets coincidc almost pcrfcctly. This is 
similar in magnitude to the cutoff dcpcndcncc observed in 
(e — 3p ) / T 4 and again seems to rcflcct the cutoff dcpcn­
dcncc of the transition temperature as well as residual 
cutoff dcpcndcncics of the zero temperature observables 
used to determine the temperature scalc.

As can be seen from Fig. 12 (right), even after the shift 
of temperature scalcs the chiral condensates calculated 
with asqtad and p4 actions show significant diffcrcnccs. 
This rcflccts cutoff cffccts arising from the use of different 
discretization schcmcs and to some extent is also due to the 
somewhat different physical quark mass values on the 
LCPs for the asqtad and p4 actions. The diffcrcnccs arc 
most significant at low temperatures where the latticc 
spacing is quite large. Here, cutoff cffccts that arise from 
the explicit breaking of flavor symmetry in the staggered 
fcrmion formulations may bccomc important. At tempera­
tures larger than the crossover temperature, the chiral 
condensate obtained from calculations with the asqtad 
action is systematically larger than that obtained with the 
p4 action. This is consistent with the fact that the quark 
masses used on the asqtad LCP arc somewhat larger than 
those on the p4 LCP

Wc note that at finite temperatures the chiral condensate 
as well as A/ s(T) arc quite sensitive to the quark mass. In 
the chiral symmetry broken phase, in both eases the lead­
ing order quark mass correction is proportional to the 
square root of the light quark mass [221. Small diffcrcnccs 
in the actual quark mass values used in p4 and asqtad 
calculations on lattices with temporal extent N r =  6 and

8 will thus be cnhanccd in the transition region. This makes 
it important to have good control of the line of constant 
physics. Wc will discuss the quark mass dcpcndcncc of the 
chiral condensate and quark number susceptibilities as well 
as the cutoff dcpcndcncc of pscudocritical temperatures 
extracted from them in more detail in a forthcoming pub­
lication [231.

C. The Polyakov loop

The logarithm of the Polyakov loop is related to the 
changc in free energy induccd by a static quark source. It is 
a genuine order parameter for dcconfincmcnt only for the 
pure gauge theory, i.e., all quark masses taken to infinity. 
At finite quark masses it is nonzero at all values of the 
temperature but changcs rapidly at the transition. The 
Polyakov loop operator is not present in the QCD action 
but can be added to it as an external source. Its expectation 
value is then given by the derivative of the logarithm of the 
modified partition function with rcspcct to the correspond­
ing coupling, evaluated at zero coupling. As far as wc 
know, the Polyakov loop is not directly sensitive to the 
singular structure of the partition function in the chiral 
limit. Therefore, its susceptibility will not diverge at m =
0 nor is its slope in the transition region related to any of 
the critical exponents of the chiral transition. Nonetheless, 
the Polyakov loop is observed to vary rapidly in the tran­
sition region indicating that the screening of static quarks 
suddenly bccomcs more cffcctivc. This in turn leads to a 
reduction of the free energy of static quarks in the high- 
tcmpcraturc phase of QCD.

The Polyakov loop needs to be renormalized in order to 
eliminate sclf-cncrgy contributions to the static quark free 
energy. For the p4 action, this renormalization factor is 
obtained from the renormalization of the heavy quark 
potential as outlined in Ref. [41. In calculations with the 
asqtad action, wc apply the same renormalization proce­
dure and details of this calculation arc given in 
Appendix B. The results for the renormalized operator 
for both actions arc shown in Fig. 13. Similar to other 
observables discusscd in this paper, wc also observe for 
the Polyakov loop expectation value that results obtained
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FIG. 13 (color online). The renormalized Polyakov loop ob­
tained with the asqtad and p4 actions from simulations on 
lattices with temporal extent N T =  6 and 8. Open symbols for 
the N t =  6. asqtad data set denote data obtained with the R 
algorithm. A l  other data have been obtained with an RHMC 
algorithm.

on lattices with temporal extent N T =  6 are shifted relative 
to data obtained on the N T =  8 lattices by about 5 MeV. 
The renormalized Polyakov loop rises significantly in the 
transition region. The change in slope, however, occurs in a 
rather broad temperature interval. In fact, even in the chiral 
limit we do not expect that Lren or its susceptibility will 
show pronounced critical behavior.

V. CONCLUSIONS

We have presented new results on the equation of state 
of QCD with a strange quark mass chosen close to its 
physical value and two degenerate light quarks with one 
tenth of the strange quark mass. A comparison of calcu­
lations performed with the p4 and asqtad staggered fer­
mion discretization schemes shows that both actions lead 
to a consistent picture for the temperature dependence of 
bulk thermodynamic observables as well as other observ­
ables that characterize deconfining and chiral symmetry 
restoring aspects of QCD thermodynamics. The calcula­
tions performed on lattices with temporal extent N T =  8 
suggest that the deconfinement of light partonic degrees of 
freedom, which is reflected in the rapid change of the 
energy density as well as the light quark number suscep­
tibility, goes along with a sudden drop in the chiral con­
densates, indicating the melting of the chiral condensate. 
These findings confirm earlier results obtained within these 
two discretization schemes.

A comparison of results obtained with the asqtad and p4 
actions for two different values of the cutoff, aT  =  1/6 
and 1/ 8, suggests that cutoff effects in both discretization 
schemes are at most a few percent for temperatures larger 
than 300 MeV. In the vicinity of the peak in the trace 
anomaly, cutoff effects are still about 15% in calculations 
with the p4 action and at most half that size for the asqtad 
action. Also, at low temperatures both actions give con­
sistent results. Here, however, further studies with lighter 
quarks on finer lattices are needed to get better control over 
cutoff effects that distort the hadron spectrum and might

influence the thermodynamics in the chiral symmetry bro­
ken phase.

We find that different observables calculated on N r =  8 
lattices with m j m s = 0.1 give a consistent characteriza­
tion of the transition region, 180 MeV <  T <  200 MeV. 
The data indicate two systematic effects. First, a compari­
son of results obtained on lattices with temporal extent 
N t =  6 and 8 shows that with decreasing lattice spacing 
the transition region shifts by about 5-7 MeV towards 
smaller values of the temperature. Assuming that cutoff 
effects are indeed 0 ( a 2) for our current simulation parame­
ters, one may expect a shift of similar magnitude when 
extrapolating to the continuum limit. Second, preliminary 
studies of the quark mass dependence of the transition 
region [24] suggest that a shift of similar magnitude is to 
be expected when the ratio of light to strange quark masses 
is further reduced to its physical value, m j m q = 25. A 
more detailed analysis of the transition region, its quark 
mass and cutoff dependence, will be discussed in a forth­
coming publication [23].
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APPENDIX A: EOS WITH IMPROVED 
STAGGERED FERMION ACTIONS

In this appendix we review and collect details of the p4
[8] and asqtad [11] staggered improved actions to present a 
unified framework for the description of thermodynamic 
calculations presented in this paper.

1. The asqtad and p4 actions

The QCD partition function on a lattice of size N}rN T is 
written as

PHYSICAL REVIEW D 80, 014504 (2009)
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Z LCP( f 3 , N rr, N T) =  [ Y ] d U - ^ S m - <A 1 >
^  X,fJL

where Ux M G SU(3) denotes the gauge link variables, and

S(U) = P S G((U, n0(p) -  S F(U. uom  (A2)

is the Euclidean action. We define the tadpole coefficient 
«0 as «0 =  (P ) ^ 4 where P is the 1 X 1  Wilson loop called 
the plaquette and defined below in Eq. (A6). After integra­
tion over the fermion fields the QCD action is written as the 
sum of a purely gluonic contribution, SG, and the fermionic 
contribution, S F, involving only the gauge fields

S F(U. uom  =  i  TrlnD (h0(/3). « ,(£ ))

+ ^ T r ln  D ( u M , h sm .  (A3)

Here the factors 1/2 and 1/4 arise from taking the square 
root and the fourth root of the staggered fermion determi­
nant to represent the contribution of two degenerate light 
flavors and the single strange flavor to the QCD partition 
function [251. We show the explicit lattice-coordinate com­
ponents of the Dirac operator (fermion matrix) and write it 
in terms of its diagonal and off-diagonal contributions,

Dvv(«o(/3). •(/?)) =  mj(/3)8xy + Mxv(u0((3)). (A4)

We also introduce the shorthand notation D, =  m(- + M  = 
D(u0(/3),

In Eqs. (A2) to (A4) we made explicit the dependence on 
/3, i.e., in addition to the explicit multiplicative 
/3-dependence in front of SG the actions also depend on 
/? through the tadpole factor u0.

The general form of the gluonic part of the action as it is 
used in the asqtad and p4 actions is given in terms of a 4- 
link plaquette term (pi), a planar 6-link rectangle (rt) and a 
twisted 6-link loop (pg),

EQUATION OF STATE AND QCD TRANSITION AT ... PHYSICAL REVIEW D 80, 014504 (2009) 

Sg =  X  (/3pl(l
X , f X < V

+ ,3pg X  (1 ~ C Mrtr). (A5)
X , f X < V < ( T

with / a ,  v, cr G 1, 2, 3, 4 and P jiV, R^,, and CjJlHT denote 
the normalized trace of products of gauge field variables
t/vV

I
Pp, i' Tf£/V jj Ux^ ^ v U ^  Ux. v

-  1 ( f f g Tr({/v.^ Ux ĵ-x./x ^ ^

X u l r  + ill <-> v))

-̂/xrtr Y2 ^ ^ 1.A1" ^ 1..A..r ir^ i ..r..ti-.ji.

X + (/X ~  V) + 0'  ~  a)

+ (fi <-► v, 11 <-► —/i)), (A6)

where jx is the unit vector in //.-direction. The p4 action 
only contains the first two terms, while the asqtad action 
contains all three terms with /3-dependent couplings. The 
set of couplings for both actions is given in Table III. We 
note here a difference in convention that exists between the 
asqtad and p4 actions. In the asqtad action, the full constant 
factor in front of the plaquette term is defined to be /3. In 
the continuum limit, its relation to the gauge coupling g2 is 
/3 =  10/ g1. In the p4 action, the convention of the standard 
Wilson plaquette action has been kept, f3 = 6 / g1. For this 
reason the plaquette term contains an extra factor /3pl = 
5/3 . Also note that the pure gauge part of the asqtad action 
reduces to that of the p4 action for u0 =  1.

The fermionic part of the action has been improved by 
introducing higher-order difference schemes (1-link and 3- 
link terms) to discretize the derivative in the kinetic part of 
the action [261,

D[Ulj  = mSjj + ( c . A W l j  + C i B . W l j  + c n B2[Ulj)

(A7)

TABLE III. Couplings j3x, x = pi, rt, pg defining the pure gauge part of the p4 and asqtad actions, respectively. Here uu is the tadpole 
coefficient and a s =  —41n(«u)/3.0684. Also given are the derivatives /3'(«u) =  d/3x/duu and the values of the coefficients c,- which 
appear in the fermion part of the action.

^ p ( At A s At Pps Cl C3 C12

p 4
5
3

_  i
6 0 0 0 3

8 0 1
96

asqtad 1 - 1 ^ ( 1 +  0.4805^) -  0.1330 X a s tM  1.3132 + 0.4805 a s)"i> 1 -X 1
4(0.1734 + 0.2660^.)ub

1
2

_  1
4 8 ^ 0
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,U t ,11 t
jX,(x u  i—2 i—3fX,ii u ij+3fis ti J

B z W l j  = ' Z v ll( i ) ' Z m , llUi^ r Ui^ f, r S i_
(X V= tfL

- uL,„uL ,̂„uti - p . r  i -  2 v. v  i - f i - 2  v. /x ’j  -?(i-?2v8„

Sii ■ p, ■:/)  + i l l U , vV l 2hvV , ^ 8 ^ ^ 2i.

-  U l ^ U i - M . r U i - ^ r S w - V . )  + W l, » U l , _ hlX J l î 2 r J lj- î 2 r  ~  U hrU M ,r Uj_ . ^ 8

r

Here 7]  ̂(?) denotes the staggered phase factor. The coef­
ficients C], c3 and c ]2 for p4 and asqtad actions arc also 
given in Tabic ITT. The overall normalization is such that in 
the limit /3 —> oo wc rccovcr the naive continuum action for 
Dirac fermions. In both actions, so-callcd fat-links (U{M) 
have been introduced in the 1 -link terms; i.e., in addition to 
the straight 1-link parallel transporter UX jJl that connccts 
adjaccnt sites (x, x  + /t), additional longer paths have been 
added. In the ease of the p4 action, this is a simple 3-link 
path, callcd the staple, going around an elementary pla- 
qucttc. The cocfficicnts of the 1 -link term and the staple arc 
/3-indcpcndcnt and equal to 1/(1 + 6a>) and &>/(! + 6&>), 
rcspcctivcly. Wc used w =  0.2 [27]. The asqtad fat-link 
contains additional nonplanar 5-link and 7-link paths to 
remove completely the cffcct of flavor symmetry breaking 
to order (g2a2) [11 ] as well as a planar 5-link path, the so- 
callcd Lepage term. The cocfficicnt of the 1-link term in 
this ease is equal to 5/8 . The cocfficicnts of the 3-, 5- and 
7-link paths arc equal to 1 / (2w§)( 1 /8), 1/(8mq)(1/8) and 
1/(48mq)(1/8), rcspcctivcly. Furthermore, the cocfficicnt 
of the Lepage term is — 1/(16«q).

Finally, wc point out that the conventions for the asqtad 
fermion matrix given in [28] differ from those introduced 
in Eqs. (A4) and (A7) by an overall factor two. Thus, all 
couplings given in [11] need to be divided by a factor two 
to match the expressions given here.

2. /2-functions

In this work, wc consider the thermodynamics of (2 + 
l)-flavor QCD along a line o f  constant physics (LCP). The 
LCP is fixed by choosing two degenerate light (mt) and a 
heavier (strange) quark mass (ms) as functions of the gauge 
coupling /3, i.e., m/ s =  m/ s(/3), such that physical observ­
ables, e.g., a set of hadron masses, calculated at T  =  0 at 
the same value of the cutoff as used at finite temperature, 
stay constant. In calculations with the asqtad as well as 
with the p4 action, it turns out that an LCP is well charac­
terized by specifying m/((3) and keeping the ratio ih i /ms 
fixed. Explicit paramctrizations for m/(/3) have been given 
for the asqtad [3] and p4 [4] actions for thi /ms =  0.1 in the 
parameter range relevant for the thcrmodynamic calcula­
tions discusscd here.

The basic observable wc need to calculate is the tracc 
anomaly, e — 3/?, introduced in Eq. (2). To do so, wc need 
to relate temperature changcs to changcs of the gauge 
coupling. These arc controlled by the /3-function,

R 13
,dfi_
dT

di3 i ---->
da

(A8)

The /3-function can be determined by analyzing the 
/3-dcpcndcncc of a physical observable expressed in latticc 
units. Wc use here distance scalcs extracted from the 
heavy quark potential as introduced in Eq. (1). Explicit 
paramctrizations for ro(0)  (p4-action) and r\{(3) (asqtad 
action) have been given in [3,4], rcspcctivcly. Using the 
explicit paramctrizations for r„ and m t wc can determine 
the /3-function Rp  and the mass renormalization function 
Rm.

1 dfhi((3)
mt(/3) d/3

(A9)

In the ease of the asqtad action one more function plays a 
ccntral role in the derivation of general expressions for 
thcrmodynamic quantities. This is the tadpole cocfficicnt 
m0(/3) which enters the definition of the asqtad action. It is 
given in terms of the plaqucttc expectation value at zero 
temperature, u0 =  (P)j/4. where P denotes the product of 
gauge field variables defined on an elementary plaqucttc of 
the four-dimensional latticc. It is introduced in Eq. (A6). 
As discusscd previously, the p4 action contains only trcc- 
lcvcl improved terms without tadpole improvement. In 
order to keep the following formulas valid for both actions, 
wc insert u0 =  1 as a trivial constant in the p4 action.

Since u0 depends on (3 for the asqtad action, wc also 
need its derivative with rcspcct to /3,

dup((3) 
d/3 '

(A10)

This is obtained from the polynomial parametrization used 
for interpolating the value of the tadpole factor in the 
asqtad action.
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«o(/3) =  a Q + ci\b + a 2b 2 + a ^b 3 + a 4b4

+ a5b5 + a6b6, (A ll)

with b = f3 — 6.60, a0 =  0.86158, a\ =  0.0426043, a 2 =  
-0.0254633, a3 =  0.0261288, a4 =  -0.0116944, al  = 
-0.0417343, and a6 =  0.0436528. This paramctrization 
is suitable for the /3-range covered by the calculations 
presented in this work. In the weak coupling limit Ru ~  
/3-«.

3. Thermodynamics

Having established the notation, we now present expres­
sions for basic thermodynamic quantities calculated with 
the asqtad and p4 actions.

The light and strange quark condensates calculated at 
finite (.r =  t) and zero (.r =  0) temperature arc

< \  J i ^ N f <Tr/?'7 ' )r' q =  1 s ' x  =  ° ' T'
(A12)

Here Nx, with x  =  0, t  denotes the temporal extent of zero 
and finite temperature lattices, and Nl7 is the size in the 
spatial directions. The action densities arc then given by

1
s =

N l N r
S for jc  =  0, t (A13)

and similarly for SG and SF. We introduce a shorthand 
notation for differences of expectation values of intensive 
observables calculated at finite and zero temperature as

A(X> =  (X)q -  (X)T. 

The trace anomaly is then given by 

e  -  3/7 _  0 ^ ( 7 )

(A14)

=  Rfi(P)NiMs).  (A15)j4

and Eq. (A 15) can be rewritten as

0 ^ ( 7 )  _  ® ^ ( T )  | 0 ^ ( 7 )
(A16)

with 0 ^ ( 7 ) / 7 4 denoting the contribution from the renor­
malization group invariant contribution of light and strange 
quark condensates,

0 ^ ( 7 )
=  -RpR„,N*(2miA(iifilf)i + mM'P'P)*)-

(A17)

and 0 ^ ( 7 ) / 7 4 including all the remaining terms that 
survive the chiral limit (wj/.s —> 0),

0 ^ ( 7 ) =  R

PHYSICAL REVIEW D 80, 014504 (2009) 

,/V4(a < % > -  + 4/3pgA(C)

+ i A(Tr('(i d j x + A r 1> 3 ) )
(Al 8)

Here (sG) denotes the contribution of the gluonic action 
density and (R) and (C) denote the expectation values of 6- 
link Wilson loops introduced in Eq. (A6). The functions /3„ 
and /3pg arc given in Table ITT. We have explicitly separated 
contributions proportional to the derivative of the tadpole 
coefficient, Ru. As Ru =  0 for the tree-level improved p4 
action, these terms contribute only in calculations with the 
asqtad action, where they help to reduce the cutoff depen­
dence of thermodynamic observables at nonzero lattice 
spacing.

In Appendix D we also use the obvious shorthand nota­
tion for light and strange fermion contributions, 
0 ^ ( 7 ) / 7 4 =  % pj{ T ) /T 4 + 0 ^ ( 7 ) / 7 4.

APPENDIX B: POLYAKOV LOOP 
RENORMALIZATION FOR THE ASQTAD ACTION

To renormalize the Polyakov loop we use an approach 
similar to the one of Ref. [4]: we renormalize the static 
quark potential and extract the self-energy of a static quark. 
At a given lattice spacing the latter is simply a constant 
shift of the potential which we denote C((3). As a matching 
condition we have chosen the same for the asqtad and p4 
actions: the renormalized potential is set equal to the string 
potential V strjng( r )  =  — i r / \2 r  + a r  at distance r =  1.5r0. 
We first fit the static potential measured from the ratios of 
the correlators of Wilson lines in the Coulomb gauge to the 
ansatz:

V(r, (3) =  V0
1.65 — a n

+ a r (B1)

with V0, a,  r0 being the fit parameters, and then apply the 
conditions:

V(r, (3) =  VKn(r, /3) + C(/3), (B2)

Vren(r =  1.5r0, /3) =  V ^ nJ r  =  1.5r0). (B3)

This gives

c w  ~v° + 65 + <t4 (B4)

The results for C((3) arc collected in Table IV. The renor­
malization of the Polyakov loop amounts to removing the 
self-energy contribution

Lren(/3) =  a p j e i c w / t n / i m  = L (j3)(Z (J3))Nr, (B5) 

where we defined

Z(J3) = eC{l3)/2 (B6)
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TABLE IV. Twice the self-energy of a static quark C{j3) in 
lattice units along the line of constant physics m t =  0.1 ms.

a C(/3)

6.100 0.746(69)
6.300 0.777(23)
6.458 0.8534(89)
6.550 0.8425(47)
6.650 0.8584(78)
6.760 0.8545(35)
6.850 0.863(15)
7.080 0.8335(22)

FIG. 14 (color online). The renormalization constant Z(j3). 
The error band is determined with bootstrap analysis.

for convcnicncc. In Fig. 14, Z(/3) data is shown together 
with the fit to a quadratic polynomial. The error band is 
estimated with a bootstrap analysis.

APPENDIX C: PARAMETRIZING THE EQUATION 
OF STATE FOR HYDRODYNAMICS

Here we present a simple functional form for generating 
the equation of state that can be readily applied to most 
hydrodynamic models of heavy ion collisions. The equa­
tion of state is an essential input for solving the hydro­
dynamic equations of motion, but as explained in Sec. IIB, 
some form of interpolation of the interaction measure is 
required to generate the equation of state from the lattice 
data. However, small fluctuations in the equation of state 
can be magnified through the time evolution in the hydro­
dynamic models and can lead to anomalous effects in the 
final state. Furthermore, it is preferable for the equation of 
state to transition smoothly to the EoS of the hadronic 
resonance gas that is imposed when the models freeze- 
out to produce final state hadrons. Most hydrodynamic 
models use a simplified version of the equation of state 
that incorporates a hadronic resonance gas EoS below the 
transition. Near and above the transition some models 
approximate the crossover EoS calculated on the lattice 
[29-311, but it is more common for hydro models to rely on 
a bag model equation of state with a first-order phase 
transition [32-34].

To remedy this gap between theory and phenomenology 
we fit the lattice calculation of the trace anomaly for both 
p4 and asqtad actions to the simple functional form given 
by Eq. (C l).

i z l l  = (  i - _______l._______¥ ^  +  - 1  e c u
T 4 V [1 +  eiT^ c')/c^ f / \ T 2 T4/

This form uses a modified hyperbolic tangent to describe 
the transition region and retains the high-temperature re­
gion ansatz of Eq. (5). For the p4 action, the high- 
temperature parameters are set to the values obtained in 
Sec. IIB  2 for the range T > 0 .2 5  GeV. We repeat this 
procedure for the asqtad action, but with the fourth-order 
term d4 set to zero due to the lack of high-temperature 
measurements to constrain it. The high-temperature pa­
rameters are then fixed as the full function of Eq. (C1) is 
fit to the lattice data or to some combination of lattice data 
and hadronic resonance gas. In this way we prevent any 
deficiencies in the description of the transition and peak 
region from biasing the high-temperature behavior, 
although variations at low temperature will produce offsets 
in the pressure and energy density at high temperature. To 
match to the HRG EoS we adopt a procedure that is similar 
to systematic error analysis of Sec. Ill in which the HRG 
was used to establish the starting value for the integration 
of the pressure at 100 MeV. However, to achieve a gradual 
transition we incorporate into the fit the HRG calculation 
for 7?2res <  2.5 GeV over a range of temperatures 100 <  
T  <  130 MeV. HRG values for the trace anomaly are 
sampled every 5 MeV and assigned an error of 0.1 to 
produce weights that are comparable to the low- 
temperature lattice data.

Figure 15 shows the result of fitting Eq. (C1) to the p4 
and asqtad N T trace anomaly (solid lines). The trace anom­
aly for the resonance gas is also plotted (double-dotted), 
along with fits to the both p4 and asqtad data that are 
combined with the HRG for 100 <  T  <  130 MeV. As an

FIG. 15 (color online). Fits to the trace anomaly using Eq. 
(C l) for p4 and asqtad N T =  8 lattice data (solid lines), to lattice 
data merged with the hadron resonance gas calculation (mre, <  
2.5 GeV) over the region 100 < T <  130 MeV (double-dot 
dashed), and to the lattice data shifted to lower temperature by 
10 MeV (dashed).
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TABLE V. Parameter values for fits of Eq. (C l) to trace anomaly 
data shifted by 10 MeV.

EQUATION OF STATE AND QCD TRANSITION AT ...

Data d2 [GeV2] d4 [GeV4]

p4 0.24(2) 0.0054(17)
p4-10 MeV 0.241(6) 0.0035(9)
HRG + p4 0.24(2) 0.0054(17)
asq 0.312(5) 0.00
asq-10 MeV 0.293(6) 0.00
HRG + asqtad 0.312(5) 0.00

PHYSICAL REVIEW D 80, 014504 (2009) 

data for p4 and asqtad. data combined with HRG calculations, and

f |  [GeV]____________ c ; [GeV]______________ , r / d o f

0.2038(6) 0.0136(4) 26.7/19
0.1938(6) 0.01361(4) 26.7/19
0.2073(6) 0.0172(3)
0.2024(6) 0.0162(4) 34.4/14
0.1943(6) 0.01670(4) 42.8/14
0.2048(6) 0.0188(4)

additional test of this paramctrization, we also make a fit 
with all the lattice data shifted to lower temperature by 
10 MeV (open symbols). This, as discussed in the con­
clusions and based on the comparison to N T =  6 data 
shown in Fig. 3, is the shift we expect due to extrapolations 
to the physical light quark mass and the continuum limit. 
Fits to the shifted data follow the same prescription: the 
high-tcmpcraturc component is fit first and those parame­
ters arc fixed for the full minimization (dashed lines).

The parameters for all fits arc listed in Table V. As is 
readily seen in Fig. 15 and the ^-2/d o f reported for the 
latticc fits in Table V, this functional form provides only an 
approximation to the full latticc calculation, but one that 
will be shown to be within the systematic errors for the 
equation of state. As statistical and systematic errors arc 
reduced in future calculations, the paramctrization of 
Eq. (C l) is easily modified to include additional terms, 
including the high-tcmpcraturc pcrturbativc terms. The 
shift by 10 MeV has the predictable cffcct of lowering 
the ci parameter by a similar amount. Including the HRG 
points affccts mainly the exponential slope term c2 leading 
to a slight reduction of the peak.
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FIG. 16 (color online). Energy density and 3 times the pressure 
calculated from fitting Eq. (Cl) to the trace anomaly. Fits to p4 
and asqtad lattice data are solid lines, fits to lattice data shifted 
by negative 10 MeV are dashed lines, and combined fits to HRG 
and lattice data are double-dot dashed. The systematic error band 
associated with beginning the pressure integration at T = 
100 MeV and plotted as a black shaded box in Fig. 7 is plotted 
as a grey band, with lower bound defined by the pressure 
integration derived from the p4 interpolation. The systematic 
errors associated the interpolation are plotted here as grey boxes. 
These were shown as narrow error bars in Fig. 7.

The energy density and pressure arc calculated by nu­
merically integrating the tracc anomaly fits according to 
Eq. (3). For the paramctrizations given in Eq. (C l) the 
integration is started at 50 MeV. Bccausc these paramctri­
zations of the tracc anomaly have their minima in this 
region, the pressure and energy density arc not sensitive 
to the cxact location of the starting temperature. We note, 
however, that Eq. (C l) rises rapidly as the temperature is 
further rcduccd, and is therefore suitable for extrapolating 
to temperatures less than 50 MeV, well below the frcczc- 
out temperature for all hydrodynamic calculations for rcla- 
tivistic heavy ion collisions.

Figure 16 shows the energy density and pressure curves 
for all fits compared to the systematic error calculations 
that were described in Sec. III. These parametrized curves 
do not differ appreciably from the p4 and asqtad results 
shown in Fig. 7, cxccpt that the asqtad equation of state has 
been extrapolated beyond the highest temperature data 
point at —400 MeV. Fits to the HRG merged to asqtad 
data lead to small increases in the pressure but they arc 
within the systematic errors associated with the interpola­
tion, shown as shaded boxes. The shaded boxes were drawn 
as narrow error bars in Fig. 7 that were centered on the p4 
interpolation pressure curves. The HRG +  p4 merged and 
10 MeV shifted data fits lie slightly above this systematic,
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FIG. 17 (color online). Square of the velocity of sound, c;. for 
the Eq. (Cl) parametrization of the trace anomaly for fits to the 
lattice data (solid), lattice data shifted by 10 MeV (dashed), and 
combined HRG and lattice calculations (double-dot dashed). The 
lattice curves are compared to two typically EoS inputs currently 
used in hydrodynamic codes: the qcdEOS used in vh2 (dotted), 
and an HRG calculation with a first-order transition at 180 MeV 
(double-dotted).

p4 asqtad
Iqcd --------  ----------

T-10 MeV ........................ ■
HRG+lqcd --------  ----------

HRG (Tc=180 MeV)............
VH2 hydro....

T [MeV]
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TABLE VI. Parameters for simulations performed with the p4 action at zero temperature and the expectation values of the gauge 
action and light and heavy chiral condensates. Here wc used also the zero temperature results from the study of the equation of state by 
the RBC-Biclcfcld Collaboration at /? =  3.63. 3.69. 3.82. and 3.92 [4],

P m , N;‘ X N t 7  Ml) traj <%>o <'A'A).y,0

3.4300 0.00370 323 X 32 0.5 3570 4.111679(148) 0.075873(102) 0.143475(74)
3.4600 0.00313 323 X 32 1.0 2060 4.044602(82) 0.057641(85) 0.117406(61)
3.4900 0.00290 323 X 32 0.5 2330 3.984160(149) 0.044554(87) 0.100634(57)
3.5000 0.00253 323 X 32 0.5 2150 3.964162(117) 0.039426(93) 0.089291(68)
3.5100 0.00259 323 X 32 0.5 1790 3.946336(118) 0.036767(61) 0.087441(51)
3.5150 0.00240 323 X 32 1.0 2100 3.936885(100) 0.034644(64) 0.081973(45)
3.5225 0.00240 323 X 32 1.0 2210 3.923687(111) 0.032628(87) 0.079799(56)
3.5300 0.00240 323 X 32 0.5 2870 3.910643(78) 0.030849(38) 0.077800(25)
3.5400 0.00240 323 X 32 0.5 3750 3.893451(86) 0.028546(63) 0.075221(48)
3.5450 0.00215 323 X 32 0.5 2270 3.884507(105) 0.026400(77) 0.068601(61)
3.5500 0.00211 323 X 32 0.5 2650 3.876406(101) 0.025483(45) 0.066852(31)
3.5600 0.00205 323 X 32 1.0 2090 3.859529(88) 0.023064(85) 0.063168(53)
3.5700 0.00200 323 X 32 0.5 1880 3.843775(75) 0.021405(57) 0.060291(36)
3.5850 0.00192 323 X 32 0.5 2310 3.820193(102) 0.019054(55) 0.056042(43)
3.6000 0.00192 323 X 32 0.5 3020 3.797184(65) 0.017178(38) 0.053636(28)
3.6300 0.00170 243 X 32 0.5 3232 3.752910(95) 0.013176(93) 0.045175(64)
3.6600 0.00170 323 X 32 0.5 2850 3.710875(72) 0.011655(39) 0.042370(27)
3.6900 0.00150 243 X 32 0.5 2284 3.669910(81) 0.008740(85) 0.035734(45)
3.7600 0.00139 323 X 32 0.5 3250 3.580229(48) 0.006227(29) 0.029547(12)
3.8200 0.00125 323 X 32 0.5 2430 3.508141(72) 0.004507(69) 0.024679(37)
3.9200 0.00110 323 X 32 0.5 4670 3.396463(44) 0.002970(41) 0.019633(9)
4.0000 0.00092 323 X 32 0.5 5430 3.313344(46) 0.001788(28) 0.015390(21)
4.0800 0.00081 323 X 32 0.5 5590 3.234959(32) 0.001552(54) 0.012778(19)

TABLE VII. Parameters for simulations performed with the p4 action at finite temperatures, the expectation values of the gauge 
action, light and heavy chiral condensates, as well as the gluonic and fcrmionic contributions to the tracc anomaly obtained from them.

T [McV] P m, tmd traj (*G>- 0 ^ 7  T4 T* 0 ^ ; / r 4

139 3.4300 0.00370 0.5 15140 4.111274(146) 0.074251(111) 0.142977(75) 0.48(25) 0.0433(42) 0.133(28)
154 3.4600 0.00313 0.5 11970 4.043850(110) 0.055231(83) 0.116653(58) 0.95(18) 0.0512(32) 0.160(20)
170 3.4900 0.00290 0.5 11800 3.983028(116) 0.040290(103) 0.099071(65) 1.53(27) 0.0758(30) 0.278(17)
175 3.5000 0.00253 1.0 10070 3.962857(99) 0.034018(145) 0.087194(75) 1.81(23) 0.0806(33) 0.312(18)
180 3.5100 0.00259 0.5 12660 3.944532(104) 0.030218(98) 0.084857(59) 2.58(24) 0.0958(21) 0.378(13)
183 3.5150 0.00240 1.0 10110 3.934529(79) 0.026463(138) 0.078531(66) 3.41(20) 0.1085(25) 0.456(12)
187 3.5225 0.00240 0.5 30620 3.920960(122) 0.023138(237) 0.075811(122) 4.02(25) 0.1218(34) 0.512(17)
191 3.5300 0.00240 0.5 43480 3.907753(92) 0.020257(149) 0.073347(81) 4.34(18) 0.1316(19) 0.553(10)
196 3.5400 0.00240 0.5 44880 3.890373(90) 0.016457(137) 0.070059(79) 4.74(21) 0.1439(23) 0.614(13)
199 3.5450 0.00215 0.5 13110 3.880942(187) 0.012615(300) 0.062299(198) 5.55(37) 0.1440(42) 0.658(26)
201 3.5500 0.00211 0.5 30140 3.872654(65) 0.011318(93) 0.060225(62) 5.91(24) 0.1423(22) 0.666(12)
206 3.5600 0.00205 1.0 9500 3.856090(118) 0.008940(96) 0.056184(87) 5.54(30) 0.1328(27) 0.656(17)
211 3.5700 0.00200 0.5 32580 3.840126(77) 0.007533(94) 0.052919(95) 6.01(26) 0.1228(27) 0.653(18)
219 3.5850 0.00192 1.0 4610 3.816785(77) 0.005885(44) 0.048085(83) 5.80(31) 0.1069(23) 0.646(18)
227 3.6000 0.00192 0.5 12750 3.794094(71) 0.005337(16) 0.046010(30) 5.42(27) 0.0925(20) 0.596(14)
243 3.6300 0.00170 0.5 12040 3.750217(76) 0.004032(12) 0.037784(35) 4.99(32) 0.0600(17) 0.485(14)
259 3.6600 0.00170 0.5 10610 3.708640(95) 0.003694(6) 0.035527(27) 4.35(30) 0.0507(10) 0.436(9)
275 3.6900 0.00150 0.5 14630 3.668111(64) 0.003033(3) 0.029784(17) 3.66(25) 0.0318(8) 0.331(6)
315 3.7600 0.00139 0.5 10740 3.578960(68) 0.002536(1) 0.025183(9) 2.81(19) 0.0192(2) 0.228(1)
351 3.8200 0.00125 0.5 15140 3.507192(39) 0.002138(0) 0.021318(6) 2.23(22) 0.0114(5) 0.162(4)
416 3.9200 0.00110 0.5 27180 3.395840(25) 0.001743(0) 0.017408(2) 1.57(17) 0.0054(3) 0.098(3)
475 4.0000 0.00092 0.5 23280 3.312885(38) 0.001390(0) 0.013887(1) 1.21(19) 0.0015(1) 0.057(2)
539 4.0800 0.00081 0.5 24140 3.234697(20) 0.001175(0) 0.011747(0) 1.21(19) 0.0015(1) 0.057(2)
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TABLE VIII. Simulation parameters at zero temperature for the asqtad action and the expectation values of terms in the gauge 
action. The column labeled P is the plaquette, R, the rectangle, and C, the parallelogram. In all cases, the trajectory length is t m d  =  1 

and the lattice size is N?r X NT = 324, except for /3 =  7.46, where it is 643 144.

p m, traj “0 (P) (R) <0

6.400 0.00909 4830 0.8520 0.526573(7) 0.271218(9) 0.277200(10)
6.430 0.00862 4935 0.8535 0.530550(7) 0.276220(10) 0.282561(10)
6.458 0.00820 6015 0.8549 0.534163(6) 0.280792(8) 0.287447(9)
6.500 0.00765 5390 0.8569 0.539353(5) 0.287379(6) 0.294465(7)
6.550 0.00705 5680 0.8594 0.545370(5) 0.295095(7) 0.302650(7)
6.600 0.00650 5215 0.8616 0.550963(6) 0.302287(8) 0.310253(9)
6.625 0.00624 4890 0.8626 0.553620(7) 0.305709(10) 0.313862(10)
6.650 0.00599 5310 0.8636 0.556230(5) 0.309083(9) 0.317410(9)
6.675 0.00575 5225 0.8647 0.558830(6) 0.312461(9) 0.320960(9)
6.700 0.00552 5055 0.8657 0.561350(4) 0.315727(6) 0.324388(6)
6.730 0.00525 5195 0.8668 0.564267(5) 0.319526(7) 0.328364(8)
6.760 0.00500 4922 0.8678 0.567073(7) 0.323173(9) 0.332197(11)
6.800 0.00471 4755 0.8692 0.570777(4) 0.328002(5) 0.337237(6)
6.850 0.00437 4540 0.8709 0.575240(5) 0.333853(7) 0.343340(8)
6.900 0.00407 4310 0.8726 0.579580(4) 0.339553(7) 0.349283(7)
6.950 0.00380 4285 0.8741 0.583757(4) 0.345060(6) 0.355003(7)
7.000 0.00355 4130 0.8756 0.587820(6) 0.350440(9) 0.360573(10)
7.080 0.00310 3965 0.8779 0.594080(4) 0.358757(6) 0.369187(7)
7.460 0.00180 251 0.8876 0.620817(4) 0.394840(5) 0.406313(5)

but fall below the systematic error associated with using 
the HRG value for the pressure to begin the integration at 
T  =  100 MeV, plotted here as shaded band in the energy 
density. This error bar was shown as a shaded box at high 
temperature in Fig. 7. The agreement between the p4 and 
asqtad results at the highest temperature provides some

confidence in using the high-temperature parametrization 
to extrapolate the asqtad result up to 550 MeV. At this 
temperature, all parametrizations are below the Stefan- 
Boltzmann limit.

The square of the velocity of sound is shown in Fig. 17, 
as given by Eq. (9). Differences between the fits are mainly

TABLE IX. Continuation of the previous table. Fermion expectation values for the asqtad 
action contributing to the equation of state. The last two columns give the contributions of asqtad 
gauge and fermion observables to the interaction measure.

P < W > « > <</'i f  </'>,«
6.400 0.101993(42) 0.222407(30) -4.89560(7) -4.82871(7)
6.430 0.091265(62) 0.207453(43) -4.89481(7) -4.83519(9)
6.458 0.082138(36) 0.194171(26) -4.89283(6) -4.83933(6)
6.500 0.070319(33) 0.176287(24) -4.88921(5) -4.84355(5)
6.550 0.058049(39) 0.156758(28) -4.88009(5) -4.84239(5)
6.600 0.048335(44) 0.139653(30) -4.87296(5) -4.84183(5)
6.625 0.044200(39) 0.131874(31) -4.87004(6) -4.84180(6)
6.650 0.040376(40) 0.124493(32) -4.86661(4) -4.84097(4)
6.675 0.036985(45) 0.117575(29) -4.86087(4) -4.83760(5)
6.700 0.033917(39) 0.111080(25) -4.85648(4) -4.83535(4)
6.730 0.030557(40) 0.103681(30) -4.85230(4) -4.83354(4)
6.760 0.027679(30) 0.096988(21) -4.84924(7) -4.83249(6)
6.800 0.024320(34) 0.089120(23) -4.84319(4) -4.82871(4)
6.850 0.020852(67) 0.080307(42) -4.83519(4) -4.82318(5)
6.900 0.017971(39) 0.072717(28) -4.82687(3) -4.81669(4)
6.950 0.015605(43) 0.066099(27) -4.81963(3) -4.81103(4)
7.000 0.013560(43) 0.060154(26) -4.81222(4) -4.80494(3)
7.080 0.010803(49) 0.050807(28) -4.80044(3) -4.79507(3)
7.460 0.0043819(81) 0.0256237(100) -4.74518(2) -4.74365(2)
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TABLE X. Simulation parameters at nonzero temperature for the asqtad action and the expectation values of terms in the gauge 
action. The column labeled P is the plaquette, R, the rectangle, and C, the parallelogram. In all cases the trajectory length is t m o  =  1 
and the lattice size is JVj. X N T = 323 X 8, except at fi = 1.46, where it is 643 X 8.

T [MeV1 P m, traj «„ ( n (R) <o
141 6.458 0.00820 14095 0.8549 0.534193(7) 0.280840(10) 0.287487(11)
149 6.500 0.00765 16943 0.8569 0.539410(7) 0.287467(9) 0.294557(11)
160 6.550 0.00705 14605 0.8594 0.545430(7) 0.295185(10) 0.302728(11)
170 6.600 0.00650 14735 0.8616 0.551060(6) 0.302443(9) 0.310395(10)
175 6.625 0.00624 16610 0.8626 0.553727(5) 0.305883(8) 0.314021(9)
181 6.650 0.00599 16235 0.8636 0.556370(6) 0.309315(9) 0.317627(10)
183 6.658 0.00590 15655 0.8640 0.557250(7) 0.310468(10) 0.318830(11)
184 6.666 0.00583 16525 0.8643 0.558053(6) 0.311505(9) 0.319920(9)
186 6.675 0.00575 14900 0.8647 0.559000(6) 0.312740(9) 0.321214(10)
188 6.683 0.00567 15010 0.8650 0.559823(8) 0.313814(13) 0.322341(15)
190 6.691 0.00560 14695 0.8653 0.560617(6) 0.314844(10) 0.323429(11)
192 6.700 0.00552 13735 0.8657 0.561547(6) 0.316064(8) 0.324702(9)
194 6.708 0.00544 10695 0.8659 0.562290(7) 0.317019(10) 0.325701(10)
195 6.715 0.00538 11690 0.8662 0.563000(7) 0.317951(10) 0.326673(12)
199 6.730 0.00525 12690 0.8668 0.564490(6) 0.319902(9) 0.328716(10)
202 6.745 0.00512 10900 0.8673 0.565900(7) 0.321732(11) 0.330624(11)
206 6.760 0.00500 14815 0.8678 0.567293(5) 0.323553(8) 0.332525(9)
215 6.800 0.00471 14185 0.8692 0.570997(8) 0.328391(11) 0.337577(10)
227 6.850 0.00437 14035 0.8709 0.575460(5) 0.334240(8) 0.343663(9)
240 6.900 0.00407 14295 0.8726 0.579770(5) 0.339900(7) 0.349547(8)
252 6.950 0.00380 14270 0.8741 0.583933(7) 0.345387(10) 0.355247(12)
266 7.000 0.00355 14460 0.8756 0.587977(5) 0.350733(6) 0.360787(8)
288 7.080 0.00310 14595 0.8779 0.594227(4) 0.359030(6) 0.369370(7)
409 7.460 0.00180 3415 0.8876 0.620880(3) 0.394973(4) 0.406340(5)

TABLE XI. Continuation of the previous table. Fermion expectation values for the asqtad action contributing to the N T=  8 equation
of state. The last three columns give the contributions of asqtad gauge and fermion observables to the interaction measure. Where a
matchin;g T = 0 point was not simulated, the entry is omitted.

P (</'</' )s,r gw/T* O'f'j/T4
6.458 0.079427(65) 0.193628(44) -4.89320(9) -4.83982(7) 0.50(14) 0.1192(20) 0.1192(65)
6.500 0.066841(58) 0.175448(37) -4.88992(7) -4.84433(7) 1.08(13) 0.1339(15) 0.1614(56)
6.550 0.053589(65) 0.155654(39) -4.88082(7) -4.84324(6) 1.08(13) 0.1630(15) 0.2015(52)
6.600 0.041831(95) 0.137746(48) -4.87408(7) -4.84315(7) 1.82(13) 0.2257(15) 0.3314(50)
6.625 0.036566(91) 0.129519(47) -4.87126(5) -4.84332(6) 2.00(13) 0.2585(15) 0.3985(47)
6.650 0.031162(150) 0.121454(68) -4.86818(6) -4.84294(8) 2.70(13) 0.3039(18) 0.5014(48)
6.658 0.028996(110) 0.118580(58) -4.86581(6) -4.84147(7)
6.666 0.027696(140) 0.116377(61) -4.86482(6) -4.84121(6)
6.675 0.025791(130) 0.113677(59) -4.86268(5) -4.84001(6) 3.26(13) 0.3604(18) 0.6271(48)
6.683 0.023944(170) 0.111080(90) -4.86189(7) -4.83998(9)
6.691 0.022785(150) 0.108953(72) -4.86079(6) -4.83957(6)
6.700 0.021084(120) 0.106292(59) -4.85859(5) -4.83817(5) 3.91(13) 0.4022(18) 0.7512(48)
6.708 0.019759(160) 0.103973(85) -4.85910(6) -4.83941(7)
6.715 0.018723(130) 0.102063(64) -4.85745(6) -4.83838(7)
6.730 0.016480(100) 0.097952(58) -4.85464(6) -4.83669(6) 4.48(14) 0.4280(24) 0.8704(42)
6.745 0.014737(95) 0.094147(69) -4.85306(6) -4.83631(7)
6.760 0.013427(74) 0.090633(61) -4.85140(5) -4.83563(5) 4.42(13) 0.4198(9) 0.9355(39)
6.800 0.010537(49) 0.082012(52) -4.84533(7) -4.83186(6) 4.55(13) 0.3592(6) 0.9257(33)
6.850 0.008404(26) 0.072736(40) -4.83720(4) -4.82624(4) 4.58(13) 0.3088(6) 0.9392(29)
6.900 0.007124(21) 0.065144(36) -4.82857(4) -4.81946(4) 4.00(13) 0.2560(4) 0.8929(20)
6.950 0.006207(10) 0.058684(28) -4.82111(5) -4.81348(5) 3.80(13) 0.2105(4) 0.8303(17)
7.000 0.005496(6) 0.053087(16) -4.81346(4) -4.80704(3) 3.39(13) 0.1708(4) 0.7500(15)
7.080 0.004517(4) 0.044388(10) -4.80151(3) -4.79684(3) 3.22(13) 0.1217(4) 0.6222(13)
7.460 0.0022535(3) 0.0224922(11) -4.745490(17) -4.744170(19) 1.68(10) 0.0258(1) 0.1884(4)
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evident at lower temperatures. The parametrizations for p4 
and asqtad uniformly approach but do not attain the ideal 
gas limit shown for the HRG calculations with first-order 
phase transition. The latter is typical for many of the 
hydrodynamic calculations that are represented in the lit­
erature, The EoS employed by the publicly available 
Viscous Hydro 2D + 1 code (VH2) [30] comes close to 
the set of lattice curves but falls some what below these new 
lattice results at higher temperatures.

EQUATION OF STATE AND QCD TRANSITION AT ...

TABLE XII. Simulation parameters at nonzero temperature for the asqtad action and the expectation values of terms in the gauge 
action. The column labeled P is the plaquette, R, the rectangle, and C, the parallelogram. In all cases the lattice size is N?r X  NT = 
323 X  6 and the trajectory length is rMn = 1.

T [MeV] 13 m! traj u u (P) (R) <o
174 6.400 0.00909 18665 0.8520 0.526870(13) 0.271659(18) 0.277621(18)
181 6.430 0.00862 19090 0.8535 0.530953(11) 0.276821(15) 0.283137(15)
188 6.458 0.00820 19760 0.8549 0.534690(8) 0.281597(12) 0.288216(13)
194 6.480 0.00791 17960 0.8560 0.537580(10) 0.285303(15) 0.292145(17)
199 6.500 0.00765 18285 0.8570 0.540170(12) 0.288646(18) 0.295674(19)
202 6.512 0.00750 7730 0.8575 0.541610(17) 0.290493(24) 0.297617(29)
206 6.525 0.00735 17805 0.8581 0.543193(7) 0.292536(10) 0.299787(11)
213 6.550 0.00705 18250 0.8593 0.546153(8) 0.296357(12) 0.303793(14)
227 6.600 0.00650 10367 0.8616 0.551790(8) 0.303634(12) 0.311446(14)
234 6.625 0.00624 19305 0.8626 0.554420(6) 0.307026(9) 0.315005(9)
248 6.675 0.00575 20565 0.8647 0.559547(6) 0.313662(9) 0.321958(9)
256 6.700 0.00552 20420 0.8657 0.562003(7) 0.316846(10) 0.325289(11)

TABLE XIII. Continuation of the previous table. Fermion expectation values for the asqtad action contributing to the NT = 6 
equation of state. The last three columns give the contributions of asqtad gauge and fermion observables to the interaction measure. 
Where a matching T = 0 point was not simulated, the entry is omitted.

P ('P'P)lT ( ’fr’f'h.T d ^ / T 4 6'1'j T4 0M̂/ T 4

6.400 0.089082(160) 0.218269(81) -4.89921(12) -4.83308(15) 1.65(5) 0.1931(9) 0.3095(27)
6.430 0.074353(130) 0.201725(62) -4.89961(12) -4.84093(10) 2.24(5) 0.2425(9) 0.4108(27)
6.458 0.060070(150) 0.186297(69) -4.89895(8) -4.84686(10) 2.96(4) 0.3056(10) 0.5451(25)
6.480 0.048998(140) 0.174662(79) -4.89769(11) -4.85023(12)
6.500 0.039520(210) 0.164169(110) -4.89608(11) -4.85267(13) 4.75(4) 0.3753(8) 0.7382(24)
6.512 0.035186(280) 0.158502(160) -4.89601(18) -4.85479(21)
6.525 0.030473(99) 0.152353(66) -4.89488(8) -4.85601(9)
6.550 0.024137(120) 0.141436(88) -4.89066(7) -4.85595(9) 4.55(4) 0.3920(5) 0.8856(21)
6.600 0.016492(50) 0.122340(61) -4.88119(8) -4.85347(8) 4.93(5) 0.3499(4) 0.9513(20)
6.625 0.014284(25) 0.114105(44) -4.87786(5) -4.85304(6) 4.80(4) 0.3205(3) 0.9520(15)
6.675 0.011338(12) 0.099656(29) -4.86748(4) -4.84763(4) 4.39(4) 0.2611(3) 0.9123(12)
6.700 0.010336(9) 0.093466(27) -4.86232(4) -4.84447(5) 4.06(4) 0.2341(3) 0.8742(11)
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APPENDIX D: SUMMARY OF EXPECTATION 
VALUES NEEDED TO CALCULATE THE TRACE 

ANOMALY

The various expectation values needed to evaluate the 
trace anomaly are summarized in Tables VI and VII for the 
p4 action and in Tables VIII to XIII for the asqtad action.
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