
H O P : A Process Model for Synchronous Hardware

Semantics, and Experiments in Process Composition

Ganesh C. Gopalakrishnan Richard M . Fujimoto

Venkatesh Akella and Narayana S. Mani

UUCS-88-012

August 15, 1988

H O P: A Process Model for Synchronous Hardware
Semantics, and Experiments in Process Composition

G a n e s h C . Gopalakrishnard , R ic h a r d M . F u jim o to ^

Venkatesh Akella a n d N a r a y a n a S. Marti

D e p t , o f C o m p u te r Science, University of Utah

Salt L a k e City, Utah 8 4 1 1 2 , U .S .A

Abstract. We present a language “Hardware viewed as Objects and Processes” (H OP) for

specifying the structure, behavior, and timing of hardware systems. H O P embodies a simple

process model for lock-step synchronous processes. An absproc specification written in H O P

describes the externally observable behavior of a process. A collection of absprocs may be

composed to form a larger process, using the operators parallel composition, renaming, and

hiding.

In this paper we present the communication primitives of H O P , illustrate H O P through

several examples, and then present its operational semantics. Then we present the role played

by H O P in in three VLSI design activities: (i) inferring concise behavioral descriptions of

systems from their structural descriptions; (ii) static detection of control timing errors during

behavioral inferrence; (iii) productive and runtime efficient functional simulation using the

inferred behavior.

tSupported in part by the National Science Foundation via MIP-8710874

tfSupported in part by O N R Contract Number 00014-87K-0184

Note: Some portions of this paper will appear in the Proceedings of the 1988 Banff Work­

shop on Hardware Verification, Banff, Canada, June 1988 (to be published by Springer-Verlag).

C o n t e n t s

1 Introduction 1

1.1 Understanding the Modeling Philosophy of H O P ... 2

1.2 Related W o r k .. 4

2 Th e H O P Language 5

2.1 Specifying an A b sp ro c ... 6

2.1.1 Ports and Value Communication ... 7

2.1.2 Events.. 8

2.1.3 Data Path States.. 9

2.1.4 The Timing M o d e l ... 9

2.1.5 An Example of an Absproc: A Pipelined M em ory 11

2.2 Specifying Realprocs and Vecprocs .. 12

3 Semantics of H O P 14

3.1 An Operational Semantics for H O P .. 14

3.1.1 Action Product... 16

3.1.2 Definition of the Transition Relation ... 16

3.2 Section Sum m ary.. 19

4 Illustration of P A R C O M P 20

4.1 What Exactly Does P A R C O M P D o ? ... 20

4.2 Illustration of P A R C O M P on the Stack.. 20

4.3 How Does P A R C O M P W o r k ? ... 22

4.3.1 Lockstep Cross-product Automaton... 22

4.3.2 An Illustrative E x a m p le .. 22

5 Experiments with P A R C O M P 27

5.1 Introducing Protocol Errors.. 27

5.2 Pipelining the S t a c k .. 28

5.3 Testing the Pipelined Stack, aided by P A R C O M P ... 30

5.3.1 Detecting Timing Errors in Tester Processes Statically........................ 32

5.3.2 Obtaining Symbolic Simulation Results Without Simulation............... 32

5.3.3 Building Partial Testers.. 32

5.3.4 Interpreted Realproc Simulator... 33

5.3.5 The use of Probe Processes .. 33

5.3.6 Checking for Representation Invariants... 34

6 A Divide-and-conquer P A R C O M P , P A R C O M P - D C 34

7 Sum m ary of the Paper 36

A Appendix 41

ii

A.l A Specification of P A R C O M P .. 41

A .2 A Brief Description of the H O P Design System ... 42

L i s t o f F i g u r e s

1 The Skeleton of an Absproc Specification... 5

2 The Skeleton of an Realproc Specification .. 6

3 The Skeleton of a Vecproc Specification.. 6

4 Use of Data Assertions and Queries for Value Communication........................ 7

5 Specifications of a Mem ory... 10

6 Depiction of the P R O T O C O L Specification of M E M 11

7 Stack’s Submodules:- CTR: An up/down counter; SCTL: Stack Controller . . 13

8 Schematic of the Realproc of a S tac k ... 14

9 Realproc of a Stack... 15

10 Definition of Action Product in H O P ... 16

11 An Example H O P Specification.. 19

12 Temporal Logic Equivalent of the Example H O P Specification........................ 19

13 Absproc Automatically Inferred from stkreal using P A R C O M P 21

14 Processes A, B, and A B .. 23

15 The Realization of the System A B ... 24

16 Inferred Behavior of the Stack using an Erroneous S C T L 27

17 The Pipelined Stack Controller.. 28

18 Inferred Behavior of the Pipelined Stack (one that uses P C T L) 29

19 A Tester Process for the Pipelined S tack ... 30

20 Composition of the Tester and the Testee (the pipelined Stack)........................ 31

21 Divide and Conquer P A R C O M P .. 35

22 Data Flow Diagram of the H O P Design System .. 43

iii

1 I n t r o d u c t i o n

The use of formal specifications for specifying, verifying, manually designing, and automat­

ically synthesizing hardware systems is becoming widespread. Not only are there different

formal specification languages, but also there are a number of different formalisms in use:

Functional Programming [21,35] Prolog [38], Petri Nets [7], Temporal Logic [4], various Calculii

of Communicating Systems [26,16] Trace Theory [36], Higher Order Logic [6,22], Algebraic

Specifications and Equational Techniques [14,37,32], Synchronized Transition Systems [9], and

Path Expressions [1], to name a few. Enough impressive results have been demonstrated to

justify the use of formal specifications for VLSI design. However, as will be discussed momen­

tarily, many problems in the use of formal specifications for VLSI design remain unsolved.

More importantly, many indirect benefits of writing formal specifications— especially for un­

ambiguous documentation of designs, supporting design automation activities, etc.— have not

been emphasized enough.

In this paper, we present a simple and formal Hardware Description Language (HDL)

“H O P ” (Hardware viewed as Objects and Processes), and present its role in three VLSI

design activities: (i) inferring concise behavioral descriptions of systems from their structural

descriptions; this is done using an algorithm called P A R C O M P ; (ii) the detection of control

timing errors during behavioral inference; (iii) productive and runtime efficient functional

simulation using the inferred behavior. The main contributions of this work are believed to

be: (i) doing the above three tasks by capitalizing on the the formal semantic rules of the

language H O P ; (ii) demonstrating the utility of these ideas on a working implementation of

H O P and P A R C O M P .

Despite being a formal specification language, H O P specifications are easy to understand.

H O P can intuitively model the intricate timing protocols that synchronous hardware systems

exhibit. It can model commonly used structures in VLSI, such as through connections and reg­

ular arrays, directly. It has the ability to highlight timing/control aspects, and function/data

aspects separately, so that designers may focus on one aspect at a time. Last, but not the

least, H O P has a simple semantics that can be exploited for doing P A R C O M P , functional

simulation, and design verification.

W e now present the motivation for designing H O P , and our specific results to date.

M o t iv a t io n

Specifying the timing protocols and the functional behavior of synchronous systems with

clarity is quite important. More importantly, the functional details are also intricately inter­

woven with timing. The examples in this paper are chosen to illustrate the clarity with which

H O P can specify such intricate behaviors.

It has been reported that the complete formal verification of even extremely simple ICs is

at present a challenging task [8]. More importantly, impressive results with theorem provers

have almost always been exhibited by persons who played a major role in developing the

theorem prover (and hence knew its innards)— not by end-users of theorem provers. Until

these situations change significantly, the main uses of formal specifications will be for its

indirect benefits— better understanding of designs, better communication among hardware

designers and systems-software writers, and support for specification-driven design automation

activities. In this paper, we focus on such indirect benefits of using HOP .

1

• Section 2 presents the H O P language, and illustrates the various language concepts

introduced through the example of a simple stack.

• Section 3 presents the operational semantics of HOP. (Note: If the reader were to feel

intimidated by the formal notation in this section, then he/she may read this section

cursorily without much loss.)

• Section 4 illustrates P A R C O M P on a simple example, and also illustrates how each rule

of the the operational semantics are used.

• Section 5 presents various experiments conducted using P A R C O M P . First, we present

the result of performing P A R C O M P on the stack module. W e then deliberately intro­

duce errors into the stack controller, and show how P A R C O M P can (often) reveal these

errors. W e then show how the stack may be pipelined, and present the behavior of the

pipelined stack inferred using P A R C O M P . W e also show how P A R C O M P can be used

to make functional simulation more productive and efficient.

• Section 6 presents a divide-and-conquer version of P A R C O M P . This technique exploits

two disparate facts: (i) that the P A R C O M P operator is commutative and associative;

(ii) that VLSI systems have a high replication factor— i.e. the ratio of the total number

of modules to the number of different modules.

• Section 7 presents our conclusions; In appendix A .2, we briefly describe the H O P design

system that was used to produce the results reported.

1.1 Understanding the Modeling Philosophy of H O P

One significant aspect of H O P is that it emphasizes the use of abstract data types for hardware

modeling. This was motivated by the positive results from the first author’s past work with

the SBL language [14,10,11]. W e now present through a simple example the essence of HOP.

Consider a stack data type implementation that uses a counter to implement the stack

pointer and a memory array to implement the stack locations. If such a stack were to be

specified as a “software data type” , the definitions of the stack operations (say push, pop,

and top) would be provided via functional expressions that use operators on the stack pointer

and memory types. The stack state would be modeled as a tuple < ctr,mem >, consisting

of the counter and memory states. The operation push can be modeled via the functional

expression:

push(< mem,ctr >,u) -̂ =< write(mem,read(ctr),v),addl(ctr) > .

This says that the memory state should advance to write(mem,read(ctr),v) and that the

counter state should advance to add\(ctr). This view of hardware systems— that they imple­

ment a collection of intuitive to grasp mathematical functions— is also taken in [21].

As we showed in our past work with SBL, these kinds of specifications may be implemented

in hardware by synthesizing controller modules that “fire” the operations write, read, add 1,

etc. in an applicative order (actually the in situ evaluation order [13], which is slightly more

Specific Results Reported, and Organization of the Paper

2

restrictive than the applicative order). However for this technique to be widely applicable,

it should be possible to view a wide variety of hardware systems as data types. This isn’t

natural often, especially where control aspects dominate. More seriously, the “software data

type like” approach does not permit the specification of complex timings naturally, although

it has been attempted [10,34].

T h e C o n c e p t o f “ M o d e s o f B e h a v io r”

H O P takes a crucial departure from the functional/data-type view of hardware. Rather than

considering data-type operations, or functions, we focus on modes of behavior. A modes of

behavior is a more general notion than that of an operation. It is like a trace of [17]. A mode

of behavior is best characterized as a finitely describable (and often finite) sequence of events,

data input actions, and data output actions.

For example, consider a memory data type that has a read operation. A realization of the

memory has many possible (depending on design decisions such as pipelining etc.) read modes

of behaviors. One such mode of behavior consist of a read trigger event, a data input action

corresponding to the supply of address, and a data output action corresponding to the output

of the read data. These three actions may come in any order, with the only constraint that

the zth read event trigger and zth address input must precede the zth data output. Clearly,

many different modes of behavior are admitted by this (rather loose) constraint. For example,

a memory with a pipelined implementation of the read operation defines one specific mode of

behavior for read. A memory that queues upto (say) 12 read requests before it outputs any

data item, defines another mode of behavior. So not only do we need mathematical functions

to define I /O mappings from states and inputs to new states and outputs, but we also need

a way to capture the timings involved. The functions and their inputs and outputs must be

inter-woven with the timing aspects of the mode of behavior.

S p e c ify in g M o d e s o f B e h a v io r in H O P

H O P is intended to capture modes of behavior directly. It does so by introducing a protocol

specification section. Let us understand the way protocol sections are written. Consider the

pipelined read operation, again. One of the most natural ways of explaining the behavior

of such an operation to a person is by drawing the picture of a Deterministic Finite-state

Automaton (DFA). One may ask, “why not use DFAs directly for specifying hardware”?

This question is being considered mainly for two reasons. For one, in this paper we

portray H O P process specifications through “DFA-like graphs”, and we want to avoid the

readers trivializing H O P as a DFA specification language. For another, it is widely known

from human studies that explaining a new concept by first presenting a related but much

weaker concept, and then showing that such a concept won’t suffice, is very effective.

The following are some of the important reasons:

• DFA based languages cannot handle data related aspects well; modeling data path states

cis automaton states results in an explosion of the number of states. In contrast, in H O P

we use high-level abstract data type (A D T) objects to model data related aspects. Only

control states are explicitly modeled. Data related aspects are captured by annotating

the control graph. By doing so, both the data and control related aspects of a system

are completely specified at a high level.

3

• The use of ADTs in HOP addresses systems engineering issues such as reported in [3].
Hardware systems are developed over a long time, and initially, only the “what” aspects
(requirements) on the system’s behavior are known. High-level ADTs can be used to
write a requirements specification of the system—and refined later when design details
become known. These benefits are not available if DFA based models are used.

• Similar to the act of introducing ADTs, HOP allows writing requirements specifications
for the temporal aspects of a system using the concept of events.

• HOP’s process model addresses design issues such as the connection of modules via
busses, as well as the related issue of sirengtiis[5].

• HOP’s process model is based on the three fundamental operations of hierarchical system
design— composition, hiding, and renaming—as identified by Milner[29]. Since HOP is
a high-level specification language for synchronous systems, the study of these (and
related) operations provides a design theory for synchronous VLSI systems.

• Despite basing HOP on the above elementary mathematical operators, we do not propose
that users program directly using these operators. Instead, in the HOP language we
provide high level constructs that could be easily translated to a (much larger and
relatively very low level) description using these elementary operators. Thus, ease of use
as well as formal semantics are both provided.

1 . 2 R e l a t e d W o r k

We compare HOP with other works on two aspects: (i) in its capability to specify complex
timing and functional behaviors; (ii) in its capacity to perform PARCOMP, simulation based
on PARCOMP, and the detection of control timing errors. Many features of HOP have been
omitted here, but have been reported elsewhere[12].

HOP is close in some respects to the work of Milne [26]. The main differences with it are
the following:

1. In HOP, value communication has been decoupled from synchronization. The advantages
of doing so are discussed in section 2.

2. We emphasis the modeling of value communications and data path state changes in
a simple, yet powerful, abstract data type oriented functional language. This is not
addressed in [26].

3. HOP adopts a specific timing model—that of lock-step synchronous processes. HOP
processes are deterministic. These decisions contribute directly to the simplicity of the
language and makes specification driven design more practical.

On the other hand, Circal includes primitives that are more elementary, and hence more
powerful at the expense of being of lower-level.

4. HOP is well suited for describing synchronous hardware systems. A large majority of
VLSI systems are synchronous. In this realm, we have conducted a more thorough
investigation of many practical aspects of VLSI design.

4

ABSPROC <ModuleName> [<formal params pertaining to sizes & types>]
CONST <list of constants of the same value>
TYPE <list of type identifiers of the same type>

PORT <list of ports of the same type>
CLOCK <a clock agent and the ports imported from it>
EVENT <events and their encodings in terms of port values>

PROTOCOL <a list of process definitions>
DEFUN <a list of function definitions>
END <ModuleName>

Figure 1: The Skeleton of an Absproc Specification

HOP is different from more traditional languages (e.g. VHDL[18], Karl[30], and ISPS[2])
in many ways, the most important being the following: (i) HOP is much simpler than these
languages, and has an equally simple formal semantic definition; (ii) The view of hardware
as communicating processes is attractive in many ways than modeling hardware behavior
through traditional imperative constructs (procedural or non-procedural descriptions). By
creating HOP, we are not discarding or ignoring ongoing efforts towards developing standard
HDLs such as VHDL. Our objective is to experiment with interesting ideas not present in
such standard languages, and the results may one day benefit future versions of VHDL.

PARCOMP, as well as its planned uses, are similar to the work reported in [15], and
to the idea of constructive simulation reported in [27]. However our work is done for a
much higher level language that includes user-defined abstract data types. Our algorithm
embodies useful static checks of timing protocols. Our algorithm capitalizes on the structural
information (specifically, knowledge about events that are completely hidden within a module)
to save on computation time. This is accomplished thus (explained in detail later): “states
reachable via transitions labeled by unsynchronized and hidden events are never visited, and
consequently the search-space is pruned.” Further, we have developed a version of PARCOMP
called PARCOMP-DC that can exploit the regularity of vecprocs using a divide-and-conquer
technique (section 6). Finally, PARCOMP can be used to save the time of simulation; we
can perform a “pre simulation” of the tester and the testee using PARCOMP, and run the
resultant process. These computational-effort saving measures are believed to be new.

2 T h e H O P L a n g u a g e

The basic unit of specification in HOP is the module. The external attributes of a module

• Zero or more uni- or bi-directional data ports;
• Zero or more uni-directional events;
• An external protocol specification.

A module specified as a black box is called an absproc, standing for abstract process.
The skeleton of an ABSPROC is shown in figure 1. A module specified as a network of
subprocesses is called a realproc, the skeleton of which appears in figure 2. (Note: For ease of

5

REALPROC <ModuleName> [<formal params pertaining to sizes ft types>]

CONST <list of constants of the same value>

TYPE <list of type identifiers of the same type>

PORT <the external ports of the module being defined>
SUBPROCESS instantiations of prev. defined abs/real/vec processes>
CONNECT <the set of interconnections among the subprocesses>

END <ModuleName>

Figure 2: The Skeleton of an Realproc Specification

VECPROC <ModuleName> [<formal params pertaining to sizes ft types>]
CONST <list of constants of the same value>
TYPE <list of type identifiers of the same type>
PORT <the external ports of the module being defined>
SUBPROCESS instantiations of prev. defined abs/real/vec processes>
DIMENSIONS <the SIZES of each dimensions of regularity>
CONNECT interconnections betn. subprocesses, via recurrence eqns.>

END <ModuleName>

Figure 3: The Skeleton of a Vecproc Specification

parsing, currently we use a lisp-like syntax for HOP; we have hand edited alm ost all syntactic
descriptions in this paper to an easier-to-understand higher-level syntax.)

Since topologically regular realprocs (e.g. single and two-dimensional arrays of modules)
occur very frequently in practice, we identify a sub-category of realprocs called vecprocs (fig­
ure 3). Vecprocs in HOP may best be regarded as “arhythmic arrays”—geometrically regular
arrays in which computations aren’t necessarily regular, or rhythmic, as in systolic arrays. A
divide-and-conquer version of PARCOMP has been developed for Vecprocs (section 6).

A realproc is built using one or more absprocs by connecting some of the ports and events
of the absprocs, by composing the external protocols of the absprocs, and by internalizing
(hiding) some of the events and ports of the absprocs. A syntactically sugered notation
(DATANODE and EVENTNODE) mitigates the burden of specifying the renaming and hiding ([29])
information for large systems. A vecproc is essentially built in the same fashion; however a
notation based on recurrence relations is provided to easily specify the regular placement of
modules as well as regular interconnections among them.

We now examine the specification of an absproc in detail.

2 . 1 S p e c i f y i n g a n A b s p r o c

An absproc is specified by its ports, its events, and its protocol.

2.1.1 Ports and Value Com m unication

6

x o f C 1 s y o f
C2 = 1 u b (E 1 , E2)

U

E. g. of i l i t l i c e
f or c o m p u t i n g l u b

Figure 4: Use of Data Assertions and Queries for Value Communication

The mechanism of synchronized communication as used in [26] does not accurately model the
value communication in hardware systems. As an example, consider figure 4 which depicts
a system consisting of two producer processes P i and P 2 that can communicate with two
consumer processes C l and C 2 over a bus. In this system, it is perfectly acceptable to seek the
value on the bus while there are no simultaneous writers, or vice versa. (The former case could
arise in VLSI where the bus has a “pull-up transistor”, for example.) It is even permissible to
have two simultaneously active data assertions (say, with compatible “strengths” [5]) on the

In HOP, value communication is performed through a mechanism called data assertions
and queries. A data assertion, written as !p=E , binds an individual variable p representing the
output port to the value E at the time the data assertion is made. In general, data assertions
are of the form !p*E until e, where e is a future event, where the until operator has the
same meaning as the until operator of temporal logic. (Events are discussed shortly.) The
lack of an assertion can be modeled by the assertion !p=Z, where Z denotes high impedance.
(For a bus with a pull-up transistor, the assertion !p*weakl may be used.)

A data query, written as x=?q, binds x to the value bound to the input port q at the time
the query is made. Multiple data assertions (as in bus connections) end up asserting the least
upper bound (LUB) of the asserted values on the port. For handling multiple data assertions,
the type of values communicable via ports in HOP must be organized into a strength lattice
[5]. For example the bit type of HOP includes the weakest value Z (high-impedance), truth
values T and F, an unknown value U, and the most dominant value E, error. T,F, and U are
incomparable amongst themselves and lie in-between Z and E. This lattice may also contain
other values, such as weakl and weakO.

The above mechanism of data assertions can be extended for modeling bidirectional devices
such as pass transistors, ignoring threshold drops. This is done exactly as done in HOL[6],

7

by asserting that the source and drain nodes are have the same value if the gate is held at
T. Thus, data assertions and queries permit the relational style of specification (i.e. non-
directional interactions) for modeling bidirectional devices.

A dvantages o f D ata A ssertions and Queries

By having two processes interaction mechanisms (events and data assertions) we have es­
sentially separated synchronization from communication. We now show through an example
that this separation is advantageous for hardware modeling. Consider a counter with two
commands reset and up that are triggered via events with the same names. After the counter
has been subject to the reset event and until it is subject to the up event, it asserts a data
of 0 on its output port. The process that is responsible for the reset and the up events can,
after it has applied the reset event (but before it has applied the up event) safely assume that
the output will be well-defined (and equal to zero) and sample this output as many times as
it wishes, without any participation of the counter. In contrast, if value communication were
bundled up with rendezvous—as is the case with CSP, CCS, and Circal, the counter would
have to actually rendezvous, causing the counter process to make progress in its computation.
The writer of the counter process thus has to anticipate all possible places where such ren­
dezvous are possible, and make provisions for them in the specification. Our experience is that
this renders hardware specifications unnatural and more complicated. In contrast, with data
assertions, once the counter has asserted 0 on its output, it has “discharged all its duties”.

The spirit in which this extension to communication mechanisms was made, is similar to
the extension made by Martin to CSP to include Probes [24]. Both these mechanisms show
that concurrency constructs developed for concurrent software modeling may not be the best
possible ones for hardware modeling.

2.1.2 Events

Events are of two kinds: input, and output. An input event e (written Ie) denotes a condition
that a module senses via wires. An output event e (written Oe) denotes a condition that a
module generates via wires. Most modules have, at every point in time, a set of events GE
(“good events”) that would steer the module into well defined modes of activity. Modules also
have, at every point in time, a set of events BE (“bad events”) for which they do not have
any useful behavior defined. We call the GEs at every point in time as the “synchronization
points” of the module.

Events help in making implicit synchronization points explicit. For illustration, consider
a clocked synchronous system supporting multiple operations. In traditional designs of syn­
chronous systems, the completion of an operation is not explicitly notified, but is tacitly
assumed after the elapse of a certain interval of time from the start of the operation. However
this approach is worse than hard-wiring literal constants in programs leading to programs that
are hard to debug or modify. A better approach would be to encourage the writers of module
specifications to “highlight” these synchronization points by introducing events. These events
may be thought of as being implemented by fictitious control and status wires.

Events have a conceptual reality even at very early stages of the design; however they attain
implementational reality (e.g. “should an event be represented in unary, or in binary?”, etc.)
only much later. The latter decision is influenced by the nature of the controller, and this is

8

typically decided much later in a design life-cycle.
Some of the advantages of using events are:

1. It becomes possible to statically check for sequencing errors. We show some examples
in section 4.

2. It highlights the allowed modes of usage of a module. Hardware specifications must not
merely attempt to model hardware as it is; rather they must model hardware as it is
expected to be used. Hardware systems have astronomically more useless combinations
of inputs (as well as sequences of combinations of inputs) than useful ones.

3. As digital designs evolve, the events that were originally thought to represent fictitious
control wires may be implemented as combinations of control signals and clocks. Combi­
national logic necessary to decode these combinations and raise the corresponding input
event will be tacitly assumed, and not modeled explicitly. This is of advantage on two
occasions: (i) when these encodings haven’t been decided; (ii) in later stages of a design,
when these encodings would be excess baggage to carry around.

4. Event connections between modules is achieved via renaming. The actual implemen­
tation of renaming is through combinational logic that translates a condition in one
module to a condition in another. This could pave the way for the synthesis of “glue
logic” that connect modules. This connection between a language operator (renaming)
and its hardware interpretation (glue logic) is natural.

2.1.3 D ata P ath States

In the specification of an absproc, the data path state of the system being specified can
be modeled using an appropriate high-level ADT. In our experience, (and as illustrated by
the Roll Back Chip [12]), the use of ADTs having simple definitions can make reference
specifications far more reliable and easier to understand.

2.1.4 T he T im ing M odel

Time is a way to order events. In HOP, processes are lockstep synchronous. Therefore the
time of every process advances at the same rate, and thus the event ordering we have can
be described via three relations: simultaneous, before, and after. A HOP specification may
or may not refer to a central clock depending on whether it models a clocked synchronous
system or a unit-delay combinational system. Currently we do not have the ability to model
some subsystems at the unit-delay combinational level, and the remaining subsystems at the
clocked level. We hope to add this capability later on, by specifying clock periods to be fixed
integral multiples of unit-delays (an idea proposed in [19]).

In later versions of HOP, we will provide a “clock library”, i.e. an expandable library
of various clocking schemes. Each entry in this library would specify a clock generator of a
certain kind; for instance there would be a two-phase clock generator in this library.

2.1.5 An Exam ple of an Absproc: A Pipelined M em ory

9

in t] — Note-0
— This is a comment.
ABSPROC MEM [address.size, data.size
TYPE
addressType = 0 .. address.size - 1

dataType ■ 0 .. data_size - 1
memoryType ■ array[addressType] of dataType

PORT
?din, !dout : array [data_size] of bit

?ain : array [address.size] of bit
EVENT

Imnop, Iread, Iwrite ■ TBD

PROTOCOL
MEM [ms : memoryType] <=

Imnop -> MEM [ms]
I Iwrite, va=?addr, vd=?din -> MEM [write(ms,va,vd)]

I Iread, va=?addr -> MEMl[ms, va] — ‘— Note-1

MEM1 [ms : memoryType, oa : addressType] <=

Imnop, !dout=read(ms,oa) -> MEM [ms]
I Iwrite, na=?addr, vd=?din,

!dout=read(ms,oa) -> MEM [write(ms,na,vd)]

I Iread, na=?addr, !dout=read(ms,oa) -> MEMl[ms, na]
DEFUN

write m : memoryType, a: addressType, d:dataType -> ml : memoryType

IF (> addr memSize)
(print "Illegal memory address")
(error-obj memType) — Note-2

ELSE (update-vector memType m a d) — Note-3

read :: m : memoryType, a: addressType -> d : dataType
IF (> addr memSize)

(print "Illegal memory address")
(error-obj int) — Note-2

ELSE (index-vector memType m a) — Note-3

END MEM
— Note-0

— Note-1
— Note-2

— Note-3

Upper and Lower Cases are Treated the Same in HOP.

write (defined in DEFUN) computes the new data path state,
error-obj is supported for memoryType by our ADT library
index-vector and update-vector supported by memoryType

which is defined in ADT Library.

Figure 5: Specifications of a Memory

10

by the unasserted combination of the read and write controls) causes MEM to go back to its
top control state; event Iwrite when asserted from outside must be accompanied by data
assertions va on the ?addr bus, and vd on the data bus ?din. It causes MEM to go back to
the control state MEM; however its datapath state changes to write (ms ,va,vd). Event Iread
must be accompanied by a data assertion va on port ?addr. The next control state attained

In control state MEM1, process MEM1 is in data path state [ms ,oa]. It again offers the choice
of three events. However note that while waiting here, the data assertion ! dout=read(ms, oa)
is made (this is the pipelining effect). This assertion corresponds to the result of the previously
requested read. A Iwrite or Imnop takes MEM1 back to MEM; however while reads keep coming,

If this memory were to be used in a clocked system, the events Iw rite , Iread, etc. would
be generated at the appropriate clock phases. Thus, details such as multiphase clocking would
be described in the EVENT section of an ABSPROC by replacing the “TBD”s by boolean

We assume that Imnop is a special event that is asserted if none of the other events are
asserted. Such an event exists in most modules, and should be defined to be the “unasserted

A realproc specifies a system’s realization. As an example let us use the memory unit in
figure 5 to build a stack using an absproc CTR to implement the stack pointer and a controller
SCTL to control the stack. The design of the stack would be specified by writing a realproc
specification, as shown in figure 9. This specification captures the schematic shown in figure 8.
Let us now discuss the sections that are important to highlight the roles played by a Realproc.

In the PORT and EVENT sections, the external ports and events of the realproc are
declared. All other ports and events are assumed to be internal, and hence hidden from the

In the SUBPROCESS section of a Realproc, previously specified abs/real/vec processes
are instantiated to the required sizes as well as types. For example we could now instantiate a
generic stack to be a stack over bytes. The subprocesses themselves are described in figure 7.
We present only the PROTOCOL section of the subprocesses. In the CONNECT section,
interconnections between ports as well as events among the submodules, and between the
submodules and the external ports/events of the stack are specified. Semantically, connections
are treated as renamings, in the style of [29]. That is, connected entities are renamed to

Let us look at the first two lines of the DATANODE subsection of the CONNECT section.
(The remainder of the realproc is similar.) The node that connects ?cdo of MEM and !cdo
of CTR is hidden. The ?din port of MEM connects to ?din of the stack.

12

CTR [cs] <* Icnop, !cdo*cs -> CTR [cs]
I Iload, vdin=?cdi -> CTR [vdin]

I Iup, !cdo»cs -> CTR [addl(cs)]
I Idovn, !cdo«cs -> CTR [subl(cs)]

Idown
Icdo s cs

[subl (cs)]

[ca]
Icnop

Idout ■ cs
[ca]

Iload
vdins?cdi
[vdin]

SCTL <= Isnop, Omnop, Ocnop -> SCTL
1 Ireset, Omnop, Ocnop -> Oload, Omnop -> SCTL
1 Ipush, Omnop, Ocnop -> Oup, Omnop -> Ovrite , Ocnop

-> SCTL

1 Ipop, Omnop, Ocnop -> Odovn, Omnop -> SCTL

1 Itop, Omnop, Ocnop -> Oread, Ocnop -> Omnop, Ocnop

— Note: All the ''nop'' events have to be specified in the present version

— of HOP. These could be implicit defaults, in later versions.

Isnop
Omnop
Ocnop

Irasat Omnop
Ocnop

Ocnop
Omno

Figure 7: Stack’s Submodules:- CTR: An up/down counter; SCTL: Stack Controller

13

Tcdi Idout

Zr**«t. Zpuah. Ipop.Itop,Inop

Figure 8: Schematic of the Realproc of a Stack

3 S e m a n t i c s o f H O P

3 . 1 A n O p e r a t i o n a l S e m a n t i c s f o r H O P

In this section, we provide an operational semantics for HOP, using many of the conventions
presented by Plotkin [33] for writing operational definitions. In addition to describing HOP
unambiguously, these rules form the basis for implementing design tools based on HOP. For
instance, PARCOMP is written by following these operational rules. Towards the end of this
section, we also briefly touch upon the subject of viewing HOP specifications as Temporal
Logic formulae.

It is a common convention when providing semantic definitions to take an abstract syntax
of the language in question. The (hopefully obvious) translation from the real syntax to the
abstract syntax is not discussed. Also, we do not have space here to summarize the style of
writing operational definitions as presented by Plotkin [33], but let us capture the main idea.
When writing operational definitions in this style, we try to provide definitions directly using
the syntax of the language, through certain “symbol pushing” rules. These rules are to be
justified independently using a denotational or axiomatic semantics; however once so justified,
the operational “symbol pushing” rules which are usually much simpler can be used in the
day-to-day use of the semantics. This is precisely our approach. This is why we have provided
a temporal logic based semantics for HOP to match the operational rules presented here. A
brief discussion appears at the end of this section. (Readers who find this section hard may
cursorily read it.)

The operational meaning of a HOP process is its transition relation ^ = Proc x act x Proc
where the domain of actions for a process is act and that of processes is Proc. This relation
is defined via structural induction using the notation where ante is an already defined
HOP process (the “antecedent”), and conse (the “consequent”) introduces the next syntactic

14

REALPROC stack [<various size k type parameters>]
PORT

?cdi, ?din, !dout : <suitable types>

EVENT
Ireset, Ipush, Ipop, Itop, Inop ■ TBD

SUBPROCESS — Note-4
MEM : mem [<actual size parameters>]
CTR : ctr [<actual size parameters>]
SCTL : sctl

CONNECT
DATANODE
— Note-1
HIDDEN CONNECTS ((MEM ?cdo) (CTR !cdo))
?din CONNECTS ((MEM ?din))
?cdi CONNECTS ((CTR ?cdi))
!dout CONNECTS ((MEM fdout))

EVENTNODE
— Notes-2,3
HIDDEN CONNECTS ((MEM Imnop) (SCTL Omnop))
HIDDEN CONNECTS ((MEM Iread) (SCTL Oread))
HIDDEN CONNECTS ((MEM Iwrite) (SCTL Ovrite))
HIDDEN CONNECTS ((CTR Icnop) (SCTL Ocnop))
HIDDEN CONNECTS ((CTR Iload) (SCTL Oload))
HIDDEN CONNECTS ((CTR Iup) (SCTL Oup))
HIDDEN CONNECTS ((CTR Idown) (SCTL Odown))

Ipush CONNECTS ((SCTL Ipush))
Ireset CONNECTS ((SCTL Ireset))
Ipop CONNECTS ((SCTL Ipop))
Itop CONNECTS ((SCTL Itop))
Inop CONNECTS ((SCTL Isnop))

END stack

— Note-1: Each line of form <extport>/<hidden> CONNECTS <ports>
— Note-2: Each line of form <extevent>/<hidden> CONNECTS <events>
— Note-3: Currently we have to specify even “obvious defaults’*.

— Later such defaults (such as unasserted values of events etc.)
— will be automatically provided.

— Note-4: In general module instance names and module type names
— are different. Here they are the same. E.g. SCTL and sctl.

Figure 9: Realproc of a Stack

15

I e , Ie => Ie (1)
Ie, Oe => Oe (2)

Oe, Oe => Oe (3)
Oidle, e => e (4)

!?= Ely \ p = E 2 => \p = bus (E \ ,E i) (5)

Figure 10: Definition of Action Product in HOP

category of processes th a t has not been defined so far.

3.1.1 A ctio n P ro d u ct

Action product captures how simultaneous actions (events and da ta actions) interact.
An input event I e represents a logical condition th a t is awaited (a t some time) by a module.

An output event Oe represents the assertion of a logical condition a t a particular tim e instant.
Event product, w ritten e l,e 2 captures how two simultaneous events interact.

As an example, the rule I e , O e =$ O e of figure 10 says th a t if a module awaits an input
condition I e and simultaneously another module asserts an ou tpu t condition Oe, the result
is as if Oe is alone produced a t th a t moment. One may ask “what happened to 7e”? The
answer is: “it got satisfied by the assertion Oe” ; in other words, I e got synchronized with O e .
This fact, when taken along with the way in which the rules of Hiding are defined later, will
show us th a t the process th a t was awaiting Ie will make progress.

D ata actions have only one simplification rule defined for them by action product: when
two different da ta assertions !p = E\ and !p = Ei are made, the resultant value on the port
!p is defined by the function lub(E\, E^). The lub function computes the least upper bound of
its two argum ents over a value lattice. (See figure 4 for an example.) A complete definition
of the action product operator is given in figure 10.

3 .1 .2 D efin ition o f th e T ransition R ela tion

In this section, we define the transition relation by structural induction. Before these defini­
tions are applied to a realproc or a vecproc, all the port and event names in their submodules
are assumed to be renamed so as to be distinct. Also every compound action used in a defi­
nition is assumed to have been reduced to an irreducible form by repeated applications of the
action product operator

P ro cess ST O P

STOP is the simplest of HOP processes. It has a null transition relation; i.e. it always remains
halted.

A finite process is defined to be one th a t will become STOP in a finite num ber of steps.
A finite process does not usually represent any practically useful hardware system. Therefore
if PARCOM P results in a finite process starting from non-finite processes, there is room for

16

suspicion th a t there are sequencing errors in the system. W hen none of the input events in
the branches of a CHOICE process P are synchronized, and when these input events are all
hidden, process P is turned into a finite process. This can happen (for example) due to the
erroneous sequencing of control inputs.

Sequential Processes

Action: (ca —> P) P
If P is a process, ca —* P is a process th a t first performs the compound action ca and then

behaves like P. Sequential Processes are a special case of deterministic choices where there is
exactly one choice available.

D eterm in istic Choice

Det-choice: (|; ca, —> Pj) P,
A process P = |, ca, —► P,, where i ranges over an index set I is one th a t offers a deter­

ministic choice consisting of the compound actions ca, during its first com putational step. If
choice Cm is accepted, P continues to behave like Pm -

If I has more than one element, then there must be an input event e,- present in each ca,.
Since the e,s govern the selection of one of the alternatives of the choices, the e,s m ust have
pairwise m utually exclusive definitions for their control encodings.

A dding A ctions To Initials

If P is a process, c a l ,P is a process which adds cal to the initials of P.

P ca > P'
Add-to-initials: 1 7") cal»ca r\ic a l ,P — ► P

H iding

“Hiding an event e” is a shorthand for saying th a t both I t and Oe are hidden from a process.
Rule Hiding-sync considers the hiding of Oe. Oe is replaced by Oidle.

Hiding-sync
P'

Hide e in P — ► Hide e in P

The notation “[new/old.]” is used to mean th a t “new” replaces “old” .
Hiding I e from a process prevents it from synchronizing on this event. This can be captured

by pruning those branches of the synchronization tree th a t are labeled by Ie:

Hiding-unsync
P P', P P", e € cal

(Hide e in P) (Hide e in P ")

Hiding a data ou tpu t port removes data assertions m ade on th a t po rt from the current
compound-action of the process. This would affect those processes th a t perform a da ta query
from a connected port a t the same time:

17

Hiding-dout
p ca,'p=E p i

Hide p in P Hide p in P ’

Hiding a data input port causes those variables th a t would have been bound by a data
query on this port to remain unbound:

p ca,x=JP p>
Hiding-din

Hide p in P Hide p in P ' w i t h x f r e e in P'

R en am in g

Processes are m ade to interact with each other either via events or via data actions (<fa) on
ports by renam ing their individual event and port names to common names:

„ . P - U P '
R enam m g-e ---------------------------------—-------------------------------- -

Rename e to el in P Rename e to el inP'

_ . P P ' , da uses p
R en am in g-port ------------------------------- rfa[Pi /P]-------------------------------

Rename p to p i in P ----► Rename p to p i inP'

Parallel C om p osition

The parallel composition operator || models the process of realizing a system by putting
together several sub-processes, and perm itting their interaction through events and ports tha t
are connected.

P zrco m p

After performing parallel composition according to the above rule, we may simplify the
result by using the following rule (if applicable). This rule captures the effect of value com­
munication:

Value Communication During Parallel Composition

C ond ition a ls

p (x=?p),(!p=E),ca p>

P P ' [£ /x]

HOP processes are usually defined as process schemas P[dps\ , where for each value of dps we
have one specific process, dps usually represents the da ta path s ta te of the process. We have
the notion of condit ional processes in HOP that allows us to specify the behavior of a process
based on its dps variable. Thus we may define a process P as:

P[dps] i f p{dps) then P l [f (d p s)] e lse P2[g(dps)] .

After reducing the predicate application p(dps) to t rue or f a l s e , one of the following rules
would apply:

18

P I p ' p 2 -£i+ P'
Condit ional (^ ^ p , ; (. f ^ p ,

R ec u rs io n

A collection of one or more processes may be defined recursively. Since only tail-recursion is
allowed, recursion can be modeled as iteration.

3 . 2 S e c t i o n S u m m a r y

It is possible to view HOP as stylized formulae in Temporal Logic. For instance the specifi­
cation in figure 11 can be modeled in tem poral logic as shown in figure 12.

P [s] <- Iel -> Idout ■ 55 -> P [fCs)]

I Ie2, x*?din -> Q [g(s,x)]

Figure 11: An Example HOP Specification

P (s) = □ ((/ c l D 0((Wou< = 55) A O P (f (s))))

A (/e2 D (x =?<fm A O Q {g { s , x))))

A (n o t(/e l) A n o t(I e 2)) D T E R R O R).

Figure 12: Temporal Logic Equivalent of the Example HOP Specification

In the Temporal Logic specification, we trea t port names ?<fm and \din as individual
variables. Renaming and hiding are modeled in an obvious way. The effect of simultaneous
data assertions and queries on a bus can be handled by first computing the LUB of the asserted
values (over the value-lattice of the data items asserted), and then binding this LUB to the
variables involved in all the queries on this bus.

One benefit of using pragmatically oriented HDLs th a t have a clean semantics (like HOP),
as opposed to directly using universal functional/relational calculii, is simplicity. HOP pro­
cesses may be viewed as a collection of communicating autom atons. The operational semantics
provided in this section define the rules of communication, and they may be understood syn­
tactically. Milner [28] and Plotkin [33] have extolled the virtues of this approach.

Another major benefit of using HDLs is the following. Useful “idioms”—commonly oc­
curring patterns in HDL descriptions—can be identified by trying out a large number of
examples. Then we can identify a subset of Temporal Logic (or another formalism) that
matches these idioms. The advantages of identifying such subsets of (inherent ly undecidable)
theories is obvious—we can make a focussed attack on the problem of verification and testing
of hardware.

19

4 I l l u s t r a t i o n o f P A R C O M P

4 . 1 W h a t E x a c t l y D o e s P A R C O M P D o ?

PARCOMP takes as input a realproc or a vecproc and produces as output an absproc. It works
by symbolically simulating all possible interactions between the subprocesses of a realproc or
vecproc. PACOMP implements the operational rules of HOP presented in section 3.

The absproc inferred by PARCOM P captures, via symbolic expressions, the behavior of
the realproc or vecproc for all possible starting states of the submodules, and for all external
inputs. The text of the inferred absproc can be manually studied to see if the system behaves
as understood by the designer. Thus, PARCOMP greatly facilitates the understanding of the
co llective beh avior of a collection of synchronous systems.

In addition, PARCOM P throws away all of the unused capabilities of a system. Consider a
system built using three modules A, B, and C, where C is the controller for A and B. Though
A and B may individually support (say) 5 operations each, C may actually use only (say) 2
each of their operations. In addition, of these 2 operations used, C may sequence them on ly
in a sm a ll num ber o f w ays—out of the myriads of possible ways they may be sequenced. In
other words, C implements only some of the astronomically large num ber of possible micro­
routines. Such under-utilization of system capabilities is the rule, rather than the exception,
in hardware. PARCOMP “distills out” only the used modes of behavior by capitalizing on the
event hid in g information supplied by the designer. Thus, the behavioral descriptions inferred
by PARCOM P contain just the right am ount of information, and nothing more.

In addition to distilling away unutilized modes of behavior, the H iding-unsync rule reduces
the tim e complexity of PARCOMP. The worst-case tim e complexity of PARCOM P is propor­
tional to the num ber of control state tuples actually generated. By pruning away as many
control sta te tuples as early as possible, these control sta te tuples as well as their successors
are never visited.

Finally, PARCOM P can be used to save the time of simulation; we can perform a “pre
sim ulation” of the tester and the testee using PARCOMP, and run the resultant process.
These computational-effort saving measures are believed to be new.

4 . 2 I l l u s t r a t i o n o f P A R C O M P o n t h e S t a c k

Given the above stack realproc specification and given the specifications for CTR and SCTL
shown in figure 7, we can use PARCOMP to infer the equivalent absproc specification STACK
shown in figure 13. (Only the PRO TO CO L section of the inferred process is shown.) This
description was obtained autom atically, using our implementation of PARCOMP. Inferring the
behavior of the stack takes less than ten seconds of elapsed tim e running on an H P-Bobcat
running compiled HP Common Lisp.

The inferred PRO TO CO L specification asserts th a t the STACK system offers a choice of
events I r e s e t , Ipush , I to p , Ipop, and Inop.

Let us study I to p . After asserting this event, the external world (say, the “tester process”
of the stack) has to idle for one tick. No event is entertained by the stack (signified by the
absence of any input events following I to p) , as it is internally busy. During the second tick, it
asserts the da ta value r e a d (m s ,c s) on the !dout port. This symbolic expression confirms tha t

20

PROTOCOL
STACK [cs.ms] <■

Iresst -> di - ?cdi -> STACK [di.ms]
I Ipush -> Oidle -> vd»?din -> STACK [addl(cs), write(ms,addl(cs),vd)]
I Itop -> Oidle -> !dout«r®ad(ms,CB) -> STACK [cs.ms]
I Ipop -> Oidle -> STACK [subl(cs), ms]

I Inop -> STACK [cs,ns]

Isnop

[ms ,up (cs)]

Figure 13: Absproc A utom atically Inferred from stkreal using PARCOM P

21

the stack would output the correct result on port !dout following the top command. Finally,
the STACK [cs,ms] process continues to behave like STACK [cs,ms] itself, meaning th a t the
STACK process did not suffer any sta te changes.

Let us study the p ush operation. The external world is expected to supply the item
to be pushed tw o t icks after it applied the Opush trigger th a t matched with the Ipush
event. If this value were vd, then the future behavior of STACK would be like tha t of
STACK [addl(cs),w rite(m s,addl(cs),vd)]. This symbolic expression shows th a t the push op­
eration was implemented correctly. This is because the counter sta te has advanced from cs
to addl(cs), and the memory s ta te has advanced from ms to write(ms,addl(cs) ,vd). In­
formally, the stack pointer was incremented, and the memory location pointed to by the new
stack pointer was w ritten with vd.

The other operations are similarly correct. (Note: While doing the reset, the initial stack
pointer value has to be fed from outside via ?cd i.)

4 . 3 H o w D o e s P A R C O M P W o r k ?

4.3.1 L o c k s te p C ro s s -p ro d u c t A u to m a to n

Our explanation of PARCOM P would be greatly facilitated by introducing the concept of
lockstep cross-product automatons. Given two DFAs A and B, a lockstep cross-product au­
tom aton (LCA) of A and B, w ritten lca(A, B), can be obtained from A and B by the following
algorithm:

(Basis clause): If A 0 is the initial s ta te of A, and B 0 is the initial s ta te of B, then the
pair < Ao,B o > is in l c a (A , B) .

(Inductive clause): If s ta te < A i , B i > is in lca(A, B) , and there is a directed edge i n ­
going from Ai to a state A j in A, (and likewise Fij is a directed edge going from sta te B,
to a state B j in B), then < A j , B j > is in lca(A, B) . Further, the edge EF ij is introduced
in lca(A, B) going from < Ai, Bi > to < A j , B j > .

(Closure clause): There is no other sta te or edge in l c a (A , B) .

Example: Consider the state diagrams in figure 14 to be DFAs, with state 0 being the starting
states of A and B. Then, l c a (A , B) contains all the 25 states in the cross-product of A and
B. On the other hand if the self-loop at sta te 0 of process B were to be absent, then it will
contain only the five states 00, 11, 22, 33, and 44. The edges in l c a (A , B) would then be:
00 —» 11, 11 —» 22, 22 —» 33, 33 —*■ 44, 44 —*■ 00. Thus, we conclude th a t the num ber of states
in l c a (A , B) is less than or equal to the product of the number of individual control states in
A and B.

PARCOMP works by attem pting to create the LCA. However, as we show below, it actually
doesn’t create the entire LCA graph—often it creates only a small portion of the LCA graph.
In this section, we discuss only the version of PARCOM P th a t doesn’t use the cond construct.
The cond construct is considered in section A .I.

4 .3 .2 A n I l lu s tr a t iv e E x a m p le

22

Process A
L1 [c]

Figure 14: Processes A, B, and AB

?exp

Oer Idor

Figure 15: The Realization of the System AB

We illustrate PARCOM P on one example th a t has been specially constructed to involve most
of the interesting cases th a t arise during PARCOMP. (A rigorous specification of PARCOMP
is presented in section A .I.)

T h e S t r u c tu r a l D e ta ils

Two processes A and B are connected to form a system called AB, as shown in figure 15. The
Oel event of A is unconnected as well as hidden; hence it is effectively ignored throughout.
Event Oe of A is conneced to event I e of B, and hence whenever I e is offered by B and Oe is
asserted by A, the events would synchronize. This event is also exported as event Oer of AB.
Thus whenever Oe is asserted by A, event Oer would be seen asserted outside AB.

Process A has a da ta port !do connected to port ? d i of B. Since this connection is hidden
within AB, the d a ta assertions on !do will not be visible outside AB. A also has an output
port ! do2 th a t is connected to input port ? d i of A, ou tpu t port ! do of B, and output port ! do
of AB. The effects of these connections will be discussed momentarily. B has an input port
? h id th a t is connected nowhere; the effect of querying through this port will be of interest.
Finally, B has an input port ?exp th a t is exposed outside AB; the effect of B ’s query on this
port will also be of interest.

T h e B e h a v io ra l D e ta ils

The above structu ral connections show the potent i&b for interaction through events and da ta
ports. W hether these potentials are actually used would depend upon the protocol specifica­
tions of A and B.

Figure 14 depicts the PRO TO CO L sections of processes A and B. At tim e 0, process A is
in control s ta te 0 and has da ta path s ta te [a s] . (D ata path states are always sequences of
one or more items, and we write them within square brackets, to mimic the syntax used in the
textual version of the HOP specification.) While in control s ta te 0, A keeps an ou tpu t event

24

Oe asserted. It also asserts the data value !do*F(as) so long as it stays in control state 0. It
instantaneously jum ps to state 1, when time instant 1 arrives. In control sta te 1, it asserts a
data item, and also queries port ?d i to obtain a value for a local variable y. Until it is bound
again, the value of variable y will represent the value on port ? d i a t tim e 1. Process A then
moves to control s ta te 2. Further behavior of A can be similarly understood. We indicate
the state 0 of A using a darker circle because it corresponds to the explicitly named process
“A [a s]” in the textual description of A.

Let us consider B. It offers a deterministic choice (as explained in section 3) between events
I e l and I e in s ta te 0. The former transition will be taken if event I e l is asserted (from outside
B), and event Ie is not asserted. The la tte r transition will be taken if event Ie is asserted,
and event I e l is not asserted. (The events guarding the “arms’’ of a determ inistic choice are
m utually exclusive, by definition.) If Ie is asserted, the d a ta query x=?di will be made. After
this query, B goes to control s ta te 1. From control sta te 1, it goes to control sta te 2, and
its da ta path sta te changes to [b s , x] . S tate 2 of B is shown using a dark circle because it
corresponds to the explicitly named process B l [b i s , t] . Note th a t we show the “next data
path s ta te” only if it changes. B starts from control sta te 2 in da ta path state [b is , t] . This
pair is bound to [bs ,x] by virtue of the data path state change shown along the arc 1 —► 2.

If processes A and B are coupled using the structure shown in figure 15, and allowed to run
starting them both in s ta te 0, their behavior, as seen from outside AB, will be th a t of process
AB in figure 14. This behavior was autom atically deduced using the PARCOMP procedure.

O perational Rules Invoked in D educing Process A B

The rules Renaming-e and Renaming-port of section 3 are used to model connections between
ports and events. (In our narration below, we will perform these renamings “as and when
needed” during explanation.) Since A and B interact, we invoke the rules Parcomp and Value
Communication During Parallel Composition. Finally we invoke the rules of hiding, to take
into account the hidden events and ports.

We now discuss some specific instances of these rules, with respect to figure 14.

• PARCOM P can be thought of as a nested iterative procedure where the outer loop
attem pts to generate the LCA. The inner loop performs action products of events and
da ta queries/assertions, obtaining simplified events and d a ta queries/assertions. These
are used to annotate the edges of the LCA, thus obtaining the inferred absproc.

To clarify this, consider the move of B from 0 to 0, and of A from 0 to 1. We obtain the
LCA edge 00 —► 10. Label this edge with the set of actions obtained from the 0 -» 1
edge of A a n d the 0 —► 0 edge of B.

(Convention: We show these actions prefixed by “A:” if they are caused by A, and “B:”
if caused by B. If caused by A and B collectively, we prefix it by “AB:” .)

This compound action is:

B : I e l , A : Oe, A : !do = F (a s) -------- (1)

The other edge in the LCA is 00 —► 11, and is labeled by

A : Oe, B : Ie , A :!do = F(as), B : x = ? d i -------- (2)

25

• Consider equation (1). This equation is irreducible under the action product operation
(the rules in figure 10). Further, it contains the event I e l th a t is unsynchronized and
hidden. This represents a possible move of B th a t will never materialize. So we can
invoke the rule Hiding-unsync, and prune away this possibility. Thus, we delete the
00 —♦ 10 edge from the lca(A,B).

This step accounts for the practical efficiency of PARCOMP. In the current example,
this one pruning step prevents the generation of the following control sta te pairs of AB:
20, 30, 40. This is because 20, 30, and 40 are all successors of 10, in the LCA of AB.

• Consider equation (2). It is reducible through equation 2 of figure 10. It reduces to

A B : Oe, A :!do = F(as), B : x = ? d i -------- (3)

This fact represents th a t I e synchronizes w ith Oe.

Ports !do and ? d i are connected. Since connections are modeled via renaming to a com­
mon name, let us rename ? d i to ?do. Now we can invoke the rule value communication
during parallel composition, and simplify (3) to:

A B : Oe, A B : !do = F (a s) -------- (4)

and also generate the substitution [F(a5)/x] to be applied to the “rest of the parallel
composition” . This shows th a t the variable x of B would be bound to F(as), thus
showing th a t a value communication has occurred.

• Equation (3) contains Oe th a t is not hidden—it connects to the event Oer of AB. Thus
we see Oer being asserted by AB during the first transition. However, port ! do is hidden,
and so we do not see this d a ta assertion being asserted by AB. The value communication
does happen, albeit internally.

• PARCOM P proceeds thus, and re-encounters s ta te 00. It now has to com pute PAR­
COM P of A and B which are (respectively) in da ta path states NS-A(. . .) and NS-B(. . .) .
However we have already computed the PARCOM P of A and B for d a ta path states (re­
spectively) as and bs—these are free variables, and hence more general than NS-A(. . .)
and N S -B (.. .) . Hence nothing is to be gained by doing PARCOM P again, and so the
algorithm stops.

The other interesting things tha t happen along the way are:

— The da ta assertion !do t= lub(G (x) ,a s) is produced by AB a t tim e 1, as a result
of the “collision” of the da ta assertions !do2=as by A and !do=G(x) by B. The
“resu ltan t” assertion is computed using the action product rule 3 of figure 10.

— The assertion !d o r= J(F (a s) ,H (lu b (G (F (a s)) , a s))) m ade a t t im e 3 is explained
thus: there is an assertion m ade by B a t tim e 3. This assertion is J (t , z) . However
by now, t and z have accumulated value bindings, and these value bindings are
substitu ted in. Thus we see th a t the behavior of AB represents the effects of value
communications between A and B in a closed form.

26

Isnop

Figure 16: Inferred Behavior of the Stack using an Erroneous SCTL

— A final point of interest is the occurrence of the term UB in the next da ta path
expression when going from sta te 44 of AB to s ta te 00. UB stands for “unbound” ,
and results from the query th a t B performed on its hidden port ?h.id. This is
obtained formally by invoking the rule Hiding-din. So long as this UB value is never
“used” , the system can compute along safely. An example would be this: if B were
an OR gate and if one of its inputs is already 1, then the other input could be UB.
(UB will be bound to H O P’s HIZ value “Z” , or to boolean False (“F ” in HOP),
depending on the actual IC technology used.)

5 E x p e r i m e n t s w i t h P A R C O M P

In this section we present various experiments th a t we have conducted using PARCOMP.

5 . 1 I n t r o d u c i n g P r o t o c o l E r r o r s

We deliberately introduced mistakes into the stack controller and wanted to see if PARCOMP
could detect these errors. Here is a specific experiment: take the process SCTL defined in
figure 7, and delete the Oread event th a t is generated after synchronizing on event Ito p .
PARCOM P is able to detect this as an error.

This is possible because of the following reason. By om itting Oread, the SCTL process
does not generate any of the choices th a t MEM offers a t th a t moment. Thus the behavior of
MEM beyond this point is not defined. Hence the behavior of the stack beyond this point is
not defined.

The results of PARCOM P with this erroneous SCTL are shown in figure 16. The inferred

27

Absproc has a transition from sta te 000 to s ta te STOP, which is a dead-end. A STOP control
s ta te in a process is indicative of a design error, because a hardware system ’s behavior m ust
be defined for every time instant. Thus when a STO P sta te is generated during PARCOMP, it
issues a warning to the user. This feature of PARCOM P can help ensure th a t tim ing protocols
are m u tu a l l y compatible . Much like in type-checking, the assum ption is th a t in a m ajority
of cases only one process would be “wrong” relative to the other; th a t is, we won’t make
“com patible m istakes” in two systems, a t the same time.

However note th a t not all tim ing errors will be caught in the above manner. It should be
clear th a t certain errors will not lead to any dead-end control states, but would nevertheless
give rise to erroneous modes of behavior.

5 . 2 P i p e l i n i n g t h e S t a c k

The inferred behavior of the Stack presented in figure 13 shows th a t it takes 3 ticks to complete
the p ush operation. Probing the reasons for this, we see th a t SCTL is the source of this time
wastage. It accepts Ip u sh during the first tick, does Dup during the second, and O v rite during
the third; then only goes back to s ta te 0.

We can overlap the last O w rite operation with the awaiting of the next command on the
stack. Doing so, we would have pipelined the stack. The controller used for this purpose
is PC TL, shown in figure 17. After accepting Ipush and performing Oup, PC TL goes into
control s ta te 3. Here while it awaits the next stack operation, it performs the deferred O w rite

Figure 17: The Pipelined Stack Controller

© ~ —*0— <D— KDOreset >—■S [cot = 0 ' —' OpushOpush

Oidle
Ires s topval
topval = ?dit

6
©

Opush
Idot & 1

Oidle 0
Oidle

OpopOtop Oldie r r \ f

0 — 0 — o ^ b
Figure 19: A Tester Process for the Pipelined Stack

operation.
Using PCTL and the same old MEM and CTR, PARCOM P infers the behavior shown in

figure 18. This behavioral description shows all the modes of behavior of the stack. We will
study some of these modes in the next section.

5 . 3 T e s t i n g t h e P i p e l i n e d S t a c k , a i d e d b y P A R C O M P

How do we know th a t the pipelined stack is correct? One way is to formally verify it against
a requirements specification. We do not take this approach in this paper.

Let us instead test the pipelined stack, to gain some confidence in its correctness. Let us
describe a fester process in HOP th a t would apply the following sequence of operations:

r e se t (s tack)] p u s h (s t a c k , 1); push(s tack , 2)\ pop(stack)\ top(s tack) .

The expected result of this test is 1.
In order to test the stack, we should apply the above sequence of commands observing

proper timings for command invocations, da ta assertions from outside, and the data query for
the result of the top operation. It is our unders tanding o f the t im in g as wel l as funct ional i ty
o f the s tack tha t we wish to confirm through testing. The tester so constructed is shown in
figure 19.

We can compose the tester and the “testee” (the pipelined stack) using PARCOMP, and
thus obtain a single process th a t embodies all observable aspects of the collective behavior
of the tester+ testee. We can then run this single resultant process. T he resultant process is
shown in figure 20. This approach has many practical advantages, and they are discussed in
the following subsections.

30

5.3.1 D etectin g Tim ing Errors in Tester Processes Statically

PARCOM P can reveal certain tim ing errors in the tester, relative to the testee. In these cases,
wasteful simulation needn’t be performed, and instead the error can be corrected.

5.3.2 O btaining Sym bolic Sim ulation R esults W ithout Sim ulation

As figure 20 shows, the inferred process reveals (approximately) how the simulation would
proceed. For instance, it tells us th a t the final result delivered by the top operation is:

.•result ■

(READ
(WRITE (WRITE MS (ADD1 0) 1) (ADD1 (ADD1 0)) 2)
(SUB1 (ADD1 (ADD1 0)))

)

In this simple example, we can readily tell that this answer is correct; for, we can apply simple
algebraic rules of ADD1 and SUB1, to simplify this data assertion to:

!result =

(READ (WRITE (WRITE MS 1 1) 2 2) 1)

This can further be simplified to 1, using the following algebraic axiom of ordinary read-write
memories:

read(w rite (m ,a ,d) ,a) = d.

And 1 was indeed our expected answer.
This opens up the following attractive path towards speeding up functional simulation:

1. Build an algebraic expression simplifier as a part of the abstract d a ta type library.

2. O btain the “tester+ testee” process th ru PARCOMP.

3. E xtrac t all the the next data-path state and data assertion expressions present in this
tester+ testee. Simplify them using the expression simplifier.

4. Plug these simplified expressions back into the tester+ testee.

5. Run detailed functional simulation on this simplified tester+ testee.

We also have developed the prototype of a compiled simulator th a t compiles “tester+ testee”
processes into procedural code. This sim ulator is called the CAPS (Compiled AbsProc Sim­
ulator). (Note: Some of the above ideas may be found in [15] also.)

5.3.3 B uild ing Partial Testers

Suppose we want to supply certain test stimulii “autom atically” from the tester process and
some other test stimulii interactively from the keyboard. This can be very easily done in our
present approach. For example, let us assume th a t the user wants to have control over the first
d a ta item being pushed on the stack. H e/she would simply leave out the da ta assertion ! d o t= l

32

from figure 19. Running PARCOMP on this “tester+ testee” would result in an “unsatisfied
but un-hidden” da ta query a t tim e 4. W hen we run CAPS on such an absproc, the unsatisfied
da ta query is turned into a query from the keyboard.

Thus users may selectively add or take away events and d a ta assertions from the tester
process. Thus, a range of testers are possible. At one extreme, the tester does every data
assertion and query, and so the CAPS simulation will run on its own, w ithout user intervention.
At the other extreme, the tester would do noth in g , and the CAPS sim ulator would interrogate
the user for every event and data input. This was a pleasant and serendipitous discovery.

5.3.4 Interpreted R ealproc Sim ulator

Sometimes it may be felt necessary to simulate a collection of processes w ithout doing PAR­
COMP. This need can arise, for example, during the very early stages of a design where
(i) users m ay want to simulate a proper subset of the subprocesses; (ii) users may want to
get detailed information about the innards of a system. To support this need, we have devel­
oped a run-tim e version of PARCOMP th a t is embodied in an Realproc In terpre ted Process
Simula tor (RIPS).

In the RIPS simulator, the tester and testee are run concurrently, and the action products
are computed a t run-time. RIPS is relatively more inefficient than CAPS; however, RIPS
allows many flexible interactions not possible with CAPS. For example, after a few simulation
steps, we can selectively ignore a subset of the modules, and carry the other modules forwards
in simulation. Or, we can add an extra process after a few steps.

5.3.5 The use o f Probe Processes

Logic s ta te analyzers are widely used to debug digital systems. In HOP, we can simulate logic
s ta te analyzers, by constructing probe processes.

A probe process is constructed by specifying along its transitions a trace of the sequence
of events and d a ta assertions of interest. Such a trace is similar to a “trigger” specification of
a logic sta te analyzer. We can then PARCOMP the probe process with the submodules of a
system, and then sim ulate the system.

Here is a probe process th a t can be used w ith the pipelined stack:

PROBE <= I v r i t e ~> I v r i t e ~> I v r i t e ~> I re a d -> Ip robeou t * ' 'S u c c e s s* ’

The operator ~> is an abbreviation for “busy wait until the following input event” . This
derived operator is available in HOP, and can be expressed in terms of ->.

If this probe process were to be composed with the pipelined stack and tested using fig­
ure 19, it will sense w hether the memory is being subject to three writes and one read. If so it
will prin t " S u c c e s s 1 ’ on the Ip robeou t port. For the command sequence push; push; pop] top
applied by our tester, this trace m ust manifest on the memory subprocess. P robe processes
may, after sensing the trigger condition, start acquiring data, and m ay even act like tester
processes by supplying test patterns.

33

Probe processes may be used for flagging the violation of of representation invariants during
the course of operation of a module. Representation invariants [23] are predicates th a t describe
the consistent internal states of a module. As an example, consider a simple associative
memory (AM) with 4 locations. A representation invariant found in most AMs is: “AM never
contains duplicate entries” . S tated formally,

V i u nary(assocsrck(A M , x)).

This says th a t d, the result of doing an associative search, is always a unary quantity. If the
unary p a tte rn is “0000” , it indicates th a t the search “missed”. If the pattern is “0010” , it
indicates th a t there was a hit a t location 3. If pattern is “0101” , it indicates th a t x was found
in location 0 and 3; this is erroneous. A probe process to detect this condition is:

N0DUP < - I s e a r c h , x » ? src h d a ta -> i f (u n a r y (x) , NDDUP, ERROR)
ERRDR <= Ip robeou t = ' 'E r r o r ' ' -> STOP

The probe process N0DUP samples the I s e a rc h event th a t triggers the associative search. It
samples the search’s result, x, also. Then if x is found to be unary, it goes back to behave like
N0DUP. Else it behaves like the ERROR process.

This technique has one limitation: quite often, the entire internal sta te of a module is not
observable through its ou tput ports. To overcome this lim itation, we are investigating the
use of daemons—data driven procedures—th a t can directly monitor the ADT object states.
Some details appear in appendix A.2.

6 A D i v i d e - a n d - c o n q u e r P A R C O M P , P A R C O M P - D C

This section shows how we can often reduce the run-tim e of PARCOM P by exploiting the fact
th a t it is com m utative and associative.

Consider the array A shown in figure 21. It consists of a collection of modules M con­
nected in a regular interconnection pattern . For simplicity of explanation, assume a nearest-
neighbor connection th a t is regular in both the dimensions. Consider the problem of com put­
ing PA R C O M P(A)', i.e. the composition of all the A/s constituting A. Since P A R C O M P
is both com m utative and associative, we can split A into two halves, say A t standing for “the
top of A” and A b , standing for “the bottom of A” , and assert:

P A R C O M P (A) = P A R C O M P (P A R C O M P (A T), P A R C O M P (A B))•

Since A t and A b differ only in the names of their external ports, we need compute only
P A R C O M P (A t). P A R C O M P (A b) can be obtained from this, by renam ing the ports of
A t to the corresponding ports of Ab-

This division process can be carried down to the leaf cells, as depicted in figure 21.
PARCOM P-DC is often more efficient than PARCOMP. Let us make an approxim ate cost

analysis.
As discussed in section 4.3.1, the worst-case time complexity of PARCOMP is proportional

to the cross-product of the num ber of control states in each of the processes, assuming th a t the

5.3.6 Checking for Representation Invariants

34

Each cell is *M'

A
Ar

A b

A TL A TR

A b l A BR

ii+
i

via copying and renaming.

Figure 21: Divide and Conquer PARCOMP

number of events and data assertions on every transition are bounded by a constant. Suppose
for simplicity th a t array A is square, and has N modules of type M , M has C control states
in it, and th a t N be a power of 2. Then

c os t jparcom p(A) = 0 (C N).

Suppose th a t the modules formed during the division process of PARCOMP-DC are M ,
..., A i l , A t , A. Let n c s (M) denote the number of control states in a module M . Further let
C jx> pyin g denote the cost of copying the process descriptions (see figure 21). Then

cost jp a r com p jd c (A) = 0 (n c s (M)2 + ... + u cs(A t l)2 + tics(A t)2 + n cs(,4)2 + C jzo p y in g).

The above sum has l o g i (N) terms. Let D be the root mean square (RMS) value of the
num ber of control states in M , ..., A t l , A t , A. Let the cost of copying and applying renamings
to a process description not exceed the number of control states in it.

Then,

c o s tjp a r c o m p jic (A) = 0 (log2(./V) x (D 2 + D 2)) = 0 (log2(iV) x D 2).

Firstly we note th a t D does not tend to increase as the size of the modules grow. This is
a fact of practical systems because when designing a module using several submodules, only
very few of the astronomically large number of sequences of the submodule operations are
actually used. Hence the number of control states in a module is often vastly smaller than
w hat it could be. (Consider for example the to tal number of possible microprograms for a
typical da tapa th .vs. the number of microroutines th a t are actually ever used!) Thus if D is
close to C and if M is large, then there is a significant payoff by using PARCOM P-DC.

In conclusion, the following additional avenues of research are available for handling geo­
metrically regular, (but perhaps com putationally irregular—or arhythm ic) arrays:

• Perform PARCOM P of twro modules of the array;
• Study the inferred behavior and see if it is verifiable manually or through exhaustive

simulation.
• The behavior inferred by PARCOMP (or PARCOMP-DC) will have complex if-then-else

functions. C onstruct tabular functions corresponding to these.
• Use these tabu lar functions for efficient simulation.
• Try to perform formal verification of the whole array by setting up an induction.

7 S u m m a r y o f t h e P a p e r

We presented a language “Hardware viewed as Objects and Processes” (HOP) for specifying
the structure, behavior, and timing of hardware systems. HOP embodies a simple process
model for lock-step synchronous processes.

We presented the communication primitives of HOP, illustrated HOP through several ex­
amples, and then presented its operational semantics. Several design autom ation algorithm s—
especially PARCOM P—were then examined in detail.

36

The results presented herein were obtained from our implem entation of the HOP design
system. Section A.2 presents an overview of this system. It has a working prototype, currently
w ritten in Common Lisp and FROBS [31]. Though we have taken simple examples in this
paper, we have worked out some larger examples as well. Some of these hardware units are
discussed in [12]; many are yet to be published. Links to VLSI design are briefly described in
section A.2.

37

R e f e r e n c e s

[1] T.S. Anantharaman, E.M. Claxke, M.J. Foster, and B. Mishra. Compiling Path Expressions into
VLSI Circuits. In Proceedings of the 12th Symposium on Principles o f Programming Languages,
ACM, January 1985.

[2] Mario R. Barbacci. Instruction Set Processor Specifications (ISPS): The Notation and Its
Applications. IEEE Transactions on Computers, C-30(l):24-40, January 1981.

[3] Frederick P. Brooks. The Mythical Man-month. Addison-Wesley, 1975.

[4] M. Browne, Edmund Clarke, D. Dill, and B. Mishra. Automatic Verification of Sequential
Circuits using Temporal Logic. In Proceedings of the Seventh International Conference on
Com puter Hardware Description Languages, pages 98-113, North-Holland, 1985.

[5] Randall E. Bryant. A Switch Level Model and Simulator for MOS Digital Systems. IEEE
Transactions on Computer, C-33:160-177, February 1984.

[6] Albert Camilleri, Michael C. Gordon, and Tom Melham. Hardware Specification and Verifi­
cation using Higher Order Logic. In Processings o f the IFIP WG 10.2 Working Conference
on “From HDL Descriptions to Guaranteed Correct Circuit Designs”, Grenoble, August 1986,
North-Holland, 1986.

[7] Tam-Anh Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifications. In
International Workshop on P etri Nets and Performance Models, Madison, Wisconsin, August
1987. See also MIT VLSI Memo no.87-410, September 1987, with the same title.

[8] Avra Cohn. Correctness Properties of the Viper Block Model: The Second Level. In 1988 Banff
Workshop on Hardware Verification, Springer Verlag, 1988.

[9] Stephen Garland, John Guttag, and Jorgen Staunstrup. Verification of VLSI circuits using LP.
In George Milne, editor, 1988 Glasgow Workshop (IFIP WG 10.2) on Hardware Verification,
1988.

[10] Ganesh C. Gopalakrishnan. From Algebraic Specifications to Correct VLSI Systems. PhD thesis,
Dept, of Computer Science, State University of New York, December 1986. (Also Tech. Report
UU-CS-86-117 of Univ. of Utah).

[11] Ganesh C. Gopalakrishnan. Synthesizing Synchronous Digital VLSI Controllers Using Petri
nets. In International Workshop on P etri Nets and Performance Models, Madison, Wisconsin,
August 1987.

[12] Ganesh C. Gopalakrishnan, Richard M. Fujimoto, Venkatesh Akella, N.S. Mani, and Kevin N.
Smith. Specification Driven Design of Custom Architectures in HOP. In G.Birtwistle and
P.A.Subrahmanyam, editors, 1988 Banff Hardware Verification Workshop, Banff, June 1988,
1988. Invited Paper, to appear as a chapter in a forthcoming Springer-Verlag book.

[13] Ganesh C. Gopalakrishnan and Mandayam K. Srivas. Implementing Functional Programs Using
Mutable Abstract Data Types. Information Processing Letters, 26(6):277-286, January 1988.

[14] Ganesh C. Gopalakrishnan, Mandayam K. Srivas, and David R. Smith. From Algebraic Specifi­
cations to Correct VLSI Circuits. In D.Borrione, editor, From HDL Descriptions to Guaranted
Correct Circuit Designs, pages 197-225, North-Holland, 1987. (Proc of the IFIP WG 10.2
Working Conference with the same title.).

38

[15] Richard H. Lathrop Robert J. Hall and Robert S. Kirk. Functional Abstraction from Structure
in VLSI Simulation Models. In Proc. 24st Design Autom ation Conference, pages 822-828, 1987.

[16] Matthew Hennessy. Proving Systolic System s Correct Technical Report CSR-162-84, Depart-

[17] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, New

[18] April 1986. Special Issue on the VHDL Language. |E .ETE c v n d L *

[19] I.S.Dhingra. Formal Verification of a Design Style. In Graham Birtwistle and
P.A.Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages 293-321,
Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

[20] Steve Jacobs and Kent Smith. TILER User’s Guide. 1986. User’s Manual Available from the

[21] Stephen Johnson, B. Bose, and C. Boyer. A Tactical Framework for Hardware Design. In Gra­
ham Birtwistle and P.A.Subrahmanyam, editors, VLSI Specification, Verification and Synthesis,
pages 349-383, Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

[22] Jeffrey Joyce and Graham Birtwistle. Proving a Computer Correct in Higher Order Logic.
Technical Report 85/208/21, Dept, of Computer Science, Univ. of Calgary, August 1985.

[23] Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. The

[24] Alain J. Martin. The Probe: An Addition to Communication Primitives. Information Pro­
cessing Letters , 20(3):125-130, April 1985. An Erratum related to this article appeared in the

[25] John Merk, John Lalonde, and Ganesh Gopalakrishnan. ADTP User’s Manual. Requirements
Specification and User Manual for the Abstract Data Type definition Package (ADTP), Software

[26] George J. Milne. CIRCAL: A calculus for circuit description. Integration, (1):121-160, 1983.

[27] George J. Milne. Simulation and Verification: Related Techniques for Hardware Analysis. In
Proceedings o f the Seventh International Conference on Computer Hardware Description Lan-

[28] Robin Milner. Calculii for Synchrony and Asynchrony. Technical Report CSR-104-82, Univ. of

[29] Robin Milner. A Calculus o f Communicating Systems. Springer-Verlag, 1980. LNCS 92.

[30] S. Morpurgo, A. Hunger, M. Melgara, and C- Segre. RTL Test Generation and Validation for
VLSI: An Integrated Set of Tools For KARL. In Proc. Seventh International Symposium on
Computer Hardware Description Languages, pages 261-271, North Holland, 1985.

[31] Eric G. Muehle. FROBS: A Merger o f Two Knowledge Representation Paradigms. Master’s
thesis, Dept, of Computer Science, University of Utah, Salt Lake City, UT 84112, December
1987. FROBS Stands for Frames-(-Objects.

39

[32] P. Narendran and J. Stillman. Hardware Verification in the Interactive VHDL Workstation.
In Graham Birtwistle and P.A.Subrahmanyam, editors, VLSI Specification, Verification and
Synthesis, pages 235-255, Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

[33] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, Aarhus University, Denmark, September 1981.

[34] R.C.Sekar and Mandayam Srivas. Specification and Verification of the Lilith Microprocessor in
SBL. In Banff Hardware Verification Workshop, June 1988, 1988.

[35] Mary Sheeran. Design of Regular Hardware Structures Using Higher Order Functions. In
Proceedings o f the Functional Programming and Computer Architecture Conference, Springer-
Verlag, LNCS 201 , September 1985. Nancy, France.

[36] Jan Snepscheut. Trace Theory and VLSI Design. Springer Verlag, 1985. LNCS 200.

[37] Pashupathy A. Subramaniam. Overview of a Conceptual and Formal Basis for An Automat­
able High Level Design Paradigm for Integrated Systems. In Proceedings o f the International
Conference for Computer Design and VLSI, Westchester, pages 647-651, 1983.

[38] W.F.Clocksin. Logic Programming and Digital Circuit Analysis. Journal of Logic Programming,
(4):59-82, 1987.

40

A A p p e n d i x

A . l A S p e c i f i c a t i o n o f P A R C O M P

Input: An expression Hide H S in || {P t-[Xi],..., •••} f°r * ^ j 6 { l . .n } .
C j are conditional processes of the form
C j[X J\ = i f qj th en 7 j[<7j(A7)] e ls e F j[h j(X J)] and Pi are non-conditional processes of
the form
P i[)Q = : in i t ia h i -► P,(t/,);

Each Pi offers a set of initial choices in i t ia h i and for each choice y, that is offered, the
future behavior of Pi is H S is the H idden S e t, the set of events and ports hidden
from the parallel composition.
O u tpu t: A behaviorally identical process P \X i, •••].

M ethod: A done-list is maintained for each parallel composition || {P ,[X ,],...} that has
already been computed. Upon getting a call for performing parallel composition, the
done-list is first consulted.

• If the requested parallel composition is in the done-list, return. Else enter it in the
done-list and proceed as follows.

• Combine all conditional processes into one conditional process C. Combining two con­
ditional processes is done as follows:

Cl [XT] = i f qi th en 7\[^i(XT)] e l s e F i[/ii(3T)]

C2[X^ = i f q2 th e n T2[52(^ 2)] e l s e F2[h2(A*2)]

Ci[A'i] || C 2[5Q = i f (91 A q2) th en Xi [<71 (Xi")] || T2[g2(X 2)\

e l s e i f (91 A n ot(q2)) th e n T i[$ri(^)] || ^ [^ 2(^ 2)]
e lse ...e tc . (a ll f o u r c o m b in a tio n s)

• Now we are left with the task of computing Hide H S in || {P,[Ar,] , ..., C }. Let C be of
the form

i f <71 th en C i[# i(X 7)]e lse i f <72 th en C2[<72(^ 2)]e*c.

|| {Pjp^T],..., C} reduces to a conditional process with <7, as the conditions. This condi­
tional has in it parallel compositions of the form || {P ,[X ^|,..., C ,}. that is (recursively)
computed. Eventually we are faced with composing non-conditional processes in parallel.
We take this up next.

• Consider || {P ,[X j],...} . Let each Pj be

P O T = <*>!-*

I ca] -

1 - _
I c a " '- * " '[/ " ■ (* ,)]

41

T = < ca*1, caf2, ...ca*m >

i.e. a tuple of the x ^ h initial compound action offered by J^, the x 2th initial compound
action offered by P 2> etc. This tuple T is assumed to be the irreducible form arrived at
after applying the action product rules of figure 10. According to the rule for parallel
composition Parcom p all such tuples would become the initial choices of the resultant
process. Following such choices, the resultant process would continue to behave like
II However using the hiding information H S , we can
prune m any of these choices. In particular,

- those tuples T th a t contain unsynchronized events Ie th a t belong to H S are
dropped, and the corresponding arm of the synchronization tree is pruned;

- those tuples T th a t contain O e th a t belong to H S are replaced via the substitution
T [O id le /O e] .

In computing
ii { t f f i / r O T i . - R r i / r m i , - } .

the bindings generated by taking action products of the members of T are taken into
account. □

Generate tuples

A . 2 A B r i e f D e s c r i p t i o n o f t h e H O P D e s i g n S y s t e m

Figure 22 illustrates the d a ta flow diagram of the HOP design system. The rectangular
boxes indicate functional units, and boxes with curved sides indicate interm ediate storage
units. D otted lines show the flow of control, and solid lines show the flow of data. Currently,
working prototypes exist for all the functional units shown in this figure.

Inpu t specifications are entered through text editors. File name extensions .ap , .rp , and
. vp refer to absproc, realproc, and vecproc. Cell specifications are entered using the PPL[33,
37] layout editor called Tiler [20]. (VLSI chips will be described in PPL; see [12] for links
between HOP and PPL.) HOP specifications are compiled into FROBS representations using
the H O P—*FROBS compiler. The algorithm PARCOM P can now be applied on realprocs and
vecprocs (presently implemented only for realprocs). PARCOM P infers functionally equivalent
absproc specifications from realproc and vecproc specifications. The inferred behavior will be
much faster to simulate.

The sim ulator preprocessor compiles the FROBS database into a form suitable for the
sim ulator (under development). A d a ta type definition mechanism has been implemented
using FROBS [25]. During simulation, the sim ulator will be called upon to evaluate functional
expressions th a t com pute new datapath states as well as ou tpu t port values. These will be
achieved by invoking the operations defined on the various d a ta types. FROBS supports
daemons th a t can help probe simulation results, as explained in section 5.3.6.

42

Figure 22: D ata Flow Diagram of the HOP Design System

