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A bstract

We present a practical and efficient algorithm for interactively ray 
tracing arbitrary implicit surfaces. We use interval arithmetic (IA) 
both for robust root computation and guaranteed detection of topo­
logical features. In conjunction with ray tracing, this allows for ren­
dering literally any programmable implicit function simply from its 
definition. Our method requires neither special hardware, nor pre­
processing or storage of any data structure. Efficiency is achieved 
through SIMD optimization of both the interval arithmetic compu­
tation and coherent ray traversal algorithm, delivering interactive 
results even for complex implicit functions.

Index Terms: I.3.5 [Computer Graphics]: Computational Geom­
etry and Object Modeling—Curve, surface, solid, and object repre­
sentations; I.3.7 [Computer Graphics]: Three-Dimensional Graph­
ics and Realism—Raytracing

Figure 1: The Barth-sextic Implicit rendered roughly interactively at 
9.0 fps (6.1 fps with shadows) with a 5122 frame buffer on an Intel 
Core Duo 2.16 GHz, purely on the CPU.
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1 Intro du ctio n

In graphics, geometry is most often modeled explicitly as a 
piecewise-linear mesh. An alternative is a higher-order analytical 
representation in implicit or parametric form. This option presents 
advantages, such as compact storage and view-independent local 
smoothness. While implicits have not experienced as widespread 
adoption as parametric surfaces in 3D modeling, they are common 
in other fields, such as mathematics, physics and biology. More­
over, they serve as geometric primitives for isosurface visualization 
of point sets and volume data.

To render implicits in 3D, one is principally given a choice of 
extracting and rasterizing a mesh, or ray tracing the surface directly 
via root-solving. Mesh extraction methods that adaptively recon­
struct geometric or topological features exist; however they remain 
limited in the features they can reproduce, and are not sufficiently 
fast for dynamic extraction alongside real-time rasterization. While 
ray tracing low-order implicits is often trivial, arbitrary implicits 
pose a difficult problem. In the past two decades, several techniques 
have been developed to ray trace general implicits robustly. Over­
all, these methods either are slow, restrict the class of functions they 
handle, or resort to piecewise approximations. Methods involving 
interval arithmetic (IA) are the most general in that they can ac­
comodate any programmable function. As implemented, however, 
they are among the least efficient.

Recently, coherent traversal techniques, SIMD vector instruc­
tions and multicore CPUs have enabled interactive ray tracing. Ap­
plications have largely sought to compete with rasterization in ren­
dering explicit geometries -  principally offering scalability to large 
data, and more powerful, flexible and intuitive shading and lighting 
models. As geometries that cannot be trivially rasterized, arbitrary 
implicits make a particularly intriguing application for ray tracing. 
Coherent ray tracing has not been applied to this problem before, 
and conventional ray tracing methods are slow largely due to the 
high computational cost of interval evaluation. By optimizing in­
terval arithmetic with SSE, and pairing this with a fast coherent 
traversal algorithm, we find that interactive performance is possible 
on common laptop hardware, with a system that accurately visual­
izes any implicit surface composable by interval algebra.

The contribution of our work is the combination of a SIMD 
interval arithmetic library with a novel coherent ray tracing algo­
rithm for implicits that performs coherent spatial bisection without 
the need for an explicit acceleration structure. We require no spe­
cial hardware, other than SIMD vector instructions prevalent on all 
modern CPUs. To render, we require only the implicit function 
itself, a desired graphing domain, and an appropriate precision cri­
terion or tolerance. We demonstrate our method on various implic- 
its, including difficult cases for extraction-based methods, such as 
functions with singularities and time-variant 4D hyper-surfaces.

2 R elated  w o r k
2.1 Mesh Extraction
Application of marching cubes [13, 28] on implicits can generate 
meshes interactively, but will entirely omit features smaller than the 
static cell width. Paiva et al. [19] detailed a robust algorithm based 
on dual marching cubes, using interval arithmetic for visibility in
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conjunction with topological and geometric oracles. Varadhan et 
al. [25] employed dual contouring and IA to decompose the implicit 
into patches, and compute a homeomorphic triangulation for each 
patch. Schreiner et al. [23] used a moving least-square guidance 
field to adaptively triangulate implicits. Though they generate nice 
meshes that preserve topology within geometric constraints, these 
methods are restricted to continuous or compact manifold implicits, 
and compute offline in the order of seconds or minutes.

2.2 Ray Tracing Im p lic its
The blobby surfaces of Blinn [1] provided modeling interest in an 
efficient method of rendering implicits. Kalra & Barr [10] devised 
a class of L-G surfaces, which could be robustly isolated within a 
bounding region given a known Lipschitz-condition bound. Stolte
& Caubet [24] applied discrete ray tracing to voxelized represen­
tations of implicits. Hart [8] proposed evaluating signed distance 
functions along a ray, considering balls of diminishing radii sepa­
rating the ray and a surface. Loop & Blinn [12] implemented a fast 
ray casting technique for the GPU that decomposes implicits into 
piecewise Bezier tetrahedra. Romeiro et al. [21] proposed a hybrid 
GPU/CPU technique for ray-casting CSG trees of implicits.

2.3 Ray Tracing Im p lic its  w ith  Interval A rithm etic
Mitchell [15] was the first to employ interval arithmetic for im­
plicit ray tracing. He devised a hybrid algorithm that employed 
bisection to segment the ray into intervals on which the function is 
monotonic, followed by root refinement via a standard numerical 
root-finding method. Capriani et al. [2] combined interval bisection 
with various other iterative schemes, including the Interval Newton 
method. De Cusatis Junior et al. [3] used affine arithmetic, a higher- 
order interval algebra, to address the bound overestimation prob­
lem of pure interval arithmetic (see Section 3.2). Sanjuan-Estrada 
et al. [22] compared performance of two hybrid interval methods 
with implementations of the Interval Newton and a recursive point- 
sampling subdivision method in the POV-Ray framework. Florez 
et al. [5] proposed a ray tracer that antialiases surfaces by adap­
tive sampling during interval subdivision. Even when accounting 
generously for Moore’s Law, none of these methods would perform 
interactively on a modern PC if implemented naively.

Figure 2: Inclusion property of interval arithmetic. (a) When a func­
tion is non-monotonic, simply evaluating the lower and upper com­
ponents of a domain interval is insufficient to guarantee a convex 
hull over the range. This is not the case with interval arithmetic (b), 
which, when evaluated, will encompass all minima and maxima of 
the function within that interval. Thus, an IA representation F of a 
function f  can definitively determine if f  possibly passes through v 
on an interval I, by testing if v e F(I). Ideally, F(I) is equal or close to 
the bounds of the convex hull, CH(I).
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3 Bac kg ro un d  
3.1 Im p lic it Functions
An implicit surface S in 3D is defined as the set of solutions of an 
equation

f  (x, y, z) =  0 (1)

where f  : Q C R3 ^  R. For our purposes, assume this function is 
defined by any analytical expression. In ray tracing, we seek the 
intersection of a ray

P(t ) =  O + tD (2)

with this surface S. By simple substitution of these position coordi­
nates, we derive a unidimensional expression

f t (t) =  f  (Ox +  tDx, Oy +  tDy, Oz +  tDz) (3)

and solve where f t (t) =  0 for the smallest t > 0.
In this sense, ray tracing is a root-finding problem. For sim­

ple implicits such as a plane or sphere, ft =  0 can be solved for t 
trivially. More complicated expressions, such as nonalgebraics and 
polynomials of degree 5 or higher, cannot be solved analytically. 
Global iterative root-finding methods such as regula falsi can solve 
over an interval on which a root is known to exist, but fail otherwise. 
Recursive examinination of sign changes, in conjunction with eval­
uation, work only when a function is monotonic over an interval. 
Such “point-sampling” methods (e.g. Kalra & Barr [10]) succeed 
when monotonicty assumptions can be made; otherwise they may 
fail to robustly determine zeros of the implicit, as illustrated in Fig­
ure 2(a). Fortunately, interval arithmetic provides us with a mech­
anism for testing whether or not a zero of a function exists over a 
sub-domain of the implicit.

3.2 Interval A rithm etic
Interval arithmetic was introduced by R. E. Moore [16] as an 
approach to bounding numerical rounding errors in mathematical 
computation. The same way classical arithmetic operates on real 
numbers, interval arithmetic defines a set of operations on intervals. 
LetX =  [a, b] and Y =  [c, d] be intervals. Then, if op e  {+, —, * ,/}, 
we define X op Y =  {x op y where x e X and y e Y}. For example,

X +  Y =  [a, b] +  [c, d] =  [a +  c, b +  d]

X — Y =  [a, b] — [c, d] =  [a — d, b — c]

X x Y =  [min(ac,ad,bc,bd),max(ac,ad,bc,bd)]

Moore’s fundamental theorem of interval arithmetic [16] states 
that for any function f  : Q C R3 ^  R (where Q is an open subset 
of R3) and a domain box B =  X x Y x Z C Q the corresponding 
interval extension F : B ^  F (B) is an inclusion function of f , in 
that

F (B) D f  (B) =  {f  (x, y, z) | (x, y, z) e B} (4)

Thus, by using interval arithmetic to evaluate F , we have a very 
simple and reliable rejection test for the box B not intersecting S,

0 e F(B) ^  0 e  f  (B) (5)

This property can be used in ray tracing for identifying and skip­
ping empty regions of space. Note, however, that although 0 e/  F(B) 
guarantees the absence of a root on an interval B, that the converse 
does not necessarily hold: one can have 0 e F(B) without B in­
tersecting S. When F (B) loosely bounds the convex hull, as in 
Figure 2(b), IA makes for a poor (though still reliable) rejection 
test. This overestimation problem is a well-known disadvantage, 
and is fatal to algorithms relying on iterative evaluation of non­
diminishing intervals.
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Fortunately, overestimation error is proportional to domain in­
terval width; therefore IA guarantees convergence to the correct 
solution when interval domains diminish. This is the case in algo­
rithms such as sweeping computation of hierarchially subdivided 
domains [4, 9], and ray tracing algorithms involving recursive in­
terval bisection [15, 2]. Though the overestimation problem affects 
the efficiency of these algorithms, recursive IA methods robustly 
detect the zeros of an implicit, given an adequate termination cri­
terion such as a sufficiently small precision e over the domain, or 
tolerance 5 over the range.

As explained by Mitchell [14], any function can be expressed 
as an interval extension by considering its disjoint composition of 
piecewise-monotonic intervals. This includes non-algebraic piece­
wise or periodic functions such as modulus, and transcendentals 
such as exponential, logarithm and trigonometric functions [4]. 
While rigorous definition of the class of IA-expressible functions 
falls outside the scope of our work, intuitively one can derive an 
IA extension for any computable function. Once defined, IA opera­
tors are composable, allowing for trivial representation of arbitrary 
functions by their component real-operators. Ill-defined operations 
(e.g. division by zero, in Section 5.4), may require special-case han­
dling, but are typically consistent with existing numerical solutions 
for real numbers.

3.3 Coherent Ray Tracing
The principal idea of coherent ray tracing is to perform traversal 
and intersection on groups, or packets, of rays. In this way, the costs 
associated with ray tracing are amortized over that group. Aggres­
sive coherent methods often compute traversal steps over a bound­
ing frustum of the packet as opposed to individual rays themselves, 
e.g. [26, 20]. More conservative methods (e.g. [27]) exploit coher­
ence on a smaller scale, specifically when encouraged by hardware. 
SIMD instruction sets such as SSE perform four floating point op­
erations in parallel, encouraging operations on packets of four rays. 
While potential gains are more modest, rays with divergent behav­
iors may still benefit from instruction-level parallelism.

Coherent ray tracing performs best when rays in a packet behave 
similarly. Ideally, neighboring rays march in lockstep, requiring the 
fewest total traversal steps to examine a region of space. In the Wald 
et al. [26] coherent grid traversal (CGT) algorithm, coherent traver­
sal of rectilinear space is accomplished by choosing a major march 
axis K  corresponding to the dominant ray direction, and examining 
slices of the other dimensions along fixed K  intervals. A hierarchi­
cal octree extension of CGT was proposed by Knoll et al. [11], and 
is the major algorithmic inspiration for this work.

4 Co her en t  Ray T racing  of Im p lic its  w ith  IA
Our algorithm simplifies the interval bisection method first pro­
posed by Mitchell [15], and employs a variant of coherent octree 
traversal [11] as opposed to direct bisection of t intervals along the 
ray. Together, these decisions allow us to perform bisection in a 
non-recursive manner, evaluate intervals quickly using SIMD vec­
tor instructions, and avoid unnecessary per-step interval multipli­
cation. The simplicity and efficiency of this algorithm allow it to 
interactively visualize most implicit functions.

The conventional Mitchell algorithm [15] employs interval bi­
section to reject empty (rootless) intervals. For each nonempty 
interval, it then computes the gradient interval, and determines 
whether 0 f_ F((T), i.e. if the function is monotonic over an in­
terval T . When this occurrs, Mitchell resorts to a robust numeri­
cal “refinement” method, such as non-IA bisection or regula falsi. 
Interval Newton methods (e.g. [2, 22]) also compute Fj(T) per- 
iteration. Gradient interval computation proves expensive. Al­
though previous works suggest these techniques offer improved 
convergence and efficiency compared to pure bisection, that sup­
position has been weakly scrutinized. In the context of coherent

Figure 3: Interval bisection methods. The conventional method (a) 
recursively bisects each ray along its parameter t until a surface is lo­
cated to the satisfaction of a termination criterion. Our K -  marching 
technique (b) marches rays along a common axis in lockstep. Eval­
uating along 3D interval boxes B requires slightly less computation 
per iteration than evaluating the projected function ft(t). More impor­
tantly traversing along a common spatial axis induces more coherent 
behavior between rays in a packet.

traversal, we find that interval bisection yields unequivocally bet­
ter performance, and achieves equivalent visual results efficiently 
at coarser sampling rates.

To leverage SIMD vector operations, we perform interval bisec­
tion on four rays at a time. Rather than bisecting t along the ray di­
rection as in Figure 3(a), we bisect space along a major directional 
axis K, similar to the coherent octree volume traversal proposed 
in [11], and illustrated in Figure 3(b). Particularly when the space 
between rays exceeds the domain sampling width e, this ensures 
more regular sampling of the function across neighboring rays, and 
preserves the spatial lockstep of coherent traversal (see Section 6.5).

The process of evaluating intervals is then simple. Given an in­
terval box B =  X x Y x Z, our function f  and its corresponding 
IA evaluation F , we evaluate whether 0 e F (B) for any ray in the 
packet. If so, we bisect that interval along the major march axis, or 
register a hit if a maximum depth threshold is reached. Rather than 
evaluating the IA extension of the implicit Ft (T) projected along 
the ray, as preferred by previous works, our K -bisection method 
evaluates the 3D implicit F(X,Y,Z) directly. This is convenient as 
both the IA extension and evaluation functions are natively given as 
f (x , y, z) expressions. Moreover, our traversal algorithm computes 
domain intervals B incrementally, requiring only three SSE addi­
tions per iteration. Conversely, evaluating Ft (T) requires IA eval­
uation of Equation 3: three IA multiplications and IA additions, or 
six SSE multiply, min, max and add operations in total.

5 Im plem entatio n

Our application takes as inputs a domain Q C R3, and an implicit 
function expression. For simplicity, we chose to hard-code most 
functions as IA expressions; however the function can also be re­
ceived from the user as a string and then parsed and compiled into 
IA code in a dynamic library on-the-fly.

5.1 SSE Interval A rithm etic
The foundation of our implicit ray tracing system is our own SSE 
IA library, which allows us to quickly evaluate intervals in SIMD. 
Implementation is straightforward; interval multiplication is partic-
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Algorithm 1 SIMD Interval Arithmetic
struct interval4 { 

simd lo, hi;
};interval4 add_i4(interval4 a, interval4 b) {

return interval4( add4(a.lo, b.lo), add4(a.hi, b.hi) );
}interval4 mul_i4(interval4 a, interval4 b) { 

simd lolo = mul4(a.lo, b.lo); 
simd lohi = mul4(a.lo, b.hi); 
simd hilo = mul4(a.hi, b.lo); 
simd hihi = mul4(a.hi, b.hi);
return interval4( min4(lolo, min4(lohi, min4(hilo, hihi))),

max4(lolo, max4(lohi, max4(hilo, hihi))) );
}

ularly efficient as SSE itself is relatively fast for both multiplication 
and minimum/maximum operation. The only non-trivial operators 
are periodic functions such as modulus and sine; and division which 
requires special-case handling during traversal (see Section 5.4). 
Examples of SSE IA pseudocode are given in Algorithm 1. We 
deliberately ignore IA rounding rules for numerical conditioning. 
For our visualization application, IEEE float rounding errors are 
insignificant compared to the termination tolerance of our bisec­
tion algorithm. One could likely devise numerically ill-conditioned 
functions that would require IA rounding, but for our purposes it is 
not a major issue.

5.2 Ray Packet S tructure
We chose conservative 2x2 packets for our implementation. Above 
all, we wish to evaluate baseline performance with SIMD ray trac­
ing using 4-wide SSE vectors; thus behavior of our system should 
be consistent on wider SIMD hardware, such as a GPU or FGPA. 
Though larger packets coupled with multi-level algorithms could be 
significantly faster (e.g. [20]), 2x2 packet traversal is better-suited 
for general-purpose ray tracing, and easily allows our implicits to 
be integrated into a ray tracer as geometric intersection primitives. 
The actual packet architecture should generalize to any coherent ray 
tracer; our packet implementation consists of origin and direction 
stored for each X, Y,Z axis in SSE packed floats. Packets also store 
the ray hit parameters t , and a mask indicating which rays have hit.

5.3 Traversal

Once the user has supplied a function, a domain box Q C R3, and 
a maximum depth dstop, we are ready to perform traversal. As in 
coherent grid traversal [26], we first find K, the dominant axis of the 
first ray in the packet, and denote the remaining two axes U and V. 
We then perform a standard ray bounding-box test on our domain. 
We store the actual tenter and texit parameters as well as the intersec­
tions with the K  entry and exit planes, tKenter and K exit. Now, we 
consider the total increment along K, tKexit — tKenter, and compute 
the total U and V increments over the entire domain. As our imple­
mentation is iterative, not recursive, we store an array containing 
a traversal “stack” for each depth {0..dstop — 1}, containing the t , 
K, U and V increments bisected at each level.

The algorithm then simply marches from one K  slice to the next, 
incrementing the t , K, U and V positions once per step and keep­
ing track of current and next values, orthogonally for each ray us­
ing SSE. It constructs intervals from the K, U and V current and 
next values. This enables us to iteratively increment domain inter­
vals simply with three SSE additions, as opposed to three SIMD 
IA multiplications and additions using the conventional t-marching 
method. Branching is only used to omit intervals when t < tenter, 
and exit when all rays hit successfully or have t > texit. We store 
and check a flag for each depth, which indicates when both sides of 
a K-subtree have been traversed. When this happens, we decrement 
the depth, and exit traversal when depth =  —1.

At each march iteration, we evaluate the IA function expression 
on this domain interval B =  X x Y x Z. If 0 e F(X,Y,Z), we “re­

curse” by incrementing d and using the bisected increments one 
level deeper. We register a hit on the surface when d = =  dstop — 1 
(or another hit criterion is met, such as ||F (B)|| < 5, as in Sec­
tion 5.5). Finally, we mask rays that successfully hit or terminate 
traversal when all rays hit. Traversal is illustrated in Figure 3(b), 
and pseudocode is given in Appendix A.

5.4 D iv is ion
IA division requires a slight modification to the above algorithm. In 
theory, IA division by intervals containing zero is ill-defined, simi­
lar to division of real numbers by zero. Fortunately, we can easily 
detect and handle these cases. For two intervals A and B, when 
0 e B, we define A/B =  [ ]. When rays traverse these inter­
vals, they will always find a surface within and recurse to maximum 
depth. Thus, without modification to the traversal, asymptotes will 
be rendered. To avoid rendering asymptotes, we simply neglect to 
register a hit when Fhi — Flo =  O. This principle is illustrated in 
Figure 4. With division correctly handled, our traverser will work 
for literally any function composed of IA operators.

K r >

I
\ . \

Figure 4: Handling Division. For functions with division, and intervals 
containing zero near an asymptote, our IA implementation returns 
“infinite” F(I) intervals (bottom left). As a result, these regions are 
always subdivided until termination (top left). Fortunately, we may 
detect this infinite case within the traverser before registering a hit, 
and thus choose whether or not to visualize asymptotes.

5.5 Precision C riterion
In our implementation, dstop determines the default precision for 
rendering the implicit. Roughly, this corresponds to a domain pre­
cision of 2—dstop, though indeed this varies by ray. However, for a 
more view-independent domain-space metric, the user may option­
ally specify an e, such that | |B| |2 < e serves as hit criterion, where 
B is an interval box X x Y x Z. In this case, the stopping depth is 
determined adaptively per-packet as

dstop =  log2(*packet/  e ) (6)
where for world-space ray entry and exits Pr with the domain box 
Q, and their corresponding K-coordinates Kr,

* =  , (HPx — P̂ nter ||2)2 r-j
&packet =  maxrepacket |kexit — Kenter | (7)

Alternately, the user may specify a range tolerance 5, in which case 
our algorithm registers a hit when ||F (B)|| < 5. Empirically, the 
performance differences between these metrics proved minor, and 
at low precision the dstop method yields more continuous results 
for neighboring rays. Thus, we use dstop as the default metric for 
evaluating performance at varying sampling quality.
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Figure 5: Dynamic shadows aid greately in visualizing the Klein Bot­
tle. Images rendered at 4.0 fps and 2.9 fps, respectively at dstop = 12.

5.6 Shadows
In ray tracing, hard shadows are fairly trivial, requiring a shadow 
ray cast for every primary camera ray that hits a surface. This typ­
ically entails a 20% to 50% decrease in frame rate, depending on 
the coherent behavior of shadow rays. Fortunately, useful shadow 
rays require less accuracy than primary rays; it frequently suffices 
to cast shadows to a coarser termination depth, such as dstop — 2, 
while employing a higher depth for primary rays. As shadows are 
primarily useful as depth cues, this is generally acceptable. The 
performance penalty is reduced, and loss of shadow detail is sel­
dom perceptible (Figures 1 and 5).

C  ’  C  )
Figure 6: Gradient normal computation, on the Heart function 
f  (x,y,z) = (2x2 + y2 + z2 — 1)3 — (.1x2 + y2)z3. Left: using analytical par­
tial derivatives as gradient, we see shading artifacts where the gra­
dient magnitude approaches zero. Center: with a central differences 
stencil of width AS = 0.001, the results are visually indistinguishable. 
Right: smoother normals with AS = 0.01. All images render at 6.7 fps.

5.7 G radient C om putation
For Lambertian shading, we require the surface normal at the ray hit 
position, given by the ^ , §y, partial derivatives at that point. 
While analytical gradients can be manually defined, they are not 
strictly necessary. If the user fails to define partials, we employ 
central differences by evaluating our function (using SSE, not SSE 
IA evaluation) six times to create a central differences stencil. The 
results look excellent in most cases, and have no appreciable impact 
on performance. We allow the user to specify stencil width; this 
is frequently beneficial for surface regions with near-zero gradient 
magnitude (Figure 6).

6 R esults

6.1 General Perform ance
All benchmarks were performed on an Intel Core Duo 2.16 GHz 
laptop with a 5122 frame buffer. Figure 9 shows various implicit 
surfaces with their associated equations and performance. Our sys­
tem achieves well over 20 frames per second for simple objects 
such as the torus, sphere and conic sections. For more complex 
objects, performance can fall below interactive speeds on our hard­
ware, but generally exploration at 1-5 fps is possible even for the 
worst cases. Complicated implicits such as the Barth-sextic exhibit 
similar performance. Most importantly, we are not restricted to any 
particular class of surfaces. Non-differentiable, non-continuous, 
non-manifold, self-intersecting and linked implicits are all robustly 
rendered.

24.4 fps 13.6 fps 7.1 fps 4.2 fps

20.9 fps 9.1 fps 4.3 fps 2.4 fps

Figure 7: Quality at various dstop bisection depths. Performance is 
inversely proportional to depth. Top: the 1st-order Lagrangian trilin- 
ear interpolant patch, a cubic implicit, yields tight intervals and con­
verges quickly to the correct contour. Bottom: the Mitchell function 
causes relatively high IA bound overestimation, and requires greater 
depth for correct visualization. Even here, a coarse precision crite­
rion e < 10—3 is sufficient to capture the correct topology.
6.2 Precision and Q uality
We use a common bisection depth dstop for benchmarking, which 
corresponds to a domain precision of 2—dstop along the K  axis of 
a given packet. The minimum depth required for accurate visual­
ization depends largely on the bound overestimation of the com­
posed IA rules for that function (Figure 7). As seen in Figure 9, 
dstop =  10 is in practice a good balance of performance and feature 
reproduction for the vast majority of functions we test. This finding 
is surprising: a domain precision of e =  2—10 ~  10—3 suffices to 
accurately visualize most implicits.

Figure 8: Reproduction of fine features. Though robust for each 
individual ray, ray tracing (as opposed to beam tracing) may fail 
to capture infinitely thin features. Coarser-contour visualization at 
lower precision actually aids in understanding these functions. Left: 
dstop = 10 at 11 fps. Right: dstop = 14 at 6.5 fps.

6.3 Feature R eproduction
The tear drop implicit (Figure 8) demonstrates how our algorithm 
can reproduce fine details that extraction-based approaches often 
omit. View-independent mesh extraction methods, e.g. [19], fre­
quently fail to capture such regions of a surface, leading to misclas- 
sification of details such as asymptotes, singularities or infinitely 
thin connected surfaces. However, when thin regions or singular­
ities lie between two rays and the interval bounds are sufficiently 
small, both discrete rays will (correctly) miss the surface, even 
though that surface would be encountered by an interval beam. To 
accurately reproduce such sub-pixel features would be expensive, 
requiring both supersampling and beam tracing of ray intervals, as 
detailed by Gavriliu [7]. Rendering at lower precision can actually 
aid in visualizing these features, as the IA inclusion property guar­
antees that our rendered surface will always form a convex contour 
of the actual zero-set (Figure 7). In this way, the user can iteratively 
modify dstop until the true surface topology is understood.
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Figure 9: Selected Implicit functions, covering a wide range of different shapes and topologies. All examples are rendered at dstop = 10 at 5122 
frame buffer resolution, on an Intel Core Duo 2.16 GHz. Performance is largely dependent on the number of operations required to evaluate the 
implicit, the entailed cost of computing the associated IA expressions, and the spatial complexity (effectively, implicit surface area) of the scene. 
Barth-sextic was rendered using t  = .
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6.4 Dynam ic Scenes
Because we neither precompute an explicit representation of the 
object, nor a physical acceleration structure in memory, we have 
great flexibility in rendering dynamically changing N-dimensional 
implicits. For example, we can render 4D implicits as 3D over 
time, using a f  (x, y, z, w) expression. An example of a two-sheeted 
hyperboloid morphing into a torus is shown in Figure 10. Though 
dynamic implicits would be difficult to achieve with mesh extrac­
tion techniques, they are trivial in our ray tracing system.

Figure 10: Animated 4D implicits. As our algorithm does not compute 
or store any acceleration structure, we can make arbitrary changes 
to the implicit function on the fly. In this example, we interactively 
morph a hyperboloid into a torus at 9-20 fps.

6.5 A lgo rithm  Perform ance Ana lys is
Perhaps our most striking finding is that practical IA-based im­
plicit rendering is not inherently slow, even though previous tech­
niques yielded generally poor performance. Implementations such 
as Mitchell [15] and Capriani et al. [2] sought to render implic­
its at up to machine precision (up to e =  10—7) with superlinearly 
convergent numerical methods. Despite its slower theoretical con­
vergence, we find that pure interval bisection is more efficient than 
these methods, particularly at lower precision which is more than 
adequate for correct visualization (see Section 6.2). To verify this, 
we implement an SSE variation of the Mitchell [15] algorithm, 
which performs interval bisection until all rays in the packet have 
0 /  F'(B), followed by non-interval bisection for root refinement. 
Implemented in SSE, this method proves far slower than pure bisec­
tion, even with small e . In addition, we compare our Z-marching 
algorithm with a standard t -bisection. For large, partical e, stan­
dard /-marching only performs 5% — 20% slower, depending on 
scene and computational demand of implicit evaluation. However, 
at smaller e, where the actual domain intervals of neighboring rays 
diverge spatially (Figure 3(a)), coherence suffers and Z-marching 
is significantly more efficient, potentially by an order of magnitude. 
These findings are summarized in Table 1, and overall encourage 
implementation of our Z-marching method.

Algorithm Z-bisect /-bisect Mitchell
Domain e 1e-3 2e-7 1e-3 2e-7 1e-3 2e-7
FUNCTION FPS
trilerp 10.6 2.8 9.9 0.31 1.20 0.75
mitchell 5.9 1.3 5.7 1.0 0.61 0.24

Table 1: Algorithm performance comparison between our K- 
bisection method, an SSE 2x2 packet implementation of the 
Mitchell [15] algorithm, and a pure /-marching interval bisection. 
For the K-bisection method, these e correspond to dstop = 10 and 
dstop = 22. Refer to Figure 7 for images of the trilinear interpolant 
(trilerp) and Mitchell functions.

6.6 C om parison to  Existing  Techniques
It is difficult to assess the performance of comparable works in 
implicit IA ray tracing. Fortunately, many papers evaluate perfor­
mance with a sphere. [3] reported around 1.3 fps at 64x64 on a 
Pentium 166. Accounting generously for Moore’s Law (doubling

performance every 18 months), we still achieve between two and 
three orders of magnitude better performance. Similarly, the hy­
brid and Interval Newton methods benchmarked in [22] perform at 
two to three orders of magnitude slower than our method. Florez 
et al. [5] rendered a sphere in 40 seconds at 300x300 resolution on 
a P4 2.4 GHz, albeit with adaptive antialiasing; again our method 
delivers over two orders of magnitude better frame rate (Figure 9).

7 Co n c lu sio n

We have detailed a coherent ray tracing technique for rendering ar­
bitrary implicit functions. By combining a coherent traversal algo­
rithm with an efficient SSE interval arithmetic library, we are able 
to visualize implicits robustly, accurately, and interactively at rates 
over two orders of magnitude faster than previous implementations.

Possibilities for extending our system abound. Performance 
could be further improved by using larger packets and multilevel 
coherent ray tracing techniques. Adaptive methods (e.g. [5]) might 
be desirable for better image quality at lower cost, particularly in 
conjunction with beam tracing (e.g. [7]), which could robustly an­
tialias thin features and singularities. Performance with computa­
tionally difficult implicits, and particularly those with high bound 
overestimation, would improve with a higher-order inclusion rule 
set such as affine arithmetic [3] or midpoint-Taylor arithmetic [7]. 
Though it would entail some sacrifice in generality and portability, a 
similar interval bisection algorithm would be simple to implement, 
and likely fast, as a fragment program on the GPU.

While powerful, our method has some limitations. It is not an 
interval beam tracer; aliasing may occur when rendering functions 
with sub-pixel features at small tolerance. Though interactive for 
most implicits we tested, it is still computationally demanding and 
may not be as fast as special-case intersections, particularly for 
lower order implicits. More generally, implicits have not experi­
enced widespread adoption in graphics compared to explicit mod­
eling methods for smooth surfaces such as subdivision surfaces, 
though this has perhaps been partly due to their difficult rendering.

An immediate application for this work is a general-purpose 3D 
graphing application, for use in conjunction with a mathematical 
software package. CPU ray tracing is particularly attractive for this 
task as it requires no specialized graphics hardware. Ultimately, 
the ability to efficiently render general implicits could have inter­
esting implications in graphics. Point-set rendering methods such 
as MPU [18] relying on rational implicits could easily be ray-traced 
using this technique. Procedural noise implicits could be employed 
for surfaces, as in [6]. In visualization, isosurfaces of higher-order 
finite elements [17] could be more efficiently rendered. Also of in­
terest would be using a similar IA technique to ray-trace arbitrary 
parametric surfaces, as suggested by Mitchell [14].
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A T r aver sal  Pseud o c o d e

Algorithm 2 Ray-Implicit Traversal.
template<int K, int U, int V, int DK> 
void traverse(RayPacket r, Box domain,

Implicit implicit, int d_stop) {
(get t_enter, t_exit, t_kenter, t_kexit) 
simd validmask = intersectBB(r, domain);
//validmask indicates rays that are active 
float full_tk = t_kexit - t_kenter; 
float full_u = mul4(r.dir[U], full_tk); 
float full_v = mul4(r.dir[V], full_tk); 
struct Stack {

simd u_incr, v_incr; 
float k_incr; 
char side;

};Stack stk[maxDepth]; 
for(int d=0;d<maxDepth;d++){

float width = 1.f / (float)(1<<d); 
stk[d].t_incr = mul4(full_tk, width); 
stk[d].u_incr = mul4(full_u, width); 
stk[d].v_incr = mul4(full_v, width); 
stk[d].side = -1;

}int depth = 0;
float curr_k = DK==+1 ? domain.min[K]:domain.max[k]; 
curr_t = t_kenter;
curr_u = add4(r.org[U],mul4(r.dir[U],curr_t)); 
curr_v = add4(r.org[V],mul4(r.dir[V],curr_t)); 
simd next_t, next_u, next_v;
for(;;) {

stk[depth].side++; 
next_k = DK==+1 ?

curr_k + stk[depth].k_incr : 
curr_k - stk[depth].k_incr; 

next_u = add4(curr_u, stk[depth].u_incr); 
next_v = add4(curr_v, stk[depth].v_incr); 
next_t = add4(curr_t, stk[depth].t_incr); 
hitmask = and4(validmask, cmp_ge4(next_t, tenter)); 
if (any4(hitmask)) { 

interval4 ibox;
(fill ibox with curr and next k,u,v) 
interval4 F = implicit.evalute_interval4(ibox); 
if (any4(F.contains(0))) {

if (!all4(cmp_ge4(sub4(F.hi,F.lo),INFINITY))){ 
if (depth == maxDepth-1){

//hithit(r, curr_t);
(compute normal); 
if (all4(r.hitmask)) 

return;
//recurse
depth++;
continue;

}
}

}
}validmask = and4(validmask, cmp_le4(next_t, texit)); 
if (none4(validmask)) 

return; 
curr_k = next_k;

if (stk[depth].side & 1)
{ do{

if (--depth == -1) 
return; } 

while(stk[depth] & 1); 
continue;

}
}

}
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